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Abstract

This thesis employ the method of moments, a numerical integral equation method,
to model the induced surface currents on metallic antennas located on a
semiconductor substrate. The purpose is to gain insight into modelling
photoconductive antennas for THz generation. The electric field integral equation
and the dyadic Green’s tensor for a planar interface between isotropic media is
obtained. Using the method of moments, the electric surface currents induced on
a perfect electric conductor by an incident field is acquired, which allows for the
calculation of scattered fields. A MATLAB script, which calculates the induced
current on an arbitrary three-dimensional perfect electric conductor, and the
scattered electric field have been produced, as well as the far-field scattered
radiation pattern for antenna structures located on a semiconductor substrate. A
possible short coming of the method of moments was identified, namely that a
variation in the cross sectional surface current was present when the excitation
source was an incident plane-wave. A possible solution to this was presented as a
voltage feed excitation method. Using this method, the radiation patterns for
antenna arrays with different inter antenna distances placed on a substrate was
presented, and a possible optimal inter antenna distance was proposed.
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chapter 1
Introduction

The purpose of this thesis is to model metallic antennas which will pertain
to the modeling of antennas for terahertz (THz) generation. The main
focus is on utilizing the method of moments (MoM), an integral equation

method, to model the antenna radiation. Since THz wavelengths are relatively
long compared to the optical domain it is possible to approximate the metallic
antennas as perfect electrical conductors (PEC).
THz radiation lies between the microwave and infrared frequencies, and for many
years the part of the THz regime which roughly spans from 100 GHz to 10 THz
has been referred to as the THz-gap due to the lack of powerful sources and
detectors. In the last few decades, the advances in the semiconductor and
nanotechnology have made it possible to access this unused regime, and multiple
applications that utilizes these frequencies have since been proposed by
researchers from various scientific areas. [2]
THz waves have many potential usages. The wavelength is short enough to obtain
sub-millimeter level spatial resolution, and in medical imaging, the use of THz
waves for detecting skin and other surface cancers has been developed, as well as
an intraoperative tool during breast cancer surgery to confirm in real-time the
removal of cancer tissue [3]. THz waves have low photon energies and cannot
photoionize biological tissues as compared to X-rays, and are therefore considered
safe. Many molecules show strong absorption and dispersion at THz frequencies,
which can be used as as a spectroscopic fingerprints. And since THz waves are
transparent to most dry dielectric materials, e.g. cloth, paper and plastic, this
opens up for the potential use of THz in detection of concealed or covered objects
[4]. This includes the standoff detection of explosives, and noxious gasses. In the
photovoltaic industry, THz radiation can be use in detection and imaging of cracks

1



2 chapter 1. introduction

V

laser
pulse THz pulse

Figure 1.1 – Illustration of a photoconductive antenna: two metallic antennas
are placed on a photoconductive substrate with a bias voltage applied. A laser
pulse illuminates the gap between the two antenna, which excites electrons and
holes in the substrate. Due to the bias voltage, THz generating currents are
formed.

and defects buried in silicon, as well as inspection and quality control of coatings
[3]. It is safe to say the number of areas in which THz can be used are vast.

The generation of THz radiation and detection can be achieved by the use of
photoconductive antennas, or via optical rectification. A typical photoconductive
antenna is shown in Figure 1.1. Two electrodes (antennas) are located on a
photoconductive substrate, such as silicon or gallium arsenide, with a bias voltage
applied to the antennas. When the gap between the antennas are illuminated by a
laser beam with higher energy that the bandgap energy of the substrate, electrons
and holes are generated and will due to the voltage bias form currents. It is these
time varying currents that will generate the THz radiation. Two important
parameters are the length of the metallic antennas and the distance between.

In Chapter 2, the theoretical preliminaries needed in order to analyze
electromagnetic scattering of a perfect electric conductor are discussed. From
Maxwell’s equations the inhomogeneous Helmholtz equation is derived, as well as
the electric field integral equation (EFIE) for a perfect electric conductor. The
derivation of the dyadic Green’s tensor is made and rewritten into cylindrical
coordinates before extending the dyadic Green’s tensor to accommodate for a
planer interface between two isotropic media. The chapter concludes with an
introduction to the method of moments, an numerical method for solving linear
operator equations, and an example of how the method can be applied to an



3

arbitrary three-dimensional surface.

Chapter 3 discussed the script that implements the method of moments in
MATLAB. The chapter contains a walkthrough the scripts structure, covering the
overarching operations from import of antenna structure to solving the MoM, to
computing and visualizing the current and finally different ways of computing the
radiated electric field. In addition some thoughts behind the implementation are
presented alongside limitations regarding input and options.

The results acquired from the implemented MATLAB script are presented in
Chapter 4. The surface currents induced by different excitation sources are
presented, as well as the far-field radiation patterns for half-wave dipoles. The use
of a voltage feed as an excitation source for different dipoles, and the far-field
radiation patterns for dipoles located on a silicon substrate are examined.

Chapter 5 contains discussion of the results, followed by conclusions presented in
Chapter 6.





chapter 2
Theoretical
Preliminaries

This chapter establishes the theoretical foundation required to analyze the
radiation scattered of a perfect electric conductor near a planar interface.
The inhomogeneous Helmholtz equation is derived from Maxwell’s

equations, followed by derivation of the electric field integral equation for
scattering of a perfect conducting surface. The dyadic Green’s tensor for the
electric field is derived, and rewritten into cylindrical coordinates. An expression
for the Green’s tensor for a two-layered planar interface is obtained, followed by a
presentation of the method of moments and it’s application to an arbitrary
three-dimensional perfect electric conductor.

2.1 maxwell’s equations
This section will summarize Maxwell’s equations, and the electromagnetic boundary
conditions needed in order to analyze the radiation produced by electric currents
induced on a perfect electric conductor. The inhomogeneous Helmholtz equation
and the electric field integral equation are derived in the following subsections.

The differential form of Maxwell’s equations relates electric and magnetic field
vectors to current densities and charge densities at any point in space-time where
the fields are continuously differentiable. For a linear isotropic medium, Maxwell’s

5



6 chapter 2. theoretical preliminaries

equations in the frequency-domain are given by

∇×E = −iωµH , (2.1)

∇×H = iωεE + J , (2.2)

∇ ·D = ρ , (2.3)

∇ ·B = 0 , (2.4)

where E is electric field intensity, H is magnetic field intensity, D = εE is electric
flux density, B = µH is magnetic flux density, J is electric current density, ρ is
electric charge density, ε is electric permittivity, and µ is magnetic permeability.
[5] Notice that we have assumed a e−iωt time dependency, which will be
suppressed throughout the thesis.
At interfaces between media, the vector quantities in Maxwell’s equations may not
be differentiable, and we instead require the fields to satisfy some boundary
conditions, which relates the tangential and normal components of the vector
fields. For the interface between two arbitrary media, the boundary conditions can
in general be expressed as

n̂× (E1 −E2) = 0 , (2.5)

n̂× (H1 −H2) = Js , (2.6)

n̂ · (D1 −D2) = ρs , (2.7)

n̂ · (B1 −B2) = 0 , (2.8)

where n̂ is the unit normal vector on the interface with direction from medium 1
to medium 2, Js is surface current density, and ρs is the surface change density. [5]
If one of the two media is a perfect electric conductor (PEC), e.g. medium 2, the
boundary conditions can be reduced to

n̂×E1 = 0 , (2.9)

n̂×H1 = Js , (2.10)

n̂ ·D1 = ρs , (2.11)

n̂ ·B1 = 0 , (2.12)

since E2 = 0. This means that the electric field E1 on the surface of a PEC only
has a normal component. The same statement holds true for the electric flux
density D1.



2.1. maxwell’s equations 7

2.1.1 Radiated Electric Fields

In the following, the inhomogeneous Helmholtz equation and an integral equation
for the electric field will be derived. We start by taking the curl of Eq. (2.1) to
obtain

∇×∇×E = −iωµ∇×H , (2.13)

and next apply the vector identity

∇×∇×E = ∇ (∇ ·E)−∇2E , (2.14)

in order to restate Eq. (2.13) as

∇ (∇ ·E)−∇2E = −iωµ∇×H . (2.15)

By substituting Eq. (2.2) into Eq. (2.15) we get

∇ (∇ ·E)−∇2E = −iωµJ + k2E , (2.16)

where k2 = ω2µε. Taking the divergence of Eq. (2.2) yields

∇ · ∇ ×H = ∇ · J + iω∇ ·D (2.17)

= ∇ · J + iωρ ,

and since the divergence of a curl equals zero, it follows that

∇ · J = −iωρ . (2.18)

Now consider the parenthesis on the left-hand side of Eq. (2.16). This can be
rewritten using Eq. (2.3) as

∇ ·E = 1
ε
∇ ·D = ρ

ε
. (2.19)

By utilizing Eqs. (2.18) and (2.19), the parenthesis in Eq. (2.16) can be expressed
as

∇ ·E = i

ωε
∇ · J . (2.20)

By substituting Eq. (2.20) into (2.16) and rearranging, we arrive at the
inhomogeneous Helmholtz equation:

∇2E + k2E = iωµJ + i

ωε
∇ (∇ · J) . (2.21)

Equation (2.21) can be solved by means of Green’s functions. The concept of
Green’s functions is further explained in Section 2.2. By using this method, it is
possible to show that the solution to Eq. (2.21) is given by

E(r) = −iωµ
ˆ ↔

G(r, r′) · J(r′) dr′ , (2.22)
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where
↔
G(r, r′) =

(↔
I + 1

k2∇∇
)
g(r, r′), g(r, r′) = eik|r−r′|

4π|r− r′| . (2.23)

The expression given by Eq. (2.23) is known as the dyadic Green’s tensor. A
derivation is included in Section 2.2.

2.1.2 Scattered Electric Fields

The scattering of electromagnetic waves of a PEC can be viewed as radiation
emitted by the PEC itself, where the radiating currents located on the scatter are
themselves generated by external fields. If the induced current J is known, the
scattered field can be calculated from by

Es(r) = −iωµ
¨
S

↔
G(r, r′) · J(r′) dr′ . (2.24)

However, the current J may not be known initially, or might not even have an
analytic solution. In those situations, J must therefore be numerically solved for.
Consider the boundary conditions of the electric field at the surface of the PEC:

n̂(r)×Es(r) = −n̂(r)×Ei(r) , (2.25)

where n̂(r) is the surface normal.
By combining Eqs. (2.24) and (2.25), we can now formulate the electric field
integral equation (EFIE) for a perfect conducting surface,

− i

ωµ
n̂(r)×Ei(r) = n̂×

¨
S

↔
G(r, r′) · J(r′) dr′ . (2.26)

The EFIE is also sometimes expressed in terms of the magnetic vector potential
A(r):

− i

ωµ
n̂(r)×Ei(r) = n̂×

[
1 + 1

k2∇∇·
]

A(r) . (2.27)

For an arbitrarily shaped PEC, the EFIE relates the tangential component of the
incident electric field to the tangential component of the scattered field at the
surface of the PEC. If the incident field Ei is known, the unknown current J can
be solved numerically by the method of moments described in Section 2.4. Once
the current has been solved for, Eq. (2.24) can be used to obtain the scattered
electric field.

2.2 green’s function integral method
The section will present the Green’s function integral method. The following
subsections will contain derivations of the 3D free-space Green’s function for the
electric field, and the dyadic Green’s tensor.
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Green’s functions are mathematical tools that can be used to find solutions to
ordinary differential equations with initial value conditions, or even more
complicated equations such as inhomogeneous partial differential equations with
boundary conditions. In electrodynamics, Green’s functions are widely used to
solve differential equations which are difficult or impossible to find exact solutions
to, but also in other disciplines are the Green’s functions often used, e.g. in
quantum field theory they are used as propagators .
Consider a inhomogeneous differential equation of the form

Lu(r) = f(r) , (2.28)

where L is a linear differential operator, u(r) is a unknown function.
The Green’s function g(r, r′) is defined as the inverse of the operator L, and
satisfy the equation

Lg(r, r′) = δ(r− r′) , (2.29)

where δ(r− r′) is the Dirac delta function.
ˆ
Lg(r, r′)f(r′) dr′ =

ˆ
δ(r− r′)f(r′) dr′ . (2.30)

Since L is an linear operator that only operates on r′, Eq. (2.30) can be written as

L
(ˆ

g(r, r′)f(r) dr′
)

=
ˆ
δ(r− r′)f(r′) dr′ = f(r) , (2.31)

where the last equality follows from the properties of the Dirac delta function.
From Eq. (2.31) it can be seen that a solution to Eq. (2.28) is given by

u(r) =
ˆ
g(r, r′)f(r′) dr′ . (2.32)

The method used for solving for u(r) in Eq. (2.28) is essentially the method of
moments, described in Section 2.4, which can be utilized when L is an linear
operator.

2.2.1 Free-Space Green’s Function

In order to derive the free-space Green’s function, we make use of Helmholtz’s
theorem, which states, that any continuous vector field F can be decomposed into
the sum of a gradient and a curl term, i.e.

F = −∇Φ +∇×A , (2.33)

where Φ is the scalar potential, and A is the vector potential. [6]
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If no free charges are present in the medium, Eq. (2.3) implies that H can be
written as

H = 1
µ
∇×A . (2.34)

Combining Eq. (2.34) and Eq. (2.1) allows us to write

∇× (E + iωA) = 0 , (2.35)

and by utilizing Helmholtz’s theorem again, it follows that

E + iωA = −∇Φ . (2.36)

By taking the curl on both sides of Eq. (2.34), and applying the vector identity
given by (2.14), yields

µ∇×H = ∇×∇×A = ∇ (∇ ·A)−∇2A (2.37)

When substituting Eq. (2.2) into (2.37), we find that

∇ (∇ ·A)−∇2A = iωµεE + µJ , (2.38)

and by using Eq. (2.36), Eq. (2.38) can be stated as

∇ (∇ ·A)−∇2A = µJ− iωµε∇Φ + ω2µεA , (2.39)

or rewritten as

∇2A + k2A = iωµε∇Φ +∇ (∇ ·A)− µJ , (2.40)

where k2 = ω2µε.
From Helmholtz’s theorem, we are free to choose the divergence of A, so we
conveniently choose

∇ ·A = −iωµεΦ . (2.41)

Substituting Eq. (2.41) into (2.40) yields the vector Helmholtz equation,

∇2A + k2A = −µJ , (2.42)

which must hold for all components of A. The Green’s function for each
component of Eq. (2.42) must satisfy the scalar inhomogeneous differential
equation given by

∇2g(r, r′) + k2g(r, r′) = −δ(r− r′) . (2.43)

With Eq. (2.43), we are essentially considering a point source and an observation
point located at r′ and r, respectively.
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Since the solution to Eq. (2.43) is for a point source, it must retain spherical
symmetry and it is therefore adequate to only consider the radial term in the
Laplace operator. The first term on the left-hand side of Eq. (2.43) can be
written as

∇2g(r, r′) = 1
r2

∂

∂r

(
r2 ∂

∂r
g(r, r′)

)
(2.44)

= ∂2

∂r2 g(r, r′) + 2
r

∂

∂r
g(r, r′)

= 1
r

∂2

∂r2 rg(r, r′) ,

where r = |r− r′|. By using the last equality in Eq. (2.44), the homogeneous
variant of Eq. (2.43) can be formulated as

∂2

∂r2 rg(r, r′) + k2rg(r, r′) = 0 . (2.45)

Since we have adopted the time dependency e−iωt, the only physical meaningful
solution to Eq. (2.45) for r > 0 is given by

g(r, r′) = C
eikr

r
, (2.46)

where r = |r− r′|. In order to find a unique solution, we need to impose boundary
conditions. We would require that g(r, r′)→ 0 as r →∞, which is already fulfilled
by Eq. (2.46). In order to determine the constant C, we substitute Eq. (2.46)
into Eq. (2.43) and integrate the expression over a sphere containing the origin,

C

˚
V

{
∇2 e

ikr

r
+ k2 e

ikr

r

}
dV = −

˚
V
δ(r− r′) dV = −1 , (2.47)

where dV = r2 sin(φ)dθdφ. The first integral on the left-hand side of Eq. (2.47)
can be solved by using the Gauss’ divergence theorem:

C

˚
V
∇2 e

ikr

r
dV = C

‹
S
∇e

ikr

r
· n̂ dS (2.48)

= 4πCr2r̂ · ∇e
ikr

r

= 4πC (ikr − 1) eikr .
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The second integral has a solution given by

C

˚
V
k2 e

ikr

r
dV = 4πk2C

ˆ r

0
reikr dr (2.49)

= 4πk2C

(
eikr

[ 1
k2 + r

ik

]
− 1
k2

)

= 4πC
(
eikr [1− ikr]− 1

)
.

In the limit, where r → 0, the approximation eikr ' 1 is considered valid and Eq.
(2.49) goes towards zero. Equation (2.48), on the other hand, becomes −4πC. [7]
The constant C in Eq. (2.47) can now be solved for, and the 3D free-space
Green’s function is thus given by

g(r, r′) = eik|r−r′|

4π|r− r′| . (2.50)

The solution to Eq. (2.42) can now be found using

A = µ

ˆ
V

J(r′)g(r, r′) dr′ . (2.51)

When dealing with electric fields, the Green’s function needs to relate all
components of the source to all the fields components. This type of Green’s
function is referred to as the dyadic Green’s tensor.

2.2.2 Free-Space Dyadic Green’s Tensor

In order to find the dyadic Green’s tensor, we consider the electric field wave
equation, which can obtained by substituting Eq. (2.2) into Eq. (2.13):

∇×∇×E(r)− k2E(r) = −iωµJ(r) . (2.52)

By utilizing Eqs. (2.36) and (2.41), the electric field E can be found from

E = −iωA− i

ωµε
∇∇ ·A (2.53)

= −iω
[
1 + 1

k2∇∇·
]

A ,

where A is on the form of Eq. (2.51). If the electric field is produced by an
infinitesimal current source J, i.e. a point source, along the x̂-direction,

J(r) = − 1
iωµ

δ(r− r′) x̂ , (2.54)
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z

y
x̂

r′ r

↔
G(r, r′)p(r′)

E(r)

Figure 2.1 – The Green’s tensor describes the electric field E at a field point r
due to a point source p located at point r′. The electric field at r depends on the
orientation of p and the Green’s function must therefore be a tensor in order to
account for all possible orientations.

the electric field E can be calculated from

E = −iωµ
ˆ
V

Gx(r, r′) · J(r′) dr′ , (2.55)

where

Gx(r, r′) =
[
1 + 1

k2∇∇·
]
g(r, r′) x̂ , (2.56)

and g(r, r′) is given by Eq. (2.50). If the J instead had been along the ŷ- or
ẑ-direction, the electric field can be calculated by replacing x̂ with ŷ or ẑ,
respectively, to obtain

Gy(r, r′) =
[
1 + 1

k2∇∇·
]
g(r, r′) ŷ , (2.57)

or

Gz(r, r′) =
[
1 + 1

k2∇∇·
]
g(r, r′) ẑ . (2.58)

For an arbitrarily located point source p = 1
iωµδ(r− r′) p̂, the electric field can be

calculated by combining Eqs. (2.56), (2.57), and (2.58) to form

E(r) =
↔
G(r, r′) · p , (2.59)

where
↔
G(r, r′) = Gx(r, r′) x̂ + Gy(r, r′) ŷ + Gz(r, r′) ẑ.



14 chapter 2. theoretical preliminaries

By using the unit dyadic
↔
I = x̂x̂ + ŷŷ + ẑẑ, we can write the dyadic Green’s

tensor as
↔
G(r, r′) =

[
1 + 1

k2∇∇·
]
g(r, r′) (x̂x̂ + ŷŷ + ẑẑ)

=
[
1 + 1

k2∇∇·
]
g(r, r′)

↔
I

=
[↔

I + 1
k2∇∇

]
g(r, r′) , (2.60)

where ∇ ·
[
g
↔
I
]

= ∇g has been used in the last equality. [5]
Due to the double derivative of the scalar Green’s function, the dyadic Green’s
tensor is strongly singular and numerical evaluation via integration can be
problematic when observation points are close to the source points. There are
methods of handling the singularities, such as singularity extraction techniques
where the singular integral is extracted and calculated in closed form. [8]

2.3 green’s tensor in cylindrical
coordinates

In this section, the dyadic Green’s tensor will be rewritten into cylindrical coor-
dinates. In the following subsections, the derivation of the Green’s tensor for a
planar interface of two media will made, and expressions for the far-field Green’s
tensor are obtained. This section is largely based on [9].

When solving electromagnetic problems it is sometimes advantageous to change to
a different coordinate system. In the case of the dyadic Green’s tensor, changing
from Cartesian coordinates to cylindrical coordinates allows for the fields to be
represented as a single integral, making implementation easier. We first make use
of Weyl’s identity, presented in [10], to obtain an angular spectrum representation
of Eq. (2.50):

g(r, r′) = i

8π2

ˆ

kx

ˆ

ky

1
kz1

eikx(x−x′)eiky(y−y′)eikz1 |z−z
′| dkxdky , (2.61)

where the subscript “1” refers to a parameters value in medium 1.
In order to convert to cylindrical coordinates, we define

x− x′ = ρr cosφr , (2.62a)
y − y′ = ρr sinφr (2.62b)

kx = k1 cosφk , (2.62c)
ky = k1 sinφk , (2.62d)
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where it should be noted that ρr and φr are defined with respect to the relative
distance, hence the subscript r.
By using Eqs. (2.62), one can express Eq. (2.61) in cylindrical coordinates as

g(r, r′) = i

8π2

¨ 1
kz1

eikρρr cos(φk−φr)eikz1 |z−z
′| kρdkρdφk . (2.63)

By using the Bessel function given by

J0(α) = 1
2π

2πˆ

0

eiα cosφ dφ , (2.64)

the scalar Green’s function can be rewritten as

g(r, r′) = i

4π

ˆ
kρ
kz1

J0(kρρr)eikz1 |z−z
′| dkρ . (2.65)

By using the gradient i cylindrical coordinates
(
∇ = ρ̂r

∂
∂ρr

+ φ̂r 1
ρr

∂
∂φr

+ ẑ ∂
∂z

)
,

the gradient of the Green’s function can be expressed as

∇g(r, r′) = i

4π

ˆ {
ρ̂r kρJ

′
0(kρρr) + ẑ ikz1

z − z′

|z − z′|
J0(kρρr)

}
(2.66)

× kρ
kz1

eikz1 |z−z
′| dkρ ,

where the factor z−z′
|z−z′| accounts for either z

′ > z or z′ < z.
Additionally taking the gradient of Eq. (2.66) yields

∇∇g(r, r′) = i

4π

ˆ {
ρ̂rρ̂r k

2
ρJ
′′
0 (kρρr) + (ρ̂rẑ + ẑρ̂r) ikρkz1

z − z′

|z − z′|
J ′0(kρρr)

(2.67)

+ φ̂rφ̂r
kρ
ρr
J ′0(kρρr)− ẑẑ k2

z1J0(kρρr)
}
kρ
kz1

eikz1 |z−z
′| dkρ .

It should again be noted that the cylindrical unit vectors
(
ρ̂r, φ̂r, ẑ

)
are relative,

and defined by

ρ̂r = x̂ cosφr + ŷ sinφr , (2.68a)
φ̂r = −x̂ sinφr + ŷ cosφr , (2.68b)

where φr is the relative angle defined in (2.62). By substituting Eq. (2.67) into
the dyadic Green’s tensor, given by Eq. (2.60), we obtain an expression for the
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free-space dyadic Green’s tensor in cylindrical coordinates:

↔
G(r, r′) = i

4π

ˆ {
ρ̂rρ̂r

[
J0(kρρr) +

k2
ρ

k2
1
J ′′0 (kρρr)

]
+ ẑẑ

[
1−

k2
z1

k2
1

]
J0(kρρr)

+ φ̂rφ̂r
[
J0(kρρr) + kρ

k2
1ρr

J ′0(kρρr)
]

+ (ρ̂rẑ + ẑρ̂r) i
kρkz1

k2
1

z − z′

|z − z′|
J ′0(kρρr)

}

× kρ
kz1

eikz1 |z−z
′| dkρ

= i

4π

ˆ {
ρ̂rρ̂r

[
J0(kρρr) +

k2
ρ

k2
1
J ′′0 (kρρr)

]
+ ẑẑ

k2
ρ

k2
1
J0(kρρr)

+ φ̂rφ̂r

[
J0(kρρr) +

k2
ρ

k2
1

J ′0(kρρr)
kρρr

]
+ (ρ̂rẑ + ẑρ̂r) i

kρkz1

k2
1

z − z′

|z − z′|
J ′0(kρρr)

}

× kρ
kz1

eikz1 |z−z
′| dkρ . (2.69)

where
↔
I = x̂x̂ + ŷŷ + ẑẑ = ρ̂ρ̂+ φ̂φ̂+ ẑẑ has been used.

In the remaining sections of this thesis, Eq. (2.69) will be referred to as the direct

Green’s tensor, denoted by
↔
G

(d)
(r, r′).

2.3.1 Green’s Tensor for a Planar Interface

For scattering near an interface one must account for reflection and transmission
in order to describe the electric field in both media. It is therefore needed to
consider both s- and p-polarized light when constructing the dyadic Green’s
tensor for a two-layered planar interface. The following dot-products between
Cartesian- and cylindrical coordinates will be utilized in the derivation:

ρ̂r · x̂ = cosφr , (2.70a)
ρ̂r · ŷ = sinφr , (2.70b)
φ̂r · x̂ = − sinφr , (2.70c)
φ̂r · ŷ = cosφr . (2.70d)

Consider a planar structure with interface located at z = 0. For z > 0, the
Green’s tensor can be decomposed into two parts; the direct Green tensor given
by Eq. (2.69), and an indirect Green tensor that deals with the reflection that
occurs due to the surface. For z < 0, a transmitted Green’s tensor have to be used.
For a two-layered planer interface, this is expressed by

↔
G(r, r′) =


↔
G

(d)
(r, r′) +

↔
G

(i)
(r, r′), z > 0, z′ > 0 ,

↔
G

(t)
(r, r′), z < 0, z > 0 .

(2.71)
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We will only consider a planer interface between two isotropic media, and so the
permittivity ε will be given by

ε(r) =
{
ε1, z > 0 ,
ε2, z < 0 .

(2.72)

In order to find how the appropriate Green’s tensors can be expressed, we make
use of the unit dyadic

↔
I , which has the property

↔
G =

↔
G ·

↔
I =

↔
G · (x̂x̂ + ŷŷ + ẑẑ) (2.73)

=
(↔

G · x̂
)

x̂ +
(↔

G · ŷ
)

ŷ +
(↔

G · ẑ
)

ẑ .

We start by considering the ẑ-component of an electric field incident on the planar
surface, where z′ > z > 0, given by

Ei,z(r) =
↔
G

(d)
(r, r′) · ẑ (2.74)

= i

4π

ˆ ∞
0

{
ẑ
k2
ρ

k2
1
J0(kρρr)− ρ̂r i

kρkz1

k2
1
J ′0(kρρr)

}
kρ
kz1

eikz1 |z−z
′| dkρ .

The ẑ-component of the reflected and transmitted fields can thus be expressed by

Er,z = i

4π

ˆ ∞
0

r(p) (kρ)
{

ẑ
k2
ρ

k2
1
J0(kρρr) + ρ̂r i

kρkz1

k2
1
J ′0(kρρr)

}
(2.75)

× kρ
kz1

eikz1 (z+z′) dkρ ,

Et,z = i

4π

ˆ ∞
0

t(p) (kρ)
ε1
ε2

{
ẑ
k2
ρ

k2
1
J0(kρρr)− ρ̂r i

kρkz1

k2
1
J ′0(kρρr)

}
(2.76)

× kρ
kz1

eikz1z
′
e−ikz2z dkρ ,

where r(p) and t(p) are the Fresnel reflection and transmission coefficients defined
by

r(p)(kρ) = ε2kz1 − ε1kz2

ε2kz1 + ε1kz2
, (2.77a)

t(p)(kρ) = 1 + r(p)(kρ) , (2.77b)

where (p) refers to p-polarized components, and the subscripts, “1” and “2”, refers
to medium 1 and medium 2, respectively. By using Eqs. (2.70), the x̂- and
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ŷ-components of the incident electric field can be calculated as

Ei,x =
↔
G

(d)
(r, r′) · x̂ (2.78)

= i

4π

ˆ ∞
0

{
ρ̂r cosφr

[
J0(kρρr) +

k2
ρ

k2
1
J ′′0 (kρρr)

]
− φ̂r sinφr

[
J0(kρρr)

+
k2
ρ

k2
1

J ′0(kρρr)
kρρr

]
− ẑ ikρkz1

k2
1
J ′0(kρρr) cosφr

}
kρ
kz1

eikz1 (z′−z) dkρ

= i

4π

ˆ ∞
0

{
−ρ̂r cosφr

[
J ′0(kρρr)
kρρr

+
k2
z1

k2
1
J ′′0 (kρρr)

]
+ φ̂r sinφr

[
J ′′0 (kρρr)

+
k2
z1

k2
1

J ′0(kρρr)
kρρr

]
− ẑ ikz1kρ

k2
1
J ′0(kρρr) cosφr

}
kρ
kz1

eikz1 (z′−z) dkρ ,

and

Ei,y =
↔
G

(d)
(r, r′) · ŷ (2.79)

= i

4π

ˆ ∞
0

{
ρ̂r sinφr

[
J0(kρρr) +

k2
ρ

k2
1
J ′′0 (kρρr)

]
+ φ̂r cosφr

[
J0(kρρr)

+
k2
ρ

k2
1

J ′0(kρρr)
kρρr

]
− ẑ ikρkz1

k2
1
J ′0(kρρr) sinφr

}
kρ
kz1

eikz1 (z′−z) dkρ

= i

4π

ˆ ∞
0

{
−ρ̂r sinφr

[
J ′0(kρρr)
kρρr

+
k2
z1

k2
1
J ′′0 (kρρr)

]
− φ̂r cosφr

[
J ′′0 (kρρr)

+
k2
z1

k2
1

J ′0(kρρr)
kρρr

]
− ẑ ikρkz1

k2
1
J ′0(kρρr) sinφr

}
kρ
kz1

eikz1 (z′−z) dkρ .

The components of the incident electric field given by Eqs. (2.78) and (2.79) can
be separated into s- and p-polarized components:

E(s)
i,x(r) = i

4π

ˆ ∞
0

{
φ̂r J

′′
0 (kρρr) sinφ− ρ̂r

J ′0(kρρr)
kρρr

cosφr

}
(2.80)

× kρ
kz1

eikz1 (z′−z) dkρ ,

E(p)
i,x (r) = i

4π

ˆ ∞
0

{
φ̂r

k2
z1

k2
1

J ′0(kρρr)
kρρr

− ρ̂r
k2
z1

k2
1
J ′′0 (kρρr) cosφr (2.81)

− ẑ ikρkz1

k2
1
J ′0(kρρr) cosφr

}
kρ
kz1

eikz1 (z′−z) dkρ ,
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and

E(s)
i,y (r) = i

4π

ˆ ∞
0

{
−ρ̂r

J ′0(kρρr)
kρρr

sinφr − φ̂r J ′′0 (kρρr) cosφr

}
(2.82)

× kρ
kz1

eikz1 (z′−z) dkρ ,

E(p)
i,y (r) = i

4π

ˆ ∞
0

{
−ρ̂r

k2
z1

k2
1
J ′′0 (kρρr) sinφr − φ̂r

k2
z1

k2
1

J ′0(kρρr)
kρρr

cosφr (2.83)

− ẑ ikρkz1

k2
1
J ′0(kρρr) sinφr

}
kρ
kz1

eikz1 (z′−z) dkρ .

The s- and p-polarized components of the reflected field for the x̂- and
ŷ-components are then given by

E(s)
r,x = i

4π

ˆ ∞
0

{
−ρ̂r

J ′0(kρρr)
kρρr

cosφ+ φ̂r J ′′0 (kρρr) sinφr

}
r(s)(kρ) (2.84)

× kρ
kz1

eikz1 (z+z′) dkρ ,

E(p)
r,x = i

4π

ˆ ∞
0

{
ρ̂r

k2
z1

k2
1
J ′′0 (kρρr) cosφr − φ̂_r,

k2
z1

k2
1

J ′0(kρρr)
kρρr

sinφr (2.85)

− ẑ ikρkz1

k2
1
J ′0(kρρr) cosφr

}
r(p)(kρ)

kρ
kz1

eikz1 (z+z′) dkρ ,

and

E(s)
r,y = i

4π

ˆ ∞
0

{
−ρ̂ J

′
0(kρρ)
kρρ

sinφ− φ̂ J ′′0 (kρρ) cosφ
}
r(s)(kρ) (2.86)

× kρ
kz1

eikz1 (z+z′) dkρ ,

E(p)
r,y = i

4π

ˆ ∞
0

{
ρ̂r

k2
z1

k2
1
J ′′0 (kρρr) sinφR + φ̂r

k2
z1

k2
1

J ′0(kρρr)
kρρr

cosφr (2.87)

− ẑ ikρkz1

k2
1
J ′0(kρρr) sinφr

}
r(p)(kρ)

kρ
kz1

eikz1 (z+z′) dkρ ,

where the reflection and transmission coefficients for s-polerization are given by

r(s)(kρ) = kz1 − kz2

kz1 + kz2
, (2.88a)

t(s)(kρ) = 1 + r(s)(kρ) . (2.88b)
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By combining the s- and p-polarized components for each x̂, ŷ and ẑ component
of the reflected field, we can obtain the indirect Green’s tensor:

↔
G

(i)
(r, r′) = Er,x x̂ + Er,y ŷ + Er,z ẑ , (2.89)

where

Er,x = E(s)
r,x + E(p)

r,x , (2.90a)

Er,y = E(s)
r,y + E(p)

r,y , (2.90b)

Er,z = E(p)
r,z . (2.90c)

The Cartesian unit vectors can be expressed in terms of the cylindrical unit
vectors as

x̂ = ρ̂r cosφr − φ̂r sinφr , (2.91a)

ŷ = ρ̂r sinφr + φ̂r cosφ , (2.91b)

which allows for Eq. (2.89) to be written more compact as

↔
G

(i)
(r, r′) = i

4π

ˆ ∞
0

{
− r(s)(kρ)

(
ρ̂rρ̂r

J ′0(kρρr)
kρρr

+ φ̂rφ̂r J ′′0 (kρρr)
)

(2.92)

+ r(p)(kρ)
(
ρ̂rρ̂r

k2
z1

k2
1
J ′′0 (kρρr) + φ̂rφ̂r

k2
z1

k2
1

J ′0(kρρr)
kρρr

+ ẑẑ
k2
ρ

k2
1
J0(kρρr)

+ (ρ̂rẑ− ẑρ̂r) i
kρkz1

k2
1
J ′0(kρρr)

)}
kρ
kz1

eikz1 (z+z′) dkρ .

In a similar manner as done for Eq. (2.89), the transmitted Green’s tensor can be
obtained by

↔
G

(t)
(r, r′) = Et,x x̂ + Et,y ŷ + Et,z ẑ , (2.93)

where

Et,x = E(s)
t,x + E(p)

t,x , (2.94a)

Et,y = E(s)
t,y + E(p)

t,y , (2.94b)

Et,z = E(p)
t,z . (2.94c)
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The s- and p-polarized terms of Eqs. (2.94a) and (2.94b) are given by

E(s)
t,x = i

4π

ˆ ∞
0

{
−ρ̂r

J ′0(kρρr)
kρρr

cosφr + φ̂r J ′′0 (kρρr) sinφr

}
t(s)(kρ) (2.95)

× kρ
kz1

eikz1z
′
e−ikz2z dkρ ,

E(p)
t,x = i

4π

ˆ ∞
0

{
−ρ̂r

kz1kz2

k2
1

J ′′0 (kρρr) cosφr + φ̂r
kz1kz2

k2
1

J ′0(kρρr)
kρρr

sinφr (2.96)

− ẑ ikρkz1

k2
1
J ′0(kρρr) cosφr

}
t(p)(kρ)

kρ
kz1

eikz1z
′
e−ikz2z dkρ ,

E(s)
t,y = i

4π

ˆ ∞
0

{
−ρ̂r

J ′0(kρρr)
kρρr

sinφr − φ̂r J ′′0 (kρρr) cosφr

}
t(s)(kρ) (2.97)

× kρ
kz1

eikz1z
′
e−ikz2z dkρ ,

E(p)
t,y = i

4π

ˆ ∞
0

{
−ρ̂r

kz1kz2

k2
1

J ′′0 (kρρr) sinφr − φ̂
kz1kz2

k2
1

J ′0(kρρ)
kρρ

cosφr (2.98)

− ẑ ikρkz1

k2
1
J ′0(kρρr) sinφr

}
t(p)(kρ)

kρ
kz1

eikz1z
′
e−ikz2z dkρ .

Again we convert the Cartesian unit vectors to cylindrical unit vectors, and
thereby obtain the transmitted Green’s tensor given by
↔
G

(t)
(r, r′) = i

4π

ˆ ∞
0

{
− t(s)(kρ)

(
ρ̂rρ̂r

J ′0(kρρr)
kρρr

− φ̂rφ̂r J ′′0 (kρρr)
)

(2.99)

− t(p)(kρ)
(
ρ̂rρ̂r

kz1kz2

k2
1

J ′′0 (kρρr) + φ̂rφ̂r
kz1kz2

k2
1

J ′0(kρρr)
kρρr

+ ẑẑ
k2
ρ

k2
1
J0(kρρr)

−(ρ̂rẑ
kz2

kz1
+ ẑρ̂r) i

kρkz1

k2
1
J ′0(kρρr)

)}
kρ
kz1

eikz1z
′
e−ikz2z dkρ .

The Green’s tensor for a planer interface is given by Eqs. (2.69), (2.92) and (2.99).
The three equations are also included in Appendix A for easier overview.

2.3.2 Far-Field Green’s Tensor

If we want to calculate the far-field radiation, the Green’s tensor can be expressed
by simpler equations, making implementation easier. We will for that reason
derive the far-field Green’s tensor. We start by considering the φ̂φ̂ term of
s-polarized part of the indirect Green’s tensor:

↔
G

(i,ff)
φφ = − i

4π

ˆ ∞
0

kρ
kz1

J ′′0 (kρρr)eikz1 (z+z′) dkρ . (2.100)
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By using the relation

J ′′0 (x) = −J0(x)− 1
x
J ′0(x) , (2.101)

one can separate Eq. (2.100) into two integrals:

I1 = i

4π

ˆ ∞
0

kρ
kz1

J0(kρρr)eikz1 (z+z′) dkρ , (2.102a)

I2 = i

4π

ˆ ∞
0

kρ
kz1

1
kρρr

J ′0(kρρr)eikz1 (z+z′) dkρ . (2.102b)

In the far-field limit ρ̂r ≈ ρ̂ and φ̂r ≈ φ̂, and since the 1/ρr-term will make the
I2-integral vanish, we only need to consider Eq. (2.102a). The same holds true for
other integrals in Eq. (2.92) which contain a 1/ρr-term. For kρ > k1, the
exponential term eikz1z will approach zero for large values of z, since kz1 becomes
imaginary. This holds for all the integrals in Eq. (2.92), and all of them therefore
only need to be evaluated for 0 ≤ kρ ≤ k1 when considering the far-field
approximation. By using

kz1 = k1 cosα , (2.103a)
kρ = k1 sinα , (2.103b)

we can express Eq. (2.100) as

↔
G

(i,ff)
φφ ≈ i

4π

ˆ π/2

α=0
kρJ0(kρρr)eikz1 (z+z′) dα . (2.104)

Next, we will also use that

ρ = r cos θ , (2.105a)
z = r sin θ , (2.105b)

where ρ is the regular cylindrical coordinate, and 0 ≤ θ ≤ π/2.
When r′ is near the origin and the observation point r is far away, the
approximation ρr ≈ ρ− r′ · ρ̂ can be made, and by applying that

J0(x) ≈
√

2
xπ

cos(x− π/4) for x� 1 , (2.106)

we can write the following expression:

cos(kρρr − π/4)eikz1z = 1
2
[
ei(kρρr−π/4) + e−i(kρρr−π/4)

]
eikz1z (2.107)

≈ 1
2
[
eikρρe−kρr′·ρ̂e−π/4 + e−ikρρekρr′·ρ̂eπ/4

]
eikz1z

= 1
2
[
eik1r cos(α−θ)e−kρr′·ρ̂e−π/4 + eik1r cos(α+θ)ekρr′·ρ̂eπ/4

]
,
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where cos(α± θ) = cos(α) cos(θ)∓ sin(α) sin(θ) have been used.
We now make a series expansion of the first factor in each term of Eq. (2.107):

eik1r cos(α∓θ) ≈ eik1re−
1
2 ik1r(α∓θ)2

. (2.108)

For large values of kρρ, the parts of the integral where Eq. (2.108) is oscillating
fast with α will vanish. The only parts that will remain is where α ≈ θ and
α+ θ = π. If we start by considering the case when 0 ≤ θ < π/2, the integral
reduces to

↔
G

(i,ff)
φφ ≈ ieik1r

8π

√
2

πk1r sin2 θ
r(s)(kρ)kρeikz1z

′
e−ikρr′·ρ̂e−π/4

ˆ π/2

α=0
e−

i
2k1r(α−θ)2

dα .

(2.109)

By extending the integration limits to go from −∞ to +∞, the integral can be
evaluated using

ˆ +∞

−∞
e−ax

2
dx =

√
π/a , (2.110)

which leads to the following expression:

↔
G

(i,ff)
φφ ≈ ieik1r

8π

√
2

πk1r sin2 θ
r(s)(kρ)kρeikz1z

′
e−ikρr′·ρ̂e−π/4

√
2π
ik1r

(2.111)

= eik1r

4πr r
(s)(kρ)eikz1z

′
e−ikρr′·ρ̂ , (2.112)

where e−iπ/4
√
−i = −i have been used. The far-field expressions for the other

terms in Eq. (2.92) can be obtained by the same approach, and are given by

↔
G

(i,ff)
ρρ ≈ eik1r

4πr r
(p)(kρ)eikz1z

′
e−ikρr′·ρ̂k

2
z1

k2
1
, (2.113)

↔
G

(i,ff)
zz ≈ eik1r

4πr r
(p)(kρ)eikz1z

′
e−ikρr′·ρ̂k

2
ρ

k2
1
, (2.114)

↔
G

(i,ff)
ρz/zρ ≈ ±

eik1r

4πr r
(p)(kρ)eikz1z

′
e−ikρr′·ρ̂kρkz1

k2
1

, (2.115)

where the ± in Eq. (2.115) indicate + for the ρ̂ẑ-component, and − for ẑρ̂. By
using the coordinate transformations given by

ρ̂ = sin θ r̂ + cos θ θ̂ , (2.116a)
φ̂ = φ̂ , (2.116b)
ẑ = cos θ r̂− sin θθ̂ , (2.116c)
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one can obtain the indirect far-field Green’s tensor given by
↔
G

(i,ff)
(r, r′) = eik1r

4πr e
−ikρr′·ρ̂eikz1z

′
[
r(s)(kρ)φ̂φ̂ (2.117)

−r(p)(kρ) θ̂
(

ẑ kρ
k1

+ ρ̂ kz1

k1

)]
.

The transmitted far-field Green’s tensor can be obtained by a similar approach,
yielding

↔
G

(t,ff)
(r, r′) = eik2r

4πr e
ikz1z

′
e−ikρr′·ρ̂kz2

kz1

[
t(s)(kρ)φ̂φ̂ (2.118)

+ t(p)(kρ)
ε1
ε2

{
ẑẑ
k2
ρ

k2
1

+ ρ̂ρ̂ kz1kz2

k2
1

+
(

ẑρ̂+ ρ̂ẑkz2

kz1

)
kρkz1

k2
1

}]
.

The last term that is needed in order to calculate the far-field radiation patterns is
the expression for the far-field direct Green’s tensor. In a Cartesian coordinate

system
↔
G

(d)
(r, r′) can be written as

↔
G

(d)
(r, r′) =

[↔
I
{

1 + i

kR
− 1

(kR)2

}
− RR

R2

{
1 + 3i

kR
− 3
k2R2

}]
eik1|r−r′|

4π|r− r′| ,

(2.119)

where R = |R| = |r− r′|, and RR denotes the outer product between R and itself
[5]. In the far-field, when R� λ, the only terms that survives are

↔
G

(d,ff)
(r, r′) =

[↔
I − RR

R2

]
eik1|r−r′|

4π|r− r′|

=
[↔

I − r̂r̂
]
eik1|r−r′|

4π|r− r′|

=
[
θ̂θ̂ + φ̂φ̂

] eik1r

4πr e
−ik1r̂·r′ . (2.120)

The far-field radiation pattern can now be obtained by using
↔
G

(d,ff)
and

↔
G

(i,ff)

for medium 1, and
↔
G

(t,ff)
for medium 2.

2.4 method of moments
In this section the concept of the method of moment is presented. This is based on
[11] and [1].

The method of moments (MoM) is a numerical technique for solving a linear
operator equation by converting it into a matrix equation. This method was first
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applied to electromagnetic field problems by Harrington in 1968 [12], and has
since been used to find numerical solutions to various scattering and radiation
problems. The general technique is as follows.
Consider the equation given by

L(f) = g , (2.121)

where L is a known linear operator, g is a known excitation function, and f is an
unknown response function. The unknown function f is approximated by a finite
series of basis functions fn as

f ≈
N∑
n

αnfn , (2.122)

where αn are unknown constants. Substituting Eq. (2.122) into Eq. (2.121), and
using the linearity of the operator yields

N∑
n

αnL(fn) ≈ g . (2.123)

Next, a set of testing functions wm are defined, and the inner product between
each wm and Eq. (2.123) are taken,

N∑
n

αn〈wm,L(fn)〉 = 〈wm, g〉 , m = 1, 2, ..., N , (2.124)

where the inner product is defined by

〈wm, fn〉 =
ˆ
wm

wm(r) ·
ˆ
fn

fn(r′) dr′dr . (2.125)

Equation (2.124) can be formulated as a matrix equation in the form of

¯̄Za = b , (2.126)

where

¯̄Z =


〈w1,L(f1)〉 〈w1,L(f2)〉 · · · 〈w1,L(fN )〉
〈w2,L(f1)〉 〈w2,L(f2)〉 · · · 〈w2,L(fN )〉

...
... . . . ...

〈wN ,L(f1)〉 〈wN ,L(f2)〉 · · · 〈wN ,L(fN )〉

 ,

a =


α1
α2
...
αN

 , b =


〈w1, g〉
〈w2, g〉

...
〈wN , g〉

 .
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If the matrix ¯̄Z is invertible, the unknown coefficients αn can be calculated by
solving Eq. (2.126) to obtain

a = ¯̄Z−1b . (2.127)

By substituting Eq. (2.127) into (2.122) an approximated solution for f can be
found.
When MoM is applied to the electromagnetic problems discussed in this thesis,
the known excitation function g corresponds to an incident electromagnetic field,
f is the induced current, and L(f) is the electromagnetic field due to f . The ¯̄Z
matrix is also known as the impedance matrix.
The choice of basis and testing functions will affect the accuracy of the solution to
Eq. (2.122), as well as how efficient the solution is, since the complexity of the
functions will increase computation time when evaluating the inner products.
Though simple basis functions may require a large N in order to obtain an
accurate solution, the inner products may be computationally easier to handle
than more complex functions. There are no specific guidelines for choosing which
basis functions to use, but one of the most crucial characteristics they must posses
is to represent the expected behaviour of the unknown function as exact as
possible. The basis functions should however not have smoother properties than
the unknown function [13]. Choosing the testing functions such that fn = wm is
known as the Galerkin’s method, and will result in a symmetric ¯̄Z matrix, due to
the symmetry of 〈., .〉. This can be exploited to reduce computation time when
implementing a MoM code, since the lower diagonal elements of ¯̄Z are equal to
the upper diagonal elements, however if the integrals are solved numerically, e.g.
by Gaussian quadrature, the approximations may destroy the symmetry of the
impedance matrix.

2.4.1 RWG Basis Functions

The choice of basis functions is very tricky, and it all comes down to trying to get
the solution to converge. As mentioned, simple basis functions may be relatively
easy to implement, but could require a large number of N in order to converge,
whereas more advanced basis functions will reduce the number of unknowns in the
matrix equation but at the cost of more complicated code that could take longer
to run. One of the most commonly used basis functions for triangular tessellations
are the Rao-Wilton-Glisson (RWG) basis functions, proposed in 1982 [14].
The RWG basis functions is defined by

fn(r) =



`n

2A+
n
%+
n (r) for r ∈ T+

n

`n

2A−n
%−n (r) for r ∈ T−n

0 otherwise ,

(2.128)
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`n

%−n

%+
n

v−

v+

Figure 2.2 – The RWG basis function are assigned to an edge shared by two
adjacent triangles. The definition ensures that no current pile-up on edges.

where T+
n and T−n are triangles sharing edge n, `n is the length of the edge, A+

n is
the area of T+

n , and the vectors %+
n (r), %−n (r) are given by

%+
n (r) = v+ − r , r ∈ T+

n (2.129a)

%−n (r) = r− v− , r ∈ T−n , (2.129b)

where the vertices v+,v− are as shown in Figure 2.2. The RWG basis functions
are only assigned to interior edges of a mesh, but for a closed surface all edges will
be assigned a function, meaning each triangle will be assigned three RWG
functions. Not only are the surface current J approximated by the basis function,
but the basis functions also approximates the original surface [15]. It is therefore
important to have a good tessellation of the surface, and ensure a reasonable
triangle aspect ratio.

2.5 arbitrary three-dimensional antenna
For simple structures, e.g. closed-end cylinders or spheres, it is possible to define
the geometry in MATLAB, but for more complicated structures, it is more
convenient to use computer aided design (CAD) software to define the structure.
The 3D surface is divided into a number of connected patches. Typically,
triangular-or sometimes quadrilateral patches are used to make a polygon mesh of
the surface. The patches can be flat, or curvilinear.
In Subsection 2.1.1 we found an integral equation for the radiation of electric
fields due to surface currents, and in Subsection 2.1.2 we considered the scattering
of a PEC, which led to the EFIE that relates the tangential component of the
scattered field at the surface to the incident field:

− i

ωµ
n̂(r)×Ei(r) = n̂×

¨
S

↔
G(r, r′) · J(r′) dr′ .
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We will now apply the MoM to the scattering problem. The unknown current
J(r′) is expanded into a finite sum of weighted basis functions:

J(r′) =
N∑
n=1

αnfn(r′) . (2.130)

Substituting Eq. (2.130) into the EFIE yields

− i

ωµ
n̂×Ei(r) =

[↔
I + 1

k2∇∇·
]ˆ

fn
g(r, r′)

N∑
n=1

αnfn(r′) dr′ , (2.131)

where fn(r′) is everywhere tangential to the surface. By applying the testing
functions fm(r) we obtain ¯̄Z-matrix elements given by

Zm,n =
ˆ

fm
fm(r) ·

ˆ
fn
g(r, r′)fn(r′) dr′dr (2.132)

+ 1
k2

ˆ
fm

fm(r) ·
[
∇∇ ·

ˆ
fn
g(r, r′)fn(r′) dr′

]
dr ,

and excitation elements bm given by

bm = − i

ωµ

ˆ
fm

fm(r) ·Ei(r) dr . (2.133)

Let us consider the second term in Eq. (2.132), which can be rewritten:

I2(r) =
ˆ

fm(r) ·
[
∇∇ ·

ˆ
fn(r′)g(r, r′) dr′

]
dr

=
ˆ

fm(r) ·
[
∇
ˆ
g(r, r′)∇′ · fn(r′) dr′

]
dr

=
ˆ

fm(r) · ∇H(r) dr , (2.134)

where H(r) =
´
g(r, r′)∇′ · fn(r′)dr′. A detailed proof of the operation used in the

bracket term is derived in Appendix B. By using the vector identity given by Eq.
(B.3), the integrand in Eq. (2.134) can be reformulated, and allows for the
equation to be expressed as

I2(r) =
ˆ
∇ ·

[
fm(r)H(r)

]
−
[
∇ · fm(r)

]
H(r) dr , (2.135)

where we can apply Gauss’ divergence theorem to the first term, and make the
bounding surface large enough to make the integral vanish, leaving only the
second term:

I2(r) = −
ˆ [
∇ · fm(r)

]
H(r) dr

= −
ˆ
∇ · fm(r)

ˆ
g(r, r′)∇′ · fn(r′) dr′ dr . (2.136)
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Let us now consider the RWG functions as our choice of basis functions. For an
arbitrary 3D antenna structure with a triangular mesh, the impedance matrix
elements can thus be obtained from

Zm,n =
¨

fm

¨

fn

{
fm(r) · fn(r′)− 1

k2

[
∇ · fm(r)

] [
∇′ · fn(r′)

]}
eikr

4πr dr′dr , (2.137)

where the divergence of the RWG-basis functions are given by

∇ · fn(r) =


− `n

A+
n

for r ∈ T+
n

`n

A−n
for r ∈ T−n

0 otherwise .

(2.138)

The integrals in Eq. (2.137) are over two RWG functions, which span two
triangles each. Since the dipole surface is closed, each triangle supports three
RWG basis functions, and the integration over a source and observation triangle
contributes to nine matrix elements. It is therefore more efficient to perform outer
loops over source and test triangles and inner loops over basis functions, and add
the results to the appropriate matrix elements.
For a single source and test triangle, Eq. (2.137) are given by

I = LmLn
AmAn

¨

Tm

¨

Tn

{1
4%
±
m(r) · %±n (r′)± 1

k2

}
eikr

4πr dr′dr . (2.139)

For non-near terms, one can generally use numerical methods, such as the
Gaussian quadrature rule, to approximate the integrals. The Gaussian quadrature
rule is a method of approximating a definite integral of a function by a weighted
sum of the function evaluated at specific points within the integration domain.
For M evaluation points, the integral can be approximated by

I ' LmLn
4π

M∑
p=1

M∑
q=1

wpwq

{1
4%
±
m(rp) · %±n (r′q)±

1
k2

}
eikRpq

Rpq
, (2.140)

where wi is the weight of the i’te point, and

Rpq =
√

(xp − xq)2 + (yp − yq)2 + (zp − zq)2 . (2.141)

For self-coupling terms, i.e. when triangles overlap, a common method for
handling the singularities are the singularity extraction, which uses the following
expression:

eikr

r
=
[
eikr

r
− 1
r

]
+ 1
r
. (2.142)
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The first term on the right-hand side of Eq. (2.142) can be used in directly Eq.
(2.140) since it is well behaved for all values of r in this limit:

lim
r→ 0

[
eikr

r
− 1
r

]
= ik . (2.143)

Therefore, only the 1/r term must be handled with care when performing the
integration:

I1/r = LmLn
AmAn

¨

Tm

¨

Tn

{1
4%
±
m(r) · %±n (r′)± 1

k2

} 1
r
dr′dr . (2.144)

When Tm and Tn overlap, the inner and outer integration in Eq. (2.144) can be
calculated analytically. The basis function vector %m,n are first converted into
simplex coordinates. For the basis function %−(r) on T−, the simplex coordinate
is given by

%(r) = (1− λ1 − λ2) v1 + λ1v2 + λ2v3 − vm,n , (2.145)

where v1,v2 and v3 are triangle vertices, vm,n are the vertex opposite edge on the
triangle, and λi are the simplex coordinates. So for %−(r) on T−, the integrals
over the first term in Eq. (2.144) is on the form of

I1/r,1 =
¨
Tm

¨
Tn

{
(1− λ1 − λ2)v1 + λ1v2 + λ2v3 − vm

}
(2.146)

·
{

(1− λ1 − λ2)v1 + λ1v2 + λ2v3 − vn
} 1
r
dr′dr .

By multiplying the terms in the above results in a set of integrals of the form

C

¨
Tm

¨
Tn

λiλ
′
j

1
|r− r′| dr′dr . (2.147)

Eibert and Hansen in [16, 17] have evaluated these integrals analytically. By using
the edge lengths of the considered triangles defined by

l1 = |v2 − v3| , (2.148a)
l2 = |v3 − v1| , (2.148b)
l3 = |v1 − v2| , (2.148c)
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the results are given as

1
4A2

¨
Tm

¨
Tn

1
|r− r′| dr′dr = 1

3l1
ln1 + 1

3l2
ln2 + 1

3l3
ln3 , (2.149)

1
4A2

¨
Tm

¨
Tn

λ′1λ1
1

|r− r′| dr′dr = 1
20l1

ln1 + l21 + 5l22 − l23
120l32

ln2 (2.150)

+ l21 − l22 + 5l23
120l33

ln3 + l3 − l1
60l22

+ l2 − l1
60l23

,

1
4A2

¨
Tm

¨
Tn

λ′2λ1
1

|r− r′| dr′dr = 3l21 + l22 − l23
80l31

ln1 + l21 + 3l22 − l23
80l32

ln2 (2.151)

+ 1
40l3

ln3 + l3 − l2
40l21

+ l3 − l1
40l22

,

1
4A2

¨
Tm

¨
Tn

λ′1
1

|r− r′| dr′dr = 1
8l1

ln1 + l21 + 5l22 − l23
48l32

ln2 (2.152)

+ l21 − l22 + 5l23
48l33

ln3 + l3 − l1
24l22

+ l2 − l1
24l23

,

where

ln1 = log
[

(l21 + l22)− l23
l22 − (l3 − l1)2

]
, ln2 = log

[
(l2 + l3)2 − l21
l23 − (l1 − l2)2

]
,

ln3 = log
[

(l3 + l1)2 − l22
l21 − (l2 − l3)2

]
.

The remaining integrals involving the integrand in Eq. (2.146) can be obtained by
permutation of the vertex indices [16]. These analytic expressions for the
self-coupling terms are fast to calculate, but the preliminary mathematical work is
extensive. Another method, which is less accurate, is to use numerical integration
on the self-coupling terms as well. If the source points do no coincide with the
testing points, the quadrature method can be used to approximate all integrals. A
simple approach would be to divide the source triangles into nine sub-triangles and
perform a nine-point quadrature on the source integrals, and only use a one-point
quadrature on the testing integrals. A similar method was tested by Makarov in
[18]: the nine-point quadrature was applied to all non-near terms, whilst the
self-coupling terms were evaluated using the analytic expression given by Eq.
(2.149). The basis functions %(r) were replaced by their values at the center of the
triangle, thereby omitting the need for the rest of the analytic expressions given
by [16]. The results of this method were compared to when the nine-point
quadrature were used for self-coupling terms as well. According to Makarov, both
approaches produced very similar results, and notes the calculations produced a
deviance in the surface current magnitudes of less that 1%.





chapter 3
Implementation

In this chapter the implementation will be presented, first the structure of the
script will be reviewed, then select methods of interest will be further examined.
This will be done by presenting considerations for how the code is structured,

how the equations are implemented and what inputs the script accepts.

3.1 script structure

The script is split into two parts, the “MoMScript” which is the executed part and
the “ArbitraryAntenna” class, which holds methods used for the computations.
This split is used to ease readability and increases modularity of the code.

3.1.1 Import of STL File

This section in the “MainScript” loads the STL file specified by the string. It
returns an STL object that holds a p-matrix of points and a t-matrix of triangle
points. The p-matrix holds x, y, z-coordinates as the first, second and third
column respectively and each row constitutes a point. The t-matrix consists of
each corner of a triangle as columns with each row constituting a triangle. The
corners are numbered and the number corresponds to an index in the p-matrix. So
for example a row from the t-matrix consisting of (1, 2, 3) means that the
coordinates to the corners are found in the p-matrix first, second and third row.
The STL file reader used in this code is the “STL File Reader” [19]. This STL
reader is limited to STL files saved in binary format, and an error will be
produced if an attempt is made at loading a STL file saved in ASCII format. The
STL reader function could be replaced with any equivalent or even loading the p-
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and t-matrices directly from a saved file, the only restriction is that the
dimensions must match what is described above.

3.1.2 Remove Duplicate Points

Due to the way the STL files are created in Fusion360, there are some points that
overlap and appear more than once. In order to save calculation time these points
are identified and pruned.
This is done by first identifying points that share coordinates and saving their
indices. The lowest of these indices are used as replacement in the t-matrix, for
instance if the points 1, 27, 48 and 537 were the same point the occurrences of 27,
48 and 537 would be set to 1 in the t-matrix. Lastly the redundant points are
removed from the p-matrix and the p-matrix are updated with the new indices.

3.1.3 Duplicate Antennas

This thesis have used the script to examine dipole antenna, however it was also of
interest to examine how multiple dipole antenna interact with each other. This is
an option within the script, however no method can do it automatically, therefore
an outline of the procedure will be given here. Once the p-and t matrices have
been created these can be manipulated in order to create different structures, the
methods are a result of the p matrix consisting of coordinates and the t matrix
the indices of these coordinates. When the STL file is loaded the coordinates will
correspond to the placement in the coordinate system that the antenna had in
Fusion360, in this thesis this corresponds to the center of the antenna at the
origin, and as such it can be translated in any direction. In order to displace an
antenna along the z-axis one simply expresses the new z-coordinates as the old
ones plus the wanted displacement i.e. p(:, 3) = p(:, 3) + 2 would displace the
antenna 2 meters in the positive z-direction. This can also be done for
displacements in a negative direction writing p(:, 3) = p(:, 3)− 2 for the same
antenna would return it to its original position. In addition to moving the
antenna it can also be scaled in its dimensions p = 2 · p would result in an antenna
with twice the size as the original, this scaling can also be applied to single
dimensions, if the length of the antenna is in the y-direction p(:, 2) = 2 · p(:, 2)
gives an antenna with twice the length but without changing the diameter, if the
wavelength is scaled with the length increase this effectively halves the diameter.
The translation of antenna can also be used to create different structures by
assigned the translated structure to a new p-matrix and then concatenating them
i.e. duplicating p into p1 and p2 followed by assignments

p1(:, 3) = p1(:, 3) + 0.1 ,
p2(:, 3) = p2(:, 3)− 0.1 ,

p = [p1; p2] .
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Next, the t matrix also needs to be updated. This is done by assignment

t = [t1; t2 + length(p1); t3 + length(p1) + length(p2)] ,

in order to extend this to more antenna the length of p should be added an
additional time for each added antenna.
The approach outlined here uses the same initial mesh for all duplicated antennas,
but it can also be done for different meshes, if p1, p2 and p3 are the p matrices
from different STL files and t1, t2 and t3 are their corresponding t matrices then
the combined p-matrix is

p = [p1; p2; p3] ,

and the combined t-matrix is

t = [t1; t2 + length(p1); t3 + length(p1) + length(p2)] .

When combining multiple antenna in this way, the scaling method can also be
applied. If one wishes to sale the entire system, it can be applied after the
concatenation, however, one could also change the scaling of a single antenna
before concatenation.

3.1.4 Calculation of Antenna Dimensions

Dimension calculation within the script is set to calculate for a dipole, but will
attempt to calculate dimension for any imported structure. The length is found
by determining the maximum value of the p-matrix and determining in which
dimension it is a maximum. Then the minimum value in the same dimension is
subtracted, thus giving the length denoted by L. The radius is determined by
averaging the absolute of the minimum and maximum values in the two remaining
dimensions. For the dipole antenna modeled in this thesis, this means
L = max(y)−min(y) and
radius = (|min(x)|+ |min(z)|+ |max(x)|+ |max(z)|) /4. The wavelength is set
to 2L, resulting in a half-wavelength antenna, as these are typically the most
effective. The wavelength can however easily be changed to other values in order
to examine alternate radiation patterns. The diameter is used to determine the
minimum displacement needed for the silicon interface to avoid an overlap
between the interface and the antenna.

3.1.5 Additional Triangle Information

In order to evaluate the RWG functions, some intermediate calculations are done
for each triangle. Firstly, the area and the center point of each triangle is found:
these are saved in Area and Center, respectively. In order to calculate the
Gaussian quadrature each triangle is split into sub-triangles: This is done by
calculating the coordinates of the points located at 1/3 and 2/3 of the length on
each edge in the original triangle. These points, the original corner points as well
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as the center point, are used to create nine sub-triangles. The center points of
these are saved in the matrix SubTri. The matrix SubTri has the dimensions:
[Amountofsub− triangles, 3, amountoftriangles].
SubTri(:, :, 1) returns the center points of the sub-triangles contained in triangle 1.
Additionally, the script contains the option to further increase the amount of
sub-triangles by creating nine sub-triangles within each sub-triangle, thus resulting
in a total of 81 sub-triangles per triangle. This effectively makes the 9-point
numerical quadrature into an 81-point numerical quadrature, if this option is used.
Since the triangles supplied by the STL file are plane triangles with the corner
points placed on the surface, this method leads to a faceted surface with the
center points placed slightly inside the antenna. In order to correct for this, the
script contains a method for lifting the points in Center and SubTri to the actual
surface of the antenna. This is done by separating the antenna into three sections:
an upper sphere, a cylinder and a lower sphere. The upper and lower spheres use
the center of the sphere as a baseline point, in order to determine the direction of
the normal vector to a given point and replaces this point by
CenterOfSphere+NormalV ector · radius. The cylinder part employs the same
method, however the CenterOfSphere is replaced by the center of the cylinder
with the y-value equal to the point currently being lifted. The method determines
if the point to be lifted is on a sphere or cylinder by checking its y-coordinate
against a preset value. Therefore the lift method takes a bool, Lift, that
determines if the points should actually be lifted, for non dipole antenna or dipole
antenna that have been scaled this Lift should be zero. The method however
should still be called as it changes the dimensions of the SubTri matrix to the
ones mentions earlier, and this is the format the script expects to receive.

3.1.6 Identifying Edges

In order to determine which edges exist for a structure, and therefore which basis
functions need to be defined, a connectivity list is created as described by [1].
This is done by looping over all points and determining which triangles they are a
part of. Then the remaining point of the triangle are identified along with their
indices, and only points with indices higher than the current iteration in the
for-loop are of interest. This is done to avoid finding the same edge twice. The
information is stored in a cell, which for a given edge, holds the index of the
starting point, the index of the end point, as well as indices for the triangles that
the edge is a part of. The starting point is equal to the index in the list, while the
end point indices are held as an array in the first column of the list and the
triangle indices are held as an array in the second column.
The connectivity list is used to create the EdgeList in order to ease accessibility
to the information, as the EdgeList is stored as a matrix. Its indices corresponds
to the numbering of edges, the first column holds the start point of the edge,
second column holds the index of the end point. The third and fourth column
hold the vertices needed to compute the basis functions, that is to say the vertices
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opposite the edge. The third column holds the vertices used to compute %+ and
the fourth column the vertices used to compute %−, the vertex with the lowest
index is always assigned as the positive vertex.
The RWG basis functions are created in the same loop as the EdgeList is created.
These are saved as function handles in the cell Basis. The row indices in Basis
corresponds to the edge number, the first column holds the %+ function handles,
while the second column hold the %− function handles, these correspond to Eqs.
(2.129). The remaining part of the basis functions are stored separately in the
matrix BasisLA with the same row indexing: the first column holds L/2Ap,
second column holds L and the third column holds L/2Am. Here Ap and Am
corresponds to the Area of the plus and minus triangles respectively. The length
is stored separately to reduce calculations when employing a numerical quadrature
solution to the integrals of the MoM method, as the areas will cancel out. The
function handles are evaluated in the center points of their respective triangles,
and in the corresponding sub-triangles. These values are saved in RhoP , RhoM ,
RhoP_ and RhoM_, where the underscore denotes that the values belong to
sub-triangles center points.

3.1.7 Options for Excitation of Antenna

In order to determine the excitation vector, given by Eq. (2.133), one needs to
calculate the incident field. In this script, the incident field is calculated in the
center of each triangle on the antenna. Given that there are both plus and minus
triangles the expression becomes [18]

bm = L

2
[
Ei(rc+) · %(rc+) + Ei(rc−) · %(rc−)

]
. (3.1)

The script has three options for excitation of the antenna: a plane wave, a point
source, and a voltage feed. A plane wave is expressed by

Ei(r) = x̂ eik·r + ŷ eik·r + ẑ eik·r , (3.2)

in the script, where the polarization is in the ŷ-direction and the other
polarization directions are set to zero. In addition the wave is chosen to propagate
along the ẑ direction, so the values of r are chosen as the triangles center points
z-coordinates. Even though the wave is only polarized in the ŷ-direction the field
is still represented as a matrix with the x̂, ŷ, and ẑ-polarization as the first,
second and third column, respectively. This configuration makes it easier to
change the incident fields polarization, as the script expects it to passed in matrix
form and has no special restrictions on the polarization or propagation direction.
When the excitation source is a point source, the incident field is calculated at the
center points of the triangles in the method PointSource, here the location of the
point source and the polarization is passed as the last two arguments. The electric
field strength can be calculated from [5]

Ei(r) = ω2µ
↔
G(r, r′) · p . (3.3)
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The most common configuration used for the point source is placing it an antenna
length from the antenna in the ẑ-direction and having it be polarized in the
ŷ-direction.
The third alternative for excitation is a voltage feed, this method is outlined in
[18] for a strip. When employed for a strip one of the RWG edges is used as a
driving edge, that is assumed to act as a voltage gap, this gives rise to an electric
field within the gap given as

E = V

∆ ŷ . (3.4)

The gap is associated with an RWG edge so ∆→ 0, as they do not have a physical
width This in turn means that E →∞. Therefore, the field can be expressed as

E = V δ(y)ŷ , (3.5)

which means that the integral over the field is equal to the applied voltage. In
terms of implementation, this means that an applied electric field is only present
in the triangles which share the edge chosen as the feed edge. This results in a
change of the excitation vector to

bm = LV , (3.6)

for the feed edge and 0 for the non-feed edge. In order to apply this method to a
3D dipole, the infinitesimal gap is chosen to be at y = 0, effective placing it in the
middle of the antenna in the longitudinal direction. The voltage is then applied to
all edges that coincide with this split. The excitation vector therefore is expanded
to include all the edges that the voltage are applied to. This method for a voltage
feed is not guaranteed to work for all meshes, as it requires perpendicular edges at
y = 0. The feed position can however be changed, but in most cases a centered
voltage feed in regard to the the antenna structure is wanted. If one wished to use
a voltage feed in simulations, care should be taken to ensure that there exists
edges that meet the given requirements. When multiple antennas are used in
simulation the amount of antenna that receive a voltage feed can be changed, this
is done through the variable Y agi, if it is true only the second antenna in the
concatenated p-matrix is used as a feed antenna.

3.2 implementing the method of moments
The script has implemented two equivalent ways of using the MoM. The difference
lies in their approach: one is for-loop based and the other is vectorized. Both are
included in Sections C.1 and C.2 in Appendix C, respectively. The difference
between them will be outlined here, the for-loop based approach should easier to
read and understand, however the difference in computational speed makes the
vectorized method far superior. The MoM implementation is based on Eq.
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Table 3.1 – Table with sample computation times for the impedance matrix
for the two methods. N denotes the amount of basis functions with impedance
matrix size being N ×N .

N 828 1053 1350

Loop-based [s] 50.37 87.11 129.65
Vectorized [s] 4.60 6.79 11.15

(2.140), and follow the quadrature schemes employed by [18], which are discussed
in Section 2.4. Equation (2.140) expresses a single matrix element in the
impedance matrix ¯̄Z. The impedance matrix has dimensions N ×N where N is
the number of edges assigned an RWG basis function. In the implementation, Eq.
(2.140) is split into multiple parts:

A±mn =
M∑
q=1

Ln
8πwq

%±n (r′q)
eikRpq

Rpq
, (3.7)

Dot± = Lm
wp

Amn · %±m(rp) , (3.8)

phi± =
M∑
q=1

Ln
4πk2

eikRpq

Rpq
. (3.9)

Given the quadrature approach, wq = 9 and wp = 1, which in the script are used
by having A±mn and phi± depend on distance to sub-triangles and Dot± depend
on distance to the center of the triangle. Both the vectorized and the
non-vectorized method use these sub calculations. The methods both loop over
the m basis functions as an outer loop, the difference comes in how the n basis
functions are treated. The non-vectorized method computes them in an inner for
loop thus computing only one entry in the impedance matrix Zm,n. The
vectorized method calculates the interaction with all other basis functions for each
m, thus calculating an entire row of the impedance matrix at a time, Zm,N . In
Table 3.1, the computation time for the two methods are presented. In addition to
the faster computation times, the time scaling is also better, as the loop-based
approach is O(n2) while the vectorized is O(n).

3.2.1 Current Calculation and Visualization

The current is calculated for each triangle on the antenna, and for each triangle
the current is assumed constant. From the expansion of the current into basis
functions, Eq. (2.130), the current can be found from the coefficients determined
by the MoM as well as the basis function. Given the way the RWG functions are
distributed over the antenna, there are three RWG basis functions that will add to
the current of a given triangle. In order to compute these values, a outer loop over
triangles, and two inner loops over plus basis functions and minus basis functions
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Figure 3.1 – 3D visualization of the surface current distribution of a half-wave
dipole antenna. The antenna is scaled down by a factor of two in the longitudinal
direction to increase visibility of the triangular mesh.

within the triangle, are performed. In order to visualize the current, two
approaches are employed: one can plot the absolute value of the ŷ-component of
the current against the y-coordinate of the center of the triangle. This is adequate
as the current in the other dimensions are essentially zero. The other computes
the size of the current and normalizes it, then, by matching triangle corner points
to the current, a 3D figure can be created. This figure represents the antenna
structure, where each triangle receives a color relative to the value of the current.
An example of this can be seen in Figure 3.1.

3.3 calculation of radiated field

The script contains various ways of computing the radiated fields of antenna.
These are based on the equations and thoughts presented in Section 2.2. The
calculations of the scattered field are split into two different approaches: one type
of method computes the radiation as a result of a current running through the
antenna, which is based on 2.24. The second type of method is based on Eqs.
(2.120), (2.117) and (2.118). This allows computation of the far-field radiation
based on the angle of observation. These methods can be found in Sections 2.1.1
and C.4, respectively. The results of these methods are polar plots that illustrate
the radiation patterns, these are useful tool in determining the directivity of an
antenna or antenna configuration.
The first type of method computes the x-, y- and z-components of the radiated
field in the xy-, xz- and zy-planes. In order to calculate the radiation in the three
planes, an outer loop over these planes are employed. The method runs an inner
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loop over triangles, calculating the triangles contribution to the each component
of the E-field in the current plane. The procedure for each plane is the same. The
xy-plane is used here as an example for the computation method. First the
x-distance and the y-distance are discretesized into the desired resolution. In the
second loop three matrices are calculated: these contain the distance to each point
in the area of interest from the center point of the triangle for the x-, y- and
z-components respectively. The values in the Rx-matrix vary with rows, and the
values in the Ry-matrix vary with columns. The Rz-matrix values are constant.
These matrices are then used to compute the total distance to a point by
r =

√
r2
x + r2

y + r2
z , which in return is used to compute the parts of the Green’s

tensor split into

g = eik¯̄r

4π ¯̄r
,

G1 = 1 + i

k ¯̄r
− 1

(k ¯̄r)2 ,

and

G2 = 1 + 3i
k ¯̄r
− 3

(k ¯̄r)2 .

Note that the division occur element-wise. Next each direction of the Green’s
tensor are computed separately and used to compute a component of the radiated
field. For the E-fields x̂-component in the xy-plane these are computed as

¯̄Gxx =
(

¯̄G1−
¯̄Rx ¯̄Rx
r2 G2

)
¯̄g ,

¯̄Gxy =
(
−

¯̄Ry ¯̄Ry
r2 G2

)
¯̄g ,

¯̄Gxz =
(
−

¯̄Rz ¯̄Rz
r2 G2

)
¯̄g ,

and
¯̄Exyx = iωµ( ¯̄Gxx · Jx + ¯̄Gxy · Jy + ¯̄Gxz · Jz) ·Area;

Note the missing term ¯̄G1 in the ¯̄Gxy and ¯̄Gxz expressions, as the unit dyad does
not contribute to this direction. These field components are then added to the
previous total, in order to account for all triangles.
There are some considerations about which part the loop should run over. One
can choose between computing the radiation for all points in the plane or for all
triangles on the antenna, choosing which of these parameters should be used in
the for loop should be done based on the amount of elements.
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The second method type only calculates a vector that represents the angular
far-field, this makes this method of computing the E-field much quicker given the
less intensive calculations. These methods also employ a loop over triangles,
however here it might be time beneficial to make a change of loop parameter as
the resolution is also set at 200 steps. The method, as a baseline, computes the
field for φ = π/2 and letting 0 < θ < 2π, corresponding to the radiated field in the
zy-plane. In the same approach as for the previous method each part of the
Green’s tensor is assigned to a variable, each corresponding to a direction. The
radiated field is calculated in all angles for the direct, indirect and the transmitted
part of the Green’s tensor. The computed field is then created depending on the
placement of the surface, the current method has it placed at z = 0, thus when
π/2 < θ < 3/2π the transmitted part of the field is used and the sum of the direct
and indirect radiation is used for the other angles.



chapter 4
Analysis and Results

This chapter presents the results obtained using the implemented MATLAB
code discussed in Chapter 3. Section 4.1 contain convergence plots of
the induced surface current of a three-dimensional half-wave dipoles, with

diameters D of 3, 1, 0.5 and 0.1 mm. Different excitation types have have been
used to produce these figures: plane wave, point source, constant field, and
voltage feed. Section 4.2 presents radiation pattern produced by the induced
surface currents. In Section 4.3 the results for dipoles located on silicon are
presented. The distances between the dipoles and the effect it has on the
transmitted radiation has been examined. In each of the above mentioned
sections, we have used a dipole length of L = 10 +D cm.

4.1 induced surface currents on 3d-dipole

As mentioned in Section 2.4, the accuracy of the ¯̄Z-matrix, and thereby in
extension also the surface current J, depends strongly on the number of unknown
variables. One method of checking the accuracy of the calculations, is to
investigate the convergence of the values of the induced current. The convergence
plots in Figure 4.1 showcases the absolute value of the ŷ-component of the surface
currents induced on a half-wave dipole with a 3 mm diameter. Three different
excitation types are presented: plane-wave, point source, and constant field.
When incident with a plane wave or a point source, the values converges but the
current differs in value around a cross section of the antenna, as seen in Figure 4.1
(a) and (b). This behaviour is further tested by correcting the positions of the
center points of triangles and sub-triangle so they match the surface of the
antenna. The resulting surface currents obtained by this method are plotted in
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(d) Constant field

Figure 4.1 – Induced surface currents of a half-wave dipole with diameter of
3 mm. The different excitation types used are a plane wave, point source and
a constant field. The number of triangles used are shown in the legend of each
figure. For all excitation types, except the constant field, display variation in
surface current values around the cross section of the dipole.

(c), with no noticeable difference. In (d), the use of a constant field produces a
very narrow difference in the surface current values around a cross section.

Figure 4.2 shows the ŷ-component of the surface currents for half-wave dipoles
with diameters of 0.5 and 0.1 mm. As the diameter decreases so does the variation
in the cross sectional surface current. However when decreasing the diameter
there is an increase in required triangles needed to accurately represent the
geometrical surface. The increase in triangles are in all dipole dimensions. The 0.1
mm diameter dipole requires substantially more triangles compared to the 0.5 mm.
The figures showcasing the surface currents induced by plane waves from Figures
4.1 and 4.2 are shown side-by-side in Appendix D.
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(a) D = 0.5 mm
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(b) D = 0.1 mm

Figure 4.2 – Surface currents induced by a plane wave vs. antenna length. The
cross-sectional variation of the surface currents decreases with smaller diameter.
Number of mesh triangles are shown in the legend.
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Figure 4.3 – Voltage feed induced surface currents for 0.5 mm diameter dipoles.
The applied voltage are 1V. Number of mesh triangles are shown in the legend.
Note the nonzero values at y = 0 for λ = L and λ = 1

2L.
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Figure 4.3 shows the surface currents for 0.5 mm diameter dipoles with a voltage
feed as excitation source. The voltage feed is applied to the center of the dipole,
as described in Subsection 3.1.7. The variation is the cross sectional surface
currents are not noticeable, but some nonzero values of the feed current is
observed for λ = L and λ = 1

2L.

4.2 3d dipole radiation
In order to investigate how the variation in the current around a cross section (see
Figure 4.1) affect the radiation patterns, we compare the electric field across the
dipole in the xy and zy-planes. The 3 mm diameter dipole is selected to be
analyzed since it has the most prominent variations. Figure 4.4 shows the electric
field across the dipole for the xy and zy-plane in (a) and (b), respectively. At first
glance, the field appears to be symmetric around the dipole center in both planes,
but a close inspection reveals that the zy-plane show an asymmetry.
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(b) zy-plane

Figure 4.4 – E-field across a 3 mm diameter dipole. The plane wave excitation
source is polarized along ŷ and propagating in the ẑ-direction. The xy-plane is
fully symmetric, while the zy-plane show a slight asymmetry. Number of mesh
triangles are shown in the legend.

Table 4.1 – Differences in |Ei,y|-value between points at opposite sides of the
dipole. The variation in the zy-plane becomes negligible at large distances. The
xy-plane is fully symmetric around the dipole center.

Distance
from dipole [cm] ± 5.03 ± 21.11 ± 41.21 ± 51.26 ± 81.41 ± 121.61

∆|Ex,y| 0 0 0 0 0 0
∆|Ez,y| 0.0072 0.0012 0.0003 0.0002 0 0
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Figure 4.5 – Polar plots of the far field radiation for single dipoles diameters of
3 and 0.5 mm in a distance of 10 m. The angles vary in the zy-plane.

The plane wave used as an excitation source is polarized along ŷ and propagates
in the ẑ-direction. Table 4.1 lists the difference in |Ei,y|-values between two points
on opposite sides of the dipole. In the xy-plane the field appear symmetric across
the dipole, while zy-plane displays a small asymmetry that is most prominent
near the dipole.
This representation of the radiated field is however inadequate to establish the
directivity of an antenna, and for this purpose polar plots are used. These are
presented for dipoles with diameter of 3 and 0.5 mm in Figure 4.5: the angle
varies around the zy-plane with 0 being in the immediate positive z-direction.
They showcase a deviation in value of the field similar to the cross sectional plots,
this difference is more pronounced for the 3mm diameter dipole, which is also in
line with the observations from earlier. The plots showcase the expected pattern
of a half-wave dipole, and will be used as a baseline comparison to the results
when an interface is included.

4.3 dipoles on si-substrate
In order to model a photoconductive antenna, the substrate on which the
antennas lie must be included, for this task the Green’s tensor for a planar
interface, presented in Subsection 2.3.1, is used. In order to carry out this analysis
a current density equal to that of a dipole without the interface present have been
assumed. In Figure 4.6 the radiation patterns for a single half-wave dipole located
in free-space and on a Si-substrate, are shown in (a) and (b), respectively. It is
clearly seen that substantially more radiation are coupled into the substrate, and
thereby highly changing the directivity of the emitted dipole radiation. Figure 4.7
demonstrates the variation in radiation patterns for half-wave, full-wave, 3/2-wave
and 2-wave dipoles on a Si-substrate.
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Figure 4.6 – Angular plot comparison of radiation patterns: (a) Free-space
0.5 mm half-wave dipole w. voltage feed excitation. (b) Same dipole located
on Si-substrate. Most of the emitted radiation are coupled into the substrate.
Number of mesh triangles are shown in the legend.
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Figure 4.7 – Effects of different wavelength for a dipole on Si-substrate. Number
of mesh triangles are shown in the legend.
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Figure 4.8 – The maximum values of |E|2|r|2 plotted as a function of the
distance between two dipole antenna.

The radiation patterns partially resembles the radiation from a free-space dipole,
as seen in Figure D.2 in Appendix D, but with substantially more radiation
coupled into the substrate. The behaviour of coupling radiation into a substrate is
of particular interest in the construction of photoconductive antennas, as
presented in Chapter 1. As such it is interesting to examine how to increase the
directivity of the coupling. This is done by simulating the radiation that results
from two and three dipole antenna. By changing the distance between the
antenna an optimal inter antenna distance is sought. In the results, that will be
presented here, all antenna will be excited by a voltage feed.
In Figure 4.8, the distance between antennas are illustrated for the situation with
two dipole antennas placed on the interface. In (a) the results for the 0.5 mm
diameter antennas are presented: It can be seen here that the diameter with the
highest maximum is a little larger than 10 cm, the actual value is 13.34 cm, this is
equivalent to 67% of the wavelength. In Figure 4.9 the radiation pattern is shown.
It displays significant radiation in the main lobe located at 180◦. However it also
displays significant side lobes which could be an unwanted behaviour if the
photoconductive antennas are intended to be placed in arrays, as it might
interfere destructively with the other configurations in the array. Figure 4.8(b) the
same is shown for antennas with diameter of 1 mm. The peak maximum value
appears in a similar location to the one for 0.5 mm. The actual value is 13.39 cm
which corresponds to 66%. Note that the wavelength depends on the length of the
antenna and the diameter influences the length due to the spheres on the ends of
the antenna. The radiation pattern for this configuration can be seen in Figure 4.9
(b) where the main lobe is located at 180◦. This configuration also displays
prominent side lobes.
In Figure 4.10 the inter antenna distance for the situation with three antennas
placed on the substrate: (a) displays the results for three dipole antenna with
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Figure 4.9 – Angular far field radiation patterns for effective inter antenna
distance when using two dipole antenna. (a) is for distance of 13.34 cm and (b)
is for distance of 13.39 cm.

diameter 0.5 mm, the peak is around 15 cm with the actual value being 14.48 cm.
This corresponds to 72% of the wavelength. (b) shows the same but for antenna
diameter 1 mm, the peak is at roughly the same spot with a slightly higher value.
The actual value is 14.61 cm corresponding to 73% of wavelength.
In Figure 4.11 (a) the angular radiation plot for three dipole antennas with
diameter 0.5 mm is shown. It shows a main lobe at 180◦ as well as prominent side
lobes It is worth nothing however that the lobes are more narrow than for the two
antenna configuration. In (b), the angular radiation plot is shown for the same
configuration but with antenna diameter 1 mm. There are no real difference
between the radiation patterns.
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Figure 4.10 – The maximum values of |E|2|r|2 plotted as a function of the
distance between three dipole antenna.
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Figure 4.11 – Angular far field radiation patterns for effective inter antenna
distance when using three dipole antenna. (a) is for distance of 14.48 cm and (b)
is for distance of 14.61 cm.





chapter 5
Discussion

The implemented code and the numerical results from Chapters 3-4 will
be discussed here. We will discuss the limitations of the code, the methods
used, and the validity of the obtained results. The discussion is divided

into sections to match the structure of the thesis.

5.1 induced surface currents

Figures 4.1 (a) and (b) revealed that the induced current on a 3D dipole varied
around the cross section when a varying incident field was used as excitation
source. For a dipole which is relatively thin compared to the wavelength of a
normal-incident wave, polarized along the longitudinal axis of the dipoles, we
would not expect the induced current to vary noticeably around the cross section.
It was initially considered that the variation could stem from the faceting of the
surface, and as an attempt to correct for the variation, the evaluation points used
in the numerical integration were moved to the surface. This did not create any
noticeable changes in the current distribution, as seen in Figure 4.1 (c). By
reducing the diameter of the antenna, the observed variation were reduced.
Assuming that the effect is entirely due to the variation of the incident field, it is
clear that the cross sectional variation in surface current will be less prominent
since the evaluation points are more closely spaced. A trade-off for the reduced
variation is the rapid increase in the number of triangles needed to represent the
surface accurately due to the increase in surface curvature. Furthermore, when
modeling objects in Fusion360 smaller than the 0.1 mm presented, it becomes
nearly impossible to check the quality of the meshes.
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Ignoring the cross sectional variation, the current appears to converge at around
580, 552, 984 and 2502 triangles for dipoles with diameters of 3, 1, 0.5 and 0.1 mm,
respectively.
The method of using a voltage feed did produce a current distribution that are
more in accord with what we would expect, as seen in Figure 4.1 (d). For the 3
and 0.5 mm diameter dipoles, the current appears to converge at 264 and 700
triangles, respectively, the smallest numbers tested.
The voltage feed method produced some nonzero values at the feeding points when
λ = L and λ = 1

2L. For an incident wave, these point would normally be zero, but
since these are the feed points when using a voltage feed this behavior is expected.

5.2 antenna radiation
In order to verify if the variation in the current was due to the incident field’s
varying across the structure, the cross sections of the electric field over the
antenna in the xy and zy-planes was examined. By closely inspecting the two
plots in Figure 4.4, it became clear that the dipole radiation were affected by the
asymmetric behaviour of the surface currents. The asymmetry is not present in
the plane of observation perpendicular to the direction of propagation of the
excitation field. This leads us to speculate that the asymmetry mainly stem from
the variation in the incident field across the antenna. From Table 4.1 it can bee
seen that the variation is negligible when more than three wavelengths away from
the dipole.
In order to represent the directivity of the dipole antennas, we made use of polar
plots of the far-field radiation. In Figure 4.5 the electric field in the zy-plane show
similar asymmetry as the cross sectional plots. The asymmetry became less
distinct for smaller diameters, as seen in Figure D.3: For diameters smaller than 3
mm the asymmetry is barely noticeable.

5.3 dipoles on substrate
The surface current used to calculate the radiation transmitted into the substrate,
is assumed to be the same as if there were no substrate present. This is not the
case, as the substrate surface gives rise to a reflection as well as a transmission,
which gives the Green’s function the additional part of the indirect Green’s
function. This would likely increase the total current in the antennas. In addition
it would probably affect the center antenna in the three antenna configuration the
most, thus resulting in a larger difference between the main lobe and the side
lobes.
Regarding the excitation method used, in the figures presented, all antennas in
the configuration are voltage fed, and on a photoconductive antenna this would
not be the case. On a photoconductive antenna, a center point located on the
semiconductor between the antennas would be illuminated, produce a current, and
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thus begin exciting the antenna. This could, to increase the accuracy of the
results, be simulated by applying the voltage feed only to the center antenna, or
by employing a point source placed between the two antennas. A correction for
this behaviour would likely not result in a change of the found effective distances,
as the antennas effectively are the same and the impedance matrix would remain
unchanged by this. The change could however be seen in the same way the
reflection is thought to have influence, by resulting in a higher current in the
center antenna and thus reducing the size of the side lobes.
In addition to this, the antennas should resonate at a higher wavelength, as the
refractive index of the substrate would influence the speed of the waves. This
could be seen as a new effective refractive index and a new, larger, wavelength
could be calculated to account for this change.
In light of this information the distances presented in Table 5.1, most likely
overestimate the percentage of the wavelength that should be used for an effective
distance, as they are based on a smaller wavelength that does not correct for the
substrates presence.

Table 5.1 – Effective inter antenna distances for configurations with two and
three antennas. Their relation to the wavelength λ is also noted.

Ant. Dist. % of λ

Two Antenna 0.5 mm 13.33 cm 67%
Two Antenna 1 mm 13.39 cm 66%
Three Antenna 0.5 mm 14.48 cm 72%
Three Antenna 1 mm 16.61 cm 73%

5.4 matlab code in general

The script implemented for this thesis is reliant on using the method of moments
to compute the impedance matrix. In order to do this, the integrals of (2.139)
have been evaluated as a 9-point quadrature and a 1-point quadrature for all
terms. This has some implications for the accuracy of the calculated ¯̄Z-matrix, as
these only approximate a numerical solution, this approximation could be made
more accurate by instead employing an 81-point and a 9-point quadrature. This
would still however rely on the same type of approximation and would probably
still break down when used on very small triangles, specifically for self-terms. To
make the method more reliable for smaller triangles one could do a proper
integration using some of MATLAB’s integration methods. This would be
expensive in time however and should probably only be used for self terms or for
evaluating triangles directly next to one another depending on the wanted level of
accuracy. This problem could also be addressed by the analytic terms presented in
Section 2.5, which would be a faster solution.
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In Section 3.3 it was briefly mentioned, that one should consider which parameter
to loop over between the amount of triangles and the discretizised steps in the
plane of radiation. In this thesis, the resolution used is set to 100 steps per 2 m
which gives the matrices a size varying from 40000− 1000000, in order to make a
swap of loop parameter beneficial the amount of triangles would need to exceed
this number. As a reference the largest structure used in this thesis was ≈ 9900
triangles in a Yagi-Uda antenna structure, this parameters for this structure is
presented in Table 5.2, with the radiation results in Figure 5.1.

5.4.1 Yagi-Uda antenna

Here the results for a nine element Yagi-Uda antenna structure will be presented.
This is done in order to demonstrate the capabilities of the script. The Yagi-Uda
structure is based on the values presented in [1], scaled to match the wavelength
resulting from the choice of dipole length, these measurements can be seen in
Table 5.2. The Yagi-Uda antenna is a highly directional antenna array, used

Table 5.2 – Scaled Yagi-Uda antenna. Dimensions are based on ones presented
by [1].

Element Ref 1 2 3 4 5 6 7 8

Length [cm] 10.43 9.60 9.61 9.37 9.21 9.11 9.01 8.95 8.91
Position [cm] 0 3.21 4.56 6.99 10.5 14.91 19.95 25.62 32.05

mostly for radio wave communication. This big directivity is observed in the plots
for the antenna structure depicted in Figure 5.1. Ultimately however, these results
are included to showcase the versatility of the script and thus no analysis is
offered.
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Figure 5.1 – Yagi-Uda radiation plots for a voltage feed on the second antenna
in the chain. The left plot is the radiated field in the zy-plane, the right plot is
for the same plane.



chapter 6
Conclusions

In this chapter, conclusions drawn will be presented on the strengths and
weaknesses of the MoM method in regard to the problem statement. Next, a
conclusion on based on the results, their general validity, as well as accuracy will
be presented. Finally, a general remark will be offered on the fulfillment of the
thesis goals.
The MoM showed mixed results in the computation of the current. The results
converged for all excitation modes, however, it did showcase a noticeable
broadening of the cross sectional surface current when excited by a plane-wave or
a point source. While this broadening is thought to be a result of the variation of
the excitation fields over the antenna, and as such, is a natural result of employing
the MoM on a 3D antenna, no final conclusion could be drawn on whether or not
this was actually the case. The current resulting from a voltage feed showed the
same current value for a cross section and as such, this excitation method should
be safe to employ regardless of the reason for the broadening. Because of this, if
one finds it important to account for the current change induced by the inclusion
of a substrate, it could be beneficial to use another method. In any case, if one
wishes to use the MoM to model this situation some changes need to be applied to
the method. This however would likely not result in a significant change to the
the radiation patterns, as this was not the case when the substrates influence on
the current were neglected.
This observed behaviour in the current resulting from the MoM, influences the
likely hood of the results validity. If the broadening indeed is a natural, and
intended, result of the method chances are the results hold. Should this not be the
case, the results are likely not valuable as the method likely has errors in the
implementation. The inter antenna distances presented in Table 5.1 showcase
some interesting tendencies in terms of how antennas should be placed in relation
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to each other: the first is that the radius of the antenna has a limited influence on
the optimal distance between antennas. The distance is affected more by the
amount of antennas present and seems to, based on limited samples, increase with
amount of antennas present. In order to fully optimize the directivity of the
radiation, the dimensions wanted for the photoconductive antenna should be
known, then one could search for how many antenna can be placed in this area
while still maintaining an optimal distance between each other. Additionally as
more antennas are added, the distance between them should not necessarily be
the same for all.
Overall, the thesis results have shed some light on how the MoM interacts with
3D antennas, how these antenna interact with one another, as well as some
information about how radiation transmitted through a substrate could be
increased. The thesis have primarily focused on changing the dimensions of
antennas by changing their diameter, which showed little influence in terms of
good inter antenna distances. It could be of great interest to determine if the % of
the wavelength continue to increase as more antenna are added to the structure.
In addition it would be interesting to investigate if these % are the same for
antenna with different ratios of length to wavelength.
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appendix A
Green’s Tensor for a
Planar Interface

In Subsection 2.3.1 the Green’s tensor for a planar interface in cylindrical
coordinates is obtained. The derived expressions of each component of the
Green’s tensor are included here to provide an overview. For a planar interface

between two media at z = 0, the Green’s tensor is given by

↔
G(r, r′) =


↔
G

(d)
(r, r′) +

↔
G

(i)
(r, r′), z > 0, z′ > 0 ,

↔
G

(t)
(r, r′), z < 0, z > 0 .

(A.1)

In cylindrical coordinates, the three components of the Green’s tensor are given by

↔
G

(d)
(r, r′) = i

4π

ˆ {
ρ̂rρ̂r

[
J0(kρρr) +

k2
ρ

k2
1
J ′′0 (kρρr)

]
(A.2)

+ φ̂rφ̂r

[
J0(kρρr) +

k2
ρ

k2
1

J ′0(kρρr)
kρρr

]
+ ẑẑ

k2
ρ

k2
1
J0(kρρr)

+ (ρ̂rẑ + ẑρ̂r) i
kρkz1

k2
1

z − z′

|z − z′|
J ′0(kρρr)

}
kρ
kz1

eikz1 |z−z
′| dkρ ,
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↔
G
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(r, r′) = i
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ˆ ∞
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+ r(p)(kρ)
(
ρ̂rρ̂r

k2
z1

k2
1
J ′′0 (kρρ) + φ̂rφ̂r

k2
z1

k2
1

J ′0(kρρr)
kρρr

+ ẑẑ
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and
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4π
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where

r(p)(kρ) = ε2kz1 − ε1kz2

ε2kz1 + ε1kz2
, (A.5a)

t(p)(kρ) = 1 + r(p)(kρ) , (A.5b)

r(s)(kρ) = kz1 − kz2

kz1 + kz2
, (A.5c)

t(s)(kρ) = 1 + r(s)(kρ) . (A.5d)

It should be noted that ρ, ρ̂ and φ̂ are relative with respect to the distance
between r and r′.



appendix B
Integral Identity

The following proof seek to justify the use of the identity given by Eq. (B.1).
This identity is used in order to rewrite Eq. (2.134) in order to obtain an
alternative form of the electric field integral equation, used in Section 2.5.

We thus wish to proof the following:

∇∇ ·
˚

V
J(r′)g(r, r′) dr′ = ∇

˚
V
g(r, r′)

[
∇′ · J(r′)

]
dr . (B.1)

Consider the volume integral I(r) given by

I(r) = ∇∇ ·
˚

V
J(r′)g(r, r′) dr′ . (B.2)

By utilizing the vector identity,

∇ ·
[
J(r′)g(r, r′)

]
= g(r, r′)

[
∇ · J(r′)

]
+ J(r′) ·

[
∇g(r, r′)

]
, (B.3)

Eq. (B.2) can be rewritten as

I(r) = ∇
˚

V
J(r′) · ∇g(r, r′) dr′ , (B.4)

where [∇ · J(r′)] = 0, since J(r′) has no r′ dependency. Due to the symmetry of
the Green’s function, the following relationship can be used,

∇g(r, r′) = −∇′g(r, r′) , (B.5)
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where ∇′ indicate the gradient with respect to r′. By using Eq. (B.5), Eq. (B.4)
can be stated as

I(r) = −∇
˚

V
J(r′) · ∇′g(r, r′) dr′ . (B.6)

By using the vector identity given by Eq. (B.3) again, Eq. (B.6) becomes

I(r) = ∇
˚

V
g(r, r′)

[
∇′ · J(r′)

]
dr′ −∇

˚
V
∇′ ·

[
J(r′)g(r, r′)

]
dr′ . (B.7)

By applying Gauss’s theorem, the second volume integral can be converted into an
integral over an surface surrounding the volume, yielding

I(r) = ∇
˚

V
g(r, r′)

[
∇′ · J(r′)

]
dr′ −∇

¨
S

[
J(r′)g(r, r′)

]
· n̂ dr′

= ∇
˚

V
g(r, r′)

[
∇′ · J(r′)

]
dr′ , (B.8)

where the surface integral equals zero, since J(r′) is enclosed by the volume
contained inside the surface. By comparing Eq. (B.2) and Eq. (B.8), the identity
given by Eq. (B.1) is proven.



appendix C
Matlab Code

c.1 mom loop based

1 function [Z, a, b] = MoM(w, mu, t, EdgeList, BasisLA, RhoP, RhoM,...
2 RhoP_, RhoM_, Center, k, SubTri, Ei, eps0)
3
4 Z = zeros(length(EdgeList),length(EdgeList))...
5 +1i*zeros(length(EdgeList),length(EdgeList));
6 %Returns array with indices corresponding to edgenumber and the
7 %corresponding plus and minus triangle repsectively
8 [PlusTri, MinusTri] = ArbitraryAntenna.PMTri(t, EdgeList);
9

10 SubAmount = size(SubTri);
11 Quad = SubAmount(1);
12
13 for m=1:length(EdgeList)
14 mPdist = sqrt(sum((Center(PlusTri(m),:)-SubTri).^2,2));
15 mMdist = sqrt(sum((Center(MinusTri(m),:)-SubTri).^2,2));
16 rhomP = RhoP(m,:);
17 rhomM = RhoM(m,:);
18
19 for n=1:length(EdgeList)
20 rhonP_ = RhoP_(:,:,n);
21 rhonM_ = RhoM_(:,:,n);
22
23 gmPnP = exp(-1i*k*mPdist(:,:,PlusTri(n)))...
24 ./mPdist(:,:,PlusTri(n));
25 gmMnP = exp(-1i*k*mMdist(:,:,PlusTri(n)))...
26 ./mMdist(:,:,PlusTri(n));
27
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28 gmPnM = exp(-1i*k*mPdist(:,:,MinusTri(n)))...
29 ./mPdist(:,:,MinusTri(n));
30 gmMnM = exp(-1i*k*mMdist(:,:,MinusTri(n)))...
31 ./mMdist(:,:,MinusTri(n));
32
33 AmnP = mu/(4*pi)*...
34 (BasisLA(n,2)*sum(rhonP_.*gmPnP/(2*Quad))...
35 +BasisLA(n,2)*sum(rhonM_.*gmPnM/(2*Quad)));
36 AmnM = mu/(4*pi)*...
37 (BasisLA(n,2)*sum(rhonP_.*gmMnP/(2*Quad))...
38 +BasisLA(n,2)*sum(rhonM_.*gmMnM/(2*Quad)));
39
40 PhiP = -1/(4*pi*1i*w*eps0)*...
41 (BasisLA(n,2)*sum(gmPnP)/Quad ...
42 -BasisLA(n,2)*sum(gmPnM)/Quad);
43 PhiM = -1/(4*pi*1i*w*eps0)*...
44 (BasisLA(n,2)*sum(gmMnP)/Quad...
45 -BasisLA(n,2)*sum(gmMnM)/Quad);
46
47 Z(m,n) = BasisLA(m,2)*(1i*w*(dot(AmnP,rhomP)/2 ...
48 +dot(AmnM,rhomM)/2)+PhiM-PhiP);
49 end
50 end
51 b = BasisLA(:,2).*(dot(Ei(PlusTri,:),RhoP,2)/2 ...
52 +dot(Ei(MinusTri,:),RhoM,2)/2);
53
54 a = Z\b;
55 end

c.2 mom vectorized

1 function [Z, a, b] = MoMVectorized(w, mu, t, p, EdgeList, BasisLA,...
2 RhoP, RhoM, RhoP_, RhoM_, Basis, Center, k, SubTri, Ei,...
3 Reflector, GIxx, GIxy, GIxz, GIyx, GIyy, GIyz, ...
4 GIzx, GIzy, GIzz, eps0)
5 % alocating space
6 Z = zeros(length(EdgeList),length(EdgeList))...
7 +1i*zeros(length(EdgeList),length(EdgeList));
8
9 SubAmount = size(SubTri);

10 Quad = SubAmount(1);
11
12 EdgesTotal = length(EdgeList);
13 %Returns array with indices corresponding to edgenumber and the
14 %corresponding plus and minus triangle repsectively
15 [PlusTri, MinusTri] = ArbitraryAntenna.PMTri(t, EdgeList);
16 %Analytical Selftems
17 [BasisAnalytic, DistAnalytic] = ArbitraryAntenna.SelfTermInt...
18 (t, p, k);
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19
20 for m=1:EdgesTotal
21 mPdist = sqrt(sum((Center(PlusTri(m),:)-SubTri).^2,2));
22 mMdist = sqrt(sum((Center(MinusTri(m),:)-SubTri).^2,2));
23 rhomP = repmat(RhoP(m,:),length(EdgeList),1);
24 rhomM = repmat(RhoM(m,:),length(EdgeList),1);
25
26 SamenPmP = find(PlusTri - PlusTri(m) == 0);
27 SamenMmP = find(MinusTri - PlusTri(m) == 0);
28 SamenMmM = find(MinusTri - MinusTri(m) == 0);
29 SamenPmM = find(PlusTri - MinusTri(m) == 0);
30
31 gmPnP = exp(1i*k*mPdist(:,:,PlusTri))...
32 ./mPdist(:,:,PlusTri);
33 gmMnP = exp(1i*k*mMdist(:,:,PlusTri))...
34 ./mMdist(:,:,PlusTri);
35
36 gmPnM = exp(1i*k*mPdist(:,:,MinusTri))...
37 ./mPdist(:,:,MinusTri);
38 gmMnM = exp(1i*k*mMdist(:,:,MinusTri))...
39 ./mMdist(:,:,MinusTri);
40
41 Acnst = mu/(4*pi);
42 PPA = permute(sum(RhoP_.*gmPnP/(2*Quad)),[3 2 1]);
43 MPA = permute(sum(RhoM_.*gmPnM/(2*Quad)),[3 2 1]);
44 PMA = permute(sum(RhoP_.*gmMnP/(2*Quad)),[3 2 1]);
45 MMA = permute(sum(RhoM_.*gmMnM/(2*Quad)),[3 2 1]);
46
47 AmnP = Acnst.*BasisLA(:,2).*(PPA+MPA);
48 AmnM = Acnst.*BasisLA(:,2).*(PMA+MMA);
49
50 Pcnst = -1/(4*pi*1i*w*eps0);
51 PPPhi = permute(sum(gmPnP),[3 2 1])/(Quad);
52 PMPhi = permute(sum(gmPnM),[3 2 1])/(Quad);
53 MPPhi = permute(sum(gmMnP),[3 2 1])/(Quad);
54 MMPhi = permute(sum(gmMnM),[3 2 1])/(Quad);
55
56 PPPhi(SamenPmP) = DistAnalytic(PlusTri(m));
57 PMPhi(SamenMmP) = DistAnalytic(PlusTri(m));
58 MMPhi(SamenMmM) = DistAnalytic(MinusTri(m));
59 MPPhi(SamenPmM) = DistAnalytic(MinusTri(m));
60
61 PhiP = Pcnst*BasisLA(:,2).*(PPPhi-PMPhi);
62 PhiM = Pcnst*BasisLA(:,2).*(MPPhi-MMPhi);
63
64 if Reflector
65 % Attempt at implementing reflection from surface in
66 GIx = [GIxx(:,PlusTri(m),:) ...
67 GIxy(:,PlusTri(m),:) GIxz(:,PlusTri(m),:)];
68
69 GIy = [GIyx(:,PlusTri(m),:) ...
70 GIyy(:,PlusTri(m),:) GIyz(:,PlusTri(m),:)];
71
72 GIz = [GIzx(:,PlusTri(m),:) ...
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73 GIzy(:,PlusTri(m),:) GIzz(:,PlusTri(m),:)];
74 GImP = GIx + GIy + GIz;
75
76 GIx = [GIxx(:,MinusTri(m),:) ...
77 GIxy(:,MinusTri(m),:) GIxz(:,MinusTri(m),:)];
78
79 GIy = [GIyx(:,MinusTri(m),:) ...
80 GIyy(:,MinusTri(m),:) GIyz(:,MinusTri(m),:)];
81
82 GIz = [GIzx(:,MinusTri(m),:) ...
83 GIzy(:,MinusTri(m),:) GIzz(:,MinusTri(m),:)];
84 GImM = GIx+GIy+GIz;
85
86 GImPnP = GImP(:,:,PlusTri);
87 GImMnP = GImM(:,:,MinusTri);
88
89 GImPnM = GImP(:,:,PlusTri);
90 GImMnM = GImM(:,:,MinusTri);
91
92 Z(m,:) = (1i*w*mu/(4*pi).*BasisLA(:,2).*BasisLA(m,2).*(dot(permute(sum(RhoP_.*GImPnP/(2*Quad)),[3 2 1])...
93 +permute(sum(RhoM_.*GImPnM/(2*Quad)),[3 2 1]),rhomP,2)+...
94 dot(permute(sum(RhoP_.*GImMnP/(2*Quad)),[3 2 1])...
95 +permute(sum(RhoM_.*GImMnM/(2*Quad)),[3 2 1]),rhomM,2))).';
96 end
97
98 PlusDotProd = dot(AmnP,rhomP,2);
99 MinusDotProd = dot(AmnM,rhomM,2);

100
101 Z(m,:) = BasisLA(m,2).*(1i*w*(PlusDotProd/2 ...
102 +MinusDotProd/2)+PhiM-PhiP).'+Z(m,:);
103 end
104
105 b = BasisLA(:,2).*(dot(Ei(PlusTri,:),RhoP,2)/2 ...
106 +dot(Ei(MinusTri,:),RhoM,2)/2);
107
108 %System solution
109 a=Z\b;
110 end

c.3 radiated e-field

1 function [Exy, Exz, Ezy, xrange, yrange, zrange, Exyx, Exzx, Eyzx, ...
2 Exyy, Exzy, Eyzy, Exyz, Exzz, Eyzz] = EField(Center, ...
3 w, mu, k0, J, xmin, xmax, ymin, ymax, zmin, zmax, ...
4 steps, Area, Reflect, xsurf, n, lambda)
5
6 kR = 2*pi/(lambda*n);
7 xrange = linspace(xmin, xmax, steps);
8 yrange = linspace(ymin, ymax, steps);
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9 zrange = linspace(zmin, zmax, steps);
10
11 Exy = zeros(steps, steps);
12 Exyx = Exy; Exyy = Exy; Exyz = Exy;
13 Exz = zeros(steps,steps);
14 Exzx = Exz; Exzy = Exz; Exzz = Exz;
15 Eyz = zeros(steps,steps);
16 Eyzx = Eyz; Eyzy = Eyz; Eyzz = Eyz;
17
18 for j=1:3
19 if j == 1
20 rx = (xrange-Center(:,1));
21 ry = (yrange-Center(:,2));
22 rz = (0-Center(:,3));
23 elseif j==2
24 rx = (xrange-Center(:,1));
25 ry = (0-Center(:,2));
26 rz = (zrange-Center(:,3));
27 else
28 rx = (0-Center(:,1));
29 ry = (yrange-Center(:,2));
30 rz = (zrange-Center(:,3));
31 end
32
33 for i=1:length(Center)
34 if j == 1
35 %xy
36 Rx = repmat(rx(i,:)',1,steps);
37 Ry = repmat(ry(i,:),steps,1);
38 Rz = repmat(rz(i),steps,steps);
39 r = sqrt(Rx.^2+Ry.^2+Rz.^2);
40 surfside = find(rz(i,:)>=xsurf);
41 k = zeros(steps,steps);
42 k(:,:) = k0;
43
44 if Reflect
45 k(surfside,:) = kR;
46 end
47
48 g = exp(1i.*k.*r)./(4*pi*r);
49 G1 = (1+1i./(k.*r)-1./(k.*r).^2);
50 G2 = (1+3i./(k.*r)-3./(k.*r).^2);
51
52 RR = Rx.*Rx;
53 Gxx = (G1-(RR./r.^2).*G2).*g;
54 RR = Ry.*Rx;
55 Gxy = (-(RR./r.^2).*G2).*g;
56 RR = Rz.*Rx;
57 Gxz = (-(RR./r.^2).*G2).*g;
58 Exyx = Exyx + 1i.*w.*mu.*...
59 (Gxx.*J(i,1) + Gxy.*J(i,2) + Gxz.*J(i,3))*Area(i);
60
61 RR = Ry.*Rx;
62 Gyx = (-(RR./r.^2).*G2).*g;
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63 RR = Ry.*Ry;
64 Gyy = (G1-(RR./r.^2).*G2).*g;
65 RR = Ry.*Rz;
66 Gyz = (-(RR./r.^2).*G2).*g;
67 Exyy = Exyy + 1i.*w.*mu.*...
68 (Gyx.*J(i,1) + Gyy.*J(i,2) + Gyz.*J(i,3))*Area(i);
69
70 RR = Rz.*Rx;
71 Gzx = (-(RR./r.^2).*G2).*g;
72 RR = Rz.*Ry;
73 Gzy = (-(RR./r.^2).*G2).*g;
74 RR = Rz.*Rz;
75 Gzz = (G1-(RR./r.^2).*G2).*g;
76 Exyz = Exyz + 1i.*w.*mu.*...
77 (Gzx.*J(i,1) + Gzy.*J(i,2) + Gzz.*J(i,3))*Area(i);
78
79 elseif j==2
80 %xz
81 Rx = repmat(rx(i,:)',1,steps);
82 Ry = repmat(ry(i,:),steps,steps);
83 Rz = repmat(rz(i,:),steps,1);
84 r = sqrt(Rx.^2+Ry.^2+Rz.^2);
85 surfside = find(rz(i,:)>=xsurf);
86 k = zeros(steps,steps);
87 k(:,:) = k0;
88
89 if Reflect
90 k(surfside,:) = kR;
91 end
92
93 g = exp(1i.*k.*r)./(4*pi*r);
94 G1 = (1+1i./(k.*r)-1./(k.*r).^2);
95 G2 = (1+3i./(k.*r)-3./(k.*r).^2);
96
97 RR = Rx.*Rx;
98 Gxx = (G1-(RR./r.^2).*G2).*g;
99 RR = Rx.*Ry;

100 Gxy = (-(RR./r.^2).*G2).*g;
101 RR = Rx.*Rz;
102 Gxz = (-(RR./r.^2).*G2).*g;
103 Exzx = Exzx + 1i.*w.*mu.*...
104 (Gxx.*J(i,1) + Gxy.*J(i,2) + Gxz.*J(i,3))*Area(i);
105
106 RR = Ry.*Rx;
107 Gyx = (-(RR./r.^2).*G2).*g;
108 RR = Ry.*Ry;
109 Gyy = (G1-(RR./r.^2).*G2).*g;
110 RR = Ry.*Rz;
111 Gyz = (-(RR./r.^2).*G2).*g;
112 Exzy = Exzy + 1i.*w.*mu.*...
113 (Gyx.*J(i,1) + Gyy.*J(i,2) + Gyz.*J(i,3))*Area(i);
114
115 RR = Rz.*Rx;
116 Gzx = (-(RR./r.^2).*G2).*g;
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117 RR = Rz.*Ry;
118 Gzy = (-(RR./r.^2).*G2).*g;
119 RR = Rz.*Rz;
120 Gzz = (G1-(RR./r.^2).*G2).*g;
121 Exzz = Exzz + 1i.*w.*mu.*...
122 (Gzx.*J(i,1) + Gzy.*J(i,2) + Gzz.*J(i,3))*Area(i);
123
124 else
125 %yz
126 Rx = repmat(rx(i,:),steps,steps);
127 Ry = repmat(ry(i,:),steps,1);
128 Rz = repmat(rz(i,:)',1,steps);
129 r = sqrt(Rx.^2+Ry.^2+Rz.^2);
130 surfside = find(rz(i,:)>=xsurf);
131 k = zeros(steps,steps);
132 k(:,:) = k0;
133
134 if Reflect
135 k(surfside,:) = kR;
136 end
137
138 g = exp(1i.*k.*r)./(4*pi*r);
139 G1 = (1+1i./(k.*r)-1./(k.*r).^2);
140 G2 = (1+3i./(k.*r)-3./(k.*r).^2);
141
142 RR = Rx.*Rx;
143 Gxx = (G1-(RR./r.^2).*G2).*g;
144 RR = Rx.*Ry;
145 Gxy = (-(RR./r.^2).*G2).*g;
146 RR = Rx.*Rz;
147 Gxz = (-(RR./r.^2).*G2).*g;
148 Eyzx = Eyzx + 1i.*w.*mu.*...
149 (Gxx.*J(i,1) + Gxy.*J(i,2) + Gxz.*J(i,3))*Area(i);
150
151 RR = Ry.*Rx;
152 Gyx = (-(RR./r.^2).*G2).*g;
153 RR = Ry.*Ry;
154 Gyy = (G1-(RR./r.^2).*G2).*g;
155 RR = Ry.*Rz;
156 Gyz = (-(RR./r.^2).*G2).*g;
157 Eyzy = Eyzy + 1i.*w.*mu.*...
158 (Gyx.*J(i,1) + Gyy.*J(i,2) + Gyz.*J(i,3))*Area(i);
159
160 RR = Rz.*Rx;
161 Gzx = (-(RR./r.^2).*G2).*g;
162 RR = Rz.*Ry;
163 Gzy = (-(RR./r.^2).*G2).*g;
164 RR = Rz.*Rz;
165 Gzz = (G1-(RR./r.^2).*G2).*g;
166 Eyzz = Eyzz + 1i.*w.*mu.*...
167 (Gzx.*J(i,1) + Gzy.*J(i,2) + Gzz.*J(i,3))*Area(i);
168 end
169 end
170 end



72 appendix c. matlab code

171 Exy = sqrt(Exyx.^2+Exyy.^2+Exyz.^2);
172 Exz = sqrt(Exzx.^2+Exzy.^2+Exzz.^2);
173 Ezy = sqrt(Eyzx.^2+Eyzy.^2+Eyzz.^2);
174 end

c.4 angular far-field

1 function [Esc] = AngularFarFieldSurf(w, mu, k, r,...
2 Center, J, steps, Area, eps2, eps1, n)
3
4 phi = pi/2;
5 theta = linspace(0, 2*pi, steps)';
6
7 under = theta>=pi/2;
8 over = theta<=3/2*pi;
9 UseTrans = logical(under.*over);

10
11 eps2=eps2*eps1;
12 k1 = k;
13 k2 = k*n;
14 kz1 = k1*cos(theta);
15 krho = k1*sin(theta);
16 krho2 = k2*sin(theta);
17 kz2 = k2*cos(theta);
18
19 refS = (kz1-kz2)./(kz1+kz2);
20 refP = eps2.*kz1-eps1.*kz2)./(eps2.*kz1+eps1.*kz2);
21 traS = 1+refS;
22 traP = 1+refP;
23
24 xH = [1, 0, 0];
25 yH = [0, 1, 0];
26 zH = [0, 0, 1];
27 %%
28 PhiH = -xH.*sin(phi)+yH.*cos(phi);
29 thetaHD = (xH.*cos(phi)+yH.*sin(phi)).*cos(theta)-zH.*sin(theta);
30
31 thetaHT = ...
32 xH.*cos(phi).*(cos(theta).*kz1.*kz2/k1^2 ...
33 -sin(theta).*kz1.*krho2/k1^2) ...
34 +yH.*sin(phi).*(cos(theta).*kz1.*kz2/k1^2 ...
35 -sin(theta).*kz1.*krho2/k1^2) ...
36 +zH.*(-sin(theta).*krho2.^2/k1^2 ...
37 +cos(theta).*kz2.*krho2/k1^2);
38
39 rHatT = ...
40 xH.*cos(phi).*(sin(theta).*kz1.*kz2/k1^2 ...
41 +cos(theta).*kz1.*krho2/k1^2) ...
42 +yH.*sin(phi).*(sin(theta).*kz1.*kz2/k1^2 ...
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43 +cos(theta).*kz1.*krho2/k1^2) ...
44 +zH.*(cos(theta).*krho2.^2/k1^2 ...
45 +sin(theta).*kz2.*krho2/k1^2);
46
47 thetaHI = zH.*krho/k1+xH.*cos(phi).*kz1/k1+yH.*sin(phi).*kz1/k1;
48
49 rHat = (xH.*cos(phi)+yH.*sin(phi)).*sin(theta)+zH.*cos(theta);
50
51 rhoH = xH.*cos(theta)+yH.*sin(theta);
52 %%
53 EscThetaD = 1:steps; EscThetaD(:) =0;
54 EscPhiD = 1:steps; EscPhiD(:) = 0;
55
56 EscThetaI = 1:steps; EscThetaI(:) =0;
57 EscPhiI = 1:steps; EscPhiI(:) = 0;
58
59 EscThetaT = 1:steps; EscThetaT(:) =0;
60 EscPhiT = 1:steps; EscPhiT(:) = 0;
61 EscrT = 1:steps; EscrT(:) = 0;
62
63 %%
64 for i=1:length(Center)
65 z = Center(i,3);
66
67 DirectGreens = (exp(1i*k*r)/(4*pi*r))...
68 .*exp(-1i*k*dot(rHat,repmat(Center(i,:),length(rHat),1),2));
69 DirectGreensTheta = DirectGreens.*thetaHD;
70 DirectGreensPhi = DirectGreens.*phiH;
71
72 DirectGreensTheta = ...
73 dot(DirectGreensTheta, repmat(J(i,:),steps,1),2);
74 DirectGreensPhi = ...
75 dot(DirectGreensPhi, repmat(J(i,:),steps,1),2);
76
77 %%
78 IDGreensBase = exp(1i*k1*r)/(4*pi*r) .*exp(-1i*krho...
79 .*dot(rhoH,repmat(Center(i,:),length(rhoH),1),2))...
80 .*exp(1i*kz1.*z);
81
82 IDGreensBaseTheta = IDGreensBase.*thetaHI;
83 IDGreensBasePhi = IDGreensBase.*phiH;
84
85 IndirectGreensPhi =...
86 dot(IDGreensBasePhi,repmat(J(i,:),steps,1),2).*refS;
87
88 IndirectGreensTheta =...
89 -refP.*dot(IDGreensBaseTheta,repmat(J(i,:),steps,1),2);
90 %%
91 TransGreensBase = kz2./kz1.*exp(1i*k2*r)/(4*pi*r)...
92 .*exp(1i*kz1.*z).*exp(-1i*krho2...
93 .*dot(rhoH,repmat(Center(i,:),length(rhoH),1),2));
94
95 TransGreensPhi = TransGreensBase .*phiH;
96 TransGreensTheta = TransGreensBase .*thetaHT;
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97 TransGreensR = TransGreensBase .*rHatT;
98
99 TransmitGreensPhi = ...

100 dot(TransGreensPhi,repmat(J(i,:),steps,1),2).*traS;
101
102 TransmitGreensTheta = traP.*eps1/eps2 ...
103 .* dot(TransGreensTheta,repmat(J(i,:),steps,1),2);
104
105 TransmitGreensR = ...
106 dot(TransGreensR,repmat(J(i,:),steps,1),2).*traP.*eps1/eps2;
107 %%
108 EscThetaD = -1i*w*mu*Area(i).*DirectGreensTheta.' ...
109 + EscThetaD;
110 EscPhiD = -1i*w*mu*Area(i).*DirectGreensPhi.' ...
111 + EscPhiD;
112
113 EscThetaI = -1i*w*mu*Area(i).*IndirectGreensTheta.' ...
114 + EscThetaI;
115 EscPhiI = -1i*w*mu*Area(i).*IndirectGreensPhi.' ...
116 + EscPhiI;
117
118 EscThetaT = -1i*w*mu*Area(i).*TransmitGreensTheta.' ...
119 + EscThetaT;
120 EscPhiT = -1i*w*mu*Area(i).*TransmitGreensPhi.' ...
121 + EscPhiT;
122 EscrT = -1i*w*mu*Area(i).*TransmitGreensR.' ...
123 + EscrT;
124 end
125
126 Esc = abs(EscPhiD+EscPhiI).^2+abs(EscThetaD+EscThetaI).^2;
127 EscT = abs(EscPhiT).^2+abs(EscThetaT).^2+abs(EscrT).^2;
128
129 Esc(UseTrans) = EscT(UseTrans);
130
131 figure(7)
132 polarplot(theta, 1/2*Esc*r^2);
133 end
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Figure D.1 – Surface currents on half-wave dipoles induced by plane wave. The
variation in current around a cross section decreases for smaller diameters.
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Figure D.2 – Examination of far-field radiation pattern for 1
2λ, λ,

3
2λ and 2λ

dipoles.
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Figure D.3 – Polar plots of the far field radiation for single dipoles diameters
of 3, 1, 0.5 and 0.1 mm in a distance of 10m. The angles vary in the zy-plane.
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