
Scheduling Convoys of Nanosatellites

P10 Project
Group Deis108f18

Software
Aalborg University

Department of Computer Science
Software
Selma Lagerlöfs Vej 300
9220 Aalborg East
https://www.cs.aau.dk

Title:

Scheduling Convoys of Nanostellites
Project:

SW10 project

Project period:

1st February - 1st June

Project group:

Deis108f18

Members:

Oliver Brun Købsted

Anders Lykke Matthiassen

Jacob Nielsen

Supervisor:

René Rydhof Hansen

Isabella Kaufmann

Kim Guldstrand Larsen

Pages: 74
Appendices: 1
Ended: 1st June - 2018

Synopsis:

Increasing interest in observing Earth’s cli-
mate and air traffic have led companies to
explore the possibility of launching multi-
ple satellites into orbit to monitor this. It
is desired that these have the capability to
communicate with each other and stations
located on Earth.
This project aims to explore possibilities
for scheduling convoys consisting of multi-
ple satellites. With the use of UPPAAL-
CORA and SMC, we are able to produce
traces which can be used to create a sched-
ule for multiple satellites with some or all
of them sharing the same orbit. The deter-
ministic model, constructed in SMC, im-
plements a preemptive scheduler with a
simple dynamic prioritising.
In the process of creating and testing
the deterministic model, we explored lim-
itations of scheduling multiple satellites
which could be applied in the construc-
tion of a non-deterministic model. Such a
model was made in CORA. This model fa-
cilitates a VBP scheduler for determining
the tasks’ importance. Finally we evalu-
ated the two models based on their exper-
iments.

The content of the report is freely available, but publication(with source reference) may only take place in

agreement with the authors.

Summary

In this project we work with scheduling multiple satellites in convoys, using different
models to explore possible options for doing this. The purpose of the convoys is to make
the satellites cooperate in sending the most data to some stations on Earth, in a cost
efficient manner. This domain introduce different concepts such as;
Orbits — the direction and speed the satellites orbiting Earth. Windows of opportunity
— periods of time where a satellite is within range to send data to a station on Earth.
Tasks — there are different tasks with different restrictions such as whether or not the
satellite is in range of a station. Satellite orientation — the satellite may need to face a
specific direction to execute some tasks.

The possibilities explored are, constructing a deterministic model in SMC and a non-
deterministic one in CORA. The deterministic model was created first with focus on
the satellites and was made with a high level of detail i.e. incorporating the concepts
of windows of opportunity, a preemptive scheduler, internal communication between
neighbouring satellites, and satellite orientation.
Experimenting on the deterministic model showed which of the defined values and features
had the most significant impact on the computation time and schedule effectiveness.
Through this we found that slewing prior to performing a task may not be necessary
to include, as long as the time taken to do so is incorporated in the task’s execution
time. Additionally it was discovered that a preemptive scheduler is not necessarily the
best option for such a system.
With this information the non-deterministic model was constructed. As it was known
the state space for such a model would be significantly larger, compared to that of
the deterministic model, the scheduler was not made preemptive, and the concept of
orientation was excluded. The non-deterministic model focused more on the convoys than
the individual satellites.
Despite of the limitations, the non-deterministic model was not able to find the best trace
when attempting to generate one as long as the one the deterministic model was capable of
producing. However, through the experiments we found that further restricting the choices
that the non-deterministic model could make, it became capable of generating schedules
of lengths similar to that of the deterministic model. Restricting the model of course goes
against the non-determinism of the model, and makes CORA less effective. Despite of this,
it was possible to get close to similar results when relying on the implemented scheduling
method.

By constructing these models and experimenting on them, we finally determined that with
some modifications both methods may be viable for generating schedules for convoys of
satellites. However, we believe a better solution is to integrate the scheduling method from
the non-deterministic model into a deterministic model.

v

Preface

This report documents the work of three 10th semester Software Engineering students
during the spring of 2018. This report is part of the specialisation in the field Semantics
and Verification.

Citations are made in accordance with the Vancouver style, meaning they are indicated
by the use of numbers, and will look like: [1]. A complete list of cites is found in the
bibliography and the cites are ordered by when they appear in the report. Lastly, code
found in listings may look different from what is found in the implemented code. No
functionality has been changed, this is simply to make the code better presentable and
easy to read.

vii

Table of Contents

Summary v

Chapter 1 Introduction 1

Chapter 2 Analysis 3
2.1 Terminology . 3

2.1.1 Convoy . 3
2.1.2 SmallSats . 3
2.1.3 Orientation . 4
2.1.4 Station . 4
2.1.5 Offset . 4
2.1.6 Communication . 4

2.2 Orbit . 5
2.2.1 Orbit Types . 5
2.2.2 Orbit Shapes . 6
2.2.3 Coordinates . 7

2.3 Scheduling . 9
2.3.1 Preemptive Scheduling . 10
2.3.2 Choice of Scheduler . 12

2.4 UPPAAL Version . 12
2.4.1 UPPAAL . 12

Chapter 3 Deterministic Model 15
3.1 Scenario . 15
3.2 Scheduler . 16
3.3 The Deterministic Model . 17

3.3.1 Data Structures . 18
3.3.2 Satellite . 20
3.3.3 Scheduler . 20
3.3.4 Processor . 21

3.4 Experimenting with the Deterministic Model 24
3.4.1 Initial Configuration . 25
3.4.2 Experiment 1: Without Slew . 27
3.4.3 Experiment 2: No Slew with Increased Execution Time 28
3.4.4 Experiment 3: No Gather on Sat_1 30
3.4.5 Experiment 4: Double Deadline . 31
3.4.6 Experiment 5: No Preemption . 32
3.4.7 Experiment 6: No Preemption, No Queue 34
3.4.8 Experiment 7: Double Maximum Storage 35
3.4.9 Experiment 8: No Window Dependencies 36

ix

Deis108f18 Table of Contents

3.4.10 Experiment 9: Smaller Difference Between High and Low Thresholds 37
3.4.11 Experiment 10: Larger Difference Between High and Low Storage . . 38
3.4.12 Experiment 11: Double Priority for Non-internal Communication . . 39
3.4.13 Experiment 12: Double Priority for Internal Communication 39
3.4.14 Experiment 13: Finer Granularity on Suggestion-timer 40
3.4.15 Computation Time . 42

3.5 Conclusion . 42

Chapter 4 Non-deterministic Model 45
4.1 Scenario . 45
4.2 UPPAAL CORA . 46
4.3 CORA Model . 47

4.3.1 Overview . 47
4.3.2 Data Structure . 47
4.3.3 Suggestion and Assignment of Tasks 49

4.4 State Space Concerns . 53
4.5 Experimenting with the Non-deterministic Model 55

4.5.1 Initial Configuration . 55
4.5.2 Experiment 1: Finer Granularity of Scoring 56
4.5.3 Experiment 2: Double Satellites in All Convoys 57
4.5.4 Experiment 3: Adding a Convoy . 57
4.5.5 Experiment 4: Different Task Execution Time 59
4.5.6 Experiment 5: Removing Constraints 59
4.5.7 Experiment 6: Increase Windows’ Span 60
4.5.8 Experiment 7: Decrease Windows’ Span 61
4.5.9 Experiment 8: Increase Threshold for Convoys 61
4.5.10 Experiment 9: Decrease Threshold for Convoy 63
4.5.11 Experiment 10: Increase Threshold for Stations 63
4.5.12 Schedule Length Experiment . 64

4.6 Conclusion for Experiments . 65

Chapter 5 Discussion 67
5.1 Task Suggestion . 67
5.2 VBP in the Deterministic Model . 67
5.3 Non-Deterministic Base Case . 67
5.4 VBP . 68
5.5 Windows . 68
5.6 Schedule . 69
5.7 Satellite Offset Strategies . 69
5.8 Predicting Storage Level . 69
5.9 Dynamic Execution Time For Tasks . 70
5.10 Predicting Windows . 70
5.11 Include Schedule in Model . 70

Chapter 6 Conclusion 71

Chapter 7 Future Work 73

x

Table of Contents Aalborg University

7.1 Change of Vision . 73
7.2 Disregard Delayed Tasks . 73
7.3 UPPAAL Stratego . 73

List of Figures 75

List of Tables 75

Appendix A Deterministic Model 79

xi

Introduction 1
Increasing interest in observation of Earth’s climate and traffic have led to an increase in
the number of satellites orbiting Earth. National Aeronautics and Space Administration
(NASA) is currently in the process of developing and deploying nanosatellites to monitor
Earth’s climate, the project is called Time-Resolved Observations of Precipitation structure
and storm Intensity with Constellation of Smallsats (TROPICS). NASA plans to launch
12 nanosatellites into three different orbits between 2018 and 2019 to monitor weather.
This project span from 2016 with their initial research till 2021 with their final report [1].

We have previously explored a method for automating the generation and construction of
schedules for nanosatellites in collaboration with GomSpace [2]. In the method, a single
satellite was modelled with a considerable focus on optimising the use of the satellite’s
battery. After the model was finished and the method was presented to the collaborators
of the project, a new problem was presented. It has been expressed by GomSpace that the
problem of scheduling multiple satellites that are working in conjunction is of significant
interest as it is what they are currently working with [3].
The direction for this project will be to present multiple methods that utilises model
checking in order to construct schedules for groups or convoys of satellites. The satellites
will need to be able to communicate with other satellites within a convoy and with other
convoys. They will also be able to communicate with some stations that are located on
Earth. When the satellites communicate with the stations there is an associated cost with
sending data, meaning that the satellite owners will need to pay some amount per Mb
transferred [3]. It will be relevant to include this when making a schedule in order to try
and minimise the expenses associated with data transfer wile still being able to send the
collected data.
Some other factors that are relevant for a satellite will also be considered in this project:

1. Satellite storage capacity
2. Some inclusion of a non perfect orbit
3. The satellite’s orientation

Because we were able to conclude, in our previous work, that the risk of draining the
battery completely was not of concern, the satellites’ batteries will not be monitored in
this project [2].

To the best of our and our collaborators knowledge, there is no tool for scheduling multiple
satellites that are communicating internally, using the same orbit, and are communicating
with other convoys of satellites in other orbits [3].
In this project, with the help of model checking, we will further explore the domain of
automated scheduling for such systems. We will do so by constructing multiple models

1

Deis108f18 1. Introduction

that utilises different strategies in order to solve the problem.

Problem statement How can different forms of model checking be applied to generating
a schedule for multiple satellites in a convoy, and how does such methods compare against
each other?

2

Analysis 2
We have studied various terms and properties related to satellites in order to identify what
is important to take into consideration when creating a model that represents convoys of
satellites. This chapter will cover common terminology and introduce concepts that will
be relevant for the modelling.

2.1 Terminology

In this section we will define some of the therms introduced previously. This includes a
definition of what a satellite is, what a satellites orientation is, and what a station is.

2.1.1 Convoy

A convoy in this context is a set of satellites that follows the same orbit and are able to
communicate internally. It is also possible for one convoy to communicate with another
convoy whenever two or more satellites from the convoys are close enough. We call this a
cross convoy communication opportunity and the most common case that allows for this
communication is when two or more satellites’ orbits cross each other.

2.1.2 SmallSats

A satellite is a physical object revolving around a celestial body, in this scenario Earth.
Man made satellites can be categorised by their weight and/or by their hardware
specification. This section serves to briefly detail what type of satellite/hardware that
will be modelled.

Types of Satellites

SmallSats can be divided into five types of categories depending on their weight. They
range from 180 kg down to 0.001 kg. The first category minisatellite houses satellites
weighting between 100–180 kg, following that is microsatellite weighting 10-100 kg and
nanosatellite ranging from 1–10 kg. Finally we have picosatellite and femtosatellite which
ranges from 0.01–1 kg and 0.001–0.01 kg respectively [4].

The satellites used in TROPICS and GomX-3 case study [5] both operate under the
nanosatellite category. These are restricted in their resources such as storage capacity
and processors, and this should be reflected in the model.

3

Deis108f18 2. Analysis

Hardware specification

Given TROPICS relative detailed hardware description it will serve as our hardware
specification in order to make a realistic model. MicroMAS-2 CubeSat is the name of
the nanosatellites used in TROPICS, they are equipped with solar panels, radio, battery,
and an antenna [1]. Given that it has a radio and an antenna indicate that a satellite will
be able to receive and send data concurrently.

2.1.3 Orientation

The satellite’s orientation is necessary to consider when executing different tasks, and
is therefore a relevant factor to include when constructing schedules for satellites. The
orientation is important as the radio or antenna must be pointed in the direction of where
another communication partner is at [6]. In addition, correcting the orientation will require
the satellite to slew, prior to performing the planed task. As performing the slew may take
some time, this should also be accounted for.

2.1.4 Station

A station is defined by a set of properties: location, antenna/signal strength, and taxation.
Location consists of a longitude and latitude coordinates to determine where on Earth’s
surface the station is located, this is measured in relation to Earth’s sea level. Antenna
strength indicates how far the station is able to pick up transmissions, it will not take
mountains or any other obstacles into consideration meaning that if the property is set to
10 km radius it is perfectly circular coverage with no interference.
Section 2.2 describes how a satellite may communicate with a station in more details.
Taxation is a price that describes the bandwidth cost when data is either send to or from
the station. The taxation property makes it so that some stations may be more attractive
to use than others, due to their lower cost of usage [3].

2.1.5 Offset

We assume that a convoy consist of multiple satellites, following the same orbit, but with
a different offset. This can be imagined as the first satellite being deployed one minute
before the next. The consequence of offsets is that it will cause the satellites to reach
stations and other windows at different times.

2.1.6 Communication

Internal communication is in this context defined as a transfer of data occurring between
two or more satellites within the same convoy.
External communication is defined as communication to anything outside of the convoy,
involving at least one satellite from within the convoy. External communication ca be made
with stations, other convoys, or even some 3rd party satellites.

4

2.2. Orbit Aalborg University

2.2 Orbit

In prior research, tasks a satellite could execute were restricted by making them dependant
on windows which opened and closed according to the satellite’s position in its orbit. This
has previously been implemented [2], however the implementation was simplistic as the
satellite was assumed to follow a perfectly circular orbit and therefore inaccurate compared
to realistic orbits. Real orbits change over time as they are oval, to some degree, and the
Earth’s rotation also affect which parts of the surface that the satellite flies above.
The approach has been changed for this report, with the purpose of making it more realistic.
To better capture when a satellite is able to transmit its data to stations, several variables
must be known; the trajectory of the satellite, and the stations’ location on Earth, and
their signal strength.
A satellite is only able to communicate with a station when they are in close proximity
of one another. To determine whether they are close enough to communicate, a distance
is calculated using the longitude and latitude of the satellite and the station. If this
distance between the satellite and the station is within the station’s signal radius, the
two are considered to be close enough for communication. This is not a flawless approach
as there are some inaccuracies, especially with orbits that are oval. The satellites will
traverse Earth’s surface faster the closer they are, which means that their coordinates will
change faster/slower depending on their position in the orbit. This might be a problem
if a station’s equipment is not strong enough to communicate with the satellites if their
altitude is too high. We assume that all of the stations that are defined as applicable
for receiving and/or sending data has equipment that is powerful enough to communicate
with the satellites, regardless of their altitude.

2.2.1 Orbit Types

There exist different types of orbits which defines how a satellite revolve around its celestial
body, in this case Earth. These may differ in distance to the surface, and objective of the
orbit.

The common orbit types we will describe is in the list below: [7, 8]

• Low Earth Orbit (LEO) is specified by often having an orbit time of 90 minutes as
the velocity of the satellite is very high, which is required as its altitude is lower
than most other orbit types, typically resulting in the satellite orbiting 200 – 1200
kilometres above Earth.

• Sun-synchronous orbit revolves about every 90 minutes, and the orbit comes close to
the poles. The satellite is always in the sun when it orbits Earth.

• Geosynchronous orbit is characterised with the satellite having an one day length
revolution, meaning that the difference in Earth’s and the satellite’s latitude is close
to being constant

– Geostationary orbit is a sub category, similar to the previous mentioned orbit,
and has a revolution equal to a day’s length, additionally it maintains the
latitude and longitude difference such that it becomes stationary above a point
on Earth. Geostationary orbits are only achievable if the orbit is placed at
Earth’s equator.

5

Deis108f18 2. Analysis

2.2.2 Orbit Shapes

Most of the orbit types can use one, or both, of the two orbit shapes, circular or ecliptic.
The circular orbit has a constant altitude where the elliptic orbit changes the distance to
Earth.

To launch a satellite into any orbit a certain speed and acceleration is required, Figure 2.1
shows a satellite in a circular orbit around Earth along with the necessary factors that
impacts the satellite’s motion. Equations for calculating the speed and acceleration
required to stay in a circular orbit can be seen in Equation (2.1). These calculations
uses the gravitational pull (g), Earth’s mass (m), and the satellite’s orbit radius o) [9].

Figure 2.1: Satellite with a circular orbit [10]

An example calculation of a LEO with an orbit height of 160 kilometres can be seen
in Equation (2.2). g is Newton’s universal gravitation constant (6.673 ∗ 10−11), m is
5.98 ∗ 1024 and o is Earth’s radius plus the height of the orbit from Earth’s surface in
metres ((6.37 ∗ 106) + 160000).

speed =

√
g ·m
o

acceleration =
g ·m
o2

(2.1)

speed =
√

(6.673·10−11)·(5.98·1024)
(6.37·106)+160000

= 7817.26m/s

acceleration = (6.673·10−11)·(5.98·1024)
((6.37·106)+160000)2

= 9.358m/s
(2.2)

Equation (2.3) shows the calculation for finding the time it takes to make a revolution in a
circular orbit, this equation uses orbital height, gravitational pull and Earth’s mass along

6

2.2. Orbit Aalborg University

with some other constants. In Equation (2.4) the calculation for the previous example is
used to calculate one revolution at the height of 160 kilometres, which results in a duration
of 87.47 minutes.

revolution =

√
4 · π2 · o3
g ·m

(2.3)

revolution =
√

4·(3.1415)2·((6.37·106)+160000)3

(6.673·10−11)·(6.37·106) = 5248.54 seconds = 87.47minutes (2.4)

A problem with circular orbits is that they are difficult to maintain. For example, other
celestial bodies than Earth will have a gravitational pull on the satellite which will influence
its orbit. Elliptic orbits are more common and an orbit of this type can be seen in
Figure 2.2. Two new terms are introduced with this orbit, periapsis and apoapsis. Periapsis
is a point in the orbit where the satellite is closest to the Earth, where apoapsis denote
the otbit’s furthest point from Earth. The new terms can also be used to define a circular
orbit, by having apoapsis equal to periapsis.

Figure 2.2: Satellite in an elliptic orbit around Earth [10]

This conclude the most common types of orbit shapes that satellites follows. For the rest
of this report the elliptic LEO will be used as we find it the most relevant to work with.

2.2.3 Coordinates

The satellites in the convoys will gather data which they will need to send to the stations
on Earth. Given that a satellite is not always within reach of a station, the concept of
windows of opportunities emerges, as a satellite may only perform certain task when it
is within a window. To calculate the position of a satellite in correlation to Earth, the
orbit for the satellite must be known, along with its starting position and Earth’s current

7

Deis108f18 2. Analysis

rotation. When these variables are known, it is possible to calculate how far a satellite has
moved and how much Earth has rotated after a given duration. This information makes it
possible to project the satellite’s position down on Earth’s surface, thereby obtaining the
longitude and latitude coordinates. These coordinates can then be used to calculate the
distance to nearby stations of which their longitude and latitude are already known [11].

Two-line element set (TLE) is a data format used to calculate the position of a satellite in
orbit projected on Earth. In Table 2.1 and Table 2.2 a description for each of the fields in
the data format can be seen. The fields that have an effect on the result are fields 7 ,8 ,11
on TLE line one, and 3–6, 8 on TLE line two [12].

Field Characters Description
1 1–1 Line number
2 3–7 Satellite number
3 8–8 Classification
4 10–11 International Designator (Last two digits of launch year)
5 12–14 International Designator (Launch number of the year)
6 15–17 International Designator (piece of the launch)
7 19–20 Epoch Year (last two digits of year)
8 21–32 Epoch (day of the year and fractional portion of the day)
9 34–43 First Time Derivative of the Mean Motion divided by two
10 45–52 Second Time Derivative of Mean Motion divided by six
11 54–61 BSTAR drag term
12 63–63 The number 0
13 65–68 Element set number. Incremented when a new TLE is generated for this object
14 69–69 Checksum

Table 2.1: TLE line one. The important fields are marked in bold.

Field Characters Description
1 1–1 Line number
2 3–7 Satellite number
3 9–16 Inclination (degrees)
4 18–25 Right ascension of the ascending node (degrees)
5 27–33 Eccentricity
6 35–42 Argument of perigee (degrees)
7 44–51 Mean Anomaly (degrees)
8 53–63 Mean Motion (revolutions per day)
9 64–68 Revolution number at epoch
10 69–69 Checksum

Table 2.2: TLE line two. The important fields are marked in bold.

As mentioned earlier, it is necessary to know how many degrees Earth have rotated in its
current cycle, this information is used as a part of the TLE, specifically in field 7 and 8 in
Table 2.1. The rotation us used to define the year, day in this year, and time of the day.
Field 11 describes the drag coefficient for the satellite.
TLE line two introduces a few new terms [12]:

• Inclination describes the angle of the orbit, where a 0 degree inclination results in
an orbit orbiting Earth’s equator and 90 degrees result in an orbit around the poles

8

2.3. Scheduling Aalborg University

• Right ascension of the ascending node (RAAN) is an offset for the orbit in relation
to the poles

• Eccentricity describe the orbit’s form, the value goes from 0 to 1, where 0 is circular
and anything else is elliptic

• Argument of perigee is also an offset in degrees from RAAN
• Mean motion defines how many revolutions the satellite makes per day

By setting these parameters it is possible to calculate the longitude and latitude coordinates
for the satellite. Listing 2.1 shows the script we have constructed to generate the longitude
and latitude coordinates. Line 9 and 10 in the script constructs the TLE sets with the
function construct_line_one and construct_line_two that is supplied with the relevant
parameters as described above. Line 13–14 computes the latitude and longitude based on
the supplied parameters, afterwards there is a conditional statement to add the variable
long correctly, lastly long and lat is appended as a set to the LL list. The list is the final
output and contains all the longitude and latitude coordinates for every minute of the
schedule.

1 def generate_data(schedule_length):
2 LL = []
3 date = datetime.datetime (2018 , 3, 7, 9, 40, 39)
4 print(date)
5 for x in range(0, schedule_length , 1):
6 day_of_year = date.timetuple ().tm_yday + (date.hour + ((date.minute

+ x) / 60)) / 24
7 date_only = str(date).split(" ")[0]. replace ("-", "/")
8 date_year = str(date).split ("-")[0]
9 line1 = construct_line_one(str(date_year)[2:], day_of_year)

10 line2 = construct_line_two ("50.0000" , "020.519" , "0020247" ,
"81.2115" , "279.186" , "16.30050059" , "00000")

11 tle = ephem.readtle (" OrbitName", line1 , line2)
12 tle.compute(date_only)
13 lat = float(str(tle.sublat).split (":") [-3]) + float(str(tle.sublat)

.split (":") [-2]) / 60 + float(str(tle.sublat).split (":") [-1]) /
(60 * 60)

14 long = float(str(tle.sublong).split (":") [-3])
15 if long < 0:
16 long += (float(str(tle.sublong).split (":") [-2]) / 60 + float(

str(tle.sublong).split (":") [-1]) / (60 * 60)) * -1
17 else:
18 long += float(str(tle.sublong).split (":") [-2]) / 60 + float(str

(tle.sublong).split (":") [-1]) / (60 * 60)
19 LL.append ([long , lat])

Listing 2.1: Generating longitude and latitude from TLE set

With the knowledge of where the satellite is at any given time, it is now possible to calculate
the distance to the stations for a given point in time. A list for each satellite is produced,
and contains information about when the satellites are able to communicate with one or
more of the stations [13].

2.3 Scheduling

In this section we will explore different scheduling strategies. First an overview of some
scheduling methods then a look at preemptive scheduling along with some of its drawbacks.

9

Deis108f18 2. Analysis

The most important responsibility of a scheduler is to avoid starvation i.e. one or more
tasks are continuously prevented from finishing. Fairness it is the promise that all tasks
will get to run and finish at some point. Considering different scheduling methods will
help us to delimit scheduling options when constructing the models.

• First In, First Out (FIFO): The first task to request a resource gets it. If another
task requests it before the first finishes, the other task will be queued and run as the
next task. This means that FIFO fulfils the fairness property, as all tasks gets to
run.

• Round Robin (RR): Cycles through the set of tasks allowing all tasks to be run an
equal amount of times. This means that RR is a fair scheduler.

• Priority scheduling is divided into two categories Fixed Priority (FP) and Dynamic
Priority (DP). Many priority based scheduling algorithms have the priorities tied to
different attribute. A task’s priority describes the importance of the task. Priority
scheduling in itself does not guarantee fairness.

– FP: All tasks have a predefined and never-changing priority. When a task
finishes the next task to be started is the one with the highest priority that is
available and ready.

– DP: All tasks are prioritised, but unlike FP the priority may change based on
the state of the system. This may be tied to some value such as, when the task
was last executed.

• Shortest Remaining Time first (SRF): Is a DP scheduling method, where the priority
is the remaining execution time. The general idea is that the queue is sorted by
remaining execution time, starting with the one that will finish first. A scenario may
be that we want to complete as many tasks as possible in the shortest amount of
time. In this case SRF is very effective as it will always start the task that has the
shortest execution time. However, SRF does not guarantee fairness.

Non-preemptive schedulers do not allow one task to take hold of the CPU if it is already
being used by another task. This can be problematic as some tasks take a large amount
of time to finish. Because of our earlier research, we have chosen to look into preemptive
scheduling as it might be helpful when working with tasks that may only be executed at
certain time intervals. [2]

2.3.1 Preemptive Scheduling

A preemptive scheduler is able to pause the active task and have a more urgent or impor-
tant one take over.Consider the set of tasks presented in Table 2.3.

Task ID Warm-up time Execution Interval Priority
0 3 3 20 3
1 4 6 20 2
2 2 4 20 1
3 0 8 30 0

Table 2.3: Set of tasks used in Table 2.5

10

2.3. Scheduling Aalborg University

Here a task has been described with a number of attributes;

• Task ID — an identifier for the task
• Warm-up time — initial delay for the task i.e. the time before the task becomes

ready
• Execution — the time required to complete the task
• Interval — how often the task should be executed
• Priority — describes the importance of a task

Table 2.4 illustrates what would happen without preemption. In this example, task 0 is
started at time 0 and is continued until it is complete, even though other tasks of higher
priority becomes available. In this case, task 2 does not finish within its interval of 20 time
units.

Time 0–8 8–11 11–17 17–21
Task 3 0 1 2

Table 2.4: Scheduler showing which task is being processed by a single core CPU

An example of the use of preemption can be seen in Table 2.5. In this task 3 is the first
one to be executed as it has no warm-up time, but is preempted by task 2 after two time
units, which then itself gets preempted by task 0 after one additional time unit. After
task 0 has finished task 1 is then started and finishes without being preempted further.
Thereafter task 2 and then task 3 finishes. Then a small waiting period appears where no
task is active.
The example shows how preemption can be very useful as it allows all tasks to continuously
finish within their respective interval.

Time [0–2) [2–3) [3–6) [6–12) [12–15) [15–21) [21–22) [22–23) [23–26)
Task 3 2 0 1 2 3 - 2 0
Time [26–32) [32–35) [35–42) [42–43) [43–46) [46–52) [52–55) [55–56) [56–62)
Task 1 2 3 2 0 1 2 3 –

Table 2.5: Schedule showing which task is being processed by a single core CPU with
preemption

Starvation among a set of tasks can be avoided by tweaking the intervals of each task, e.g.
by increasing the interval of all tasks such that all of them can be completed. However,
this it is not always possible to just increase or decrease the interval, especially not if they
are bound by other resources that requires the task to be run at a specific interval.

Other ways of avoiding starvation is to use priority- boosting or inheritance. Priority
inheritance increases the priority of a task when another task tries to preempt it, so that
it can finish its critical section before giving up control of the shared resource. Priority
boosting works by boosting a task’s priority when it takes hold of a shared resource, the
priority is sat to the highest priority of all the tasks that share the resource [14].

If a preemptive SRF is used it will keep track of how much time it has already spent
on a task if the task gets preempted. This means that if a task with a long execution

11

Deis108f18 2. Analysis

time is executed, it will typically be preempted a number of times, but as it progresses its
remaining execution time will be shorter thereby increasing its priority which results in it
getting preempted less [14].

No strategy is necessarily better then the others even with or without preemption.
However, in most cases some tasks needs to be executed more often than others. This
often leads to a scheduler that utilises preemption, such that the more important tasks
can be executed within their interval.

2.3.2 Choice of Scheduler

For this project we will be using a preemtive scheduler with DPs. The reason for using a
preemptive scheduler is that some tasks, such as sending data to Earth, are restricted to
being executed only when the satellite is in close proximity to one or more stations that
is accepting data. Because of this it should be possible to pause the active task and start
the more restricted one.
Using a DP scheduler allows for modified priorities dependant on the state of the system.
This may be relevant in situations where there are no more storage available for storing
data, as this would make data collection tasks pointless.

2.4 UPPAAL Version

As previously mentioned a model for generating a schedule for a single nanosatellite has
been made [2]. For this UPPAAL Cost Optimal Reachability Analysis (CORA) were used,
in conjunction with UPPAAL Statistical Model Checking (SMC). In this project we will
explore the possibility of generating a schedule for a convoy of multiple satellites at once.
We believe that modelling multiple satellites at once will cause a significant increase in
the state space and we will therefore need to make choices to accommodate this. For the
first part we will make a deterministic model, as it will allow for a larger implementation
at limited effect to the state space. The model is deterministic as there will never be more
than one choice when the model has to select a transition or delay.

2.4.1 UPPAAL

A UPPAAL model consists of one or more templates and some global decelerations. Each
template may have its own private decelerations that is inaccessible for other templates.
Figure 2.3 is an example of a template that consists of three locations and two edges.

One of the locations in a template must be initial in order to define the starting state.
In addition a location can be marked as urgent or committed, which means that time
is not allowed to pass while the location is active i.e. while the location is part of the
current state. The difference between urgent and committed is that committed locations
are prioritised, meaning that the next transition taken must include taking at least one
edge going from a committed location. Locations can be named and have an invariant
assigned. A location’s invariant must be evaluated to true, before a transition can activate
it, and for all time where the location remains active. Invariants are coloured magenta.

12

2.4. UPPAAL Version Aalborg University

Besides the locations and local declarations, templates also consists of edges that connects
the locations. An edge may have a guard, select, synchronisation, and/or update
statement. Guards are boolean repressions that ensure that an edge is not taken
prematurely, and are coloured green. Selects are used for capturing temporary variables,
and are coloured yellow. Synchronisations are used for simultaneously activation of edges
across multiple templates, and are coloured light blue. Synchronisations are suffixed
with an exclamation mark if it is used to call the synchronisation, as opposed to a question
mark for those that are receiving. Updates are used to update variables and to call either
global or local defined functions, and are coloured dark blue.

An important part of UPPAAL, is the ability to formulate and ask queries that can test
if some properties are upheld, such as; is it possible to reach a certain location, and is it
possible to do so within a given time frame.

∪
Location A

Location B
x <= myLimit Location C

setVariables() a: int[0,N-1]
everythingIsGood()

ready!
changeValue(), myVar = a

Figure 2.3: Example UPPAAL template

13

Deterministic Model 3
In this chapter we will explore the scheduling problems that are associated with satellites
communicating with other satellites within a convoy and with one or more stations. A
possible solution will be presented and designed in the form of a UPPAAL SMC model
which will be benchmarked and experimented on in order to test the scalability and
feasibility thereof.

3.1 Scenario

In this section, we will explore a model that modules each satellite within a single convoy
individually. The convoy’s satellites all follow the same orbit around Earth, and are able
to communicate with a specified number of stations, as seen in Figure 3.1. The primary
objective of the satellites is to collect and transfer data to the stations on Earth. A satellite
can have up to three objectives (i) gather data (ii) transfer data to another satellite (iii)
send data to one of the stations. Additionally each satellite has a memory storage unit
with a maximum capacity which should be considered along with the satellite’s orientation
as some tasks may require the satellite to either face Earth or another satellite.

We would like to build a model that can test a simple strategy for collecting and transferring
data between satellites within a convoy and the various stations. The model should be
constructed such that a schedule can be produced which describes what the individual
satellites does for the duration of the schedule.
We will test if it is feasible to generate a schedule for such a system, the feasibility is
measured in how many satellites that can be added, and in how long it takes to generate a
schedule of a certain duration. In this scenario a convoy is expected to contain ≈ 30− 40

satellites [6].

When testing the feasibility, additional information will be collected in order to determine
which factors have the largest impact on the performance of the model.

Throughout the rest of this chapter we will describe the elements that goes into this
scenario. Thereafter an implementation of the system will be described and lastly a
comparison of what factors contributes most significantly in regards to; time taken
to generate a schedule, payload efficiency, the amount of data transferred, and the
accumulated taxation of transferring data to Earth.

15

Deis108f18 3. Deterministic Model

6000 4000 2000 0 2000 4000 6000

6000
4000

2000
0

2000
4000

6000

6000

4000

2000

0

2000

4000

6000

Satellite#gat
Satellite#relay

Satellite#sendSatellite#send

Station#1

Station#2

Station#3

Figure 3.1: Three satellites orbiting Earth with three stations

3.2 Scheduler

As concluded in Section 2.3 we will be using a preemptive scheduler with DP. This section
will describe how such a scheduler can be designed.

All tasks have been given a base priority which will change during simulation. The
priorities will be tied to the satellite’s current storage level. Thresholds that describe
when the satellite is at high or low storage capacity have been defined in order to change
the priorities.
In scenarios where the satellite is at high storage the priority of all tasks which allow it to
remove data is multiplied by two. Likewise when at low storage tasks that allow for the
satellite to accumulate data are multiplied by two.
To further change the priorities based on the current storage, tasks that accumulate data
will have a priority of zero when the satellite is at maximum storage. Similarly, when the
satellite has no data, tasks that remove data will be at zero priority.
When a task is completed its priority is reset to its original value. Additionally, when a
task is completed, all other tasks that have a priority of zero is also reset to their original
value. This is done in order to regularly re-evaluate the priority of the different tasks.

In order for a task to be preempted, another task of higher priority needs to be available.
When a task is preempted, the priority of the preempted task will increase to match that
of the preempting task. In this way the preempted task has a higher chance of finishing
afterwards, while not being increased so much that it takes back control right away.
In order to resume a preempted task it must be checked if the task can still finish within
its deadline. Also if it is needed that the satellite is within range of a station, the task

16

3.3. The Deterministic Model Aalborg University

must be able to finish before the station is out of reach.

3.3 The Deterministic Model

A model has been created with the goal of testing a simple strategy for collecting and
transferring data between satellites within a convoy and the various stations. The satellites
are modelled individually within a single convoy and a simple one-way communication
system has been implemented that allows the satellites to communicate internally within
the convoy.

The model consists of 4 different templates:

• Scheduler
• Processor
• Satellite
• CheckRunnable

The Scheduler, Processor, and Satellite templates are instantiated once for every satellite.
The CheckRunnable template is a singleton that is used whenever a satellite has to check
which of its tasks is currently available to be executed. This is done by checking if the
satellite is close to a station if this is required, and whether or not the task can finish
before this is no longer the case.

Free Is
runnable?

Is
oriented?

Queue
empty?

SlewingRunningEnqueue newNew has
priority?

Boost
Requeue
Save

Is new
runnable?

Task
SugestionYes Yes

No

Orient

Yes

Task
Sugestion

Yes

No

No

No, Run Old

No, Run Old

Done / Deadline

Figure 3.2: Simplified representation of the deterministic model with Free as the initial
state

The Scheduler template maintains a queue of tasks and makes decisions on which task
should be executed, either by modifying the queue or by preempting the current task.

17

Deis108f18 3. Deterministic Model

Additionally, it is responsible for initialising the communication with another satellite
whenever an internal communication task is to be executed.
The Processor template is waiting for synchronisations that the Scheduler and Satellite
template is initiating as these synchronisations dictate when a task should be started,
preempted, aborted due to internal communication failures, or when to stop slewing. It is
responsible for monitoring the execution times of the tasks such that it may report when
a task is completed or aborted due to a deadline violation. The Processor template will
additionally modify the priority of tasks whenever they are preempted.
The Satellite template’s primary objective is to suggest tasks that the scheduler should
enqueue. When doing so it may modify the priority of tasks based on the satellite’s current
storage level. Also, the template will slew the satellite whenever the orientation does not
match that required to execute the current task.

A simplified representation of the model can be seen in Figure 3.2. The figure leaves
out some intermediate states and checks which are not necessary to include in order to
illustrate the general flow and logic of the model. The actual model templates can be
found in Appendix A.

3.3.1 Data Structures

Two structures, TaskDescription and SatDescription, have been defined in order to
describe the tasks and satellites. Listing 3.1 shows the TaskDescription struct which
contains the information used for describing a task.

1 /** Task Description */
2 typedef struct {
3 bool depend_station[STATIONS];
4 int execution_time;
5 int deadline;
6 int prio;
7 int data_rate;
8 int orientation;
9 } TaskDescription;

Listing 3.1: TaskDescription struct

• depend_station[STATIONS] is used to restrict the task such that it may only be
executed when inside range of the specified stations. The field is an array where
each index corresponds to a station, and a true value means that the task may only
be executed when within reach of that station. If more than one station is selected,
the task may be executed when any of these stations are within reach. STATIONS is
the total number of stations.

• execution_time is the time it takes to complete the task
• deadline is the maximum duration a task can stay active before it is aborted
• prio is the initial priority of the task. When the Scheduler template is ordering its

queue of tasks, it is doing so based on what it is able to start and what task has the
highest priority. The priority of a queued task can be modified in various ways.

• data_rate is a value that specifies the change in memory per time unit it is executed.
Tasks that collects data has a positive rate while tasks that sends data has a negative
rate. A value of 0 indicates that it has no effect on the memory.

18

3.3. The Deterministic Model Aalborg University

• orientation symbolises that the satellite must point its antenna in a certain
direction. For example, in order to send data to a station the satellite must point its
antenna towards Earth. A value of -1 signifies that the task is not restricted by the
orientation of the satellite.

The model is made under the assumption that a satellite that is receiving data from another
satellite, will never abort the task due to an exceeded deadline. The model will not handle
that case and it should therefore be avoided as the transferring satellite will not be notified.
The receive task should therefore be defined with a deadline that provides enough time
for the worst case slewing time, and the execution time of the task. The transferee will be
notified in case that the receiver will be preempted.

The defined tasks in the model uses these values for the orientation variable:

• 0 — forward
• 1 — Earth
• 2 — backwards

Forward means that the satellite is facing in the same direction as it is moving in the
orbit. Earth means that the satellite is pointing towards Earth. Backwards means that
the satellite is facing in the opposite direction of what it is moving in the orbit.

Listing 3.2 shows the SatDescription struct which contains the information used to
describe a satellite in the deterministic model.

• offset is a duration of which the satellite must wait before it enters orbit. The
satellites in a convoy are travelling in the same orbit, but they differ in how far they
are in it. The offset means that is it not always the case that all satellites is within
range of the same station.

• orientation is the initial value for which direction the satellite is facing with
its antenna. This value changes as the satellite performs different tasks requiring
different orientation.

• memory is a variable that may be incremented or decremented whenever a task with a
data_rate is completed. The initial value of this field determines how much memory
the satellite starts with. The memory can not go below 0 or surpass a maximum
capacity defined within the deterministic model.

• available_tasks[N] is an array that specifies what tasks the satellite is able to
execute. N is the total number of tasks.

1 /** Satellite Description */
2 typedef struct {
3 int offset; // when does the satellite "start"
4 int orientation; // what is the current orientation of the

satellite
5 int memory; // current amount stored
6 bool available_tasks[N]; // what tasks can the satellite perform
7 int suggested_task; // what task should be performed next
8 } SatDescription;

Listing 3.2: SatDescription struct

19

Deis108f18 3. Deterministic Model

• suggested_task is updated whenever the Satellite template is suggesting a new task
for the Scheduler template to queue

3.3.2 Satellite

The Satellite template starts by waiting until its satellite’s offset is met, which then
triggers a synchronisation that starts the Scheduler template as well. Afterwards, the
Satellite template will try to suggest a new task for the Scheduler template by calling the
suggest_task function. The function is displayed in Listing 3.3. The first loop modifies
the priorities of the tasks according to the current amount of stored memory, such that
tasks that gather data are prioritised when the storage is low, and tasks that transfers
memory are prioritised when much data is already stored. The maximum priority for a
task is 100.
In the second loop, the task with the highest current priority is selected and
suggested_task field is set. If two or more tasks are tied in priority, the first observed of
the tied tasks is selected. New tasks are suggested at an interval that is determined by a
global constant.

The Satellite template is responsible for slewing the satellite whenever it is required to do
so. It takes an amount of time to complete one slew iteration, and the new orientation
is determined with the function turn_satellite which can be found in Listing 3.4. The
function is very simple as it just increments or decrements the orientation based on the one
required to perform the current task and the satellite’s current orientation. As explained
in Section 3.3.1, there are currently three possible orientations, specifically 0, 1, and 2.

3.3.3 Scheduler

The Scheduler template receives suggestions, from the Satellite template, regarding which
task is best to execute. Best meaning, the task with the highest priority. The task is
immediately added to a queue if it is not already present in it. The addition of the task
will trigger a reordering of the queue, which will result in the task with the highest priority
being placed in the front.
Besides having the highest priority, the task must also be available at the current point in
time. This is ensured by a synchronisation which prompts the CheckRunnable template
to report which tasks that are ready to be executed The time it takes to slew the satellite
is not accounted for when the CheckRunnable template checks the tasks. The windows
are opened and closed according to when the satellite is within reach of the stations,
as described earlier in Section 2.2.3. When a task has been selected for execution the
Processor template will start executing the task and ask the Satellite template to start
slewing if this is required.
Even when the Scheduler template is occupied with its current task, it may still receive
suggestions from the Satellite template. When a suggestion arrives, its priority is compared
against the current task’s priority, and a decision based on this result determines whether
the current task should be preempted or not. When a task has been preempted, it will be
added to a local queue in the Processor template, which it will manage such that the tasks
may be resumed later.

Whenever an internal communication task is scheduled, such as the transfer task,

20

3.3. The Deterministic Model Aalborg University

1 void suggest_task () {
2 int i, j, k, count = 0, high = -1;
3 selected = -1;
4 for (i = 0; i < N - 1; i++) {
5 if ((sats[sat_id]. available_tasks[i]) {
6 if (sats[sat_id]. memory <= LOW_MEMORY) {
7 if (jobs[i]. data_rate > 0) {
8 if (priorities[sat_id][i]*2 <= 100) {
9 priorities[sat_id][i] = priorities[sat_id][i]

* 2;
10 }
11 else {
12 priorities[sat_id][i] = 100;
13 }}
14 else if (jobs[i]. data_rate < 0) {
15 priorities[sat_id][i] = 0;
16 }}
17 else if (sats[sat_id]. memory >= HIGH_MEMORY) {
18 if (jobs[i]. data_rate < 0) {
19 if (priorities[sat_id][i]*2 <= 100) {
20 priorities[sat_id][i] = priorities[sat_id][i]

* 2;
21 }
22 else {
23 priorities[sat_id][i] = 100;
24 }}
25 else if (jobs[i]. data_rate > 0) {
26 priorities[sat_id][i] = 0;
27 }}}}
28 for (i = 0; i < N - 1; i++) {
29 if (sats[sat_id]. available_tasks[i] && priorities[sat_id][i] >

high) {
30 if(i != RECEIVE_INDEX) { // it is invalid to suggest a

receive task (It’s the transferee that takes initiative)
31 selected = i;
32 high = priorities[sat_id][i];
33 }}}
34 sats[sat_id]. suggested_task = selected;
35 }

Listing 3.3: The function suggest_task()

the behaviour of the Scheduler template is changed as new conditions are introduced.
When a satellite wants to communicate with another satellite, it will need to make sure
that it is aligned with the one it wants to communicate with. When aligned, multiple
synchronisations will be activated such that the other satellite may decide whether or
not to accept the communication task. It may need to preempt the task it is currently
executing in order to accept the communication, it may also decline the task which will
cause the initiating satellite to abort the transfer task. Listing 3.5 shows a boolean
function checking whether or not the satellites are aligned correctly. If the satellites are
aligned, the transfer may begin. Otherwise the function returns false and the satellite
continues slewing.

21

Deis108f18 3. Deterministic Model

1 /** Change satellite orientation */
2 void turn_satellite () {
3 if (sats[sat_id]. orientation < jobs[active[sat_id]]. orientation) sats[

sat_id]. orientation ++;
4 else if (sats[sat_id]. orientation > jobs[active[sat_id]]. orientation)

sats[sat_id]. orientation --;
5 }

Listing 3.4: The function turn_satellite()

1 /** Are the satellites alligned */
2 bool rdyToTrans (){
3 if (sats[com]. orientation == receive.orientation && sats[sat_id].

orientation == transfer.orientation) {
4 return true; }
5 else return false;
6 }

Listing 3.5: The function rdyToTrans()

3.3.4 Processor

The Processor template receives tasks to execute from the Scheduler template and is
responsible for monitoring the tasks’ time usage such that they can be marked as completed
if they reach their execution time, or aborted if their deadline is exceeded. The Processor
template will also instruct the Satellite template to slew if the current orientation is
divergent from what is required of the new task.
The Processor template will additionally reset the priorities of some tasks whenever a task
is finished. The task that was finished will be set to its initial priority together with those
that had their priority set to zero. A priority of zero may be assigned to a task when
examined by the Satellite template because of the current amount of stored data.

When a task has been preempted, its current execution time is saved such that it will not
have to start over if it is resumed later. The execution time is represented by a clock,
but it is not possible to store clock values in other variables so the Processor template
is trying to approximate the execution time. This is done by utilising a variable that is
incremented every time a new task suggestion is made in the Satellite template. When the
task is preempted its progress is set to the current number of task suggestion iterations,
multiplied by the task suggestion frequency. The iterator is reset by the Scheduler template
whenever a new task is started.
This approach is not flawless as it is only an approximation. Table 3.1 demonstrates how
this approach sometimes miscalculates the actual execution time. The blue rows shows
when a new task becomes the active task. Task 1 has an execution time of 7, task 2 has
one of 5, and the constant which decides the suggestion frequency is 3.
Step one: The active task, the one being executed, is 1 in the beginning and it is executed
for 3 time units before task 2 is suggested which then preempts the execution of task 1.
Task 1’s progress is calculated to be 1 ∗ 3 as one iteration has passed. This is correct as
task 1 has indeed been executed for 3 time units.
Step two: Task 2 is then executed until it is finished, which happens after an additional
5 time units.

22

3.3. The Deterministic Model Aalborg University

Step three: Task 1 can be resumed again, as seen when the time reaches 8.
Step four: Task 1 is preempted again shortly after as task 2 is suggested again after only
1 time unit.
This is a problem as task 1 has only been executed for 1 time unit, but the model believes
that it has been executed for 3 before it was preempted. This means that the total
execution time should be 4, but it is stored as 6. The consequence of this is that when
task 1 is resumed again at time 14, the Processor template is only executing it for 1 time
unit before it is completed whereas it actually needs to be executed for 2 more time units.

Time
Suggestion
iterator

Execution
timer task 1

Time used
task 1

Execution
timer task 2

Active
task

0 0 0 0 0 1
1 0 1 0 0 1
2 0 2 0 0 1
3 1 3 0 0 1
3 0 0 3 0 2
4 0 0 3 1 2
5 0 0 3 2 2
6 1 0 3 3 2
7 1 0 3 4 2
8 1 0 3 5 2
8 0 0 3 0 1
9 1 1 3 0 1
9 0 0 6 0 2
10 0 0 6 1 2
11 0 0 6 2 2
12 1 0 6 3 2
13 1 0 6 4 2
14 1 0 6 5 2
14 0 0 6 0 1
15 1 1 6 0 1
16 1 0 0 0 -1

Table 3.1: Example of time approximation inaccuracy

This inaccuracy can be avoided by either setting the suggestion frequency constant to 1,
or by ensuring that all tasks is dividable by the constant. Another option is to declare
a separate clock for every task, for every satellite. These clocks should then be used as
stopwatches and only be incremented when the associated task is being executed. The
problem of this approach is the modularity as the current approach is more general and
does not need to be updated or rewritten every time a new task or satellite is added to
the model.

When a task is dependant on a station, the Processor template will have to chose between
the available stations at the time the task is started. The chosen station will be the one
that is cheapest amongst those that are en reach and the tasks is dependant on. Listing 3.6

23

Deis108f18 3. Deterministic Model

1 /** Increments cost of bandwidth */
2 void calc_cost () {
3 int i = 0; price = 9999;
4 for (i = 0; i < STATIONS; i++){
5 if(jobs[task]. depend_station[i] && runnable[task] &&

win_active[i]) {
6 if (price > station_price_rate[i] * jobs[task].

execution_time){
7 price = station_price_rate[i] * jobs[task].

execution_time; // choose cheapest
8 }
9 }
10 }
11 if (price == 9999) {
12 price = 0; }
13 }

Listing 3.6: The function calc_cost()

shows the function that chooses the cheapest station and calculates the cost for executing
the current task. The calculated value represents an actual price it would cost the owner
of the satellite to transfer the data.

3.4 Experimenting with the Deterministic Model

It is now possible to perform different experiments, which allow us to observe the effect of
the various features and properties of the deterministic model.

The goal for these experiments is to determine which of the features and values have the
most and least significant impact on the computation time of generating and outputting a
schedule, and how much it deviate from the initial configuration. This is important as it is
desirable to make a non-deterministic model, but to do so a reduction in the state space is
needed. We hypothesise that a non-deterministic model will encounter a large state space
if all of the features from the analysis are implemented. If we are able to determine that
some features can be avoided, we may be able to reduce said state space. The hypothesis
is based on previous experience with the UPPAAL tool suite [2].
We will be observing the following variables:

• Program time the time taken to complete the query and write the resulting trace
to a file

• data values:

– Data sent to Earth describes how much data that have been sent to the
stations on Earth

– Data gathered describes how much data that has been collected via the
sat_gat task, which is described in Table 3.2

– Data Transferred describes how much data that has been transferred
internally between the satellites

• runs is incremented each time a task completes before its deadline
• delays is incremented each time a task exceed its deadline
• Idle accumulated time spent idling

24

3.4. Experimenting with the Deterministic Model Aalborg University

• Wait accumulated time spent waiting for another satellite to become ready for a
transfer/receive task

• Work accumulated time spent actively executing a task
• Slew accumulated time spent slewing into position for a task
• Cost of bandwidth accumulated cost which increases every time communication

with a station occurs

An additional set of experiments will be made in order to verify the correctness of the
model, mainly the designed scheduling method, to see if it behaves as expected. These
experiments will change the values of some of the constants in order to test that the chosen
values actually affect how the model behaves. Some of the values that will be changed is
the deadlines for the tasks, the thresholds for the data storage, and the priorities

All runs have a schedule length of 1440 minutes (one day), the length is a compromise
between letting the model run for long enough time such that the experiments can be
compared and differences may arise, and not taking to much time to compute. The
problems associated with computation time is discussed later in Section 3.4.15.

The tables presenting the results of running the different experiments will be presented
by comparing the values from each experiment to a base case. An initial configuration
will serve as a base case representing a relatively correct scenario. The comparison will
be presented as the exact values from the base case and the experiment, along with the
percentage difference between the two. As the base case is assumed to be an accurate
representation of the real application we hope to see the experiments yielding close to the
same results, with a decreased program time.
When we are referring to one of the satellites, such as Sat_0, we are referring to the three
instantiated templates Satellite, Scheduler, and Processor that combines to a represent a
physical satellite.

3.4.1 Initial Configuration

First we made a run with the initial configuration setting a base case for the results and
computation time. This initial configuration can be seen in Table 3.2 and Table 3.3 for
the results.

Table 3.2 shows the global settings e.g. the number of tasks, satellites, and maximum
storage capacity. In addition it shows the specification of different tasks, see Section 3.3.1,
along with the specification for three types of satellites, sat_gat (Gatherer), sat_trans
(Transfer), and sat_sen (Sender).
It can for instance be seen that the task send_data takes 20 units of time to complete and
sends data at a rate of -2 per time unit, and the task gather_new_data takes 15 units of
time with a rate of two. This means that 30 data can be gathered in one run, and 40 data
can be sent to a station.

The three satellites may only execute the tasks listed in the Tasks column, i.e. sat_gat

can gather and transfer data, but not send or receive data.

Most values seen will remain constant throughout the experiments, changing only a few
for every run and changing them back before running the next experiment. A look at

25

Deis108f18 3. Deterministic Model

Memory
Global Settings Tasks Sats Stations Max Low High

4 3 2 100 30 75
TaskDiscription Windows Exe_Time Deadline Priority Data_Rate Orientation
send_data (0,1) 20 26 9 -2 1
gather_new_data (1,0) 15 21 6 2 0
transfer (0,0) 5 17 5 -3 2
receive (0,0) 5 11 4 3 0
SatDiscription Offset Orientation Memory Tasks Suggested
sat_gat 3 0 80 (0,1,1,0) -1
sat_trans 3 0 20 (0,1,1,1) -1
sat_sen 9 2 0 (1,0,0,1) -1

Table 3.2: Initial configuration for the experiments

Table 3.2 shows that the satellites can perform different tasks and have different initial
states e.g. sat_gat has an offset of 3, a starting storage of 80 and can perform task one
(gather_new_data — receive externally) and two (transfer — send internally), whereas
sat_sen has an offset of 9, an initial storage of 0, and can perform task zero (send_data
— send externally) and three (receive — receive internally).

Program
time

Cost of
bandwidth

Data sent
to Earth

Data
gathered

Data
transferred

154 7435 640 750 990
sat0 sat1 sat2

runs: send_data 0 0 16
runs: gather_new_data 10 15 0
runs: transfer 20 46 0
runs: receive 0 20 46
delays: send_data 0 0 0
dealys: gather_new_data 0 1 0
delays: transfer 16 0 0
delays: receive 0 0 0
Idle 382 223 784
Wait 576 51 0
Work 318 634 557
Slew 164 532 99

Table 3.3: Results of running the initial configuration

Figure 3.3 illustrates a snippet of the schedule generated running with the initial
configuration. There are three rows for each satellite, the top one indicating which task
is executed when, the middle one when it is slewing, and the bottom one showing when
a satellite is waiting for another to communicate with. The different colours indicate
different tasks, red is send_data, green in gather_new_data, blue is transfer, and purple
is receive.

26

3.4. Experimenting with the Deterministic Model Aalborg University

Figure 3.3: Generated schedule over the base case for three satellites

3.4.2 Experiment 1: Without Slew

Experiment: Remove the satellites’ need to slew. This is done by setting the required
orientation of all tasks to zero along with all initial orientations of all satellites.
Motivation: This experiment is performed to determine the effect of including slew in
the deterministic model, since slew is a large component in the model. If the effect of no
slew turns out to be minor while giving a significant reduction in computation time, it
may not be necessary to include in a non-deterministic model.
Hypothesis: For this experiment we hypothesise

1. The Slew- and Wait clocks will become zero. Since there is no need to slew, there
will be no need to wait for another satellite when communicating internally.

2. The Work- and Idle clocks will be higher. This is trivial as there is an expected
decrease in slew- and wait time, hence this time must be used elsewhere.

3. There will be an increase in runs. As more time will be spent working, more tasks
should be completed.

4. There will be fewer delays. As time is no longer spent slewing or waiting, there are
more time to make up for being preempted.

5. An increase to all data values, sent, gathered, and transferred. As more time is spent
working the data values should all be affected.

6. A decrease in program time. Since the states required for slew are no longer necessary
it should be faster to run the experiment.

27

Deis108f18 3. Deterministic Model

Program
time

Cost of
Bandwidth

Data sent
to Earth

Data
gathered

Data
transferred

Base: 154 7435 640 750 990
Result: 287 10505 920 1050 1275
Diff (%) +86.0 +41.3 +43.8 +40.0 +28.8

Sat_0 Sat_1 Sat_2
Base Result Diff (%) Base Result Diff(%) Base Result Diff (%)

Runs: send_data 0 0 0.0 0 0 0.0 16 23 +43.8
Runs: gather_new_data 10 10 0.0 15 25 +66.7 0 0 0.0
Runs: transfer 20 19 -5.0 46 66 +43.5 0 0 0.0
Runs: receive 0 0 0.0 20 19 -5.0 46 66 +43.5
Dealys: send_data 0 0 0.0 0 0 0.0 0 0 0.0
Dealys: gather_new_data 0 0 0.0 1 0 -100.0 0 0 0.0
Dealys: transfer 16 9 -43.8 0 0 0.0 0 0 0.0
Dealys: receive 0 0 0.0 0 0 0.0 0 0 0.0
Idle 382 566 +48.2 223 278 +24.7 784 613 -21.8
Wait 576 307 -46.7 51 0 -100.0 0 0 0.0
Work 318 567 +78.3 634 1162 +83.3 557 827 +48.5
Slew 164 0 -100.0 532 0 -100.0 99 0 -100.0

Table 3.4: Results of running experiment 1

Results: The results can be found in Table 3.4.

1. Partially true. The Slew clocks were indeed 0 for all satellites. However, the Wait

clock for Sat_0, while cut in half, was not zero. The transferring satellite is waiting
for the receiving satellite whenever it itself is transferring to another satellite. It is
only Sat_0 which is waiting as it is the only satellite that may transfer to another
satellite which itself is able to transfer.

2. True. Even though the percentages for the Idle clocks are sometimes lower than
the base clocks, the sum of the Idle and Work clocks are higher than the sum of the
same clocks in base.

3. True. There is a general increase in tasks completed.
4. True
5. True. There is a 20 to 44 percentage increase.
6. False. The huge increase in runs have caused the trace to include many more states

which therefore significantly increases the program time.

Conclusion: Performing this experiment showed that not including slew, lead to
significant variations to a majority of the observed values. We believe much of these
variations are due to an oversimplification in how slew was removed.
Instead we propose a new experiment where the task execution time is increased to
accommodate for the simplification. This new experiment will be used to conclude whether
or not slewing should be included.

3.4.3 Experiment 2: No Slew with Increased Execution Time

Experiment: Remove the need for slewing, and increase the execution time of tasks We
will increase the execution time of all tasks by the time it takes to slew one step, and
modify the data value calculation so it does not include the additional time, and do the

28

3.4. Experimenting with the Deterministic Model Aalborg University

same when calculating the bandwidth cost. Adding the time for one slewing step was
chosen as the base case performed a total of 220 tasks, got delayed in performing 40 tasks,
and had a total of 246 slews, thereby averaging approximately one slew per task started.
Reason: As described in Experiment 1: Without Slew, a significant variation in the
data values was expected, when compared to the base case. Essentially removing slew
is to remove time needed in order to complete a task. Because of this we perform this
additional experiment to get more accurate results for removing slew.
Hypothesis: For this experiment we hypothesise

1. The non-clock values are overall closer to the base case, when compared to
Experiment 1: Without Slew

Results: The results can be found in Table 3.6.

1. Partially true. For all of the non-clock values shown in Table 3.6, with the exception
of the number of delays, the values were indeed closer. This is however not surprising
as; the more time needed to complete a tasks, the more chances of a task being
preempted i.e. higher risk of becoming delayed.

Table 3.5 compares how close experiment 1 and 2 were to the base case. The cells displays
the total difference from the base case.
For example, experiment 2’s runs cell is the sum of the difference in the amount of
completed tasks. The task gather_new_data for Sat_0 was completed 10 times in the
base case and 12 times in this experiment, which gives a difference of 2. The amount of
delays for transfer on Sat_0 was 16 in the base and 12 in this experiment, which gives a
difference of 4.
This means that the closer the value is to 0 the closer it is to the base case.

• Program time — calculated from the program time column
• Cost of bandwidth — calculated from the Cost of Bandwidth column
• Data gathered, transferred, and sent — calculated from the Data sent to Earth, Data

gathered, and Data transferred columns
• Runs — calculated from the Runs rows
• Delays — calculated from the Delays rows

Experiment 2 is closer to 0 in all of the columns except for the amount of delays which
means that it deviates less from the base case and is therefore considered to be closer to
it. The clocks were not compared as it was necessary to change how they counted the time
in order to set up the experiment, which makes the comparison uninteresting.

Program time Cost of bandwidth
Data gathered,
transferred, and sent

Runs Delays

Experiment 2 108 195 75 8 18
Experiment 1 133 3070 765 59 8

Table 3.5: Comparison between experiment 2 and 1

Conclusion: Comparing the results of this experiment to Experiment 1: Without Slew,
the observed values are in general much closer to the base case. Unfortunately the program
time was still more than 70% over the base case. These results indicate that for this model

29

Deis108f18 3. Deterministic Model

Program
time

Cost of
Bandwidth

Data sent
to Earth

Data
gathered

Data
transferred

Base: 154 7435 640 750 990
Result: 262 7240 640 780 1035
Diff (%) +70.2 -2.6 0.0 +4.0 +4.5

Sat_0 Sat_1 Sat_2
Base Result Diff (%) Base Result Diff(%) Base Result Diff (%)

Runs: send_data 0 0 0.0 0 0 0.0 16 16 0.0
Runs: gather_new_data 10 12 +20.0 15 14 -6.7 0 0 0.0
Runs: transfer 20 23 +15.0 46 46 0.0 0 0 0.0
Runs: receive 0 0 0.0 20 22 +10.0 46 46 0.0
Dealys: send_data 0 0 0.0 0 0 0.0 0 0 0.0
Dealys: gather_new_data 0 9 N/A 1 5 +400.0 0 0 0.0
Dealys: transfer 16 12 -25.0 0 0 0.0 0 0 0.0
Dealys: receive 0 0 0.0 0 0 0.0 0 0 0.0
Idle 382 672 +75.9 223 604 +170.9 784 693 -11.6
Wait 576 341 -40.8 51 0 -100.0 0 0 0.0
Work 318 427 +34.3 634 836 +31.9 557 747 +34.1
Slew 164 0 -100.0 532 0 -100.0 99 0 -100.0

Table 3.6: Results of running experiment 2

slew must be kept. However, we believe the increased program time is a result of the
experiment being run in a model designed to accommodate for slew. Had another model,
designed not to slew, been made, we still believe there would be a noticeable decrease in
program time.

3.4.4 Experiment 3: No Gather on Sat_1

Experiment: Remove the central satellite’s ability to perform gather_new_data. This in
done by changing the sat_trans task array.
Motivation: To determine the effect of having one less satellite that is able to gather
data. This change make it so Sat_1 can only transfer and receive data internally. This
will help us to understand the importance of the satellites’ set-up.
Hypothesis: For this experiment we hypothesise

1. Increase to the transfer and receive tasks between Sat_0 and Sat_1. As Sat_1

will now need to be fed data, which can only come from Sat_0.
2. Higher idle clock time on Sat_1 and Sat_2. As Sat_1 has to spend more time

communicating with Sat_0 in order to be fed data, it will not communicate as often
with Sat_2.

3. Increase to the slew clock for Sat_0 and Sat_1. Sat_0 will slew more because it
will be able to execute more tasks as Sat_1 is more eager to receive its data. Sat_1
will slew more because it will have to alter between communicating with Sat_0 and
Sat_2.

4. Decrease to the wait clock for Sat_0. The satellite will wait less because of the same
reasons that was stated above.

5. Less data gathered and sent to Earth. As only one satellite can gather data and it
takes more time to get the data to the one sending it to Earth.

30

3.4. Experimenting with the Deterministic Model Aalborg University

6. Increase to the amount of data transmitted internally. As the data need to go from
Sat_0 to Sat_1, and finally to Sat_2 before being sent to Earth

Results: The results can be found in Table 3.7.

1. True. The amount of completed transfer and receive tasks have more than
doubled.

2. Partially true. The increase to Sat_2’s idle clock is very low. The data
transfer/receive rate was high enough for Sat_2 to continue sending data, and was
therefore almost unaffected. It did however get affected as it did not communicate
as much with Sat_1. And Sat_1 had a significant increase in idle clock time.

3. Partially true. Sat_0 did slew more, but Sat_1 slew less. The less slewing time on
Sat_1 is a side effect of it idling much more compared to the base case. Additionally
the slew clock is reduced as doing the same tasks multiple times in succession, will
not cause it to slew back and forth. Additionally it will never have to slew in order
to gather data as it cannot execute that task in this experiment.

4. True. The wait clock of Sat_0 was almost halved.
5. Partially true. Less data was gathered, but the amount send to Earth was unaffected.

This is most likely a result of Sat_0 idling and waiting much more in the initial run,
leaving it time to perform additional tasks.

6. True

Program
time

Cost of
Bandwidth

Data sent
to Earth

Data
gathered

Data
transferred

Base: 154 7435 640 750 990
Result: 135 6850 640 660 1350
Diff (%) -12.1 -7.9 0.0 -12.0 +36.4

Sat_0 Sat_1 Sat_2
Base Result Diff (%) Base Result Diff(%) Base Result Diff (%)

Runs: send_data 0 0 0.0 0 0 0.0 16 16 0.0
Runs: gather_new_data 10 22 +120.0 15 0 -100.0 0 0 0.0
Runs: transfer 20 45 +125.0 46 45 -2.2 0 0 0.0
Runs: receive 0 0 0.0 20 45 +125.0 46 45 -2.2
Dealys: send_data 0 0 0.0 0 0 0.0 0 0 0.0
Dealys: gather_new_data 0 17 N/A 1 0 -100.0 0 0 0.0
Dealys: transfer 16 14 -12.5 0 0 0.0 0 0 0.0
Dealys: receive 0 0 0.0 0 0 0.0 0 0 0.0
Idle 382 91 -76.2 223 627 +181.2 784 793 +1.1
Wait 576 350 -39.2 51 51 0.0 0 0 0.0
Work 318 616 +93.7 634 479 -24.4 557 549 -1.4
Slew 164 384 +134.1 532 284 -46.6 99 99 0.0

Table 3.7: Results of running experiment 3

Conclusion: Limiting the satellites to be able to execute less tasks seems to have a
relatively small effect on the number of tasks completed. In fact the same amount of data
was sent to Earth, though with less remaining storage in the system.

31

Deis108f18 3. Deterministic Model

3.4.5 Experiment 4: Double Deadline

Experiment: Double the deadline of all tasks. This is done by modifying the deadline

field in all TaskDescriptions, see Table 3.2.
Motivation: An increased deadline should result in fewer delays. We therefore run this
experiment to determine the correctness of the model, and that an increased deadline will
indeed do this.
Hypothesis: For this experiment we hypothesise

1. Fewer delays, most noticeable on Sat_0. Since there are more time to complete tasks,
even after them being preempted.

2. More tasks will be completed. As the preempted tasks are more likely to be finished,
we expect this will result in an increased amount of completed tasks.

3. Increase to the work clock for all satellites. After being preempted it is more likely
a task can be completed. Instead of waiting for a new suggestion the satellite can
finish a task which was preempted earlier.

4. Decrease in the idle clock for all satellites. As the satellites will be more likely to
continue preempted tasks rather than wait for a new suggestion.

5. Increase to all data values. As there will be more runs there will be moved more
data.

Results: The results can be found in Table 3.8.

1. True. There was no delays to any task.
2. True. However, a total increase of only two completed tasks across all satellites.
3. Partially true. The work clock saw little change. While more tasks were completed

time was not waisted by becoming delayed almost cancelling each other out.
4. Partially true. There was an increase in the idle clock time to Sat_1 and Sat_2.

This is most likely a result of Sat_0 finishing more tasks.
5. False. As the same amount of tasks gathering data and sending to Earth were

executed, the data values were unchanged. There was a small increase to data
transferred internally, as the task was more likely to be completed.

Conclusion: As expected an increased deadline did indeed result in fewer delays. This
indicates that the implementation works correctly as the defined deadline does indeed have
an effect.

3.4.6 Experiment 5: No Preemption

Experiment: Make the scheduler non-preemptive. This is done by falsifying the edges
leading to preemption, and forcing the Scheduler template to always take the edge back
which enqueues the new task and continues the current one.
Motivation: To determine the relevance of preemption. As preemption is responsible
for a significant portion of the state space it would be beneficial to investigate the effect
thereof.
Hypothesis: For this experiment we hypothesise

1. Fewer delays. As tasks can no longer be preempted the only possibility for delays is
that satellite keeps waiting for another satellite to transfer to.

32

3.4. Experimenting with the Deterministic Model Aalborg University

Program
time

Cost of
Bandwidth

Data sent
to Earth

Data
gathered

Data
transferred

Base: 154 7435 640 750 990
Result: 154 7435 640 750 1020
Diff (%) +0.2 0.0 0.0 0.0 +3.0

Sat_0 Sat_1 Sat_2
Base Result Diff (%) Base Result Diff(%) Base Result Diff (%)

Runs: send_data 0 0 0.0 0 0 0.0 16 16 0.0
Runs: gather_new_data 10 11 +10.0 15 14 -6.7 0 0 0.0
Runs: transfer 20 22 +10.0 46 46 0.0 0 0 0.0
Runs: receive 0 0 0.0 20 22 +10.0 46 46 0.0
Dealys: send_data 0 0 0.0 0 0 0.0 0 0 0.0
Dealys: gather_new_data 0 0 0.0 1 0 -100.0 0 0 0.0
Dealys: transfer 16 0 -100.0 0 0 0.0 0 0 0.0
Dealys: receive 0 0 0.0 0 0 0.0 0 0 0.0
Idle 382 361 -5.5 223 265 +18.8 784 787 +0.4
Wait 576 551 -4.3 51 51 0.0 0 0 0.0
Work 318 335 +5.3 634 620 -2.2 557 554 -0.5
Slew 164 193 +17.7 532 504 -5.3 99 99 0.0

Table 3.8: Results of running experiment 4

2. Small increase in runs. Since time is no longer waisted on tasks becoming delayed,
however tasks can no longer preempt the active task when their window comes up,
which dampens the increase.

3. Increase to all data values. Assuming our first hypothesis is correct there will be
performed more tasks, and thereby higher data values.

4. Shorter program time. As preemption, in our deterministic model, takes many states
to achieve, not having it will cause the trace to become smaller and thereby lessen
the time it takes to write the trace.

Results: The results can be found in Table 3.9.

1. False. However, without preemption there are no possibility for the tasks to become
delayed, with the exception of waiting for another satellite to become ready when
attempting to communicate internally. Therefore this task was the only one to
experience delays.

2. Partially true. The increase to runs turned out to be significant.
3. False. There was a significant increase in runs between Sat_0 and Sat_1. However,

the same amount of data was sent to Earth and nearly the same amount gathered.
This indicates an inefficient use of time, as the satellite can never exceed its maximum
storage capacity but can still initiate a gather_new_data when at say 90% storage.
Doing so will cause the satellite to reach 100% storage but completing the task will
take the same amount of time as it would otherwise. This occur because a task can
be queued while the same task is being executed, and when the task is done it may
be run again.

4. False. The program time remained approximately the same.

Conclusion: At first glance the preemption feature seems to be of small importance as
the observed data values are very close to that of the base case. However, a closer look at

33

Deis108f18 3. Deterministic Model

Program
time

Cost of
Bandwidth

Data sent
to Earth

Data
gathered

Data
transferred

Base: 154 7435 640 750 990
Result: 158 9775 640 775 1080
Diff (%) +2.8 +31.5 0.0 +3.3 +9.1

Sat_0 Sat_1 Sat_2
Base Result Diff (%) Base Result Diff(%) Base Result Diff (%)

Runs: send_data 0 0 0.0 0 0 0.0 16 16 0.0
Runs: gather_new_data 10 18 +80.0 15 19 +26.7 0 0 0.0
Runs: transfer 20 26 +30.0 46 46 0.0 0 0 0.0
Runs: receive 0 0 0.0 20 26 +30.0 46 46 0.0
Dealys: send_data 0 0 0.0 0 0 0.0 0 0 0.0
Dealys: gather_new_data 0 0 0.0 1 0 -100.0 0 0 0.0
Dealys: transfer 16 17 +6.3 0 0 0.0 0 0 0.0
Dealys: receive 0 0 0.0 0 0 0.0 0 0 0.0
Idle 382 515 +34.8 223 415 +86.1 784 789 +0.6
Wait 576 393 -31.8 51 53 +3.9 0 0 0.0
Work 318 408 +28.3 634 653 +3.0 557 550 -1.3
Slew 164 124 -24.4 532 319 -40.0 99 101 +2.0

Table 3.9: Results of running experiment 5

the results shows that significantly more runs of the task gather_new_data was completed.
This shows an inefficient use of the task as explained above. This shows that preemption
is important for an effective use of time.

3.4.7 Experiment 6: No Preemption, No Queue

Experiment: Like in the previous experiment, we have removed preemption. In addition
to this we have made it so that tasks can not be queued while another one of the same
type is being executed.
Motivation: The main problem with the previous experiment Experiment 5: No Preemp-
tion, was the inefficient use of time. However, we believe this to be a problem with other
functionality in the deterministic model, and not because preemption must be included.
Hypothesis: For this experiment we hypothesise

1. Data values close to the base case. However, without the inefficient use of time when
gathering data.

2. All four clocks will have small variations compared to the base case.

Results: The results can be found in Table 3.10.

1. True. There was small variations to the data values, without a large amounts of
time waisted. However, 26 gather_new_data tasks were completed meaning the
Data_gathered value should have been 780. This is caused by the HIGH threshold
being 75 rather than 70. Had this been the case, we believe there would have been
no inefficient use of time.

2. Partially true. Most of the clocks were close to the base case. However, a few differed
significantly. This was mainly the clocks on Sat_0 and the idle clock on Sat_2. As

34

3.4. Experimenting with the Deterministic Model Aalborg University

Sat_0 completed more tasks it makes sense that it would have spent more time
working and slewing. As for Sat_1’s increased idle clock, this is most likely a result
of it receiving more data form Sat_0, and thereby reached the HIGH storage level
more often and having to wait for Sat_2 to become available for transfer.

Program
time

Cost of
Bandwidth

Data sent
to Earth

Data
gathered

Data
transferred

Base: 154 7435 640 750 990
Result: 136 7470 600 740 1065
Diff (%) -12.0 0.5 -6.3 -1.3 7.6

Sat_0 Sat_1 Sat_2
Base Result Diff (%) Base Result Diff(%) Base Result Diff (%)

Runs: send_data 0 0 0.0 0 0 0.0 16 15 -6.3
Runs: gather_new_data 10 14 40.0 15 12 -20.0 0 0 0.0
Runs: transfer 20 27 35.0 46 44 -4.3 0 0 0.0
Runs: receive 0 0 0.0 20 27 35.0 46 44 -4.3
Dealys: send_data 0 0 0.0 0 0 0.0 0 0 0.0
Dealys: gather_new_data 0 0 0.0 1 0 -100.0 0 0 0.0
Dealys: transfer 16 26 62.5 0 0 0.0 0 0 0.0
Dealys: receive 0 0 0.0 0 0 0.0 0 0 0.0
Idle 382 357 -6.5 223 362 62.3 784 826 5.4
Wait 576 456 -20.8 51 51 0.0 0 0 0.0
Work 318 381 19.8 634 571 -9.9 557 520 -6.6
Slew 164 248 51.2 532 458 -13.9 99 96 -3.0

Table 3.10: Results of running experiment 6

Conclusion: Changing the preemption experiment so it would not queue tasks while
working, turned out to be a success. This has showed that preemption may not be
necessary. There was an increased amount of delays but also a decreased Program time.
Based on this we believe using preemption may lead to a better scheduler, but will have a
longer computation time.

3.4.8 Experiment 7: Double Maximum Storage

Experiment: Double the storage capacity of all satellites. This will also affect the HIGH

and LOW thresholds as they are based on the maximum storage.
Motivation: As we have chosen the storage capacity we wish to investigate if the this
will affect the system behaviour.
Hypothesis: For this experiment we hypothesise

1. Small increase in gather_new_data tasks completed. Since the initial storage value
starts further from the HIGH threshold, it will execute this task more early on.
However, once reaching this it will behave like the base case.

2. Increase to data gathered. The data gathered is a direct result of the amount of
gather_new_data tasks completed.

3. Decreased idle clock and increase in the work clock for Sat_0 and Sat_1. Since they
will perform more tasks early on they should work more and idle less.

Results: The results can be found in Table 3.11.

35

Deis108f18 3. Deterministic Model

1. True. The total number of uppVargather_new_data tasks performed was increased
from 25 to 32.

2. True. 28 % more data was gathered.
3. True

Program
time

Cost of
Bandwidth

Data sent
to Earth

Data
gathered

Data
transferred

Base: 154 7435 640 750 990
Result: 149 8640 600 960 1050
Diff (%) -3.0 +16.2 -6.3 +28.0 +6.1

Sat_0 Sat_1 Sat_2
Base Result Diff (%) Base Result Diff(%) Base Result Diff (%)

Runs: send_data 0 0 0.0 0 0 0.0 16 15 -6.3
Runs: gather_new_data 10 13 +30.0 15 19 +26.7 0 0 0.0
Runs: transfer 20 21 +5.0 46 49 +6.5 0 0 0.0
Runs: receive 0 0 0.0 20 21 +5.0 46 49 +6.5
Dealys: send_data 0 0 0.0 0 0 0.0 0 0 0.0
Dealys: gather_new_data 0 0 0.0 1 1 0.0 0 0 0.0
Dealys: transfer 16 22 +37.5 0 0 0.0 0 0 0.0
Dealys: receive 0 0 0.0 0 0 0.0 0 0 0.0
Idle 382 290 -24.1 223 79 -64.6 784 793 +1.1
Wait 576 622 +8.0 51 48 -5.9 0 0 0.0
Work 318 386 +21.4 634 743 +17.2 557 556 -0.2
Slew 164 144 -12.2 532 572 +7.5 99 93 -6.1

Table 3.11: Results of running experiment 7

Conclusion: As expected changing the maximum storage allowed the satellites to gather
more data. Mostly the experiment deviated little from the base case, and no changes were
unexpected. This confirms that the storage capacity is implemented as intended.

3.4.9 Experiment 8: No Window Dependencies

Experiment: Tasks can now be started at any time as none of them are window
dependant. This means it will always be possible to gather and send data.
Motivation: Removing the concept of window dependencies will be a significant
inaccuracy. However, it is interesting to investigate how much this will deviate from the
base case as it most likely cause a noticeable reduction in program time.
Hypothesis: For this experiment we hypothesise

1. Sat_0 will not be able to perform any tasks. It is unable to execute the send_data

task, which means it has to transfer it data when the memory is full. But Sat_1 will
prioritise its own transfer task and since it can execute gather_new_data at any
time it will always have something to do that has a higher priority than receiving
data.

2. Increase in work clock time for Sat_1
3. Increase in work clock time for Sat_2
4. Sat_1 will have little to no idle clock time

Results: The results can be found in Table 3.12.

36

3.4. Experimenting with the Deterministic Model Aalborg University

1. True
2. True. An increase of just 10 %, as a result of much of the decreased idle time is used

slewing.
3. True
4. True. Its idle clock was reduced by 97 %.

Program
time

Cost of
Bandwidth

Data sent
to Earth

Data
gathered

Data
transferred

Base: 154 7435 640 750 990
Result: 120 0 645 720 660
Diff (%) -22.0 -100.0 +0.8 -4.0 -33.3

Sat_0 Sat_1 Sat_2
Base Result Diff (%) Base Result Diff(%) Base Result Diff (%)

Runs: send_data 0 0 0.0 0 0 0.0 16 21 +31.3
Runs: gather_new_data 10 0 -100.0 15 24 +60.0 0 0 0.0
Runs: transfer 20 0 -100.0 46 44 -4.3 0 0 0.0
Runs: receive 0 0 0.0 20 0 -100.0 46 44 -4.3
Dealys: send_data 0 0 0.0 0 0 0.0 0 0 0.0
Dealys: gather_new_data 0 0 0.0 1 1 0.0 0 0 0.0
Dealys: transfer 16 10 -37.5 0 0 0.0 0 0 0.0
Dealys: receive 0 0 0.0 0 0 0.0 0 0 0.0
Idle 382 673 +76.2 223 6 -97.3 784 562 -28.3
Wait 576 707 +22.7 51 75 +47.1 0 0 0.0
Work 318 54 -83.0 634 698 +10.1 557 734 +31.8
Slew 164 6 -96.3 532 661 +24.2 99 144 +45.5

Table 3.12: Results of running experiment 8

Conclusion: this experiment shows that the concept of windows should be included. The
most noticeable impact of course being the total starvation of Sat_0 as it can not unload
its data. But the inefficient utilisation of Sat_2’s send_data should not be ignored either.

3.4.10 Experiment 9: Smaller Difference Between High and Low
Thresholds

Experiment: The difference between the HIGH and LOW thresholds will be decreased. HIGH
will be changed to 60 from 75 and LOW to 40 from 25.
Motivation: The thresholds is a choice taken in designing our scheduler. Because of this,
changing the defined thresholds is amongst the most important values to test.
Hypothesis: For this experiment we hypothesise

1. More internal communication tasks will be completed. The satellites are considered
to be at high storage level more of the time and will therefore want to transfer data
more often.

2. Fewer gather_new_data tasks performed. For the same reasons as above.

Results: The results can be found in Table 3.13.

1. False. There was a decrease to the amount of data transferred between Sat_0 and
Sat_1. This is most likely because Sat_1 performed more gather_new_data tasks,

37

Deis108f18 3. Deterministic Model

making data from Sat_0 less important, i.e. Sat_1 prevented Sat_0 from performing
as many tasks.

2. True. However, it only went down by 1 in total.

Program
time

Cost of
Bandwidth

Data sent
to Earth

Data
gathered

Data
transferred

Base: 154 7435 640 750 990
Result: 150 7240 640 720 915
Diff (%) -2.5 -2.6 0.0 -4.0 -7.6

Sat_0 Sat_1 Sat_2
Base Result Diff (%) Base Result Diff(%) Base Result Diff (%)

Runs: send_data 0 0 0.0 0 0 0.0 16 16 0.0
Runs: gather_new_data 10 7 -30.0 15 17 +13.3 0 0 0.0
Runs: transfer 20 15 -25.0 46 46 0.0 0 0 0.0
Runs: receive 0 0 0.0 20 15 -25.0 46 46 0.0
Dealys: send_data 0 0 0.0 0 0 0.0 0 0 0.0
Dealys: gather_new_data 0 0 0.0 1 1 0.0 0 0 0.0
Dealys: transfer 16 22 +37.5 0 0 0.0 0 0 0.0
Dealys: receive 0 0 0.0 0 0 0.0 0 0 0.0
Idle 382 393 +2.9 223 169 -24.2 784 784 0.0
Wait 576 652 +13.2 51 51 0.0 0 0 0.0
Work 318 267 -16.0 634 657 +3.6 557 557 0.0
Slew 164 128 -22.0 532 563 +5.8 99 99 0.0

Table 3.13: Results of running experiment 9

Conclusion: Due to how the scheduler is designed, the thresholds seem to have little
impact on the data values. However, setting them closer have caused noticeable more
delays on Sat_1. Indicating that doing so is not beneficial.

3.4.11 Experiment 10: Larger Difference Between High and Low
Storage

Experiment: The difference between the HIGH and LOW thresholds will be increased. HIGH
will be changed to 90 from 75 and LOW 10 from 25.
Motivation: The thresholds is a choice taken in designing our scheduler. Because of this,
changing the defined thresholds is amongst the most important values to test.
Hypothesis: For this experiment we hypothesise

1. Less data send to Earth. Gather data tasks will be suggested when the satellite is
closer to maximum storage capacity, which should result in less efficient use of the
gather_new_data task, which in turn means that less data can be send to Earth and
less send_data tasks will be executed.

2. The task gather_new_data will be executed more
3. The task send_data will be executed less
4. The receive and transfer task will be executed less.

Results: The results can be found in Table 3.14.

1. True. However, the difference is very small and the same amount of send_data tasks
was completed, indicating it was not utilised as efficient as could have been.

38

3.4. Experimenting with the Deterministic Model Aalborg University

2. True. As the task is at a high priority a larger percentage of the time it will
be executed more often. However, the data_gathered value it has changed little,
showing an inefficient use of time.

3. False. The total amount of data gathered was not much lower, which is the reason
that Sat_2 was still able to perform as in the base case.

4. True

Program
time

Cost of
Bandwidth

Data sent
to Earth

Data
gathered

Data
transferred

Base: 154 7435 640 750 990
Result: 170 9580 630 790 915
Diff (%) +10.41 +28.9 -1.6 +5.3 -7.6

Sat_0 Sat_1 Sat_2
Base Result Diff (%) Base Result Diff(%) Base Result Diff (%)

Runs: send_data 0 0 0.0 0 0 0.0 16 16 0.0
Runs: gather_new_data 10 15 +50.0 15 21 +40.0 0 0 0.0
Runs: transfer 20 15 -25.0 46 46 0.0 0 0 0.0
Runs: receive 0 0 0.0 20 15 -25.0 46 46 0.0
Dealys: send_data 0 0 0.0 0 0 0.0 0 0 0.0
Dealys: gather_new_data 0 0 0.0 1 0 -100.0 0 0 0.0
Dealys: transfer 16 16 0.0 0 0 0.0 0 0 0.0
Dealys: receive 0 0 0.0 0 0 0.0 0 0 0.0
Idle 382 638 +67.0 223 326 +46.2 784 771 -1.7
Wait 576 290 -49.7 51 54 +5.9 0 0 0.0
Work 318 330 +3.8 634 669 +5.5 557 567 +1.8
Slew 164 182 +11.0 532 391 -26.5 99 102 +3.0

Table 3.14: Results of running experiment 10

Conclusion: Once again changing the thresholds yielded little variation to the data values.
However, significantly more gather_new_data tasks was completed, once again showing
an inefficient utilisation of the task. The thresholds should therefore not be changed in
this manner.

3.4.12 Experiment 11: Double Priority for Non-internal
Communication

Experiment: Double the priority of task gather_new_data and send_data.
Motivation: Performing this experiment will tell if increasing the priority of the already
high priority tasks will yield different results.
Hypothesis: For this experiment we hypothesise

1. Little to no effect on any of the variables. The priority of said tasks is already of
higher priority in the base case.

Results: The results can be found in Table 3.15.

1. True. All values remained the same.

Conclusion: performing this experiment showed that nothing was changed when
comparing to the base case. This shows, not unexpectedly, that increasing the priority
of already high priority tasks does not change anything.

39

Deis108f18 3. Deterministic Model

Program
time

Cost of
Bandwidth

Data sent
to Earth

Data
gathered

Data
transferred

Base: 154 7435 640 750 990
Result: 154 7435 640 750 990
Diff (%) -0.1 0.0 0.0 0.0 0.0

Sat_0 Sat_1 Sat_2
Base Result Diff (%) Base Result Diff(%) Base Result Diff (%)

Runs: send_data 0 0 0.0 0 0 0.0 16 16 0.0
Runs: gather_new_data 10 10 0.0 15 15 0.0 0 0 0.0
Runs: transfer 20 20 0.0 46 46 0.0 0 0 0.0
Runs: receive 0 0 0.0 20 20 0.0 46 46 0.0
Dealys: send_data 0 0 0.0 0 0 0.0 0 0 0.0
Dealys: gather_new_data 0 0 0.0 1 1 0.0 0 0 0.0
Dealys: transfer 16 16 0.0 0 0 0.0 0 0 0.0
Dealys: receive 0 0 0.0 0 0 0.0 0 0 0.0
Idle 382 382 0.0 223 223 0.0 784 784 0.0
Wait 576 576 0.0 51 51 0.0 0 0 0.0
Work 318 318 0.0 634 634 0.0 557 557 0.0
Slew 164 164 0.0 532 532 0.0 99 99 0.0

Table 3.15: Results of running experiment 11

3.4.13 Experiment 12: Double Priority for Internal Communication

Experiment: Double the priority of task transfer and receive. This will cause the
transfer task to become the highest prioritised task and should therefore be executed
more often.
Motivation: This will make transferring data the most important task. Indicating that
moving data to a satellite which can send it to Earth, is the primary responsibility.
Hypothesis: For this experiment we hypothesise

1. More transfer and receive tasks will be completed
2. Fewer gather_new_data and send_data tasks will be completed
3. Slightly less data will be send to Earth. The priority system will make sure that the

gather_new_data and send_data tasks will not be ignored. The tasks will just be
executed after the transfer and receive tasks. Additionally, the gather_new_data
task will be more effective as it sometimes gather more data than what can be stored,
but by transferring before the data is collected, more space on the gathering satellite
will be free thereby allowing more of the data to be stored.

Results: The results can be found in Table 3.16.

1. True. Sat_0 transferred an additional 2 times, it is however not as much as expected.
2. False. The total amount of gather_new_data and send_data tasks was the same as

in the base case.
3. False. The amount of data sent was unaffected.

Conclusion: This experiment resulted in little change to the data values. However, there
where more delays, and more work time. An increased work time may seem to be a good
thing, but if nothing is accomplished, the energy may simply have been waisted. Therefore

40

3.4. Experimenting with the Deterministic Model Aalborg University

Program
time

Cost of
Bandwidth

Data sent
to Earth

Data
gathered

Data
transferred

Base: 154 7435 640 750 990
Result: 157 7435 640 750 1020
Diff (%) +1.9 0.0 0.0 0.0 +3.0

Sat_0 Sat_1 Sat_2
Base Result Diff (%) Base Result Diff(%) Base Result Diff (%)

Runs: send_data 0 0 0.0 0 0 0.0 16 16 0.0
Runs: gather_new_data 10 11 +10.0 15 14 -6.7 0 0 0.0
Runs: transfer 20 22 +10.0 46 46 0.0 0 0 0.0
Runs: receive 0 0 0.0 20 22 +10.0 46 46 0.0
Dealys: send_data 0 0 0.0 0 0 0.0 0 0 0.0
Dealys: gather_new_data 0 4 N/A 1 1 0.0 0 0 0.0
Dealys: transfer 16 21 +31.3 0 0 0.0 0 0 0.0
Dealys: receive 0 0 0.0 0 0 0.0 0 0 0.0
Idle 382 263 -31.2 223 188 -15.7 784 781 -0.4
Wait 576 698 +21.2 51 54 +5.9 0 0 0.0
Work 318 387 +21.7 634 672 +6.0 557 559 +0.4
Slew 164 94 -42.7 532 528 -0.8 99 102 +3.0

Table 3.16: Results of running experiment 12

the priority of the internal communication tasks should not be increased to exceed the other
tasks.

3.4.14 Experiment 13: Finer Granularity on Suggestion-timer

Experiment: The task suggestion interval is set to 1 instead of 3. This value is a
compromise between satellite efficiency and trace length reduction. The value decides
how often the satellites will have to evaluate the tasks in order to find the best ones to
execute.
Motivation: With the inaccuracy described in Section 3.3.4, regarding the suggestion
timer, it should be tested what the impact is thereof. This experiment will be on a model
more precise than that used in the base case, and the hope is that it will show little
deviation there from.
Hypothesis: For this experiment we hypothesise

1. Much increased program time. The finer granularity will result in a much larger
state space.

2. Slight decrease in the idle clocks. The satellites should be more efficient.
3. Small variation in the data values. The finer granularity should mean that the

satellites will sometimes chose to preempt a task that the base case would have
finished.

Results: The results can be found in Table 3.17.

1. True. There is a significant increase in program time as it has more than doubled.
2. Partially true. Sat_0 experienced a slight increase in the idle clock whereas the

other satellites idled less. This is most likely a result of Sat_1 executing more tasks.
3. True

41

Deis108f18 3. Deterministic Model

Program
time

Cost of
Bandwidth

Data sent
to Earth

Data
gathered

Data
transferred

Base: 154 7435 640 750 990
Result: 348 7275 600 750 930
Diff (%) +126.2 -2.2 -6.3 0.0 -6.1

Sat_0 Sat_1 Sat_2
Base Result Diff (%) Base Result Diff(%) Base Result Diff (%)

Runs: send_data 0 0 0.0 0 0 0.0 16 15 -6.3
Runs: gather_new_data 10 8 -20.0 15 17 +13.3 0 0 0.0
Runs: transfer 20 16 -20.0 46 46 0.0 0 0 0.0
Runs: receive 0 0 0.0 20 16 -20.0 46 46 0.0
Dealys: send_data 0 0 0.0 0 0 0.0 0 0 0.0
Dealys: gather_new_data 0 0 0.0 1 1 0.0 0 0 0.0
Dealys: transfer 16 16 0.0 0 0 0.0 0 0 0.0
Dealys: receive 0 0 0.0 0 0 0.0 0 0 0.0
Idle 382 399 +4.5 223 172 -22.9 784 779 -0.6
Wait 576 676 +17.4 51 51 0.0 0 0 0.0
Work 318 229 -28.0 634 602 -5.0 557 546 -2.0
Slew 164 120 -26.8 532 599 +12.6 99 99 0.0

Table 3.17: Results of running experiment 13

Conclusion: This experiment shows that the inaccuracy does indeed have an impact.
While there are little deviation to the data values and cost of bandwidth, there are some
noticeable differences in the clock values, mainly on Sat_0.
Performing this experiment took more than twice the time to complete, for little variations
when considering the system as a whole. Because of this we believe that introducing this
inaccuracy was just in regards to testing the model, but should be removed if used in
practise.

3.4.15 Computation Time

An experiment with 10 satellites was also performed, as it is expected that three satellites
will be insufficient in representing a full convoy. However, writing these traces was more
time consuming and required larger amounts of storage capacity.
Getting a trace with 10 satellites took 3 hours and 38 minutes, and the trace required over
25GB of storage. This led us to estimate the increase in storage and time per satellite
added. We found that for n satellites the file size for n + 1 satellites would be ≈ 66%

higher.
We found the function of time required to get a trace to be: ≈ 100.0464893 ∗
EXP (4.878053161 ∗ 10−1 ∗ n).
EXP returns Euler’s number raised to a power [15]. The equation is found using the online
tool three points parabola calculator [16], the points are measured by ourself with a script
to keep track of time where x is the number of satellites and y is the time required for
SMC to complete the query and output the trace to a file.
From the equation we can conclude that the desired 30 satellite configuration would take
over seven years to complete and 681TB of storage.

The 10 satellite experiment was executed on a laptop and could naturally have been faster

42

3.5. Conclusion Aalborg University

by using a stronger computer. It should be noted that it is not the actual computation time
of completing the query that is time consuming, for example, the base case is completed
in under two seconds. The time comes from having to write the trace to a file or some
other output.
We also attempted running a query with 30 satellites where only the final state was printed.
This experiment was completed in just 53 minutes, and showed that the satellites would
perform approximately the same amount of tasks per satellite.

If the amount of states written in a trace could be reduced, or if the states themselves
could be made smaller i.e. only including values relevant for the schedule, the execution
time and file size would be lessened as well. The trace is necessary as it is analysed in
order to create a schedule.

3.5 Conclusion

In this section we will make a final conclusion on the experiments performed on the
deterministic model. We will focus on what features should be included in the construction
of a non-deterministic model, and whether or not our choices in designing a scheduler have
been valid.

The scheduler behaved as expected. Consider for instance the experiment with double
storage causing small variations mainly in the beginning of the schedule. Or the one with
a more frequent suggestion-timer, which caused little variation to the data values and
number of runs.

These experiments showed that it will be necessary to include the concept of windows as
not doing so causes extensive variations to the schedule where tasks are performed at times
where they would otherwise not be available.
Based on experiment two Section 3.4.3, we believe that slew does not need to be included
as long as this is compensated for, by increasing the execution time of the different tasks.
With the designed scheduler preemption also appeared to be a necessity which should be
included in any future model. However, Section 3.4.7 showed that preemption may not be
needed and the poor results in the previous experiment was a result of the model being
build to include it.

The experiments involving more than three satellites, Section 3.4.15, showed that it is
possible to find a schedule with this method. However, in order to get a schedule it would
require modifications to SMC in order to modify its output. Such modifications would be
to change which information is included in each state. In order to construct the schedule
in would only be necessary to include four variables per satellite, these are as follows:

• Active — what task the satellite is currently performing
• Start time — a time stamp for when the Processor template entered the location

Occupied
• End time — a time stamp indicating when the Processor template left Occupied
• Slews — how many slews were performed prior to entering Occupied

43

Deis108f18 3. Deterministic Model

This would cause an enormous reduction in the amount of information required to print
a state thereby making it possible to compute and output the trace faster and at a lower
memory requirement. Running the initial configuration with three satellites results in
each state describing over 1300 variables and clocks, rather than the necessary twelve.
Additionally all states would not even be needed, for instance all states included because
of the CheckRunnable template could be excluded.

44

Non-deterministic Model 4
In this chapter we will expand upon the knowledge gained during the previous chapter,
Chapter 3, specifically what we learned from examining the experiments. We will continue
to explore the possibilities of modelling convoys of satellites where each convoy represents
a number of satellites that follows the same orbit.

4.1 Scenario

As described in Chapter 1, the scenario we wish to model is made out of multiple satellites
spread across multiple convoys, where each satellite can communicate with other satellites,
and stations at specific times, as according to Section 2.2.
This model is less detailed, as the focus will be on convoys of satellites, instead of examining
individual satellites. In this new non-deterministic model, a global Scheduler template will
suggest tasks to the convoys which they may choose to accept or reject, which makes this
model non-deterministic as the choices are unpredictable. Some restrictions have been
made such that some choices are forced, but this will be explained in detail later.
Given our results from the experiments in Section 3.5 and prior knowledge about CORA
[2], each convoy will use a non-preemptive scheduler with Value Based Priority (VBP).
This decision is made to reduce the number of choices the model will be able to make, and
ultimately decrease the state space which will be essential to run queries with schedule
lengths of around 1440 time units.

Our results from the benchmark in Section 3.5 highlighted the following:

• Preemption will not be part of the non-deterministic model due to it increasing the
state space substantially with little improvement to the schedule

• Slew is also scraped from this model, given we can obtain close to similar results by
assuming one slew is always required for each task executed

• Stations is kept because it gives a more realistic picture and naturally decreases the
state space as the number of choices are limited at some intervals where the convoys
are forced to reject a task due to the task requiring a window that is not available
at the given time

• Cross convoy communication opportunities will be used due to it having similar effect
as stations, where the state space is reduced and staying true to the environment the
satellites are in

The satellites will be able to perform the three tasks: gather_new_data, send_data, and
transfer which were described in more detail in the previous scenario, which can be seen
in Section 3.1. A difference in how the tasks function in comparison the deterministic

45

Deis108f18 4. Non-deterministic Model

model is that transfer now sends data to other convoys, and not to satellites within the
convoy.

60004000
2000 0 20004000

6000

6000400020000200040006000

6000

4000

2000

0

2000

4000

6000

Powered by TCPDF (www.tcpdf.org)

Figure 4.1: Three convoys with ten satellites each, and three stations

Figure 4.1 gives a visual representation of the scenario. The figure has blue coloured
stations and three convoys, coloured teal, each convoy has ten satellites marked with a
red dot. When the teal lines cross, the convoys will be able to communicate with each
other, this has been referred to previously as a cross convoy communication opportunity.
The figure is only a still picture of how the system could look like, and the orbits will
change over time, thereby moving when the cross convoy communication opportunities are
available. The same is true for when the satellites may communicate with the stations.

4.2 UPPAAL CORA

CORA is a branch of UPPAAL, which uses the concept of cost to make optimal reachability
analyses. Optimal refers to finding the path with the minimum cost [17].
Using this the before mentioned unpredictable choices will be based on what is best rather
than simply being random. Unlike UPPAAL which uses timed automata to model a
problem, CORA uses linearly priced timed automata. CORA has the same functionally in
regards to guards, updates, etc. on locations and edges as that described in Section 2.4.

46

4.3. CORA Model Aalborg University

D

cost ’== 2 &&
t <= 10

C

cost ’== 1 &&
t <= 10

B
cost ’== 1 &&
t <= 5

A

t >= 10

t >= 7

t >= 3

t >= 3

Figure 4.2: Template with cost

Figure 4.2 illustrates a model which will be used to demonstrate how CORA uses cost

along with an exhaustive search strategy to find the optimal path. Whenever times passes,
the cost is incremented by the sum of all specified cost rates from the active locations in
every template.
The goal for this example is to find the path with the lowest cost that leads to location D.
The model start in its initial location, A, where the only option is to delay for three time
units, which increases the cost by 3. After the delay, three options become available. It
can either delay again, transition to B, or transition to C. CORA will explore all of these
options, as well as all options these may spawn.

It might appear the better choice is to transition to B as the cost for that location is
cheaper than the cost of C. By taking that path it is forced to wait five units of time before
transitioning to D, leading to a final cost of 10. The best path from the model in Figure 4.2
is to wait for five time units in A, then transition to C where it then waits for an additional
two time units before transitioning to D. This means the optimal path has a cost of 9,
because it costs 5 to wait in A and 4 to wait two units of time in C. This example shows
how the greedy choice, in this case transitioning to B, is not always the best choice in the
long run. It is not difficult to manually discover the optimal path for this particular model,
but it becomes increasingly difficult when the model gets larger and more complex.

4.3 CORA Model

This section details the non-deterministic CORA model. It covers the templates in the
model and the defined data structures along with the priority approach, flow of the model,
and concerns regarding the state space. Lastly experiments is performed and a conclusion
on the findings will be made.

4.3.1 Overview

The non-deterministic model consists of two templates, Scheduler and Convoy, and both
can be viewed in Figure 4.3 and Figure 4.4 respectively. Their responsibilities are listed
below:

47

Deis108f18 4. Non-deterministic Model

The Scheduler template’s responsibili-
ties:

• Suggest and assign tasks for each
Convoy template

• Progression of time
• Ensure performed actions are al-

lowed within the parameters (e.g.
a convoy may not exceed its maxi-
mum storage capacity)

The Convoy template’s responsibilities:
• Randomly accept or reject task

suggested by the Scheduler tem-
plate

• Calculate the cost for its current
status

• Distribute accepted tasks to its
satellites

cc

c

c

time <= lowest &&
TotalTime <; schedule_length &&
lowest != 0 &&
check_constrains() &&
cost ’== calculated_cost

assign_tasks!

time = 0,
sort_lists(),
closest_task_to_finish()

move!

current_task++

time == lowest
current_task = 1,
int_clock += lowest,
update_storage(),
update_satellites(),
update_windows(),
check_idle(),
sort_lists()

current_task == TASKS-1

calculated_cost = 0

current_task != TASKS-1
suggest_task!

Figure 4.3: The Scheduler template

c

c

assign_tasks?
calc_cost(),
add_tasks()

move?

move?

check_station_windows() &&
allow_sending_to_convoy() &&
allow_send_data_to_station()

suggest_task?

accept_suggestion()

allow_gather_data() &&
send_data_to_station_not_skippable() &&
send_to_convoy_not_skippable()

suggest_task?

reject_suggestion()

Figure 4.4: The Convoy template

4.3.2 Data Structure

The model utilises the following data structures; Stations, Convoys(not to be confused
with the template Convoy), Tasks, Executions, and Scheduler(not to be confused with
the template Scheduler).
Stations’s goal is to keep track of how much data that has been sent to the individual
station along with the cost rate. It has two attributes: cost — the bandwidth cost of
sending data to that particular station and data_received — how much data that has
been sent to the individual stations. The struct is used alongside a three dimensional
array which is used to determine when a convoy is within reach of a station, this will be
explained in more detail later.
Convoys defines the limits for the convoy, i.e. the number of satellites, storage capacity,
and the maximum number of parallel executions of the same task. It has six attributes:
satellite—which defines how many satellites the convoy has available, send_to_station
— how many stations the convoy comes in contact with throughout its schedule length
and how many satellites that can be assigned to each station, send_to_convoy — identical

48

4.3. CORA Model Aalborg University

to send_to_station except it describes the relation with other convoys, gather_data —
number of satellites that can gather data, storage — how much data the convoy can store
in total, tasks_depending_on_windows — describes which tasks that are depending on
which windows.
Tasks details the essential information for each task. It has three attributes: task_type

— integer id, execution_time — how long it takes to complete the task, and data_rate

describes the amount of data that is being sent when this task is active.
Executions contains the same attributes as tasks, but has one additional attribute: to

— integer id that refers to which station or convoy that a satellites is sending data. The
struct is used to reduce the state space as it allows us to declare some of the Tasks structs
to be constant which means they will not be considered when a new state is made.
Scheduler keeps track of all satellites across all convoys. It consists of a two dimensional
array where the first index number refers to the convoys and the second index number
corresponds to a satellite, the array is filled with initialised Executions structs.

4.3.3 Suggestion and Assignment of Tasks

The Scheduler template assigns a value to current_task, which indicates what type of
task is currently being suggested to the Convoy templates. The suggestion is sent when
the channel suggest_task is triggered, this is done for every task, whenever a task has
finished. The synchronisation is initialised from the upper loop in the Scheduler template
and can be seen in Figure 4.3. When the Convoy templates receives the synchronisation
they can either transition up or down, shown in Figure 4.4. This will then cause the
templates to either reject or accept the task.

Value Based Priority

When all tasks have been through the decision process, it is then up to the individual
Convoy templates to determine how many satellites should be assign to each task. This is
done using VBP.
VBP is based on the state of the Convoy template i.e. the current amount of data stored,
which windows that are active, and the state of other convoys. The goal for Equation (4.1)
is to return the number of satellites that should be assigned to gather_new_data. The
equation’s variables are detailed below:

• obs_gather_cost[id], obs_sender_station_cost[id], and obs_sender_convoy_cost

[id] have a value between zero and ten depending on the status of the Convoy.
For example, if the convoy has no data in storage and no satellites assigned to the
gather_new_data task, the priority will be set to ten after the calculation. This is
considered bad in almost any scenario except for the beginning where it is unable to
avoid this initial value.

• proc_in_use[id] tells the model how many satellites are currently working.
• convoys[id].satellites correlates to the number of satellites the Convoy have.

In Equation (4.2) we see the actual values for the previous equation when the for the
model time is zero. This results in the equations returning the value nine, meaning that

49

Deis108f18 4. Non-deterministic Model

all satellites will be assigned to the gather_new_data task.

obs_gather_cost[id] ∗ (convoys[id].satellites− proc_in_use[id])
obs_gather_cost[id] + obs_sender_station_cost[id] + obs_sender_convoy_cost[id]

(4.1)

10 ∗ (9− 0)

10 + 0 + 0
(4.2)

Similar calculations are made for when the Convoy template assigns satellites to the tasks
send_data, and transfer, but those calculations use other factors to assign the correct
number of satellites. For example, if a Convoy have a high storage and it is currently in
range of a station, the cost of not assigning satellites to the send_data task should be
high, but if the station that is available right now is five times as expensive as one that
is soon to be available it should reduce the number of satellites assigned and wait for the
other station to become available.
This is also done for the transfer task, but since there is no bandwidth cost associated
with transferring data between convoys, the distribution calculation is altered. Instead,
the Convoy observes how much storage is available on the other Convoy and compare the
percentage to its own. The non-deterministic model tries to encourage the transfer of data
to other convoys when one of the convoys have a lot of available storage. It is beneficial
to transfer data to another convoy as it may be the case that the other convoy has access
to a cheaper station.

Illustrative representation of VBP in the non-deterministic model

In Figure 4.5 an illustration of the VBP measures can be seen, on the x axis we have time
and the y axis is the value of the different lines. The blue line represents the accumulated
total storage, red is how much data that has been sent to all stations, same for yellow with
respect to convoys, and last the green represents the constant maximum storage.

The blue line, total storage, will rise whenever data has been collected and decrease
whenever data is sent to a station or another convoy. There is a spike where it is close to
reaching maximum capacity which can be caused by a number of different reasons. In this
scenario it seems it is not within reach of a station, or the cost of the station is too high
compared to all the stations it can potentially communicate with later.
As time passes the yellow line goes up indicating it is transferring its data to another convoy
until it finally reaches a station in which it find suitable to send its data to. Figure 4.6
follows the same time line as Figure 4.5, but shows how the different parameters goes up
and down according to total storage capacity and available stations/convoys.

50

4.3. CORA Model Aalborg University

Figure 4.5: Monitor total storage, amount of data sent to stations, and convoys over 600
time units

Figure 4.6: Monitor cost of different parameters over 600 time units

Stations

The stations are defined and used identically to how the deterministic model handled them.
This means a convoy can have multiple satellites communicating with a single station. The
stations have no limit on how many satellites that may send data to it simultaneously.

51

Deis108f18 4. Non-deterministic Model

Windows

The windows behaves similar to those used in the deterministic model, there is however a
difference in when they are available for the satellites. The satellites are distributed evenly
around the orbit, meaning the convoy will always have a number of satellites in range of
a station, if the current orbit comes within range. The windows are used to represent
Earth’s rotation and how the rotation affects what land mass the satellites flies above. As
Earth rotates, the orbit is slightly skewed as it does not adjust to the rotation.
We handle this by assigning a constant number of satellites that may communicate with
the stations, as long as the orbit comes in reach of the them.

Cost

The cost is calculated in the same manner as how we assign tasks to each Convoy template.
The formula for this can be seen in Listing 4.1. The cost is based of a range between 0 and
10 for each Convoy . Each Convoy may have multiple stations available at a given time and
all of them are examined since the bandwidth cost may vary between the stations. When
an available station is inspected, a number is computed that uses the following factors:

• Percentage storage — uses current storage and maximum storage level
• Percentage cost — uses current station cost and the most expensive station cost out

of all those available to the convoy
• Percentage occupied — uses current number of satellites currently assigned to sending

data to the station, out of the maximum number of satellites able to send to the
station

This number represent the cost for communicating with the stations i.e. if the convoy
has full storage and all of its satellites assigned to send_data it results in a cost of 0.
However, when we have half storage and two station’s with different bandwidth cost and
no satellites assigned to send_data, both stations should produce a cost. The station with
a low bandwidth cost should produce a high cost, so future decision made by CORA should
be to minimise this cost by assigning satellites to start sending data to the station, on the
other hand if only the station with high bandwidth cost is available it should produce a
low cost, so CORA is only incentivise to use this when the cost starts to raise, which only
happens when storage levels start to increase as a result of not sending to any station or
convoys while still gathering data. After each station have been calculated we add up the
values and divide it to fits into a range between 0–10, as seen on line 28–34. The final
accumulated cost is then assigned to the variable calculated_cost, seen on line 35.

52

4.4. State Space Concerns Aalborg University

1 internal_cost = find_highest_cost ();
2 for (s = 0; s < STATIONS ; s++){
3 sender_cost[id][s] = 0;
4 if (convoys[id]. send_to_station[s] != 0){
5 if (
6 ((100- storages[id]*100/ convoys[id]. storage)
7 * ((internal_cost *100)/stations[s].cost))
8 + (((internal_cost *100)/stations[s].cost)
9 * (100- send_to_station[id][s]*100/ convoys[id].

send_to_station[s]))
10 < ((storages[id]*100/ convoys[id]. storage)
11 * ((internal_cost *100)/stations[s].cost))
12 + (((internal_cost *100)/stations[s].cost)
13 * (send_to_station[id][s]*100/ convoys[id]. send_to_station[s

])))
14 {
15 sender_cost[id][s] = (
16 (100- storages[id]*100/ convoys[id]. storage)
17 * ((internal_cost *100)/stations[s].cost))
18 + (((internal_cost *100)/stations[s].cost)
19 * (100- send_to_station[id][s]*100/ convoys[id].

send_to_station[s]));
20 }
21 else{
22 sender_cost[id][s] = (
23 (storages[id]*100/ convoys[id]. storage)
24 * ((internal_cost *100)/stations[s].cost))
25 + (((internal_cost *100)/stations[s].cost)
26 * (send_to_station[id][s]*100/ convoys[id].

send_to_station[s]));
27 }
28 total_cost += (internal_cost *100)/stations[s].cost;
29 n++;
30 }
31 else{
32 sender_cost[id][s] = (
33 (storages[id]*100/ convoys[id]. storage)
34 * ((internal_cost *100)/stations[s].cost))
35 + (((internal_cost *100)/stations[s].cost)
36 * (send_to_station[id][s]*100/ convoys[id]. send_to_station[s]));
37 }
38 total_cost += (internal_cost *100)/stations[s].cost;
39 n++;
40 }
41 obs_sender_station_cost[id] += sender_cost[id][s]/(100/n);
42 }
43 obs_sender_station_cost[id] /= total_cost /10;
44 obs_sender_station_cost[id] /= n;
45 calculated_cost += obs_sender_station_cost[id];

Listing 4.1: Code for calculating cost

4.4 State Space Concerns

With three defined tasks and three convoys in the non-deterministic model, each time the
convoys are suggested a task it creates a maximum of (23)3 choices. Table 4.1 illustrates
the magnitude given 1–5 suggestion(s).

Table 4.1 indicates that the number of actions the model can take quickly grows out of

53

Deis108f18 4. Non-deterministic Model

proportion. This led us to restrict the non-deterministic behaviour in some parts of the
model. One instance where the non-determinism have been restricted is when determining
how many satellites that should be assigned to a given task.

Suggestions Traces to explore:
1 512
2 262.144
3 134.217.728
4 68.719.476.736
5 35.184.372.088.832

Table 4.1: Calculating number of traces/options to explore

Based on previous experience [2] with how many traces CORA quickly generates, we would
like to limit the number of choices that the model is presented with. To do so, four measures
have been implemented which are optional and can be tweaked to generate a best trace
within the constraints.

1. The gather_new_data task must be accepted if the storage is below 50 % for the
individual convoy

2. The send_data task cannot be accepted if storage is below 50 % of the convoy’s total
storage, and must be taken if the storage is above 75 %

3. The transfer task is identical to send_data in which it only has non-deterministic
behaviour when storage is between 50 and 75 %

4. The gather_new_data task is always accepted regardless of the convoys storage, this
overrules the first reduction to even further reduce state space

These constraints are then wrapped in methods that evaluates to true or false, and placed
on the edges that accept or reject tasks in order to limit CORA’s options. The effect of
these measures will be experimented with in order to measure how much they impact the
model.

100 Legend
80 Must accept
60 Free choice
40 Must reject
20
0

Storage
level (%)

gather_
new_data

send_data transfer

Figure 4.7: Thresholds for the individual tasks

In Figure 4.7i a visual illustration of these storage percentage restrictions can be seen. The
three columns corresponds to the three tasks, where the column height indicates at what
storage level the different task can be taken, i.e. send_data cannot be taken before the
convoy’s storage is above 50 %, and must be taken when above 75 %. CORA has free
choice in-between the the 50 and 75 % thresholds.

54

4.5. Experimenting with the Non-deterministic Model Aalborg University

4.5 Experimenting with the Non-deterministic Model

In this section we will perform several experiments on the non-deterministic model. We
will be exploring which parts of the model have the most significant impact in regards to
the state space. As in Section 3.4 our hypothesis and motivation for each experiment will
be presented prior to discussing the results.
The reasoning for performing these experiments are to test which values have the most
and least significant impact on the model. To test the implemented scheduling method,
as well as the feasibility of using a non-deterministic approach to generating a trace.

The results of each experiment will be presented next to the results of running the initial
configuration and the percentage difference between the two. The section will end with
a comparison of the maximum trace length for each experiment and lastly a conclusion
capturing the findings of the experiments.

4.5.1 Initial Configuration

Before performing the experiments we will be presenting the initial configuration and the
results of finding the best trace after 200 units of time. The reason for only running
the experiments for 200 units of time is that CORA, when finding the best trace, uses
exhaustive space exploration which may consume too much memory to finish. It is possible
to get a trace for 300 time units with the base case, but since some of the experiments
may consume more memory, we want to test with a shorter trace.
The results of the initial configuration run will be used as a base case, to which the results
of each experiment will be compared against.

The base case consist of two convoys with ten satellites in each. Additionally, each convoy
will have two stations each where their tasks send_data can be executed when the convoy’s
orbit is in range. Both convoys will be able to perform the same type of tasks, have equal
storage capacity, and equal initial storage level. All this can be seen in Table 4.2 along
with values associated with the stations, and tasks.
The Tasks column in Table 4.2 lists four tasks, even though the Global Settings row dictate
that there are only three tasks available. The reason for this conflict is because only three
tasks can be initiated by the convoy itself, the forth one, Receive_From_Convoy, is only
assigned when another convoy is transferring data to it via the transfer task.

Base Case

From the base configuration we produce values for the following variables, seen in Table 4.3.
This is the values that will be used for our base case, to see changes when running
experiments.

• Cost of Bandwidth (CoB) – Accumulated cost of all the data sent to each station
• CoB:ratio – Indicate how much each single data unit costed to send.
• Station data – Show how much data each station has received, where the numbering

refer to individual station.
• Total data – accumulated data of all the stations.
• Runs:<TASK> – How many times each convoy has executed that task
• Transfer – How much data the convoy has transferred.

55

Deis108f18 4. Non-deterministic Model

Convoy
Thresholds

Station
Thresholds

Global Settings Tasks Convoys Stations Storages Low High Low High
3 2 4 (500, 500) 70 100 30 40

Convoys satellites send_data transfer gather_new_data storage tasks_depending_on_windows

Convoy #1 10 (2, 1, 0, 0) (0, 3) 10 1000
((-1, -1, -1, -1), (1, 1, 0, 0),
(-1, -1, -1, -1), (-1, -1, -1, -1))

Convoy #2 10 (0, 0, 1, 2) (3, 0) 10 1000
((-1, -1, -1, -1), (0, 0, 1, 1),
(-1, -1, -1, -1), (-1, -1, -1, -1))

Stations cost data_recieved

Station #1 2 0
Station #2 5 0
Station #3 3 0
Station #4 2 0

Tasks task_type execution_time data_rate

gather_new_data 0 15 2
send_data 1 15 4
transfer 2 15 4
Receive_From_Convoy 3 15 4

Table 4.2: Initial configuration for the experiments

• Receive – How much data the convoy has received.
• Storage – How much data is left in each convoy.

General fields Convoy fields
convoy_1 convoy_2

CoB 6420 Runs:send_data 20 24
CoB:ratio 2.61 Runs:gather_new_data 50 38
Cora: Cost 2600 Runs:transfer 6 2
Station data 1 840 Runs:receive 2 6

2 360 Transfer 360 120
3 420 Receive 120 360
4 840 Storage 410 530

Total data 2460

Table 4.3: Results of running the initial configuration

4.5.2 Experiment 1: Finer Granularity of Scoring

Experiment: Scores given when assigning tasks have been changed from 0–10 to 0–100.
Motivation: This experiments is performed to observe the effect of scoring with higher
ranges to determine the impact compared to the base case. Testing this is important as
the 0–10 range cuts off the most significant decimal, which may be more important than
initially thought.
Hypothesis: For this experiment we hypothesise

1. Close to similar results across all fields

Results: The top section of Table 4.4 shows close to similar results compared to the base
case. Whereas the bottom part shows that the path taken is remarkably different.
The reasons why it did not take the same path is a result of some of the priorities not
having the same score e.g. the score of two tasks in the base case may both have been 5,
but a wider range revealed these to be 51 and 58.
Additionally we notice that the CORA cost has decreased while the CoB increased, despite
maintaining the same total amount of data gathered from the stations. This is because

56

4.5. Experimenting with the Non-deterministic Model Aalborg University

Station data
CoB CoB:ratio CORA cost 1 2 3 4 Total

Base 6420 2.61 2600 840 360 420 840 2460
Result 6540 2.659 2390 840 420 360 840 2460
Diff (%) +1.9 +1.9 -8.1 0 +16.7 -14.3 0 0

convoy_1 convoy_2

Base Result Diff (%) Base Result Diff (%)
Runs:send_data 20 21 +5.0 24 23 -4.2
Runs:gather_new_data 50 40 -20.0 38 48 +26.3
Runs:transfer 6 2 -66.7 2 4 +100.0
Runs:receive 2 4 +100.0 6 2 -66.7
Transfer 360 120 -66.7 120 240 +100.0
Receive 120 240 +100.0 360 120 -66.7
Storage 410 410 0 530 530 0

Table 4.4: Results of running experiment 1

CORA cost is not strictly tied to the CoB, but also consider the storage level of each
convoy, and how many satellites each convoy have assigned to sending data to a station.
This indicates that the process of how the CORA cost is calculated should be reworked
to focus more on CoB. It should be changed such the CORA cost rises whenever the CoB
goes up.

4.5.3 Experiment 2: Double Satellites in All Convoys

Experiment: Increase the number of satellites in each convoy from 10 to 20. Additionally
the number of satellites that can be assigned to each task, and the storage capacity have
been doubled.
Motivation: To test what impact increasing the number of satellites will have to the
maximum schedule length.
Hypothesis: For this experiment we hypothesise

1. CoB will approximately double
2. Stations data received will doubled
3. More send_data and gather_new_data task executions overall
4. Expect similar maximum trace length. This may seem counter intuitive but since we

hypothesise adding satellites does not introduce new choices, it will have little effect
on the state space.

Results: Doubling the amount of satellites shows that our first three hypothesis are true,
and the last is partially true as it was still able to run 200 time units. Also worth noting
is the decrease in CORA cost, indicating that with double the satellites it is better at
balancing its storage level throughout the run.

57

Deis108f18 4. Non-deterministic Model

Station data
CoB CoB:ratio CORA cost 1 2 3 4 Total

Base 6420 2.61 2600 840 360 420 840 2460
Result 13140 2.639 1985 1680 780 840 1680 4980
Diff (%) +104.7 +1.1 -23.7 +100.0 +116.7 +100.0 +100.0 +102.44

convoy_1 convoy_2

Base Result Diff (%) Base Result Diff (%)
Runs:send_data 20 41 +105.0 24 42 +75.0
Runs:gather_new_data 50 85 +70.0 38 80 +110.5
Runs:transfer 6 3 -50.0 2 1 -50.0
Runs:receive 2 1 -50.0 6 3 -50.0
Transfer 360 180 -50.0 120 60 -50.0
Receive 120 60 -50.0 360 180 -50.0
Storage 410 670 +63.4 530 760 +43.4

Table 4.5: Results of running experiment 2

4.5.4 Experiment 3: Adding a Convoy

Experiment: Increase the number of convoys from 2 to 3. The new convoy will have 10
satellites as the other convoys, and have access to the stations #2 and #3
Motivation: To investigate the impact an additional convoy will have to the maximum
schedule length.
Hypothesis: For this experiment we hypothesise

1. 50 % higher CORA: cost
2. 50 % higher CoB
3. 50 % more data send to stations
4. More internal communication
5. Reduced maximum trace length. Unlike adding satellites, adding convoys causes the

model to make more choices and thus increase the state space.

Attempt 1

Results: CORA runs out of memory and can therefore not produce any results

Attempt 2

Adjustments: Changing the lower threshold for convoys from 50 to 55. This reduce the
number of choices taken, and may allow the query to finish.

Results: All of the stated hypothesis are true, except for the 50 % higher CoB, which
increased by 67,3 %. Total internal communication for the base case was 8 which increased
to 9, however, we expected this to be higher because convoy #3 only had access to stations
with a higher CoB, making it less ideal to send to.
From the results we see that convoy_3 ended up getting the most Receive_From_Convoy
tasks. This is unexpected as convoy_3 has access to the more expensive stations. This is
likely a result of the other convoys assigning their satellites first, and Receive_From_Convoy

58

4.5. Experimenting with the Non-deterministic Model Aalborg University

Station data
CoB CoB:ratio CORA cost 1 2 3 4 Total

Base 6420 2.61 2600 840 360 420 840 2460
Result 10740 2.934 3980 840 720 1260 840 3660
Diff (%) +67.3 +12.4 +53.1 0 +100.0 +200.0 0 +48.78

convoy_1 convoy_2 convoy_3

Base Result Diff (%) Base Result Diff (%) Base Result Diff (%)
Runs:send_data 20 20 0 24 23 -4.1 N/A 20 N/A
Runs:gather_new_data 50 45 -10.0 38 49 +28.9 N/A 41 N/A
Runs:transfer 6 2 -66.6 2 4 +100.0 N/A 3 N/A
Runs:receive 2 2 0 6 2 -66.6 N/A 5 N/A
Transfer 360 120 -66.6 120 240 +100.0 N/A 180 N/A
Receive 120 120 0 360 120 -66.6 N/A 300 N/A
Storage 410 500 +21.9 530 440 -16.9 N/A 530 N/A

Table 4.6: Results of running experiment 3

can not be rejected. Alternatively, it can be the result of an inaccuracy in the scoring
function.
It is difficult to compare these results to the base case, as an adjustments was needed
before being able to run the query, this could potentially lock out better paths.

4.5.5 Experiment 4: Different Task Execution Time

Experiment: Change the execution time of all task which where 15, so gather_new_data

takes 14 time units, send_data takes 15, and transfer and receive takes 16.
Motivation: This is a more realistic set up as it is doubtful all tasks will take the same- or
even a dividable amount of time. This will impact the maximum trace length significantly,
because the Scheduler template is able to suggest tasks more rapid.
Hypothesis: For this experiment we hypothesise

1. Reduced trace length
2. Slightly higher amount of tasks being performed

Attempt 1

Results: CORA runs out of memory and can therefore not produce any results

Attempt 2

Adjustments: Changing convoy lower threshold from 50 to 70.

Results: Given the first attempt failed, reduced schedule length is confirmed. The second
hypothesis was partially true as both send_data and gather_new_data has increased but
by much more than expected. Whenever a task finishes new tasks are suggested to the
convoys. In the base case, tasks were suggested at time 15, 30, 45 but this experiment
could potentially change these timestamps to 14, 15, 16, 28 and so on. But due to it
not producing a result with similar settings to the base case it is difficult to compare the

59

Deis108f18 4. Non-deterministic Model

Station data
CoB CoB:ratio CORA cost 1 2 3 4 Total

Base 6420 2.61 2600 840 360 420 840 2460
Result 8488 2.666 1917 1072 532 524 1056 3184
Diff (%) +32.2 +2.1 -26.3 +27.6 +47.8 +24.8 +25.7 +29.43

convoy_1 convoy_2

Base Result Diff (%) Base Result Diff (%)
Runs:send_data 20 27 +35.0 24 27 +12.5
Runs:gather_new_data 50 70 +40.0 38 66 +73.7
Runs:transfer 6 2 -66.7 2 2 0
Runs:receive 2 2 0 6 2 -66.7
Transfer 360 128 -64.4 120 128 +6.7
Receive 120 128 +6.7 360 128 -64.4
Storage 410 766 +86.8 530 678 +27.9

Table 4.7: Results of running experiment 4

validity other than changing the execution times have a substantial effect on the maximum
trace length.

4.5.6 Experiment 5: Removing Constraints

Experiment: Each convoy will be able to accept or reject any task including
gather_new_data i.e. the convoys are never forced to allocate satellites to perform a
specific tasks.
Motivation: This experiment will make all choices truly non-deterministic rather than
some of the choices being based on values specified by us. This is going to test the effect
of the forced behaviour in the model.
Hypothesis: For this experiment we hypothesise

1. Reduced maximum trace length
2. Lower CORA cost

Results: It was not possible to produce a trace of time 200 for this experiment. Because
of this no results have been included. Regardless, this shows that it is needed to enforce
some behaviour, otherwise CORA will consume all the available memory.

4.5.7 Experiment 6: Increase Windows’ Span

Experiment: Increase all station windows by 20 %, meaning that the satellites have 20
% more time to send data.
Motivation: As the duration satellites are over stations are defined using a formula
with parameter values defined by us, it should be tested whether or not these values are
appropriate for the initial configuration.
Hypothesis: For this experiment we hypothesise

1. More data sent to the stations with a bandwidth cost of 2 or less, and less data sent
to the other stations

60

4.5. Experimenting with the Non-deterministic Model Aalborg University

2. Minimal effect on trace length
3. Lower CORA cost
4. Increase in gather_new_data and send_data tasks. As there are better possibilities

for sending data, there will be more storage available to gather additional data.

Station data
CoB CoB:ratio CORA cost 1 2 3 4 Total

Base 6420 2.61 2600 840 360 420 840 2460
Result 7680 2.56 2360 1080 420 420 1080 3000
Diff (%) +19.6 -1.9 -9.2 +28.6 +16.7 0 +28.6 +21.95

convoy_1 convoy_2

Base Result Diff (%) Base Result Diff (%)
Runs:send_data 20 25 +25.0 24 28 +16.7
Runs:gather_new_data 50 56 +12.0 38 50 +31.6
Runs:transfer 6 3 -50.0 2 1 -50.0
Runs:receive 2 1 -50.0 6 3 -50.0
Transfer 360 180 -50.0 120 60 -50.0
Receive 120 60 -50.0 360 180 -50.0
Storage 410 410 0 530 530 0

Table 4.8: Results of running experiment 6

Results: The two stations with a bandwidth cost of 2 received significantly more data,
with a lower CORA cost and better CoB:ratio. One of the more expensive stations also
experienced an increased in data received. This is because the two convoys are able to
send more and thus have the available storage to gather more data as seen in the bottom
part of the table.

4.5.8 Experiment 7: Decrease Windows’ Span

Experiment: Decrease all station windows by 20 %.
Motivation: The above experiment showed it was impactful to increase the window span.
We wish to know whether or not this will be the case if these are decreased.
Hypothesis: For this experiment we hypothesise

1. Less data sent to all stations
2. Higher CORA cost
3. Higher CoB:ratio
4. Less gather_new_data and send_data executed

Results: None of the hypothesis held true. The only change is convoy_2 has performed
fewer send_data tasks. The reason why there are no variations to the amount of data sent
to the stations, is that the base case has stopped before three of the send_data tasks were
completed. The amount of task runs are incremented when the they are assigned whereas
the data are not updated until the tasks are completed.
The reason for there being no difference otherwise is likely due the windows still being
large enough for the satellites to finish the tasks they are executing.

61

Deis108f18 4. Non-deterministic Model

Station data
CoB CoB:ratio CORA cost 1 2 3 4 Total

Base 6420 2.61 2600 840 360 420 840 2460
Result 6420 2.61 2600 840 360 420 840 2460
Diff (%) 0 0 0 0 0 0 0 0

convoy_1 convoy_2

Base Result Diff (%) Base Result Diff (%)
Runs:send_data 20 20 0 24 21 -12.5
Runs:gather_new_data 50 50 0 38 38 0
Runs:transfer 6 6 0 2 2 0
Runs:receive 2 2 0 6 6 0
Transfer 360 360 0 120 120 0
Receive 120 120 0 360 360 0
Storage 410 410 0 530 530 0

Table 4.9: Results of running experiment 7

4.5.9 Experiment 8: Increase Threshold for Convoys

Experiment: Widen the interval for which CORA may choose to send to another convoy.
This interval are changes from 50–100 to 25–100.
Motivation: As thresholds are values defined by us, it should be tested whether or not
the chosen values are valid or should be changed.
Hypothesis: For this experiment we hypothesise

1. Lower CORA cost. As the model is able to make more choices it should be able to
find a better path.

2. Higher CoB:ratio. As the data is expected to be transferred more between convoys
it may cause small variations to the amount of data received by each station e.g.
station #1 might receive 30 less data and station #4 receive 30 more data.

3. Increase in the number of transfer tasks

Results: All hypothesis where true except for CoB:ratio being higher. This may be a
result of the cheaper stations already being used to their maximum capability.

4.5.10 Experiment 9: Decrease Threshold for Convoy

Experiment: Change the threshold for convoy decisions from 50–100 to 75–100 i.e.
narrowing the range of when the convoy may chose to transfer to another convoy.
Motivation: As thresholds are values defined by us, it should be tested whether or not
the chosen values are valid or should be changed.
Hypothesis: For this experiment we hypothesise

1. Higher CORA cost
2. Fewer transfer tasks

62

4.5. Experimenting with the Non-deterministic Model Aalborg University

Station data
CoB CoB:ratio CORA cost 1 2 3 4 Total

Base 6420 2.61 2600 840 360 420 840 2460
Result 6420 2.61 2540 840 360 420 840 2460
Diff (%) 0 0 -2.3 0 0 0 0 0

convoy_1 convoy_2

Base Result Diff (%) Base Result Diff (%)
Runs:send_data 20 20 0 24 24 0
Runs:gather_new_data 50 42 -16.0 38 46 +21.1
Runs:transfer 6 5 -16.7 2 4 +100.0
Runs:receive 2 4 +100.0 6 5 -16.7
Transfer 360 240 -33.3 120 240 +100.0
Receive 120 240 +100.0 360 240 -33.3
Storage 410 410 0 530 530 0

Table 4.10: Results of running experiment 8

Station data
CoB CoB:ratio CORA cost 1 2 3 4 Total

Base 6420 2.61 2600 840 360 420 840 2460
Result 6420 2.61 2695 840 360 420 840 2460
Diff (%) 0 0 +3.7 0 0 0 0 0

convoy_1 convoy_2

Base Result Diff (%) Base Result Diff (%)
Runs:send_data 20 20 0 24 24 0
Runs:gather_new_data 50 44 -12.0 38 46 +21.1
Runs:transfer 6 0 -100.0 2 0 -100.0
Runs:receive 2 0 -100.0 6 0 -100.0
Transfer 360 0 -100.0 120 0 -100.0
Receive 120 0 -100.0 360 0 -100.0
Storage 410 470 +14.6 530 500 -5.7

Table 4.11: Results of running experiment 9

Results: Both statements where true. Showing that increasing and narrowing the span
where the model may chose to transfer has the opposite effect.

4.5.11 Experiment 10: Increase Threshold for Stations

Experiment: Increase the upper and lower limit for when CORA can decide to send data
to a station, changed from 30–40 to 20–60.
Motivation: As thresholds are values defined by us, it should be tested whether or not
the chosen values are valid or should be changed.

63

Deis108f18 4. Non-deterministic Model

Hypothesis: For this experiment we hypothesise

1. Lower CORA cost
2. Higher CoB:ratio
3. More total data sent

Station data
CoB CoB:ratio CORA cost 1 2 3 4 Total

Base 6420 2.61 2600 840 360 420 840 2460
Result 6420 2.61 2600 840 360 420 840 2460
Diff (%) 0 0 0 0 0 0 0 0

convoy_1 convoy_2

Base Result Diff (%) Base Result Diff (%)
Runs:send_data 20 20 0 24 21 -12.5
Runs:gather_new_data 50 50 0 38 38 0
Runs:transfer 6 6 0 2 2 0
Runs:receive 2 2 0 6 6 0
Transfer 360 360 0 120 120 0
Receive 120 120 0 360 360 0
Storage 410 410 0 530 530 0

Table 4.12: Results of running experiment 10

Results: All hypothesis where false, this shows that the non-deterministic model will
never consider sending data with a storage level below 30 %. Additionally it seems it will
try to send when above 40 % storage.

4.5.12 Schedule Length Experiment

Throughout most of the experiments it was possible to finish the query finding a trace of
length 200 without any additional modifications. However, for a few of the experiments it
was not possible to finish the query. Because of this and to answer the many hypothesis
revolving around the maximum trace length, a last experiment will be performed. In this
experiment we will find the maximum trace length for each of the experiments described
in this section.
This will be done by testing different intervals, as finding the precise value would take
many attempts. The intervals there will be tested are; 50, 75, 100, 150, 200, 300, 400, 600,
800, 1200, and 1600.
In Table 4.13 a list of all the experiments can be seen along with their maximum trace
length. Most noticeable is Decrease threshold for convoys as it was able to find a trace of
1600 time units. The reason the independent experiment can do so is that it can remain
below the convoy threshold in most of the run, reducing the number of times it has to make
a decision. In the other experiments this was not possible but by decreasing the threshold
for when to transfer to other convoys the amount of choices where decreased significantly.

We can conclude that with the non-deterministic model the most demanding factors are
multiple tasks with different execution times, and allowing CORA to find the optimal

64

4.6. Conclusion for Experiments Aalborg University

path without guiding it. Meaning, sometimes enforcing what tasks to execute. These
experiments are mentioned as they where only able to produce a trace of 75 time units.

Experiments Schedule Length
Initial Configuration 300
Finer Granularity of Scoring 400
Double Satellites in All Convoys 300
Adding a Convoy 150
Different Task Execution Time 75
Removing Constraints 75
Increase Windows’ spans 400
Decrease Windows’ spans 300
Increase Threshold for Convoys 200
Decrease Threshold for Convoys 1600
Increase Threshold for Stations 200

Table 4.13: Maximum schedule length for each experiment.

4.6 Conclusion for Experiments

Through the experiments some valuable information was gathered. Most of the results
from the experiments holds true to the hypothesises, but the once that stand out where
changing granularity of scoring, decrease windows’ span, increase threshold for stations,
and decrease threshold for stations.

Changing granularity of scoring causes the best trace to make some different decisions
early on in the trace, which resulted in the final one to be significantly different. This did
not end up as a problem as the CoB, CoB:ratio, CORA cost and data sent to the stations
values were similar to that of the base case, which would imply that the base granularity
is sufficient for finding the optimal path. We learnt, from the same experiment, that the
calculation for the CORA cost could be improved such that the CoB:ratio will have a
larger impact.

Decrease windows’ span did not behave as expected, because it stayed true to the base case
and as we assumed it would decrease in data sent to the stations. This may be because
that only decreasing the amount by 20 % was not enough to make an impact to when we
used to send data to the stations.

Similarly, the increased threshold for stations experiment did not behave as expected either.
The reason for this might be that when the storage for a given convoy is low, it assigns
many satellites to the gather_new_data task. This results in the storage level potentially
increasing such that the 40 % threshold is met.

The experiments show us the following results; the base case configuration may not be the
best configuration in regards to showcasing some of the implemented features that were
altered and tested, such as the thresholds and window spans.
Given that not much improvement was shown in some of the experiments where CORA
was less restricted in choosing what tasks should be executed. This indicates that non-

65

Deis108f18 4. Non-deterministic Model

determinism may not be the most important factor to consider when making a schedule.
The underlying logic for determining optimal decisions based on the knowledge about the
satellites or convoys state may provide better results. This is tied with our finding from the
trace length observations, which indicate that if we where to give CORA more freedom, it
would not be able to produce a schedule longer than an two hours at best.

66

Discussion 5
In this chapter we will discuss some of the alternatives to the choices taken throughout
the project. This will focus on the construction of the different models, and why we have
done what we did. Each topic will highlight a problem that we encountered after testing
or reviewing a particular feature, and we will discuss alternative routes that could have
been taken, with the knowledge obtained since. There may not always be a solution to
the specific topic and if a solution is found there are in most cases no proof it would be an
improvement. But it is important to consider potential limitations.

5.1 Task Suggestion

When a new task is suggested in the deterministic model it is suggested because it has
the highest priority. Ties are resolved by choosing the task with the lowest index in the
array that contains all of the tasks. The suggestion does not consider whether the task
is available or not. This means that some of the suggested tasks can not be started right
away. This causes the satellite to idle if it does not have any available tasks in its queue.
This issue could be resolved by changing how suggestions are made. Instead of sending a
single task as a suggestion to the Scheduler template, an array of tasks that are arranged
by their current priority could be sent. The Scheduler template would then check which
are available and enqueue the available one with the highest priority.
This feature will probably make the scheduler more efficient in executing more tasks, but
it was not made into an experiment in Section 3.4 as we were not testing the efficiency of
the scheduler.

5.2 VBP in the Deterministic Model

The non-deterministic model implemented a VBP for determining each task’s importance.
This allow for a more dynamic task priority with a finer granularity in comparison to
how the deterministic model handles priority. This approach would have been interesting
to implement in the deterministic model. We believe doing this would result in a better
schedule i.e. more data would be sent to Earth.

5.3 Non-Deterministic Base Case

The results of the non-deterministic experiments showed in some cases that the base case
may not have been configured optimally in regards to showcasing all of the features of
the model, this was clear from the experiments regarding the lower threshold for station,

67

Deis108f18 5. Discussion

which had little to no effect on the results. The problem stems from a lack of us not
observing some potentially impactful variables, that we did not know could have helped
gain the necessary insight into the behaviour of the model. The variables we would had
like to observe should provide information about the maximum potential data sent to each
station based on their windows, and convoy efficiency in regards to how well the convoys
utilised the satellites they may communicate with. With these variables, we will be able to
observe if a station is already used to its maximum potential. This would potentially alter
the base configuration and thus the base case. With a better base case, it might have been
possible to have gained more insight into the model and possible undiscovered problems.

5.4 VBP

The priorities used to calculate the importance of each task have some minor flaws, which
will be explained in this section along with some possible addition to how the implemented
VBP could become more accurate. When calculating the VBP for determining the number
of send_data tasks that should be assigned, the percentage- storage, cost of station, and
satellites already sending to the station, are used. It is mainly the cost of station that
should be changed so it is aware of what the cheapest and most expensive station overall
is, instead of only considering the once currently available.
If a convoy only has one station available to it, it will assume that the station is the best to
send to. This is somewhat true, but if it was able to see what convoys it could communicate
with and what the cost of their available stations are, it might be a better choice sending
its data to other convoys rather than sending to an expensive station.

The same applies for the VBP calculation when concerning send_to_convoy. This should
include the knowledge about what station the receiving convoy has available to it. As it
does not make sense to transfer data to a convoy not associated with any stations, or to
send to a convoy associated with more expensive stations only.

5.5 Windows

The non-deterministic model uses the same concept of windows as the deterministic model,
but because it looks at all the satellites at a much greater scale some modifications was
made to the windows. The convoy consist of a number of satellites that are evenly
distributed in the orbit. Each convoy have a variable to define how many satellites are
over a station, so when one satellite goes out of range of a station, another enters goes into
range.
Given that the station’s range is defined by a radius, its area is circular and it is therefore
not correct to assume that some defined amount of satellites can always be in range of
the station, even thought the orbit is above it. The reason for this is that when the
orbit of the convoy first enters the station’s circular area, only one satellites will be able to
communicate with it briefly. As time passes the windows increase until one of the satellites
are always above the station’s area. This continues to increase until the satellites are right
above the station in which the window starts to shrink again. This is a result of the orbit
not matching the rotation of the Earth.

68

5.6. Schedule Aalborg University

5.6 Schedule

It was discovered that the non–deterministic model was unable to produce a schedule.
Each convoy have a list of satellites representing if they are currently executing a task.
Additionally storage is not tracked on each satellite but rather as a total amount on the
convoy. When we find the lowest amount of time that should be passed in order for a task
to finish, we first sort the list based on execution time. When new task are assigned they
choose the first available satellite.
This mean that even if we simply added an id to the satellites to keep track of them when
we sort the list, it will still result in the first couple of satellites will be used more then
the once in the end of the list. For us to fix this each satellites will need to have its own
storage and not use a total storage over all the satellites in the convoy. By doing so would
require some more modification to some of the logic, the convoy will no longer need to
calculate how many satellites should execute n task, but the satellites itself will use the
VBP to determine what task it should execute. Additionally the checking when a satellites
it within a window should be similar to that of the deterministic model.

5.7 Satellite Offset Strategies

The satellites in the deterministic model is distributed throughout the orbit with an offset
to their current position, this is handled by delaying until the offset is reached before a
satellite may enter the location Start. And when it is checked whether or not a satellite
is within a window, its offset are subtracted from the total time in order to answer this.
The problem with the deterministic solution is that the satellites with an offset are forced
to idle until that offset is met. This means the smaller an offset, the longer a schedule. It
is also problematic if those with a small offset are unable to gather data themselves, and
thus dependent on others to transfer data to them, as they will have to wait for them to
become active.

Instead all satellites could start working at time zero until the specified schedule time,
being considered to be at time + sat.offset time. This means that the model would
always produce a schedule over the specified amount of time. However, for the very first
schedule this may cause some inaccuracies as, say the first satellite launched would not be
able to work while the others are being launched.

5.8 Predicting Storage Level

In the deterministic model it might have been beneficial if the Satellite template was able
to predict the future storage capacity of the satellite. Consider a satellite at a storage
level of 50% currently gathering data, which will cause it to reach 80% when finished.
This is considered to be a HIGH storage level and gathering more data would not yield the
maximum amount of data. It could have been implemented such that the satellite used
this information to suggest a transfer task rather than another gather task as the gather
task will quickly be preempted anyway.
We believe doing this would cause a minor reduction to the state space as well as a schedule
which utilise time more efficiently.

69

Deis108f18 5. Discussion

5.9 Dynamic Execution Time For Tasks

All of the tasks have a fixed execution time that must be met before the task is considered
complete. This could be changed such that time required in order to complete a task was
based on the state of the satellite. Instead of assigning a constant execution time, this
could be recalculated every time a task is suggested or about to be started. For example,
the execution time for sending data to a station could be based on the current amount of
stored data, the calculation would then be: execution_time = |storeddata/datarate| or
if not able to empty its storage prior to the window ending simply run until the window
does so. The stored_data is the amount stored data on the satellite and data_rate is the
amount of data that is send per time unit for the task. The deadline should be adjusted
as well in order to fit the new execution time. Additionally, if the task is restricted by a
window, the deadline should be set to when the window closes. If this approach was taken,
the use of the processors will more efficient.

The time is already approximated by the use of a variable that is incremented every time
a new task suggestion is made in the Satellite template, as described in Section 3.3.4. But
that solution is flawed as it is sometimes imprecise or very expensive in regards to program
time if set to do so every time unit, as showed in Section 3.4.14.

5.10 Predicting Windows

Both models suffer from not having the ability to predict upcoming windows. The
deterministic model could determine a better path if it had knowledge about upcoming
windows. In this way it would be able to idle for a while instead of starting another task
just for it to be preempted moments later.
For the non–deterministic model, combined with CORA’s exhaustive search strategy, it
already produces the best path. The potential benefits of adding this prediction to the
non–deterministic model is to reduce the amount of choices CORA has to traverse. This
would free up state space and could result in fewer constraints and an overall better path
because of it.

5.11 Include Schedule in Model

As described in Section 3.4.15, the most time– and storage consuming part of generating
a schedule was writing the trace. A way to potentially avoid this, instead of modifying
SMC, would be to store the necessary information in arrays in the model. By doing this
the schedule would be included in each state, increasing the size of the states but making
only the very last state relevant to print, which is already possible.
Such arrays should include at least a satellite identifier and the values described in
Section 3.5, these being; task id, start time, end time, and number of slews.

70

Conclusion 6
In this chapter we will conclude on this report and the project as a whole. Through this
we will answer the problem statement written in Chapter 1:
How can different forms of model checking be applied to generating a schedule for multiple
satellites in a convoy, and how does such methods compare against each other?
The model checking tools used for this project are UPPAAL- CORA and SMC.

We constructed a deterministic model in SMC with the goal of testing how influential
some of the features we presented in Chapter 2 were, and in order to test the feasibility
of generating a schedule using a detailed model. The features were tested as it would be
beneficial to know which of them could be excluded from the non-deterministic model as
we hypothesised that the non-deterministic model would suffer from a large state space,
despite of it being less detailed.
The deterministic model implements a preemptive scheduler with dynamic prioritising.
This model was able to generate a schedule with three satellites for an entire day and print
the finished schedule within few minutes (2 minutes and 34 seconds). The required time
was drastically increased to 3 hours and 38 minutes when ten satellites was scheduled. A
schedule for thirty satellites was calculated in 53 minutes, but the trace was omitted as we
predicted that it would take seven years to print it.
We believe this method is feasible for generating schedules for a convoy of thirty satellites
if it is possible to alter SMC such that only some variables are printed. We do not believe
this method is feasible for generating schedules for a convoy of thirty satellites with the
current version of SMC.

We constructed a non-deterministic model in order to utilise CORA’s cost optimisation.
The model was less detailed as the focus was not on the individual satellites, but rather on
convoys. As the model was constructed in CORA, all choices taken were the best possible
in regards to how the cost rate is calculated.
This model implements a VBP scheduler, meaning the priorities changes throughout the
run based on the state of the model. We were able to generate a trace of 5 hours with
the initial configuration of the model. The length of the schedule could be extended by
restricting the options available for some given states. Noticeably the experiment revolving
around decreasing the threshold for convoys, Section 4.5.10, yielded similar results to that
of the base case, even though the CORA cost had little impact. Additionally it was
possible to produce a significantly longer trace as the configuration was more restricted.
This experiment signifies that the scheduling logic, on its own, is capable of making close
to optimal choice’s.

This leads us to believe that implementing scheduling logic similar to that in the non-

71

Deis108f18 6. Conclusion

deterministic model, into a deterministic model is the more favourable option.

72

Future Work 7
This chapter describes some of the work or unexplored areas within our problem domain
that could help further explore this area.

7.1 Change of Vision

During the end of our semester GOMspace held an open house where they talk about
their latest project and the company’s history, in which we attended. Here some useful
information was provided which changes the perspective of our current scenario. During
their presentation they talked about the usage and problems they encountered when
developing their GOMX-4A and GOMX-4B satellites. Each of the satellites have multiple
modular slots, that are sold to other companies which create their module and can then
be integrated into one of the satellites to gather information.

GOMspace also mentioned that some of the companies would like to take high quality
photos of earth, such images could have a file size up to 4Gb. Sending such a file down to
Earth takes about 30 days.
This deviate from our scenario about tasks having relatively small execution times and
raises the question if there is a better way to represent tasks. The tasks could be changed
such that they no longer have an execution time. Instead tasks should be viewed as being
active and inactive, and a task would only become inactive by being preempted, finishing,
or if its requirements are no longer upheld. The ramifications of this change is uncertain
and will need to be tested further to prove if this new way of handling task actually is
beneficial.

7.2 Disregard Delayed Tasks

As described in Section 3.5, it would be desirable to modify what information is written.
Additionally it would be helpful to disregard tasks from the final schedule, which became
delayed. This could be done using an extra script, scanning through the schedule deleting
tasks which was not completed.

7.3 UPPAAL Stratego

CORA was introduced in Section 4.2 as a tool that finds the path with the lowest cost,
thereby finding the optimal path. However, as stated in Section 4.6, the time it takes to find
such a path can be problematic. This makes it necessary to introduce methods for reducing

73

Deis108f18 7. Future Work

the state space and thereby the time it takes to find such a path. This unfortunately may
compromise the best schedule to be the best with the given restrictions.

This problem of balancing computation time and cost optimality is what brings attention to
UPPAAL Stratego. Stratego is used to analyse a Stochastic Priced Timed Game (SPTG).
It comes with an extended query language that introduces strategies that the user can
formalise. The strategies are first class objects that may be compared, optimised and used
when performing model checking. Strategies restrict which options are available at a given
state in order to secure that some goal may be accomplished. Such a goal could be to
always reach some location within before some time limit.

Stratego offers different kinds of strategies that can be used in either statistical model
checking or symbolic model checking. The symbolic constructed strategies can be used to
make reachability queries such as the one shown in Equation (7.1)

strategy InT ime = control : A <> MyTemplate.LocationA && total_time <= 100

(7.1)

InT ime ensures that the location LocationA can be reached before the clock total_time
reaches 100 time units. The strategy can then be used in conjunction with other queries
as seen in Equation (7.2)

E <> MyTemplate.LocationB && MyV alue <= 15 under InT ime (7.2)

That query asks if there exists a path that leads to LocationB where MyV alue is equal
to or less than 15, while still adhering to the restrictions of the strategy InT ime.

The statistical strategies allows for optimisation towards some goal such as minimising a
value. An example of this can be seen in Equation (7.3).

strategy MinV alue = minE (MyV alue) [<= 200] : MyTemplate.LocationA under InT ime

(7.3)

MinV alue will be generated by repeatedly combing different strategies where the options
they present for any given state are price-optimised. By repeatedly combing different
strategies, the system learns how to more effectively reach a goal. The end result is a
deterministic strategy that is near-optimal in reaching the goal. It is near-optimal as a
simulation based method is used for learning the strategies. The goal of the strategy
presented in Equation (7.3) is to minimise the MyV alue variable while still conforming to
the strategy InT ime.

The reasoning for using this tool to find schedules for convoys of satellites, is its ability to
intelligently restrict what options are available for any given state, thereby theoretically
reducing the computation time. The downside is that, unlike CORA, we are never
guaranteed finding the optimal schedule. However, if the near-optimal schedules it may
present are good enough, this may be an acceptable trade-off.

74

Glossary

CoB Cost of Bandwidth. 55–65
CORA UPPAAL Cost Optimal Reachability Analysis.

iii, v, 12, 45–47, 52, 54–66, 70, 71, 73

DP Dynamic Priority. 10, 12, 16

FIFO First In, First Out. 10
FP Fixed Priority. 10

LEO Low Earth Orbit. 5–7

NASA National Aeronautics and Space Administra-
tion. 1

RAAN Right ascension of the ascending node. 9
RR Round Robin. 10

SMC UPPAAL Statistical Model Checking. iii, v,
12, 15, 42, 43, 70, 71

SPTG Stochastic Priced Timed Game. 74
SRF Shortest Remaining Time first. 10, 11

TLE Two-line element set. 8, 9
TROPICS Time-Resolved Observations of Precipitation

structure and storm Intensity with Constella-
tion of Smallsats. 1, 3, 4

VBP Value Based Priority. iii, 45, 49, 50, 67–69, 71

List of Figures

2.1 Satellite with a circular orbit [10] . 6
2.2 Satellite in an elliptic orbit around Earth [10] 7

75

2.3 Example UPPAAL template . 13

3.1 Three satellites orbiting Earth with three stations 16
3.2 Simplified representation of the deterministic model with Free as the initial state 17
3.3 Generated schedule over the base case for three satellites 26

4.1 Three convoys with ten satellites each, and three stations 46
4.2 Template with cost . 47
4.3 The Scheduler template . 48
4.4 The Convoy template . 48
4.5 Monitor total storage, amount of data sent to stations, and convoys over 600

time units . 51
4.6 Monitor cost of different parameters over 600 time units 51
4.7 Thresholds for the individual tasks . 54

A.1 The Satellite template . 80
A.2 The CheckRunnable template . 81
A.3 The Scheduler template . 82
A.4 The Processor template . 83

List of Tables

2.1 TLE line one. The important fields are marked in bold. 8
2.2 TLE line two. The important fields are marked in bold. 8
2.3 Set of tasks used in Table 2.5 . 10
2.4 Scheduler showing which task is being processed by a single core CPU 11
2.5 Schedule showing which task is being processed by a single core CPU with

preemption . 11

3.1 Example of time approximation inaccuracy . 23
3.2 Initial configuration for the experiments . 25
3.3 Results of running the initial configuration . 26
3.4 Results of running experiment 1 . 27
3.5 Comparison between experiment 2 and 1 . 29
3.6 Results of running experiment 2 . 29
3.7 Results of running experiment 3 . 31
3.8 Results of running experiment 4 . 32
3.9 Results of running experiment 5 . 33
3.10 Results of running experiment 6 . 34
3.11 Results of running experiment 7 . 35
3.12 Results of running experiment 8 . 36
3.13 Results of running experiment 9 . 37
3.14 Results of running experiment 10 . 38
3.15 Results of running experiment 11 . 39

76

List of Tables Aalborg University

3.16 Results of running experiment 12 . 40
3.17 Results of running experiment 13 . 41

4.1 Calculating number of traces/options to explore 54
4.2 Initial configuration for the experiments . 56
4.3 Results of running the initial configuration . 56
4.4 Results of running experiment 1 . 57
4.5 Results of running experiment 2 . 58
4.6 Results of running experiment 3 . 59
4.7 Results of running experiment 4 . 60
4.8 Results of running experiment 6 . 61
4.9 Results of running experiment 7 . 62
4.10 Results of running experiment 8 . 62
4.11 Results of running experiment 9 . 63
4.12 Results of running experiment 10 . 64
4.13 Maximum schedule length for each experiment. 65

77

Listings

2.1 Generating longitude and latitude from TLE set 9
3.1 TaskDescription struct . 18
3.2 SatDescription struct . 19
3.3 The function suggest_task() . 21
3.4 The function turn_satellite() . 22
3.5 The function rdyToTrans() . 22
3.6 The function calc_cost() . 24
4.1 Code for calculating cost . 53

79

Bibliography

[1] William J. Blackwell and Scott Braun. Time-Resolved Observations of Precipitation
structure and storm Intensity with a Constellation of Smallsats. 2016. url:
https://tropics.ll.mit.edu/CMS/tropics/Mission-Overview (visited on
Feb. 27, 2018).

[2] Anders Lykke Matthiassen, Jacob Nielsen, and Oliver Brun Købsted. Verification
and Cost Optimal Nanosatellite Battery-Aware Schedule Production. Jan. 2018.
url: http://projekter.aau.dk/projekter/files/267936373/Verification_
and_Cost_Optimal_Nanosatellite_Battery_Aware_Schedule_Production___
deis903e17.pdf (visited on Feb. 27, 2018).

[3] Lars Alminde. Private Conversation. Conversation via mail and one meeting at
GomSpace. 17 2017.

[4] Elizabeth Mabrouk. What are SmallSats and CubeSats? 2017. url:
https://www.nasa.gov/content/what-are-smallsats-and-cubesats.

[5] Morten Bisgaard, David Gerhardt, Holger Hermanns, Jan Krčál, Gilles Nies, and
Marvin Stenger. “Battery-Aware Scheduling in Low Orbit: The GomX–3 Case”. In:
FM 2016: Formal Methods. Ed. by John Fitzgerald, Constance Heitmeyer,
Stefania Gnesi, and Anna Philippou. Cham: Springer International Publishing,
2016, pp. 559–576. isbn: 978-3-319-48989-6.

[6] Søren Nørgreen Gustafsson. Open house pressentation. GOMSpace held an open
house convention where they pressented their GOMX-4 satellites and answered
questions. Apr. 2018.

[7] Ian Poole. Satellite Orbit Types & Definitions. url:
http://www.radio-electronics.com/info/satellite/satellite-
orbits/satellites-orbit-definitions.php.

[8] GISGeography. Polar Orbit vs Sun Synchronous Orbit. Feb. 2018. url:
https://gisgeography.com/polar-orbit-sun-synchronous-orbit.

[9] Tom Henderson. “Circular Motion and Satellite Motion - Lesson 4 - Planetary and
Satellite Motion”. In: (). url:
http://www.physicsclassroom.com/class/circles/Lesson-4/Mathematics-of-
Satellite-Motion (visited on Feb. 21, 2018).

[10] Satellite orbiting Earth. url: http://www.pngmart.com/image/49166.

[11] Jevon James. How To Read GPS Coordinates. url:
http://www.ubergizmo.com/how-to/read-gps-coordinates/ (visited on Feb. 27,
2018).

[12] Dr. T.S. Kelso. Frequently Asked Questions: Two-Line Element Set Format. Mar.
2014. url: https://www.celestrak.com/columns/v04n03/ (visited on Feb. 22,
2018).

81

https://tropics.ll.mit.edu/CMS/tropics/Mission-Overview
http://projekter.aau.dk/projekter/files/267936373/Verification_and_Cost_Optimal_Nanosatellite_Battery_Aware_Schedule_Production___deis903e17.pdf
http://projekter.aau.dk/projekter/files/267936373/Verification_and_Cost_Optimal_Nanosatellite_Battery_Aware_Schedule_Production___deis903e17.pdf
http://projekter.aau.dk/projekter/files/267936373/Verification_and_Cost_Optimal_Nanosatellite_Battery_Aware_Schedule_Production___deis903e17.pdf
https://www.nasa.gov/content/what-are-smallsats-and-cubesats
http://www.radio-electronics.com/info/satellite/satellite-orbits/satellites-orbit-definitions.php
http://www.radio-electronics.com/info/satellite/satellite-orbits/satellites-orbit-definitions.php
https://gisgeography.com/polar-orbit-sun-synchronous-orbit
http://www.physicsclassroom.com/class/circles/Lesson-4/Mathematics-of-Satellite-Motion
http://www.physicsclassroom.com/class/circles/Lesson-4/Mathematics-of-Satellite-Motion
http://www.pngmart.com/image/49166
http://www.ubergizmo.com/how-to/read-gps-coordinates/
https://www.celestrak.com/columns/v04n03/

Deis108f18 Bibliography

[13] Chris Veness. Calculate distance, bearing and more between Latitude/Longitude
points. 2017. url: https://www.movable-type.co.uk/scripts/latlong.html
(visited on Feb. 27, 2018).

[14] Ashutosh Juneja. Preemptive vs. Non-Preemptive Process Scheduling. url:
https://study.com/academy/lesson/preemptive-vs-non-preemptive-
process-scheduling.html (visited on Feb. 27, 2018).

[15] Google. EXP - Docs editors Help - Google Support. url:
https://support.google.com/docs/answer/3093411?hl=en.

[16] Free mathematics tutorials. Three Points Parabola Calculator. url:
http://www.analyzemath.com/parabola/three_points_para_calc.html.

[17] Gerd Behrmann. “UPPAAL CORA, UPPAAL for Planning and Scheduling”. In: ().
url: http://people.cs.aau.dk/~adavid/cora/download.html.

82

https://www.movable-type.co.uk/scripts/latlong.html
https://study.com/academy/lesson/preemptive-vs-non-preemptive-process-scheduling.html
https://study.com/academy/lesson/preemptive-vs-non-preemptive-process-scheduling.html
https://support.google.com/docs/answer/3093411?hl=en
http://www.analyzemath.com/parabola/three_points_para_calc.html
http://people.cs.aau.dk/~adavid/cora/download.html

Deterministic Model A

83

Deis108f18 A. Deterministic Model

∪∪

t_
tim

e
<
=

sats[sat_
id].off

set

Start

slew
_
tim

e
<
=

3
Slew

ing
C
hecking

loc_
tim

e
<
=

T
A
SK

_
SU

G
G
E
ST

_
IN

T
E
R
V
A
L

W
aiting

release[sat_
id]?

loc_
tim

e
=

0

!validSuggestion(sat_
id)

validSuggestion(sat_
id)

add_
task[sat_

id]!

t_
tim

e
>
=

sats[sat_
id].off

set

loc_
tim

e
=

0,
in_

orbit[sat_
id]

=
true

orientation(sat_
id)

slew
_
sat[sat_

id]!

loc_
tim

e
=

0

slew
_
tim

e
>
=

3
&
&

!orientation(sat_
id)

turn_
satellite(),

slew
_
tim

e
=

0,
slew

s+
+

loc_
tim

e
=

0,
suggest_

task()
loc_

tim
e
>
=

T
A
SK

_
SU

G
G
E
ST

_
IN

T
E
R
V
A
L

fi
nd_

new
!

R
Q

=
sat_

id,
sugest_

iterations[sat_
id]

+
+

slew
_
sat[sat_

id]?
slew

_
tim

e
=

0

F
igure

A
.1:

T
he

Satellite
tem

plate

84

Aalborg University

c
c

W
ai
t

w
in
do

w
E
nd

()
>
=

t_
ti
m
e
-
sa
ts
[R
Q
].
off

se
t
&
&

w
in
do

w
E
nd

()
<
;
t_

ti
m
e
-
sa
ts
[R
Q
].
off

se
t
+

jo
bs
[t
as
k_

to
_
ch
ec
k]
.e
xe
cu

ti
on

_
ti
m
e

&
&

w
in
do

w
St
ar
t(
)
<
=

t_
ti
m
e
-
sa
ts
[R
Q
].
off

se
t

&
&

st
at
io
n_

to
_
ch
ec
k

st
at
io
n_

to
_
ch
ec
k
=

fa
ls
e

!s
ta
ti
on

_
to
_
ch
ec
k

ne
xt
()

w
in
do

w
E
nd

()
<
;
t_

ti
m
e
-
sa
ts
[R
Q
].
off

se
t

&
&

in
de

x[
R
Q
][
w
in
do

w
_
to
_
ch
ec
k]

<
;
ST

A
T
IO

N
_
IN

D
E
X
-1

in
de

x[
R
Q
][
w
in
do

w
_
to
_
ch
ec
k]
+
+

w
in
do

w
E
nd

()
>
=

t_
ti
m
e
-
sa
ts
[R
Q
].
off

se
t
+

jo
bs
[t
as
k_

to
_
ch
ec
k]
.e
xe
cu

ti
on

_
ti
m
e
&
&

w
in
do

w
St
ar
t(
)
<
=

t_
ti
m
e
-
sa
ts
[R
Q
].
off

se
t

&
&

st
at
io
n_

to
_
ch
ec
k

st
at
io
n_

to
_
ch
ec
k
=

fa
ls
e,

ov
er
St
at
io
n(
)

in
de

p
en

de
nt
()

sk
ip
W

in
do

w
C
he

ck
()
,

al
lT
as
kC

he
ck
ed

()

ch
ec
k?

re
se
tR

un
na

bl
e(
)

!d
ep

en
ds
()

&
&

!i
nd

ep
en

de
nt
()

ne
xt
()

!a
ll
_
ch
ec
ke
d
&
&

!i
nd

ep
en

de
nt
()

&
&

de
p
en

ds
()

st
at
io
n_

to
_
ch
ec
k
=

tr
ue

al
l_

ch
ec
ke
d

ch
ec
k!

al
l_

ch
ec
ke
d
=

fa
ls
e

F
ig
ur
e
A
.2
:
T
he

C
he

ck
R
un

na
bl
e
te
m
pl
at
e

85

Deis108f18 A. Deterministic Model

c

c

c

c

c

c

c

c c

c
c

cc

c c

c

c c

c

W
aiting

Slew
ing

P
reem

pt R
elease

O
ccupied

Start

not_
rdy_

to_
rec[sat_

id]!
!hasSpace()

||
!in_

orbit[sat_
id]

transm
it_

data[sat_
id]?

current
=
=

R
I

release[sat_
id-1]!

active[sat_
id]

=
front()

!low
erP

riority()

check!

low
erP

riority()&
&

active[sat_
id]

!=
R
E
C
E
IV

E
_
IN

D
E
X

not_
rdy_

to_
rec[sat_

id]!
low

erP
riority()&

&
active[sat_

id]
=
=

R
E
C
E
IV

E
_
IN

D
E
X

current
=
=

T
I

release[com
]!

active[sat_
id]

=
front()

runnable[task]
&
&

internalC
om

()
release[sat_

id]!

active[com
]
!=

T
R
A
N
SM

IT
_
IN

D
E
X

check?

active[com
]
=
=

T
R
A
N
SM

IT
_
IN

D
E
X

active[sat_
id]

=
=

T
R
A
N
SM

IT
_
IN

D
E
X

not_
rdy_

to_
rec[com

]?

task
=

active[sat_
id]

transm
it_

data[sat_
id]?

task
=

R
E
C
E
IV

E
_
IN

D
E
X
,

R
Q

=
sat_

id

next[sat_
id]?

active[com
]
!=

R
E
C
E
IV

E
_
IN

D
E
X

active[com
]
=
=

R
E
C
E
IV

E
_
IN

D
E
X

release[com
]!

release[sat_
id]!

active[sat_
id]

=
-1

release[sat_
id]?

release[sat_
id]?

task
=
=

T
R
A
N
SM

IT
_
IN

D
E
X

not_
rdy_

to_
rec[com

]?

transm
it_

data[com
]!

request[com
]!

rdyT
oT

rans()
request[sat_

id]!

rdyT
oT

rans()
request[sat_

id]!

orientation(sat_
id)

&
&

!rdyT
oT

rans()
transm

it_
data[com

]!

task
=
=

T
R
A
N
SM

IT
_
IN

D
E
X

&
&

!is_
synced

&
&

active[com
]
!=

T
R
A
N
SM

IT
_
IN

D
E
X

go!
is_

synced
=

true

not_
rdy_

to_
rec[com

]?

request[sat_
id]!

hasSpace()
transm

it_
data[sat_

id]?
task

=
R
E
C
E
IV

E
_
IN

D
E
X
,

active[sat_
id]

=
R
E
C
E
IV

E
_
IN

D
E
X

set_
com

()

!runnable[task]
task

=
active[sat_

id]

runnable[task]
&
&

!internalC
om

()
preem

t[sat_
id]!

active[sat_
id]

=
front()

check?
enqueue(task),
current

=
active[sat_

id]

check?
enqueue(task),
active[sat_

id]
=

front()

check!

queue[sat_
id][0]

=
=

-1
||

!runnable[queue[sat_
id][0]]

active[sat_
id]

=
-1

check?
orderQ

ueue(),
active[sat_

id]
=

front()

!low
erP

riority()

check!

em
pty(queue[sat_

id])
active[sat_

id]
=

-1

enqueue(task),
task

=
active[sat_

id]

!em
pty(queue[sat_

id])
check!

validSuggestion(sat_
id)

add_
task[sat_

id]?

task
=

sats[sat_
id].

suggested_
task,

R
Q

=
sat_

id

release[sat_
id]?

orderQ
ueue(),

R
Q

=
sat_

id

queue[sat_
id][0]

!=
-1

&
&

runnable[queue[sat_
id][0]]

&
&

active[sat_
id]

!=
-1

request[sat_
id]!

dequeue(),
is_

synced
=

false,
task

=
active[sat_

id],
sugest_

iterations[sat_
id]

=
0

add_
task[sat_

id]?

task
=

sats[sat_
id].suggested_

task

F
igure

A
.3:

T
he

Scheduler
tem

plate

86

Aalborg University

c
c

c

c

cc

c
c

c

A
b
or
te
d

ru
n_

ti
m
e[
ta
sk
]
<
=

ge
tD

ea
dl
in
e(
)
&
&

w
ai
t’

=
=

1
&
&

w
or
k’

=
=

0
&
&

id
le
’
=
=

0
&
&

sl
ew

’
=
=

0

W
ai
ti
ng

E
nd

ru
n_

ti
m
e[
ta
sk
]
<
=

ge
tD

ea
dl
in
e(
)
&
&

w
ai
t’

=
=

0
&
&

w
or
k’

=
=

0
&
&

id
le
’
=
=

0
&
&

sl
ew

’
=
=

1

Sl
ew

in
g

ru
n_

ti
m
e[
ta
sk
]
<
=

ge
tD

ea
dl
in
e(
)
&
&

ex
e_

ti
m
e
+

ti
m
e_

us
ed

[t
as
k]

<
=

ge
tE

xe
T
im

e(
)
&
&

w
ai
t’

=
=

0
&
&

w
or
k’

=
=

1
&
&

id
le
’
=
=

0
&
&

sl
ew

’
=
=

0

O
cc
up

ie
d

B
lo
ck

w
ai
t’

=
=

0
&
&

w
or
k’

=
=

0
&
&

id
le
’
=
=

1
&
&

sl
ew

’
=
=

0

F
re
e

re
qu

es
t[
sa
t_

id
]?

ti
m
e_

us
ed

[a
ct
iv
e[
sa
t_

id
]]

ta
sk

=
ac
ti
ve
[s
at
_
id
]

ru
n_

ti
m
e[
ta
sk
]
>
=

ge
tD

ea
dl
in
e(
)

!t
im

e_
us
ed

[a
ct
iv
e[
sa
t_

id
]]

ta
sk

=
ac
ti
ve
[s
at
_
id
],

ru
n_

ti
m
e[
ta
sk
]
=

0

ru
n_

ti
m
e[
ta
sk
]
>
;

ge
tD

ea
dl
in
e(
)
&
&

ti
m
e_

us
ed

[t
as
k]

!=
0

ru
n_

ti
m
e[
ta
sk
]
=

ge
tD

ea
dl
in
e(
),

ex
e_

ti
m
e
=

0

re
le
as
e[
sa
t_

id
]!

!e
m
pt
y(
w
_
qu

eu
e)

&
&

ge
tW

ai
ti
ng

D
()

<
;
ru
n_

ti
m
e[
ta
sk
]

+
ge
tR

em
ai
ni
ng

()
de

la
ye
d(
w
_
qu

eu
e[
0]
),

re
su
m
e_

ta
sk
()

!e
m
pt
y(
w
_
qu

eu
e)

&
&

ge
tW

ai
ti
ng

D
()

>
=

ru
n_

ti
m
e[
ta
sk
]

+
ge
tR

em
ai
ni
ng

()

ne
xt
[s
at
_
id
]!

re
su
m
e_

ta
sk
()

em
pt
y(
w
_
qu

eu
e)

re
le
as
e[
sa
t_

id
]!

ac
ti
ve
[s
at
_
id
]
=

-1

pr
ee
m
t[
sa
t_

id
]?

pr
ee
m
t[
sa
t_

id
]?

re
le
as
e[
sa
t_

id
]!

de
la
ye
d(
ta
sk
)

pr
e+

+

ta
sk

=
=

R
E
C
E
IV

E
_
IN

D
E
X

||
ta
sk

=
=

T
R
A
N
SM

IT
_
IN

D
E
X

re
le
as
e[
sa
t_

id
]?

re
le
as
e[
sa
t_

id
]?

re
le
as
e[
sa
t_

id
]?ru
n_

ti
m
e[
ta
sk
]
>
=

ge
tD

ea
dl
in
e(
)

ac
ti
ve
Is
T
ra
ns
()

&
&

or
ie
nt
at
io
n(
sa
t_

id
)
&
&

ru
n_

ti
m
e[
ta
sk
]
<
=

ge
tD

ea
dl
in
e(
)

st
ar
tN

ew
()

re
qu

es
t[
sa
t_

id
]?

ex
e_

ti
m
e
=

0,
ca
lc
_
co
st
() is
In
te
rn
al
C
om

()
&
&

or
ie
nt
at
io
n(
sa
t_

id
)

sl
ew

_
sa
t[
sa
t_

id
]?

re
se
tP

ri
or
it
y(
),

re
se
tP

ro
gr
es
s(
),

ac
ti
ve
[s
at
_
id
]
=

w
_
qu

eu
e[
0]

ru
n_

ti
m
e[
ta
sk
]
>
=

ge
tD

ea
dl
in
e(
)
&
&

ex
e_

ti
m
e
+

ti
m
e_

us
ed

[t
as
k]

<
;

ge
tE

xe
T
im

e(
)

de
la
ye
d
(t
as
k)

!i
sI
nt
er
na

lC
om

()
&
&

or
ie
nt
at
io
n(
sa
t_

id
)

sl
ew

_
sa
t[
sa
t_

id
]?

ex
e_

ti
m
e
=

0

!o
ri
en
ta
ti
on

(s
at
_
id
)

sl
ew

_
sa
t[
sa
t_

id
]!

ex
e_

ti
m
e
+

ti
m
e_

us
ed

[t
as
k]

=
=

ge
tE

xe
T
im

e(
)

up
da

te
_
st
or
ag

e(
ta
sk
),

up
da

te
_
ba

nd
_
co
st
(t
as
k)
,

re
p
or
tD

on
e(
)

ex
e_

ti
m
e
=

0,
ca
lc
_
co
st
()
,

pr
e+

+

ta
sk

!=
ac
ti
ve
[s
at
_
id
]

re
qu

es
t[
sa
t_

id
]?

pr
ee
m
t_

ta
sk
()

rd
yT

oR
un

()
&
&

ru
n_

ti
m
e[
ta
sk
]
<
=

ge
tD

ea
dl
in
e(
)

st
ar
tN

ew
()
,

ca
lc
_
co
st
()

F
ig
ur
e
A
.4
:
T
he

P
ro
ce
ss
or

te
m
pl
at
e

87

	Title page
	Summary
	Table of Contents
	Introduction
	Analysis
	Terminology
	Orbit
	Scheduling
	UPPAAL Version

	Deterministic Model
	Scenario
	Scheduler
	The Deterministic Model
	Experimenting with the Deterministic Model
	Conclusion

	Non-deterministic Model
	Scenario
	UPPAAL CORA
	CORA Model
	State Space Concerns
	Experimenting with the Non-deterministic Model
	Conclusion for Experiments

	Discussion
	Task Suggestion
	VBP in the Deterministic Model
	Non-Deterministic Base Case
	VBP
	Windows
	Schedule
	Satellite Offset Strategies
	Predicting Storage Level
	Dynamic Execution Time For Tasks
	Predicting Windows
	Include Schedule in Model

	Conclusion
	Future Work
	Change of Vision
	Disregard Delayed Tasks
	UPPAAL Stratego

	List of Figures
	List of Tables
	Appendices
	Deterministic Model

