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Abstract

This thesis concern the formulation and execution of structural optimization by the use of

topology optimization in both 2D and 3D, for large-scale optimization problems dependent on

many variables. Topology optimization strives to �nd the optimal distribution of material for a

speci�c domain, given an objective and subjected to a set of constraints. Here, the objective is

to minimize the mass, while being subjected yield and/or fatigue constraints.

First chapter of this thesis deals with the general issues of topology optimization. These

issues that contain checkerboarding, mesh dependent solutions, minimum length scale and

solid/void structures, are illustrated for the classic topology optimization formulation which

seeks to minimize the compliance while being subjected to a volume constraint.

Both the yield and fatigue constraints are dependent upon the stresses which occur in a

structure subjected to loading. Thus, the second chapter considers the speci�c challenges

associated with stress based constraints in topology optimization. Initially, the formulation of

stress constraint within the context of density based topology optimization is examined, followed

by well known issue of singular optima. The problem of singular optima is here solved using

the qp approach. Due to the local nature of stress based constraints, and since this thesis is

concerning large-scale optimization problems, will the associated computational consequences

be addressed by employing an aggregate function. Based on the aforementioned is it possible to

formulate a yield constraint, using the von Mises yield criterion.

Besides the yield constraint, is a constraint based on the fatigue of the structure is also

formulated. Like yielding, fatigue does depend on the stresses in the structure, thus the previous

mentioned challenges are likewise relevant and solved with the same techniques.

The fatigue constraint is formulated based on assumptions of proportional loading with a

variable amplitude, as well as linear elastic deformation in the high cycle domain. The load

history which the structure is subjected to, will be reduced to reversals using rain�ow counting.

Each of these reversals produces a multiaxial stress state in the structure, this state is transformed

into an equivalent uniaxial amplitude stress with either the Sines criterion or signed von Mises

where the mean stress e�ects are taken into account by using the modi�ed Goodman equation.

From this equivalent uniaxial amplitude stress, the number of cycles to failure is estimated using

the Basquin curve. By employing Palmgren-Miners linear damage hypothesis a local damage

constraint can be formulated, which like the yield constraint is handled by using an aggregate

function.

These Topology optimization formulations are lastly solved for a number of standard

benchmark examples in both 2D and 3D which illustrates the characteristics of fatigue

constraints.
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Resumé

Denne afhandling omhandler formuleringen og udførelsen af strukturel optimering ved brug

af topologioptimering i både to og tre dimensioner, for storskala optimeringsproblemer hvori

der indgår mange design variable. Topologioptimering stræber efter at �nde den optimale

fordeling af materiale indenfor et givet domæne, for en given kostfunktion og underlagt bestemte

begrænsninger. Her er målet at minimere massen af en struktur, som er begrænset af

�ydespændings- og/eller udmattelsesbetingelser.

Første del af afhandlingen omhandler de generelle problemer som opstår når topologioptimering

anvendes. Disse problemer som indeholder checkerboarding, netafhængige løsninger, minimum

længde skala og sort/hvide strukturer, bliver illustrereret for den klassiske topologioptimerings

formulering som omhandler minimering af �eksibiliteten underlagt en volumenbetingelse.

Både �ydespændings- og udmattelsesbetingelser er afhængige af spændingerne som opstår i

en struktur når den er underlagt en belastning. Derfor omhandler anden del de speci�kke ud-

fordringer som opstår når der inkluderes spændingbetingelser i topologioptimering. Først bliver

selve formuleringen af spændingerne undersøgt når de indgår i densitetbaseret topologioptimer-

ing, derefter bliver det velkendte problem med singulære optima fremhævet. Det singulære

optima problem bliver heri løst ved at anvende qp-metoden. På grund af den lokale natur

af spændingsbetingelser, og siden denne afhandling betragter storskala optimeringsproblemer,

bliver de associerede beregningsmæssige konsekvenser fremhævet og løst ved brug af en aggre-

gatfunktion. På baggrund af det førnævnte kan en �ydespændingsbegrænsning formuleres ved

brug af von Mises �ydespændings kriterie.

Foruden �ydespændingsbetingelser formuleres også en betingelse baseret på udmattelse af

strukturen. Udmattelse afhænger ligeledes af spændingerne i strukturen, derfor opstår mange af

de samme problemstillinger som nævnt tidligere, og disse bliver løst med samme teknikker.

Udmattelsesbetingelsen bliver formuleret på baggrund af antagelser om proportional belastning

med en variable amplitude samt en struktur med elastisk deformation i høj cyklusdomænet.

Belastningshistorien som strukturen er udsat for bliver reduceret til belastningscyklusser ved brug

af rain�ow counting. Hver af disse cyklusser skaber en multiaksial spændingstilstand i strukturen,

denne tilstand bliver transformeret til en ækvivalent uniaksial spændings amplitude ved brug af

Sines kriteriet og signed von Mises hvor der bliver taget højde for middelspændingse�ekterne ved

at anvende den modi�cerede Goodman ligning. Fra en ækvivalent uniaksial spændingsamplitude

estimeres antallet af cyklusser indtil brud ved brug af Basquin kurven, og ved at anvende

Palmgren-Miners lineære skadeshypotese bliver der opstillet en lokal udmattelses betingelse, som

ligeledes �ydespændingsbetingelsen bliver håndteret ved brug af en aggregatfunktion.

Topologioptimering baseret på de opstillede betingelser bliver til sidst løst på en række stan-

dardproblemer i både 2D og 3D, som illustrerer de karakteristika der er ved udmattelsesbetingelser.
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Introduction 1
This chapter will introduce the various aspects that concerns this thesis. Firstly the area of

structural optimization with a speci�c focus on topology optimization will be addressed, then

the motivation for including of yield and fatigue constraints is highlighted. Next, attention will

be paid to the interest and importance of solving large-scale topology optimization problems.

Lastly the objectives of the thesis will be outlined.

1.1 Structural Optimization

Structures in the following context are regarded as an assembly of material under the in�uence

of loads, and optimization is the process of improvement, thus structural optimization can

roughly be de�ned as �nding the distribution of material which minimizes or maximizes a speci�c

objective while being subjected to a set of constraints. This is done by using various modelling

methods, such as displacement based linear �nite element analysis as in the case of this thesis,

to model the physics of the structure, and by employing mathematical optimization tools. The

aim of using structural optimization is to increase the performance of the structure and reducing

design time, when compared to conventional engineering design methods, which can be based on

experience, intuition and heuristics. Generally structural optimization can be classi�ed by three

di�erent approaches, size optimization, shape optimization and topology optimization, these are

illustrated in �gure 1.1

Figure 1.1: Structural optimization approaches (a) Size optimization, (b) Shape Optimization,
(c) Topology Optimization (Bendsøe and Sigmund, 2003)
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1. Introduction

In size optimization the design variables are set to determine the size of a component in

the structure, such as the cross sectional area of a truss as illustrated in �gure 1.1, or the

thickness of a plate and so forth. With shape optimization, the internal and or external

boundary of a predetermined topological layout is modi�ed. In both size and shape optimization,

assumptions on the �nal structure is made from an initial design. In topology optimization no

such assumptions are made, since it starts only from a predetermined design domain with load

and boundary conditions applied. In this thesis topology optimization will be utilized.

Since the pioneering article by Bendsøe and Kikuchi (1988) topology optimization has greatly

advanced as both a research �eld and in industrial application. Topology optimization problems

have been formulated for a multitude of various physics, from its origin in structural mechanics

to heat transfer, acoustics and dynamical response (Bendsøe and Sigmund, 2003). Numerous

di�erent optimization strategies have been established, approaching the topology optimization

problem from di�erent ways as illustrated in the review paper by Sigmund and Maute (2013).

Various mathematical optimization methods have been applied, from gradient free zero-order

methods to gradient based optimizers using �rst and or second order information. This thesis

will be concerned with structural mechanics, considering a minimum mass objective while being

subjected to yield and fatigue constraints. The topology optimization problem will be formulated

using the density approach as proposed in Bendsøe (1989), and solved using �rst-order gradient

based methods with the gradient information found using the adjoint method.

1.2 Yield & Fatigue Constraints

The industrial relevance of topology optimization have already been demonstrated, with its

application in the aerospace industry as exempli�ed in Krog et al. (2002) where compliance

minimization topology optimization was used in the early stages of a structural optimization

procedure aiming to reduce the weight of the A380 leading edge droop nose ribs. Further

examples include the optimization of a Porsche engine component (Matthias Penzel, 2015), where

likewise compliance minimization was utilized.

The growing industry of additive manufacturing, exempli�ed by numerous projections and

several companies commitment to the implementation of additive manufacturing, increases the

need for new methods of engineering design. According to a collection of articles called "The great

re-make: Manufacturing for modern times" published by McKinsey & Company (Blackwell et al.,

2017) one of the two limitations presented with regards to the usage of additive manufacturing,

was the lack of design knowledge -the other being design piracy-. It is presented, that at the

present moment there is a considerable worldwide gap in the necessary knowledge in order to

fully take advantage of additive manufacturing. A complete rework of the engineering design

process is necessary, due to the added freedom that additive manufacturing provides, which

allows for more organic structures not constrained by typical manufacturing methods, turning,

milling, etc. While topology optimization certainly is no silver bullet, and the engineer must

always be aware of accurate problem de�nition, adequate post processing and veri�cation as well

as the limitations of used topology optimization formulation. The unrestricted and automatized

nature of topology optimization can provide the ability to utilize the manufacturing freedom

of additive manufacturing. This is accomplished due to the limited number of assumptions on

made the �nal design beforehand, while minimizing the necessity of the designers knowledge to

generate optimal structures, which might be of complex and organic shape.

2



1.3. Large-Scale Optimization Aalborg Universitet

There are hurdles that must be overcome in order for topology optimization to be fully

applicable within an industrial context. As illustrated in the design �ow diagram 1.2, generally

a design space is identi�ed, then the optimization occurs, and based on the optimization results

a production feasible design is attained.

Figure 1.2: Design �ow diagram of Porsche engine component (Matthias Penzel, 2015)

Often when considering a structural problem, failure of a component is of high priority. Thus,

if using only compliance minimization with a volume constraint, a considerable amount post

optimization e�ort might be necessary in order to obtain a structure which satis�es the necessary

structural requirements. Thus, the inclusion of relevant failure constraints, such as yield stress

and fatigue requirements, within the optimization formulation, would reduce the need for post

optimization processing. The importance of considering failure due to fatigue is especially evident

since 50% to 90% of all mechanical failures are estimated to be a result of fatigue failure (Stephens

et al., 2001).

1.3 Large-Scale Optimization

In order to increase the applicability of topology optimization for industrial problems, the ability

to perform large-scale 3D topology optimization is highly advantageous (Chin and Kennedy,

2016; Oest, 2017), since the increased resolution allows for the optimization of larger and more

complex structures. Furthermore, as highlighted in the following articles (Aage et al., 2017)

(Aage et al., 2015), can the increased resolution provide the ability to gain insight not available

when using a coarser mesh. And as noted in Sigmund et al. (2016) a coarse mesh can put

unintentional restrictions on the solution, resulting in a less optimized structure.

Considering the previous points the topology optimization problem in this thesis will

implemented such that large scale 3D topology optimization can be performed. The

implementations are made as extensions to the framework made available by the TopOpt group

at DTU, which is made using the Portable and Extendable Toolkit for Scienti�c Computing

(PETSc) (Aage et al., 2015). This framework allows for large scale optimization utilizing parallel

computing, and has been demonstrated to solve problems with before unseen discretization levels.
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1. Introduction

1.4 Objectives

The main objective of this master thesis is to solve large scale 3D topology optimization problems

with a minimum mass objective and subjected to yield and fatigue constraints. The yield

constraints will be formulated using the von Mises yield criterion, while the fatigue constraints

will be formulated assuming proportional loading with variable amplitude, and considering

�nite life under high cycle fatigue utilizing Palmgren-Miners damage rule, S�N curves and

equivalent uniaxial amplitude criteria. The optimization will be performed using gradient based

optimization with analytically determined gradients. The program will be veri�ed on standard

benchmark examples. The topology optimization procedure will be implemented using the

PETSc framework, which allows for the solution of large scale problems in a reasonable amount

of time, depending on the computational resources available.
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Topology Optimization 2
As outlined in the introduction, topology optimization is concerned with �nding the optimal

distribution of material in a prede�ned domain for a given objective and subjected to a set

of constraints. This chapter will introduce density based topology optimization, establish the

material properties in terms of the design variables, formulate the classic minimum compliance

topology optimization problem, and lastly illustrate the general issues that arises in topology

optimization. It should be noted that all the optimization problem formulations are setup using

the nested formulation, since the state problem is uniquely de�ned in terms of the design variables

(Christensen and Klabring, 2009).

There exists multiple methods for solving a topology optimization problem, such as the level set

approach, topological derivative and Phase �eld approach. However these methods will not be

covered in this thesis, the method utilized here is the density approach which was �rst proposed

in Bendsøe (1989).

Using this method a prede�ned domain is discretized using �nite elements, as illustrated in

�gure 2.1 which shows a classic topology optimization benchmark example known as an MBB

beam, which has a prede�ned height to length ratio of 1:6, with a force acting in the center

and simply supported at lower corners. Here the domain is discretized using the linear elastic

�nite element formulation, using the linear Q4 plane elements in 2D and the linear 8 node brick

element for 3D.

Figure 2.1: MBB beam (Oest, 2017)

Each of these elements are then assigned a dimensionless design variable ρe also referred to as

the density variable. This density variable can be either 0 or 1, where 0 indicates void and 1

represent full material. The e�ective mass me and e�ective modulus of elasticity Ee of element e

can then be described by multiplying the density variable with the full material equivalents m0

and E0.
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2. Topology Optimization

Ee = ρeE0

me = ρem0

ρe = {0, 1}
(2.1)

Using the design variable as de�ned in equation 2.1 would result in a discrete optimization

problem. However this thesis is concerned with large scale optimization problems with many

design variables, and thus in order to e�ciently solve the optimization problem gradient based

methods are preferred, as highlighted in a forum article by Sigmund (2011) where gradient based

methods are compared with non-gradient based methods. Therefore the discrete design variable

is relaxed into a continuous design variable using the Solid Isotropic Material with Penalization

method, abbreviated SIMP, as proposed in Bendsøe (1989).

In the SIMP method the discrete density variable is replaced with a continuous monotonically

increasing function which is physically consistent at 0 and 1, such that 0 represents void material

and 1 solid. When determining the e�ective modulus of elasticity, the intermediate density values

are penalized using a power law approach, by raising the density variable to the power p which is

called the penalization factor. Furthermore, in order to avoid getting singularities the modi�ed

SIMP method is utilized where a minimum modulus of elasticity Emin = 10−6E0 is introduced.

Here the e�ective mass is linearly interpolated.

Ee = Emin + ρpe(E0 − Emin)

me = ρem0

ρe = [0, 1]

(2.2)

The e�ect of the penalization factor p on the e�ective modulus of elasticity is illustrated in

�gure 2.2 for various p values and a unit solid modulus of elasticity.

Figure 2.2: E�ective Modulus for p = 1, 2, 3 for E0 = 1

The value of the penalization factor p has a great in�uence on the convergence of the

optimization procedure, a too low value minimizes the e�ect of penalization, and the result

is a high number of intermediate density values, which is undesirable since generally a structure

consisting mostly of a 0-1 distribution is preferred. A too high value of p results in premature

convergence, based on numerical experiments p = 3 appears to give the best result (Bendsøe and

Sigmund, 2003). This value was furthermore also shown to have physical meaning for ν = 0.3 in

Bendsøe and Sigmund (1999).
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2.1. Compliance Aalborg Universitet

From these material parameters the governing equations can be determined as the following,

with static or quasi-static loading assumed. Here boldface is used to indicate vector and matrices.

KD = R (2.3)

HereK is the global sti�ness matrix, R is the load vector and D is the unknown displacement

vector. The element nodal displacements de are extracted from the global displacement vector

D.

The global sti�ness matrix is de�ned in terms of previous established material parameters,

by using the �nite element assembly operator on the individual element sti�ness matrices Ke,

which are established by calculating the sti�ness matrix for a unit modulus of elasticity K0, and

multiplying with the e�ective modulus of elasticity as de�ned in (2.2).

Ke = EeK0 (2.4)

K =

ne∑
e=1

Ke (2.5)

2.1 Compliance

Now that the material parameters have been de�ned in terms of the design variables, the

compliance minimization problem can be established. Since its inception in Bendsøe and Kikuchi

(1988) topology optimization has mostly been concerned with the maximizing the sti�ness of

a structure, which corresponds to minimizing the compliance of a structure. The minimum

compliance problem thus aim to �nd the optimal distribution of material in order to achieve the

highest sti�ness of a structure while being subjected to a volume constraint. The optimization

problem can be formulated as the following.

minimize
ρ

f = DTKD =

ne∑
e=1

dTe EeK0de

subject to g =

ne∑
e=1

veρe

V ∗
≤ 1

ρe = [0, 1]

(2.6)

Here the objective function f is the compliance of the structure. The constraint g is the

element volume ve multiplied with the density variable summed over the number of elements in

the domain ne divided by the available amount of material de�ned by V ∗.

2.1.1 Regularization

Solving the optimization problem as formulated in (2.6) illustrates some of the general issues

that arises when performing topology optimization. These issues will here be demonstrated for

a compliance minimization problem on the MBB benchmark example as illustrated in �gure

2.1, however they are equally valid when considering a mass minimization objective, subjected

to yield and or fatigue constraints. The �rst issue that will be highlighted is checkerboarding.
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2. Topology Optimization

Checkerboarding as addressed in Díaz and Sigmund (1995) arises due to the use of linear elements

in the discretization of the domain, which from the numerical modelling creates an arti�cially

high sti�ness for the alternating layout of void and solid elements as illustrated in �gure 2.3

Figure 2.3: Checkerboarding MBB

This e�ect is highly undesirable since it is a product of numerical modelling, and does therefore

not represent the physics correctly. The second issue is that of mesh dependent solutions. As

the continuum formulation of the optimization problem is discretized into �nite elements the

solution becomes dependent on the degree of mesh re�nement. As the mesh re�nement increases

the solution does not converge to a speci�c topological layout, rather as illustrated in �gure

2.4 more detailed structures appear. This occurs due to the fact that the topology optimization

problem as formulated in (2.6) lacks a general solution and is thus an ill-posed problem (Bendsøe

and Sigmund, 2003).

Figure 2.4: Illustration of mesh dependency and minimum length scale with mesh re�nement

Referring to �gure 2.4 it can also be seen, that as mesh re�nement increases, smaller details in

the structure occurs and from a manufacturing point view the ability to set a minimum length

scale on the �nal structure is advantageous. Numerous methods have been proposed for solving

each of the highlighted issues, for a review of the possible methods refer to Bendsøe and Sigmund

(2003) and Sigmund and Petersson (1998).

The method utilized in this thesis is the use of �ltering techniques, speci�cally the density

�lter as �rst proposed in Bourdin (2001) and Bruns and Tortorelli (2001), for more information

regarding general �ltering techniques refer to Sigmund (2007). The density �lter works by

limiting the degree of density variation between elements, by making the density of an element

e the weighted average of all elements within a circle in 2D or sphere in 3D of in�uence as

determined by the following equation.

ωj = rfilter− ‖ xj − xe ‖ if ‖ xj − xe ‖≤ rfilter (2.7)

Here ωj is the weight function used to determine the �ltered density value of element e, rfilter
is a predetermined mesh independent �lter radius that determines the size of the sphere of

in�uence, as illustrated in �gure 2.5. The weight function here is linearly decaying as distance

between element e and j determined by their respective coordinates xe and xj , increase.

8



2.1. Compliance Aalborg Universitet

(a) Filter radius and coordinates of
element e

(b) Design variables (c) Filtered Density

Figure 2.5: llustration of the e�ect of the density �lter on an arbitrary design variable
distribution. (Oest, 2017)

This is done within the distance of the �lter radius, beyond the �lter radius the weight factor

is 0. The �ltered density ρ̃e is found by a weighted average equation

ρ̃e =

ne∑
j=1

ωjρj

ne∑
j=1

ωj

(2.8)

2.1.2 Projection Filter

Using the density �lter inevitably introduces a transition zone, between the solid and void

parts of the structure of intermediate density values as seen in �gure 2.5c. Since intermediate

densities have no physical relevance it is desirable to achieve a �nal structure consisting mainly

of solid and void densities. In Guest et al. (2004) a solution was proposed by modifying the

density �lter by including a continuous approximation of the Heaviside function, which would

force all intermediate densities greater than 0 to 1, thereby creating void and solid structures.

Modi�cations to this general idea has been proposed in Sigmund (2007) where the modi�ed

Heaviside �lter was introduced which opposite the standard Heaviside �lter, force all intermediate

densities below 1 to 0. In Xu et al. (2010) the threshold �lter is established, here a threshold

value η is introduced where all densities below or equal to this value are projected to 0, and all

above are projected to 1 as formulated in (2.9).

ρ̃e =

{
0 if ρ̃∗e ≤ η
1 otherwise

(2.9)

Here ρ̃∗e indicates the density value obtained after using the density �lter (2.8). The condition

above is approximated using the following continuous and di�erentiable equation (2.10) put forth

by Wang et al. (2011), where β determines the degree of the threshold �lter approximation (2.9),

as illustrated in �gure 2.6, where it can be seen that the larger the β values, the closer the

approximation. The β value is gradually increased during the optimization using a continuation

scheme from a low value to an appropriately high value until the desired level of density

discreteness is accomplished.

9



2. Topology Optimization

ρ̃e =
tanh (βη) + tanh (β (ρ̃∗e − η))

tanh (βη) + tanh (β (1− η))
(2.10)

Figure 2.6: E�ect of β = 10−5 → 64 on projected density at η = 0.5

Using the threshold �lter given by (2.10) as opposed to the Heaviside and modi�ed Heaviside

�lters o�ers additional advantages. By introducing the threshold value, some of the numerical

instabilities which occur by using the Heaviside �lters with stress based constraints, can be

reduced by setting η away from either extreme of 0 and 1, and closer to 0.5. Furthermore, by

selecting appropriate �lter radius and η value, provides the ability to set a minimum length scale

on both the solid and void parts of the structure, which is advantages from a manufacturing

perspective. Figure 2.7 illustrates the transition zone of the density �lter, and the e�ect of

applying the threshold �lter.

Figure 2.7: E�ect of threshold �lter for V*=0.4 of the original domain, ne = 10800, �lter radius
= 6 elements, η = 0.5, β = 32

Henceforth the �ltered density is referred to as the physical density since this density now

represents the structure, and both the objective function and constraints are evaluated based on

these densities. The minimum compliance optimization problem is now formulated in terms of

the physical densities as the following.

minimize
ρ

f = DTKD =

ne∑
e=1

dTe EeK0de

subject to g =

ne∑
e=1

veρ̃e

V ∗
≤ 1

ρe = [0, 1]

(2.11)
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Stress Constraint 3
Weight reduction of structures is an aim across various industries at practically any scale and

o�ers numerous bene�ts, such as lower fuel consumption, performance gain and a reduction in

material cost. However weight reduction is constrained by several mechanical failure modes.

Many of these failure modes are dependent on the stresses that occur in a structure when it

is subjected to loading, more speci�cally the failure mode which is considered in the following

chapter is yielding. Yielding occurs when the deformation of the material transition from elastic

to plastic, the point at which this occurs is de�ned by the yield stress limit σlim. There exists

numerous yield criteria, however the most commonly used for ductile materials is the von Mises

yield criterion, which states that yielding occurs when the von Mises stress σvm equals the yield

stress limit σlim. Furthermore, the yielding constraint is necessary to enforce the assumption

of linear elasticity. Here the von Mises stress is calculated for each element by the following

equation.

σvme =
1√
2

√
(σe1 − σe2)2 + (σe2 − σe3)2 + (σe3 − σe1)2 + 6(σ2

e4 + σ2
e5 + σ2

e6) (3.1)

In (3.1) σe1 - σe6 are the stress components for element e in 3D.

This then establishes a constraint for each element in the domain, where the von Mises stress

(3.1) must below the yield stress limit σlim. The optimization problem can now be formulated

with the objective being minimizing the mass, and subjected to the von Mises constraint for each

element. Here we assume constant material density such that minimizing the mass corresponds to

minimizing the volume, furthermore, the domain volume V0 is introduced such that the objective

function is normalized.

minimize
ρ

f =
1

V0

ne∑
e=1

veρ̃e

subject to ge =

(
σvme

σlim

)
≤ 1 ∀e

ρe = [0, 1]

(3.2)

Including stress constraints within the topology optimization formulation introduces new

complications not present when considering the minimum compliance problem. When

considering the minimum compliance problem subjected to a volume constraint, both the

objective function and the constraint are global functions, compare that to the stress constraint

which is a local quantity. This greatly increases the computational e�ort necessary to solve

the problem, as the number of constraints equals the number of elements within the domain.

Furthermore, the singular optima problem that arises from stress constraints, as �rst noted
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in Sved and Ginos (1968), requires special consideration if the optimization problem is to be

solved adequately. These two issues will be elaborated upon further on, however due to the use

of the SIMP method a stress interpretation when considering intermediate densities has be to

established.

3.1 Stress Formulation

If the topology optimization problem was formulated as a discrete optimization problem with

the density variable being either 0 or 1, the stress would be either full stress for a solid material

or zero stress for void material. However due the relaxation of the discrete problem into a

continuous problem a stress criterion for an intermediate density is necessary. A stress criterion

could be based on the e�ective modulus of elasticity formulated as the following.

σe = C(Ee)εe (3.3)

Where σe is the element stress vector in Voigt notation.

σe = {σe1 σe2 σe3 σe4 σe5 σe6}T (3.4)

C(Ee) is the constitutive matrix (Dym and Shames, 2013) as a function of the e�ective modulus

of elasticity and εe is the element strain vector de�ned as.

εe = Bde (3.5)

Here B is the strain-displacement vector which for 2D and 3D can be found in Cook et al.

(2001). However, this stress criterion is not appropriate since it generally will lead to an all void

design (Verbart, 2015). This is due to the fact that the strains are proportional to ρ̃−pe while

the e�ective modulus of elasticity is proportional to ρ̃pe, thus the stress becomes invariant to the

density.

Duysinx and Bendsøe (1998) proposed another physically consistent stress formulation based

on the study of rank-2 composite materials, the stress formulation was based on the following

requirements. Firstly, the stress must be inversely proportional to the density value, this can

formulated as the following, where the constitutive matrix now is a function of the solid modulus

of elasticity, and q is an arbitrary exponent.

σe =
ρ̃pe
ρ̃qe
C(E0)εe = ρ̃p−qe C(E0)εe (3.6)

Furthermore, in order to remain coherent with the stress criterion for a rank-2 composite, the

stress must converge to a �nite and non zero stress as the density goes to zero for �nite strain.

The condition which satis�es this coherence requirement is for q = p, and thus the stress criterion

can be stated as.

σe = C(E0)εe (3.7)
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3.2 Singular Optima

As noted previously, the problem of singular optima when considering stress constraints have

been known since it was highlighted in Sved and Ginos (1968), where a three-bar truss system

was analysed and it was found that the true optima of a two-bar solution was unattainable with

gradient based methods due to the presence of the stress constraints. It was later explained

that the issue arises due to the discontinuity of the stress constraint, since the stress tends

toward a �nite value as the density go towards zero, while being zero for zero density. This

discontinuity generates degenerate subspaces in the feasible domain, that are inaccessible to

standard optimization methods. Within the context of topology optimization this means that

the coherence requirement as stated in the section above, which requires the convergence to a

�nite stress as the density goes towards zero, might cause stresses that violate the yield constraint,

thus inhibiting material removal due to the constraint violation. Furthermore, as noted in Bruggi

(2008) the box constraint imposed in the density variable can make the subspaces generated by

the stress discontinuity not only degenerate, but also disjointed from the feasible domain.

Several methods have been proposed to solve this problem, the two most well known being the

ε-relaxation method (Cheng and Xu, 1997) where a relaxation ε is introduced which perturbs

the feasible domain, and makes the global optima available, the ε parameter is then gradually

decreased, whereby the relaxed problem approaches the original formulation. The second method

is the qp-approach, �rst illustrated in Duysinx and Bendsøe (1998) and elaborated upon further

in Bruggi (2008) and Le et al. (2010), the qp-approach is the method that will be used in

this thesis. In the qp-approach the global optima is made available by relaxing the coherence

requirement which stated the following.

σe = lim
ρ̃e→0

ρ̃p−qe C(E0)εe = C(E0)εe for q = p (3.8)

Now, by replacing the q = p requirement, with q < p the stress will converge to a zero stress

as the density goes towards zero.

σe = lim
ρ̃e→0

ρ̃p−qe C(E0)εe = 0 for q < p (3.9)

Thus, the physical consistency for intermediate densities as determined from the study of

rank-2 composites, is sacri�ced for a stress de�nition which makes the global optima available,

by making the constraint consistent for 0 and 1 densities. The stress formulation can thus be

stated as the following, where qp = p− q.

σe = ρ̃qpe C(E0)εe (3.10)

As noted in Le et al. (2010) this is e�ectively a stress penalization, where low densities produce

higher stresses as illustrated in the following �gure.
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Figure 3.1: E�ect of qp-relaxation on density variable for qp = 0.5

From �gure 3.1 it is also visible that as the density approaches zero, the gradient becomes

in�nite. This motivates the introduction of a minimum density value ρmin. Based on numerical

experiments and recommendations by Collet et al. (2017) it was found that minimum density in

range of 10−3 - 10−5 did not e�ect the optimization problem, thus henceforth ρmin = 10−5 is set

for the optimization problem formulation containing the stress formulation (3.10).

3.3 Local Constraints

The second issue that arises when considering stress based constraints is the local state of the

stress. Generally within topology optimization the stresses are evaluated in the center of each

element, corresponding to the superconvergent point for linear elements, which is where the

stresses, especially the shear stresses, are the most accurate. The result of this, is that the number

of constraints equals the number of design variables. Due to this local state, the computational

e�ort for solving large problems when considering local stress constraint becomes ine�cient.

Especially when considering that the optimization problem is to be solved using gradient based

methods, which if local stress constraints were to be considered, would require the sensitivity of

each constraint with respect the each design variable was to be found, this would greatly increase

the computational resources necessary for solving the problem.

Various methods have been proposed in order to reduce the expensive computation associated

with local stress constraints. The method utilized in this thesis is the use of aggregate functions.

By using an aggregate function the local stress constraints are converted into a global constraint

that represents the maximum von Mises stress in the domain, while still being �rst order

di�erentiable. There are multiple examples of di�erent aggregation functions being used, each

having a various characteristics. For example, Kreisselmeier Steinhauser (KS) aggregation as

used in Verbart (2015) provides the ability to have negative input variables. Here the input

values are all positive, therefore is the aggregate function applied here is the P-norm function

(3.11) denoted as Ψ.

Ψ =

(
ne∑
i=1

σPvm i

) 1
P

(3.11)
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The P-norm aggregate function Ψ takes as input the local von Mises stress for each element,

and an aggregate parameter P > 0. The P parameter determines the accuracy of the aggregate

functions approximation of the maximum value, and in the limit as P goes towards in�nity the

P-norm function equals the maximum stress.

lim
P→∞

Ψ(σvm, P ) = max(σvm) (3.12)

The P-norm aggregate function is illustrated in �gure 3.2 for di�erent P values, where it

approximates the maximum function value at x of two di�erent functions illustrated by the

broken black lines.

Figure 3.2: P norm approximation for P = 2,5,8

As can be seen in �gure 3.2 as the P value increase, so does the accuracy of maximum value

approximation. Furthermore, it is also illustrated that the P-norm aggregate function approaches

the maximum value from above, such that when using the P-norm function the maximum

value is overestimated leading to a more conservative structure since constraint is based on

the approximated maximum value.

The accuracy of the aggregate function is also dependent on the number of input values, such

that an increase in input values decreases the accuracy of the maximum value approximation.

Considering large optimization is the goal of this thesis, a P value larger than generally applied

in the literature might be required due to increased number of input values. In order to achieve

a good approximation a high P value is necessary, however the higher the P value the more non-

linear the optimization problem becomes. A high P value will decrease the speed of convergence,

or even completely inhibit convergence.

The speci�c value of the P parameter is problem dependent and is determined from numerical

experiments guided by recommendations in the literature. Depending on the problem to be

solved, a P value in the range of 6-16 appears to be a good compromise between the aspects of

convergence and su�cient representability. These P values presuppose a combination with the

adaptive constraint scaling factor as described in the next section.
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3.4 Adaptive Constraint Scaling

As remarked in the previous section, the aspects of convergence is highly dependent on the degree

of non-linearity of the optimization problem, which motivates the use of a low P value, however

this introduces the issue of overestimation. The issue of overestimation by the P-norm aggregate

function is mitigated by a method proposed in Le et al. (2010) known as adaptive constraint

scaling. The general idea is to minimize the discrepancy between the approximated value and

the real maximum value by introducing a scaling factor c at the current iteration I which scales

the aggregate value Ψ.

max(σvm) ≈ c(I)Ψ (3.13)

This scaling factor is then determined using information of the maximum von Mises stress and

the aggregate value from the previous iteration (I − 1).

c(I) = α(I)max(σvm)(I−1)

Ψ(I−1)
+
(

1− α(I)
)
c(I−1) (3.14)

α(I) = (0, 1] (3.15)

Here α serves as a dampening factor, which becomes active if c oscillates between two

consecutive iterations. This method makes it possible to adequately solve the problem with a

lower P value. The c factor is dependent on themax() function, which makes it non di�erentiable,

and is therefore not included in the sensitivity analysis. However, as noted in Le et al. (2010)

as the optimization converges the di�erence between the c factors becomes smaller, and thus

reducing the in�uence of the non-di�erentiability. The adaptive constraint scaling method is

implemented as illustrated in the following pseudo code from Oest and Lund (2017b).

Algorithm 1 Pseudo Code - Adaptive Constraint Scaling Method

if I ≤ 2 then

c(I) = max(σvm)(I)

Ψ(I)

α(I) = 1
else

if Oscillation then
α(I) = max(0.5, α(I−1)0.8)

else
α(I) = min(1, α(I−1)1.2)

end if
c(I) = α(I)max(σvm)(I−1)

Ψ(I−1) +
(
1− α(I)

)
c(I−1)

end if
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The optimization problem considering mass minimization while being subjected the von Mises

stress constraints can now be formulated, utilizing qp relaxation to handle the issue of singular

optima, and a scaled aggregate function to increase the computational e�ciency.

minimize
ρ

f =
1

V0

ne∑
e=1

veρ̃e

subject to g =

(
c(I)Ψ

σlim

)
≤ 1

ρe = [ρmin, 1]

(3.16)
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Fatigue Analysis 4
The inclusion of fatigue constraints within topology optimization is relatively recent. In

Holmberg et al. (2014) and Holmberg (2016) the topology optimization and fatigue analysis

were done separately, where the fatigue analysis determined an equivalent fatigue life stress

constraint. This equivalent stress would then be used as a constraint in combination with a von

Mises constraint in the topology optimization problem. In Jeong et al. (2015) a fatigue constraint

was considered with mean stress e�ects and for constant loading conditions. Fatigue constrained

topology optimization has also been performed in the frequency domain as opposed to the time

domain Lee et al. (2015). In Oest and Lund (2017b) the fatigue analysis, considering variable

amplitude loading in the time domain, was included in the topology optimization problem, and

e�ciently solved using gradient based methods, where the sensitivities were found using the

adjoint method.

The often cited statistic, that failures due to fatigue account for 50% to 90% of all mechanical

failures (Stephens et al., 2001), illustrates both the prevalence of mechanical structures which

are subjected to repeated loading, as well as the di�culty of designing a component for fatigue.

Adequately designing a component for fatigue requires numerous inputs, such as geometry, load

history, material data and environmental e�ects, the accuracy of which can have a great impact

on the �nal prediction.

The designer must furthermore choose an appropriate fatigue life model. Generally there exists

four di�erent models, namely the nominal stress life method (S-N), the strain life method (ε -

N), the fatigue crack growth model and lastly the two stage model which is a combination of

the strain life method and the fatigue crack growth model. Each of these models have their

area of best applicability, the S-N method is most appropriate for high cycle fatigue, which is

generally characterised by elastic strains, and generally determined as being when the number

of cycles are greater than 103 (Norton, 2011). The ε-N method has the best correlation with

experiments when considering low cycle fatigue, and in areas where plastic deformation occurs,

such that accounting for the loading in terms of strains opposed to stresses o�ers a simpler and

more accurate description. If knowledge of a crack in the structure exists, then the fatigue crack

growth model provide the ability the predict the life time. The two stage model utilizes the ε-N

method to estimate the crack initiation and subsequently the fatigue crack growth model. In

this thesis, the concern is of structures which are subjected to high cycle fatigue, and also is

subjected to a yield constraint such that only elastic strains occur, thus the S-N method is the

most suitable.

After an appropriate fatigue life model has been chosen, numerous methods are available for

estimating the fatigue life. The method has to be selected based on various conditions, such as

whether an uniaxial and multiaxial stress state occurs, variable or constant amplitude loading,

design for in�nite or �nite life time and the available computational resources. The structures
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considered here are in a multiaxial stress state, which for high cycle fatigue generally are analysed

using two methods, the equivalent uniaxial amplitude stress method, and critical plane analysis.

Using critical plane analysis, a plane which is at the highest risk of failure is determined at a given

stress state. As highlighted in (Svärd, 2015a), determining this critical plane is computationally

expensive, since the problem of �nding this critical plane is generally non-concave and thus using

gradient based methods might not �nd the critical plane, in light of this, the brute-force method

is generally utilized. Therefore, since large scale optimization is considered here, this method

is not applicable with the computational resources available. The other conditions necessary to

establish a fatigue constraint will be examined and elaborated upon in the following sections.

This chapter will outline the individual components necessary to de�ne the fatigue constraints

utilized in the topology optimization. Initially the loading conditions and the decomposition

of these into load reversals will be considered. Then an uniaxial equivalent amplitude stress is

established from the multiaxial stress state, which includes the mean stress e�ects. Lastly the

damage that occurs over a set lifetime is estimated considering high cycle fatigue, using S-N

curves and the accumulated damage method.

4.1 Loading Conditions

The following section describes the loading conditions considered in this thesis, as well as the

method used to reduce the load history into load reversals.

4.1.1 Proportional Loading

When performing a fatigue analysis, it is important to identify the loading condition that the

structure is subjected to, since some fatigue analysis tools are limited to a speci�c case, and thus

applying non suitable fatigue assessment method might result in an erroneous prediction. There

exist two classi�cations, namely proportional loading and non-proportional loading, these will

be illustrated with the following example of a shaft subjected to axial and torsional loading as

illustrated in �gure 4.1a.

(a) Shaft subjected to axial and
torsional loading (b) Proportional loading (c) Non-proportional loading

Figure 4.1: Loading example (Stephens et al., 2001)

If the axial and torsional load is applied in sync, it would result in the stress state in 4.1b where

the proportion between the normal and shear stress is always equal, hence the name proportional

loading. However, if the loads are applied out of phase, the stress state 4.1c occurs.

In this thesis proportional loading is assumed, this allows for the use of equivalent stress

based approaches, and the possibility to apply cycle counting methods on the load-time history,
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rather than on the stress-time history for each element which possibly could be computationally

expensive.

4.1.2 Cyclic Loading

Many of the structures where fatigue is relevant are subjected to variable amplitude loading,

therefore, and for the sake of generality so to are the structures considered in this thesis. The

nomenclature related to fatigue, is introduced in �gure 4.2 which illustrates a constant amplitude

loading for uni-axial stress.

Figure 4.2: Constant amplitude loading

Here the stress amplitude σa and the mean stress σm is calculated from the following equations

σa =
(σmax − σmin)

2
(4.1)

σm =
(σmax + σmin)

2
(4.2)

Figure 4.2 illustrates the load history for constant amplitude cyclic loading, however the

variable amplitude loading considered here would resemble the load history illustrated in �gures

4.3 and 4.4.

Figure 4.3: Variable amplitude load history for Fref = 100 and r = -1
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Figure 4.4: Variable amplitude load history for Fref = 100 and r = 0

The load histories illustrated in �gures 4.3 and 4.4 are randomly generated based on a speci�ed

load ratio referred to as r, and a reference load Fref . Where the r ratio is the ratio between the

maximum or reference load and the minimum load.

r =
Fmin
Fref

(4.3)

The two illustrated load histories are for the two most common load ratios, namely fully

reversed loading shown in �gure 4.3 where the load varies within an interval between a equal

valued positive and negative reference load, with a mean load of 0 corresponding to r=-1. Figure

4.4 illustrates what is called �uctuating or pulsating load where r=0. Here the load varies between

0 and the reference load with a mean of half the reference load.

4.1.3 Rain�ow Counting

In order to account for the damage of a given load history, this history has to be decomposed

into load reversals. This is done by applying a cycle counting method to a representative section

of the complete load history. This gives the amplitude and mean values of a given load reversal,

as well as the number of load reversals. There are numerous counting methods available, here

rain�ow counting is used since it is the most popular and probably the best counting method

(Stephens et al., 2001).

The rain�ow counting method was proposed in 1968 by T. Endo and M. Matsuishi. Here,

the load-time history plot is reduced to peaks and valleys. From these peaks and valleys, the

amplitude and mean scaling factors of the individual load reversals as well as the number of

load reversals can be found by applying a speci�c counting method outlined in (Stephens et al.,

2001). The amplitude and mean scaling factors ca, cm are found from the relationship between

a reference load Fref and the amplitude and mean load of the load reversal, such that there is a

scaling factor for each rain�ow as indicated by the index i.

The reference load illustrated in �gure 4.3 and 4.4 is used in the equilibrium equations (2.3),

which yields the reference displacements. From these reference displacements, element reference

stresses can be found for each element (3.10). Since linear elasticity is considered the principle

of superposition can be utilized, such that the mean and amplitude stress components for each

element and each load reversal can be found from the element reference stress vector and the

scaling factors.
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σea,i = ca,iσe (4.4)

σem,i = cm,iσe (4.5)

4.2 Equivalent Stress

Since the structure is subjected to a 3D multiaxial stress state and we would like to use the data

available from uniaxial stress tests in the form of S-N curves, the 6 stress components have to be

combined into a equivalent uniaxial amplitude stress. In this thesis two equivalent stress criteria

are considered, namely Sines criterion as considered in Oest and Lund (2017b) and signed von

Mises with mean stress e�ects presented in Stephens et al. (2001) and Jeong et al. (2015). The

motivation for introducing the signed von Mises equivalent stress, is based on a correspondence

with Grundfos, which utilizes the signed von Mises criteria in order to design and validate some

of their components.

4.2.1 Sines criterion

Sines proposed using the octahedral shear stress for the amplitude stress, and the hydrostatic

stress for the mean stress. These two terms are then added to produce an equivalent uniaxial

amplitude stress.

σ̃sines,ae =
1√
2

√
(σ1e − σ2e)

2 + (σ2e − σ3e)
2 + (σ3e − σ1e)

2 + 6(σ2
4e

+ σ2
5e

+ σ2
6e

) (4.6)

σ̃sines,me =
1√
2
β(σ1e + σ2e + σ3e) (4.7)

The equivalent amplitude σ̃sines,ae and equivalent mean stress σ̃sines,me are calculated based

on the reference stress, and then scaled using load scaling factors ca and cm to determine

an equivalent uniaxial amplitude stress σ̃ei for each element and rain�ow, indicated by their

respective subscript e and i.

σ̃sines ei = cai σ̃sines,ae + cmi σ̃sines,me (4.8)

Here β is a material parameter of mean stress in�uence, which in the absence of experimental

data can be set to β = 0.5 (Stephens et al., 2001). A negative Sines equivalent stress is assumed

to cause no damage (Oest and Lund, 2017b).

4.2.2 Signed von Mises

Using the signed von Mises equivalent stress, an equivalent amplitude σvm,aei and an equivalent

mean stress σvm,mei
is determined from multiplying the amplitude and absolute mean scaling

factors with the element reference von Mises stress σvme (Stephens et al., 2001).

σvme =
1√
2

√
(σ1e − σ2e)

2 + (σ2e − σ3e)
2 + (σ3e − σ1e)

2 + 6(σ2
4e

+ σ2
5e

+ σ2
6e

) (4.9)
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The von Mises stress as determined by equation 4.9 cannot have a negative value, and thus

the positive e�ect of compressive mean stresses is not considered. Therefore, in order to take

these e�ects into account the sign of the mean stress is to be determined. The sign of the mean

stresses can be determined by di�erent approaches, either by the sign of the maximum absolute

principal stress or by the sign of the hydrostatic mean stress. Here the sign is determined from

the hydrostatic stresses after correspondence with Grundfos. The sign is found for each element

and load cycle.

signei = sign(cmi(σ1e + σ2e + σ3e)) (4.10)

σvm,aei = caiσvme (4.11)

σvm,mei
= signei

√
c2
mi
σvme (4.12)

Note that the sign function is non di�erentiable, however this appears to cause no issues

of convergence, based on observations from numerical experiments. The equivalent uniaxial

amplitude stress necessary for using the S-N curves is obtained by taking into account the

compressive mean stresses. From experimental data, it has been determined that tensile mean

stresses have a negative e�ect on fatigue life, while compressive mean stresses have a positive

e�ect for a given amplitude stress. There exist a number of equations that attempts to capture

this phenomena, such as the Gerber parabola, the Modi�ed Goodman equation and the Morrow

line (Stephens et al., 2001). The Gerber parabola fails to take into account the positive aspects of

compressive mean stresses, and is therefore not considered. Both the modi�ed Goodman equation

and the Morrow line take these positive e�ects into account, here the modi�ed Goodman equation

is used.

σ̃svmei =

(
σu

σu − σvm,mei

)
σvm,aei (4.13)

Here σu is the ultimate tensile strength of the considered material. Considering the term which

determines the mean stress e�ects that is multiplied with the equivalent amplitude. In this term

it can be seen that there is a vertical asymptote at σvm,mei
= σu, if σvm,mei

> σu the mean stress

e�ects would become negative, resulting in a negative uniaxial equivalent amplitude stress, since

σvm,aei ≥ 0. This issue might cause some convergence issues if large positive mean stresses occur,

but this problem can be mitigated by using combined fatigue and yield constraints which would

ensure that the mean stresses are below the ultimate tensile strength. Figure 4.5 illustrates the

feasible region as determined by the modi�ed Goodman equation and the yield limits.
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Figure 4.5: Feasible region as determined by modi�ed Goodman equation and yield limits

Here the yield stress limits are indicated by the black lines, and the modi�ed goodman line

by the blue. For a given combination of amplitude σa and mean σm stress, gives an equivalent

stress σ̃ where line Goodman line intersects the zero mean stress line.

4.3 S-N Curve

S-N curves are experimentally generated stress-life curves for a given material in a uni-axial stress

state. The S-N curve estimates the number of cycles to failure Nf as de�ned in the experimental

test, from the applied stress range or stress amplitude. Generally the S-N curve consists of 2

possibly 3 stages dependent on the material, a low cycle region from 1−103 cycles, this region is

characterised by plastic deformation and lends itself best to strain-life models. High cycle fatigue

is generally de�ned from cycles above 103, here the strains are considered elastic, and this is the

region which is the concern of this thesis, since the structures are also constrained by the yield

stress. Some materials contain a third region known as the endurance region, from cycles above

approximately 106 or 107. Here the estimated number of cycles to failure creates no damage.

The S-N curve is here approximated using the Basquin curve as proposed in Stephens et al.

(2001) which represents a straight line in a log-log plot as illustrated in �gure 4.6.

σ̃ei = σ′f (2Nf,ei)
b (4.14)
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Figure 4.6: Basquin Curve

From (4.14) it is possible to estimate the number of cycles failure at each element for each

rain�ow Nf,ei . This is done based on the equivalent uni-axial amplitude stress, and the material

parameters σ′f which is the fatigue strength coe�cient and b which represents the slope of the

S-N curve in the log-log plot shown in �gure 4.6.

More complicated S-N curves can be implemented, however as noted in Oest and Lund (2017b)

if S-N curves with an endurance limit is considered, there might occur some issues with removing

material in low damage region, since the sensitivity of the damage with respect to the equivalent

uniaxial amplitude stress is zero, if they are below this endurance limit. This might be mitigated

by imposing a small slope to the S-N curve after the endurance limit.

4.4 Damage Accumulation

Since the structure is subjected to variable loading, the notion of damage is introduced. Damage

is de�ned as the fraction of life that is used by an event in the load history. In Palmgren-Miners

linear damage rule the damage caused by a single reversal is de�ned as the following.

D =
1

Nf
(4.15)

Here D is the damage and Nf is the estimated number of cycles to failure for that reversal.

According to the linear damage hypothesis the failure of a structure is predicted, when the

accumulated damage of all reversals reaches a critical value µ. The notion of damage is here

extended to an element basis, such that for each element not to fail it must uphold the following

condition, where the damage is accumulated over the number of rain�ows nRF .

De = cd

nRF∑
i=1

1

Nf,ei

≤ µ (4.16)

Since the rain�ow counting is performed on a representative section of the complete load history,

determined by k number of loads, the load history scaling factor cd is introduced to scale the

damage from the representative section to the complete load history.
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There are objections to the assumptions taken in Palmgren-Miners linear damage hypothesis.

Such as that it neglects the interaction and sequence e�ects of the load history, and while there

exits more complicated damage methods, Palmgren-Miners damage rule is still widely used since

the more complicated methods yield no better prediction based on experimental data (Stephens

et al., 2001)

4.5 Problem Formulation - Fatigue Constraint

Like the stress constraints, the element damage constraint is a local state. Therefore, for

computational reasons the P-norm aggregate function is used.

Ψ =

(
ne∑
e=1

DP
e

) 1
P

(4.17)

For the reasons outlined in section 3.4 the adaptive constraint scaling factor is likewise used

in combination with the aggregated damage constraint. The optimization problem considering

minimum mass while being subjected to a fatigue constraints, can now be established as the

following.

minimize
ρ

f =
1

V0

ne∑
e=1

veρ̃e

subject to g =

(
c(I)Ψ

µ

)
≤ 1

ρe = [ρmin, 1]

(4.18)
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In order to e�ciently solve the optimization problem gradient based optimization methods are

utilized. Speci�cally �rst order gradient based methods, and thus the gradient of the objective

function and the constraint with respect to the design variables are required. The gradients are

here analytically determined using the adjoint formulation, since the number of constraints are

fewer than the number of design variables due to use of the aggregate function (Christensen and

Klabring, 2009). The gradients are here presented using numerator-layout notation.

All the objectives and constraints are evaluated based on the physical density variables, which

are determined by the �ltering techniques on the design variables. Therefore, the chain rule must

�rst be applied to determine the sensitivity of the physical variables. Here f serves as both the

objective and constraint function.

df

dρj
=

df

dρ̃e

dρ̃e
dρj

(5.1)

The gradient dρ̃e
dρj

is determined by di�erentiating the density �lter given by (2.8).

dρ̃e
dρj

=
ωj
ne∑
j=1

ωj

(5.2)

If the threshold �lter is applied see (2.10), an extra term in chain rule expansion is necessary,

such that the sensitivity with respect to the design variables is the following.

df

dρj
=

df

dρ̃e

dρ̃e
dρ̃∗e

dρ̃∗e
dρj

(5.3)

The �nal term in the above expression is the same as established in (5.2). The middle term is

obtained by di�erentiating (2.10) with respect to the �ltered density variable.

dρ̃e
dρ̃∗e

= −
β
(
tanh (β (η − ρ̃∗e))

2 − 1
)

tanh (βη)− tanh (β (η − 1))
(5.4)

In this chapter only the stress and fatigue optimization problems are considered, for a derivation

of the sensitivities related to the minimum compliance optimization refer to Bendsøe and Sigmund

(2003).
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5.1 The Objective Function

The objective function for both optimization problem formulations (3.16) and (4.18) is to

minimize the mass. As stated previously the mass is determined based on the physical variables,

and thus the sensitivity can be found to be the element volume normalized with the domain

volume.
df

dρ̃e
=
ve
V0

(5.5)

5.2 The Constraint Functions

The following sections will establish the sensitivity with respect to the physical density variables

of the three constraint functions namely, the von Mises constraint and the two fatigue constraints

based on either the Sines criterion or the signed von Mises. Initially the adjoint formulation is

established, then a chain rule expansion of the three constraints is performed, and lastly the

terms in the chain rule expansions are determined.

5.2.1 Adjoint Formulation

The constraint functions are all explicitly dependent on the physical design variables and

implicitly dependent on them through the displacements, as determined by the equilibrium

equations. Thus in order to obtain the �rst order derivative of the constraint equations the total

derivative is taken.
dg

dρ̃e
=

∂g

∂ρ̃e
+

∂g

∂D

dD

dρ̃e
(5.6)

Here, the �rst term on the right-hand side captures the explicit dependence on the design

variables, while the second term is the implicit dependence through the displacements. The

last part of the second term on the right-hand side dD
dρ̃e

can now be expressed by di�erentiating

the equilibrium equations (2.3).
dK

dρ̃e
D +K

dD

dρ̃e
=
dR

dρ̃e
(5.7)

In this case the forces are assumed independent from the design variables, thus its derivative is

zero.
dK

dρ̃e
D +K

dD

dρ̃e
= 0 (5.8)

Isolating the sensitivity of the displacements.

dD

dρ̃e
= −K−1dK

dρ̃e
D (5.9)

This expression is then substituted back into (5.6).

dg

dρ̃e
=

∂g

∂ρ̃e
− ∂g

∂D
K−1dK

dρ̃e
D (5.10)

Now the global adjoint problem is formulated, where the global adjoint vector λ is found by

solving the following equations.

Kλ =

(
∂g

∂D

)T
(5.11)

The adjoint vector is then substituted in (5.10).

dg

dρ̃e
=

∂g

∂ρ̃e
− λT dK

dρ̃e
D (5.12)
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The gradient on an element level is formulated by extracting the degrees of freedom associated

with element e from the global displacement vector D and the global adjoint vector λ, denoted

as de and λe. Furthermore, since the global sti�ness matrix K is assembled from the element

sti�ness matricesKe, only the element sti�ness matrix associated with element e is di�erentiated.

dg

dρ̃e
=

∂g

∂ρ̃e
− λTe

dKe

dρ̃e
de (5.13)

Now, the �rst term on the right-hand side of (5.13) ∂g
∂ρ̃e

, and the element wise contribution to the

sensitivity term in the adjoint vector ∂g
∂de

is found for each of the constraints. In the following

section each of the three constraint are expanded using the chain rule. Subsequently, each of

the expanded terms are obtained, since many of the expanded terms are identical in the three

constraints.

5.2.2 Chain Rule Expansion

This section establishes the individual sensitivity terms by chain rule expansion of the

constraint functions di�erentiated with respectively the physical density variable and the element

displacements.

Von Mises Constraint

The gradient of the von Mises stress constraint is found by applying the chain rule to the

constraint in (3.16), resulting in the following.

∂g

∂ρ̃e
=

∂Ψ

∂σvme

∂σvme

∂σe

∂σe
∂ρ̃e

(5.14)

∂g

∂de
=

∂Ψ

∂σvme

∂σvme

∂σe

∂σe
∂de

(5.15)

Where the �rst term ∂Ψ
∂σvme

is the aggregate function (3.11) di�erentiated with respect to

the element von Mises stress. Afterwards the von Mises stress is di�erentiated with respect

to the element stress components ∂σvme
∂σe

. The �nal terms in (5.14) and (5.15) are the element

stress components di�erentiated with the physical density variable and the element displacement

respectively.

Sines Constraint

We now consider the fatigue constraint based on the Sines criterion. The chain rule expansion

yields the following equations.

∂g

∂ρ̃e
=

∂Ψ

∂De

nRF∑
i=1

∂De

∂Nf,ei

∂Nf,ei

∂σ̃sines e,i

(
cai
∂σ̃sines ae
∂σe

+ cmi

∂σ̃sinesme

∂σe

)
∂σe
∂ρ̃e

(5.16)

∂g

∂de
=

∂Ψ

∂De

nRF∑
i=1

∂De

∂Nf,ei

∂Nf,ei

∂σ̃sines e,i

(
cai
∂σ̃sines ae
∂σe

+ cmi

∂σ̃sinesme

∂σe

)
∂σe
∂de

(5.17)

The �rst term ∂Ψ
∂De

is the partial derivative of the aggregate function with the element damage

established in (4.17). The subsequent terms has to summed over the number of rain�ows, due

to the cumulative nature of Palmgren-Miners damage rule (4.16). The �rst term within the sum

31



5. Sensitivity Analysis

∂De
∂Ne,i

is the partial derivative of the damage with respect to the estimated number of cycles to

failure at element e for the i′th rain�ow, then the estimated number of cycles to failure (4.14) is

di�erentiated with the Sines equivalent stress (4.8). Since the Sines equivalent stress is a sum of

an equivalent amplitude (4.6) and an equivalent mean stress (4.7), the derivative of the equivalent

stress is separated using the summation rule. The derivative of the equivalent amplitude and

mean stress are calculated with respect to the reference stress at element e and then scaled with

the amplitude and mean constants for the i′th rain�ow. Lastly, the �nal term is the derivative

of the element stress with respect to either the physical variables or the reference displacement.

Signed von Mises Constraint

The sensitivity of the signed von Mises fatigue criterion (4.13) is found similarly to constraint

based on the Sines criterion, however with the introduction of the sign function and the mean

stress e�ects based on the equivalent mean and amplitude von Mises stress.

∂g

∂ρ̃e
=

∂Ψ

∂De

nRF∑
i=1

∂De

∂Nf,ei

∂Nf,ei

∂σ̃svme,i

(
cai

∂σ̃svme

∂σvmae

∂σ̃vmae

∂σe
+ signei

√
c2
mi

∂σ̃svme

∂σvmme

∂σ̃vmme

∂σe

)
∂σe
∂ρ̃e

(5.18)

∂g

∂de
=

∂Ψ

∂De

nRF∑
i=1

∂De

∂Nf,ei

∂Nf,ei

∂σ̃svme,i

(
cai

∂σ̃svme

∂σvmae

∂σ̃vmae

∂σe
+ signei

√
c2
mi

∂σ̃svme

∂σvme

∂σ̃vme

∂σe

)
∂σe
∂de

(5.19)

Now that the constraint sensitivity has been expanded using the chain rule, the individual

components of the expanded terms can be found.

5.2.3 Sensitivity Terms

In the following section the individual terms present in the constraint functions chain rule

expansion are found.

Aggregate functions

The �rst terms are (5.14) and (5.15) is the aggregate function di�erentiated with respect to the

element von Mises stress.

∂Ψ

∂σvme
=

(
ne∑
i=1

σPvm i

) 1
P
−1

σP−1
vme (5.20)

Likewise, for both the Sines (5.16)(5.17) and signed von Mises (5.18)(5.19) the �rst term is the

aggregate function di�erentiated with respect element damage.

∂Ψ

∂De
=

(
ne∑
i=1

DP
i

) 1
P
−1

DP−1
e (5.21)

Damage

The partial derivative of the element damage as de�ned in 4.16 with respect to the estimated

number of cycles to failure is given as.

∂De

∂Nf,ei

= −cd
1

N2
e,i

(5.22)
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Cycles To Failure

Here is the estimated number of cycles to failure di�erentiated with respect to the equivalent

stress amplitude σ̃ei which can be either the Sines method or the signed von Mises criterion.

∂Nf,ei

∂σ̃e,i
=

1

2σ′fb

(
σ̃e,i
σ′f

) 1
b
−1

(5.23)

Mean Stress E�ects

The mean stress e�ects found using the modi�ed Goodman equation see (4.13) used in the signed

von Mises criterion, is here di�erentiated with respect to the equivalent amplitude and mean von

Mises stress.

∂σ̃svme

∂σvmae

=

(
σu

σu − σvm,me

)
(5.24)

∂σ̃svme

∂σvmme

=

(
σu

(σu − σvm,me)
2

)
σvm,ae (5.25)

Sines Equivalent Mean

Now, the sensitivity of the equivalent mean stress as de�ned in the Sines criterion (4.7) with

respect to stress components is found.

∂σ̃sinesme

∂σ1 e
=
∂σ̃sinesme

∂σ2 e
=
∂σ̃sinesme

∂σ3 e
=

1√
2
β (5.26)

Von Mises stress - Sines Equivalent Amplitude

The sensitivity of the von Mises stress and the Sines equivalent amplitude stress with respect to

the stress components in 3D is given as.

∂σvme

∂σ1 e
=
∂σ̃sines ae
∂σ1 e

=
1

2σvme
(2σ1 e − σ2 e − σ3 e) (5.27)

∂σvme

∂σ2 e
=
∂σ̃sines ae
∂σ2 e

=
1

2σvme
(2σ2 e − σ1 e − σ3 e) (5.28)

∂σvme

∂σ3 e
=
∂σ̃sines ae
∂σ3 e

=
1

2σvme
(2σ3 e − σ1 e − σ2 e) (5.29)

∂σvme

∂σ4 e
=
∂σ̃sines ae
∂σ4 e

=
3

σvme
σ4 e (5.30)

∂σvme

∂σ5 e
=
∂σ̃sines ae
∂σ5 e

=
3

σvme
σ5 e (5.31)

∂σvme

∂σ6 e
=
∂σ̃sines ae
∂σ6 e

=
3

σvme
σ6 e (5.32)
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Stress components

In each constraint sensitivity equation, the sensitivity of the element stress vector is needed, �rst

with respect to the physical density and second with respect to the element displacement, this

is obtained by di�erentiating (3.10).

∂σe
∂ρ̃e

= qp ρ̃(qp−1)
e C(E0)Bde (5.33)

∂σe
∂de

= ρ̃qpe C(E0)B (5.34)

Sti�ness matrix

The �nal part of the sensitivity analysis is to obtain the sensitivity of the element sti�ness matrix

with respect to the physical variables (5.13). This is accomplished by di�erentiating the element

sti�ness matrix see (2.4) which is composed of the e�ective modulus of elasticity de�ned by the

modi�ed SIMP de�nition (2.2) and the element sti�ness matrix evaluated for a unit modulus of

elasticity K0.
dKe

dρ̃e
= K0

(
p (E0 − Emin) ρ̃(p−1)

e

)
(5.35)
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Numerical Examples 6
This chapter presents the numerical experiments which illustrate the previously established

topology optimization problem formulations, based on the von Mises yield constraint, as well as

the two fatigue constraints, one based on the Sines criterion and the other on the signed von

Mises criterion. Some of the general considerations regarding the use of fatigue constraints are

illustrated on 2D examples, where the e�ects are easier to illustrate. The 2D examples are all

assumed to be in plane stress.

All the optimization problems are performed using the material AISI 1020 HR steel with the

material data obtained from Stephens et al. (2001). Regarding the damage constraint formulated

using Palmgren-Miners linear damage hypothesis (4.16) the critical value is µ = 1.

Material Data - AISI 1020 HR Steel

E0 203 GPa
ν 0.3
b -0.156
σlim 262 MPa
σu 441 MPa
σ′f 1384 MPa

µ 1

Table 6.1: Material Data for AISI 1020 HR Steel

The topology optimization formulations established in this thesis are implemented as extensions

to the minimum compliance topology optimization codes made available by the TopOpt group at

DTU. All 2D examples are based upon the 88 line MATLAB code described in Andreassen et al.

(2011), and as mentioned previously, the 3D examples are based upon the code implemented

in the PETSc framework described in Aage et al. (2015). These codes provide the minimum

compliance formulation, the FEM analysis for solving the static analysis problem, the �ltering

techniques (except the threshold �lter) and the optimization solvers. In order to generate the

load history the default random number generator is used in both c++ and MATLAB.

The optimization problems are all solved using the Method of Moving Asymptotes (MMA)

optimization algorithm, outlined in Svanberg (1987), Svanberg (2007) and with parallel

implementation in the PETSc framework in Aage and Lazarov (2013). The general idea behind

MMA is to solve approximated sub-problems of the original problem, where these approximated

problems are convex such that they can be easily solved. The approximated functions are based

on information of the function value and �rst order derivatives at the current iteration, and if

available, information from previous iterations of the design variables, and the lower and upper

asymptotes used to generate the approximate convex functions.
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Based on recommendations in Svanberg (2007) the factors that determine the increase and

decrease of the asymptotes, are decreased to 1.05 and 0.65, due to the high non-linearity of

the optimization problems. Other parameters are left to the default values, if nothing else is

indicated.

If nothing else is noted the optimization problems are solved with a P value of 12, and a

continuation scheme is applied to the qp factor where it is reduced by 0.025 every 10th iteration

from 0.75 to 0.5. Furthermore, external move limits of 0.1 are applied.

6.1 Benchmark Problems

This section presents the benchmark examples used in the topology optimization. The benchmark

examples are chosen based on the ability to compare results with other formulations present in

the literature. Furthermore, the benchmark examples are chosen in order to illustrate some of

the characteristics of using fatigue constraints. The 2D benchmark examples have unit thickness

and the applied force is generally distributed over a number of elements, in order to avoid local

stress singularities for both 2D and 3D.

6.1.1 2D Benchmark Examples

(a) Double L-beam 2D

(b) L-beam 2D

Figure 6.1: Benchmark examples for 2D
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6.1.2 3D Benchmark Examples

(a) L-beam 3D

(b) Cantilever Beam 3D

Figure 6.2: Benchmark examples for 3D

Figure 6.3: Curved Beam 3D
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6.2 Bene�ts of Combined Fatigue & Yield Constraints

In Oest and Lund (2017b) where the fatigue constraints are included directly in the topology

optimization formulation, the highly non-linear behaviour of the fatigue constraints compared

with the von Mises constraint is highlighted. Similar results were experienced here when

performing mass minimization with a fatigue constraint based on both Sines and signed von

Mises equivalent stress. However the bene�cial aspects on convergence of including a von Mises

constraint in combination with a fatigue constraint were observed and will be illustrated on the

following representative example, using a fatigue constraint based on Sines criterion.

The example will here be illustrated for the 2D double L-beam with L=120mm in �gure 6.1a, a

�lter radius of 0.03L, and discretized using ne = 23040 elements in order to facilitate comparison

with the literature. All three examples are subjected to the same randomly generated load

history with r = -1, corresponding to a fully reversed load, for k = 1000 loads using a reference

force of 500N, the force is distributed across six elements. This is then scaled to full lifetime by

cd = 1000.

In all examples both the damage and von Mises stress distribution is shown, no matter the

applied constraint, in order to show the e�ects one constraint has on the other.

6.2.1 Von Mises Yield Constraint

The following section illustrates the topology optimization considering minimum mass while

being subjected to a single von Mises yield constraint. The optimization results are as follows.

Optimization Result

f 0.1743
Iter 320

max
(
De
µ

)
32.6301

max
(
σvm
σlim

)
1.0000

Table 6.2: Optimization results for minimum mass subjected to a von Mises yield constraint

As illustrated in �gure 6.4 when performing the optimization solely with the von Mises

constraint, the �nal result is a symmetric structure, with rounded corners to remove the stress

concentrations that arise due to the re-entrant corners. The von Mises stress is equally distributed

over the structure to fully utilize the material. When considering the damage in the structure, it

is clearly visible that nearly all elements of the structure are greater than 1, with the maximum

being above 32.
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Figure 6.4: Yield constraint r = -1
The damage and von Mises stress are normalized with respect to µ and σlim respectively.
left: Density mid: Damage right: von Mises Stress

Considering the iteration history in �gure 6.5, it is visible that the convergence of this

optimization problem is quite smooth, with only minor jumps in both the objective function

and constraint, and that the fatigue constraint is greater than 1 during the whole optimization

procedure.

(a) Iteration history - Fatigue (Sines) constraint (b) Iteration history - Von Mises constraint

Figure 6.5: Iteration history for single von Mises constraint
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6.2.2 Fatigue (Sines) Constraint

Using the same inputs, the problem is now solved considering the same objective while being

subjected to a fatigue constraint based on Sines criterion. Comparing the optimization results in

table 6.3 with 6.2 it can be seen that using the fatigue constraint results in a heavier structure.

Optimization Result

f 0.2290
Iter 936

max
(
De
µ

)
0.9953

max
(
σvm
σlim

)
0.5899

Table 6.3: Optimization results for minimum mass subjected to a fatigue (Sines) constraint

Contrasting the result obtained when considering the Sines fatigue constraint as illustrated in

�gure 6.6, with the results obtained using von Mises constraint in �gure 6.4, it is clear that the

�nal structure is substantially non symmetric. The �nal structure satis�es the damage constraint,

with a satisfactory distribution, though there are some low damage regions.

Figure 6.6: Fatigue (Sines) constraint r = -1
The damage and von Mises stress are normalized with respect to µ and σlim respectively.
left: Density mid: Damage right: von Mises Stress

Considering the von Mises stress distribution in �gure 6.6 it can be seen that all the values are

relatively low, with the majority having a normalized value of approximately 0.55.

Referring to the iteration history considering the fatigue constraint in �gure 6.7a the non linear

behaviour of the fatigue constraint is clear, there are multiple considerable jumps in both the

objective function and the fatigue constraint, with maximum constraint violation during the

optimization of 104.

Considering the number of iterations necessary for convergence, using the fatigue constraint

requires nearly three times as many iterations as the von Mises constraint.
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(a) Iteration history - Fatigue (Sines) constraint (b) Iteration history - Von Mises constraint

Figure 6.7: Iteration history for single fatigue (Sines) constraint
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6.2.3 Combined Fatigue & Yield Constraints

Now, the problem is solved for combined fatigue and yield constraints.

Optimization Result

f 0.2119
Iter 700

max
(
De
µ

)
0.9931

max
(
σvm
σlim

)
0.6010

Table 6.4: Optimization results for minimum mass subjected to both a fatigue (Sines) and yield
constraint

The following example was performed using combined Sines fatigue constraint and a von Mises

yield constraint. Even though the optimization was still dominated by the fatigue constraint,

the �nal structure achieve some of the symmetric layout obtained when using solely the von

Mises constraint as illustrated in 6.4. Considering the iteration history 6.9, there still exists the

jumps which were present when using solely the fatigue constraint, however the degree of the

constraint violation was reduced by two orders of magnitude when combined with the von Mises

constraint. This e�ect is also visible when considering the objective function, where the jumps

are approximately a third as compared with the objective function illustrated in �gure 6.7.

Figure 6.8: Yield & Fatigue (Sines) constraint r = -1
The damage and von Mises stress are normalized with respect to µ and σlim respectively.
left: Density mid: Damage right: von Mises Stress
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(a) Iteration history - Fatigue (Sines) constraint (b) Iteration history - Von Mises constraint

Figure 6.9: Iteration history for combined Fatigue (Sines) and von Mises constraint

6.2.4 Conclusion

The possible bene�t of using combined fatigue and yield constraints have here been demonstrated

on a representative example. When comparing the single fatigue constraint with the combined

constraints, the combined constraints obtained a better objective function of f = 0.2119 as

compared to f = 0.2290 for the fatigue constraint, in fewer iterations.

The bene�cial aspect of using combined constraints are proportional to the degree of the

yield constraints signi�cance, such that the more dominant the yield constraint the better the

convergence. In the example illustrated here, the normalized von Mises stress was generally

around 0.6.

Using the combined constraints requires more computation compared to using a single fatigue

constraint, since an additional adjoint problem has to be solved in order to obtain the von Mises

constraint sensitivities. The large constraint violations present using the single fatigue constraint

can be mitigated by imposing stricter move limits. However applying tighter move limits might

further increase the already large number of iterations required for convergence.

In light of the previous points, the extra computational cost associated with combined

constraints can be justi�ed if the problem to be solved exhibits a highly non linear response

exempli�ed by large constraint violations and poor convergence, which might lead to a sub

optimal solution. Furthermore, the use of a single fatigue constraint does not guarantee

su�ciently low stresses such that yielding does not occur, as illustrated in Oest and Lund (2017b)

where two of the three examples presented had higher von Mises stresses than the yield stress

limit, when solved for a fatigue constraint based on Sines criterion. A yield constraint is a general

requirement for most structures, and is required not to violate the assumption of linear elasticity,

which is required for the appropriate use of some of the aspects used in formulating the fatigue

constraint.
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6.3 Mean Stress E�ects

In the following section the e�ects of mean stress is examined for the fatigue constraint based on

the signed von Mises. The e�ects will be illustrated on the L-beam example shown in �gure 6.1b

with L=100mm in 6.1b, a �lter radius of 0.03L and using ne = 6400 elements, for the two most

common r ratios, r=-1 which corresponds to a fully reversed loading and r=0 being pulsating

positive loading between 0 and the reference load. The optimization problem is solved using a

combined von Mises and fatigue constraint based on signed von Mises, due to the reasons laid

forth in the previous section. Both examples are subjected to a reference load of Fref = 300

and k = 1000. For r=-1 the load history is scaled with cd = 400, and for r=0, cd = 20000. The

discrepancy in load history scaling is due to the fact that the load amplitude is di�erent for two

load ratios.

6.3.1 Load Ratio of r = -1

Optimization Result

f 0.30584

Iter 705

max
(
De
µ

)
0.9950

max
(
σvm
σlim

)
0.9982

For the �rst case, the load ratio is here set to r = -1, such that the load-history is fully

reversed. As can be seen in �gure 6.10 the damage and von Mises stress are equally distributed

over the entire structure, which is to be expected, since the structure over the load history is

approximately an equal amount in tension and compression.

Figure 6.10: Yield & Fatigue (signed von Mises) constraint r = -1
The damage and von Mises stress are normalized with respect to µ and σlim respectively.
left: Density mid: Damage right: von Mises Stress

6.3.2 Load Ratio of r = 0

Optimization Result

f 0.34192

Iter 755

max
(
De
µ

)
0.9965

max
(
σvm
σlim

)
1.0002

Next, the optimization problem is solved for a load ratio of r = 0 which corresponds to a

�uctuating positive load between 0 and the reference load. From �gure 6.11 the positive e�ect of

44



6.4. Large Scale Optimization in PETSc Framework Aalborg Universitet

compressive stresses are evident when considering the damage distribution. Here it can be seen

that the damage is far greater on the inside of the structure which is in tension, as compared to

the outside of the structure that is in compression. Furthermore, when considering the von Mises

stress distribution, it can be seen that the distribution is the opposite of the fatigue constraint.

Here the outside of the structure has the highest stresses, while the inside is lower.

Figure 6.11: Yield & Fatigue (signed von Mises) constraint r = 0
The damage and von Mises stress are normalized with respect to µ and σlim respectively.
left: Density mid: Damage right: von Mises Stress

For this speci�c problem, the dominant failure mode is fatigue damage on the inside of the

structure, and yielding on the outside. Thus especially for r = 0, the combination of both

fatigue and yield constraints might be necessary, since yielding for the material considered is

indiscriminate of tension and compression while fatigue is not. Therefore, if only a fatigue

constraint is considered yielding might occur in the regions of compressive stress.

6.4 Large Scale Optimization in PETSc Framework

Even though 2D examples are useful, 3D structures are widely used, and thus, for topology

optimization to be fully applicable in industrial settings should it be able to solve large 3D models.

The following section will illustrate the applicability of the established topology optimization

formulations for 3D problems.

The following examples are solutions to topology optimization problems formulated in the

PETSc framework, utilizing parallel computing in order to address the problem of the additional

computational resources necessary in order to solve large scale 3D problems. As mentioned

previously the yield and fatigue constraints are implemented as an extension to the minimum

compliance topology optimization problem provided by the TopOpt group at DTU and outlined

in Aage et al. (2015). The framework is currently restricted to the use of structured grids, which

makes parallelization easier, however this limits the geometrical complexity which can be solved

using this framework. The domain used in structured grids is set along the Cartesian axis,

producing a rectangular domain. This domain can then be modi�ed by imposing void element

sections, and by using mapping techniques, where the connectivity of the grid is maintained but

the domain shape is transformed. The Rain�ow counter and the ability to set void elements in

the PETSc framework has been provided by Jacob Oest.
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6.4.1 L beam

The following example is of the L beam illustrated in �gure 6.2a which is solved in the PETSc

framework, with a discretization of ne = 131072 1mm elements and �lter radius of 2.4 element

lengths. The L beam is subjected to a load of F = 10000N with a fully reversed loading r = −1,

k=1000 and a load history scaling factor of cd = 3000. The L beam is �rst solved for minimum

compliance, with an available volume constraint of V ∗ = 0.35 of the original domain. Afterwards

a minimum mass objective is considered, �rst with a von Mises yield constraint, and then for a

combined yield and fatigue constraint based on the signed von Mises criterion.

(a) Compliance minimization
- Volume fraction

(b) Mass minimization
- Von Mises

(c) Mass minimization
- Fatigue (signed von Mises)

Figure 6.12: Density distribution illustrated with for ρ̃e ≥ 0.5 - Sideview

(a) Compliance minimization
- Volume fraction

(b) Mass minimization
- Von Mises

(c) Mass minimization
- Fatigue (signed von Mises)

Figure 6.13: Density distribution illustrated for ρ̃e ≥ 0.5 - Isoview

Figure 6.12 and 6.13 which illustrate the physical density distribution of the three topology

optimization formulations, facilitate comparison between the various formulations. Considering

the minimum compliance problem 6.12a it can be seen the re-entrant corner still is present,

since the stress concentration which arises does not e�ect the minimum compliance problem.

Comparing that to the other two formulations which are based on stress constraints, the von
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mises yield constraint in �gure 6.12b and a fatigue constraint based on the signed von Mises

criterion in �gure 6.12c. Here it can be seen that the geometry is curved in the vicinity of the

re-entrant corner, in order to reduce the e�ect of the stress concentration.

(a) Compliance minimization
- Volume constraint

(b) Mass minimization
- Von Mises constraint

Figure 6.14: Iteration History

Figure 6.14 illustrates the iteration history for the normalized minimum compliance problem,

and for the mass minimization subjected to a yield constraint. From the iteration history it can

be noted how quickly the optimizations problems converged, and how the iteration history is

quite smooth for both formulations.

(a) Mass minimization
- Fatigue (signed von Mises) constraint

(b) Mass minimization
- Von Mises constraint

Figure 6.15: Iteration history for combined yield and fatigue constraints

This is evident when comparing to �gure 6.15 which illustrates the iteration history of the

mass minimization with combined fatigue and yield constraints. Here three distinct jumps occur

during the optimization, illustrated by the sudden constraint violation. This optimization also

required 800 iterations in order to converge, compared to 150 for the compliance problem and

160 for mass minimization with a yield constraint. This further highlights the non-linear nature

of fatigue constraints.
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Stress & Damage Distribution

Illustrating the stress and damage distribution for 3D examples is not as straight forward as

for 2D, since the stress or damage is generally highest in the center of the structure, and

then gradually decrease due to the �ltering techniques applied. Here the stress and damage

distribution are illustrated by thresholding the stress and damage value, such that only stress

and damage above a certain value is shown. Here the stress and damage distribution of the

combined fatigue and yield constraint problem as illustrated in �gure 6.12c is considered, where

only values above 0.7 times either µ or σlim for damage or von Mises stress, respectively, are

shown.

(a) Damage distribution > 0.7 µ (b) Von Mises stress distribution > 0.7 σlim

Figure 6.16: Damage and von Mises stress distribution

Considering the damage distribution illustrated in �gure 6.16a it can be seen that there are

many damage values above 0.7µ distributed over the structure. There is a concentration of higher

damaged elements around the stress concentration, which occurs due to the re-entrant corner.

The von Mises stresses in �gure 6.16b are also distributed well over the structure.
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Large Discretization

In industrial applications, a large discretization is often necessary in order to achieve su�cient

representability. Furthermore, the large discretization allows for more detailed structures. The

following example illustrates the use of the established formulations in large scale optimization

considering a combined yield and fatigue constraint based on the signed von Mises. Here the L-

beam is discretized using ne = 1048576 1mm elements and a �lter radius of 4.8 element lengths.

It is solved for Fref = 25000N for k = 1000 number of loads with r = -1, and the load history

is scaled with cd = 5000.

The following �gure illustrates the L-beam in an isometric view, with only densities above 0.5

shown.

Figure 6.17: Isometric view L-beam
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Considering �gure 6.18 it can be seen that the optimized structure is relatively symmetrical.

Figure 6.17 can be compared with the L-beam example in the previous section illustrated in

�gure 6.13c which was solved using 1/8 the amount of elements.

Figure 6.18: Side and front view

In �gure 6.19 the iteration history for the large discretization is shown. It is quite similar to

the iteration history for the previous example shown in �gure 6.15, however, there are a few

more jumps in the iteration history and larger constraint violations. This might be due to the

�ner discretization.

(a) Iteration history - Fatigue (signed von Mises)
constraint

(b) Iteration history - Von Mises constraint

Figure 6.19: Iteration history for combined fatigue (signed von Mises) and von Mises constraint
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6.5 Threshold Filtering

The following section examines the use of threshold �ltering as outline in section 2.1.2, when

considering mass minimization subjected to combined yield and fatigue constraints based on

Sines criterion. The transition zone from solid to void which inevitably arises from using the

linear decaying density �lter, is generally undesirable since intermediate density values have no

physical meaning. This motivates the use of a projection �lter, which creates more solid/void

structures, in order to minimize post optimization processing. However, using the threshold

�lter introduces a large non-linearity into an already very non-linear optimization problem. The

threshold �lter will here be illustrated on a cantilever beam illustrated in �gure 6.2b. This

benchmark example was chosen, since it is generally easier to solve due to the fact that it does

not contain any re-entrant corners. Therefore, the non-linearity of the threshold �lter can be

illustrated more clearly. Here the threshold value η = 0.5 is chosen, since an η value at either

extreme of 0 and 1 is more unstable, and based on experience η = 0.5 is the most stable.

As mentioned previously here the cantilever beam example is used. It is subjected to a reference

force of Fref = 25000N , with a load ratio of r = −1 for k = 1000 and the load history is scaled

with cd = 5000. The domain is discretized using ne = 524288 1mm elements, and a �lter radius

of 3.2 element lengths. Furthermore, tighter move limits of 0.5 is set.

When presenting topology optimization results in 3D, usually only values density values above

0.5 are shown (Aage et al., 2015; Jeong et al., 2013). The following picture illustrates the

optimized structure for densities above 0.1, 0.5 and 0.9.

Figure 6.20: Densities above 0.1, 0.5 and 0.9 with the density �lter - Side view

Figure 6.21: Densities above 0.1, 0.5 and 0.9 with the density �lter - Iso view

In �gures 6.20 and 6.21 the transition zone between solid (red color) and void (blue color) is

visible as di�erent density values are shown. Considering the iteration history in �gure 6.22 it

can be seen that the convergence is relatively stable, with only minor constraint violations during

the optimization.
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(a) Iteration history - Fatigue (Sines) constraint (b) Iteration history - Von Mises constraint

Figure 6.22: Iteration history for combined fatigue (Sines) and von Mises constraint with the
density �lter

In the following example the threshold �lter is applied. The same problem is solved for the

same settings, as outlined previously. However, here the β value used in (2.10) is set to a very

small value for the initial iterations. Then after the optimization has converged, is the β value

updated. The β value is initially updated to 0.5, and then subsequently updated every 30th

iteration if the constraints are not violated, by �rst updating β to 1 and then by adding 1 to the

current β value. The following �gures 6.23 and 6.24 likewise illustrates the optimized structure

for densities above 0.1, 0.5 and 0.9, after using the threshold �lter. Comparing these �gures to

�gure 6.20 and 6.21 it can be seen that it has the same topological structure and there is far

more high value densities nearer the surface of the structure, due to the projection �lter.

Figure 6.23: Densities above 0.1, 0.5 and 0.9 with the threshold �lter - Side view

Figure 6.24: Densities above 0.1, 0.5 and 0.9 with the threshold �lter - Iso view
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Referring to the iteration history in �gure 6.30, the e�ect of the threshold �lter is clearly visible.

Here it can be seen that updating the β value starts at approximately iteration 1250, and each

time β is increased a constraint violation occurs followed by an increase in the objective function

in order to reduce the constraint violation.

(a) Iteration history - Fatigue (Sines) constraint (b) Iteration history - Von Mises constraint

Figure 6.25: Iteration history for combined fatigue (Sines) and von Mises constraint with the
threshold �lter �lter

Figure 6.26 show the damage distribution for the two examples, where the left �gure is with

the density �lter and the right �gure with the threshold �lter. Here it can be seen that there

are more high damage elements in �gure 6.26a compared with 6.26b. This might be due to the

higher element density when using the threshold �lter, which reduces the damage in an element

as compared with low density elements.

(a) Damage > 0.7 µ with density �lter (b) Damage > 0.7 µ with threshold �lter

Figure 6.26: Damage distribution

The optimization was stopped at iteration 1980 since a su�ciently low discreteness level was

reached. The presented example is solved under the best conditions. It is solved for an easy

benchmark example, with combined fatigue and yield constraints, which have a positive e�ect

on convergence, the η value is set in the middle of either extreme, β is updated very late in

the optimization and in very small steps and with tighter move limits. Through numerical

experiments with applying the threshold �lter, it has been found to greatly increase the di�culty

of solving the optimization problems, due to large instabilities. This instability might be due to

the fact that as β increase, the derivative of the threshold �lter (5.4) approaches the Dirac delta
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function and creates very large gradients. There are methods which might minimize the non-

linear e�ects of the threshold �lter. The β value might be updated in smaller steps with larger

intervals, or the aggregation parameter P might be lowered, reducing the overall non-linearity

of the optimization problem as proposed in Oest and Lund (2017a).

The bene�t of more solid/void structures which the threshold �lter provides, comes with a

price of a more di�cult problem to solve, and as evident when comparing the iteration histories,

requires many more iterations in order to convergence, and thus increased solution time. There

are many parameters which are relevant when solving topology optimization with threshold

�ltering, all of which can have a great in�uence in the �nal result, especially when considering

fatigue constraints which are already characterized by highly non-linear behaviour.
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6.6 Curved Beam

A reason for the computational e�ciency of the topology optimization formulated in the PETSc

framework, is that it utilizes structured grids. Structured grids are characterized by regular

connectivity of the elements, and a domain de�ned on Cartesian axis. As mentioned previously

this domain can be modi�ed while still maintaining the connectivity. This example is of a curved

beam where a cantilever beam de�ned on Cartesian axis is curved. This distorts the elements

and therefore requires the use of isoparametric elements, furthermore due to the distortion the

element sti�ness matrix and the strain-displacement matrix has to established for each element.

The curved beam is solved for a combined fatigue and yield constraint, where the fatigue

constraint is based on signed von Mises. The domain is discretized using ne = 131072 1mm

elements with a �lter radius of 2.4 element lengths. The curved beam is subjected to a force of

Fref = 5000N with fully reversed loading, k =1000 and the load history is scaled by cd = 1000.

Figure 6.27: Density distribution illustrated for ρ̃e ≥ 0.5 for the curved beam - Isoview

Figure 6.28: Density distribution illustrated for ρ̃e ≥ 0.5 for the curved beam - Isoview

Figure 6.27 illustrates the optimized result. As can be seen at the loaded end of the curved

beam, the optimized result resembles a cantilever beam, while at the support a hollow tube, this

is further illustrated in �gure 6.29.
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Figure 6.29: Density distribution illustrated for ρ̃e ≥ 0.5 for the curved beam - Backview

The curved beam was comparatively hard to solve, and required a lower P value of 10, as well

as tighter move limits of 0.025. Due to time restrictions, the �ltering of the curved beam was

calculated based on the undeformed geometry, and thus not completely accurate. This might

account for the issues of convergence as illustrated in the following iteration history.

(a) Iteration history - Fatigue (signed von Mises)
constraint

(b) Iteration history - Von Mises constraint

Figure 6.30: Iteration history for combined Sines and von Mises constraint

As can be seen in �gure 6.30a the fatigue constraint is violated during most of the optimization

procedure, as compared with the previously presented iteration histories, where the constraint

is generally satis�ed. The optimization procedure was here stopped when the constraints were

not violated. The damage and von Mises stress distribution are shown in �gure 6.31.

(a) Damage distribution > 0.7 µ (b) Von Mises stress distribution > 0.7 σlim

Figure 6.31: Damage and von Mises stress distribution for curved beam
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As stated in the introduction, the objective of this thesis was to solve large-scale topology

optimization with a minimum mass objective and subjected to fatigue and yield constraints.

This goal was set in order to increase the applicability of topology optimization in an industrial

setting, as mass minimization is a general aim across numerous industries for various reasons.

Many structures are subjected to variable loading, and as a result may fail due to fatigue. A

yield constraint is a general requirement for most structures, and within the context of high cycle

fatigue, a necessity not to violate some basic assumption within the fatigue analysis.

Both the desired constraints are established based on the stresses which occurs in the structure

during loading. Constraints based on stresses creates well known issues within topology

optimization, due to the local quantity of a stress state and the singular optima that arises.

The problem of the singular optima can be solved using various methods, the method utilized

here is the qp-method.

The locality of stress constraints is especially relevant when conducting large-scale optimization,

which for the examples presented in this thesis would result in more than a million constraints.

The computational resources necessary to solve such a problem would be immense. In order

to solve a problem of su�cient size in a reasonable amount of time, the P-norm aggregate

function was implemented. The aggregate function, in this implementation, converts all the

local constraints into a single representative constraint, such that only one constraint has to be

satis�ed. This greatly reduces the computational time and allows for the solution of large scale

problems.

The fatigue constraints are formulated directly in the topology optimization. The constraints

are formulated based on assumptions of proportional loading with a variable amplitude in the high

cycle domain. The multiaxial stress state which occurs are converted to an equivalent uniaxial

amplitude stress by employing either the Sines method or signed von Mises with the mean stress

e�ects accounted for by using the modi�ed Goodman equation. From this equivalent uniaxial

amplitude stress the number of cycles to failure can be estimated by employing the Basquin

curve, and from there the fatigue constraint can be formulated by introducing the notion of

element wise damage through the Palmgren-Miners linear damage hypothesis. Like the yield

constraint, the damage constraint is a local quantity, such that the aggregate function is likewise

utilized.

In order to solve the topology optimization in an e�cient manner gradient based optimization

methods are utilized. Here, the �rst order version of the MMA optimizer is used, where the

gradients are analytically determined using the adjoint formulation.

These topology optimization formulations were illustrated in a number of examples, some to

illustrate the complications associated with including fatigue constraints, such as the added
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non-linearity and the possible violation of linear elastic behaviour if not combined with a yield

constraint. Other examples were included to highlight the applicability of the formulations in a

more realistic setting, which requires a large number of elements in order to have su�cient

representability. Here the examples included discretizations of up to one million elements.

Furthermore, the application of the threshold �lter was illustrated for the cantilever beam

benchmark example, and the di�culty that it procedures was highlighted.

The speci�c topology optimization formulation used, is based on a number of assumptions,

which if violated result in unsuitable solutions. The fatigue constraints are formulated assuming

quasi-static loading, such that the inertial e�ects can be neglected, proportional loading is

assumed and the structure is considered to be linear elastic.

Topology optimization with fatigue constraints is characterized by high non-linearity which

results in problems that can be di�cult to solve, and as stated in the introduction, topology

optimization is no silver bullet for the problems of structural design. There are many nuances

to take into account, and many user speci�ed parameters which can have a great in�uence on

the �nal solution. The goal of this thesis was to perform large-scale topology optimization in 3D

with industrially relevant constraints, in order to move the �eld of topology optimization closer

to industrial applicability.

Future work within this area could entail further study into the use of projection �lters. The

bene�t of obtaining solid/void structures during the optimization, such that the post optimization

processing is minimized is desirable, however the added di�culty of obtaining a solution requires

longer solution times and careful parameter setting. Using the �xed mesh with rectangular and

brick elements produces jagged edges on the structure. This jagged surface, as noted in Svärd

(2015b), causes non-physical stress concentrations at the surface. He proposed using an interior

value extrapolation, which resulted in a more stable and accurate stress measure. Due to the

sensitivity of fatigue constraints, this might reduce some of the unstable behaviour. Lastly, the

structures generated here have, as previously mentioned, jagged edges which should be smoothed

as part of post optimization processing. An automated way of performing this smoothing which

also can parametrize the topology optimized structure, such that shape optimization can be

performed afterwards, could further reduce the need for human post optimization processing.
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