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Abstract 

Introduction: Mapping high vegetation in the urban areas in different scales 

(global, regional and local) is important for researchers as well as for authorities. 

This improves the quality and trustful monitoring of the changing environment. 

Combining both concepts and using machine learning approach can be helpful in 

reaching high accuracy classification for high vegetation in urban areas. 

Data and methods: In this thesis, supervised Machine Learning algorithms were 

used to compare the effectiveness of three modeling techniques – Support Vector 

Machines (SVM), Random Forest (RF) and Kernel - for classifying high vegetation 

in part of Copenhagen urban area. These three classification models were 

considered/selected in this study since their popularity and high classification 

performance were proven in the many previous studies. In addition to LiDAR 

features (intensity, return number, number of returns), orthophoto features such as 

colors (red, green, blue) and an infrared band were incorporated into the study.  

Results and discussions: The results indicate that the highest classification 

accuracy is obtained with Kernel model (85.25%), nevertheless Random Forest 

was found to be less sensitive when training dataset size was decreased 

(difference between Sets is 2.4%). In the further direction, classification model can 

be trained better and might work with larger scale areas, for example all 

Copenhagen. This model was trained to identify high vegetation in an urban area 

(part of Copenhagen), but it can be used to classify high vegetation on other cities 

as well. 

Conclusion: The highest accuracy was achieved with Kernel classification 

(85.25%), but with smaller training data size Random Forest can be considered as 

a very good option. The difference of accuracy changes of Random Forest was 

the lowest, compared with other models – 5% (the approach I) and 2.6% (the 

approach II). 

 

Keywords: Machine Learning, Classification, Support Vector Machine, Random 

Forest, Kernel, LiDAR, Orthophoto 
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1. Introduction 
 

More and more people have started living in a city rather than the countryside. 

Copenhagen is known as a green and ecological city where urban environment 

and vegetation goes together (Bothe K., et al., 2018). Moreover, vegetation is very 

important for ecology and the ecosystem. It takes many years for trees to grow, so 

high vegetation is very sensitive and time-consuming subject. Today we have 

remote sensing gadgets to track high vegetation. Most popular of these gadgets 

are LiDAR scanning and orthophoto from airplane or satellite. Machine learning 

with different algorithms can classify high vegetation from LiDAR and orthophoto 

features. This method optimization leads to faster and more precise high 

vegetation tracking and planning task. This chapter will review previous literature 

on the subject in order to get general knowledge about the main questions, 

problems and some solutions, remote sensing features (LiDAR and orthophoto), 

as well machine learning part with different classification algorithm analysis. 

1.1 Remote Sensing 
 

The definition of remote sensing can be described as measurement and 

information achievement without physical contact with the objects by registration 

gadget. 

 

This definition fits for many things. For example, in the medical description refers 

to X-rays or magnetic resonance. In an environmental context it stands for 

obtaining information about electromagnetic energy (EM), which comes from 

surfaces and objects on the earth. Differences in emitted electromagnetic energy 

provides possibility of object identification and differentiation between them 

(Khorram S. et al., 2012).  
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1.1.1 Light Detection and Ranging 
 

“LIDAR stands for Light Detection and Ranging”. It was presented for commercial 

use in the mid-1990s. Together with direct georeferencing technique the laser 

scanning equipment installed in planes gathers a cloud of laser range 

measurements used in calculating the 3D coordinates (XYZ) of the observation 

area.  

 

The main difference from 2D planimetric remote sensing data is that the explicit 

LiDAR data point cloud defines the 3D topographic profile of the earth’s surface. 

Another important advantage of airborne LiDAR is that it is not affected by relief 

displacement, lightning conditions or penetration of tree canopy. For this reason, 

LiDAR technique is widely used in topographic mapping, generating digital terrain 

model (DTM), creating digital 3D city model, natural hazard assessment, etc. (Yan, 

W.Y, 2012).  

 

LiDAR works by the with echo-return principle, by recording the time differences 

between the pulse of energy that is transmitted and comes back after touching the 

object. The wave is emitted from the anchored (to fixed-wing or helicopter type 

aircraft) sensor.  

The Z coordinate is very important here and it reflects pulse time to reach the object 

and come back. According to Davenport I.J. (2004) vertical accuracy is ±15cm 

(T.R. Tooke et al., 2014). 

 

The scanning area depends on: 

• Pulse speed; 

• Aircraft altitude; 

• Geographical position (T.R. Tooke et al., 2014). 

 

It is a remote sensing technology to get information from the environment in 3D 

with the optical sensors. 
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In present time, many tasks are not as time consuming as they were before LiDAR. 

Many earthworks today are done with LiDAR, instead of using expensive and slow 

fieldworks techniques. LiDAR data achieved meaningful technological 

development and now is taking advantage in natural resource science (J.D. Muss, 

2010). The information from LiDAR point cloud is precise and efficient. Digital 

Elevation Model is the one of the most conventional products from LiDAR (L. 

Goncalves-Seco et al., 2006, W.L. Lu et al., 2009). The potential LiDAR point in 

an urban context is capability automatically provide digital models with form and 

comprehensive structural information (J. Osborne, 2002). Hence, extraction of the 

willing research object is very important. Additionally, the usage of the object must 

be taken in to consideration (García-Gutiérrez, 2015). Those points make a 

sufficient impact in the map based on LiDAR data, regardless of whether it is an 

environmental or urban map. Artificial intelligence or machine learning is the 

solution to focus on the object of the interest. Usually, classification and regression 

techniques are used depending on variables of interest 

 (Tookea et al., 2014). 

 

1.1.1.1 Airborne LiDAR applications in Urban Environment 
 

The use of LiDAR technology has been quickly increased in the urban areas, 

because of its benefits compared to traditional remote sensing methods. In many 

studies, it is proven that LiDAR can be used not only for classification, but also for 

object recognition, extraction and different type of analysis. 

 

The urbanization processes can be organized and planned in a more efficient way 

with LiDAR technology. Precise Classification and recognition results lead to a new 

level of urban planning. According to Wai Yeung Yan (2015), LiDAR usage can be 

sorted into two different sections: 
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1. Urban Morphology 

2. Green analysis 

 

Wai Yeung Yan refers to “urban impervious surface extraction (Germaine & Hung, 

2011; Hodgson et al., 2003), urban environmental quality assessment (Garcia-

Gutierrez, Gonçalves-Seco, & Riquelme-Santos, 2011) and urban change 

detection (Stal, T., et al., 2013; Teo & Shih, 2013)”. 

 

Environmentally friendly and ecology-based city planning faces issues, which can 

be solved with data provided by LiDAR green analysis. Hecht et al. (2008) utilized 

digital surface, where deciduous trees are replicated with fuzzy logic method. This 

model provides information to evaluate urban green volume. Yao and Wei (2013) 

suggested the AdaBoost classifier. This classifier focuses on trees in urban areas. 

The precision is 0.65m in longitude and latitude, and 0.12m in elevation. Huang et 

al. (2013) provides object-based technique based on LiDAR and images data to 

calculate green volume. This technique has a few steps. Everything starts with 

DSM model. When it is created, the object of interest (urban vegetation) can be 

extracted according to NDVI. Vegetation can be separated into 2 types as tree 

pattern and grass pattern. Having diverse types of vegetation, the willing one can 

be analyzed, and different green volume can be calculated.  

 

1.1.1.2 Feature Spaces of LiDAR 
 

 

Figure 1. Feature Spaces (Inspired by Wai Yeung Yan et al., 2015) 
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Figure 1 represents feature spaces of the LiDAR. They are LiDAR derived height 

features, LiDAR intensity data, Multiple - return and texture, multi - sensor data 

and waveform - derived features. 

 

• LiDAR - derived height features 

 

Growing perception if LiDAR classification and object identification can be assign 

by the prevailing height feature derived. With the progress or the LiDAR sensor, 

which is able to provide Z value, arrives advanced land cover classification. Data 

with Z value shown influence on detailed and truthful delineation of Earth features 

despite urban or natural surroundings. Generally, the DSM model is created by 

interpolating 3D LiDAR data. This assists to identify and split particular classes in 

land cover.  According to Hartfield, Landau, & Van Leeuwen (2011) and Priestnall, 

Jaafar, & Duncan (2000), precision can be increased 5% - 6% by fusing LiDAR - l 

derived height features on multispectral images. Still, there might be a difference 

between DEM and DSM from LiDAR. That difference might result in an unreliable 

establishment of the above - ground component. With sophisticated filtering 

methods for LiDAR data (Sithole & Vosselman, 2004; Zhang et al., 2003), terrain 

can be produced combining LiDAR point cloud with a normalized height 

component. Bartels & Wei (2006), Brennan & Webster (2006), Hartfield et al. 

(2011), proved that this normalization demonstrates efficiency in increasing 

classification accuracy. Scientists (Charaniya et al., 2004; Hecht, Meinel, & 

Buchroithner, 2008; Huang et al., 2013) conducted experiments, which found that 

LiDAR - derived height features can considerably recognize and divide high and 

low vegetation. More height transformation types were observed, for example “the 

height variation (Charaniya et al., 2004), mean, variance and standard deviation 

of height in the first echo (Bartels & Wei, 2006), homogeneity, contrast, and 

entropy of height (Im, Jensen, & Hodgson, 2008)”. Nevertheless, none of these 

performances were as good as using a combination of LiDAR height and intensity 

data (Wai Yeung Yan et al., 2015). 
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• LiDAR intensity data 

 

Intensity is a radiometric component. It aids as a supplementary feature for 

classification. For a distinct return LiDAR sensor, the intensity shows the highest 

amplitudes registered in the laser from the backscattered of the objects. Here 

intensity normally consist of 8-12 bits. 

 

As shown in Figure 2 the sensor doesn’t only take the number of echoes into 

account, it also considers the additional storing pulse emission and the 

backscattered echoes. Intensity data as used for land cover classification, as well 

as for many different purposes. Mazzarini et al. (2007) was working with lava flow 

identification and mapping, Lang & McCarty (2009) used intensity to analyze forest 

wetland, Garroway, Hopkinson, & Jamieson (2011) used LiDAR intensity data for 

agricultural watershed, Kaasalainen et al. (2010) analyses moisture, Burton, 

Dunlap, Wood, & Flaig (2011) were observing rock properties. 

 

Song at al. (2002) focused on intensity feature for land classification. The tested 

data showed that numerous different objects, like roads, grass, roofs, tree, can be 

classified. 

 

Charaniya et al. (2004) demonstrated that some sensitive objects, which have a 

similar level, for example, roads and grass, can be separated.  Brennan and 

Webster (2006) provided that intensity data is effective by separating objects with 

unlike reflectance, for example, bright and dark surfaces. Im et al. (2008) 

supervised sensitive analysis. It was raised from 10% to 20% when the intensity 

feature was added in the analysis. Zhou et al. (2009) presented, that satellite 

images can be combined with LiDAR intensity data. This combination helps to 

solve issues with shades areas in urban environment. 
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Figure 2. Laser pulse (Wai Yeung Yan et al., 2015) 

 

• Multiple - return and texture features 

  
Next to the height and intensity there is a multiple return, which assists in the 

progress of land cover classification. Analyzing the first and the final returns in 

connection with some other features such as height or intensity or with differences 

in that group can provide bigger feature space. In 2004, Charaniya et al. proposed 

a method on how to increase precision in roads and building by 5%-6%. The 

solution was to make one more component, which is the difference between the 

first and last return. This method was repeated by Bartels and Wei (2006). He 

confirmed that precision was increased. Brennan and Webster (2006) and Buján 

et al. (2012) identify penetrable objects against non – penetrable ones by including 

multiple-return data in the object-oriented decision tree classifier. This provides a 

more precise solution to differentiate objects like trees and buildings, because 

normally trees have multiple returns due to their different layers (i.e. leaves, stems 

and branches). Singh et al. (2012) conducted research in a large area in the USA. 

This research revealed that despite the classification method, the difference in the 

first and final return improve the classification accuracy. However, the productivity 

of this method is not always granted. In order to get satisfactory results, the 

environment should be include a combination of randomly dispersed buildings and 

trees.  
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Texture analysis considers the allocation and deviation of nearby pixels data. 

Therefore, the classification criteria should include spatial properties. Im et al. 

(2008) produced GLCM (Gray-Level Co-Occurrence Matrix) in order to promote 

classification. The GLCM consisted of homogeneity, contrast, entropy and 

correlation. However, that solution did not prove better classification when 

compared to LiDAR derived heights combined with intensity. Samadzadegan, 

Bigdeli, and Ramzi (2010) used mean, entropy, standard deviation and 

homogeneity to extract tree, buildings, and ground. They concluded that only 

entropy texture increasing accuracy. Huang, Zhang, and Gong (2011) generated 

homogeneity, angular second moment, entropy and dissimilarity. The outcome 

was that only 19 x 19 window can commit with SVM classifiers. Regardless of 

these research studies there are not many methods and proofs with texture 

features and LiDAR data classifications (Yan, Shaker, & El-Ashmawy, 2015). 

 

• Multi - sensor data fusion 

 

Spectral information is not included in LiDAR data, but it can be attached from 

other sources. LiDAR data combined with spectral information significantly 

increases the precision of classification. There are two factors which should be 

completed: 

 

1. The coordinate system of the image should match coordinate system of the 

LiDAR data. 

2. The spatial resolution has to be the same in both data sources. 

 

For the first point, a simple solution is to take aerial pictures from the same flight 

as the LiDAR. 
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For large resolution images as QuickBird (Chen et al., 2009) and WorldView (Kim 

& Kim, 2014; Minh & Hien, 2011) georeferencing can be done before merging with 

LiDAR data. 

 

The second point can be reached by using regionalization. The procedure’s 

outcome is common resolution for LiDAR and image data. The selecting rules are 

made by taking into account the content of LiDAR and image data (Huang et al., 

2008). For example, Chen et al. (2009) used QuickBird Normalized Difference 

Water Index (NDWI) and Spectral Shape Index (SSI) to select shadow and water. 

To differentiate objects, which are higher than the ground, like buildings, nDSM 

was taken from LiDAR data. Very much alike the idea of classification was used 

by Sasaki et al., (2012) and Buján et al. (2012). Hartfield et al. (2011) claims, that 

after combining multi-spectral image and LiDAR data for classification with 8 

classes, the precision increased 5.2% (from 84% to 89.2%). This is because 

LiDAR data clarifies mistakes between herbaceous and tree/shrub classes. Those 

and other similar research like Zhou et al. (2009), Guan, Ji, Zhong, Li, and Ren 

(2013), MacFaden et al. (2012) proves that multi-sensor data fusion is practical 

and beneficial explanation, especially in a big territory land cover mapping (Wai 

Yeung Yan et al., 2015). 

 

• Waveform - derived features 

  
Besides multi-echo LiDAR-derived features, full-waveform LiDAR provides 

astonishing performance by producing data for topography and land cover 

classification. Combined with the onboard equipped waveform digitizer, airborne 

LiDAR sensor can store full waveform of the backscattered laser pulse signal. The 

time consumed is just nanosecond (ns) and the outcome is a 1-D signal profile 

(Mallet & Bretar, 2009). Scanning techniques usually require more than one 

backscattered. For accurate classification the data should be kept in the same 

order. Wagner et al. (2006) suggested use Gaussian components for waveform 

decomposition.  However, the symmetric hypothesis of Gaussian decomposition 
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might not demonstrate the backscattered signal in real life due to the multiplicity of 

terrain and LiDAR system settings. Consequently, new techniques and 

methodologies were proposed to enhance estimation of the backscattered 

waveform geometry. Chauve et al. (2007) reviewed two classic expansions of 

Gaussian: Lognormal and generalized Gaussian functions for better waveform 

modeling of the LiDAR. The generalized Gaussian modeling method was 

presented as an advanced solution for the top point recognition with the same extra 

parameters. The first time full - waveform data type for classification was used by Mallet 

et al. (2008). Different waveform characteristics might be obtained from the 

Gaussian decomposition function to make land cover classification. “Commonly, 

the waveform amplitude, number of echoes, echo width, and the difference 

between the first and last echo pulse are tested for urban land cover classification 

(Alexander et al., 2010; Chehata et al., 2009; Neuenschwander, Magruder, & 

Tyler, 2009; Niemeyer, Wegner, Mallet, Rottensteiner, & Soergel, 2011).” Even 

though some tests extract from 10 to 18 features only a few can really provide help 

in differentiating particular land cover classes. Mallet et al. (2008) conducted 

research which presented that the echo width can very accurately  differentiate 

vegetation from human made objects. Chehata et al. (2009) proved Mallet et al. 

(2008) research one more time by differentiating trees from land cover. 

 

Lin and Mills (2010) published a paper in which they proved that even though the 

pulse width is influenced by an areas’ roughness, it is still lower in mistaken data 

than the intensity data. Vaughn, Moskal, and Turnblom (2011) worked with Fast 

Fourier transformation. They changed waveform into frequency. The case was to 

classify tree species, they achieved their goal with 75% precision. Alexander et al. 

(2010) showed that backscattered performed better in differentiating low ground 

features. Neuenschwander et al. (2009) analyzed classification land cover from 

LiDAR and QuickBird. The difference in precision was 14.6% (85.8% in LiDAR and 

71.2% in QuickBird). 

 

https://www-sciencedirect-com.zorac.aub.aau.dk/science/article/pii/S0034425714004374#bb0390
https://www-sciencedirect-com.zorac.aub.aau.dk/science/article/pii/S0034425714004374#bb0390
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1.1.2 Airborne Remote Sensing 
 

The earth surface can be measured remotely by airborne remote sensing with the 

sensors fixed downward or sideways on an aircraft. The benefit of this remote 

sensing method compared with satellite imagery is that it produces very high 

spatial resolution images (< 20 cm). However, it is only useful for a small area 

mapping. Normally, airborne are planned for collecting the data one time, when 

satellite observations are used for monitoring (Liew, S.C., 2001). 

 

There are many types of aircrafts which can be used. The options depend of the 

project type and budget. The speed depends on sensor system which is installed, 

but normally it is 150 km/h and 750 km/h.  The flying altitude depends on the 

desired resolution. Moreover, the aircrafts position plays an important role in the 

quality and precision of the data geometry. The positioning is represented by 3 

rotation angles: roll, pitch and yaw angles (Figure 3. rotating angles) (Khorram S. 

et al., 2012). 

 

 

Figure 3. The three angles (roll, pitch and yaw) of an aircraft that influence the 
geometry of the acquired images (Khorram S. et al., 2012). 
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1.1.2.1 Image data characteristics 
 

RS image looks like a picture, but it is much more than a picture. Image contain 

information about EM energy. The data is kept in a grid with rows and columns. 

One piece of this grid is called a pixel. A pixel holds information of the picture 

element as Digital Number (DN). Normally, the data is divided by bands, one band 

has information about one measured wavelength range (Figure 4) (Khorram S. et 

al., 2012). 

 

 

Figure 4. Image bands and DN values in pixel (Khorram S. et al., 2012) 

 

Figure 5 represents image characteristics. 

 

Figure 5. Image characteristics (Inspired by Khorram S. et al., 2012) 

 

Image characteristics usually are defined as the characteristics of the sensor-

platform structure.  
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• Spatial characteristics are about the area of interest 

• Spectral characteristics specifies spectral wavelengths of the sensor 

• Radiometric characteristics indicate energy level measurements 

• Temporal characteristics presents time of the information/measurement 

gaining (Khorram S. et al., 2012). 

• Spectral reflectance curves 

Irradiance and radiance are two important parameters. The energy which going to 

the surface is irradiance, the energy which coming from the surface is called 

radiance.  

 

Every metal can be represented by special reflectance curve. The curves provide 

information about radiation, which comes from reflected wavelengths. This leads 

to the new information about reflection angle of wavelength.  

 

Normally, remote sensing sensors are precise and can expand wavelength bands. 

This is why the curve is valuable for determining overall reflectance. The curves 

can be collected in specific libraries, because each material has a different 

reflectance curve (Khorram S. et al., 2012). 

 

• Vegetation 

The main parameters of reflectance in vegetation are direction and structure of leaf 

canopy. Features like pigmentation, thickness and composition (cell structure), 

amount of the water in the leaf tissue affects distribution of the reflected radiation.  

 

Figure 6 provides an ideal reflectance curve. 
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Figure 6. Hypothetical perfect fitting spectral reflectance curve of a healthy 
vegetation (Khorram S. et al., 2012) 

 

From the Figure 6 it seems, that two colors - blue and red are reflected low amount 

of energy, all energy is absorbed during the photosynthesis process. But green 

light is reflected in a larger proportion. The most notable reflectance comes from 

near-infrared. This quantity depends on the leaves growing stage and cell 

structure. The reflectance has a tendency to go lower, when the amount of the 

water is higher. For reflectance and water correlation, they are referred to as water 

absorption bands. When the leaves are losing chlorophyll, they change color. The 

spectral reflectance curve changing the parameters and now, we can notice, that 

some bands will have different distribution of reflection. If the leaves are becoming 

yellow, the reflectance of the red color will be unusually high, and the middle 

infrared reflectance will increase, while at the same time near-infrared will act the 

opposite.  

 

These parameters and their changes are showing information about vegetation 

type and also the health condition of the tree. (Khorram S. et al., 2012). 
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1.2 Machine Learning 
 

This chapter will discuss different machine learning techniques for classification. 

An overview of different libraries and software where machine learning can be 

implemented and some main classification algorithms and how they work, will also 

be discussed. This is an important part for the technical classification aspect 

because the results depend on the methodology of classification and the chosen 

algorithm. 

1.2.1 What is Machine Learning? 
 

The purpose of machines is to be faster and more accurate than human. 

Mechanical jobs such as traffic control (traffic lights), deep holes digging, and many 

others were overtaken by machines and our life became easier. Even though 

machines cannot understand and evaluate emotions, art and many other things, 

they have a huge advantage over us when it comes to mechanical job, which they 

can perform much faster and with more precise than us. For example, there are 

many ways in which human can find the smallest number in an unordered list. As 

well, there are many different algorithms for machine to calculate it. All algorithms 

will find the smallest number, but the time cost, the data size can be different. The 

main difference between machines and humans is intelligence. Humans are able 

to learn from previous experience by analyzing data and making decisions from 

our past knowledge. Artificial intelligence (AI) brings machines closer to human. 

These machines are programmed to remember and take human-like decisions. 

The data is operating by AI the way, that computer can remember and recognize 

specific sequence in the data. Machine learning (ML) is one section of AI. Figure 

7 illustrates ML position and relationship with related fields (Mohssen M. et al., 

2017). 
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Figure 7. Machine Learning position and relation between other brunches. 
(Mitchell-Guthrie, P., 2014) 

 

According to Tom M. Mitchell ML is a combination of Computer Science and 

Statistics. The defining question of Computer Science is “How can we build 

machines that solve problems, and which problems are inherently 

tractable/intractable?”  

The question that largely defines Statistics is “What can be inferred from data plus 

a set of modeling assumptions, with what reliability?” The defining question for 

Machine Learning builds on both, but it is a distinct question “How can we build 

computer systems that automatically improve with experience, and what are the 

fundamental laws that govern all learning processes?””. ML target is how to reach 

the step, where computers program themselves (Mitchell M.T., 2006). The idea is 

to write computer programs, that will make machines learn. The aim is to teach 

machines how to learn by writing computer programs. With the learning machines 

doing some tasks, for example predictions. The main target is to have a strong 

model, which can produce the desired output by data which was imputed. The 

model can be just an approximation. This means, that in some cases ML output 

will have some errors but most of the time the model provides the desired output.  
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There are four Machine Learning techniques, which will be discussed in the 

following chapter. 

 

1.2.2 Learning techniques 
 

The four Machine Learning techniques are: Supervised learning, Unsupervised 

learning, Semi-supervised and reinforcement learning. Figure 8 shows ML 

techniques with the appropriate data.  

 

 

Figure 8. Machine learning techniques and data requirements (Mitchell M.T., 
2006) 

 

• Supervised learning 

 

The supervised learning technique has a goal to recon a function from a training 

set, which has labels. The training data has a training example. Training example 

is input vector X and output vector Y. Vector Y is explanatory vector. That is to say, 

training data covers training examples. 
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Every training example has a label corresponding to every output vector Y in the 

training data. The Y vectors comes after inspection. The inspection can be done 

by machines, but normally it is done by humans. The labeling which is done by 

machines results in more errors, whereas, labeling done by humans is more 

accurate.  

 

Figure 9 presents how labeling can be done according to different criteria. The 

column named “Example judgment for labeling" describes examples what kind of 

criterion can be. For example, to know if there is any real estate property in the 

picture we can look for a house or for a car, which is usually parked next to the 

house or urban areas. 

 

The next column represents all possible labels for the criterions. The last column 

shows who can provide this labeling. For example, the criterion is or was the word 

“football” mentioned in the voice recording? The answer is quite intuitive, either 

yes or no. This label can be given by machine or by human. Even though speech 

detection has been progressing for quite a long time it still requires improvement. 

The last example on the Figure 9 with criterion “Tumor presence in X-ray?”, 

requires a different level of labeling. The labels must be given not just by any 

simple human, but rather by an expert of this field.  

 

 

Figure 9. Demonstrates how in different scenarios labeling can be done (Mitchell 
M.T., 2006) 
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• Unsupervised learning 

 

Unsupervised learning is the learning without the use of labels. Instead of having 

direct labels, the aim is to find specific data structures. The algorithms should 

entirely unattendant find answer. There can be a lot of reasons why data is 

unlabeled. For example, manual labeling is too expensive or data by itself cannot 

have labels. “The variety, velocity, and the volume are the dimensions in which Big 

Data is seen and judged”. So, to gain something from the data without inspection 

and labeling is very important. This is one of the main questions for machine 

learning development (Mitchell M.T., 2006). 

 

• Semi-supervised learning 

 

Semi-supervised learning is a combination of supervised and unsupervised 

machine learning. This means, that we have two different type of data. One has 

labels and another one does not. This type of learning is very similar to human 

learning. The living environment is very new and strange for a child. This means, 

he has a lot of unlabeled data. But there are some people, like parents, who 

introduced him/her to this environment. They are giving “labels” for cat, dog and 

other subjects. This is how big data is becoming labeled and unlabeled at the same 

time (Mitchell M.T., 2006). Very common example is a picture. Usually, in a picture 

there are only a few objects which are known (labeled) - apple, table, all others are 

unknown (unlabeled).  

 

• Reinforcement learning 

 

Reinforcement learning collects the information which comes from interplay with 

the environment. Learning has a target to take actions that increase profit or 

reduce the danger. Reinforcement learning is producing intelligent programs. 

Intelligent programs, sometimes are called agents.  

Reinforcement learning has to perform following the steps: 

1. Input is analyzed by the intelligent program. 
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2. The action is taken according to the decision-making function. 

3. When the action is complete, the intelligent program gets reward or 

reinforcement.  

The sequence of the actions, which were taken to achieve reward is collected. 

 

1.2.3 Tools and toolkits for implementation 
 

• Scikit 

 

Scikit is presented as easy, understandable and effective tool for machine learning. 

Moreover, it is an open source so it is freely available for everyone to use. It uses 

python language and libraries such as NumPy, SciPy and others. With Scikit it is 

possible to manage classification, regression and clustering. For example, Support 

Vector Machines, Random Forests, Gradient Boosting, K-Mean (Scikit-learn 

2018). 

 

According to data scientists Ben Lorica, Scikit is very well documented. It is 

obligatory to add script with examples chronologically, with small data set. 

Moreover, global API is protected and public API have strong documentation, 

contributors are doing unit test to analyze or all different pieces of the software 

working together and are ready to use.  

 

SciKit has very a qualified team. Contributors are specialized in ML and software 

development. In this case, all models are reliable. SciKit has a significant list of the 

available tools and it contains a lot from ML tasks. Even though ML tasks are 

always changing and developing because of a large community of expert 

volunteers, new tendencies are updated very fast. Moreover, users are protected 

from the variations of the same algorithm written by different people, this problem 

is common for R users. Python is one of the most popular language between data 

scientists. Python interpreter gives opportunity to connect datasets and can be 

http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/index.html
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modified according to the needs of the user. Furthermore, PyData has been 

strongly developed in the last years. Numerous data scientists work with a few 

pydata components. They start using IPython notebook and creating multi-step 

analytic projects, which aim to consolidate results from various pydata tools. 

Python is one of the preferable languages, that shows PySpark, GraphLab 

(GraphLab notebook), and Adatao, new analytic tools, with Python support. SciKit, 

as Machine learning library, has a clear target give a package of the most popular 

algorithms in stable interface (Lorica B., 2015). 

 

• R 

 

R is open source environment, which is used for statistical calculations and 

visualization. R is similar to S, but R is an open source product. R support 

numerous statistical and graphical methods. One of the biggest advantage of R is 

graphical presentation of data. The default parameters were carefully chosen by 

designers, but users have full control of it. 

 

R is a collection of software for data handling, estimation and visualization. It 

contains: 

• Productive data management 

• Package of operations for calculations 

• Big, sequential set of tools for data analysis  

• Data analysis in graphical view 

• Advanced, but simple and productive language.  

 

R is an entirely planned and rational system. C, C++ and Fortran languages can 

be run on R and C code can be used for direct R control. R has very robust 

statistical background and its availabilities can be expanded by packages (r-project 

2018). 

 

https://beta.graphlab.com/help
http://adatao.com/product.php#p-analytics
https://www.r-project.org/about.html
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The biggest advantages of R are: 

• Open source: everyone can download and use it. 

• Packages: packages are libraries. They are mainly created by academics, 

so it is straightforward way to state-of-the-art methods.  

• Maturity: R was born by S, so the methods and algorithms were improved.   

 

The biggest disadvantages of R are: 

 

• Inconsistency: language requires a lot of documentation reading for each 

package. All algorithms are developed differently, with different parameters.  

• Documentation: documentations usually are too general and short. The 

help is often not strong enough for specific cases.  

• Scalability: the data can be used only in one machine. It is not possible to 

work with R in different machines or flow data. (Brownlee J., 2014).  

 

• Tensorflow  

 

In 2011, a project called Google Brain was started. The aim was to find a solution 

for deep neural networks in Google products and for further research. Tensorflow 

was created by google as open source library. At first it was created for machine 

learning and deep neural network but because of system flexibility, it can be used 

for other domains as well. Moreover, computations can be done in different 

machines, without changing, or with a small change in the code, starting with small 

mobile devices (tablets, phones) and finishing to large scale computation 

machines. System is available to work with different algorithms in different 

subjects. For example, “speech recognition, computer vision, robotics, information 

retrieval, natural language processing, geographic information extraction, and 

computational drug discovery”. (Dean J. et al., 2015). 

 

The leading examples of TensorFlow are: 

https://machinelearningmastery.com/author/jasonb/
https://en.wikipedia.org/wiki/Jeff_Dean_(computer_scientist)
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• Voice/sound recognition  

 

In security, voice recognition function is widely used, opinion mining is used with 

customer relationship management, voice search is used for telecoms purposes, 

and engine noise is mainly used in aviation and automatics.  

 

In everyday usage, the common speech recognition functions are in google 

search, google translator, Cortana and many others. Voice recognition supports 

language understanding which is used to convert speech in to text.  

 

• Text based applications  

 

One of the well-known usage of text-based applications is language detection. 

Google translator has more than 100 languages. It does not only translate ordinary 

dictionary words but also understands slang, gives sentence translation 

synonyms. Google uses sequence-to-sequence learning to summarize text. Text 

summary provides fast article headline prediction. Moreover, Google has a well-

developed “smart replay” function, which creates auto answers to emails.  

 

• Image recognition 

 

Image recognition is used for many different purposes, from social media to 

aviation - whenever people or object need to be identified. In engineering, it is 

widely used for 2D building transformation to 3D. The buildings are identified from 

pictures and then the model is created. Ordinary people have interactions with 

image recognition on Facebook, for example, when they want to tag someone in 

a picture. Image recognition is becoming more and more popular in healthcare 

systems. Computers can identify same illness patterns from scanning which is very 

useful for doctors.  
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• Time series  

 

Time series are used for predictions and recommendations. They analyze the of 

flow data in some period and give statistics with forecast. It is widely used in 

markets like Amazon, Netflix, where according to previous customer choice, 

algorithm tries to predict what customer might want after.  

It is also used for financial predictions, for example, risk detections and so on.  

 

• Video detections 

 

Tensorflow can work with video detection. Neural networks can detect motion and 

is widely used in games, airports security. Tensorflow is used in a big project, 

YouTube - M8. The purpose is to speed up large video understanding. Moreover, 

NASA uses Tensorflow to find out in advance and forecast what object are near 

the earth.  

 

The list of Tensorflow availabilities and usage is not limited, because it is open 

source library with a strong contribution. 

 

1.2.4 Classification 
 

• Support Vector Machines  

 

“Support vector machines are supervised learning algorithms based on statistical 

learning theory, which are considered as heuristic algorithms.” (Kavzoglu, 2009). 

SVM method is based on hyper plane. This plane should be separated in to two 

different classes. The hyper plane is found by train data sets and then it is checked 

by test data.  
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If the data set has k dimensions, then SVM hyperplane will be k-1. Figure 10a 

presents the diversity of hyper planes, which separate the classes. Nevertheless, 

there is only one hyperplane, which keeps the biggest separation between two 

classes (Figure 10b). This plane is called the optimal hyperplane. In Figure 10b 

there are points called “support vectors”. Support vectors are points which restrain 

the width of the margins. 

 

 

Figure 10. Hyper plane and support vectors (Kavzoglu, 2009) 

 

“SVM attempt to detect the best place to hyper plane, where the margins reach its 

maximum between two classes.” Assume that a training data set containing k 

number of samples is represented by {xi, yi} (i = 1,…, k) where x ∈ RN is an N-

dimensional space, and y ∈ {−1, +1} is class label.” (Kavzoglu, 2009). Figure 11 

presents, that the optimal hyperplane is  

ω * xi + b = 0           (1) 

where x - point on the hyperplane, w - orientation in the space of the hyperplane, 

b - shift in the distance from the center.  
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Figure 11. Optimal hyperplane (Kavzoglu, 2009) 

 

The hyperplane can be categorized into two classes: 

ω * xi + b ≥ +1forally = +1         (2) 

ω * xi + b ≤ -1forally = -1         (3) 

 

Or can be written:  

yi (ω * xi + b) - 1 ≥ 0          (4) 

 
Support vectors are defined as  

ω * xi + b = ±1          (5) 

 

They are parallel to the optimum hyperplane (Mathur and Foody. 2008).  

As shown in Figure 12a some data is not linear. Usually, remote sensing data is 

not linear as well. The hyperplane cannot be placed with previous equations 

(Figure 12b). 
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Figure 12. Nonlinear hyper plane (Kavzoglu, 2009) 

 

In nonlinear cases there are ξ slack variable  

min [
‖𝜔‖2

2
+ 𝐶 ∑ 𝜉𝑖

𝑟
𝑖=1 ]         (6) 

yi (ω * xi + b) - 1 ≥ 1 – ξi, ξi, ≥ 0, i = 1,…,N      (7) 
 
C - constant. 

C provides sharp balance between margin maximization and error minimization.  

m ξ - is the distance between incorrectly classified points and the hyperplane 

(Oommen, 2008). The value is directly correlated with misclassified samples.  

 

Figure 13 shows, how to rise to bigger dimensional space if linear equations are 

not working.  

 

Figure 13. Converting to bigger dimension (Kavzoglu, 2009) 
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Kernel has a function ϕ, then input points are ϕ(x) in dimension H. the classification 

function is  

f (x)  =  sign (∑ 𝛼𝑖𝑦𝑖𝐾(𝑥, 𝑥𝑖)𝑟
𝑖 + b)         (8) 

 
K(x,xi) - Kernel function 

(𝑦𝑖)𝛼𝑖(𝑖 = 1, . . . , 𝑟) - Lagrange multiplier.  

 

Kernel function allows to transmit data points so that hyperplane can be defined 

(Dixon and Candade, 2008).  

Kernel Radial Basis Function (RBF) is defined as: 

 e−y‖(𝑥−𝑥𝑖)‖ 2           (9) 

 

RBF is usually used for remote sensing classification (Pal and Mather 2005).  

 

• Random Forest 

 

Random forest is a very universal algorithm. For many years it was used for 

classification, regression, feature selection and gave desired results, that why it 

became natural to think about it as a solution for all questions. It can be used for 

both regression and classification.  

 

Decision trees are very clear and understandable data structures. It works by 

creating decision rules based on classification question. Each node leads to a 

decision. The tree is stopped when the final result is reached. Figure 14 shows an 

example of a hypothetical decision tree.  
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Figure 14. Scheme of decision tree (Stanford, 2017)  

 

The critical part of a decision tree is splitting action. Splitting is done on each node, 

for data to stay clean and get closer to desire classification. Figure 15 presents an 

example of splitting.  

 

 

Figure 15. Bad and good splitting (Aggiwal R., 2017) 

 

Every node splits the data with a straight line into 2 parts. This is why the final 

output is outlined with straight lines or boxes. Figure 16 presents classification 

example. 
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Figure 16. Classification example (Aggiwal R., 2017) 

 

For example, if linear regression provides straight line, decision tree can give more 

advanced staircase boundary (Figure 17). 

 

 

 

Figure 17. Linear regression and decision tree classification (Inspired by Aggiwal 
R., 2017) 
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Random forest is a type of advanced decision tree. The main idea is to create small 

decision trees from random data groups. Every decision tree captures a particular 

tendency in the data. 

 

During the classification, the biggest number of votes contemplate the class. In 

real life, this situation would look like asking the same question to many different 

experts and trusting the majority of answers. (Aggiwal R., 2017)  

 

1.2.5 Validation Techniques 
 

In machine learning, data is split into 2 or 3 subsets – train and test or train, validate 

and test. Then the data model should fit the train model. Unfortunately, what might 

happen is underfitting or overfitting. So, the model will be inaccurate, or fit only for 

one dataset. 

 

• Overfitting 

 

Overfitting occurs when a model is over trained. This kind of model remembers the 

pattern and new data is too confusing for it. This might happen if the model is too 

complex, with a lot of features in a small dataset. The accuracy is very high in 

training data, but with unseen, new data accuracy will be very low. Overfitting 

models are not generalized, such models cannot work with any other data. 

 

• Underfitting 

 

Underfitting is the opposite of overfitting. If in overfitting data was not generalized, 

then in underfitting data is too general. The model cannot follow the data trend. 

Moreover, in overfitting underfitted model cannot classify new datasets. 
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Underfitting happening for too simple models, which don’t have enough 

independent variables. The accuracy of underfit model is very low. 

 

There are train/test split and cross-validation, which leads to prevention from 

overfitting and underfitting.   

 

• Train/test split 

 

The dataset should be split into 2 parts: training and testing (Figure 18). Training 

dataset is for the model to train what we want to achieve. Training part should 

generalize the model so that after it will recognize pattern of interest in unknown 

datasets. In training model data goes with answers. Test set is data simulation 

before real dataset. It gives a general overview of how a model is trained. Usually, 

train and test datasets are divided 80/20 or 70/30. The split should be random, 

otherwise, one feature can appear only in one part of splitting. The features 

distribution should be randomly equal in train and test datasets. If not, overfitting 

will appear in the data. To avoid this cross-validation method can be used. 

 

 

Figure 18. Total number of examples split into training and test sets (Bronshtein 
A., 2017) 
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• Cross-validation 

 

The cross-validation concept is very similar to train/test. The main difference here 

is the number of subsets. All data should be split into k subsets and trained with k-

1 subsets. In this case, one subset is left for testing (Figure 19). 

 

 

Figure 19. Data set splitting for validation (Bronshtein A., 2017) 

 

The 2 main cross validation methods are: 

• K-Folds Cross Validation 

• Leave One Out Cross Validation (LOOCV) 

 

• K-Folds Cross Validation 

 

K-Folds cross validation method starts with dividing the dataset in k subsets. Then 

k-1 is used for training and the last one for validation (Figure 20). After that, it is 

tested with test dataset.  
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Figure 20.  K- folds Cross Validation (Bronshtein A., 2017) 

 

• Leave One Out Cross Validation (LOOCV) 

 

In this method, the number of subsets is the same as the number of observations 

in the dataset. The average is taken from the subsets and then the model is built 

and finally tested against the last fold. The error estimation formula is: 

 

𝐶𝑉(𝑛) =  
1

𝑛
∑  (𝑦𝑖 − 𝑦′𝑖)2         (10) 

 

In this method, n-1 observations are used, and error is estimated in each sample 

(Figure 21). The disadvantage here is that this method if effective only for small 

datasets. The size affects time and computer resources (Bronshtein A., 2017). 

 

In this method, n-1 observations are used, and error is estimated in each sample.  
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Figure 21. Leave One Out Cross Validation (LOOCV) (Bravo H.C., 2018) 

 

1.3 Problem Statement 
 

High vegetation in LiDAR dataset of Copenhagen is misclassified which can cause 

confusions and misleading information while extracting objects/features from it.  

The aim of this study is to analyze high vegetation classification in a sample urban 

area – Copenhagen, Denmark- from LiDAR data based on different classification 

methods in order to find out to what degree the high vegetation can be correctly 

classified.  

 

1.4 Research Questions 
 

• What machine learning based classification can be used for classification 

of misclassified features of LiDAR data? Which one performs best for the 

given dataset and geographical region? 

• What is the role of training datasets size in the obtained accuracy of each 

classifier?  
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1.5 Report Structure 
 

This thesis consists of the following chapters: 

Introduction - Scientific literature review, which gives general impression what 

has been already done, who and why comes to the similar problem and 

conclusions. Remote Sensing gives theory about remote sensing types, machine 

learning is overview about the main viable options to use classification. All those 

chapters lead to problem statement and research questions. 

Methods and Materials - road map is a schematic high vegetation classification 

technique. Data set assist with raw data description and analysis.  

Results - high vegetation classification output, result comparison and analysis can 

be found in this chapter. 

Discussion and conclusion – this chapter examines research questions and 

concludes with solutions and possible future developments.  

2 Methods and Materials 
 

2.1 Data Set  
 

The city of Copenhagen has always been called, a green city. Where nature and 

architecture exist in harmony (Bothe, K., 2018). Owing to case studies of high 

vegetation classification in urban area, Copenhagen is considered an ideal place 

for experimentation. It is a perfect place to study how classification works in an 

area where buildings and high vegetation are in close proximity to each other.  

 

Free LiDAR data in available on the internet, the data is provided by Danish 

government and is reliable.  The LiDAR data is provided in *.laz format, it was 

collected in 2014-2015. The density of the points are 4,5 points in 1sq.m, accuracy, 

approximately 5 cm in longitude and latitude and 15 cm in elevation. Orthophoto 

is taken from aircraft and was downloaded in GeoTiff file format. The flight was 

made from March to May. During those months in Denmark there is no snow or 
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leaves, so the surface is clean and pictures can represent a precise surface and 

elevation model. The data is from 2017 with 12.5 cm resolution. The chosen part 

is shown in Figure 22.  

 

Figure 22. Study area in Copenhagen  

 

2.2 Flowchart of the implementation 
 

The implementation was done with five main steps: Geographical Location 

Selection, Machine Learning Tool Selection, Classification Model Analysis, Data 

Preparation, Accuracy assessment and Comparison Analysis (Figure 23). 
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Figure 23. The main flowchart of implementation 

 

1) Geographical Location Selection and primary data review: This study began 

with the selection of geographical location and data collection. This step was 

discussed in previous chapter (2.1 Data Set). 

 

LiDAR data is available in *.laz format. Because the further classification will be 

done with SciKit – learn, which is Python library, it is better to convert *.laz file into 

txt. Figure 24 shows how it looks like in *txt format.  
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Figure 24. Converting *.laz to *.txt format 

 

The information which contains *.LAZ file is: 

• X 

• Y 

• Z 

• Intensity 

• Return number 

• Number of returns 

• Classification 

• Scan angle 

• User data 

• Point source ID 

• GPS time, 

• RGB from LiDAR signal 

 

Intensity, return numbers and the number of returns can assist with high vegetation 

classification. These three features will be different for high vegetation than for 

other objects, for example buildings and roads.  

 

One feature is “Classification”. Even though points are classified it is misleading 

information and cannot be trusted for future analysis. Intensity, return number and 
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number of returns are features, which comes from sensors, so they can be trusted 

and lead to more precise classification.   

 

 

Figure 25. LiDAR misclassified points. 

 

When the area of interest is selected and the relevant data is collected (LiDAR 

point cloud and orthophoto) the next step is to choose the most suitable machine 

learning tool.  

 

2) Machine Learning Tool Selection: As discussed in chapters 1.2.2 Machine 

learning techniques and 1.2.3 Tools and toolkits for implementation, supervised 

machine learning will be done for point classification. There are many tools to do 

that, but because of python power and effectiveness it was decided to use SciKit - 

learn library. It is an effective machine learning tool. Moreover, it is an open source 

and it has well documented examples and support SVM, RF and Kernel 

classifications. 

 

Because of implemented libraries as NumPy, SciPy it is easy to work with matrix 

format and it manages classification, regression and clustering. Because of big 

number contributors, which are specialized in ML, I was sure, that classification 

will be done, without software errors. Models are well developed and checked.  
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3) Classification Model Analysis: with different methods classification will be 

done differently. To get the best results and at the same time to analyze different 

strategies for future directions it was decided to do classification with three different 

algorithms. Support vector machines, Random Forest and Kernel. They are very 

different in terms of the underlaying algorithm and have gain popularity in GIS 

science.  

 

SVM and Kernel were chosen because of their popularity. They both are based on 

statistics. SVM is very powerful on linear objects and Kernel can separate non-

linear planes. Both of the functions work with hyperplane and support vectors. 

Support vectors are points, which restrain the width of the margins. Comparing the 

methods with the same working style, but different math it was expected to see 

different, but satisfying results. 

 

Random forests method was chosen as different classification technique 

compared with previous two. It is a very universal algorithm and used many times 

for different reasons (see chapter 1.2.4 Classification).   

 

4) Data Preparation: Data was prepared for classification model training, 

validation and testing and data for the area where high vegetation should be 

classified. Data for training, validation and testing was taken from the block, which 

is 1km further than classification area. This was done with an intention to avoid 

data leaking. Machine see the area of interest only one time – during classification 

when the model is developed well. Data for the area of interest was just cleaned 

by the previous classification, which has misleading high vegetation classification.  

 

• Training, validation and testing data 

 

Data for model training, validation and testing was taken 1km away from 

classification area. This was done with intention to have similar point cloud as 

desired classification area but keep model training points separate from them. Any 
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kind of data leaking is not safe for model training and affect final classification and 

accuracy. Training points were labeled with supervision (see Figure 9). This means 

all training points was selected manually, carefully analyzed and confirmed as 

trustful for training model. This ensures, that each training point has correct class. 

The main focus was on high vegetation points. Figure 26 shows the small example 

of classified points.  

 

 

Figure 26. LiDAR point cloud on orthophoto 

 

Training was done 3 times with different amount of points (Table 1). The area, 

which needs to be classified has 8 279 149 points in total. The training Set 1 has 

133 000 points, the training Set 2 has 66 500 points and training Set 3 has 33 250 

points. Different training size will help to analyze accuracy changes. To provide 

smaller training data size leads to the less time-consuming point selection process. 

Moreover, smaller training size helps to save space in the machine, which means 

faster calculations.  
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Table 1. Training Sets and their sizes 

Train Set number Amount of point 

Set 1 133,000 

Set 2 66,500 

Set 3 33,250 

 

For validation, the 10-folds validation model was used. 9 folds for training and 1 

for validating. With 9 folds for training we will train 90% of data. As shown in Figure 

21, 10 rounds were done, and average accuracy was calculated as the final one. 

In each round the accuracy of training and validation and difference between them 

to identify overfitting or underfitting was observed. When training and validation 

results show neither overfitting nor underfitting, testing can be done.  

In some cases, it is possible to skip validation and do only testing but, in this thesis, 

all three steps are performed since there is enough data to implement the entire 

training Set. The testing data contains 1 300 245 random points. This dataset does 

not change model work. It gives us an estimate of what accuracy we can expect 

with a new, never seen dataset and usually it is smaller. Small data set does not 

require long calculation time and shows the main errors.  

Training, validation and test results are restated in the following chapter “Results”.  

 

5) Accuracy assessment and Comparison Analysis: Accuracy assessment and 

comparison analysis are widely discussed in chapter “Results”. This is final result 

about the model and how it works with new “unknow” data. The main flowchart of 

implementation is shown in Figure 23.  

 

To get further analysis, the workflow was divided into two mains approaches - 

approach I and approach II.  The first approach is presented in Figure 27. The first 

classification was done only with LiDAR data. Features as intensity, number of 

returns and return number was chosen to identify misclassified label 

“classification”. Those features come from scanner, so they are not misleading, 
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and we assume, that can give more precise high vegetation classification. The 

second approach (Figure 28) adds some new features to the first approach. In 

addition to LiDAR data features, information from orthophoto is added. The 

features are colors (reg, green, blue) and near-infrared. The main purpose to have 

two different approaches is to analyze feature influence to classification accuracy 

and to see or colors and NIR can improve accuracy. The first and second 

approaches are discussed more detailed in the subchapter below.  

 

2.2.1 Approach I 
 

If we look at Figure 23, which shows the main flowchart of implementation, 

approach I and Approach II, is smaller part for data preparation. The main differ 

from approach I and approach II is feature selection. Approach one works only with 

LiDAR data set. Figure 27 presents flowchart of the first approach.  

 

 
 

Figure 27. The flowchart of the first approach 
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Raw LiDAR data is taken and converted to txt file as shown in Figure 25. Intensity, 

return number and number of returns was chosen as independent variables to 

reclassify points. Classification column during model creation and classification is 

ignored. This is done with intension not to confuse and not to show incorrect 

classification. Training, validation and testing data preparation is discussed in 

chapter 2.2. The data was collected manually, only points with right class was 

chosen. This method is time consuming, but ensures the best data training. For 

training and validation class is known, but test dataset is new and unknown for 

model. Classification models are chosen – SVM, RF and Kernel classification 

models. All of them are well known, widely used for solving many different types 

of problems and at the same time, they are very different from each other. The 

model choice is discussed in chapter 2.2. Accuracy assessment and comparison 

analysis is the most interesting part. Here the created model is tested with real, 

new dataset. The target of the approach I is to see how model can classify points 

only with LiDAR data and different training set sizes.  

 

2.2.2 Approach II 
 

We assumed, that combination visual spectrum R, G, B, NIR with LiDAR features 

can increase classification accuracy. Therefore, approach II was undertaken. 

Approach II workflow is shown on Figure 28.  
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Figure 28. Workflow of the approach based on combination of LiDAR and 
Orthophoto data  

 

The second approach has more features than the first one. Two different datasets 

were combined to achieve better results. LiDAR dataset has the same parameters: 

laser intensity, return number and number of returns. Orthophoto dataset comes 

with four new bands: red, green, blue and NIR. Colors and infrared band is good 

vegetation identifier. We assume, that colors and NIR should increase accuracy, 

because vegetation colors are different from other, especially artificial, objects.  

Data merging was done according to geolocation. LiDAR points coordinates was 

compared with orthophoto points coordinates and all points features were 
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connected together. In this case all training, validation and testing as well as 

wanted to classify dataset are enlarged with orthophoto features.   

The other steps are the same as in approach I. The same classification models: 

SVM, RF and Kernel were chosen with intension to compare how additional 

features changing accuracy. As well the same three dataset sizes were used for 

training, validation and testing. Accuracy analysis is presented in “Results” 

chapter. 

3 Results and discussions 
 

Classification model was created by selecting points very carefully. All points must 

have the correct classification label. The most important of which is the high 

vegetation label. If the data for model is collected without errors, the model is good 

and machine learning is ready to classify new, unknown data. To reach the goal 

there are three important steps: 

 

• Training 

• Validation 

• Testing 

 

The first step is training. The model should be trained with known data and only 

then unknown values can be shown for classification. The biggest problems of 

training are overfitting and underfitting. To ensure, that the model is not overfitted 

or underfitted, k-folds cross validation test was done. 10 folds were used, and 

result was averaged. 9 folds were used for training and 1 for validation. This 

means, that 90% of data will be trained.  

 

• Training and validation  

 

The 10-fold cross validation was done for each classification techniques SVM, RF, 

KERNEL and for all data sets - Set 1, Set 2 and Set 3. Results for approach I is 
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shown in Table 2 for SVM classification, in Table 3 for RF classification, and Table 

4 for Kernel classification.  

 

Table 2. Support Vector Machine k-fold train and validation accuracy results for 

approach I. 

SVM 

SET 1 accuracy SET 2 accuracy SET 3 accuracy 

Training, 
% 

Validation, 
% 

Training, 
% 

Validation, 
% 

Training, 
% 

Validation, 
% 

Round 1 69.12 72.31 72.13 68.27 71.58 78.51 

Round 2 65.25 76.11 62.17 69.40 65.44 65.48 

Round 3 69.30 71.54 67.70 74.21 61.11 60.49 

Round 4 70.11 70.54 67.20 73.62 64.57 69.52 

Round 5 78.34 74.56 62.26 67.01 65.65 68.04 

Round 6 79.55 70.23 67.18 71.53 63.13 63.84 

Round 7 69.37 71.74 73.18 71.81 67.62 67.56 

Round 8 71.15 75.28 72.55 78.25 64.04 70.89 

Round 9 79.32 70.14 69.20 78.21 63.89 65.65 

Round 10 81.05 75.03 76.56 77.44 62.66 63.97 

Average 73.25 72.75 69.01 72.98 64.97 67.40 

 

SVM Set 1 training and testing accuracy difference is 0.5%. Estimating this small 

difference, which is close to 0, it can be assumed, that the model has no tendency 

to overfitting or overfitting. The model is trained very well. Set 2, has a 3.97% 

difference and Set 3 has a 2.43% difference. Both Sets show very good accuracy, 

but it is not as good as in Set 1 and hence it is more underfitting pattern.   
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Table 3. Random Forest k-fold train and validation accuracy results for approach 

I. 

RF 

SET 1 accuracy SET 2 accuracy SET 3 accuracy 

Training, 
% 

Validation, 
% 

Training, 
% 

Validation, 
% 

Training, 
% 

Validation, 
% 

Round 1 68.05 72.13 64.64 71.60 69.37 71.93 

Round 2 66.87 76.96 68.16 64.49 69.29 69.73 

Round 3 71.05 71.12 69.86 68.42 65.65 68.8 

Round 4 71.65 70.13 64.44 75.85 69.34 72.26 

Round 5 75.86 74.81 73.53 70.90 70.01 71.24 

Round 6 74.41 70.48 63.14 65.22 73.31 62.37 

Round 7 71.66 71.25 66.93 66.00 75.54 74.27 

Round 8 70.31 75.35 72.25 75.50 71.95 74.96 

Round 9 71.53 70.09 65.54 65.46 66.53 74.66 

Round 10 79.71 75.22 66.99 70.45 68.19 66.31 

Average 72.10 72.75 67.54 69.39 69.92 70.65 

 

Random forest with Set 1 has difference in accuracy 0.65%, the same as in SVM 

Set1, difference is very small and can be concluded as a very good train model, 

which is neither overfitted, nor underfitted. Set 3 difference is 0.73% and can be 

considered as good training as well as Set1. Set 2 leads to underfitting, because 

validation accuracy is higher than training accuracy. In Set 2 the difference is 

1.85%. 
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Table 4. KERNEL k-fold train and validation accuracy results for approach I. 

KERNEL 

SET 1 accuracy SET 2 accuracy SET 3 accuracy 

Training, 
% 

Validation, 
% 

Training, 
% 

Validation, 
% 

Training, 
% 

Validation, 
% 

Round 1 77.74 64.67 65.65 75.69 69.74 71.74 

Round 2 79.67 66.62 78.75 68.71 63.65 66.77 

Round 3 64.62 78.67 64.8 72.74 67.66 74.76 

Round 4 75.70 67.75 80.79 66.74 74.8 66.68 

Round 5 70.74 77.75 63.67 73.76 72.73 73.77 

Round 6 67.79 75.77 77.68 80.68 71.67 66.8 

Round 7 63.65 66.74 67.73 78.74 67.64 68.77 

Round 8 78.66 79.66 69.8 78.77 76.75 69.65 

Round 9 68.79 75.73 70.69 73.79 76.7 64.76 

Round 10 73.68 66.68 68.76 64.63 66.64 66.69 

Average 72.11 72.00 70.83 73.42 70.79 69.04 

 

Kernel Set 1 shows difference in accuracy is only 0.11%, which is the best 

compared with all datasets. Kernel, with Set 1 is the best trained model. Set 2 

shows more underfitting, because validation accuracy is bigger 2.59% than training 

accuracy. Set 3 shows more overfitting, because training accuracy is bigger 1.75% 

than validation accuracy.  

The best result with approach I was from Kernel Set 1, with overfitting 0.11%, and 

the biggest difference is with RF Set 2 – 3.97% underfitting.  
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The same 10 – fold validation check was done with approach II data. SVM, RF, 

Kernel models were checked, and results are presented in Table 5, Table 6 and 

Table 7. 90% of data was tested and 10% left for validation. 

 

Table 5. Support Vector Machine k-fold train and validation accuracy results for 

approach II. 

SVM 

SET 1 accuracy SET 2 accuracy SET 3 accuracy 

Training, 
% 

Validation, 
% 

Training, 
% 

Validation, 
% 

Training, 
% 

Validation, 
% 

Round 1 70.44 77.23 71.17 69.57 72.26 79.16 

Round 2 71.34 77.12 63.18 75.60 66.29 69.28 

Round 3 69.23 74.76 69.71 74.21 60.21 75.27 

Round 4 69.26 71.45 69.22 73.62 66.37 78.13 

Round 5 79.32 75.66 64.28 69.12 66.48 78.27 

Round 6 80.33 77.23 68.29 75.63 65.23 77.49 

Round 7 65.41 75.87 74.24 70.64 68.55 79.11 

Round 8 70.25 78.19 74.65 79.55 65.59 78.58 

Round 9 80.42 71.28 70.30 79.31 65.57 70.56 

Round 10 85.10 78.43 77.66 79.15 64.56 75.55 

Average 74.11 75.22 70.27 74.64 66.11 76.14 

 

In all sets train accuracy is smaller then validation accuracy. The biggest difference 

is in Set3 – 10.13% (66.11% and 76.11%).  This shows that in all sets the model 

has a pattern to underfitting. However, 10.13% is not a big difference and model 

can be tested. 
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Table 6. Random Forest k-fold train and validation accuracy results for approach 

II. 

RF 

SET 1 accuracy SET 2 accuracy SET 3 accuracy 

Training, 
% 

Validation, 
% 

Training, 
% 

Validation, 
% 

Training, 
% 

Validation, 
% 

Round 1 88.43 87.10 77.44 84.45 83.51 85.71 

Round 2 85.34 78.33 80.62 85.71 79.18 84.63 

Round 3 88.72 75.53 75.75 80.12 76.52 82.81 

Round 4 85.87 75.14 78.91 80.92 87.11 85.54 

Round 5 91.70 86.32 78.34 85.76 75.17 82.01 

Round 6 88.61 82.54 84.55 90.69 72.13 85.66 

Round 7 95.31 88.56 75.09 80.12 74.23 80.75 

Round 8 90.33 86.15 81.12 85.87 79.64 85.32 

Round 9 82.34 70.16 74.19 82.77 78.22 84.53 

Round 10 80.00 71.99 84.02 90.22 85.04 92.33 

Average 87.67 80.18 79.00 84.66 79.08 84.93 

 

Random Forest model with Set 1 has a higher training accuracy than validation 

(7.49% bigger). The difference is not sufficient, but the model is more overfitted. 

Set 2 and Set 3 have very similar accuracy results. Difference between training 

and validation are 5.66% and 5.85%. Set 2 and set 3 are more underfitted models.  
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Table 7. Kernel k-fold train and validation accuracy results for approach II. 

KERNEL 

SET 1 accuracy SET 2 accuracy SET 3 accuracy 

Training, 
% 

Validation, 
% 

Training, 
% 

Validation, 
% 

Training, 
% 

Validation, 
% 

Round 1 88.32 83.64 82.62 75.13 92.44 84.51 

Round 2 88.11 83.28 92.78 88.43 87.07 83.28 

Round 3 89.67 85.18 92.83 84.74 85.13 79.23 

Round 4 88.13 81.08 82.60 75.16 92.87 85.94 

Round 5 89.20 81.15 92.34 83.29 84.22 74.39 

Round 6 89.12 82.04 92.79 89.19 92.12 86.93 

Round 7 90.43 81.46 95.12 88.02 85.04 71.18 

Round 8 85.13 73.47 85.43 73.88 79.12 72.09 

Round 9 85.61 82.34 92.06 87.32 90.07 82.44 

Round 10 90.31 84.34 93.22 88.57 79.33 83.53 

Average 88.40 81.80 90.18 83.37 86.74 80.35 

 

 

Kernel has opposite results than SVM. All three sets have intention to overfitting. 

This is indicated by higher accuracy in training then in validation. The differences 

are 6.60% for Set 1, 6.81% for Set 2 and 6.39% for Set 3. The results are satisfying, 

and the model can be run for testing, with knowing, that Set 2 has highest intention 

to overfitting.  

The best result with approach II was from SVM Set 1, with underfitting 1.11%, and 

the biggest difference is with SVM Set 3 – 10.03% underfitting.  
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Model training analysis is represented in Figure 29. Results from approach I and 

approach II data are compared. It can be seen, that SVM model with data from 

LiDAR and orthophoto with training Set 3 run the biggest risk (10.03%) has. Kernel 

model with only LiDAR data and Set 1, show only 0.11% difference between train 

and validation data, which can be considered as a very good result. Classification 

with this model should be without overfitting and without underfitting.  

 

 

Figure 29. Model training analysis 

 

All k-folds validation results show some difference between training and validation 

accuracy, but all values are small enough to be able to continue classification with 

trained models.  

 

• Testing 

 

After training and validation gave satisfying results, test data was run to see, how 

the model can handle never seen data and what to expect. Table 4 and Table 5 
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presents accuracy and kappa index in test dataset for data only with LiDAR 

features (Table 5) and data with LiDAR and orthophoto features together (Table 

6).  

Table 8. Test dataset for approach I only with LiDAR data 

TEST LiDAR DATA SET 1 

accuracy 
% 

SET 2 

accuracy 
% 

SET 3 

accuracy 
% 

SVM 93.14 89.95 84.14 

RF 90.41 89.54 88.87 

KERNEL 94.58 91.25 90.55 

 

The best accuracy score is achieved with Kernel classification model, Set 1 

(94.58%). SVM classification was less accurate with Set 3 (84.14%). The 

difference between the best and the worst classification is 10.44%. Classification 

test result proves, that the model is well trained, and all classification algorithms 

can be used for new area classification.  

Table 9. Test dataset for approach II with LiDAR and Orthophoto data 

TEST LiDAR 
DATA + 
ORTHOPHOTO 
DATA 

SET 1 

accuracy 
% 

SET 2 

accuracy 
% 

SET 3 

accuracy 
% 

SVM 91.14 90.95 90.14 

RF 94.51 93.54 93.01 

KERNEL 94.88 91.25 89.75 

 

The best accuracy score is with Kernel classification model, Set 1 (94.88%). SVM 

classification was less accurate with Set 3 (90.14%). The difference between the 

best and the worst classification is 4.74%. Approach II dataset was more complex 

and with four additional features. This is the reason for better accuracy. We can 

assume, that combination with LiDAR data and orthophoto features should lead to 
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more accurate classification. Classification test results prove, that the model is well 

trained, and that all classification algorithms can be used for new area 

classification.  

 

 

 

Figure 30. Testing data accuracy 

 

In Figure 30 is presenting test data accuracy changes during different sets and 

approaches. SVM approach I drops down with every new set. The difference from 

the first and the last set is 9%. In addition, Kernel approach II shows a big changes 

from Set 1 to Set 2. It decreases 3.63%. At the same time, Kernel Set 1 has the 

highest accuracy 94.88%. The lowest accuracy is SVM approach I in Set 3.  The 

general pattern is that accuracy decreases from Set 1 to Set 3.  

 

• Classification in the chosen area of Copenhagen 

 

When the model is formed and confirmed as trustful classification for desired area 

can be started, which is shown in Figure 22, can be started. The real area is 1sq.km 

78

80

82

84

86

88

90

92

94

96

SET 1 SET 2 SET 3

A
cc

u
ra

cy
, %

Testing data accuracy

SVM approach I

RF approach I

KERNEL approach I

SVM approach II

RF approach II

KERNEL approach II



61 
 

point cloud with density 4,5 point in 1sq.m. Figure 31 and Figure 32 present 

classification results.  

 

 

Figure 31. Accuracy only with LiDAR data 

 

Figure 31 shows accuracy of the classification with LiDAR data features with SVM, 

RF and Kernel models. The best results in all sets were with Kernel 69.98%, 

62.12% and 60.23%. Random forests were always less accurate than SVM or 

Kernel, but during the Set changes it was the most stable. It decreases only 5%. 

RF is recommended for classification, when training dataset cannot be prepared 

with sufficient number of points or when accuracy comparison is not possible.  

 

Figure 32 shows accuracy of the classification with LiDAR data features combined 

with orthophoto features with SVM, RF and Kernel models. Classification is done 

with 7 features: intensity, number of returns, return number, red, green, blue colors 

and NIR.  

SET1 SET2 SET3

SVM 64.55 54.95 51.55

RF 57.11 54.21 52.11

KERNEL 69.98 62.12 60.23

40

45

50

55

60

65

70

75

A
cc

u
ra

cy
, %

Classification accuracy with LiDAR data



62 
 

 

Figure 32. Accuracy with LiDAR and orthophoto data 

 

The highest accuracy was achieved by Kernel classification model with Set 1 

(85.25%). In Set 2 and Set 3 Kernel and SVM performed almost the same. Kernel 

was 0.02% and 0.23% better than SVM. Random forest shows, that it is less 

affected by trained model dataset size. The change during the sets was 2.6%, 

when at the same time Kernel, which performed the best accuracy, decreased 

5.03% and SVM decreased 3.99%. The general trend is the same as with 

classification only with LiDAR data, decreasing data size for model training, 

accuracy of final classification decreases.  

 

Figure 33 shows combined accuracy results. All accuracies, which were achieved 

by classifying with approach I features show significantly smaller accuracy, than 

those, which were achieved with approach II features. This concludes, that 

orthophotos features such as colors: red, green, blue and NIR values are very 

important for high vegetation classification.   

 

SET1 SET2 SET3

SVM 83.98% 81.00% 79.99%

RF 81.01% 79.77% 78.41%

KERNEL 85.25% 81.02% 80.22%
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Figure 33. Accuracy with LiDAR and orthophoto data 

 

The highest accuracy was achieved with Kernel approach II, Set 1 and the lowest 

accuracy was achieved with RF approach II, Set 3. With all methods and models, 

the highest accuracy was achieved by Set 1 and the lowest with Set 3. This results 

proves, that training Set size has a significant influence in further classification 

results. The bigger the training set, the better the accuracy of classification. 

Despite this fact, random forest was the least affected model for training data size 

(differences is 5% and 2.6%). 
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Figure 34. Data Set analysis 

 

Analyzing datasets Set 1, Set 2 and Set 3, we can see that RF classification is less 

sensitive to data quantity than the other types of classifications, especially data 

with LiDAR and orthophoto (Figure 34). The difference between Set 1 and Set 3 in 

accuracy is only 2.6%. Data set size has the biggest influence on SVM with 

features only from LiDAR data. The difference from Set1 and Set3 is 13%.  

Figure 35, Figure 36 and Figure 37 represents how classification accuracy 

changes when additional features from orthophoto, besides LiDAR, are added.  
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Figure 35. Support Vector Machine classification comparison for different Sets in 
approach I and approach II 

 

With SVM classification model accuracy was increased in all 3 sets, with approach 

II, where LiDAR features are combined with orthophoto features. The biggest 

change is seen in Set 3, where training dataset is the smallest. The accuracy was 

increased by 28.44% (from 51.55% to 79.99%) with additional features from 

orthophoto. The smallest change appears in Set 1, where training dataset is the 

biggest. It increases by 19.43% (from 64.55% to 83.98%).  
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SVM approach I 64.55 54.95 51.55
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Figure 36. Random forest classification comparison for different Sets in 
approach I and approach II 

 

With RF classification model accuracy was increased in all 3 sets, with approach 

II, where LiDAR features are combined with orthophoto features. The biggest 

change is seen in Set 3, where training dataset is the smallest. The accuracy was 

increased by 26.30% (from 52.11% to 78.41%) with additional features from 

orthophoto. The smallest change appears in Set 1, where training dataset is the 

biggest. It increases by 23.90% (from 57.11% to 81.01%).  

 

SET1 SET2 SET3

RF approach I 57.11 54.21 52.11

RF approach II 81.01 79.77 78.41
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Figure 37. Kernel classification comparison for different Sets in approach I and 
approach II 

 

With Kernel classification model accuracy was increased in all 3 Sets, with 

approach II, where LiDAR features are combined with orthophoto features. The 

biggest change is seen in Set 3, where training dataset is the smallest. The 

accuracy was increased by 19.99% (from 60.23% to 80.22%) with additional 

features from orthophoto. The smallest change appears in Set 1, where training 

dataset is the biggest. It increases by 15.27% (from 69.98% to 85.25%).  

All model analysis shows the same pattern, that orthophoto, with additional 

features increases accuracy and the more data was used for model training, the 

more precise classification we can obtain. The best classification accuracy is with 

Kernel classification, approach II, Set 1. Set 1 training model was done with 133 

000 points. To ensure, that there is no overfitting or underfitting, 10-folds validation 

method was used and 90% of the data was trained. Approach II includes LiDAR 

classification features, which comes from scanner: intensity, number of returns and 

return number and additional to that features from orthophoto was added: red, 

green and blue bands and NIR. Kernel model is one of the most popular for remote 

sensing classification (Pal and Mather 2005). RF classification was not with the 
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Kernel approach I 69.98 62.12 60.23

Kernel approach II 85.25 81.02 80.22
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highest accuracy, but it keeps stability, when training data set size is changing. RF 

model is a good option, when training size cannot be large.  
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4 Conclusion 
 

This research discusses the classification of high vegetation in an urban 

environment. The data used in this study was LiDAR and orthophoto, which was 

obtained from Danish geodata distribution portal. Three ML-based classification 

techniques (Support Vector Machine, Random Forests, KERNEL) were used to 

reclassify high vegetation in the point cloud dataset. The three classifiers were 

trained with different training sets’ sizes: Set 1 – 133,000 points, Set 2 – 66,500 

points and Set 3 – 33,250 points (corresponding to 30%, 15% and 7% of the entire 

training dataset, respectively). Two different approaches were undertaken: For 

approach I, classification was done only based on LiDAR point cloud dataset and 

only by looking at LiDAR driven parameters e.g., intensity, number of returns and 

return number. 

Training was successfully done with the 3 training sets. As per validation, 10-fold 

validation technique was used and the best performance was observed from 

Kernel classifier and training Set 1 with an accuracy of 69.98%.  

For approach II, classification was done with LiDAR point cloud dataset and 

orthophoto. The parameters for classification was taken from LiDAR: intensity, 

number of returns and return number, from orthophoto: red, green, blue and 

infrared bands.  

All three different training sets’ sizes were trained and 10-folds validation technique 

was used in order to increase accuracy and to avoid overfitting and underfitting. 

The best classification result was achieved with Kernel classifier and training Set 

1 with an accuracy of 85.25%.  

It is important to minimize the risk of model underfitting or overfitting. This was 

done by 10-folds validation method, when 90% of the data was trained and 

validated with the remaining 10%. All 10 times results show good trained model. 

All classification models have their own pros and cons. SVM advantage is support 

vectors, which assist to precise separation, but since it is linear model, for a 
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complex data it may caused underfitting. RF is known as very universal model. It 

works well with classification, but it might be hard to achieve higher accuracy. 

Kernel works with support vectors and non-linear data. The disadvantage of this 

model is complex math, which might be time consuming for big datasets.   

As per further direction, classification model can be trained better. Potential 

solution is to enlarge point set size because it leads to higher accuracy. Moreover, 

if LiDAR scanning and orthophoto will be taken at the same date, accuracy should 

increase as well, because the possibility of changes in the surface will be very 

small.  

This model was trained to identify high vegetation in urban areas (part of 

Copenhagen). It can be used to classify high vegetation in other cities as well as 

to test how widely the proposed approach can be applied. This was not done in 

this thesis, because of time limitation and LiDAR data size. Model training and 

classification is time consuming. More data requires more computer resources to 

be processed. So, for relevant dataset size, a relevant machine is required.  
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