
Strategy Generation for Distributed Smart
Production Systems based on Networks of

Timed Automata

Master Thesis
Group: DEIS103F18

Supervisor: Ulrik Nyman
Computer Science

Aalborg University
22nd May 2018



DEIS103F18

SUMMARY

In recent years Industry 4.0 and smart production have been research subjects of increasing
interest. Aalborg University acquired a Modular Smart Production System made by the
company Festo in order to support the research conducted at the university. This learning
factory is used by several students, and this paper is the second of two, which takes a
computer science perspective on how to obtain strategies for good uses of such modular
factories. I many settings one would want the optimal use of such a factory, but with the
modularity the state space is increasing fast. We therefore want to challenge the approach
by investigating whether or not a near-optimal solution would have a practical use.

In this paper we present how a Uppaal Stratego model of a factory system can be used to
generate strategies, which makes the foundation of code synthesis of distributed programs.
We present how Uppaal Stratego models in general can be used to generate strategies for
distributed behaviour, as long as one follows a set of modelling principles. The principles
define the restrictions that locations and edges have, and applies those principles to the
usecase. This includes how decision making is represented in the model, which edges must
be controllable, and how hide private data from other processes. If the principles are
followed it is trivial to divide the strategies into multiple strategies, which then makes up
the foundation of the code synthesis.

The format of the strategies are presented, and parts of an abstract syntax tree (AST),
which presents the information in the strategy. We show how the AST can be reduced and
provides an implementation of it. Some ideas for reducing the AST is presented, which
might have a great impact on the size of the synthesised code. Afterwards we present the
overall structure of the PLC logic that controls the Festo system, and what parts need to
change in order to utilise the generated strategy.



Strategy Generation for Distributed Smart Production
Systems based on Networks of Timed Automata

Martin Kristjansen
Department of Computer Science

Aalborg University, Denmark
mk09@student.aau.dk

1. ABSTRACT
In this paper we present a method for generating strategies
for near-optimal uses in a distributed system. The formalism
used is networks of timed automata, and the usecase is Festo’s
Modular Production System. The tool used is Uppaal Stratego,
and we utilise its new query format to hide private informa-
tion, such that all actors in the distributed setting only have
access to the information they would in the real system. We
demonstrate how one can obtain such strategies by defining a
set of principles one’s Uppaal Stratego model must fulfil.

Author Keywords
Statistic Model Checking; Uppaal Stratego; Smart Production,
Modular Production Systems, Industry 4.0

2. INTRODUCTION
In recent years Industry 4.0 and smart production have been
research subjects of increasing interest. Aalborg University
acquired a Modular Smart Production System made by the
company Festo in order to support the research conducted
at the university[1]. This learning factory is used by several
students, and this paper is the second of two, which takes a
computer science perspective on how to obtain strategies on
good uses of such modular factories.

In this paper we present how a Uppaal Stratego model of a
factory system can be used to generate strategies, which makes
up the foundation of code synthesis of distributed programs.
We present how Uppaal Stratego models in general can be
used to generate strategies for distributed behaviour, as long
as one follows a set of modelling principles. The format
of the strategies are presented, and we present parts of an
implementation of an abstract syntax tree, which presents the
information in the strategy.

3. PROBLEM TO SOLVE
The modular smart production system that Aalborg Univer-
sity has acquired is the usecase of this paper. The system is
created by the company Festo and the system allows for an
easy changing of the setup of a production line. Since the
physical setup is easy to adapt, one needs to be able to change
the control logic quickly and easily in order to ensure a fast
start of production.

We want to support users of such modular production systems
by enabling automatic code synthesis. This synthesis is based
on the products that the user wants to produce and the config-
uration of the production line. We then formulate our problem
in this paper as:

How can one synthesise PLC logic for the Festo system, if
the synthesis is based on strategies generated by networks
of timed automata?

This question relates to the topic of our previous paper[2],
which contribution was the Uppaal Stratego models of Festo’s
modular smart production system. The relation between the
two papers is explained in more detail in section 6.

4. RELATED WORK
We and other students at Aalborg University have previously
worked with modelling the Festo system by using timed auto-
mata[3–5]. All three papers are subject to state space explo-
sion, which hinders or limits the practical usability of the
papers’ results. Other students have used virtual commission-
ing in order to define how one can better use a given factory
configuration[6]. Later, we used Uppaal Stratego in order
to mitigate the result of state space explosion. The final res-
ult of the paper was a formal model of the Festo system[2].
This model forms the foundation of the strategy generation
presented in this paper.

Uppaal Stratego[7] is a branch of the Uppaal family, which
implements statistical model checking[8, 9], and is the tool
used to define a formal model of the Festo system. The tool
is used to obtain near-optimal uses of the system, and an
advantage of the tool is that it is not as prone to state space
explosion as traditional model checking is[10]. This tool is
mostly used if a system contains uncertainties that need to
be addressed in the model[11, 12], or to model non-linear
systems[13, 14].

As part of the automation process we can include a virtual
commissioning system in order to test our PLC logic. Virtual
commissioning systems are used to make a virtual model of
the production line, plant, or similar systems, which can be
used to test the PLC logic. The purpose is to identify errors
in the logic faster and before the physical setup is used in
production[15,16]. Although the method can limit the number
of errors in production, it is usually not used by smaller or
medium sized enterprises, since making the models can be
time consuming[15–17]. Virtual models of the Festo smart
production system have already been created and used in [6],
which saves us the time it would otherwise take to create them.

PLC code synthesis and validation is not a generalised research
subject in the sense that much of the research is based on very
specific case studies[18, 19]. Generating PLC code is often
seen as a scheduling problem, where one wants the shortest
cycles. However, with that approach the lines of PLC code

1



are known but their order is not. Hence, there is no choice
between several options of PLC code, but instead it offers an
optimal use of predetermined PLC lines.

This paper sets itself apart by combining PLC synthesis with
strategies on how to utilise a network of timed automata. The
synthesis is not a scheduling problem of pre-determined PLC
lines but a method for choosing which PLC logic to use when
given a strategy and a factory configuration.

5. SELF CRITIQUE AND REFLECTION
As this paper is the second of two, we have already done a
part of the work in order to present a solution for our spe-
cified problem. The first paper has been presented and have
received some questions and constructive criticism, which we
will briefly address in this section, along with how the ques-
tions can be answered or how they affect the papers’ premises.

5.1 State Space Reduction and Exploration
State space reduction in Uppaal has been an important research
subject and several papers have been written to describe the
results. One of which is [20] where symmetry was implemen-
ted by the use of scalar sets. This made it possible to swap
a state with a bisimilar state. The advantage of scalar sets
is that it allows the user to define where symmetry appears
in the modelling. Another attempt to implement state space
reduction has been with discrete partial ordered reduction, as
described in [21]. The problem with this approach is that it
works well for un-timed systems or systems only using one
clock. When multiple clocks are used, the states cannot be
reduced in the majority of cases. The two papers are from
2003 and 2006, respectively, and were the latest papers that we
could identify, where the goal was to make the Uppaal engine
more efficient in terms of state space exploration. We have
tried to modify the model to use scalar sets, but we were not
successful. As the model has been made, the automata do not
have symmetric behaviour. The main reason being that most
automata represent a part of the Festo system, at a specific
geometric location, and it is therefore not possible to replace
one automaton with another within the system. If we were to
use scalar sets, then we would need to rethink how the model
is structured.

Other questions were related to Uppaal Stratego’s ability in
handling big models and how close a near-optimal solution is
to being optimal. The very short answer to both questions is
that we do not have a solid answer. Most papers, which use
Uppaal Stragego, have models that consist of 2 or 3 processes,
while we can quite easily define a system of 30 or 40 processes.
So, we are trying to use Stratego’s strategy generation on a
larger system than others that we know of having done before
us. The second question about near-optimal solutions also
does not have a deep answer. In theory, we might be able to
calculate the proportionality of having found the best strategy
is, or how close we are. However, this calculation depends
on the model and whether or not the system has a finite state
space.

5.2 Tool of choice
Another Uppaal branch is Uppaal Cora[22], which has been
suggested to us as another tool we could have used. Uppaal

Cora is developed to find cost optimal traces in systems, and its
methods for finding them are different than those of the Uppaal
base. However, there are several reasons we chose Uppaal
Stratego. One principal reason being that we want to challenge
the approaches that try to identify optimal uses. Another more
practical one is, that Cora does not have stochastic choices as a
part. We do not have any stochastic choices in our models, but
if the models were to be used in a real and practical workflow,
then uncertainties in e.g. transport time is very likely to be
introduced. We therefore consider our models in [2] as a good
base for further research and Uppaal Stratego as the more
suitable choice compaired to Uppaal Cora.

We have also been asked why we chose to use Uppaal, which
uses networks of timed automata, and not a tool that uses a
formalism like Petri nets. The tool TimeNET[23] can be used
to model coloured stochastic Petri nets, and might also have
been a good choice for modelling the Festo system. The tool
is under active development with its latest release in August
2017. Coloured tokens would make it fairly easy to model dis-
tinctions between stages in a product’s development, and we
could model the stochastic behaviour in TimeNet. However, if
we were to state whether or not e.g. TimeNet would be a good
tool, we would need to delve deeper into how strategy genera-
tion was implemented as a feature, in order to conclude if its
form was usable for our research. Another reason to choose
a Uppaal branch over a tool that uses another formalism was
that we could base the work on our previous work and experi-
ences in [4] and [5]. However, we cannot disqualify tools like
TimeNET, since we have not spent the necessary amount of
time to make a proper evaluation of the tools’ capabilities.

6. THREE STEP PROCESS
This paper is the second of two papers wherein we investigate
the possibility of using statistical model checking in order to
obtain a good production plan for a given system configuration.
As presented in section 4 and in our previous paper[2], it is
often the goal to obtain an optimal solution through analysis of
the system. We wanted to challenge this approach in [2] with
the Festo system as the usecase, in order to help determine
if the optimal solution is the most practical method. In our
first paper we presented a Uppaal Stratego model of the Festo
system which we will reuse in this paper. The model has been
extended to support multiple kinds of products and multiple
kinds of work for the applications, and the implications of
these changes will be the subject of later sections.

In [2] we presented a three step approach, which is illustrated
in fig. 1. The contribution of our first paper is the Uppaal
Stratego models, which we will use in this paper to obtain
strategies that represent good uses of the production system.
These strategies are used to guide the synthesis of PLC code
that can be used by a physical production system. In this
paper we present the second and third parts of the process in
fig. 1, while still making a few, but important, additions to the
models.

The paper is organised in this manner: First, we present the
modification we have made to the models from our previ-
ous paper. Afterwards, we present principles that a Uppaal
Stratego model must fulfil in order to obtain strategies useful

2



Uppaal Stratego:
Modelling actual 

system

Strategy Generation:
Near-optimal use of 

configuration

Code synthesis:
Control software for 

modules

Figure 1. The three step approach of the two papers[2].

in a distributed setting. Then, we present the format of the
strategies we obtain by using Uppaal Stratego and how the
form should be understood. Thereafter, we look into the struc-
ture of the PLC logic Festo has provided with their learning
factory, while also describing what logic we can keep and
what we need to change. Finally, we specify what still needs
to be done in order to make the findings in this paper useful in
a practical setting.

7. UPPAAL MODEL MODIFICATIONS
The model we presented in our previous paper was not yet
in a state where it was fully usable. We have made some
modifications, and in this section we will describe the most
important ones and their influence on the system.

The previous five templates[2] have all been updated in one
way or another. They are placed in appendix A and are figs. 4
to 8.

7.1 Multiple products and works
The Uppaal model has been modified so it can handle multiple
types of work and several kinds of products. The controller can
non-deterministically choose any recipe as long the product
still is in demand. We have also improved on how we keep
track of which pallet has which recipe, since we simply used a
boolean value in the old model. Previously, a pallet had either
an active product or not, compared to now, where we need to
bind a recipe’s id to each pallet that has an item.

The concept of multiple works was simpler to implement,
since we only changed the global array works_id from one
to two dimensions. This array keeps track of which work ids a
module can conduct and is represented with boolean values.
Then, if the module with id 4 wants to check if it can conduct
the work with id 2, it simply checks works_id[4][2], which
will be true if the module is able to perform that specific work.

7.2 Channels and Started products
We have added a new channel complete, which is used by the
controller automaton and all module automata. A lacking
aspect in the old Uppaal model was what the controller would
do, if there were no more items to produce. The old model did
not define a limit on the number of items to produce, which
made it easier to generate a strategy for the desired number
of items. However, the strategy could initialise more products
than were needed. Let us say we have two pallets in the system
and we want to produce a single product. In the real Festo
system we would make an order of a single product, which
would result in a single product. In the Uppaal model both
pallets could start producing a product since there were no
guards to hinder the initialisation of a new item. Hence, both
pallets could have started an item, even if only a single product

is requested. The strategy, therefore, allowed for products to
be started but not finished, which did not represent the real
world and also introduced waste of resources.

Part of the solution to this problem was to add three elements:
A new channel and two new counter arrays. The new chan-
nel is called complete and is used if the controller cannot
start a new product on the requesting module. The channel
is used in the transition between req_incoming and idle in
the template shown in fig. 4. All the counters are shown in
listing 1, where the new ones are added in order to solve the
problem of starting more products than necessary. started
and MAX_COUNT keep track of the number of started products
and finished products, respectively. The guards for the two
outgoing transitions in req_incoming make use of both coun-
ters, while the query generates a strategy where count equals
MAX_COUNT.

1 int count[RECIPES] = {0, 0};

2 int started[RECIPES] = {0, 0};

3 int MAX_COUNT[RECIPES] = {1, 1};

Listing 1. All products counters defined in the model.

7.3 Uncontrollable Edges
As we are using Uppaal Stratego, one can specify if edges in
the model are controllable or not. When we generate strategies,
we generate choices of which actions to take in a series of
states. However, some of the edges might be taken as an effect
of the environment or other forces that affect the system we
are trying to model. These actions are out of our control, and
will therefore not be available in a strategy. The result is that
we might not be able to say whether or not an edge ever will
be taken or when it is taken, depending on how the model is
constructed.

When we first presented our templates in the Uppaal Model,
there were no uncontrollable edges. Uncontrollable edges
had been necessary if we would have had uncertainties in e.g.
transportation time or work time, but these aspects were not
included in the design. However, all controllable edges might
appear in a synthesised strategy, and it is not all transitions
we want reflected in a strategy later on. An example is the
edge between req_pallet and read_pallet, which calls a
function as part of its update. Loading the pallet’s values is
important, but this needs to be done in any circumstance and
is therefore not important for a strategy to specify. Thus, we
change that edge to be uncontrollable.

There are several scenarios where changing an edge to be un-
controllable would not be ideal. If there are multiple outgoing
edges in a location and we want to control the choice, then
all outgoing edges of the given location must be controllable.
An example is the module template’s read_pallet location,
where we either request the controller for instructions, con-
duct work, or send the pallet further along. Another pitfall
is if the edge synchronises with other processes. If any edge
in the transition is uncontrollable, the transition as a whole
is uncontrollable. A surprising result of this is, that if even a
single receiving edge is uncontrollable the entire transition is
uncontrollable, even if the sending process’ edge is control-
lable.

3



7.4 ModuleBranching Template
One of the biggest changes is that we have added a new tem-
plate, which represents a module that branches. The reason
for us to make a new template is that the old module template
could not, in its read_pallet location, decide which path to
send the pallet along. The template made the decision in its
transport location, but the module was not fully in control
of which path to use. The tran channel is urgent, so it must
be used as soon as possible. An effect of this is that if one path
is blocked, then the other must be taken, or if both paths are
blocked, then the first free one must be taken. The module
was only in control of the decision if both paths were free.
This goes against the idea that the module can make an active
decision on which path the send the pallet along.

Figure 2. The new ModuleBranching template.

The new template is shown in fig. 2, and at first glance it
seems the locations and edges are a subset of the module
template. The behaviour of the two seems almost identical,
but the outgoing edge in read_pallet represents behaviour
not present in module. The edge specifies which path to use
and stores that choice in next, which is then used by the
tran channel later. Another important point to stress is that
a module in the Festo system either has an application on
top, which can conduct work, or it is a branching module.
So when we module a branching module, we will do so with
a ModuleBranching automata rather than with a Module
automata.

8. STRATEGY CRITERIA AND NEW QUERY FORMAT
One of the open problems we presented in our previous paper
was that we need to synthesise control software, which works
in a distributed setting. This means that the different modules
need to be able to make decisions based on the information
stored on a pallet and on information it can request from the

MES. The information can e.g. be the state of a given module;
is it working, idle, or in an error state.

As part of the previous paper, we explained how we, at the time,
did not know how to produce a strategy, which fulfilled those
restrictions. Either we obtained a global strategy where the
decision to take an action for a specific module was based on
the internal state of another module, or we would produce one
strategy for each module, which might not give a global near-
optimal strategy. However, the upcoming version of Uppaal
Stratego has a new way to generate strategies, which would
allow us to create a global strategy, where every decision is
restricted to a given set of variables and locations in the model.
The method is based on feature selection in machine learning,
where the features to use in a selection are defined by the user.
The query has the format shown in eq. (1) and an example is
shown in eq. (2).

strategy S = minE(goal) [<= bound] {statevars} − >
{pointvars} : <> S topCond

(1)

strategy S = minE(time) [<= 2000] {Process.location, k}
− > {x, y, z} : <> is_system_done()

(2)

The format contains two sets of features, which will be used
in the resulting strategy. Both sets are comma separated lists
of variables, but it is the variables in statevars that are used
first to define what to base a decision on. If the variables
in statevars are not enough to make a decision, then the
variables in pointvars are used. The variables in statevars
should be discrete and not floating point, since a vector is
created for each unique combination of the variables. Hence,
using floating points would result in an explosion in initial
states. Using floats in pointvars would help in the splitting
between decisions when needed, which does not result in an
explosion of combinations.

In the example in eq. (2) there is a variable called
Process.locations, which is an alias for all locations of
all processes. Every location is interpreted as a boolean value,
which is true if the process is in that given location. We want
to limit the set of locations used to be those that show whether
or not a module is working or idle, since the concept of an
error state is not represented in the model. However, we want
to include the state in the module template, which represent
the point in time where a decision between multiple possible
transitions is made. Other variables we want the strategy to
use are those representing the information on the pallets. We
can formulate the criteria as:

• The locations that represent whether a module is working
or not, since the MES contains this information.

• The locations in the modules where different edges can be
chosen, but we do not know in advance which edge would
be optimal.

• The data written on the pallet in question, and no other
pallets’ information must be visible.

4



In short, the new query format allows us to restrict what in-
formation is accessible for a strategy. This helps us, since
whenever a transition can be taken, it can only be chosen
based on the information it can access in the physical system,
which eases the task of using the strategy as the foundation of
the code synthesis.

In fig. 5 the updated module template is shown. In order to
fulfil our criteria we need to identify the locations representing
the information we have access to. Whether or not a module
is working is represented in the working location. The be-
haviour in this location is deterministic, but whether or not
another module is conducting work can influence the decision
made. The decision made results in one of three things: Work
is conducted, the module requests the controller for instruc-
tions, or a pallet is sent along the conveyor belt. Which action
taken is represented by the location read_pallet. Also, in
order to be able to make these decisions, we need to have
access to the information written on the pallet. However, we
do not need all six pieces of the information on the pallet but
only four of them, as shown in listing 2.

1 int glo_carrier_id; // Carrier ID

2 int glo_OPos; // Order Position (in order)

3 int glo_PNo; // Position Number (in the recipe)

4 int glo_operation; // The next operation to conduct.

Listing 2. Used pallet values in the the strategies.

The variables we do not use are glo_ONo and glo_resource.
Our model only considers a single order at a time, so there is
no need to keep glo_ONo, since it would be the same value
for all pallets. The latter is the resource value, which indicates
which module should conduct work. However, this value
is the one hindering the branching of work in the currently
implemented Festo system, and we want to let any capable
module be able to conduct the work. In order to make sure it
is only the current pallet’s values that are visible we use global
values, which temporarily store the values. When a module
starts to read a pallet, a series of committed states are entered,
starting with req_pallet. The decision made can then also
be based on values stored in the global variables, which are
reset after a decision is made.

Specifically, we chose the variables in statevars to be all
read_pallet locations and the controller’s req_incoming
location. These are the locations wherein each automaton
decides which action to perform, and the model is constructed
so only a single automaton can make a decision. The decision
is then guided by the variables in pointvars, if necessary.
The variables there are all working locations and the four
global variables, which represent the values on the current
pallet.

8.1 Generalised Criteria
When we have the criteria for the strategy of our Festo system,
then we can generalise our criteria even further. The principles
we use are applicable in other systems, such that code syn-
thesis might be possible in cases much different than the Festo
system.

The first set of principles is of how to model the locations

wherein decisions are made, and these decisions must be rep-
resented in a strategy.

• All reachable states can at most have a single process that
is in a location that represents decision making in the real
system.

– The decision making locations must be committed.
– All its outgoing edges must be controllable.
– If any of the edges synchronise, all receiving edges

must be controllable too.

• All the decision making locations represent the variables in
statevars.

The second set of principles is of how to access data, which
can affect the decision making.

• A location or variable represents a value, which all other
processes have to query at specific points in time.

– The location or value is directly present in pointvars.

• A location or variable represents a value, which one or more
processes have to query at specific points in time.

– A location can set a value, which represents whether
the location is active of not, via the update specification
of all ingoing edges. The value is then altered back by
all outgoing edges.

– Whenever a process needs a value, that not all other
processes can access at all times, the values are loaded
into global variables. These global variables are then
present in pointvars.

If we take a look at statevars and pointvars for our sys-
tem, we can see that they fulfil those criteria. The variables
in statevars are all read_pallet locations and the control-
ler’s req_incoming location. They represent decisions we
want to have control over, and all their outgoing edges are
controllable, and all receiving edges are controllable.

Then pointvars consists of all working locations, since they
can be queried by all modules at any time, and the global vari-
ables of the pallet values. The pallet values are not accessible
for all modules at all times, so they are loaded when a process
enters read_pallet and is reset when leaving that location.

9. STRATEGY GENERATION AND FORMAT
As we mentioned in [2] we did not succeed in generating
strategies as a result of a bug. Thanks to the help of Aalborg
University now using an experimental version of Uppaal Strat-
ego. This version does not contain the previous bug, but it is
not available to the public yet.

As the bug has been corrected in our version of UPPAAL, we
are now able to produce strategies, where we optimise the
time usage of the production plan. In this section we present
how the strategies are retrieved from Uppaal Stratego and how
these strategies are formatted in JSON.

In reality, Uppaal Stratego is made up of several programs,
where verifyta is one of them. This program is the veri-
fying part of Uppaal, and the frontend of Uppaal calls it in

5



1 {
2 "version": <version>,
3 "type": <type>,
4 "representation": <rep>,
5 "actions": <actions>,
6 "statevars": <statevars >,
7 "pointvars": <pointvars >,
8 "locationnames": <loc_names >,
9 "regressors": <regressors >

10 }

Listing 3. Format of top level of JSON output.

order to run the verification of queries against a given model.
verifyta has a command line interface, which one can use
in order to work without the GUI. Below is an example of the
queries we ran:

./verifyta �learning-method
1 �print-strategies ./output
distributed_festo.xml distributed_festo.q

The command uses the model defined in an xml-file and ex-
ecutes the queries from the q-file against the model. The query
is formatted as described in section 8, and the complete query
is part of the zip-file that accompanies this paper. If any of
the queries obtain a strategy, then the strategy is printed to
a specified output folder. The learning strategy is a splitting
strategy, which results in rules based on binary decision trees.
However, the leaves can contain several edges that can be
taken, all associated with a weight. The greater the weight, the
better it would be to take that edge.

The output of the strategy generation is in a JSON format,
where the top level is shown in listing 3. The first three entries
are constants and therefore do not provide new information
between different strategies. actions is a map from integer to
edge, such that all controllable edges have been given unique
ids. statevars and pointvars are just two lists of the vari-
ables of the same name that we specified in the queries used
to generate the strategy. locationsnames contains all the
names of the locations in all instances in the system. Finally,
regressors contains all the rules that we need to follow, and
it will be these rules that are the basis of the code synthesis.

The entry of regressors is another JSON object, which
entries are state vectors, where each represent the specific
regressor for that state. Listing 4 shows an example of a re-
gressor, which uses several rules to determine which action to
take. The entry is a string concatenation of comma separated
integers, which are enclosed in parentheses. All the integers
represent the value of a variable in statevars, so the first in-
teger represent the first value in statevars. Hence, the entry
has the same number of integers as the number of elements
in statevars, but only a single variable is 1, since we have
constructed our model by the principles in section 8. Looking
up the state results in a new JSON object, and the important
field here is regressor. In our example the statevars is not
enough to determine which action to take, so pointvars are
used. var represents which variable in pointvars to use,

1 "(0,0,0,1,0,0,0,0,0,0,0,0)":
2 {
3 "type":"point->act->val",
4 "representation":"simpletree",
5 "minimize":0,
6 "regressor":
7 {
8 "var":2,
9 "bound":0.5,

10 "low":
11 {
12 "52":1,
13 "53":49.9476
14 },
15 "high":
16 {
17 "var":0,
18 "bound":0.5,
19 "low":
20 {
21 "52":1,
22 "53":17.8008
23 },
24 "high":
25 {
26 "52":35.2158,
27 "53":13.9321
28 }
29 }
30 }
31 }

Listing 4. Rules example.

6



and bound is the splitting value. In this example variable 0 is
glo_OPos. The comparison operator is <=, so if glo_OPos
equals 0.5 or less, the path along low is used. In that case
there are no more levels to traverse through, and we have two
actions with a weight. The first number, which is always an
integer, can be used in the map actions to determine which
edge is represented, and the second value is the weight. If the
comparison returns false, then the high path is taken, and a
new comparison would be made. This time with variable 1,
which is glo_carrier_id, and the bound would also be 0.5.
However, no matter what the result of the comparison is, the
traversal will end.

We then process the JSON format in order to obtain a useful
strategy. As the basic structure has been presented we can
begin describing how to divide it into distributed programs.
We can also use the strategy to determine the sequence in
which the products are initialised.

9.1 Product Sequence
As we have obtained a strategy, it can be used to simulate
a run of the system. This means that whenever an action
is taken, it is taken according to the rules as defined by the
strategy. We can use this to obtain the sequence in which the
products would be started, since the Festo system must know
the sequence that products are ordered, in advance.

Uppaal Stratego gives one the option to track variables and loc-
ations, such that we can get a description of how they changed
over time. In our case, we would track the array started,
which is updated every time a new product is initialised. The
query format is as shown in eq. (3), which states that we want
to track the values of a set of given variables, and the simu-
lation is run under a given strategy. The integer in the query
states the number of runs to perform. We have not implemen-
ted a parsing of such a simulation, but it is necessary if one is
to produce two or more kinds of products within a single order.
A parsing would then tell us in which sequence the products
were started in.

simulate int [bound]{< variables >} under S trategy (3)

10. DIVIDING A STRATEGY INTO MULTIPLE
STRATEGIES

In order to make sense of a strategyâĂŹs format, we need some
overall guidelines, so we are able to use it in a distributed set-
ting. It seems the main problem is that all the behaviour is
described in a single strategy, but this is actually a minor issue.
The Uppaal models are made in such a way, that all reachable
states have at most have one single module that makes a de-
cision. No two modules can be in the read_pallet location
at the same time. Therefore, an entry in regressors can at
most include actions for one module. Each regressor then
represents the entire decision tree of one module or the con-
troller. The entry representing the controller is only needed
during the simulation that obtains the order sequence and not
in the code synthesis, so it can be disregarded.

The decision trees of the regressors are solely based on in-
formation that the modules have access to. As described in
detail under the criteria in section 8, the modules have access
to the other modules’ state and the values of the pallet in ques-
tion. Therefore, we do not need to make alterations in order to
make them usable in a distributed setting, which was a serious
concern in our previous paper[2]. In order to check which
module to bind a regressor to, we use the statevars map in
the top level of the JSON and the state in which the rule is
used. The list of integers in the rule represents the value of the
statevar in the same position. As we only have locations in
statevars, the values are boolean and represent whether or
not a process is in the given location.

Let us say we had a module process called module_0, and the
first variable in statevars was module_0.read_pallet.
Then, if the first value in the state representation in a rule is 1,
then the regressor is specifying how module_0 decides which
action to take. If we had N modules in total we would end up
with N regressors in total, one for each module.

11. DEFINING AN ABSTRACT SYNTAX TREE
For implementing an Extended Backus-Naur form (EBNF) of
the JSON format we use SableCC[24], which is a compiler
compiler written in Java. We do not present the EBNF in
this paper, but the grammar is included in the zip-file that
accompanies this paper. Instead, we present parts of the gen-
erated abstract syntax tree (AST), in order to present what
information we need and how to process the information.

1 strategy =

2 [actions]:transition+ [statevars]:state+

3 [pointvars]:point* [regressors]:regressor_list+;

Listing 5. Root node of AST.

Listing 5 shows the specification of the root node, which
we chose to call strategy. It has four fields; actions,
statevars, pointvars, and regressors. All four fields
is a list of nodes, where actions and regressors must have
at least one element, while the other two can be empty. List-
ing 6 shows the nodes that specifies the rules that drive the
decision making of modules. A regressor_list node has
a state and zero or more rules. The strategy generation might
result in some states where we do not take actions, since we
never reach that state. However, the state is still shown in the
strategy, but does not have any rules associated with it.

1 regressor_list

2 = [state]:integer+ rule*;

3
4 rule

5 = {base} [action]:integer [value]:weight

6 | {splitting} [var]:integer [value]:boundd

7 [low]:rule+ [high]:rule+;

Listing 6. Regressor and rule nodes of AST.

However, if there are rules, then there is either exactly one
splitting node or one or more base nodes. base just con-
tains an action and its weight, and the node is also a leaf node
in the AST. splitting represents the splitting on a given

7



variable in pointvars with a specified bound. Other rule
nodes are then referred to by low and high, which can either
be one new splitting node or one or more base nodes.

12. REDUCING THE AST
The generated strategy has a form where only one of the
processes in the model can take an action in any given state.
There might be multiple options with different weights to
choose between, and we want to reduce those options to a
single one. The weight is insignificant, if there is only one
option to take, since the weight is used to compare options.

Listing 7 shows an example of a regressor, which can be
reduced significantly, if we purge options that do not have the
highest weight. At lines 48 and 49 the action 52 would be
chosen, and that same action would be chosen at lines 53 and
54. This results in a new situation, which also can be reduced.
The high field on line 42 refers to a splitting, where both low
and high refer to the same action. The splitting node can
be replaced with a new base node, which has 52 as its action
with weight 1.

If we apply the same kind of reduction to the low field on line
9, the result would be a new base node with the action 52
and weight 1. If we then were to rewrite the JSON in listing 7
to match that, the result is shown in listing 8. Reducing the
AST will result in simpler programs, where it is required to
make fewer boolean checks, since we only want the option,
which has the highest weight. As we are able to map the values
for actions, statevars, and pointvars, we are also able
to translate the reduced example to something useful. The
behaviour of the reduced AST is illustrated in algorithm 1, in
order to give a sense of how one can understand a rule.

1 palletValues← ReadPalletVaules ();
2 if palletValues.OPos <= 2 then
3 TransportPallet ();
4 else
5 ConductWork (palletValues.operation);
6 end

Algorithm 1: Pseudocode of the reduced regressor.

13. FLOW OF PLC LOGIC
In this section we present how the logic is structured. This
provides an understanding of the logic from a generalised
perspective, which helps us when defining how to modify the
flow in the automated code synthesis.

13.1 Tasks
Each PLC runs two programs called tasks. Each task is ex-
ecuted every 20ms, which is the time interval chosen by Festo,
but it can be changed if needed. Global variables are defined
and both tasks can access and modify these, and the variables
are not reset when termination of a task is done. Hence, one
task can change a global variable, which can affect the beha-
viour of the other task.

The first task, called VisuProgram, stores the input of the
HMI (Human Machine Interface) into the global variables.

1 "(0,0,0,1,0,0,0,0,0,0,0,1)":
2 {
3 "type":"point->act->val",
4 "representation":"simpletree",
5 "minimize":0,"regressor":
6 {
7 "var":0,
8 "bound":2,
9 "low":

10 {
11 "var":1,
12 "bound":0.5,
13 "low":
14 {
15 "var":2,
16 "bound":0.5,
17 "low":
18 {
19 "52":1,
20 "53":22.9844
21 },
22 "high":
23 {
24 "52":1,
25 "53":7.42188
26 }
27 },
28 "high":
29 {
30 "var":2,
31 "bound":0.5,
32 "low":
33 {
34 "53":3
35 },
36 "high":
37 {
38 "53":5
39 }
40 }
41 },
42 "high":
43 {
44 "var":1,
45 "bound":0.5,
46 "low":
47 {
48 "52":38.1069,
49 "53":5.93848
50 },
51 "high":
52 {
53 "52":22.4414,
54 "53":18.7471
55 }
56 }
57 }
58 }

Listing 7. Regressor which is not reduced.

8



1 "(0,0,0,1,0,0,0,0,0,0,0,1)":
2 {
3 "type":"point->act->val",
4 "representation":"simpletree",
5 "minimize":0,"regressor":
6 {
7 "var":0,
8 "bound":2,
9 "low":

10 {
11 "53":1
12 },
13 "high":
14 {
15 "52":1
16 }
17 }

Listing 8. Regressor which is reduced.

This way, a human on the factory floor can adjust the settings,
reset the system, or intervene if an error occurs.

The second task, called MAIN, is the one that controls the belt,
reads the RFID chip of pallets, and communicates with the
MES. This task is much more extensive than the first one, and
most of the synthesising will be of this task.

Since each task needs to be run every 20ms the control struc-
tures are limited compared to those of a high-level program-
ming language. The code must have terminated before the
deadline has passed, so loops and recursion are just two ex-
amples or constructs that are discouraged. The control logic in
VisuProgram is not subject to change in our code synthesis.
We have no intention of changing the end-users options for
interacting with the factory when it has started. However, we
want to change how the modules interact with the MES and
how the pallets are operated, so we will present the structure
of MAIN.

13.2 MAIN task
The main task consists of parts that we want to change, in
order to match the behaviour that the generated strategy dic-
tates. The task consists of two primary parts; declarations
and the program itself. The declarations consists of variables
that state the module’s IP address, the TCP ports used when
communicating with MES. We to not want to change any of
that information or how it is structured.

The program then is constructed out of several function blocks
as shown in fig. 3. In this example there are 8 function blocks,
each with its own declarations and flow. The AppModul func-
tion block contains information on how to use the application
that a module has on top. This function is fairly simple, since it
only conducts work, if the pallet states that the current module
is next in the sequence to conduct work.

The other function block we need to alter is
StopperWithMesh. This block is responsible for two
things; reading the pallet and requesting instructions from

Figure 3. PLC flow of a MAIN program.

MES. However, it requests instructions from MES no matter
what information is written on the pallet. Therefore, we want
to split this into two function blocks; one that can read the
pallet, and one that can request the MES. The functionality of
the latter function block will then be used by the AppModul,
since its decision making can depend on the state of other
modules.

13.3 PLC format
The editor used for the Festo implementation is CodeSys[25],
which can export and import PLC logic in a format defined
by OpenPLC[26]. OpenPLC is an industry standard in an xml
format. The format can be used to specify Structured Text,
Ladder Logic, device configuration and more.

We, therefore, suggest that the code synthesis uses this format
as the target platform, since it will be usable for the Festo
system, but the logic would be readable by any editor that
accepts OpenPLC.

9



14. CONCLUSION AND FUTURE WORK
In this paper and our previous paper, the goal was to have a
fully automated process, which took a Uppaal Stratego model
of a Festo system in order to generate a strategy and test the
code in either virtual commissioning or on the physical sys-
tem. We have not succeeded in implementing code generation.
However, not only have we defined how useful strategies can
be generated for the Festo system, but the same principles and
model criteria can be used in other systems, such that Uppaal
Stratego can be used to generate near-optimal strategies in
other distributed systems.

We have also implemented an EBNF using SableCC and have
suggested some strategy reduction principles as described in
section 12. In addition we have outlined what parts of the
PLC code we need to generate and what to reuse, and we have
identified a standardised format in which to generate the code.

We therefore consider the primary contribution of this paper
to be the principles of how to obtain a Uppaal Stratego model,
which can be used to generate strategies, that are useful in
distributed settings.

14.1 Implementing Code Generation
The end goal of our two papers was to have an automated
process, which could generate PLC logic. This is not com-
pleted, but we have defined how generated strategies can be
used for such synthesis. We therefore have the tools needed to
complete the implementation of code synthesis.

14.2 Automated Uppaal generation from Experior Mod-
els

The Uppaal Stratego model has to be manually adjusted, when
changing the setup of the system. In [6] virtual commissioning
models of the Festo system was developed, and these mod-
els can be used to automate generation of a Uppaal Stratego
specification. The specific virtual commissioning software is
Experior, and the model is saved in a zip-like structure, where
the setup is stored in clear text. It is therefore possible to use
a Experior model to generate a Uppaal Stratego file, which
represents the specific setup.

14.3 Simulating Product Orders
We also need to implement the simulation of the sequence of
products, as described in section 9.1. Without this, the PLC
logic might not be able to utilise the system when multiple
kinds of products are produced, since the sequence is part of
the generated strategy.

14.4 Fine Tuning a Model through Testing
In general the Uppaal Stratego model must be validated
through testing. The testing would primarily be of the Festo
system’s defined timing constraints, but also to validate the
correctness of the code generation itself. For this we think that
using virtual commissioning would be an ideal platform for
such fine tuning.

Acknowledgement
There are several people I would like to thank, and without
whom the thesis would not have been possible.

Marius Mikucionis and Peter Gjøl Jensen from Aalborg uni-
versity’s Computer Science department, who have shared their
knowledge of Uppaal Stratego with me. Also, Casper Schou
and Steffen Mortensen from Aalborg university’s Robotics and
Automation department, since their knowledge of the Festo
system, PLC logic, and virtual commissioning have been very
valuable.

I would also like to thank my good friends Jens Christian
Laursen and Aske Dybbro Andersen for continues proof read-
ing, and to keep challenging my research with intelligent ques-
tions. Finally, I want to thank my girlfriend Jannie for all the
support and encouragement, and our son Sebastian to help me
to put my mind of the paper from time to time.

15. REFERENCES
1. M. Nardello, O. Madsen, and C. Møller, “The smart

production laboratory: A learning factory for industry 4.0
concepts,” in Joint Proceedings of the BIR 2017 pre-BIR
Forum, Workshops and Doctoral Consortium co-located
with 16th International Conference on Perspectives in
Business Informatics Research (BIR 2017), Copenhagen,
Denmark, August 28 - 30, 2017. (B. Johansson, ed.),
vol. 1898 of CEUR Workshop Proceedings,
CEUR-WS.org, 2017.

2. M. Kristjansen, “Aiding smart production with statistical
model checking,” 2017.

3. M. Claus Jensen and A. Brandborg, “Optimizing modular
factory configurations: Using timed automata and tabu
search,” 2016.

4. M. Kristjansen, “Modelling of festo production system,”
2017.

5. M. Kristjansen, “Supporting parallel production in festo
manufacturing system,” 2017.

6. C. Blad, E. Straznickas, S. Ganeswarathas, and S. Koch,
“Virtual commisioning of a reconfigurable manufacturing
system,” 2017.

7. Aalborg University & Uppsala University, “Uppaal
stratego home,” 2015. Note: accessed the 20-12-2017.

8. C. Baier and C. Tinelli, eds., Tools and Algorithms for the
Construction and Analysis of Systems - 21st International
Conference, TACAS 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings, vol. 9035 of Lecture Notes in Computer
Science, Springer, 2015.

9. A. David, K. G. Larsen, A. Legay, M. Mikucionis, and
D. B. Poulsen, “Uppaal SMC tutorial,” STTT, vol. 17,
no. 4, pp. 397–415, 2015.

10. A. Boudjadar, A. David, J. H. Kim, K. G. Larsen,
M. Mikucionis, U. Nyman, and A. Skou, “Statistical and
exact schedulability analysis of hierarchical scheduling
systems,” Sci. Comput. Program., vol. 127, pp. 103–130,
2016.

10



11. A. B. Eriksen, C. Huang, J. Kildebogaard, H. Lahrmann,
K. G. Larsen, M. Muniz, and J. H. Taankvist, “Uppaal
stratego for intelligent traffic lightsâŃĘ,” in 12th ITS
European CongressEuropean Congress and Exhibition on
Intelligent Transport Systems and Services, ERTICO-ITS
Europe, 2017.

12. K. G. Larsen, M. Mikucionis, and J. H. Taankvist, “Safe
and optimal adaptive cruise control,” in Correct System
Design - Symposium in Honor of Ernst-Rüdiger Olderog
on the Occasion of His 60th Birthday, Oldenburg,
Germany, September 8-9, 2015. Proceedings (R. Meyer,
A. Platzer, and H. Wehrheim, eds.), vol. 9360 of Lecture
Notes in Computer Science, pp. 260–277, Springer, 2015.

13. K. G. Larsen, M. Mikucionis, M. Muñiz, J. Srba, and J. H.
Taankvist, “Online and compositional learning of
controllers with application to floor heating,” in Tools and
Algorithms for the Construction and Analysis of Systems -
22nd International Conference, TACAS 2016, Held as
Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2016, Eindhoven, The
Netherlands, April 2-8, 2016, Proceedings (M. Chechik
and J. Raskin, eds.), vol. 9636 of Lecture Notes in
Computer Science, pp. 244–259, Springer, 2016.

14. W. Ahmad and J. van de Pol, “Synthesizing
energy-optimal controllers for multiprocessor dataflow
applications with uppaal stratego,” in Leveraging
Applications of Formal Methods, Verification and
Validation: Foundational Techniques - 7th International
Symposium, ISoLA 2016, Imperial, Corfu, Greece,
October 10-14, 2016, Proceedings, Part I (T. Margaria
and B. Steffen, eds.), vol. 9952 of Lecture Notes in
Computer Science, pp. 94–113, 2016.

15. P. Hoffmann, R. Schumann, T. M. A. Maksoud, and G. C.
Premier, “Virtual commissioning of manufacturing
systems A review and new approaches for simplification,”
in European Conference on Modelling and Simulation,
ECMS 2010, Kuala Lumpur, Malaysia, June 1-4, 2010
(A. Bargiela, S. Azam-Ali, D. Crowley, and E. J. H.
Kerckhoffs, eds.), pp. 175–181, European Council for
Modeling and Simulation, 2010.

16. C. G. Lee and S. C. Park, “Survey on the virtual
commissioning of manufacturing systems,” J.
Computational Design and Engineering, vol. 1, no. 3,
pp. 213–222, 2014.

17. R. Drath, P. Weber, and N. Mauser, “An evolutionary
approach for the industrial introduction of virtual
commissioning,” in Proceedings of 13th IEEE
International Conference on Emerging Technologies and
Factory Automation, ETFA 2008, September 15-18, 2008,
Hamburg, Germany, pp. 5–8, IEEE, 2008.

18. H. Flordal, M. Fabian, K. Åkesson, and D. Spensieri,
“Automatic model generation and plc-code
implementation for interlocking policies in industrial
robot cells,” Control Engineering Practice, vol. 15,
no. 11, pp. 1416–1426, 2007.

19. M. Dahl, K. Bengtsson, P. Bergagård, M. Fabian, and
P. Falkman, “Sequence planner: Supporting integrated
virtual preparation and commissioning,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 5818–5823, 2017.

20. M. Hendriks, G. Behrmann, K. G. Larsen, P. Niebert, and
F. W. Vaandrager, “Adding symmetry reduction to
uppaal,” in Formal Modeling and Analysis of Timed
Systems: First International Workshop, FORMATS 2003,
Marseille, France, September 6-7, 2003. Revised Papers
(K. G. Larsen and P. Niebert, eds.), vol. 2791 of Lecture
Notes in Computer Science, pp. 46–59, Springer, 2003.

21. K. B. Holleufer, J. B. Rosenkilde, and M. Toft, “Discrete
partial order reduction for uppaal,” 2006.

22. Aalborg University & Uppsala University, “Uppaal cora
home,” 2014. Note: accessed the 04-05-2018.

23. Technische Universität Ilmenau, “Timenet home,” 2017.
Note: accessed the 04-05-2018.

24. ÃL’tienne Gagnon, “Sablecc home.” Note: accessed the
01-03-2018.

25. CodeSys, “Codesys home,” 2018. Note: accessed the
03-05-2018.

26. OpenPLC, “OpenPLC home.” Note: accessed the
22-03-2018.

11



APPENDIX

A. MODIFIED UPPAAL MODELS

Figure 4. The updated controller template.

Figure 5. The updated module template.

Figure 6. The updated item template.

12



Figure 7. The updated belt template.

Figure 8. The updated pallet template.

13


	Abstract
	Introduction
	Problem to Solve
	Related Work
	Self Critique and Reflection
	State Space Reduction and Exploration
	Tool of choice

	Three Step Process
	Uppaal Model Modifications
	Multiple products and works
	Channels and Started products
	Uncontrollable Edges
	ModuleBranching Template

	Strategy Criteria and New Query Format
	Generalised Criteria

	Strategy generation and format
	Product Sequence

	Dividing A strategy into multiple strategies
	Defining an Abstract Syntax Tree
	Reducing the AST
	Flow of PLC logic
	Tasks
	MAIN task
	PLC format

	Conclusion and Future Work
	Implementing Code Generation
	Automated Uppaal generation from Experior Models
	Simulating Product Orders
	Fine Tuning a Model through Testing

	REFERENCES 
	Modified Uppaal Models

