
Learn Smarter, Not Harder: Improving
Uppaal Stratego through Preprocessing

Project Group:
KASPER KOHSEL TERNDRUP

SIMON VANDEL SILLESEN

Supervisors:
KIM GULDSTRAND LARSEN

PETER GJØL JENSEN

ANDREAS BERRE ERIKSEN

© deis107f18, Aalborg University, spring semester 2018.

Department of Computer Science
Selma Lagerlöfs Vej 300

DK-9220 Aalborg Ø
http://www.cs.aau.dk

Title:
Learn Smarter, Not Harder: Improving
Uppaal Stratego through Preprocessing

Project period:
Spring semester 2018

Project group:
deis107f18

Participants:
Kasper Kohsel Terndrup
Simon Vandel Sillesen

Supervisors:
Kim Guldstrand Larsen
Peter Gjøl Jensen
Andreas Berre Eriksen

Pages: 62

Date of completion:
June 1, 2018

Abstract:
The UPPAAL STRATEGO tool can synthesize
near-optimal strategies for Priced Timed
Markov Decision Processes. However,
model elements that are irrelevant or redun-
dant for the optimal strategy, can mislead
the synthesis by needlessly increasing the
state space. In this thesis, we propose a
preprocessing addition to the UPPAAL STRAT-
EGO algorithm, that can provide relief for
redundancy and irrelevance in the synthe-
sis. The addition enables the application of
Principal Component Analysis or Fast Cor-
relation Based Filter with the intention of
reducing or removing irrelevant and redun-
dant elements from models. We conduct a
series of experiments, and show that pre-
processing can improve strategy synthesis,
in terms of better strategy performance and
reduced size of the produced strategies. The
results provide a basis for the inclusion of
preprocessing capabilities, in the future de-
velopment of UPPAAL STRATEGO.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the authors.

http://www.cs.aau.dk

Preface
This is the thesis of Kasper Kohsel Terndrup and Simon Vandel Sillesen, produced as the
conclusive project of our Master’s degree in Software Engineering at the Department of
Computer Science at Aalborg University.

We would like to extend our gratitude to our supervisors Kim Guldstrand Larsen,
Peter Gjøl Jensen, and Andreas Berre Eriksen, for their guidance and support during the
project.

Citations throughout the thesis follows the IEEE style, and the bibliography is placed
near the end of the report, before the appendices.

iii

Summary
Here follows a summary of the thesis in accordance with the submission requirements at
Aalborg University.

The thesis starts off by introducing UPPAAL STRATEGO. It presents a Timed Automaton
of a wind turbine, which is used throughout the thesis for examples and experiments.
The syntactical and semantic elements of the model are defined and explained. The
model is then transformed into a Timed Game and the concept of modelling a game with
an environment is introduced. Then the model is again developed, this time into a Priced
Timed Game and shortly after into a Priced Timed Markov Decision Process, in order to
introduce the concept of optimizing strategies towards a qualitative goal.

After this model development, the UPPAAL STRATEGO algorithm is described and
different elements of the tool is explained. This includes the idea of learning sub-
strategies and the unpublished manual state transformation feature.

The focus of the report is then motivated through an example, which demonstrates
that the synthesis can be improved through an analysis and an associated manual state
transformation. This is developed into the stated problem of preprocessing the model
information prior to learning, in order to enable the learning methods to reach a better
result, in terms of strategy performance and size. Then the thesis is delimited from
considering memory and speed during the synthesis.

When the problem has been introduced, the thesis justifies the choice of the two issues
of irrelevance and redundancy, which are defined and explained with examples. The
field of preprocessing is then outlined, followed by a consideration of related work and a
clarification of the novelty of the thesis.

Subsequently, the techniques that will be used to resolve the issues of irrelevance and
redundancy are put forth, and their workings explained. This includes considerations
with the implementation of the preprocessing elements into the existing UPPAAL STRATEGO

tool.
Once the chosen preprocessing approach is delineated, experiments are presented and

the results of them displayed. This is followed by a discussion of the implications of those
results, for the thesis and preprocessing in UPPAAL STRATEGO. At the end, the thesis is
concluded, and future work is suggested.

v

Contents

1 Introduction 1

2 Uppaal Stratego 3
2.1 Timed Automata . 3
2.2 Timed Games . 5
2.3 Priced Timed Games . 7
2.4 Strategy Synthesis . 9

3 Problem Statement 15

4 Data Issues 19
4.1 Feature Irrelevance . 19
4.2 Feature Redundancy . 20

5 Preprocessing 23
5.1 Categories of Preprocessing . 23
5.2 Related Work . 24
5.3 Preprocessing for Sub-Strategies . 24
5.4 Preprocessing Techniques . 25

5.4.1 Principal Component Analysis . 26
5.4.2 Fast Correlation Based Filter . 27
5.4.3 Integrating Preprocessing in Uppaal Stratego 30

6 Experiments 33
6.1 Evaluation Metrics . 33
6.2 Setup of Experiments . 34
6.3 Collinear Redundancy Experiment . 36

6.3.1 The Model . 36
6.3.2 Presentation of the Results . 38

6.4 Irrelevance Experiment . 49
6.4.1 The Model . 49
6.4.2 Evaluation of Results . 50

7 Discussion 55
7.1 Results of the Experiments . 55
7.2 Relating the Results to the Problem Statement 57
7.3 Remaining Concerns and Alternative Benefits 57

8 Conclusion 59

vii

CONTENTS

9 Future Work 61

Bibliography 63

Appendix A Experiment Figures 67

viii

1 Introduction
The creation of models is a common and useful approach for solving problems in the
real world. It allows people to focus their perspectives on an issue, as well as create
abstractions and generalizations in an attempt to resolve it. UPPAAL STRATEGO [1] is
a part of the UPPAAL tool suite [2], that can automatically create a strategy for some
problem within a given system. An example of such a system, could be a wind turbine
where the owners would like to know how to control it such that it generates as much
electricity as possible without risking destruction. UPPAAL STRATEGO creates strategies
for such systems, by combining model checking elements from the UPPAAL tool suite
with machine learning techniques.

However, while UPPAAL STRATEGO will in theory find near-optimal strategies, it is
not always able to achieve this under constrained resources. We will in this thesis
present model traits that makes synthesis of strategies problematic, and then propose a
preprocessing addition to UPPAAL STRATEGO that alleviates this problem.

We will first examine the general problem which UPPAAL STRATEGO addresses, and
then give an introduction to how UPPAAL STRATEGO solves it. Afterwards, in Chapter 3,
we will describe the exact problem that is the focus of this thesis, and then present our
proposed solution, which we evaluate through experiments.

1

2 Uppaal Stratego
In this chapter we examine UPPAAL STRATEGO in order to understand the domain of the
thesis and its contributions. First we introduce the problem which UPPAAL STRATEGO

solves, i.e. synthesis of strategies, and then we describe the algorithm that it applies
to do so. The observations and definitions found in this entire chapter is adapted from
previous work done [3], [4].

An example of a system where the application of UPPAAL STRATEGO can be helpful, is
the control of a wind turbine. We will in the following sections develop such an example,
and explain why we use UPPAAL STRATEGO for solving this problem. The example will be
incrementally expanded as we go, and used throughout the thesis.

2.1 Timed Automata

The UPPAAL tool suite, which UPPAAL STRATEGO is part of, can be used to analyze a class
of models called Timed Automata (TAs). A simple TA model of a wind turbine could look
like Figure 2.1.

Figure 2.1: Example TA of a wind turbine. The variable declarations of the model can be
seen in Listing 2.1.

1 int windSpeed = 0;

2 int isOn = 0;

3 clock time, windTimer;

Listing 2.1: Declarations for the TA wind turbine model.

3

UPPAAL STRATEGO: Timed Automata

The model follows a loop starting from its initial location, which is the circle marked
with an inner circle and the name L0 to the left of it. The first edge in the model is
the assignment of the windSpeed variable. The syntax x: int[0,5] denotes that x is
non-deterministically assigned an integer value from 0 to 5. It is equivalent to 6 edges
where each edge assigns the respective integer to x. This edge models a sensor that reads
the wind speed near the wind turbine. The second edge in the model happens from
location L1 to location L2. With this edge the wind turbine is either switched on or off.
The locations L0 and L1, from which the first two steps of the loop occur, are marked with
a C . This means that time does not progress while we are in these “committed” locations,
illustrating in this case, that the process of reading the wind speed and turning the wind
turbine on or off, is so much faster than the rest of the model, that it can be regarded as
instantaneous. On entering the location L2, we set our windTimer to zero. windTimer is
a clock, which models the passing of time. In this case, windTimer is used to model the
time between a possible change in the wind speed. We do this by declaring the “invariant”
for the location to be windTimer <= 3, meaning that the system can only be in this state,
if it adheres to this predicate. This illustrates that the wind speed is not static, and will
change at least once every third time unit, whatever unit this might be. The last part
of the loop models the wind turbine interacting with the wind, which has two possible
outcomes. Either the wind turbine spins normally until the wind speed changes, or the
wind turbine spins too fast and is destroyed. The possibilities of these outcomes are
limited by the associated “guards”. A guard is a predicate for an edge, which must be true
before the edge can be followed. The leftmost guard, windTimer >= 1, denotes that the
wind turbine will spin for at least one time unit before another windreading is taken.
The rightmost guard, isOn && windSpeed == 5, denotes that the wind turbine risks
destruction if the wind speed is 5 and the wind turbine is turned on. If the wind turbine
is not destroyed, it will return to the initial location after 1 to 3 time units of spinning, at
which point the process repeats itself. If the wind turbine is instead destroyed, it will go
to the fourth location called Destroyed, from which no further action can be taken.

We use the formal definition of a TA given in [2]1:

Definition 1. A timed automaton is a tuple (L,`0, X ,Σ, E, I), where L is a set of locations,
`0 ∈ L is the initial location, X is the set of clocks,Σ is a set of actions E ⊆ L×Σ×B(X)×2X×L
is a set of edges between locations with an action, a guard, and a set of clocks to be reset,
and I : L → B(X) assigns invariants to locations. Where B(X) is the set of conjunctions
over simple conditions of the form x ./ n | x − y ./ n, where x , y ∈ X , n ∈ N and
./∈ {≤,<,=,>,≥}

The set of states of a TA is denoted as Q ⊆ L×RX
≥0, where each state q = (`,ν) ∈Q is a

combination of a location ` ∈ L and a clock valuation function ν : X → R≥0, where RX
≥0

is the set of clock valuations. We use the notation ν ∈ RX
≥0 to denote that ν is a clock

valuation for all clocks in X .
UPPAAL also allows an extension of TAs, where variables can be declared and used in

guards and invariants, as well as mutated when edges in the model are followed. These

1We adapt naming to fit this thesis

4

UPPAAL STRATEGO: Timed Games

variables, together with `, make up the discrete part of a state, e.g. q = ({`, v1, v2},ν).
We use the notation q.<variable> as a shorthand for the value of that variable, e.g. q.v1
gives the valuation of v1 in state q.

The semantics of a TA are given in [2]:

Definition 2. Let (L,`0, X ,Σ, E, I) be a timed automaton. The semantics is defined as a
labelled transition system 〈Q, q0,→〉, where Q ⊆ L ×RX is the set of states, q0 = (`0,ν0) is
the initial state, and→⊆Q× (R≥0 ∪Σ)×Q is the transition relation such that:

– (`,ν)
d
−→ (`,ν+ d) if ∀d ′ : 0≤ d ′ ≤ d =⇒ ν+ d ′ ∈ I(`), and

– (`,ν)
a
−→ (`′,ν′) if there exists e = (`, a, g, r,`′) ∈ E s.t. ν ∈ g,ν′ = [r 7→ 0]ν, and

ν′ ∈ I(`′)

where for d ∈ R≥0, v + d maps each clock x in X to the value ν(x) + d, and [r 7→ 0]v
denotes the clock valuation which maps each clock in r to 0 and agrees with ν over X \ r.

We can use UPPAAL to check if certain things are possible within this TA. We could for
example ask the query:

A[] not(WindTurbine.Destroyed)

which translates to “For all paths through the model, does it hold that we do not reach
the location called destroyed?”, or even simpler: “Is it always the case that the wind
turbine is not destroyed?”. In this case the answer is no, and UPPAAL can show us how it
can occur.

Knowing that the wind turbine risks destruction is a start, but we would like to be able
to prevent it all together. We could do this by analyzing the model and implementing a
function f (x) to control the on/off switch, which takes windSpeed as input and turns
the wind turbine off when the speed is too high. However, imagine a more complex
model of the wind turbine, with multiple factors, noisy sensors, and other problems that
are present in the real world. In that case, the creation of f , might not be trivial and
even if we create such a function, it might not be very good. So instead of doing that,
we change our model from a TA to a Timed Game (TG).

2.2 Timed Games

The change from a TA to a TG is done by partitioning the actions Σ into two sets Σc
and Σu. With this partition we differentiate between controllable and uncontrollable
actions, which for our wind turbine example means, that the action that switches the wind
turbine on or off is controllable, and the action that sets the windSpeed is uncontrollable.
The actions that define the risk of destruction and the change in windSpeed are also
uncontrollable. The graphical representation of this TG is shown in Figure 2.2, where
the uncontrollable edges are dashed.

5

UPPAAL STRATEGO: Timed Games

Figure 2.2: Example TG of a wind turbine. The variable declarations can be seen in List-
ing 2.2.

1 int windSpeed = 0;

2 int isOn = 0;

3 clock time, windTimer;

Listing 2.2: Declarations for the TG wind turbine model.

With this change to our model, we have changed our perspective on the system, such
that we now consider it a game. In this game we are playing as the controller of the
wind turbine against the environment, with the goal of not destroying the wind turbine.
In order to learn how to play this game, we can apply the tool called UPPAAL TIGA [4]
which solves TGs. We do this by supplying UPPAAL TIGA with the query:

strategy safe = control: A[] not(WindTurbine.Destroyed)

This query translates to “Make a strategy called safe, that plays the controller such
that any reachable state must not destroy the wind turbine”. UPPAAL TIGA can give us a
strategy for this wind turbine example. Such a strategy is a function σc : Q→ 2Σc∪{λ},
i.e. a function that given a state in our TG outputs a controllable action or λ meaning
that no action should be taken at this point in time. In fact, UPPAAL TIGA gives us the
most-permissive strategy, i.e. the largest strategy suggesting only actions that ensures
safety. The most-permissive strategy for this example is:

σc(q) =

¨

switch ∈ {0,1} if q.windSpeed 6= 5

switch ∈ {0} if q.windSpeed= 5

Here, σc(q) defines the set of permitted actions for all q ∈ Q, where q = (`, v).
switch ∈ {0,1} denotes the action where setting switch to 0 or 1 is permitted. We can

6

UPPAAL STRATEGO: Priced Timed Games

now make sure that the wind turbine is not destroyed during operation, if we follow the
strategy given to us by UPPAAL TIGA. While this is definitely a positive result, we are not
yet done. So far we have only been playing the game with the goal of not destroying the
wind turbine. However, this can be easily achieved by simply never turning the wind
turbine on, i.e. σc(q) = switch ∈ {0}, for all q ∈ Q. Obviously this is not a satisfying
strategy, as we have a desire to generate power from the wind turbine, which is only
done when the wind turbine is turned on. We include this qualitative goal into our wind
turbine model, by changing the TG to a Priced Timed Game (PTG).

2.3 Priced Timed Games

We add the aspect of power generation to our TG in Figure 2.2 as a cost called power,
which turns it into the PTG shown in Figure 2.3. The cost is a clock that can have different
rates for different states. Changing this rate is denoted as power’ == <rate>, where
<rate> is an expression evaluating to a non-negative integer. We use this to measure the
time spent generating power, i.e. when the wind turbine is turned on. Unfortunately,
the general problem of solving PTGs is undecidable [5], which means that UPPAAL TIGA

can not be used to solve it. However, because UPPAAL STRATEGO takes an approximation
approach to PTGs, we can use it for this problem.

Figure 2.3: Example PTG of a wind turbine. The variable declarations can be seen in
Listing 2.3.

1 int windSpeed = 0;

2 int isOn = 0;

3 clock time, windTimer;

4 hybrid clock power;

Listing 2.3: Declarations for the PTG wind turbine model.

7

UPPAAL STRATEGO: Priced Timed Games

Before we explain exactly how UPPAAL STRATEGO approaches the problem of PTGs,
we must consider one more thing regarding our example model. The PTG wind turbine
does not define how the uncontrollable actions are chosen. Because we want to model
an actual environment, we use a stochastic strategy µu to model the real world behavior
of said environment. In the case of real world wind speeds, they generally follow the
Weibull distribution [6], however for the sake of simplicity we will assume a uniform
distribution for all uncontrollable actions in our example. The combination of a PTG and
the strategy µu, is a Priced Timed Markov Decision Process (PTMDP), which is defined
based on the definitions given in [3] as:

Definition 3. A pair M = 〈G,µu〉, where
G = (L,`0, X ,Σc ,Σu, E, P, I) is a PTG where

L is a finite set of locations, `0 ∈ L is the initial location,
X is a finite set of non-negative real-valued clocks,
Σc ∪Σu is a finite set of actions where
Σc is the controllable actions and Σu is the uncontrollable actions,
E ⊆ L × B(X)× 2X × L is a finite set of edges,
P : L→ N assigns a price-rate to each location, and
I : L→ B(X) sets an invariant for each location.

The stochastic strategy µu is a family of density-functions, {µu
q : ∃`∃ν.q = (`,ν) }

where ` ∈ L and ν ∈ RX
≥0, with µu

q(d, u) ∈ R≥0 assigning the density of the
environment aiming at taking the uncontrollable action u ∈ Σu after a delay
of d from the state q.

We have now reached the model type, for which UPPAAL STRATEGO can synthesize
strategies. We do this with the following query:

strategy safe = control: A[] not(WindTurbine.Destroyed)
strategy opt = maxE(power) [<=100] : <> time > 99 under safe

This query can be read as “make a strategy called opt, that tries to maximize the
expected value of power. Train the strategy from runs of length 100 or less, where time
is greater than 99, while adhering to the safe strategy”. First of, we give an expression
that should be optimized for, which in this case is to maximize power. Then we tell
UPPAAL STRATEGO how to generate runs that can be used to learn the strategy. Here we
denote that runs should last at most 100 time units, and that every path should satisfy the
condition “time > 99”. The result for this query is that all runs used to learn, are exactly
100 time units long. Lastly we use the optional syntax “under safe”, to tell the strategy
that it can only make choices within the bounds of our TG strategy safe, such that we
still avoid the destruction of the wind turbine. In the next section we will describe how
UPPAAL STRATEGO synthesizes this strategy from the description of the runs.

8

UPPAAL STRATEGO: Strategy Synthesis

2.4 Strategy Synthesis

Now that the problem of synthesizing strategies has been outlined, we introduce the
algorithm employed by UPPAAL STRATEGO, to generate the controller strategy. The
algorithm is an iterative loop, which in each iteration performs a sequence of steps. First
we outline the entire algorithm, and then we consider the central part in further detail.
A visual illustration of the algorithm can be seen in Figure 2.4.

Simulation The first step is to simulate a number of runs through the model we are
trying to learn a strategy for. For the first iteration we simulate with a uniform
strategy, but later iterations will use the stochastic strategy from the previous
iteration. A uniform strategy is a stochastic strategy that is equally likely to choose
any action.

Filtering These runs are then filtered such that only runs exhibiting good performance,
while satisfying the goal and time-bound requirements, are retained. We call these
good runs.

Learning The good runs are used as input to a learning method, that learns a stochastic
strategy from them.

Determinization The stochastic strategy is then determinized which results in a deter-
ministic strategy.

Evaluation The stochastic strategy is then used for the simulation of runs in the first
step of the next iteration, but only if the deterministic strategy exhibits better
performance than the previous strategy. Performance is defined as the expected
cost, which is the mean cost observed across the evaluation runs. After sufficiently
many iterations, we exit the loop and determinize the best strategy µc

b that was
found. The actual amount that qualifies as “sufficiently many”, is determined by
user input or default parameters

In each iteration of the algorithm, an, hopefully, improved strategy is learned from the
sampled runs. The algorithm converges towards a strategy that is in a (local) minima
w.r.t. expected cost. This method of learning a strategy based on a set of runs and then
evaluating its overall performance in the system, makes the algorithm fall within the
category of machine learning techniques called reinforcement learning.

Learning Strategies The central part of the algorithm is the learning method. When
given a set of runs Π= {π0,π1...πn−1} it learns a stochastic strategy for the controller
µc . A single run through a PTMDP is formally defined in [3] as:

Definition 4. An alternating sequence of priced action and delay transitions of its priced

transition system S : π = q0
d0−→p0

q′0
a0−→0 q1

d1−→p1
q′1

a1−→0 ...
dn−1−−→pn−1

q′n−1

an−1−−→0 qn...,
where ai ∈ Σc ∪Σu, di ∈ R≥0 is a delay, pi ∈ R≥0 is a cost, and qi is a state in the system.
∑

i pi is the total cost for the run.

9

UPPAAL STRATEGO: Strategy Synthesis

Simulation

Filtering

Learning

Determinization

Evaluation

det(µc
b)

µc = uniform strategy

Π

Π′

µc′

det(µc′)

µc = µc′

Figure 2.4: Depiction of general algorithm for learning a strategy. Adapted from [3]

10

UPPAAL STRATEGO: Strategy Synthesis

This means that for every step in a run there is a delay d with a cost of p followed by
an action a.
µc is defined in [3] as:

Definition 5. A stochastic strategy µc for a PTMDP M = 〈G,µu〉 is a family of density-
functions, µc

q : ∃`∃ν.q = (`,ν), with µc
q(d, c) ∈ R≥0 assigning the density of the controller

aiming at taking the controllable action c ∈ Σc after a delay d from state q.

Given a PTMDP one can define an expected-cost function for a controller strategy [3].
We denote this function E(µc)〈G,µu〉 ∈ R and omit specifying the PTMDP when it is
obvious from the context. In [3] it is shown that a controller strategy µc can be found
by learning sub-strategies µc

q for any state q ∈ Q. This is possible because µc can be a
memoryless strategy, i.e. a strategy that only requires the latest state in a run in order to
choose an optimal action, as opposed to requiring information about the previous states.
UPPAAL STRATEGO currently considers sub-strategies for discrete states ` ∈ L. We denote
these sub-strategies as µc

`
. A sub-strategy µc

`
is learned from the information found in

the set In`, which is defined as:

Definition 6. In` = { (sn,ν) ∈ (Σc ∪R)×RX
≥0 | (q0

s0−→p0
...

sn−1−−→pn−1
(`,ν)

sn−→pn
...) ∈ Π },

where (sn,ν) is an action-valuation pair, sn is either a delay or an action, and RX
≥0 is the

state space of the valuation ν.

This tells us, that the information relevant for learning a sub-strategy for a given
discrete state ` is In`, which consists of all the valuations ν that each represents the
continuous part of a state (`,ν), paired with the action sn that was taken from that
particular state.

LazyStrategies A current delimitation of UPPAAL STRATEGO is the lack of lazy strategies.
A controller strategy µc

q(d, c) ∈ R≥0, will assign the density of taking the controllable
action c ∈ Σc after a delay of d from state q. A non-lazy strategy will have the density
µc

q(d, c) = 0 for d > 0, meaning that the strategy will either suggest an urgent action or
to yield in favor of the environment, possible delaying indefinitely which is denoted as
action λ. The determinization of a stochastic controller strategy µc

q(d, c) ∈ R≥0, assigns
the density of an action with the highest probability a value of 1, and all other a value of
0, such that det(µc

q) : (Σc ∪ {λ})→ {0, 1}.

Learning Methods UPPAAL STRATEGO currently has five different learning methods
implemented. The first three original learning methods are described in [3], while the
two newest learning methods are unpublished methods based on Q-learning [7] and
model-based learning [8] respectively. We will in this report only concern ourselves with
these two learning methods, referring to them as Q-learning and model-learning, as they
seem more promising. Both algorithms can be used to iteratively learn strategies for
Markov Decision Process (MDP).

The contributions are made to be independent from the learning methods, such that
they can be can be compatible with future developments.

11

UPPAAL STRATEGO: Strategy Synthesis

Manual State Transformation Another, unpublished, functionality in UPPAAL STRAT-
EGO is manual state transformation. This allows a strategy query to specify which
elements of the model are observable by the learning method, and hence will be taken
into account of the learned strategy. An example of such a query for the wind turbine
example in Figure 2.3, could be:

strategy safe = control: A[] not(WindTurbine.Destroyed)
strategy opt = maxE(power) [<=100] { WindTurbine.location } -> { windSpeed } :
<> time > 99 under safe

A state q ∈Q was previously defined as a pair (`,ν), with ` ∈ L being a location, and
ν ∈ RX being a clock valuation, where q.<variable> is used to access variables in the
state. Manual state transformation can be seen as a function t : Q→Q′ that allows us to
transform q and the accessible variables within it, into a new pair t(q) = (k, u).

Here, k : K → R denotes a mapping from the set of expressions K in the curly brackets
left of the arrow, ->. u : U → R denotes a mapping from the set of expressions U in
the curly brackets to the right of the arrow. We use the notation k ∈ RK and u ∈ RU , to
denote valuations of the expressions. We will refer to manually partitioned sub-strategies
as µc

k, and to instances of u feature vectors. By changing the expression that make up
K , we can control how sub-strategies are partitioned, and through U we can define the
values used for learning the sub-strategies.

In the query above, we have specified that a sub-strategy should exist for every different
location in our model, and that all these sub-strategies should be trained solely by the
value of the variable windSpeed. In this particular case, since the controller only takes
actions from a single location, only one sub-strategy will be made, which could also have
been achieved by leaving the first set of curly brackets empty. We will use manual state
transformation to control what the learning method can learn on, which is useful for
problems where certain variables are not observable in the real world, but required to
simulate the model.

We will define Ink similarly to In`, but with t applied to (l,ν):

Definition 7. Ink = { (sn, u) ∈ (Σc ∪ R) × RU | (q0
s0−→p0

...
sn−1−−→pn−1

(`,ν)
sn−→pn

...) ∈
Π, (k, u) = t((l,ν)) }, where (sn, u) is an action and feature-vector pair, and sn is either a
delay or an action.

In the rest of the thesis we will denote q = (k, u) as a shorthand notation for t(q) =
(k, u).

User Parameters UPPAAL STRATEGO can be tuned through input parameters exposed
the user, which affects how the learning algorithm behaves. In this thesis we will be
using these to set the stopping criteria for when to exit the loop. We do this through the
parameters: good runs, total runs, and eval runs.

Good runs controls how many runs can be used by the learning method. Increasing this
will also increase processing time, but might also increase the performance of the
learned strategy.

12

UPPAAL STRATEGO: Strategy Synthesis

Total runs limits the amount of attempts UPPAAL STRATEGO can make towards generating
the requested amount of good runs. Since not all runs will qualify as a good run,
limiting the amount of total runs, will make sure that a strategy with a low chance
of generating good runs, will not inflate the run-time too much, while trying to
gather the requested amount.

Eval runs specifies how many runs has to be simulated in the evaluation step of the
algorithm. A higher number increases the confidence of the evaluated expected
cost.

Any future mentioning of setting runs to a specific value entails setting all these
parameters to that specific value.

This concludes our summary of UPPAAL STRATEGO and the problem which it can be
used to solve. The most important points to consider for the remainder of the thesis,
is that UPPAAL STRATEGO finds strategies for PTMDPs through iterative reinforcement
learning based on feature vectors.

13

3 Problem Statement
UPPAAL STRATEGO is a powerful tool, but not without its limits. We will in this chapter,
through an example, introduce and motivate our focus on preprocessing as an approach
to achieving better strategy synthesis.

Wind Turbine with Service The model in Figure 3.1 is an extension of the previously
introduced wind turbine models. In this version, the wind turbine should still try to
achieve the goal of generating power while avoiding destruction, but we have also added
the concept of service. If the turbine is not serviced before the service timer exceeds
25, it can no longer be turned on, and therefore not generate power. However in order
to service the wind turbine, it must be turned off, which means that no power can be
generated for 1 time unit. The optimal safe strategy for this model is still to never
have the turbine running while windSpeed is at a value of 5, but service should also be
performed before the service timer exceeds 25. If the model is simulated for 100 time
units, the optimal strategy will average an output of 5

6(100− 3) = 80.8333, where 5
6

is the fraction of time windSpeed is not 5 and 100− 3 is the total time minus the time
spent servicing.

Figure3.1:Wind turbineexamplewith requiredperiodic service. The variabledeclarations
for this model can be seen in Listing 3.1.

In order to reach the optimal performance, the strategy must consider two choices.
In L1 the strategy must decide if service is needed, and in L2 the strategy must decide
whether to turn the wind turbine on or off. We can use UPPAAL STRATEGO to synthesize a

15

PROBLEM STATEMENT

1 int windSpeed = 0;

2 clock windTimer, serviceTimer, time;

3 hybrid clock power;

Listing 3.1: Declarations for the wind turbine model with service.

strategy for this model, by using model-learning and runs set to 50, and then giving this
query:

strategy safe = control: A[] not(WindTurbine.Destroyed)
strategy opt = maxE(power) [<=100] {WindTurbine.location } -> { windSpeed,
serviceTimer, time, power, windTimer } : <> time > 99 under safe

Here we have partitioned the sub-strategies based on locations, and added the re-
maining variables to the feature vector. We repeated this query with 50 different seeds,
and plotted the average power generated from the resulting strategies as the orange
density in Figure 3.2. If we compare this to the optimal power generation, they can
hardly be considered near-optimal. This could suggest that we should raise the amount
of runs, in order to give UPPAAL STRATEGO enough information to find a near-optimal
strategy. However, in the same figure we also see the result of running UPPAAL STRATEGO

with the same parameters, except that the query now specifies a different manual state
transform:

strategy safe = control: A[] not(WindTurbine.Destroyed)
strategy opt = maxE(power) [<=100] {WindTurbine.location } -> { windSpeed,
serviceTimer } : <> time > 99 under safe

The results from this query, in the blue density, are quite a bit closer to an optimal
strategy, despite not increasing the number of runs. In fact, the learning method had
fewer variables to learn from. This result reflects the notion that not all data, available in
a model, is beneficial for learning a near-optimal strategy. In this case, we examined the
model, and saw that the two choices depended only on serviceTimer and windSpeed

respectively.
Through this model analysis we were able to improve the synthesis, without having to

increase the amount of runs. But if we imagine a more complex model with many choices
depending on different combinations of variables, such an analysis becomes increasingly
difficult, and it is clear that manual state transformation is not a perfect solution. Instead,
we need some way of deciding which features to use for the learning method.

TheFocusof theThesis We believe that certain underlying issues are likely to be shared
between models, and hypothesize that if these issues are resolved prior to applying
the learning method, the synthesized strategies will be improved. We intend to test
this hypothesis, by applying preprocessing techniques to UPPAAL STRATEGO in order to
alleviate underlying model issues, and demonstrate an improved strategy synthesis.

16

PROBLEM STATEMENT

50 60 70 80
Power generated

0.00

0.02

0.04

0.06

0.08

0.10

De
ns

ity

Smart
All
Optimal mean

Figure 3.2: Plot showing average power generated for strategies with manually selected
features and stratgies with all features

We choose to focus on preprocessing techniques, as they have been shown to lower
storage requirements, improve speed of the learning algorithm, and increased predictive
ability in learned models [9], and because it is an orthogonal approach to ongoing
development of improved learning methods. We have formalized this intention into the
following problem statement:

How can preprocessing be used to alleviate model issues and thereby improve
the synthesis of strategies for Priced Timed Markov Decision Processes by
UPPAAL STRATEGO?

We will delimit the thesis from improvement of the run time of UPPAAL STRATEGO, as
well as the memory required for the synthesis, and instead focus on the quality of the
synthesized strategies. This means that we will not consider run time and memory in the
conclusion.

In the coming chapters we will attempt to answer this problem statement by examining
potential issues within UPPAAL models, and exploring known preprocessing techniques
that may be used to combat these issues. We will then conduct experiments, in order
to investigate how the potential issues affects the synthesis of strategies, and to which
degree they can be alleviated by applying the preprocessing techniques. We then discuss
the results of those experiments, and how well they show the merits of preprocessing,
before finally concluding on the benefits of preprocessing in UPPAAL STRATEGO.

17

4 Data Issues
The previous chapter motivated the problem by showing that UPPAAL STRATEGO can have
difficulties finding an optimal strategy for a model with data issues. There are many data
issues that could potentially affect strategy synthesis. We will restrict the scope of this
thesis to only consider the issues of irrelevance and redundancy. The following sections
will define each issue and give examples, to achieve an understanding and concretisation
of the problems.

4.1 Feature Irrelevance

There are many ways to define feature irrelevance [10]. Before we give our definition of
irrelevance, let us introduce the shorthand notation for feature omission from a vector
as follows. Let u ∈ RU be a sample, then we denote by u′ = u \ { f } the vector u′ ∈ RU\{ f }

s.t. for all f ′ ∈ U \ { f } it holds that u′(f ′) = u(f ′). Feature irrelevance is then defined as
follows:

Definition 8. A feature f ∈ U is irrelevant if E(µc
q) = E(µc

q′) + ε, where
µc

q is an optimal stochastic strategy with q = (k, u),
µc

q′ is an optimal stochastic strategy with q′ = (k, u \ { f }),
k ∈ RK , u ∈ RU , and ε ∈ R is a small threshold value

Recall the motivating example from the problem statement, which is repeated in
Figure 4.1. In this model, the only relevant features are windSpeed and serviceTimer.
However their relevance is not equal across all sub-strategies; serviceTimer is relevant
in location L1, but irrelevant in location L2. The opposite is true for windSpeed.

1 int windSpeed = 0;

2 clock windTimer, serviceTimer, time;

3 hybrid clock power;

Listing 4.1: Declarations for the wind turbine model with service.

With the precise description of irrelevance, we would say that windTimer is irrelevant
to the optimal action c in L2, if µc

q = µ
c
q′ + ε, for all instances of q = (k, u) and q′ =

(k, u \ {windTimer}) where L2 ∈ k. In other words, knowing windTimer does not give
any information about the optimal choice in L2.

The main motivation of eliminating irrelevant features is to reduce the state space the
learning method has to learn from, which we expect will improve the performance of
the learned strategy both in terms of accuracy and memory requirements.

19

DATA ISSUES: Feature Redundancy

Figure 4.1:Wind turbine example with required periodic service, illustrating feature irrel-
evance. The variable declarations can be seen in Listing 4.1.

A secondary motivation, is that irrelevant features might appear relevant, which can
lead to a sub-optimal strategy. For the example in Figure 4.1, a strategy for location L1

that services the wind turbine when windSpeed is at a value of 3, will cause the controller
to service the wind turbine once every sixth reading on average. Given that the time
between readings is uniformly distributed between 1 and 3 and that service lasts 1 time
unit, this strategy will service the turbine on average once every 1+ (1+3)/2

1/6 = 13 time
unit. This means that with runs lasting 100 time units, service will be done on average
b100

13 c= 7 times, as opposed to the optimal strategy servicing only 3 times. This means,
that the sub-optimal strategy will on average generate 5

6(100− 7) = 77.5 power, while
the optimal strategy would average power generation at 5

6(100− 3) = 80.8333.
In other words, the sub-optimal strategy that on average suggests service almost twice

as often as the optimal strategy will only see a performance decrease of 80.8333−77.5
80.8333 100 =

4.123%. Because reinforcement learning values strategies based on outcomes, it is not
unreasonable to fear that the strategy will deem windSpeed to be a relevant feature for
deciding when to service the turbine.

4.2 Feature Redundancy

Recall that a feature f is irrelevant if it does not contribute information to the optimal
stochastic strategy. Feature redundancy can be seen as a special case of feature irrelevance.
A feature f1 is redundant with a feature f2 if f1 is irrelevant for an optimal stochastic
strategy when f2 ∈ U , but relevant when f2 /∈ U . In other words, the optimal stochastic
strategy does not not gain any information from f1 if that information is already expressed

20

DATA ISSUES: Feature Redundancy

in f2. A formal definition is given here:

Definition 9. A feature f1 is redundant to a feature f2 if E(µc
q) = E(µ

c
q′) + ε 6= E(µ

c
q′′),

where
µc

q is an optimal stochastic strategy with q = (k, u \ { f1}),
µc

q′ is an optimal stochastic strategy with q′ = (k, u \ { f2}),
µc

q′′ is an optimal stochastic strategy with q′′ = (k, u \ { f1, f2}),
k ∈ RK , u ∈ RU and { f1, f2} ⊆ U, and ε ∈ R is a small threshold value

Consider Figure 4.2 as an example of a UPPAAL model with redundant features. This
wind turbine model is similar to the previously presented wind turbine models, but has
access to several anemometers1 instead of just one. The wind speed measurements can
however be noisy. This noise for the example is generated by the measureWind function,
based on the true wind speed reading x. The implementation is shown in Listing 4.3.

Figure 4.2:Wind Turbine model with redundant wind measurements. The variable decla-
rations of the model can be seen in Listing 4.2.

1 const int num_anemometer = 30;

2 const double epsilon = 0.0;

3 double anemometers[num_anemometer];

4 int windSpeed;

5 int isOn = 0;

6 clock time, windTimer;

7 hybrid clock power;

Listing 4.2: Declarations for wind turbine model with redundant features.

The function simulates a number of wind readings by adding some amount of noise to
the actual windSpeed, where the noise is randomly chosen between -epsilon and epsilon.

1A device used for measuring wind speed

21

DATA ISSUES: Feature Redundancy

1 void measureWind(int x) {

2 int i = 0;

3 double x_noisy = 0.0;

4 for (i = 0; i < num_anemometer; i++) {

5 double noise = random(2*epsilon);

6 // we want the noise to be between -epsilon to epsilon

7 noise = noise - epsilon;

8 x_noisy = x + noise;

9 anemometers[i] = x_noisy;

10 }

11 }

Listing 4.3: Implementation of measureWind(x)

The relationship between the true wind speed x and the noisy reading x_noisy is a linear
dependency: x_nois y = x + ε. This relation is a specific kind of redundancy called
collinearity. Two features are collinear if their relation can be described as f1 = a· f2+b+ε,
where a and b are constants and ε is a small amount of noise. In the current example
a = 1 and b = 0.

Our motivation for considering collinearity as a data issue, is due to the fact that the
clocks used in PTMDPs can easily be collinear for individual locations. An example of
how this can occur can be seen in Figure 4.3. In this example the only edge going to
L1 has a guard denoting that x = 1 and y = 4. This means that regardless of how long
the environment waits in L1, the relation between the two clocks for either L2 or L3 is
always x = y + 3.

Figure 4.3: Example with collinear clocks

22

5 Preprocessing
Preprocessing is a central topic in machine learning. The overall concept is to induce
some transformation in the data, that supports the learning process [11]. This process
can take on many forms and provide different benefits. In this chapter we will give a short
overview of preprocessing and present related work, before explaining the approaches
we take in this thesis.

5.1 Categories of Preprocessing

Preprocessing is a broad term that can be attributed to a host of methods such as data
cleaning [12], where information is reorganized and badly formed entries are taken
care of. The kind of preprocessing we consider in this thesis are those which transform
a feature vector u ∈ RU , into a feature vector u′ ∈ RM , where RM is a transformed
state space with dimensionality M . We denote this transformation by the function
T : RU → RM . Such a function should attempt to remove irrelevant features or resolve
redundancy, but preferably both. However, even though we intend to resolve the same
underlying issues in different models, we are not able to tailor the preprocessing to
specific cases, as different models can produce diverse versions of the issues.

As preprocessing is a common practice within machine learning and other fields, a
multitude of different approaches have been proposed. Algorithms in the category called
feature selection, attempt to reduce the dimensionality of the data by selecting or ranking
the best features [13]. These algorithms can have significantly different optics on what
constitutes the best features, but they all retain the features in their original form. The
idea behind this approach is to keep features understandable, such that the selection itself
can provide insight into the value of features. This possibility is not directly relevant for
the purposes of this thesis, but it could be a useful tool in other uses of UPPAAL STRATEGO.

Another category of preprocessing algorithms, called feature extraction, does not
consider such restrictions and freely modifies the features. This allows the algorithms
to tackle problems such as noise reduction or discovery of latent features [14]. A
particularly interesting extraction method is the autoencoder [15]. This technique
uses a neural network to learn an identity function, with the caveat that an internal
layer of the network exists has a lower dimensionality than the input. The intuition is
that a neural network that can reduce the representation to the dimensionality of this
internal layer, and then reproduce the original feature vector, must have found some
intrinsic representation. Once the identity function has been learned, the computations
from the input to the intrinsic internal layer is used as the feature extraction algorithm.
Unfortunately, autoencoders generally require a considerable amount of hyperparameter
tuning, which makes it less suitable for application across varying PTMDPs. Therefore,
we choose to delimit us from further considering them in this thesis.

23

PREPROCESSING: Related Work

5.2 RelatedWork

We will in this section outline how related work have applied preprocessing techniques
to reduce the dimensionality of MDPs. A brief description of their work will be presented,
followed by a comparison to our problem.

A method of clustering states, such that the number of states are reduced has been
proposed [16]. Initially, only one state is formed. New states are then gradually added
when better clusters can be made. The clustering technique is then applied in conjunction
with Q-learning.

Another proposed technique uses Neighbourhood Components Analysis (NCA) [17] as
a linear projection to transform a high-dimensional state-space onto a low-dimensional
space [18]. The low-dimensional space can then be used in a reinforcement learning
setting to solve an MDP.

It has also been shown, that an application of Exponential family Principal Component
Analysis (E-PCA) [19] can be used to reduce the dimensionality of an MDP [20]. It
demonstrated improved learning performance in experiments.

All of the presented related works applies a preprocessing technique that reduces the
number of states in an MDP. The novelty of this thesis is in the application of preprocessing
to PTMDPs in the context of UPPAAL STRATEGO, with the goal of alleviating the data
problems described in Chapter 4.

5.3 Preprocessing for Sub-Strategies

Recall that the synthesized strategies, created by UPPAAL STRATEGO, are made up of
sub-strategies, and that these sub-strategies are learned from relevant information Ink,
which has been previously defined as:

Definition 7. Ink = { (sn, u) ∈ (Σc ∪ R) × RU | (q0
s0−→p0

...
sn−1−−→pn−1

(`,ν)
sn−→pn

...) ∈
Π, (k, u) = t((l,ν)) }, where (sn, u) is an action and feature-vector pair, and sn is either a
delay or an action.

Separating the runs into these sets, enables us to make certain observations that can
be useful for preprocessing. While the feature vector u consists of the same variables
across all sub-strategies, the distribution of a given variable can change between sub-
strategies, as may the relations between the variables. Because of this, it is possible that
the preprocessing opportunities are different for each sub-strategy, which is why our
approach is to use sub-strategy specific transformations Tk : RU → RM . Tk is learned
based on the information contained in Ink. We will describe how a preprocessing function
is learned later in this chapter. With this approach, a data problem that is only present in
Ink for some k, can be addressed directly.

Given that the preprocessing is intended to improve sub-strategies µc
k, by transforma-

tion Ink through application of Tk, it occurs after the filtering step has gathered the runs
Π′ used to create Ink, and before the learning step. This is illustrated in Figure 5.1.

24

PREPROCESSING: Preprocessing Techniques

Simulation

Filtering

Preprocessing

Learning

Determinization

Evaluation

det(µc
b)

µc = uniform strategy

Π

Π′

Π′′

µc′

det(µc′)

µc = µc′

Figure 5.1: The UPPAAL STRATEGO learning algorithmwith preprocessing introduced

An important thing to note, is that the application of preprocessing causes the strategies
to no longer suggest actions based on a state q = (k, u) in the model, but rather a
transformed state q′ = (k, T (u)). Therefore, the preprocessing function Tk must be kept
with the strategy, such that q′ can be obtained. This dictates that any performance benefits
in µc

k that was gained by the application of Tk, should exceed the cost of representing or
applying Tk.

5.4 Preprocessing Techniques

In this section we will discuss the algorithms that we use to combat the data issues.
After introducing them, we will discuss some concerns regarding the integration of these
techniques into the UPPAAL STRATEGO algorithm.

25

PREPROCESSING: Preprocessing Techniques

5.4.1 Principal Component Analysis

Principal Component Analysis (PCA) [21] is a feature extraction algorithm useful for
reducing the dimensionality of a data space. The complexity of the implementation we
use is O(max(N , U)2 ·min(N , U)) [22], where N is the number of samples and U is the
number of features.

We will first explain how PCA works and then consider how it can be used to eliminate
redundancy in the form of collinearity in data, before giving some final considerations as
to the application of PCA in UPPAAL STRATEGO.

PCA finds a projection of a matrix D ∈ RN×U , where row i di,∗ ∈ RU is a feature vector
and N is the number of samples, to another matrix RN×M , such that the variance is
maximized along the axes in the projected space.

The variance along axis d∗,m ∈ RN is given by

Var(d∗,m) =
1
N

∑

n∈N

(dn,m − dm)
2

Where dm is the mean of d∗,m. The idea of maximizing variance is to capture as much
information of the data as possible. Consider an axis with no variance, i.e. with all values
being equal. No information is gained from this axis, and it can be removed without
loss of information. When using PCA we assume that data values with a high variance
contain a high degree of information, as they are more spread out from the mean.

Principal Components

The projection, which maximizes variance, is given by a set of principal component
vectors that form an orthogonal basis. The first axis, i.e. the first principal component,
expresses the greatest variance of the data. The second axis then expresses the second
greatest variance, and so forth. We can project data set X onto this basis by matrix
multiplication: M = X B.

It can be shown that the principal components are equal to the eigenvectors of the
co-variance matrix of X [11]. The ordering of the principal components is found by
the eigenvalues of each eigenvector, since a larger value means it captures more of the
variance. If the original data set X contains redundant features, some of the the principal
component will have a low corresponding eigenvalue. We can reduce the dimensionality
of X by removing the principal components with eigenvalues below our desired threshold.
One method for doing this would be to select principal components until a desired amount
of variance is retained in the projected space, and then disregard the remaining principal
components. The remaining principal components can then be used to project X to a new
subspace M that is of lower dimensionality, while still preserving much of the variance.

When we use PCA for preprocessing, we find the principal components of Ink, and
keep enough components to retain 90% of the variance, and use the transformation given
by the basis to create Tk(u) = uBk, where u is the feature vector and Bk is the principal
components basis.

26

PREPROCESSING: Preprocessing Techniques

Removing Collinear Features

With this knowledge of PCA, we can now explain why it works well in resolving collinear-
ity issues. Consider a data set D of 2 collinear features, f1 and f2 with the collinear
relationship f2 = 2 · f1 + ε, where ε is a noise variable. Figure 5.2 gives a visual explana-
tion of the relationship between f1 and f2, as well as displaying the principal components
PC1 and PC2, which help in the following explanation.

0 20 40 60 80 100
f_1

0

50

100

150

200

f_
2

PC1

PC2

Figure 5.2: Principal components on collinear features

If we view both features as vectors u1 and u2, we could similarly write u2 = 2 · u1 + ε,
which is a vector scaling. The magnitudes of the vectors are different, but they share the
same general direction. This is a critical observation; Recall that PCA finds a projection
such that the principal components are orthogonal to each other, while maximizing
variance along its axis. Seeing as u1 and u2 have approximately the same direction, the
first principal component would be approximately equal to u2. The second principal
component, orthogonal to the first, has a small eigenvalue, meaning it does not describe
much variance. We can see that almost all of the variance of the data D can be described
using only the first principal component. In fact, the only variance that is not retained is
the noise introduced by ε.

5.4.2 Fast Correlation Based Filter

Fast Correlation Based Filter (FCBF) [23] is a feature selection algorithm designed to
select a subset of relevant features from a larger set of features, such that the selected
relevant features are not redundant. It can therefore be used to combat the feature
redundancy and irrelevancy problems described in Chapter 4. The complexity of the
algorithm is O(N · U log U) [23].

We will in the following section describe how FCBF selects features in 2 phases: Phase
1 selects relevant features and phase 2 removes redundancies in the selected features.

27

PREPROCESSING: Preprocessing Techniques

Symmetrical Uncertainty

We have previously defined these problems from a probabilistic perspective. FCBF
uses a different definition with an information theoretic perspective called symmetrical
uncertainty for the same problems. Whereas the probabilistic perspective expressed the
relationship as a probability, the information theoretic approach defines the relationship
in terms of entropy. Symmetrical uncertainty is defined as:

SU(X , Y) = 2
�

IG(X | Y)
H(X) +H(Y)

�

,where

IG(X | Y) = H(X)−H(X | Y),

H(X) = −
∑

i

P(x i) log2 P(x i),

H(X | Y) = −
∑

j

P(y j)
∑

i

P(x i | y j) log2(P(x i | y j))

Symmetrical uncertainty is a symmetric measure of correlation between two discrete
random variables X and Y , i.e. SU(X , Y) = SU(Y, X). IG(X | Y) is the information gain
about X when Y is known, H(X) is the entropy of X , and H(X | Y) is the conditional
entropy. SU(X , Y) = 1 means that one variable can be derived from the other. SU(X , Y) =
0 means X and Y are independent.

The use of entropy in this context, can be seen as a measure of uncertainty of a random
variable. Consider a random variable A uniformly distributed over integers from 1 to
10, i.e. P(A= i) = 0.1,∀i ∈ {1..10}. If we were to randomly draw a sample from A, we
would have a high uncertainty of the sampled value as any integer from 1 to 10 is equally
likely. Compare this with another random variable B, also distributed over integers from
1 to 10, where P(B = 1) = 0.5 and P(B = i) = 0.5

9 = 0.056,∀i ∈ {2..10}. The entropy for
A is H(A) = 3.32, whereas for B it is H(B) = 2.5. This shows that there is less uncertainty
in B, and that we have a better chance of predicting the outcome of a random sample
from B than from A.

The joint entropy H(X , Y) describes the uncertainty that is present across the two
random variables X and Y . If we obtain information on the outcome of the variable Y ,
we have removed H(Y) amount of uncertainty. The remaining uncertainty in H(X , Y)
can then be calculated as H(X , Y)−H(Y) = H(X | Y), i.e. the joint uncertainty minus the
uncertainty we removed. H(X | Y) is called conditional entropy. When the uncertainty of
H(Y) is removed from the joint entropy, we might gain information about the variable X .
This information gain is calculated as IG(X |Y) = H(X)−H(X |Y). Here we subtract the
uncertainty that remains regarding X when Y becomes known, H(X |Y), from the original
uncertainty H(X). In order to express this as SU(X , Y) we normalize the information
gained by the original amount of uncertainty in the random variables.

28

PREPROCESSING: Preprocessing Techniques

Phases of FCBF

Phase 1 of the FCBF algorithm selects relevant features. According to FCBF, a feature f
is relevant to a label l if SU(f , l) > δ, where δ is a user-defined threshold value. The
selected features are ordered according to their relevance to the label, such that for
SU(fi , l)> SU(f j , l) it holds that i < j, where i and j are the sorted indices.

After phase 1, all irrelevant features have been eliminated, but the selected features can
still be redundant. Phase 2 of FCBF tries to remove these redundant features. According
to FCBF, features f1 and f2 are redundant if SU(f1, f2)≥ α, where α is a threshold value.
There is a trade-off when deciding what α should be. A too low value will eliminate
many features, but the eliminated features might have been beneficial to retain. A too
high value will eliminate few highly redundant features, but the selected features may
still be redundant.

FCBF uses α= SU(f2, l) based on the following belief. Consider two features f1 and
f2, with a higher similarity than f2 and the label l, i.e. SU(f1, f2)> SU(f2, l). Since the
two features are more similar to each other than f2 and l, it is likely that the information
given by f2 about l is already covered by f1. This relies on the fact that the features are
sorted in the first phase, such that SU(f1, l)> SU(f2, l), which makes f2 redundant.

FCBF Labels in Uppaal Stratego

FCBF requires both feature vectors and labels to function. A label is a prescribed value of
a feature vector that FCBF uses to understand and organize them. We want the label to
reflect the cost of taking an action in UPPAAL STRATEGO, such that FCBF can determine
which features are influencing the cost.

Recall that a run π through a PTMDP is defined as:

Definition 4. An alternating sequence of priced action and delay transitions of its priced

transition system S : π = q0
d0−→p0

q′0
a0−→0 q1

d1−→p1
q′1

a1−→0 ...
dn−1−−→pn−1

q′n−1

an−1−−→0 qn...,
where ai ∈ Σc ∪Σu, di ∈ R≥0 is a delay, pi ∈ R≥0 is a cost, and qi is a state in the system.
∑

i pi is the total cost for the run.

We will use this definition to describe different choices of labels, their characteristics
and finally conclude on the label we will use.

The first possibility is using immediate cost as a label. This is defined from π as pi,
when delaying di in state qi . The problem with using immediate cost as a label becomes
apparent, when the immediate cost is constant for a location. FCBF can not determine
the relevant features, as the label is constant, regardless of the feature values.

Another possibility is to use the total cost of a run:
∑

i pi. The problem with this
approach, is that other actions in the run, both controllable and uncontrollable, also
influences the total cost. This can make total cost a noisy label for actions, especially
since the action in question has no impact on the development of the cost preceding it.

We can mitigate the above issues by using cost-to-completion as a label. This is defined
from π as p f − pi , where p f is the final cost in the run, and pi is the cost of taking action-
delay pair (ai , di) in state qi. Using cost-to-completion as a label resolves the situation

29

PREPROCESSING: Preprocessing Techniques

where the immediate costs are constant for a location. The noise problem of using total
cost is reduced, as we only consider the future changes in cost after taking action-delay
pair (ai , di) from state qi . Cost-to-completion does however have a significant problem,
in that actions that occur later in a run will have a lower cost-to-completion. We therefore
normalize the cost-to-completion based on the relative position in the run. This is defined
as:

l =
p f − pi

f − i + 1
,where l is the label, and f is the last state index

Discretization in Uppaal Stratego

Symmetrical uncertainty is only defined for discrete variables, but features and costs in
UPPAAL STRATEGO can be continuous. Consequently we have to apply a discretization step
before FCBF that divides the continuous features into n classes, where n is a user-defined
parameter. The discretization step of a feature is implemented by first normalizing the
feature values to be between 0 and 1. These normalized values are then assigned to bins
with equal sized intervals. So with 4 bins, bin 1 would contain values from 0 to 0.25, bin
2 from 0.25 to 0.5, bin 3 from 0.5 to 0.75 and bin 4 from 0.75 to 1.0.

5.4.3 Integrating Preprocessing in Uppaal Stratego

The algorithms described above both support dynamic variation of the dimension of the
preprocessed data, based on the input data. In FCBF, dominant features can remove
redundant features, and δ can be used to prune low-scoring features. Likewise, in PCA,
we can choose principal components until 90% of the variance is retained. Letting the
algorithms decide the dimensionality dynamically allows for optimal preprocessing in
cases where the number of relevant features of two sub-strategies are different. However,
this dynamic nature poses a problem for the existing UPPAAL STRATEGO algorithm. This
section describes the problem as well as the chosen solution.

The Problem

Recall that UPPAAL STRATEGO uses an iterative algorithm for synthesizing strategies. In
each iteration of the algorithm, a set of runs are simulated, and then filtered. With the
addition of the preprocessing step, the runs are transformed, before the data is sent
to the learning method. The iterative nature of the algorithm means that a learning
methods can continuously update its understanding of the data, by reusing information
from previous iterations.

Consider the following scenario of the UPPAAL STRATEGO algorithm with preprocessing:

Iteration 1

1. Runs are simulated. The dimensionality of the data is 10.

30

PREPROCESSING: Preprocessing Techniques

2. The data is now preprocessed such that the output dimensionality is 5.

3. The learning method learns from the preprocessed data. This entails that internal
representations from now on expect a data dimensionality of 5.

Iteration 2

1. Runs are simulated. The dimensionality of the data is 10.

2. The data is now preprocessed such that the output dimensionality is 3.

3. The learning method learns from the preprocessed data. However, the expected
dimensionality of 5 does not match the input dimensionality of 3. It is unclear how
the learning method should interpret this data, as it is inconsistent with previously
observed features.

The above scenario illustrates how varying dimensionality can pose as a problem to
the current UPPAAL STRATEGO algorithm. A different issue from dimensionality change,
is the fact that the meaning of features can also change across iterations. The FCBF
algorithm can, for example, change the internal ordering of feature importance such that
f1 and f2 are selected in iteration 1, but f2 and f3 are selected in iteration 2. In PCA,
unstable axes can also change the meaning of features. If the direction of the principal
components change across iterations, the features will have different meanings.

The Solution

To combat the problem, we need to make sure that the learning method is never given data
that can change dimensionality or meaning across iterations. We suggest the following
solution, which is also illustrated as pseudo code in Algorithm 1.

We divide each iteration in the original UPPAAL STRATEGO algorithm into two phases.
The first phase is very similar to the original algorithm. In Line 8, we use the current
best strategy µc to simulate a run. We then in Line 9 add a recording step to this phase,
where every run simulated in the iteration is added to a history list. A preprocessing
function is applied to the simulated run in Line 10, which µc is trained on in Line 11.

The second phase begins by resetting µc to a new untrained strategy in Line 14. In
Line 15, a preprocessing transformation is learned from the recorded history of the
current and all previous iterations. This transformation is then applied to the history of
runs in Line 17. µc is then trained on the preprocessed run in Line 18.

The proposed solution solves the problem, but does so by making some trade-offs.
More work is being done per iteration in phase 1, as there is the extra work of recording
each run. In addition, in phase 2, a strategy is trained anew based on the complete
history of runs, which will result in an increased run time. Memory requirements will also
increase as the complete history of runs has to be kept in memory. Overall the algorithm
will require more resources, but as run-time performance is not the primary focus of
this thesis, we consider it an acceptable trade-off. In Chapter 9 we outline potential
approaches that could reduce the overhead of the proposed solution.

31

PREPROCESSING: Preprocessing Techniques

Algorithm 1: Pseudo code for the UPPAAL STRATEGO algorithm with preprocessing

1 M ← The PTMDP we are learning
2 µc ← New uniform strategy
3 T ← Identity preprocessing function
4 Π← ;

5 foreach iteration do
6 // Phase 1
7 for NumberOfRuns do
8 π← Simulate M with µc

9 Π= Π∪ {π}
10 πp← T (π)
11 Train µc on πp

12 end
13 // Phase 2
14 µc ← New uniform strategy
15 T ← Learn preprocessing on Π
16 foreach π in Π do
17 πp← T (π)
18 Train µc on πp

19 end
20 end

32

6 Experiments
This chapter presents the experiments that we conducted to examine the data issues
and suggested solutions from Chapter 5. These experiments are intended to explore the
severity of the data issues for the learning methods, and to which degree the suggested
solutions resolve the issues.

The chapter will start by outlining the measurement metrics for the experiments,
and the reason for choosing them. Then the general test setup is introduced, before
each experiment is outlined and evaluated. We will interpret and discuss the results in
Chapter 7.

6.1 Evaluation Metrics

In Chapter 3 we state that preprocessing has potential to improve UPPAAL STRATEGO.
However, without further specification, improvement is at least partially a subjective
matter. Therefore, we will in the following section discuss three areas of improvement,
and argue the choice of metrics within them.

MemoryRequirements The first area with potential for improvement is memory. There
are two memory concerns for UPPAAL STRATEGO: Memory used during the synthesis and
the size of the learned strategy. We have chosen to delimit the project from considering the
usage of memory during synthesis, as we have not focused on an efficient implementation
of preprocessing. However, the size of the learned strategy is an interesting metric. Given
that the strategies are represented as decision trees, preprocessing could reduce the
number of nodes in the tree and thereby reduce the size of the strategy. We therefore
use the amount of splits in a tree as the metric for strategy size.

Learning Speed Since preprocessing itself takes time, it would be interesting to see if
the time it takes to learn a strategy is ultimately reduced, or if the time spent preprocessing
exceeds the time saved during learning. However, once again, due to the lack of an
efficient implementation of preprocessing, we will not use time as a metric for the
experiments.

Quality of Strategies The ability to synthesize strategies that approach optimal behav-
ior, is the most important feature of UPPAAL STRATEGO. Therefore, we also find it to be
the most important metric for improvement in terms of preprocessing. Once a strategy
has been synthesized, we will rate the quality of it by the expected cost. The expected
cost is calculated by taking the highest value of cost in a run π and then averaging across

33

EXPERIMENTS: Setup of Experiments

multiple repeated runs.

max E =
1
N

N
∑

i=1

maxcost(π)

6.2 Setup of Experiments

Before moving on to the individual experiments, there are a few points to be made about
the tests in general, which we will do in this section.

Choice of Models Recall that we want to explore the applicability of various prepro-
cessing techniques for UPPAAL STRATEGO. As the work presented here is a preliminary
study, we restrict ourselves to test the effects of the preprocessing techniques on the
simple models from Chapter 4, that are constructed to exhibit common data issues. This
is done in order to focus our evaluation on the issues in isolation. The observed effects
can then be used to suggest appropriate preprocessing techniques for more complex
UPPAAL models.

This raises the valid concern, that the techniques might not generalize very well, or
that they lose effectiveness when the models become more complex. We discuss this
issue further in the discussion in Chapter 7, and also refer to future work in Chapter 9.

Reliability of Results UPPAAL STRATEGO utilizes randomness in its algorithm, primarily
during the generation of runs for learning or evaluation. This is problematic for evalua-
tion as performance metrics can vary in-between experiments. To combat this, we want
to factor out the effects of randomness by repeating experiments multiple times. Each
repetition will be done with a different seed for the random actions, making them deter-
ministic and therefore repeatable. Multiple repetitions of the experiments with different
seeds, should give an understanding of the holistic performance of the preprocessing
methods.

Another important thing to consider, is the amount of runs used in different parts
of the algorithm. When given more runs to learn from, UPPAAL STRATEGO generally
produces better strategies. However, additional runs also increases the time it takes to
synthesize a strategy, and can therefore not be increased without caution.

We wish to show the effects of preprocessing in UPPAAL STRATEGO, when an appropriate
amount of runs are available. However, deciding on an appropriate amount of runs is not
trivial. If too many runs are used, UPPAAL STRATEGO might find equally good strategies
with and without preprocessing. This could falsely imply that preprocessing had no
benefit, even if preprocessing might have enabled UPPAAL STRATEGO to synthesize the
same strategy with a lower amount of runs. On the other hand, it is also important to
not use too few runs, as we do not want the outcomes of the experiments to be impacted
by a significant lack of information during the synthesis.

To combat this, we will repeat the tests with different amounts of runs, in order to
ensure that the evaluation of the results are consistent across different amounts of runs.

34

EXPERIMENTS: Setup of Experiments

For these reasons, the experiments were conducted with 25, 50, and 100 runs, and
all configurations repeated with 50 different seeds in order to factor out the effects of
randomness during the learning process. The results from the experiments with 25 and
100 runs are consistent with the ones that have 50 runs, so only those will be shown in
the report itself. The results from 25 and 100 runs can be found in Appendix A.

Analysis of Experiments In order to analyze the results of repeated experiments, we
visualize the results as box plots [24]. An example of such a box plot can be seen in
Figure 6.1.

Figure 6.1: Box plot example.

In this plot we can see the median at 4, marked by the line through the blue box.
The top and bottom ends of the blue box, at 6.5 and 1.8 respectively, marks the Inter
Quartile Range (IQR), which is between the third and first quartiles, Q3 and Q1. Beyond
the box, the whiskers at 10 and 0 mark the highest and lowest data point between
Q1− 1.5(Q3−Q1) and Q3+ 1.5(Q3−Q1). Data points beyond these are considered
outliers that are not representative of expectable strategy performance, and are therefore
not included.

We choose to visualize the data with box plots, as it allows us to consider the variety in
the strategies produced during an experiment, and compare two different configurations,
e.g. with preprocessing and without preprocessing. The whiskers shows us the range of
strategy performance i.e. how stable the configuration is. The height of the box can then
give us an idea, of how the performance is distributed within that range.

Every experiment will include a box plot for each configuration we test, for both of
the learning methods we test. The blue box plot means Q-learning, while the orange
box plot means model-learning. This means that there will always be two box plots for
configurations without any preprocessing, two for the configuration with an identity

35

EXPERIMENTS: Collinear Redundancy Experiment

function for preprocessing, and then two for each of the preprocessing techniques we
apply. The identity preprocessing function simply returns the feature vector without any
changes, in order to see if the solution to integrating preprocessing in UPPAAL STRATEGO,
explained in Section 5.4.3, has any an impact.

6.3 Collinear Redundancy Experiment

In order to evaluate the effects of collinear redundancy and our approach to alleviate it,
we have conducted an experiment. In this section we will introduce the experiment, and
afterwards present the results.

6.3.1 The Model

The experiment involves 16 different versions of the same model, for which we will
synthesize strategies both with and without preprocessing. These variations are intended
to explore the ability of the synthesis when dealing with different kinds of collinearity.
The base model is the same that was introduced in Section 4.2, and shown here again in
Figure 6.2.

Figure 6.2:Wind Turbine model with redundant wind measurements. The variable decla-
rations can be seen in Listing 6.1.

As mentioned previously, the model differs from the other wind turbine examples by
introducing multiple anemometers instead of just a single one. This could model a wind
farm where every turbine can get wind readings from the others. The anemometers are
set with the measureWind function, shown in Listing 6.2.

The 16 different versions are found in the cartesian product of four different queries
and four variations in the measureWind function. The four queries differ in their manually
selected features. The variations in the measureWind function controls which type of
collinearity that is present in the model, and does so through two variables. Any unique
details in the variations will be discussed together with the evaluation of the results.
Below is a more detailed description of the four queries along with the two variables.

36

EXPERIMENTS: Collinear Redundancy Experiment

1 const int num_anemometer = 30;

2 const double epsilon = 0.0;

3 double anemometers[num_anemometer];

4 int windSpeed;

5 int isOn = 0;

6 clock time, windTimer;

7 hybrid clock power;

Listing 6.1: Declarations for the model showcasing redundancy.

1 void measureWind(int x) {

2 int i = 0;

3 double x_noisy = 0.0;

4 for (i = 0; i < num_anemometer; i++) {

5 double noise = random(2*epsilon);

6 // we want the noise to be between -epsilon to epsilon

7 noise = noise - epsilon;

8 x_noisy = x + noise; // With scaling: x*i + noise;

9 anemometers[i] = x_noisy;

10 }

11 }

Listing 6.2: Implementation of measureWind(x)

Select Perfect This query manually selects only the windSpeed variable, which is the
only variable required to learn the optimal strategy. This query is included to show
the results of learning when no redundancy is present.

strategy opt = maxE(power) [<=100] { } -> { windSpeed } : <> time > 99
under safe

Select Wind With this query both the windSpeed variable and all the anemometer vari-
ables are selected. Results of this query shows the ability to learn when the required
information is present, but among collinear features, making it harder to pick out
the correct variable.

strategy opt = maxE(power) [<=100] { } -> { windSpeed, anemometers[0],
anemometers[1], ..., anemometers[29] } : <> time > 99 under safe

Select Noise This query only considers the anemometer variables. As such perfect
information is no longer guaranteed, but can be inferred to some degree from the
noisy variables.

strategy opt = maxE(power) [<=100] { } -> { anemometers[0], anemome-
ters[1], ..., anemometers[29] } : <> time > 99 under safe

37

EXPERIMENTS: Collinear Redundancy Experiment

Select All This query selects every variable in the model. This represents a scenario
where some but not all features are collinear.

strategy opt = maxE(power) [<=100] { } -> {windSpeed, time, windTimer,
power, isOn, anemometers[0], anemometers[1], ..., anemometers[29] } : <>
time > 99 under safe

Epsilon The first variable that introduces differences in measureWind is epsilon. If
we want perfect collinearity we set this epsilon to 0. When we instead want to
introduce some noise, we set epsilon to 1.0.

Scale The second variation is introduced by choosing which version of Line 8 in measureWind

we use. If we use the version in the comment, we scale wind readings by their
index. This is done to explore different types of collinearity.

The “safe” strategy that is referred to here, is the same that was introduced in Sec-
tion 2.2, i.e.:

strategy safe = control: A[] not(WindTurbine.Destroyed)

Every strategy created in this experiment is tested with the same query:

E[<=100;100] (max:power) under opt

This asks UPPAAL to create 100 runs of 100 time units where it follows the strategy “opt”,
and report the expected maximum value of power. For this experiment we have chosen
to use 30 anemometers. While this might seem excessive, we wanted to make sure that
the results revealed the ability to handle collinearity and not just multiple features.

6.3.2 Presentation of the Results

We now present the results of the experiments, and evaluate the performance differences.
We present the variations in groups of four with the same query, such that we can compare
the impact of different levels of collinearity on the learning methods. Recall that the
optimal strategy will switch on the wind turbine whenever the windSpeed is not 5, which
gives an average expected cost of 5

6(100) = 83.333. A lower median expected cost is the
result of a sub-optimal strategy. A lower amount of splits is also preferable to a higher
number of splits, with the caveat that it might have an adverse effect on expected cost if
it is too low.

Select Perfect

The first results are the select perfect variations. The expected costs can be seen in
Figure 6.3 and the number of splits in Figure 6.4. As the select perfect query causes the
feature vector to only include the windSpeed variable, all of the variations present the
same problem and the results are therefore expectedly identical. The only thing to note

38

EXPERIMENTS: Collinear Redundancy Experiment

here, is that the inclusion of superfluous preprocessing does not have an impact on the
expected cost, and only a minor influence on range of splits, even though the median
stays the same.

Select Wind

The next results are those where we used manual state transformation to learn on
windSpeed and all the anemometers. The expected cost is shown in Figure 6.5 and
number of splits in Figure 6.6. We see that the first and third variations with epsilon set
to 0, also manage to find near-optimal strategies across all configurations. In the first
variation the lack of both noise and scaling makes the anemometers perfectly describe
wind, meaning that there are 31 variables with the same exact values. The third variation
also has zero noise but does include scaling, which also results in near-optimal strategies
across all configurations.

In the second and fourth variations, there is however a noticeable decrease in the
ability of model-learning to handle the noise that is introduced, if no preprocessing is
applied. If we look at the number of splits, there is also a significant increase in the
number of splits for the strategies that perform badly.

Select Noise

The third results are shown in Figures 6.7 and 6.8, which cover the experiments where
only the noisy anemometers are available to the learning methods. Here we again see
that the first and third variations achieve near-optimal strategies across all configurations.
As no noise is introduced, these two variations are expectedly almost identical to their
counterparts for the select wind queries from Figures 6.5 and 6.6, and as such they do
not reveal any new insights.

In the second and fourth variation we also see similar outcomes as the select wind
results, where the model-learning method has lower expected costs and more splits
without preprocessing. However, in the second variation we see that FCBF is not able to
make model-learning reach a near-optimal strategy. Note that the windSpeed variable
is not available and can therefore not be selected. PCA keeps its performance at the
same level as the select wind query. In the fourth variation, the introduction of scaling
enables FCBF to select features that allow model-learning to find a near-optimal strategy
again. This is despite scaling negatively impacting the expected cost for model-learning
strategies without preprocessing.

Select All

The last four variations of this experiment, which covers the select all queries, can be
seen in Figure 6.9 and Figure 6.10.

Here we start to see a degradation in Q-learning, compared to the previous variation.
The range is bigger, with some samples falling below 80, and the median has degraded
from 83.5 to 82.5. Both PCA and FCBF brings Q-learning back to the near-optimal

39

EXPERIMENTS: Collinear Redundancy Experiment

expected cost, it had in the previous results. Recall that FCBF is designed to remove
irrelevant features, while PCA is not. When scaling is introduced, there is also an increase
in the number of splits in the strategies produced by Q-learning without preprocessing.

Model-learning continues to show a lower expected cost when no preprocessing is
applied. Generally it seems to work best in combination with PCA, but FCBF also seems
to make a noticeable improvement. An interesting thing to note, is that the second
variation, where model-learning is combined with PCA, shows a dip in expected cost
compared with the same configuration in other variations. If we look at the number of
splits for the same variation and configuration, we see a significant spike in the number
of splits.

40

EXPERIMENTS: Collinear Redundancy Experiment

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps no scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

eps no scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

eps scale select perfect

Figure 6.3: Expected Cost for redundancy experiment with perfect manual feature selec-
tion

41

EXPERIMENTS: Collinear Redundancy Experiment

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

2.5

5.0

7.5

10.0

12.5

15.0

17.5

nu
m

Sp
lit

s

no eps no scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

2.5

5.0

7.5

10.0

12.5

15.0

17.5

nu
m

Sp
lit

s

eps no scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

2.5

5.0

7.5

10.0

12.5

15.0

17.5

nu
m

Sp
lit

s

no eps scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

2.5

5.0

7.5

10.0

12.5

15.0

17.5

nu
m

Sp
lit

s

eps scale select perfect

Figure 6.4: Number of splits for redundancy experiment with perfect manual feature
selection

42

EXPERIMENTS: Collinear Redundancy Experiment

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps no scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

ex
pe

ct
ed

Co
st

eps no scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

65

70

75

80

85

ex
pe

ct
ed

Co
st

eps scale select wind

Figure 6.5: Expected Cost for redundancy experiment with manually selected wind fea-
tures

43

EXPERIMENTS: Collinear Redundancy Experiment

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

2

4

6

8

10

12

14
nu

m
Sp

lit
s

no eps no scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

100

200

300

400

nu
m

Sp
lit

s

eps no scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

2

4

6

8

10

12

14

nu
m

Sp
lit

s

no eps scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

50

100

150

200

250

300

350

nu
m

Sp
lit

s

eps scale select wind

Figure 6.6: Number of splits for redundancy experiment with manually selected wind
features

44

EXPERIMENTS: Collinear Redundancy Experiment

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps no scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

70.0

72.5

75.0

77.5

80.0

82.5

85.0

ex
pe

ct
ed

Co
st

eps no scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

65

70

75

80

85

ex
pe

ct
ed

Co
st

eps scale select noise

Figure 6.7: Expected Cost for redundancy experiment with manually selected anemome-
ters

45

EXPERIMENTS: Collinear Redundancy Experiment

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

2

4

6

8

10

12

14
nu

m
Sp

lit
s

no eps no scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

100

200

300

400

500

nu
m

Sp
lit

s

eps no scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

2

4

6

8

10

12

14

nu
m

Sp
lit

s

no eps scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

50

100

150

200

250

300

350

nu
m

Sp
lit

s

eps scale select noise

Figure 6.8: Number of splits for redundancy experiment with manually selected
anemometers

46

EXPERIMENTS: Collinear Redundancy Experiment

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

70

72

74

76

78

80

82

84

ex
pe

ct
ed

Co
st

no eps no scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

65

70

75

80

85

ex
pe

ct
ed

Co
st

eps no scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

ex
pe

ct
ed

Co
st

no eps scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

70.0

72.5

75.0

77.5

80.0

82.5

85.0

ex
pe

ct
ed

Co
st

eps scale select all

Figure 6.9: Expected Cost for redundancy experiment with all features manually selected

47

EXPERIMENTS: Collinear Redundancy Experiment

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

200

400

600

800
nu

m
Sp

lit
s

no eps no scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

100

200

300

400

500

600

nu
m

Sp
lit

s

eps no scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

200

400

600

800

1000

nu
m

Sp
lit

s

no eps scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

100

200

300

400

500

600

nu
m

Sp
lit

s

eps scale select all

Figure 6.10: Number of splits for redundancy experiment with all features manually
selected

48

EXPERIMENTS: Irrelevance Experiment

6.4 Irrelevance Experiment

This experiment intents to show how the preprocessing algorithms handle varying degrees
of irrelevant features. We will first introduce the model we are testing on, and then
present the results along with commentary.

6.4.1 The Model

We will use three variations of the same model, for which we will test the quality of
synthesized strategies, both with and without preprocessing. The variations differ in
the number of variables that are available to the learning method. The model variants
are based on the example given in Section 4.1, which is repeated in Figure 6.11. Re-
call that the optimal strategy considers different features for different sub-strategies.
In L2, windSpeed is the only required feature for learning the optimal strategy, and
serviceTimer is likewise the only one required for the optimal strategy in L1. The
GenerateNoise function adds irrelevant features in the form of random values to the
model. It is defined in Listing 6.4.

Figure 6.11:Wind turbine model with required periodic service, illustrating feature irrele-
vance. The variable declarations can be seen in Listing 6.3.

The 3 model variants are listed below along with their query. They are all trained
under the UPPAAL TIGA strategy:

strategy safe = control: A[] not(WindTurbine.Destroyed)

and tested with the same query as the redundancy experiment:

49

EXPERIMENTS: Irrelevance Experiment

1 int windSpeed = 0;

2 clock windTimer, serviceTimer, time;

3 hybrid clock power;

4 const int num_noise_vars = 10;

5 double noise[num_noise_vars];

Listing 6.3: Variable declarations for the wind turbine with service.

1 void GenerateNoise() {

2 int i = 0;

3 for (i = 0; i < num_noise_vars; i++) {

4 noise[i] = random(100);

5 }

6 }

Listing 6.4: Implementation of GenerateNoise()

E[<=100;100] (max:power) under opt

Select Smart In this variant, we select the best possible features that can be achieved
using manual state transformation.

strategy opt = maxE(power) [<=100] {WindTurbine.location } -> { wind-
Speed, serviceTimer } : <> time > 99 under safe

Select All We manually select all variables in the model, including the irrelevant features
time, power and windTimer.

strategy opt = maxE(power) [<=100] {WindTurbine.location } -> { wind-
Speed, serviceTimer, time, power, windTimer } : <> time > 99 under safe

Extra Irrelevance This is the only model variant that uses the GenerateNoise function
to add irrelevant features. All the features of the previous variations are selected,
in addition to the generated noise variables.

strategy opt = maxE(power) [<=100] {WindTurbine.location } -> { wind-
Speed, serviceTimer, time, power, windTimer, noise[0], noise[1], ..., noise[9]
} : <> time > 99 under safe

6.4.2 Evaluation of Results

The experiments has given results of both the expected cost and the number of splits in
the strategies. We will first present the expected cost results, and then afterwards the
number of splits results.

50

EXPERIMENTS: Irrelevance Experiment

Expected Cost

Figure 6.12 shows the results using expected cost as a metric. A higher expected cost is
better than a lower, with an expected cost of 80 being optimal.

Select Smart The results show no noticeable difference between no preprocessing and
identity preprocessing. Both configurations have a large IQR, which indicates that there
are multiple clusters of samples. Some samples in Q-learning reach the optimal expected
cost, but the results are very unstable as can be seen in the ranges.

FCBF with 5 classes for Q-learning shows a lower median, than without preprocessing
and a narrower IQR. FCBF with 10 classes also shows a low median for Q-learning, but
the wider IQR indicates more scattered samples. FCBF with 50 classes improves the
median compared to the other FCBF configurations. We can also observe a drop in the
lower whisker. In all FCBF configurations, model-learning is close to no preprocessing
and identity preprocessing.

Select All The median of identity preprocessing is slightly better than no preprocessing
for both Q-learning and model-learning. Compared to select smart, the performance has
degraded for these two configurations, as neither is able to reach optimal expected cost.

All FCBF configurations show a significant improvement relative to no preprocessing
and identity preprocessing. Q-learning with FCBF is in this variant performing near-
optimally, which is in stark contrast to the previous variant. FCBF also seems to be an
improvement for model-learning, as every configuration where it was applied has a
higher IQR, compared to no preprocessing.

Extra Irrelevance No preprocessing and identity preprocessing are both similar in this
variant, with identity preprocessing showing a slightly better median in both Q-learning
and model-learning. Compared to the select all variant, the performance of Q-learning
has degraded for these two configurations.

The FCBF configurations show similar relative performance compared to the previous
variant, with Q-learning performing better than model-learning. The median values for
Q-learning with FCBF are however a little lower, than in the select all variant, and the
range of model-learning and FCBF with 50 classes is smaller.

51

EXPERIMENTS: Irrelevance Experiment

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

45

50

55

60

65

70

75

80
ex

pe
ct

ed
Co

st

irrelevance select smart

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

55

60

65

70

75

80

ex
pe

ct
ed

Co
st

irrelevance select all

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

55

60

65

70

75

80

ex
pe

ct
ed

Co
st

extra irrelevance

Figure 6.12: Experiment results for irrelevant features showing expected cost

52

EXPERIMENTS: Irrelevance Experiment

Number of Splits

The results using number of splits as a metric are shown in Figure 6.13. A lower number
of splits is better than a higher.

Select Smart All configurations show similar amounts of splits, with Q-learning pro-
ducing fewer splits than model-learning.

Select All In this variation, the no preprocessing and identity preprocessing show more
splits compared to the previous variant. Q-learning still produces strategies with fewer
splits than model-learning.

The FCBF configurations show a significant reduction in the number of splits compared
to no preprocessing and identity preprocessing. Q-learning is also producing fewer splits
than model-learning. There seems to be a significant correlation between the number of
splits and the expected cost, with an increase in splits, decreasing the expected cost.

Extra Irrelevance Here we see that the range of splits with no preprocessing and
identity preprocessing has increased to more than 2000 splits, up from 800 in the select
all variant. No preprocessing and identity preprocessing show similar performance in
this variant, and worse performance relative to the previous variant.

All FCBF configurations show significantly fewer splits produced than no preprocessing
and identity preprocessing.

The correlation between a lower amount of splits, and a higher expected cost, is still
present in this variation.

53

EXPERIMENTS: Irrelevance Experiment

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

50

100

150

200

250

300

350

nu
m

Sp
lit

s

irrelevance select smart

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

200

400

600

800

nu
m

Sp
lit

s

irrelevance select all

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

500

1000

1500

2000

2500

nu
m

Sp
lit

s

extra irrelevance

Figure 6.13: Experiment results for irrelevant features showing number of splits

54

7 Discussion
In this chapter we will review the results of the experiments, and discuss the implication
that they may bring with them.

We will first present the results themselves, and give our interpretations of what they
reveal. Then we will relate this to the problem statement of this thesis, and consider
which parts are answered by the results and which parts still remain unaccounted for.
Afterwards we discuss a few remaining concerns regarding preprocessing and potential
alternative benefits.

7.1 Results of the Experiments

We analyze the results in two parts. First we give an overall perspective on the general
observations, followed by a more detailed look at specific interesting parts of the results.

Overall Results The primary observation that should be made regarding the redun-
dancy experiment is that, across all variations, the configurations that applied prepro-
cessing either improved the expected cost or kept them at an equal level, compared
with the configurations where no preprocessing was applied. This is also largely true
for the amount of splits used to represent the strategies, with the single exception being
model-learning with PCA, in the second variation of the select all redundancy experiment
with noise and no scaling, shown in Figure 6.10.

A similar observation can be made for the irrelevance experiment, with the significant
exception being the select smart variation in Figure 6.12, where the FCBF configurations
all had lower medians than without preprocessing. We were curious as to why this is the
case, and also noted that the IQR of all the Q-learning configurations are suspiciously
wide. This prompted us to visualize the data with a violin-plot [25], which is similar
to a box plot, but visualizes the distribution of observations across the range. This plot
can be seen in Figure 7.1. The violin plot shows the box plot as the black bar inside of
the colored shapes. The white dot is the median, the thick black bar is the IQR and the
thin black bars are the whiskers. The shapes are formed by density estimations over the
observed expected costs. This gives us a better understanding of the distribution of the
results across the range.

Here we see that the results for Q-learning either reaches a near-optimal expected cost
or gets a rather low expected cost around 50−60 across all configurations. The tendency
in the data to split in two groups, explains the wide IQR in the box plot. We also see that
the increased width in the range of FCBF with 50 classes, is due to a single observation
that falls below the rest, which we consider to be an outlier. For the FCBF configuration
with 5 classes, there is a bigger portion of strategies in the lower group. Even so, it is
still visible that the groupings of the expected costs are similar for Q-learning across all

55

DISCUSSION: Results of the Experiments

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

30

40

50

60

70

80

90
ex

pe
ct

ed
Co

st

irrelevance select smart

Figure 7.1: Experiment results as a violin-plot for irrelevant features showing expected
cost

configurations. This result is more in line with our expectation, that the FCBF algorithm
does not degrade the expected cost, when there are no irrelevant features to remove.
However, we can not disregard the fact that FCBF does worsen the performance, in
a variation where we had expected FCBF to improve the results by removing locally
irrelevant features. This calls for further inquiry as to why this is the case.

Variation Specific Observations If we look closer at the variations in the redundancy
experiment, we see in Figures 6.3 and 6.4 that the select perfect variations are very
consistent. This is exactly as expected, as the windSpeed variable has been manually
selected, leaving no doubt as to which features the learning methods should consider.
This was also expected for the no epsilon variations of the select wind and select noise
queries from Figures 6.5 and 6.7, as any of the available features can be used to find the
optimal strategy. If we then consider the variations where epsilon is used to introduce
noise to the wind readings, we see a clear correlation between lower expected cost and a
high number of splits. In fact, if we look across all the results in both experiments we
see this correlation in many variations for model-learning without preprocessing. This is
evidence for a tendency to overfit the strategy to the noise when using model-learning,
which seems to be resolved with the applied preprocessing techniques.

Another interesting thing to note for the select noise variations with epsilon, is that
when scaling is not included, only PCA enables model-learning to reach consistent op-
timal strategies, with 50 classes FCBF coming close. This is expected as PCA, being a
feature extraction method, can extract a common trend among the noise variables, while
FCBF can only hope to select the least noisy variables. However, when scaling is intro-
duced, FCBF unexpectedly manages to equal the expected cost of the PCA configuration.

56

DISCUSSION: Relating the Results to the Problem Statement

This could be due to the way we discretize the features and labels, however further
investigation is required to determine if this is the case.

In regards to Q-learning in the redundancy experiment, almost all variations and
configurations manage to reach near-optimal behavior, with only the select all query
causing a slight reduction in expected cost for no preprocessing and identity preprocessing.
This suggests that Q-learning has little to no issue with collinearity. Another possible
explanation could be that Q-learning finds an easy solution to this particular model,
which is to turn on the wind turbine whenever the “safe” strategy from UPPAAL TIGA

allows it.
The last observation we wish to make, is in regard to the model-learning with PCA

configuration in the second variation of the select all query, shown in Figures 6.9 and 6.10.
In all other configurations where PCA is applied, the results are better or equal to those
of the other configurations. However, in this particular case, PCA dips below FCBF in
expected cost, and has a significant increase in the number of splits. The cause for this is
uncertain, and would be interesting to further pursue.

7.2 Relating the Results to the Problem Statement

In Chapter 3 we stated the problem of the thesis to be:

How can preprocessing be used to alleviate model issues and thereby improve
the synthesis of strategies for Priced Timed Markov Decision Processes by
UPPAAL STRATEGO?

We then delimited the thesis from improvements in terms of run time and mem-
ory required for the synthesis, in order to focus on the quality of the strategies that
UPPAAL STRATEGO produces.

The results of the experiments show, that the Q-learning and model-learning techniques
in UPPAAL STRATEGO are not currently able to resolve both of the presented data issues.
They also show that preprocessing with PCA and FCBF may enable UPPAAL STRATEGO to
produce strategies that have a higher expected cost and a lower number of splits, for
models with collinear and irrelevant features.

It is not certain whether the demonstrated benefits of preprocessing will generalize to all
models with these data issues. Neither has it been shown whether the two preprocessing
methods can be applied on models that does not exhibit the data issues, without an
adverse effect on the synthesis.

7.3 Remaining Concerns and Alternative Benefits

While the results provide us with a good indication of the effects that preprocessing can
have on strategy synthesis, there are still concerns that need to be addressed.

First of, the learning methods are still undergoing development, and the results of the
experiments may be the product of errors in the synthesis, that have yet to be discovered
and resolved. It is also possible that with further development, the learning methods

57

DISCUSSION: Remaining Concerns and Alternative Benefits

might be able to resolve the given data issues directly, thereby making preprocessing of
them irrelevant.

An interesting effect of preprocessing, is that it might encourage creators of models to
worry less about introducing data issues in their models, if they trust that the synthesis
can automatically remove them. This could allow them to focus more on producing an
accurate model of the system they are working with.

58

8 Conclusion
This section will conclude the thesis by first summarizing the problem and our solution
to it. We will then outline how we reached the solution and finally the implications of
this thesis.

As previously mentioned, UPPAAL STRATEGO is a tool that synthesizes strategies for
UPPAAL models. These models can, however, easily contain superfluous features. We
show that these features can decrease the quality of the synthesized strategies. Based on
this observation, we present the following problem statement:

How can preprocessing be used to alleviate model issues and thereby improve
the synthesis of strategies for Priced Timed Markov Decision Processes by
UPPAAL STRATEGO?

The contribution of this thesis is the demonstration of how existing preprocessing
techniques, FCBF and PCA, can be used to combat the data issues of feature irrelevance
and redundancy in UPPAAL models.

Experiments with the application of preprocessing show that, on specific models, the
synthesis of strategies can improve the resulting strategy performance and size. When the
models do not exhibit the data issues, experiments do not show degradation of strategy
performance and size with the application of preprocessing.

We start by presenting the problem domain of this thesis, UPPAAL STRATEGO and the
underlying automata theory, which we base our work on. After defining the above
problem, we go on to identify and describe feature irrelevance and redundancy as two
potential data issues in UPPAAL models. These issues guide us towards choosing PCA
and FCBF as preprocessing techniques. We then present the results of experiments,
demonstrating the applicability of our approach.

Although we have yet to evaluate our approach on other UPPAAL models, we believe
this preliminary work shows promising results. We expect further research in this topic
can yield even better results. We hope that our thesis will provide a basis for further
research on the topic, and that it will result in an improvement to UPPAAL STRATEGO.

59

9 Future Work
In this last chapter we will outline ideas that would be interesting to pursue in future
projects.

Alternative Discretization in FCBF In Section 5.4.2 we mention that in order to apply
FCBF in UPPAAL STRATEGO, we need to discretize the continuous labels and features, as
FCBF is only defined for classification problems. The discretization algorithm we use
is very simple, which may cause subpar performance of FCBF. A continuous version of
FCBF has been proposed [26], which applies a different discretization technique [27].
Future work should investigate what kind of other discretization techniques are suitable.

Testing on Real-world Models We have in this thesis only evaluated our solution on
two UPPAAL models. It would be interesting to evaluate the preprocessing algorithms on
additional models, preferably ones that are not explicitly constructed to showcase data
issues.

Other Data Issues The data issues that are considered in this thesis, were chosen as
the focus points, due to their presumed prevalence in UPPAAL models, but there are
plenty other issues of interest, that could be interesting to evaluate. Examples could be
multicollinearity or feature interaction.

Multicollinearity [28] is a general form of collinearity, where a feature is linearly
dependent on a combination of other features, such that:

c0 + c1 f1 + c2 f2 + ...+ cn fn + ε= 0

Where ci is a constant, fi is a feature, and ε is a small amount of noise. PCA is also
capable of reducing this kind of redundancy, so it would be interesting to test if the
current solution is sufficient.

Feature interaction [29]1 is the idea that features, which individually provide little
information, may provide a lot of information when together. The prime example is
when trying to learn the Boolean XOR operation XOR(A, B) = C . Neither A nor B have
any correlation with C , but together they enable a perfect prediction. This can sometimes
be an issue for feature selection methods such as FCBF, as they might discard useful
features based on their direct interaction with the label.

CombinationofPreprocessingMethods The experiments presented in Chapter 6 have
only tested each preprocessing method in isolation. It would be interesting to see how
they perform, combined. For example, PCA could be used to find the trend-line of a noisy
variable, and FCBF could then remove irrelevant features.

1Feature interaction is also known as attribute interaction

61

FUTUREWORK

Reduce Strategy Re-training In Learning Algorithm We currently re-train a strategy
on each iteration of the learning algorithm, as described in Section 5.4.3. This is done as
the dimensionality and meaning of the transformed data can change across iterations.
A better, more efficient method could detect when the dimensionality and meaning of
features has not changed significantly, such that the existing strategy can be improved,
instead of a new strategy being trained anew.

E�icient Implementation The current implementation of preprocessing is implemented
in Python, and is not designed to be efficient. Future work could re-implement the pre-
processing algorithms in C++, such that they can efficiently integrate with the existing
UPPAAL STRATEGO code.

62

Bibliography
[1] David, A., Jensen, P. G., Larsen, K. G., Mikučionis, M., and Taankvist, J. H., “Uppaal

stratego”, in Tools and Algorithms for the Construction and Analysis of Systems,
Baier, C. and Tinelli, C., Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2015,
pp. 206–211, ISBN: 978-3-662-46681-0.

[2] Behrmann, G., David, A., and Larsen, K. G., “A tutorial on UPPAAL”, in Formal
Methods for the Design of Real-Time Systems: 4th International School on Formal
Methods for the Design of Computer, Communication, and Software Systems, SFM-RT
2004, Bernardo, M. and Corradini, F., Eds., ser. LNCS, Citation is to the updated
version from November 28, 2006, Springer–Verlag, Nov. 2004, pp. 200–236.
[Online]. Available: http://www.it.uu.se/research/group/darts/uppaal/
documentation.shtml.

[3] David, A., Jensen, P. G., Larsen, K. G., Legay, A., Lime, D., Sørensen, M. G., and
Taankvist, J. H., “On time with minimal expected cost!”, in Automated Technology
for Verification and Analysis, Cassez, F. and Raskin, J.-F., Eds., Cham: Springer
International Publishing, 2014, pp. 129–145, ISBN: 978-3-319-11936-6.

[4] Cassez, F., David, A., Fleury, E., Larsen, K. G., and Lime, D., “Efficient on-the-fly
algorithms for the analysis of timed games”, in CONCUR 2005 – Concurrency
Theory, Abadi, M. and Alfaro, L. de, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 66–80, ISBN: 978-3-540-31934-4.

[5] Brihaye, T., Bruyère, V., and Raskin, J.-F., “On optimal timed strategies”, in Formal
Modeling and Analysis of Timed Systems, Pettersson, P. and Yi, W., Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 49–64, ISBN: 978-3-540-31616-
9.

[6] Jenkins, N., Burton, A., Sharpe, D., and Bossanyi, E., Wind Energy Handbook.
Wiley, 2001, ISBN: 0-4714-8997-2.

[7] Watkins, C. J. C. H. and Dayan, P., “Q-learning”, Machine Learning, vol. 8, no. 3,
pp. 279–292, May 1992, ISSN: 1573-0565. DOI: 10.1007/BF00992698.

[8] Strehl, A. L. and Littman, M. L., “An analysis of model-based interval estimation
for markov decision processes”, Journal of Computer and System Sciences, vol. 74,
no. 8, pp. 1309–1331, 2008, Learning Theory 2005, ISSN: 0022-0000. DOI: https:
//doi.org/10.1016/j.jcss.2007.08.009.

[9] Ladha, L. and Deepa, T., “Feature selection methods and algorithms”, in Interna-
tional Journal on Computer Science and Engineering (IJCSE), 2011.

63

http://www.it.uu.se/research/group/darts/uppaal/documentation.shtml
http://www.it.uu.se/research/group/darts/uppaal/documentation.shtml
https://doi.org/10.1007/BF00992698
https://doi.org/https://doi.org/10.1016/j.jcss.2007.08.009
https://doi.org/https://doi.org/10.1016/j.jcss.2007.08.009

BIBLIOGRAPHY

[10] John, G. H., Kohavi, R., and Pfleger, K., “Irrelevant features and the subset selection
problem”, in Proceedings of the Eleventh International Conference on International
Conference on Machine Learning, ser. ICML’94, New Brunswick, NJ, USA: Morgan
Kaufmann Publishers Inc., 1994, pp. 121–129, ISBN: 1-55860-335-2.

[11] Bishop, C. M., Pattern Recognition and Machine Learning. New York: Springer-Verlag
New York, 2006, ch. 12, ISBN: 978-0-387-31073-2.

[12] In, Data Mining (Third Edition), ser. The Morgan Kaufmann Series in Data Man-
agement Systems, Han, J., Kamber, M., and Pei, J., Eds., Third Edition, Boston:
Morgan Kaufmann, 2012, ISBN: 978-0-12-381479-1.

[13] Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R., Tang, J., and Liu, H., “Feature
selection: A data perspective”, English (US), ACM Computing Surveys, vol. 50,
no. 6, Dec. 2017, ISSN: 0360-0300. DOI: 10.1145/3136625.

[14] Guyon, I. and Elisseeff, A., “An introduction to feature extraction”, in Feature
Extraction: Foundations and Applications, Guyon, I., Nikravesh, M., Gunn, S., and
Zadeh, L. A., Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1–25,
ISBN: 978-3-540-35488-8. DOI: 10.1007/978-3-540-35488-8_1.

[15] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., “Learning internal repre-
sentations by error propagation”, in Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Volume 1: Foundations, Rumelhart, D. E. and
Mcclelland, J. L., Eds., Cambridge, MA: MIT Press, 1986, pp. 318–362.

[16] Murao, H. and Kitamura, S., “Q-learning with adaptive state segmentation (qlass)”,
in Computational Intelligence in Robotics and Automation, 1997. CIRA’97., Pro-
ceedings., 1997 IEEE International Symposium on, Jul. 1997, pp. 179–184. DOI:
10.1109/CIRA.1997.613856.

[17] Goldberger, J., Hinton, G. E., Roweis, S. T., and Salakhutdinov, R. R., “Neighbour-
hood components analysis”, in Advances in Neural Information Processing Systems
17, Saul, L. K., Weiss, Y., and Bottou, L., Eds., MIT Press, 2005, pp. 513–520.

[18] Sprague, N., “Basis iteration for reward based dimensionality reduction”, in 2007
IEEE 6th International Conference on Development and Learning, Jul. 2007, pp. 187–
192. DOI: 10.1109/DEVLRN.2007.4354032.

[19] Collins, M., Dasgupta, S., and Schapire, R. E., “A generalization of principal
component analysis to the exponential family”, in Proceedings of the 14th Interna-
tional Conference on Neural Information Processing Systems: Natural and Synthetic,
ser. NIPS’01, Vancouver, British Columbia, Canada: MIT Press, 2001, pp. 617–624.

[20] Roy, N. and Gordon, G., “Exponential family pca for belief compression in pomdps”,
in Proceedings of the 15th International Conference on Neural Information Processing
Systems, ser. NIPS’02, Cambridge, MA, USA: MIT Press, 2002, pp. 1667–1674.

[21] Jolliffe, I., Principal Component Analysis, ser. Springer Series in Statistics. Springer,
2002, ISBN: 9780387954424.

64

https://doi.org/10.1145/3136625
https://doi.org/10.1007/978-3-540-35488-8_1
https://doi.org/10.1109/CIRA.1997.613856
https://doi.org/10.1109/DEVLRN.2007.4354032

BIBLIOGRAPHY

[22] Scikit-learn. (May 2018). Decomposing signals in components (matrix factor-
ization problems), [Online]. Available: http://scikit-learn.org/stable/
modules/decomposition.html.

[23] Yu, L. and Liu, H., “Feature selection for high-dimensional data: A fast correlation-
based filter solution”, English (US), in Proceedings, Twentieth International Confer-
ence on Machine Learning, Fawcett, T. and Mishra, N., Eds., vol. 2, 2003, pp. 856–
863, ISBN: 1577351894.

[24] McGill, R., Tukey, J. W., and Larsen, W. A., “Variations of box plots”, The American
Statistician, vol. 32, no. 1, pp. 12–16, 1978, ISSN: 00031305.

[25] Hintze, J. L. and Nelson, R. D., “Violin plots: A box plot-density trace synergism”,
The American Statistician, vol. 52, no. 2, pp. 181–184, 1998. DOI: 10.1080/
00031305.1998.10480559.

[26] Kannan, S. S. and Ramaraj, N., “An improved correlation-based algorithm with
discretization for attribute reduction in data clustering”, Data Science Journal,
vol. 8, pp. 125–138, 2009. DOI: 10.2481/dsj.007-044.

[27] Tsai, C.-J., Lee, C.-I., and Yang, W.-P., “A discretization algorithm based on class-
attribute contingency coefficient”, Inf. Sci., vol. 178, no. 3, pp. 714–731, Feb. 2008,
ISSN: 0020-0255. DOI: 10.1016/j.ins.2007.09.004.

[28] Chatterjee, S. and Hadi, A. S., Regression Analysis by Example, 4th ed. John Wiley
& Sons, Inc., Hoboken, New Jersey, 2016, ch. 9: Analysis of Collinear Data, ISBN:
978-0-470-05545-8.

[29] Jakulin, A. and Bratko, I., “Analyzing attribute dependencies”, in Knowledge Dis-
covery in Databases: PKDD 2003, Lavrač, N., Gamberger, D., Todorovski, L., and
Blockeel, H., Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 229–
240, ISBN: 978-3-540-39804-2.

65

http://scikit-learn.org/stable/modules/decomposition.html
http://scikit-learn.org/stable/modules/decomposition.html
https://doi.org/10.1080/00031305.1998.10480559
https://doi.org/10.1080/00031305.1998.10480559
https://doi.org/10.2481/dsj.007-044
https://doi.org/10.1016/j.ins.2007.09.004

BIBLIOGRAPHY

66

A Experiment Figures
This appendix holds the remaining results from the experiments described in Chapter 6,
i.e. the ones with 25, and 100 runs. Apart from the differences in runs, the setup for all
three experiments are identical.

67

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps no scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

eps no scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

eps scale select perfect

Figure A.1: Expected Cost for redundancy experiment with manually selected perfect
features and runs set to 100

68

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

5.0

7.5

10.0

12.5

15.0

17.5

20.0

nu
m

Sp
lit

s
no eps no scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

5.0

7.5

10.0

12.5

15.0

17.5

20.0

nu
m

Sp
lit

s

eps no scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

5.0

7.5

10.0

12.5

15.0

17.5

20.0

nu
m

Sp
lit

s

no eps scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

5.0

7.5

10.0

12.5

15.0

17.5

20.0

nu
m

Sp
lit

s

eps scale select perfect

Figure A.2: Number of splits for redundancy experiment with manually selected perfect
features and runs set to 100

69

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps no scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

ex
pe

ct
ed

Co
st

eps no scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

70

75

80

85

ex
pe

ct
ed

Co
st

eps scale select wind

Figure A.3: Expected Cost for redundancy experiment with manually selected wind fea-
tures and runs set to 100

70

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

5

10

15

20

nu
m

Sp
lit

s
no eps no scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

100

200

300

400

500

600

nu
m

Sp
lit

s

eps no scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

nu
m

Sp
lit

s

no eps scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

100

200

300

400

nu
m

Sp
lit

s

eps scale select wind

Figure A.4: Number of splits for redundancy experiment with manually selected wind
features and runs set to 100

71

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps no scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

70.0

72.5

75.0

77.5

80.0

82.5

85.0

ex
pe

ct
ed

Co
st

eps no scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

65

70

75

80

85

ex
pe

ct
ed

Co
st

eps scale select noise

Figure A.5: Expected Cost for redundancy experiment with manually selected noise fea-
tures and runs set to 100

72

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

5

10

15

20

25
nu

m
Sp

lit
s

no eps no scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

100

200

300

400

500

nu
m

Sp
lit

s

eps no scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

5

10

15

20

nu
m

Sp
lit

s

no eps scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

100

200

300

400

500

nu
m

Sp
lit

s

eps scale select noise

Figure A.6: Number of splits for redundancy experiment with manually selected noise
features and runs set to 100

73

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

65

70

75

80

85

ex
pe

ct
ed

Co
st

no eps no scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

70

75

80

85

ex
pe

ct
ed

Co
st

eps no scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

65

70

75

80

85

ex
pe

ct
ed

Co
st

no eps scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

70

75

80

85

ex
pe

ct
ed

Co
st

eps scale select all

Figure A.7: Expected Cost for redundancy experiment with manually selected all features
and runs set to 100

74

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

250

500

750

1000

1250

1500

1750
nu

m
Sp

lit
s

no eps no scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

200

400

600

800

1000

1200

nu
m

Sp
lit

s

eps no scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

200

400

600

800

1000

1200

1400

nu
m

Sp
lit

s

no eps scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

250

500

750

1000

1250

1500

1750

nu
m

Sp
lit

s

eps scale select all

Figure A.8: Number of splits for redundancy experiment with manually selected all fea-
tures and runs set to 100

75

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps no scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

eps no scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

eps scale select perfect

Figure A.9: Expected Cost for redundancy experiment with manually selected perfect
features and runs set to 25

76

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

2

4

6

8

10

12

nu
m

Sp
lit

s
no eps no scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

2

4

6

8

10

12

nu
m

Sp
lit

s

eps no scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

2

4

6

8

10

12

nu
m

Sp
lit

s

no eps scale select perfect

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

2

4

6

8

10

12

nu
m

Sp
lit

s

eps scale select perfect

Figure A.10: Number of splits for redundancy experiment with manually selected perfect
features and runs set to 25

77

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps no scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

72

74

76

78

80

82

84

ex
pe

ct
ed

Co
st

eps no scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

ex
pe

ct
ed

Co
st

eps scale select wind

Figure A.11: Expected Cost for redundancy experiment with manually selected wind
features and runs set to 25

78

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

4

6

8

10

12

nu
m

Sp
lit

s
no eps no scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

50

100

150

200

nu
m

Sp
lit

s

eps no scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

4

6

8

10

12

nu
m

Sp
lit

s

no eps scale select wind

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

50

100

150

200

250

300

nu
m

Sp
lit

s

eps scale select wind

Figure A.12: Number of splits for redundancy experiment with manually selected wind
features and runs set to 25

79

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps no scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

74

76

78

80

82

84

ex
pe

ct
ed

Co
st

eps no scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

82.0

82.5

83.0

83.5

84.0

84.5

ex
pe

ct
ed

Co
st

no eps scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

ex
pe

ct
ed

Co
st

eps scale select noise

Figure A.13: Expected Cost for redundancy experiment with manually selected noise
features and runs set to 25

80

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

4

6

8

10

12

nu
m

Sp
lit

s
no eps no scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

20

40

60

80

100

120

140

nu
m

Sp
lit

s

eps no scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

4

6

8

10

12

nu
m

Sp
lit

s

no eps scale select noise

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

50

100

150

200

nu
m

Sp
lit

s

eps scale select noise

Figure A.14: Number of splits for redundancy experiment with manually selected noise
features and runs set to 25

81

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

70

75

80

85

ex
pe

ct
ed

Co
st

no eps no scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

70.0

72.5

75.0

77.5

80.0

82.5

85.0

ex
pe

ct
ed

Co
st

eps no scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

70

75

80

85

ex
pe

ct
ed

Co
st

no eps scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

ex
pe

ct
ed

Co
st

eps scale select all

FigureA.15:ExpectedCost for redundancy experimentwithmanually selected all features
and runs set to 25

82

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

100

200

300

nu
m

Sp
lit

s
no eps no scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

50

100

150

200

250

300

350

nu
m

Sp
lit

s

eps no scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

100

200

300

400

nu
m

Sp
lit

s

no eps scale select all

No
 preprocessing

Identity
 preprocessing

PCA FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

50

100

150

200

250

300

350

nu
m

Sp
lit

s

eps scale select all

Figure A.16: Number of splits for redundancy experiment with manually selected all
features and runs set to 25

83

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

45

50

55

60

65

70

75

80
ex

pe
ct

ed
Co

st

irrelevance select smart

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

55

60

65

70

75

80

ex
pe

ct
ed

Co
st

irrelevance select all

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

55

60

65

70

75

80

ex
pe

ct
ed

Co
st

extra irrelevance

Figure A.17: Experiment results for irrelevant features showing expected cost for runs set
to 100

84

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

100

200

300

400

500

600

700

800
nu

m
Sp

lit
s

irrelevance select smart

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

500

1000

1500

2000

2500

3000

3500

nu
m

Sp
lit

s

irrelevance select all

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

500

1000

1500

2000

2500

3000

3500

4000

nu
m

Sp
lit

s

extra irrelevance

Figure A.18: Experiment results for irrelevant features showing number of splits for runs
set to 100

85

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

55

60

65

70

75

80
ex

pe
ct

ed
Co

st

irrelevance select smart

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

55

60

65

70

75

80

ex
pe

ct
ed

Co
st

irrelevance select all

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

55

60

65

70

75

80

ex
pe

ct
ed

Co
st

extra irrelevance

Figure A.19: Experiment results for irrelevant features showing expected cost for runs set
to 25

86

EXPERIMENT FIGURES

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

25

50

75

100

125

150

175

200
nu

m
Sp

lit
s

irrelevance select smart

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

100

200

300

400

500

nu
m

Sp
lit

s

irrelevance select all

No
 preprocessing

Identity
 preprocessing

FCBF
 5 classes

FCBF
 10 classes

FCBF
 50 classes

0

200

400

600

800

1000

1200

1400

nu
m

Sp
lit

s

extra irrelevance

Figure A.20: Experiment results for irrelevant features showing number of splits for runs
set to 25

87

	Title Page
	Preface
	Reading Guide
	Contents
	1 Introduction
	2 Uppaal Stratego
	2.1 Timed Automata
	2.2 Timed Games
	2.3 Priced Timed Games
	2.4 Strategy Synthesis

	3 Problem Statement
	4 Data Issues
	4.1 Feature Irrelevance
	4.2 Feature Redundancy

	5 Preprocessing
	5.1 Categories of Preprocessing
	5.2 Related Work
	5.3 Preprocessing for Sub-Strategies
	5.4 Preprocessing Techniques
	5.4.1 Principal Component Analysis
	5.4.2 Fast Correlation Based Filter
	5.4.3 Integrating Preprocessing in Uppaal Stratego

	6 Experiments
	6.1 Evaluation Metrics
	6.2 Setup of Experiments
	6.3 Collinear Redundancy Experiment
	6.3.1 The Model
	6.3.2 Presentation of the Results

	6.4 Irrelevance Experiment
	6.4.1 The Model
	6.4.2 Evaluation of Results

	7 Discussion
	7.1 Results of the Experiments
	7.2 Relating the Results to the Problem Statement
	7.3 Remaining Concerns and Alternative Benefits

	8 Conclusion
	9 Future Work
	Bibliography
	Appendix A Experiment Figures

