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Resume

Kraftstyring af hydrauliske cylindere benyttes i testbænke til at påføre testemner
specifikke lastkrafter, men emnet er ikke ligeså bearbejdet som eksempelvis hastigheds-
og positionsstyring. Kraftstyringen kan eksempelvis realiseres ved hjælp af en simpel
linear regulator, som kan udvides ved at implementere en ventilkompensator. Forskellige
regulatorformuleringer kan benyttes, og projektets problemformulering lyder:

"Hvordan kan en kraftregulator designes til at styre kraften i et hydraulisk servoaktuator
system, og er det muligt at forbedre kraftregulatoren ved at implementere en

ventilkompensator?"

En ulineær matematisk model formuleres for servoaktuator systemet. Modellen valideres
ved at give ventilen et stepinput i et faktisk hydraulisk servoaktuator system og
herefter benytte det målte stepinput, forsyningstryk og lastkraft som input i modellen.
Kammertryk, stempelposition og -hastighed sammenlignes for systemet og modellen, og
det konkluderes, at modellen emulerer det faktiske system tilstrækkeligt på trods af nogen
afvigelse, som konkluderes at skyldes et offset på ventilen.

Modellen lineariseres, og på baggrund af en frekvensresponsalanyse af systemet vurderes
det, at ventildynamikken bør inkluderes i den lineære model. En PI regulator designes på
baggrund af den lineære model og viser tilfredsstillende performance, når en sinusformet
kraftreference gives, dog med en gennemsnitlig fejl på 4.4 %.

En ventilkompensator designes til at udkompensere ventilforstærkningen med det formål
at anvende viden om ventilen til at bestemme en ventiludstyring ud fra et ønsket flow.
En PI regulator designes til at styre flowet ind og ud af stempelside-kammeret, og den
gennemsnitlige fejl reduceres til 1.8 %. Det understreges, at denne forbedring kan skyldes,
at flowregulatoren er designet en anelse mere aggresivt end den oprindelige PI regulator.
En væsentlig forbedring med flowregulatoren og kompensatoren ses, da forsyningstrykket
reduceres, og fejlen øges med 3 %, mens fejlen øges med 146 % med den oprindelige PI
regulator. Den bedste estimering af flowet opnås, når der kompenseres ud fra et enkelt
kammertryk fremfor begge kammertryk. Det konkluderes, at ventilsignalet kan bruges til
at styre kompensatoren, hvis ventildynamikken er tilpas hurtig relativt til systemet.

Tilsvarende regulatorperformance opnås, når den symmetriske ventil udskiftes med en
ventil, der matcher aktuatoren. Derudover opnås pænere trykgradienter, og det nødvendige
forsyningstryk reduceres med 14 %.
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Preface

This project is made by student MCE7-724 in collaboration with the company R&D A/S,
during the 7th semester at the Department of Energy Technology, Aalborg University. The
duration of the project spans from the 1st of November 2017 to the 18th of january 2018.

The preconditions for reading this report is an understanding of mechanical physics and
control theory.

Reading guide

This report is divided into chapters, sections, subsections and subsubsections marked as
follows:

First chapter: 1

First section: -.1

First subsection: -.-.1

Subsubsection: Bold

All figures and selected tables include dedicated labels and captions that provide
descriptions of each figure and selected tables. For instance, the first figure in Chapter 3
has the label 3.1. The tables that are part of the nomenclature are not labelled.

Nomenclatures describing variables used in equations will be placed after each set of
equations with a symbol, a description and a unit. The variables will also be placed on a
separate nomenclature list at the beginning of this report. Followed by the nomenclature
for variables, there will also be a list of all the abbreviations used. When an abbreviation
is first introduced in the text, it will be written in full followed by the abbreviation.

References are made according to the Harvard method and are labelled in the text as
follows: [Name, Year]. If the name was not available, a website will be referred to instead.
The references refer to the bibliography at the end of the report, where books are put with
author, title, year and if possible publisher and ISBN. Web pages are put with author,
title, URL, year and the date it was accessed during the project.

References are either placed at the end of a sentence or at the end of each paragraph.
Appendixes are presented at the end of the report and listed as A, B, C etc.

The software MATLAB®R2017b and Simulink® are used for modelling, simulation and
graphical data presentation.

A ZIP file containing MATLAB scripts, Simulink models, Datasheets, relevant literature
and experimental data is attached.
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Nomenclature

Symbol Description Unit
A Area m2

β Bulk modulus Pa
ζ damping −
Cd Discharge coefficient −
f Frequency Hz
F Force N
ki Integral gain −
kp Proportional gain −
M Mass kg
p Pressure Pa
ρ Density kg/m3

Q Flow m3/s
s Laplace operator −
uv Valve signal −
V Volume m3

ωn Natural frequency rad/s
x Displacement m

Transfer function Description
Gv(s) Valve signal to spool position
GFx(s) Valve spool position to load force
GFu(s) Valve signal to load force
Gc(s) Force error to valve signal (Valve controller)
GFq(s) Piston side flow to load force
GFqref(s) Piston side reference flow to load force
Gcq(s) Force error to reference flow (Flow controller)
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Introduction 1
The company R&D A/S designs custom test benches for testing heavy duty equipment in
industries such as wind, aerial, oil and gas among others. The purpose of the test benches
is to apply specified load forces to the test objects which is achieved using hydraulic
actuated systems. To apply desired load forces, high precision load control is required of
these hydraulic actuators.

An example of one of these test benches is the Highly Accelerated Life Time (HALT) test
bench for Lindoe Offshore Renewables Center (LORC) which is a recent project developed
by R&D A/S as seen in Figure 1.1. The test bench serves to test the life time of complete
nacelles by applying forces equivalent to those exerted on the nacelle by the wind but in a
highly accelerated time horisont as indicated by the name.

Figure 1.1. Highly Accelerated Life Time test bench at Lindoe Offshore Renewables Center.

The drive train is driven by two electrical motors, more specifically two direct drives.
Additionally a test load unit actuated by nine hydraulic actuators delivers the forces on
the main shaft usually exerted by the wind turbine blades as seen in the figure.

Different strategies are currently used at R&D A/S for controlling the servo valves of the
actuators for implementing the force control. However, investigation of when different
strategies should be applied has not been performed. Most available state of the art
consider position and velocity control, leaving force control as a less investigated subject
which will be the initial point of interest in this report.
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System Description 2
The hydraulic actuation system on the HALT test bench consists of nine hydraulic
actuators. Common for these are that they are asymmetrically constructed and controlled
by a proportional servo valve. The subject of force control strategy is therefore in this
report investigated with respect to a simple hydraulic system, consisting of a single
asymmetric actuator controlled by a proportional servo valve. Such a configuration is
often referred to as a servo actuator system, and one can be seen in Figure 2.1. The test
benches constructed by R&D A/S are built for testing heavy equipment resulting in the
load usually being very stiff and of high inertia. From this it is assumed that the load may
be modelled as a mass, spring, damper system as seen in the figure.

Figure 2.1. Hydraulic servo actuator system with a mass, spring, damper system as load.

At the test facility at Aalborg University a test bench is available meant for friction force
estimation in hydraulic cylinders. The test setup consists of two asymmetric hydraulic
actuators connected by a mass as seen in Figure 2.2. The cylinder to the right is
usually considered as the main cylinder, whereas the left cylinder is considered the load.
The pressure in the chambers of the main cylinder are controlled independently by two
proportional valves while the load cylinder pressures are controlled by a single proportional
valve. The servo actuator system desired for investigation as defined in Figure 2.1 may
thereby be constructed by controlling the load cylinder with the single servo valve as
indicated by the dashed line in Figure 2.2. Furthermore the mass and main cylinder may
represent a stiff and high inertia load as suggested. By considering this system it is possible

3



MCE7-724 2. System Description

to construct a model which may afterwards be validated by comparing it to the test system.
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Figure 2.2. Hydraulic diagram of the back-to-back cylinder test bench.

Note that a force transducer, more specifically a load cell, measures the force between the
main cylinder and the sliding mass. The measured system variables are listed in Table 2.1.
System parameters are listed in Appendix A.

Variable description
xp Piston position
ẋp Piston velocity
uv Valve signal
pA Piston side pressure
pB Rod side pressure
pS Supply pressure
Fcell Force acting from main cylinder

Table 2.1. Measured system variables.

Figure 2.3 shows a picture of the test setup with the two hydraulic actuators combined by
the sliding mass.

Figure 2.3. Back-to-back cylinder test bench at Aalborg University test facility.
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Problem Statement 3
Based upon the point of interest stated in the introduction and the system described in
the previous chapter, the problem statement is formulated as

"How may a force controller be designed for controlling the force in a
hydraulic servo actuator system, and is it possible to improve the controller

performance by employing a valve compensator?"

3.1 Problem Solution Strategy

To answer the problem statement the following solution strategy is developed:

1. Formulate a mathematical model describing the dynamics of the hydraulic servo
actuator system.

• Derive a model describing the actuator and the valve.
• Validate the model by comparing it to the test system so that the model sufficiently

depicts the system behaviour.
• Linearise the model so that linear control theory may be applied.
• Verify that the linear model behaviour depicts the nonlinear model to an acceptable

degree.

2. Design different force controllers to the system.

• Formulate the linear model in the Laplace domain and derive a transfer function for
the piston force system so a frequency analysis may be conducted.

• Design a force controller based on the analysis of the linear model and investigate
its performance.

• Implement a valve compensator and investigate the impact it has on the control.
• Investigate how different formulation of the valve compensator influence the

controller performance.
• Investigate the controller performance when using a valve matched to the cylinder.

3. Discussion of the performance of the derived force controllers and general considerations
concerning the force controllers.

• Discussion of when different force controllers should be employed.
• General considerations about the designed force controllers.

5





Modelling 4
In this chapter a non linear system model is developed. To simplify system analysis a
reduced order model is derived. Finally the reduced order model is linearised.

4.1 Nonlinear Model

The system with the asymmetric cylinder controlled with a proportional servo valve is seen
in Figure 4.1. As seen in the figure the sliding mass has been included in the system. As
the force transducer is placed between the main cylinder and the sliding mass it will be
possible to validate the model. Due to uncertainty of the load characteristics the external
force acting on the cylinder Fext is kept as an input. By this it is possible to adjust the
force in the model since it will be a system input rather than a part of the system. Note
that the notation used in the setup described in Chapter 2 is retained. The piston position
will thereby be zero as the piston is in the middle position and become positive as it moves
to the left as indicated by the figure. This makes possible for an easy comparison with
logged and normalised data from the laboratory setup.

pA
pB

pTpS

uv

QA QB

xv

xp

+-

AA

D

AB

dQle

FextM Ms

Figure 4.1. Diagram of the servo actuator system with system variables defined.
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MCE7-724 4. Modelling

4.1.1 Hydraulic Model

A model of the system is now formulated in the time domain. The model is developed
from a control volume approach where multiple fluid parameters, such as pressure, density,
stiffness and temperature, are said to be equal in some defined volumes. This modelling
approach is often refered to as lumped parameter modelling. There are two control volumes
in the system, one for each cylinder chamber. The valve is installed close to the cylinder
and it is assumed that the connections are rigid thereby assuming that hose volumes
are constant. The control volumes are both bounded by the piston and the valve. The
continuity equation is used to describe the control volumes and is seen in Equation 4.1.

Qin −Qout = V̇ +
V

β
ṗ (4.1)

The continuity equations formulated for the control volumes are seen in Equations 4.2 and
4.3.

QA −Qle = −ẋpAA +
VA0 − xpAA

β(pA)
ṗA (4.2)

Qle −QB = ẋpAB +
VB0 + xpAB

β(pB)
ṗB (4.3)

Flow through a valve can generally be described by the orifice equation 4.4.

Q = CdAd(xv)

√
2

ρ
∆p (4.4)

As can be seen the orifice equation contains multiple parameters related to the valve
geometry which are determined numerically. However the datasheet for the valve MOOG
D634 accounts for these valve proporties and lets the flow through the valve be described
by Equation 4.5 at constant valve spool position. [MOOG, 2009]

Q = QN

√
∆p

∆pN
(4.5)

with

QN Nominal flow 100 l/min
∆pN Nominal pressure drop 35 bar
∆p Actual pressure drop - bar

Furthermore it can be seen from the datasheet that the valve is constructed so that the flow
through the valve is proportional to the command signal for both positive and negative
valve spool position as seen in Figure 4.2.

8



4.1. Nonlinear Model Aalborg University

Figure 4.2. Flow characteristic for the servo valve MOOG D634. [MOOG, 2009]

This property allows for a rewriting of the flow expression which can then be expressed as
a function of valve spool position as seen in Equation 4.6 and further reduced to Equation
4.7.

Q = QNxv

√
∆p

∆pN
(4.6)

Q =
QN√
∆pN︸ ︷︷ ︸
kv

xv
√

∆p (4.7)

The flow through the valve is then described by equations 4.8 and 4.9. If any leakage flow
occur between the chambers it is assumed to occur in very small gaps why the flow can
be assumed to be laminar and described proportional to the pressure difference as seen in
Equation 4.10. It is assumed that no oil is leaked to the surroundings.

QA = kvAxv
√
|pS − pA|sgn(pS − pA)(xv ≥ 0)

+kvAxv
√
|pA − pT|sgn(pA − pT)(xv < 0) (4.8)

QB = kvBxv
√
|pB − pT|sgn(pB − pT)(xv ≥ 0)

+kvBxv
√
|pS − pB|sgn(pS − pB)(xv < 0) (4.9)

Qle = Cle(pA − pB) (4.10)

Note that for the valve MOOG D634 the valve constant for the chamber flows are equal,
that is kvA = kvB = kv. The reason for distinguishing between the valve constant for the
flow to the two chambers is that changing these may be desired to investigate the system
behaviour with a proportional valve with a matched valve spool to actuator ratio.

9



MCE7-724 4. Modelling

Valve Dynamic

The servo valve does not operate instantaneously due to the acceleration of the valve spool
mass in the oil. The frequency response and the step response for the valve is given in the
datasheet MOOG [2009] and can be seen in Figure 4.3 and Figure 4.4, respectively.

A.2. Hydraulic Setup

Main Valves

The necessary flow required of the main valves is calculated as the required maximum velocity
times the main cylinder piston area.

Qmain,max = Apm · ẋp,max = 29.5
L

min
(A.19)

A MOOG D633 (Moog, 2009) able to deliver the required flow is available as seen in Figure
A.19. At a step of 10 % this valve has a bandwidth of 60Hz , (Moog, 2009), as seen in
Figure A.17. During simulation, shown in Section B.2.3, it has been shown that this valve
is adequate to fulfil the requirements. It is required that each chamber pressure can be
controlled individually up to 200 bar. In the datasheet, the pressure drop across the valve at
a flow of 30 L

min is approximately 40 bar, why the supply pressure should be at least 240 bar
to ensure the ability to obtain a chamber pressure of 200 bar during 0.25 m/s.

Furthermore it is desired that the hydraulic system should be connected to a pump able to
deliver a flow of more than 91 L

min and maintain a pressure of at least 240 bar.

Figure A.17: Frequency response for
MOOG D633.

Figure A.18: Frequency response for
MOOG D634.

103

Figure 4.3. Frequency response of the
servo valve MOOG D634.
[MOOG, 2009]

Figure 4.4. Step response of the servo
valve MOOG D634. [MOOG,
2009]

The frequency response is seen to be slower for larger valve openings due to the limitation
of available power to move the valve spool. The valve is modelled by approximating the
frequency response as a second order transfer function for a valve opening of 10 %. To
compensate for the slower frequency response at larger valve openings a slew rate limiter
is implemented to limit the spool velocity to the slope seen from the step response of the
valve. The second order transfer function is found by fitting it to chosen points such as
the break away frequency from the frequency response at 10 % valve opening where it is
desired to match both the magnitude and the phase as seen in Figure 4.5.

Figure 4.5. Second order approximation of the valve spool dynamic.
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4.1. Nonlinear Model Aalborg University

The valve is controlled by a voltage input ranging between ±10V but the signal will be
normalised when modelling the valve and the DC gain is thereby 1. The dynamic of the
valve spool movement is thereby modelled as a second order transfer function from valve
signal Uv(s) to spool movement Xv(s) as seen in Equation 4.11 with a slew rate limiter
with the parameters listed in Table 4.1.

Gv(s) =
Xv(s)

Uv(s)
=

ω2
v

s2 + 2ζvωvs+ ω2
v

(4.11)

Parameter Value Unit
ωv 377 rad/s
ζv 1 -
ẋv,max ±80 1/s

Table 4.1. Valve parameters derived from datasheet.

4.1.2 Mechanical Model

To model the movement of the piston it it necessary to locate the forces acting on it. A
diagram of the cylinder illustrating the acting forces is seen in Figure 4.6.

FA

FB

xp

Fext

Ffr

M Ms

Figure 4.6. Forces acting on the piston.

The hydraulic forces are described as the product of the pressure in the chamber and
the piston area it is working on. The piston movement can be described by formulating
newtons second law for the piston as seen in Equation 4.12.

ẍpMtot = pBAB − pAAA − Ffr + Fext (4.12)

Where Mtot is the total moving mass of the system. Ffr is the friction force opposing the
movement of the piston and Fext is an external force acting on the cylinder. These forces
will be described in the following, respectively.

Friction Model

By assuming the friction in the cylinder consists of a stribeck friction, a viscous friction
and a coulomb friction the friction in the cylinder can be described by the Stribeck friction
model seen in Equation 4.13. [Andersson et al., 2005]

11



MCE7-724 4. Modelling

Ffr(ẋp) = sgn(ẋp)

(
bv|ẋp|+ Fc + (Fs − Fc)e

− |ẋp|
cs

)
(4.13)

Where

bv Viscous friction parameter
cs Stribeck parameter
Fc Constant coulomb friction
Fs Maximum static friction

The Stribeck friction model can cause numerical problems when the sliding direction
is changed due to discontinuity in the sign function at ẋp = 0. This is countered by
reformulating the Stribeck friction model by introducing a hyperbolic tangent function as
seen in Equation 4.14.

Ffr(ẋp) = tanh

(
ẋp

γ

)(
Fc + (Fs − Fc)e

− |ẋp|
cs

)
+ bvẋp (4.14)

Where the γ-value determines the slope of the transient area of the coulomb friction. The
different friction components as well as the friction model is plotted as function of piston
velocity in Figure 4.7. The friction force parameters are fitted when the model is validated
to achieve the correct magnitude of the friction force in Chapter 4.
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Figure 4.7. Modelled friction force as function of piston velocity.

Load Modelling

As described in Chapter 2, the desired load characteristics are a load of high inertia and
high stiffness. Such a load may be described as a mass, spring, damper system. As the
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4.1. Nonlinear Model Aalborg University

sliding mass has been considered as a part of the system the external force acting on it
will be described by a spring force and a damping.

Fext = −bpẋp − ksxp (4.15)

The exact magnitude of the external force is not important since the force only serves
to represent some generic test object with the described characteristics. However the
magnitude of the force should be in a region that offers resistance to the applied hydraulic
force but still allows the cylinder to travel along most of its stroke length. To approximate
the spring constant the maximum load force is calculated by Equation 4.16.

Fmax = pSAA − pTAB = 125kN (4.16)

The corresponding spring constant is found by Equation 4.17.

ks,max =
Fmax

xp,max
= 358

kN
m

(4.17)

To avoid reaching the end stops a spring constant in the region of 400kN/m will be used.

Non Linear System Model

The model of the servo actuator system is thereby constituted of three differential equations
and two algebraic equations as seen in equations 4.18 - 4.22. Additionally the valve spool
dynamic are included in the model.

ẍp =
1

Mtot

(
pBAB − pAAA − Ffr + Fext

)
(4.18)

ṗA =
β(pA)

VA0 − xpAA

(
QA − Cle(pA − pB) + ẋpAA

)
(4.19)

ṗB =
β(pB)

VB0 + xpAB

(
Cle(pA − pB)−QB − ẋpAB

)
(4.20)

QA = kvAxv
√
|pS − pA|sgn(pS − pA)(xv ≥ 0)

+kvAxv
√
|pA − pT|sgn(pA − pT)(xv < 0) (4.21)

QB = kvBxv
√
|pB − pT|sgn(pB − pT)(xv ≥ 0)

+kvBxv
√
|pS − pB|sgn(pS − pB)(xv < 0) (4.22)
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MCE7-724 4. Modelling

4.1.3 Model Structure

To simulate the system behaviour the model is implemented in Simulink. The overall
model structure is seen in Figure 4.8.

Figure 4.8. Model structure in Simulink.

Assumptions made when implementing the model:

• Constant supply and tank pressures.
• Constant bulk modulus.
• No internal leakage flow in the actuator.

The validity of these assumptions are later investigated. To investigate if the modelled
system depicts the behaviour of the actual system a validation of the model is conducted
in the following section.

4.1.4 Model Validation

This section contains a validation of the derived model to investigate if it sufficiently depicts
the behaviour of the actual system. The necessary model accuracy depends on what the
model is to be used for. For the purpose of designing a force controller the model dynamics
should depict the actual system decently, however small deviations may be corrected for
by the controller. It is not possible to measure the force exerted directly on the piston due
to the force transducer being installed between the main cylinder and the sliding mass as
depicted in Figure 2.2. For this reason the sliding mass is included in the model. The part
of the system seen in Figure 2.2 that is to be validated is thereby seen in Figure 4.9.

Mm

MOOG 
D634

Xp

M Mlc

Load cylinder

Mm

MOOG 
D63 4

Xp

M

u

pS

Fcell

Mtot

MOOG 
D634

xp

Fext

uv

pB

pA

pS

Figure 4.9. Diagram of the system to be validated.
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4.1. Nonlinear Model Aalborg University

Due to the mass of the pistons and the sliding mass all being connected on the same axis
and assumed rigid the acceleration of the total moving mass Mtot are assumed uniform.
It is assumed that no leakage flow occurs in the actuator. This is considered a valid
assumption since the actuators are rather new and sealings usually are highly efficient.

The validation is carried out in the following way. As seen in the figure the system
takes three inputs being the valve signal, supply pressure and applied force from the main
cylinder. The valve signal is stepped by 2 % in both positive and negative spool direction
while the supply pressure is set constant and the force from the main cylinder acting on
the sliding mass is adjusted so that the mass will not reach either endstop while performing
the sequence. The valve signal, supply pressure and force are logged along with the piston
position, piston velocity, piston side chamber pressure and rod side chamber pressure.

Parameters such as cylinder dimensions, masses and areas are considered hard parameters
and thereby assumed to be fixed values and can be seen in Appendix A. Soft parameters
are values that may vary with system condition and may thereby be difficult to determine.
By comparing the behaviour of the model to the actual system behaviour soft parameters
may be approximated by carefully adapting these so that the behaviour of the modelled
system corresponds with that of the actual system. The soft parameters in the model
are the bulk modulus and the friction force parameters. When comparing the simulated
system behaviour with the actual system behaviour the soft parameters have been given
the values listed in table 4.2.

Parameter Value
β 8000 · 105 Pa
bv 100 kNs/m
Fc 300 N
Fs 700 N
γ 0.001
cs 5 · 10−3

Table 4.2. Soft parameters approximated by comparing system behaviour.

The logged valve signal, supply pressure and force are seen in Figure 4.10 and are used
as input in the model to compare the behaviour of the modelled system with that of the
actual system. The comparison of the actual system behaviour with the simulated system
behaviour is seen in Figure 4.11.
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Figure 4.10. Input to the system and model.
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Figure 4.11. Measured output from the system plotted with simulated output.
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4.2. Reduced Order Model Aalborg University

The simulated piston position and velocity show coherence with the measured however with
some deviation. The simulated velocity seem to be too slow when given a negative valve
signal while it seem to be too fast when given a positive valve signal which is confirmed
by the piston position as it is seen to travel shorter and longer than the measured, for
negative and positive valve signal respectively. This indicate that there is some deviation
in the simulated forces. As the friction force in the system is difficult to determine it is
possible that this is the source of error. It is however hard to tune the friction force to fit
the measurements better since it should then be reduced for negative valve signal while it
should be increased for positive valve signal.

The deviation in piston position and velocity could also be a result of the valve spool
having a small offset. As the valve spool moves back and forth in the valve it may not
always be in the exact neutral position even though a valve signal corresponding to the
neutral position is given. By comparing the piston position in Figure 4.11 with the valve
signal in Figure 4.10 it seems plausible that the valve spool during the measurements had
a small offset in the negative direction. This is suggested since the measurements show a
faster velocity for negative valve signal than that of the simulated while showing a slower
velocity at positive valve signal.

The simulated chamber pressures are seen to show the same tendencies as the measured
chamber pressures however with some deviation as well. The transient areas are seen to
correspond decently however with some differences in the magnitude of the pressures. In
steady state the simulated pressures are seen to have an offset. This offset is of varying
magnitude but common is that the simulated pressures reach lower steady state values
than the measured pressures.

It should be mentioned that the magnitude of the bulk modulus and friction force given
in table 4.2 are uncertain to some extent. That is because these values may be varied but
the system behaviour seen in Figure 4.11 is still obtained. Especially the viscous damping
coefficient is uncertain as the system behaviour does not change significantly while varying
the coefficient between 50 kNs/m and 200 kNs/m. To account for this the influence of
these soft parameters are investigated in Chapter 5.

Based on this validation it is concluded that the proposed model depicts the system
sufficiently as the controller will eliminate some of the deviation seen such as the steady
state error in the pressures.

4.2 Reduced Order Model

To simplify the analysis of the system a reduced order model is derived, following the
procedure as described by Hansen et al. [2016]. The simplifications and assumptions
applied in the derivation of the reduced order model and the following linear model are
here summarised:

1. No leakage flow.
2. Steady state flow conditions.
3. Stribeck and coulomb friction components neglected.
4. Chamber volumes assumed constant around the linearisation point.
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Let the cylinder area ratio be defined as Equation 4.23 and the valve flowpath ratio as
Equation 4.24.

α =
AB

AA
(4.23)

σ =
kvB

kvA
(4.24)

Using the cylinder area ratio definition it is possible to define the load force as the hydraulic
force delivered by the piston as seen in Equation 4.25. Furthermore the load pressure is
defined as the virtual pressure proportional to the load force as seen in Equation 4.26.

FL = pAAA − pBAB = AA(pA − αpB) = AApL (4.25)

pL = pA − αpB (4.26)

Using the definition of load pressure the piston acceleration can be formulated as seen in
Equation 4.27.

ẍp =
1

M

(
− pLAA − Ffr + Fext

)
(4.27)

The load pressure gradient is defined as seen in Equation 4.28. By substituting the
continuity equations formulated for the pressure gradients ṗA (4.19) and ṗB (4.20) the
load pressure gradient may be expressed more explicit as seen in Equation 4.29.

ṗL = ṗA − αṗB (4.28)

ṗL =
β

VA(xp)

(
QA +AAẋp

)
− α β

VB(xp)

(
−QB −ABẋp)

)
(4.29)

The ratio of the flow to the cylinder chambers is equal to the ratio of the piston areas
when assuming steady state flow conditions. The flow to the rod side QB may then be
expressed as

QB = αQA (4.30)

Utilising this relation the load pressure gradient may finally be formulated as
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ṗL =

(
β

VA(xp)
+ α2 β

VB(xp)

)
︸ ︷︷ ︸

CH

(QA +AAẋp) (4.31)

Now the expression for the valve flow is manipulated so that it depends on the load
pressure rather than the chamber pressures. Again utilising the steady state flow conditions
assumption the following relationship between the system pressures is derived:

QB = αQA (4.32)

kvBxv
√
pB − pT = αkvAxv

√
pS − pA (4.33)

σ2

α2
(pB − pT) = pS − pA (4.34)

From this the chamber pressures pA and pB can be expressed as functions of supply, tank
and load pressures as seen in equations 4.35 and 4.36.

pA =
α3pS + σ2pL + σ2αpT

σ2 + α3
, for xv ≥ 0 (4.35)

pB =
α2pS − α2pL + σ2pT

σ2 + α3
, for xv ≥ 0 (4.36)

Repeating this process for negative valve spool position yields the following expressions
for the chamber pressures:

pA =
σ2pL + ασ2pS + α3pT

σ2 + α3
, for xv < 0 (4.37)

pB =
σ2pS − α2pL + α2pT

σ2 + α3
, for xv < 0 (4.38)

By substituting the expression for the chamber pressure into the expression for the valve
flow for positive valve spool position yields

QA = kvAxv
√
pS − pA , for xv ≥ 0 (4.39)

QA = kvAxv

√
pS −

α3pS + σ2pL + σ2αpT

σ2 + α3
, for xv ≥ 0 (4.40)
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QA = kvAxv

√
σ2 + α3

σ2 + α3
pS −

α3pS + σ2pL + σ2αpT

σ2 + α3
, for xv ≥ 0 (4.41)

QA = kvAxv

√
σ2pS − σ2pL − σ2αpT

σ2 + α3
, for xv ≥ 0 (4.42)

QA = kvAxvσ

√
pS − pL − αpT

σ2 + α3
, for xv ≥ 0 (4.43)

Following the same procedure for negative valve spool position yields

QA = kvAxvσ

√
αpS + pL − pT

σ2 + α3
, for xv < 0 (4.44)

The reduced order model is thereby constituted by the following three expressions:

ẍp =
1

M

(
− pLAA − Ffr + Fext

)
(4.45)

ṗL = CH(QA +AAẋp) (4.46)

QA =
kvAxvσ√
σ2 + α3

{√
pS − pL − αpT , for xv ≥ 0
√
αpS + pL − pT , for xv < 0

(4.47)

The derivation of the reduced order model lead to a decrease in the system order of one.

4.3 Linear Model

To analyse the frequency response of the system the reduced order model is linearised. The
valve flow described by the orifice equation is non linear due to the square root function
and is approximated by a first order Taylor series expansion as seen in Equation 4.48.

Q̃A = QA0 +
∂QA

∂xv

∣∣∣∣∣
0

(xv − xv0) +
∂QA

∂pL

∣∣∣∣∣
0

(pL − pL0) (4.48)

Q̃A is now approximated as a Taylor series. However it is still not linear and is therefore
expressed in change variables:

Q̃A −QA0 = ∆QA =
∂QA

∂xv

∣∣∣∣∣
0

∆xv +
∂QA

∂pA

∣∣∣∣∣
0

∆pA (4.49)
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∆QA = kqx∆xv + kqp∆pL (4.50)

With the linearisation konstants

kqx =
kvAσ√
σ2 + α3

{√
pS − pL0 − αpT , for xv ≥ 0
√
αpS + pL0 − pT , for xv < 0

(4.51)

kqp =
kvAxv0σ√
σ2 + α3


−1

2
√
pS−pL0−αpT

, for xv ≥ 0

1
2
√
αpS−pL0−pT0

, for xv < 0
(4.52)

The flow QA is now linearised. The expression for the load pressure gradient is non linear
due to the change in chamber volumes with piston position. This non linearity is eliminated
by assuming the volume changes at or close to the linearisation point to be small thereby
considering the chamber volumes as constant. The expression for the piston movement is
non linear due to the Stribeck and Coulomb friction force components. The expression is
linearised by considering these components as a disturbance and neglecting them in the
system. The linear model is thereby constituted by equations 4.54, 4.53 and 4.55.

∆ẍp =
1

M

(
−∆pLAA − bv∆ẋp + Fext

)
(4.53)

∆ṗL = CH(∆QA +AAẋp) (4.54)

∆QA = kqx∆xv + kqp∆pL (4.55)

The linear model describes the change in variables from the linearisation point. Hence,
the non linear model values may be approximated by adding the change in variables to
the linearisation point values as seen in Equation 4.56.

x̃ = ∆x + x0 (4.56)

Where ∆x are the change in values in the linear model and x0 are the variable values at
the linearisation point. By this the nonlinear model values are approximated as

x̃p = ∆xp + xp (4.57)

˜̇xp = ∆ẋp + ẋp0 (4.58)

p̃L = ∆pL + pL0 (4.59)

However the linear model approximation is only valid at or close to the linearisation point.
Depending on the non linearity of the system, the error between the approximated values
and the actual values will increase as the interval ∆ is increased.
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Control Design 5
This chapter contains design and implementation of a force controller in the hydraulic
servo actuator system and an analysis of the controller performance.

5.1 Force Controller

General for hydraulic systems are that their behaviour often is non linear. Nevertheless
linear control theory is often applied in the control design of such systems, due to this being
the conventional strategy but also because it requires minimal system feedback. The most
simple control strategy is to design a simple controller, often a P or a PI controller, and
let it act on the error of the desired control variable and thereby control the input to the
system. In this case the controller would act on the error of the force and control the valve
spool position in the system accordingly as seen in Figure 5.1.
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Figure 5.1. Closed loop force control with linear controller.

Which force in the system that is to be controlled depends on the application and the
accessible measurements for the closed loop control. In the back-to-back cylinder test
bench in the laboratory the resulting force on the sliding mass is measured as described in
Chapter 2 and may be used as feedback in a control loop. However this is not a possibility
in most test benches designed by R&D A/S due to the applied forces being out of range for
most force transducers. Instead the hydraulic force delivered is estimated from pressure
measurements which is also the case for the HALT test bench described in Chapter 1. This
force is denoted the load force and defined as the force proportional to the load pressure
as seen in Equation 5.1.

FL = pLAA (5.1)

5.1.1 System Transfer Function

By assuming the initial conditions to be zero, that is ẋp(0) = xp(0) = pL(0) = 0, the linear
model may be formulated in the Laplace domain as seen in equations 5.2 - 5.4.
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Xp(s) =
1

Ms2 + bvs
(−PL(s)AA + Fext(s)) (5.2)

PL(s) =
CH

s
(QA(s) +AAsXp(s)) (5.3)

QA(s) = kqxXv(s) + kqpPL(s) (5.4)

The Laplace transformed model is seen as a block diagram in Figure 5.2. The valve
dynamic has not been included as it is assumed to be faster than the system dynamic.
Whether this is a fair assumption will be investigated in this section.

��������� ��	
���������������

���

Figure 5.2. Block diagram of the linear model.

By substituting the expression for the piston position (5.2) and the expression for the flow
(5.4) into the expression for the load pressure (5.3) yields the following expression for the
load pressure:

PL(s) =
CH(Mkqxs+ bvkqx)Xv(s) + CHAAFext(s)

Ms2 + (bv − CHMkqp)s+A2
ACH − CHbvkqp

(5.5)

By substituting this expression for the load pressure into Equation 5.1 the transfer function
for the load force system is obtained as seen in Equation 5.6.

FL(s) =
AACH(Mkqxs+ bvkqx)Xv(s) + CHA

2
AFext(s)

Ms2 + (bv − CHMkqp)s+A2
ACH − CHbvkqp

(5.6)

From the transfer function (5.6) it can be seen that the load force depends on two inputs,
which are the valve spool position Xv(s) and the external force acting on the piston
Fext(s). However only one input is permitted in transfer function analysis. By considering
the external force as a disturbance to the system it is neglected and the transfer function
from valve spool position to load force may be formulated as:
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GFx(s) =
FL(s)

Xv(s)
=

AACH(Mkqxs+ bvkqx)

Ms2 + (bv − CHMkqp)s+A2
ACH − CHbvkqp

(5.7)

The transfer function denominator has the characteristics of a second order system.
However a zero can be seen in the numerator.

By multiplying the transfer function describing the valve dynamic (4.11) with the transfer
function derived for the valve spool position to load force system (5.7) the transfer function
for the valve signal to load force system, and thereby the transfer function for the entire
system, may be expressed by Equation 5.8.

GFu(s) =
FL(s)

Uv(s)
=
Xv(s)

Uv(s)
· FL(s)

Xv(s)
=
AACHMkqxω

2
ns+AACHbvkqxω

2
n

Ms4 + k1s3 + k2s2 + k3s+ k4
(5.8)

with

k1 = (2ζMωn − CHMkqp + bv)

k2 = (2ζbvωn +A2
ACH +Mω2

n − 2ζCHMkqpωn − CHbvkqp)

k3 = (2A2
AζCHωn − 2ζCHbvkqpωn − CHMkqpω

2
n + bvω

2
n)

k4 = A2
ACHω

2
n − CHbvkqpω

2
n

(5.9)

By comparing the two transfer functions it is evidently seen that including the valve
dynamic in the system transfer function results in a more complicated transfer function.
By assuming that the valve dynamic is faster than the rest of the system it may be neglected
and a controller may be designed from the simpler valve spool position to load force system.
It is however not known if this is a fair assumption and it is therefore investigated in the
following section.

5.1.2 Frequency Response Analysis

To investigate the system behaviour a frequency analysis is conducted. As described
in Chapter 4 the linear model is only valid at or close to the linearisation point. The
linearisation point values are found by choosing a representative velocity and then calculate
the corresponding steady state values. The steady state values are calculated from the
non linear model equations by setting the gradients equal to zero. The piston position
is independent and chosen at xp = 0 m since the the piston is assumed to be working
around the middle point rather than at the end stops. As the cylinder is assumed to
move back and forth during a work cycle the piston velocity is not likely to be zero but
it is also assumed that it does move slowly why the piston velocity is expected to be low.
The initial valve spool position and load pressure are thereby calculated corresponding
to a piston velocity of ẋp = 0.1 m/s. The piston position and velocity are considered
representative for how the system is expected to be operated. The linear model is thereby
evaluated at the linearisation point given as:

x0 = [ xp0 = 0 m , xv0 = 0.17 , pL0 = −20.6 bar ] (5.10)
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The bode plot for the valve spool position to load force system, as seen in Equation 5.7, for
varying piston position linearisation points is seen in Figure 5.3 using the system values
listed in table 5.1.

Variable Value Unit
D/d/L 80/40/700 mm
VA0 1.910 l
VB0 1.471 l
Mtot 730 kg
β 8000 bar
bv 100 kNs/m

Table 5.1. System values used for plotting the bode plot.
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Figure 5.3. Bode plot for the valve spool position to load force system.

From the bode plot it can be seen that the system magnitude shows the behaviour of
a second order system with a resonance peak around the break away frequency which
increases with linearisation points moving towards the end stops. It can also be seen
that the system bandwidth increases when the linearisation point moves towards the end
stops. The phase however is seen to shift 90◦ indicating first order system behaviour. The
contribution from the zero is seen to influence the system most at linearisation points close
to the end stops.

When the model is linearised with the piston in the middle position the system is seen
to be the slowest with a bandwidth of approximately 25 Hz. From the bode plot slightly
different behaviour is observed for linearisation points of equal magnitude but with different
sign. This is concluded to be a result of the cylinder being asymmetrically constructed as
this results in different chamber volumes at piston positions of equal magnitude but with
different sign which at last results in different pressure dynamics. It thereby indicates that
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the lowest bandwidth of the system is not when the piston is in the exact middle position
but rather when it is shifted slightly to the side. The influence of this property is however
assumed to be negligible and the linearisation point for the piston position will still be
chosen in the middle position (xp0 = 0 m). To investigate if the valve dynamic influences
the system behaviour the bode plot for the valve signal to load force system, as seen in
Equation 5.8, is plotted in Figure 5.4 along with the bode plot for the valve spool position
to load force system both linearised with the piston in the middle position (xp0 = 0 m).
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Figure 5.4. Bode plot for the valve spool position to load force system and the valve signal to
load force system, respectively..

From the bode plot for the valve signal to load force system it can be seen that the gain
at low frequencies is approximately equal to that of the valve spool position to load force
system. Around the system break away frequency it can be seen that the system is slightly
more damped than the spool position to force system. Furthermore a phase shift of -270 ◦

is introduced resulting in a negative gain margin for the system and thus indicating system
instability for the closed loop system. To investigate this issue the root locus for the valve
signal to load force system is plotted in Figure 5.5.

From the root locus it is confirmed that the complex conjugated poles will be placed in
the right half plane for a gain greater than 5.5e-5 1

N and thus making the system unstable.
This gain seem to have a small magnitude. It does however seem realistic by recalling that
the gain scales the normalised valve signal ranging between -1 and 1 corresponding to the
error on the force which for the system may be in the range of kN.
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Figure 5.5. Root locus for the valve signal to load force system.

Before designing a controller to the system the accuracy of the linear model is investigated
to determine if a controller designed from the linear model may be applicable in the non
linear model.

5.1.3 Validation of Linear Model

To investigate if the derived linear model sufficiently depicts the non linear model the
response of the two models are compared for a valve signal step of 10 %. As the valve
dynamic was found to influence the system in the previous section the validation will be
of the linear model including the valve dynamic as described by transfer function 5.8. The
response of the two models is seen in Figure 5.6.
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Figure 5.6. Linear and non linear model step response for a valve signal of 10%.
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From the figure it can be seen that the response show coherence however the linear model
seems to be less damped as it rises faster and with an overshoot of approximately 35
% while the non linear model has an overshoot of approximately 20 %. Both responses
oscillate and have a settling time of approximately 60 ms. The non linear model reaches
steady state at a load force of 6.7 kN while the linear model reaches a steady state load
force of 7.4 kN resulting in a steady state error on the load force of 0.7 kN.

When linearising the model some simplifications were made so it is expected to see a linear
model response that deviates from that of the non linear model to some extent. It is not
known what exact simplification that leads to the steady state load force error. However
the linear step response is concluded to mimic that of the non linear model fairly well and
it is concluded that a force controller may be designed from the linear model.

Parameter study of soft parameters

As stated in the validation of the non linear model in Chapter 4 the friction force and
the bulk modulus are soft parameters and their exact magnitudes are uncertain. From
the validation of the model the soft parameters were given the values listed in table 4.2.
As the Coulomb and Stribeck friction components were neglected due to non linearity the
only friction force component in the linear model is the viscous damping. This leaves
the linear model with the viscous damping coefficient and the bulk modulus as the only
soft parameters which were given the values 100 kNs/m and 8000 bar, respectively. To
investigate the impact of these parameters in the system a frequency response analysis
is conducted for different damping and bulk modulus values. The bode plot for varying
bulk modulus and varying viscous damping can be seen in Figure 5.7 and Figure 5.8,
respectively.
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Figure 5.7. Bode plot for varying bulk
modulus.

Figure 5.8. Bode plot for varying system
damping.

From Figure 5.7 it is seen that at low frequencies the gain does not change when varying
the bulk modulus. Around the breakaway frequency it is seen that increasing the bulk
modulus results in a resonance peak indicating a lesser damped system. Furthermore the
phase is seen to begin lagging sooner when lowering the bulk modulus. As the resonance
peak has only slightly increased even at a bulk modulus of 12000 bar it is assumed that the
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error due to using a constant bulk modulus is small. It may be taken into consideration
when designing a controller by designing it robust rather than aggressive.

From Figure 5.8 it is seen that the system gain increases when increasing the damping
while reducing the resonance peak. By reducing the damping the gain decreases but in
return the resonance peak is seen to increase. When lowering the damping the zero in
the system transfer function is seen to contribute more as the phase starts to break away
towards a phase shift of 90◦ before being dragged down by the poles. As the magnitude
of the damping in the system is uncertain it will still be chosen as 100 kNs/m but when
designing a controller it will be taken into account by valuing robustness over performance.

5.1.4 Controller Design

The initial approach for the controller design is to design a proportional controller. The
control law for this is seen in Equation 5.11.

uv = kpFL,err (5.11)

The proportional gain may now be chosen. It could be chosen as 5.5e-5 resulting in a
marginally stable system as seen from Figure 5.5. However the system behaviour changes
with the linearisation point as seen from the system bode plot (5.4) and the system may
quickly become unstable. The step response for the closed loop system is shown in Figure
5.9 for three different proportional controllers. It is seen that a steady state error is present
for all three proportional gains. The error is reduced when increasing the proportional gain
but the response starts to oscillate more.
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Figure 5.9. Step response for the closed loop system with different proportional controllers.

It is desired to design a controller capable of operating in the entire range of piston
positions rather than a slightly faster controller only capable of operating in between
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certain points. For this reason a small proportional gain is chosen. However the steady
state error should be eliminated so that the force applied by the cylinder will equal the
reference force given. To eliminate the steady state error a PI controller is considered
thereby adding an integrator to the controller. Instead of calculating an estimated integral
gain which will most likely need to be tuned anyway the SISOtool in Matlab is employed.
The SISOtool lets the user vary the bandwidth and phase margin so that a desired P,PI
or PID controller is achieved for the linear model. From this approach a PI controller is
chosen. The controller is on the form seen in Equation 5.12 with the gains listed in Table
5.2. Back calculation anti windup is implemented to prevent integrator windup.

Gc =
kps+ ki

s
(5.12)

Gain Value
kp 6.5 · 10−6

ki 9.8 · 10−4

Table 5.2. PI controller gains.

5.1.5 Controller Performance in Non Linear Model

The controller is implemented in the non linear model and the performance is now tested
for various step input of increasing magnitude. The reason for stepping in both directions
is to investigate if the controller works in both directions as it was designed from a linear
model corresponding to positive valve position. Figure 5.10 shows the tracking performance
of the controller along with the force error and the normalised valve signal and valve spool
position.
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Figure 5.10. Step response of various magnitudes of the non linear model with the developed PI
controller.
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At steps of 20 and 40 kN the force is seen to track the reference well for both positive and
negative steps and it is concluded that the developed controller works in both directions.
At a negative step of 60 kN it can be seen that the force can not keep up with the reference.
As the valve spool position is seen to have reached its limit the valve is fully open indicating
that the force lagging the reference is a result of the time it takes to build up the pressure.

As a step input is given instantaneous it pressures the controller which is beneficial for
ensuring robust and stable controller performance. The step response is however analysed
solely to investigate the controller performance since it is rarely desired to apply forces in
steps to a test object but rather in some constantly moving pattern such as a sine wave.
The HALT test bench applies forces with a sine wave trajectory with a frequency of 0.5
Hz. The controller performance for a sinusoidal load force reference is seen in Figure 5.11.
The reference has a magnitude of 30 kN and a frequency of 1 Hz.
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Figure 5.11. Response of the non linear model with the developed PI controller following a
sinusoidal reference.

From the figure it can be seen that the force show good coherence with the reference
while good coherence is also seen between the normalised valve signal and the valve spool
position. The force is however slightly phase shifted resulting in a error on the force
varying between -1.9 and 2.2 kN with a mean error of 1.3 kN. The error is seen to oscillate
when it is around its maximum magnitude which is when the force crosses zero. The
oscillations happen when the force becomes sufficiently small and can not overcome the
Stribeck friction. This slows down the piston and the velocity is decreased which increases
the friction further. As the force again increases the friction is overcome which is why the
oscillations occur only when the force is small.

The performance of the controller designed in this chapter is used for evaluating an
extended control structure including a valve compensator designed in the following chapter.
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This chapter contains design of a valve compensator and implementation of this into the
control structure. Furthermore the performance of the compensator is evaluated.

6.1 Valve Compensator

To compensate for some of the non linear behaviour in the valve the control structure may
be extended by employing a valve compensator as illustrated in Figure 6.1. The valve has
been separated from the system since it is assumed to be cancelled out by the compensator.
Furthermore it allows for a definition of a system plant taking the piston side flow as input
and providing a force.

�������� ��	
�������������	��	�

���

Figure 6.1. Control structure including controller and compensator.

The concept of a valve compensator is to make use of knowledge of the valve behaviour to
eliminate some of the non linearity in the system. The valve signal is the only input that
is controlled in the system and as it is described by the non linear orifice equation, it is
beneficial to compensate for some of the non linear behaviour since it may yield a more
robust control structure.

The flow through the valve is described by the orifice equation as formulated in Chapter
4 Equation 4.7 and depends on the valve spool position xv, the valve constant kv and
the pressure difference across it ∆p. As the pressures in the system are measured the
pressure drop across the valve may be calculated. Using the pressure drop and the valve
constant given by the datasheet MOOG [2009] it is possible to formulate a control law for
the compensator by inverting the orifice equation formulated for the valve flow which then
calculates a valve spool position corresponding to a desired flow as formulated in Equation
6.1.

uv = QA,ref
1

kvC


1√

pS−pA
, for xv ≥ 0

1√
pA−pT

, for xv < 0
(6.1)
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If the valve is ideal the compensator valve constant kvC equals the valve constant kv and the
compensator cancels out the valve behaviour except for the valve spool dynamic. As the
valve constant is an empirically determined parameter it is however unlikely that it depicts
the valve perfectly and by distinguishing between it and the compensator valve constant
it is possible to make up for potential uncertainties affecting the flow by adjusting the
compensator valve constant. This concept is illustrated in Figure 6.2 where the control
law for the compensator has been employed.

�������� ��	
���������	�

���

Figure 6.2. Control structure including valve compensator.

From the figure it is obvious that if kvC = kv the compensator cancels out the valve gain
and the only difference between the reference flow and the actual flow is the valve spool
dynamic.

6.1.1 Load Pressure Compensating

Recall that the valve flow was expressed as a function of the load pressure when the
reduced order model was derived in section 4.2. This expression may be inverted in the
same manner as described above to form a slightly different control law for the compensator
as seen in Equation 6.2.

uv = QA,ref

√
σ2 + α3

kvCσ


1√

pS−pL−αpT
, for xv ≥ 0

1√
αpS+pL−pT

, for xv < 0
(6.2)

The main difference from the first compensator is that this compensator depends on the
load pressure and thereby depend on both the piston side chamber pressure and the rod
side chamber pressure while the first compensator depends only on the piston side chamber
pressure.

6.2 Frequency Response Analysis

As suggested above the valve gain is cancelled out by the compensator. To design a
controller to the remaining system a frequency response analysis of the system with the
piston side flow as input is conducted in the following. Whether the system should take
the reference flow or the actual flow as input depends on if the valve dynamic is included
in the system. It is not yet known if it is necessary to include the valve dynamic but it
will be investigated along with the following frequency response analysis. Figure 6.3 shows
a block diagram of the linear model with the valve flow as input. Note that the valve
dynamic is not included.
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Figure 6.3. Block diagram of the linear model with piston side chamber flow as input.

By substituting the expression for the piston position (5.2) into the expression for the load
pressure (5.3) and isolating for the load pressure it may be expressed as:

PL(s) =
CH(Ms+ bv)QA(s) + CHAAFext(s)

Ms2 + bvs+ CHA
2
A

(6.3)

From the load force definition (5.1) the load force system may be formulated as

FL(s) =
AACH(Ms+ bv)QA(s) + CHA

2
AFext(s)

Ms2 + bvs+ CHA
2
A

(6.4)

From the transfer function (6.4) it can be seen that the load force depends on two inputs,
which are the piston side flow QA(s) and the external force acting on the piston Fext(s).
However only one input is permitted in transfer function analysis. By describing the
external force Fext(s) as a disturbance in the system it is neglected and the transfer function
from piston side flow to load force may be formulated as:

GFq(s) =
FL(s)

QA(s)
=

AACH(Ms+ bv)

Ms2 + bvs+ CHA
2
A

(6.5)

The valve and valve compensator is not included in the system as the compensator is
assumed to cancel out the valve gain. The valve dynamic is however still part of the
system. By including it in the system the transfer function for the reference flow to load
force system is described as:

GFqref(s) =
FL(s)

QA,ref(s)
= Gv(s)

FL(s)

QA(s)
=

ω2
n

s2 + 2ζvωns+ ω2
n

AACH(Ms+ bv)

Ms2 + bvs+ CHA
2
A

(6.6)

The transfer function is not normalised as it is clearly seen that it yields a transfer function
on a form similar to that of the valve signal to load force system as described by Equation
5.8 with a denominator of fourth order and a zero in the numerator. The reference flow to
force system is compared to the flow to force system in the bode plot seen in Figure 6.4
using the system values listed in Table 5.1.
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Figure 6.4. Bode plot for the load force system with the flow QA and flow reference QA,ref as
input, respectively.

The bode plot for the reference flow to force system differs from the flow to force system
in the same manner as that of the valve signal to force system was found to differ from
the valve spool position to load force system. However the magnitude of the gain is
approximately 45 dB greater for the flow to force systems. Furthermore closed loop
instability is indicated for the reference flow to force system as the gain margin is negative.
The controller will therefore by designed from the reference flow to force system as
described by Equation 6.6.

6.2.1 Flow Controller Design

The flow controller Gcq is designed by closing the loop in the reference flow to force system
and using SISOtool to tune the controller. This resulted in a PI controller on the form
seen in Equation 5.12 with the gains listed in Table 6.1.

Gain Value
kp 7.3 · 10−8

ki 7.1 · 10−6

Table 6.1. PI controller gains for Gcq.

The magnitude of the gains may be evaluated by recalling that the controller takes the
error of the force as input and delivers a reference flow as output. The unit of the gains
is thereby m3/s

N and as the force error may be in the range of kN while the reference flow
may be in the range of 50 l/min which corresponds to a flow of approximately 8 · 10−4m3

s
it seems reasonable that the gains should be of small magnitude.

36



6.3. Controller Performance in Non Linear Model Aalborg University

6.3 Controller Performance in Non Linear Model

The full controller consisting of the flow controller Gcq and the compensator may now be
tested in the non linear model. First the performance of the controller is tested by assuming
ideal valve flow conditions. As mentioned in the previous section this implies that the
valve compensator cancels out the valve gain following directly from the assumption that
kvC = kv. The valve dynamic is not compensated for and thus not cancelled out but it
is assumed that it is sufficiently faster than the system and does not influence the system
significantly.

To investigate the performance of the two compensators formulated above they are
implemented in the non linear model and given a sinusoidal load force reference and their
tracking performance are seen in Figure 6.5. The compensator compensating based on the
piston side pressure and the compensator compensating based on the load pressure are
denoted compensator 1 and compensator 2, respectively.

1 1.5 2 2.5 3 3.5 4 4.5 5
-40

-20

0

20

40

Fo
rc

e 
[k

N
]

F
L,ref

F
L

 w. comp. 1

F
L

 w. comp. 2

1 1.5 2 2.5 3 3.5 4 4.5 5
Time [s]

-1

-0.5

0

0.5

1

E
rr

or
 [

kN
]

F
L,err

 w. comp. 1

F
L,err

 w. comp. 2

Figure 6.5. Comparison of the performance of compensator 1 and 2.

From the figure the force is seen to be tracking the reference well yet the error reaches
a maximum value of approximately 0.9 kN for compensator 1 and approximately 1 kN
for compensator 2. The error is seen to oscillate slightly less at low velocities using
compensator 2. The mean error are found to be 533 N for compensator 1 and 537
N for compensator 2 suggesting that the best tracking performance is achieved when
compensating using only the piston side pressure and not the load pressure. Nevertheless
the compensators are seen to have somewhat similar performance. The error is seen to
oscillate when it is around its maximum magnitude which is when the force crosses zero.
As suggested also when evaluating the force controller in Chapter 5 the oscillations happen
when the force becomes sufficiently small and can not overcome the Stribeck friction. This
slows down the piston and the velocity is decreased which increases the friction further.

37



MCE7-724 6. Compensator Design

As the force again increases the friction is overcome which is why the oscillations occur
only when the force is small.

The ability of the two compensators to estimate the flow are evaluated in Figure 6.6 where
the actual piston side flow is plotted against the reference piston side flow given by the
PI controller. Compensator 1 is seen to estimate the flow well however with a mean error
of 1.2 l/min. The sinusoidally varying error indicates that the error is primarily related
to a small phase shift which is caused by the valve dynamic. Compensator 2 is seen to
estimate the flow fairly well but as the piston velocity becomes low and oscillations occur
the error is seen to break away and reach approximately 5.5 l/min before settling. Despite
this error on the flow the desired actual flow is still achieved as the PI controller adjusts
the reference flow accordingly.
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Figure 6.6. Comparison of the flow estimation performance of compensator 1 and 2.

Even though the two compensators show similar performance in tracking the force it is
preferred to have a compensator that cancels out the valve gain as good as possible so that
the controller characteristic is primarily determined by how the PI controller is designed.
To cancel out the valve gain the valve flow estimation should be as good as possible and
as the better flow estimation is achieved with compensator 1 it is chosen as the superior
solution for the case of controlling the flow in and out of the piston side chamber.

6.3.1 Comparison of Controller Performance

To compare the performance of the full controller with the two compensators to the
controller designed in Chapter 5 their performance are plotted together in Figure 6.7.
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Figure 6.7. Comparison of the performance of compensator 1, compensator 2 and no
compensator.

When plotted together it is clear to see that the performance of the controller without
compensator is quite similar to that of the controller including a compensator. As the
mean error of the controller without compensator was found to be 1311 N while it for the
controller with compensator 1 was found to be 533 N the deviation from the reference for
the two controllers are 4.4 % and 1.7 %, respectively. The error of the controller without
compensator is thereby more than twice as large as when employing the compensator.
This issue may however be related to the design of the PI controllers rather than to the
effect of the compensation as the PI controller with the compensators may be a bit more
aggressive. This would also explain why the error on the force is oscillating more at small
force magnitudes compared to the performance of the controller without compensator. It
should be mentioned that the error has the tendency of a sine wave and that it may be
the system and not the controller that causes most of the error by phase shifting the force
slightly. This suggests that the load force is actually following the reference but with a
small phase shift.

Controller Performance when Varying Supply Pressure

As the compensator cancels out the valve gain the controller with compensator was
designed based on a linear model which in terms of linearisation point depends only on
the piston position. The controller without compensator was designed based on a linear
model that contains a linear approximation of the orifice equation and thus depends on
the linearisation point of both pressure, valve spool position and piston position.

To investigate the controller performance away from the linearisation point their
performance are compared for a reduced supply pressure. The controller without
compensator was designed based on a supply pressure of 250 bar. The controller with

39



MCE7-724 6. Compensator Design

compensator was designed independent on the pressure as it is cancelled out by the
compensator.

As the two compensators show similar performance only one of them is used for
investigating the impact of varying the supply pressure. As compensator 1 was found
to best estimate the flow it is the one used in the following analysis. The controller
performance is seen in Figure 6.8 for a supply pressure of 100 bar, a reduction of 60 %.
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Figure 6.8. Comparison of the performance of the controller with and without compensator for
a supply pressure of pS = 100 bar.

From the figure it is seen that the force is phase shifted additionally and is also no longer
a perfect sinus for the controller without compensator. This results in the error reaching
4.6 kN for piston movement in the negative direction and 8 kN for piston movement
in the positive direction. The reason for the error being larger for piston movement in
the positive direction is that the cylinder is asymmetrically constructed because a larger
pressure increase thereby is necessary on the rod side to yield the same force due to the
smaller area. The mean error is found to be 3098 N which is an increase of 136 % compared
to the error of 1311 N at full supply pressure.

The performance of the controller with the compensator is seen handle the changed
conditions well as the error remains close to unchanged with an mean error of 550 N
which is an increase in error of 3 % compared to the error at full supply pressure. This
relatively large difference in controller performance makes sense by recalling that as the
system pressures is fed back into the compensator it can compensate for the lower supply
pressure while the controller without compensator was designed at a linearisation point of
a higher supply pressure and therefore designed to handle a different situation.

It is concluded that the controller performance around the linearisation point is slightly
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improved when employing a valve compensator. This may be an improvement induced
by the compensator but it might also be related to slightly different tuning of the two PI
controllers. As the supply pressure is lowered thereby moving the working point away from
the linearisation point the controller with the compensator shows the best performance as
the mean error is only increased by 3 % compared to the controller without compensator
for which the mean error is increased by 136 %.

6.3.2 Robustness of Compensator

The above analysis is based on the assumption that the compensator cancels out the valve
gain, that is kvC = kv, and the only remaining influence from the valve is the dynamic
and a small uncertainty in pressure measurements. In practice this is probably rarely
the case and so the compensator constant kvC may be adjusted slightly so that a desired
flow is achieved. It is however uncertain how it affects the system when the compensator
constant is changed. Figure 6.9 shows the influence on the force when decreasing the
compensator constant while Figure 6.10 shows the influence on the force when increasing
the compensator constant.

From the figures it is seen that decreasing the compensator constant below 0.5kvC will
lead to an unstable system. When increasing the compensator constant the force is seen
to be phase shifted. There is however nothing that indicates instability for an increased
compensator constant.
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Figure 6.9. Effect of decreasing the compensator constant kvC for compensator 1.
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Figure 6.10. Effect of increasing the compensator constant kvC for compensator 1.

The effect of changing the compensator constant may be investigated by analysing how
it affects the gain of the full controller. By inspecting the compensator formulation in
Equation 6.2 it is seen that the compensator constant is inverse proportional to the gain
of the controller. The proportional gain of the full controller is then increased when
the compensator constant is decreased and vica versa. By inspecting Figure 6.9 and
Figure 6.10 the system behaviour is seen to correspond to this relationship. Decreasing
the compensator constant does result in a higher gain and thereby a more aggressive
controller and for a compensator constant decrease of both 20 % and 40 % the error is
actually seen to be reduced slightly. As the constant is reduced by 50 % the controller
becomes too aggressive and the system becomes unstable. As the constant is increased
an increased phase shift is seen while the magnitude of the force is seen to overshoot the
reference slightly. The phase shift and overshoot is increased as the compensator constant
is increased but even when increasing the constant 30 times there is no sign of the system
becoming unstable. This makes sense as it is equivalent to decreasing the proportional
gain of the controller thereby making it slower and more robust.

From the above it may be concluded that an estimate of the valve constant may be used
as compensator constant when designing a valve compensator since the exact value is
not important. The compensator constant should however be estimated with respect to
the formulated flow controller. If the flow controller is already so aggressive that it is
close to making the system unstable an estimate of the compensator constant should be
performed carefully as if the estimate is too low compared to the actual value it may result
in instability.
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6.3.3 Compensating with Limited Feedback

The two compensators formulated in the above as seen in Equation 6.1 and Equation
6.2 depend on knowing the valve constant and the possibility of measuring the system
pressures and the valve spool position. As concluded in the previous section the exact
value of the valve constant is not needed but an estimate will do.

Compensating without Valve Position Feedback

A system is now considered where the valve spool position can not be measured. As the
compensator was found to improve the controller performance it would still be desired to
implement it in the system.

As seen from the formulation of the compensator in Equation 6.1 the measured valve spool
position is used for determining which pressure drop should be used in the compensator as
this changes when the valve spool position changes sign. As the valve spool position can
not be measured it is suggested to instead use the valve signal uv. This was found to yield
satisfactory performance similar to the performance when using the valve spool position.
This may however be a result of using a valve with fast dynamic. Using the valve signal
as feedback to the compensator for a valve with slow spool dynamic may result in using
a wrong pressure drop in the compensator as the valve signal may switch fast but the
valve spool position takes time to switch as well. Using the valve signal as feedback to the
compensator should therefore be performed carefully with respect to the valve dynamic.

Now consider a system where neither valve spool position nor valve signal can be measured.
It is instead suggested that the force reference is fed to the compensator to determine which
pressure difference to use in the compensation. This is suggested since when the sign of
the force switches from positive to negative or vica versa the valve will presumably switch
as well as the supply pressure should be used to build up the pressure in the opposite
chamber. Then the control law for the compensator is formulated as seen in Equation 6.7
when compensating with respect to the piston side pressure and not the load pressure.

uv = QA,ref
1

kvC


1√

pS−pA
, for FL,ref ≥ 0

1√
pA−pT

, for FL,ref < 0
(6.7)

The performance of the full controller with the compensator seen in Equation 6.7 is seen
in Figure 6.11 compared to the performance of the original compensator formulation. The
only difference between the two compensators is the variable governing which pressure
drop to use for calculating the valve signal.

When the force reference is used for governing the compensator the mean error is 539
N which is only a 1 % increase compared to the error when the valve spool position is
governing the compensator. However the error is seen to oscillate more with large spikes
when the force changes from positive to negative. When the force crosses zero it switches
sign and thereby switches the pressure drop used in the compensator. As the error spike
happens just when the force crosses zero it is suspected that the switch in pressure drop
is not happening at the correct time.
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Figure 6.11. Comparison of the performance of compensator 1 with the valve spool position and
the force reference governing the compensator, respectively.

To investigate this issue the valve spool position and the normalised force is plotted along
with the switch signal that tells the compensator when to switch the pressure drops. This
is seen in Figure 6.12 where the valve spool position is governing the compensator in the
first plot and the force reference is governing the compensator in the second plot.
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Figure 6.12. Comparison of compensator behaviour when the valve spool position is governing
the control and when the force reference is governing the control, respectively.
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From the figure it is seen that when the valve spool position governs the compensator the
switch occurs exactly when the valve spool position crosses zero and changes sign. This
results in the pressure drop used in the compensator is correct at all times meaning that
as long the valve spool position is positive the pressure drop used in the compensator
is pS − pA while the moment the valve spool position switches to negative the pressure
drop used will be pA − pT. When the force reference is governing the compensator the
switch is seen to occur when the valve spool position has already changed sign and opened
approximately 10 % to the opposite side. This is due to a phase shift between the force
and the valve spool position. This results in an incorrect pressure drop being used in the
compensator for the first 80 ms after each sign switch of the valve spool position. Then
the force reference crosses zero and corrects the pressure drop in the compensator. This
delayed switch causes the spike in the error seen in Figure 6.12.

Compensating without Pressure Feedback

Now a system is considered where the valve spool position is measured but the pressures
are not. As the pressures are not measured they can not be fed to the compensator.
Instead a fixed value for the pressure drop is used in the compensator. Figure 6.13 shows
the performance of the controller and compensator when the compensator is fed various
constant supply pressures compared to the performance when the actual pressure drop
is used. When given the used load force trajectory and the actual pressure is fed to the
compensator the mean pressure in the piston side chamber is 105 bar. From the figure
it is seen that the when the compensator is given a constant pressure drop the controller
still manages to track the force reference fairly well. The oscillations in the error are seen
to increase especially for a constant pressure of 50 bar and 150 bar which is the constant
pressures used which is farthest from the actual mean pressure.
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Figure 6.13. Comparison of compensator performance when a constant pressure is used instead
of actual pressure feedback.
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Why the full controller keeps tracking the force reference even though the compensator
is using a wrong pressure drop for calculating the valve signal may be investigated by
looking at the piston side flow. Figure 6.14 shows the piston side flow for the different
compensators used in Figure 6.13 and the corresponding reference flow.
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Figure 6.14. Comparison of flow and reference flow when a constant pressure is used instead of
actual pressure feedback.

From the figure it is seen that the flow is approximately the same for all compensators. The
flow reference is however seen to change when changing the used compensator pressure.
The reason for the full controller being able to track the force reference for all the
compensators is because the PI controller changes the reference flow accordingly so that
the correct actual flow is achieved.

It is concluded that if the system in question is to maintain close to constant pressure
levels a compensator without pressure feedback may be employed. In such a scenario it
is however possible that a compensator is not needed as the valve is not to be controlled
much anyway. When dealing with a system where the pressure levels are to be varied
within a large scale it is proposed that a compensator with pressure feedback is employed
as the compensator performance is compromised when the actual pressure differs a lot
from the pressure used in the compensator. Furthermore it may increase oscillations or
discontinuities as indicated by Figure 6.13 potentially leading to instability.
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Matching Valve to Actuator
Analysis 7

In the previous chapter it was found that the valve compensator is dependent on the
pressure drop across the valve. The cylinders in the test setup are controlled by symmetrical
valves. That is valves where the flowpath areas are designed symmetrically and are thereby
equal i.e. ABT = ASA and ASB = AAT where the subscript denotes the flowpath with
S,T,A,B being supply, tank, piston side chamber and rod side chamber, respectively. Using
a symmetrical valve to control an asymmetrical cylinder will result in the pressure drop
across the two flowpaths to be of unequal magnitude as the pressure drops depend on
the flow through the valve as seen from the orifice equation in Equation 4.4. It is however
possible to construct the valves so that the pressure drop across the two flowpaths becomes
equal.

7.1 Matching Valve to Actuator Ratio

By isolating for the pressure drop in the orifice equations for the flows through the valve
the pressure drops for a positive valve spool position are found to be

∆pSA =
ρ

2

Q2
A

C2
dA

2
SA

∆pBT =
ρ

2

Q2
B

C2
dA

2
BT

(7.1)

Now recall that when assuming steady state flow conditions the rod side flow may be
expressed as QB = αQA. Substituting this into the expression for the pressure drop yields

∆pBT =
ρ

2

(αQA)2

C2
dA

2
BT

(7.2)

From Equation 7.2 it is seen that the flow path areas and the area ratio squared
distinguishes the two pressure drops. By changing the flow path area so that ABT = αASA

the pressure drops are found to be equal as

∆pBT =
ρ

2

(αQA)2

C2
d(αASA)2

=
ρ

2

Q2
A

C2
dA

2
SA

= ∆pSA (7.3)

The pressure drops across the two flowpaths are thereby found to be equal when the
relationship between the flowpath areas is ABT = αASA or similarly kvB = αkvA.
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7.2 Controller Performance using a Matched Valve

To investigate the controller performance when using a matched valve the current system
model is changed so that kvB = αkvA. This is the only thing that is changed in the system
model for performing the following analysis. Note that the valve now used in the model is
different from the valve in the test setup where kvA = kvB = kv.

As the model has been changed the derived linear model changes as well as the flowpath
ratio is changed from 1 for the symmetrical valve to σ = kvB

kvA
= 0.75 for the matched valve.

As seen from the linear model in Equations 4.53 to 4.55 the expression for the flow is the
only expression dependent on σ and since the flow was used as input when designing the
flow controller (Gcq) this controller may as well be employed in the system with the matched
valve. Compensation with respect to the piston side chamber pressure (compensator 1) is
used for estimating the valve signal. The previously used force trajectory is now used as
reference in the model and the performance is plotted along with the performance of the
original system as seen in Figure 7.1.
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Figure 7.1. Comparison of force tracking performance with an unmatched and a matched valve.

When using a matched valve the force tracking performance is seen to be approximately
equal to that of the unmatched. The mean error for the system with the unmatched valve
is as mentioned earlier 533 N while the mean error for the system with the matched valve
is 537 N. To investigate the effect of employing a matched valve on the pressure drops
across the valve they are plotted in Figure 7.2 for both systems. For the original system
using the unmatched valve the pressure drop in the A-line is seen to range between 80 -
155 bar while the pressure drop in the B-line is seen to range between 50 - 180 bar. For
the system using a matched valve the two pressure drops are seen to be approximately
equal both ranging between 70 - 160 bar.
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Figure 7.2. Comparison of pressure drop across the valve with an unmatched and a matched
valve.

The chamber pressures are plotted in Figure 7.3 to investigate how they behave when
employing the matched valve.
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Figure 7.3. Comparison of chamber pressures with an unmatched and a matched valve.

For the system with the unmatched valve the piston side pressure is seen to have a
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magnitude ranging between 90 - 120 bar while the rod side pressure is seen to be varying
more as it ranges between 75 - 200 bar. For the system with the matched valve both
chamber pressures are seen to be sinusoidal both with an amplitude of 35 bar. Using the
unmatched valve the minimum and maximum reached pressure levels are 75 and 200 bar,
respectively. using the matched valve the minimum pressure reached is 75 bar as well but
the maximum pressure reached is decreased to approximately 178 bar.

There is no indication that a superior force control is achieved when using either a matched
valve or an unmatched valve. The chamber pressure levels are however acting smoother
and the maximum pressure reached is decreased by 12 % indicating that a smaller supply
pressure is needed when using a matched valve.
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Force Control Design
Considerations 8

When designing a force controller to a system, it should be determined which force in the
system that should be controlled to achieve the desired force control. This force will often
either be the load force which is defined as the force proportional to the load pressure,
or it will be the resulting force which is the actual force applied by the cylinder. Which
force that should be chosen depends on the application and the system. The most precise
force control is achieved when controlling the resulting force as it accounts for friction
forces in the cylinder. But in order to implement closed loop control, it is necessary to
measure the resulting force which can be both expensive and even impossible at forces of
great magnitude, as force transducers capable of measuring these forces are not available.
In the test setup described in Chapter 2, both the pressures and the resulting force are
measured, and for implementing force control in the system it seems reasonable to control
the resulting force as it accounts for friction in the cylinder, and thereby yields the most
precise control. The HALT test bench described in Chapter 1 has no force transducers
for measuring the force. Instead cylinders with low friction ratings have been chosen so
that the load force is seen as a reasonable approximation of the resulting force and may
be used as feedback for the force control. In general, the most precise force control should
be achieved when using the resulting force, but using the load force will probably be the
most cost efficient solution and often yield satisfactory results anyway.

For the system described in Chapter 2, it was found that a P controller resulted in a
stationary error on the force, and satisfactory force tracking performance around the
linearisation point was achieved by implementing a PI controller. For the purpose of
controlling the force at working points at or close to the linearisation point, it may be
sufficient to implement a P or a PI controller dependent on the system.

When the working point was moved away from the linearisation point, the force was still
tracking the reference but with a notable increase in the error. To improve the controller
performance, a valve compensator was employed to cancel out the gain from the valve.
The compensator using supply, tank and piston side chamber pressures was found to
have better flow estimation compared to the compensator using supply, tank and both
chamber pressures. Based upon this it is suggested to compensate using only the pressure
in the chamber in which the flow in and out is controlled, in addition to supply and tank
pressures. It is possible to implement the compensator in a system where it is not possible
to measure the valve spool position as the valve signal may be used for governing the
compensator. This may however only be done when the valve dynamic is sufficiently fast
as otherwise a mismatch between the used pressure drop and the actual pressure drop
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will occur. The force reference may be used, but it should be performed carefully as
a phase shift may be present between the force and the valve spool position, and it is
recommended to use the force reference to govern the control only when neither the valve
signal nor the valve spool position may be measured. For systems designed for operating at
constant load forces resulting in approximately constant chamber pressures, it is concluded
that an approximate of the mean pressure in the controlled chamber may be used as
a constant pressure in the compensator. However the pressures will often be measured
anyway for calculating the load pressure for the force control, and the actual chamber
pressure may as well just be fed to the compensator. When implementing a compensator
in systems with varying chamber pressure, it is suggested that the actual system pressures
are fed to the compensator as it was found that feeding a constant supply pressure of much
different magnitude than the actual pressure to the compensator resulted in amplification of
oscillations and disturbances. It should be noted that both compensators were evaluated
using constant supply and tank pressures. These may fluctuate in an actual operating
system, and it is uncertain how this affects the performance of the two compensators.

When the system was modified by switching the symmetrical valve with a valve matched
to the cylinder, satisfactory force tracking performance was achieved using the previously
developed flow controller and the compensator using tank, supply and piston side pressure.
The force tracking performance was approximately similar to that of the system with the
symmetrical valve. No indication of a superior system design was found using either of
the two valves. However lower peak pressures and smoother pressure gradients were found
using a matched valve. It is worth noting that by employing a valve compensator the
linear model used for designing the flow controller is independent of the valve flowpath
ratio, and the designed flow controller may be employed in either system.

An aspect of force control using a compensator that has not been analysed in this report
is to determine if the flow to be controlled should always be the flow into a chamber, the
flow out of a chamber, or the flow in and out of a single chamber with the latter being
the case for the compensation designed in this report. Such considerations are referred
to as determining which metering-edge to govern the control. Controlling only the flow
into a chamber or only the flow out of a chamber is referred to as controlling the meter-
in or the meter-out, respectively, while the option used in this report is referred to as
meter-in/meter-out as it is always the flow to the piston side chamber that is controlled
independent of whether the flow is into or out of the chamber. Which metering-edge used
for governing the control may influence the controller performance due to different dynamic
for flow in and out and for flow to and from one chamber or to and from the other chamber.
Furthermore it may be related to safety concerns regarding system operation. Imagine a
vertically installed cylinder elevating a heavy load. If the flow into the rod side chamber is
now controlled, it is not guaranteed that the piston side chamber will maintain a pressure
sufficient for carrying the load, and the piston may drop and hit the end stop. In such a
scenario it would be plausible to instead control the flow of the piston side chamber. This
issue should be examined with respect to the system in question, and which metering-edge
to govern the control should be considered for the reasons outlined.
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Conclusion 9
A non linear model of the servo actuator system was derived, and the behaviour of the
modelled system was compared to the behaviour of the actual system when the valve was
given a step of 2 %. The simulated system dynamic was seen to be somewhat similar to
that of the measured, but with a steady state error on the chamber pressures resulting in
the simulated pressures being too low while the simulated piston movement was found to be
slightly too slow in the positive direction and slightly too fast in the negative direction. It
was proposed that this deviation was caused by an offset in the valve, and it was concluded
that the non linear model sufficiently depicts the actual system for the purpose of designing
and testing force controllers.

From the non linear model a linear model was derived and validated. Based on the linear
model, a frequency response analysis of the system was conducted, and it was found that
the valve dynamic should be included in the linear model when designing a force controller.
A PI controller was designed and found to have satisfactory force tracking performance
with a mean error of 1.3 kN when given a sinusoidal force reference with a frequency of
1 Hz and an amplitude of 30 kN. It was suggested that most of this error is caused by a
small phase shift between the force and the reference as the system is struggling to keep
up with the reference.

To improve the controller performance, a valve compensator was designed to cancel out the
valve gain. Superior performance was seen when compensating with respect to the piston
side chamber pressure only compared to compensating with respect to the load pressure
as it had the better flow estimation and a marginally smaller error. A flow controller
was designed based on a linear model with the reference flow as input. Using the flow
controller and the compensator, the mean error was reduced by 146 % to 533 N compared
to the original controller when given the same force reference. Using the pressures as
feedback, the full controller had close to similar performance when reducing the supply
pressure by 60 % as the mean error was seen to increase by 3 % to 550 N while the mean
error for the original controller was seen to increase by 136 % to 3098 N. With fast valve
dynamic relative to the respective system, it was found that the valve signal may be used
for governing the compensator instead of the valve spool position. It is possible to have
the force reference govern the compensator, but it should be performed carefully as it may
cause discontinuities in the system response.

When changing the symmetrical valve for a matched valve, similar force tracking
performance was achieved, and no indication of a superior force control was found using
either of the two valves. Using the matched valve did however result in smoother pressure
gradients in the cylinder chambers, and the needed supply pressure was reduced by 12 %.
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Reflection 10
Further work on this project would be to implement the developed force controllers in
the laboratory setup and investigate their performance. It would be interesting to see
the PI controller performance and compare it to the controller performance when a valve
compensator is employed. Furthermore it would be interesting to compare the performance
of the compensator when compensating with respect to the piston side chamber pressure
and the load pressure, respectively. Finally it would also be of interest to investigate the
compensator performance when the valve signal is used to govern the compensator instead
of the valve spool position.

It would be plausible to design a flow controller for controlling the valve flow to the rod side
chamber as well. Using this controller and the one developed in the report for controlling
the piston side flow, it would be possible to design a control structure that either solely
controls flow into the system or solely controls flow out of the system. Subsequently it
would be possible to investigate the characteristics of the two control approaches and
compare the controller performance when the meter-in is governing the control to the
controller performance when the meter-out is governing the control.
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System Parameters A
This Appendix contains parameter values for the system setup described in Chapter 2.

General system parameters

Variable Description Value Unit
β Bulk modulus 8000 bar
Ms Sliding mass 700 kg
Mtot Total moving mass 730 kg
pS Supply pressure 250 bar
pT tank pressure 1 bar

Table A.1. General system parameters.

Load cylinder parameters

Variable Description Value Unit
AA Piston side area 0.005 m2

AB Rod side area 0.0038 m2

α Area ratio 0.75 -
D Piston diameter 80 mm
d Rod diameter 40 mm
L Stroke length 700 mm
M Piston mass 20 kg

Table A.2. Load cylinder parameters.

Valve parameters

Variable Description Value Unit
uv Valve signal ±10 V
∆pN Nominal pressure drop 35 bar
QN Nominal flow 100 l/min
ks Gain from opening area to voltage drop 0.1 m/V
ωv Natural frequency 377 rad/s
ζv Damping 1 -
ẋv,max Slew rate limit ±80 1/s

Table A.3. MOOG D634 valve parameters.
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