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ABSTRACT 

The aim of the project is to investigate the photocatalytic and hydrophilic properties of the 

GO/TIO2 membranes. In addition, the effect of thermal reduction on the pore size of the 

membrane is explored.  

In total seven synthesis of graphene oxide with Tour’s method were done, where only 4 out of 7 

batches were useable for membrane production. The sensitivity of GO concerning the size of 

the particles was found as one of the successful patches was ruined with exfoliation process.  

A change in the behavior of the graphene oxide over time was registered, where an unsuccessful 

product turned into a usable gel after resting in a fume hood for a couple of months. It could be 

an indication GO is a dynamic material, which slowly changes its properties.  

The composition of graphene oxide gel was investigated with Elemental Analysis. The content 

of sulfur degreases from 2.3% to 0.78% due to hydrolysis of sulphates if the gel is firstly washed 

with water and left to rest for a few days before the acid wash.   

The successful GO gel was characterized with TGA, where GO’s average concentration was 

found to be 2.1%. All the most common functional groups such as carboxyl, hydroxyl and 

ketones were found in the material with FT-IT analysis.  

XRD identified a defined change from the reactant graphite into graphene oxide. A possible 

deoxidation was detected when the d-value of one of the gels decreased over few months from 

0.8504 nm to 0.8346 cm.   

Thermal reduction at 120°C was found to be occurring at a very slow pace. No signs of reduction 

on the XRD was noticed after 30-minute reduction, but first signs of conversion was seen on the 

results from 120 minute. The slow speed of reduction was also registered by analysis the 

membranes with DSA, where the polarity and the surface energy did not change within the first 

hour of reduction. The thermal reduction at 140°C on the other was registered on the XRD plots 

and in the results from DSA from 30 minutes and onwards. Thermal reduction duration at 140°C 

affected the zeta potential, where the membrane reduced for 30 minutes had higher value 

(average -25 mV) compared to 60-minute reduction (-40 mV). Varying the thermal reduction 

did not affect the pore size distribution of the membranes.  

The GO and GO/TiO2 were tested for its photocatalytic property using a standard method with 

methylene blue solution and UV-Vis. All of the experiments – UV lamp irradiated and non-

irradiated membranes - ended up decreasing the concentration of methylene blue, which was 

unexpected. The rate of the concentration change of the dye was also calculated to be very 

similar in all cases. An explanation of adsorption of methylene blue onto GO surface due to 

electrostatic interactions was proposed.  

The photocatalytic and hydrophilic property of graphene oxide was investigated by measuring 

the zeta potential with and without UV exposure. The zeta potential value was measured to be 

lower after the irradiation. DSA analysis did not registered any increase in hydrophilicity due to 

UV exposure, leaving the conclusion of GO’s photocatalytic properties unsettled.  

 



Superhydrophilicity was induced by exposure to UV light with GO/TiO2 membranes, where the 

contact angle with water decreased noticeably.  

The swelling of the GO/TiO2 membranes in aqueous was registered during the characterization. 
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1 INTRODUCTION 

About 1.2 billion people, that is a fifth of the Earth’s habitants, must deal with water scarcity 

due to the area’s natural water shortage. This deficit can be caused by several reasons: the 

climate of the place, climate change or a high density of habitants in the region. Hence, the 

demand of water cannot be met. An additional 1.6 billion people, a quarter of the world’s 

population, experience a lack of clean drinking water because of economic shortage, which 

causes the countries to not be able to build the necessary infrastructure to draw water from 

rivers or aquifers [1, 2]. Each year, thousands of people, mostly children, lose their lives due 

to preventable diseases caused by a lack of access to clean water and adequate sanitation 

[3]. Thus, the issue of water scarcity has been caused as a combination of both – natural 

inclination and human activity. 

The Earth has enough freshwater for its 7 billion habitants, but the resource is distributed 

unevenly, where most of it is mistreated and wasted. The unbalance has led to a situation 

where millions of people across the globe must spend their day searching for water, while 

people who have access to clean drinking water take it for granted and don’t use it wisely. 

The amount of water being used has been growing more than twice the rate of the 

population growth in the last century. Although, globally, water scarcity is not yet a pressing 

issue, but the number of regions which chronically lack of water is increasing at an alarming 

rate.  

The way the reserve of freshwater is being used is showing a serious lack of sustainability. 

For example, freshwater is withdrawn from aquifers at a higher rate than nature can 

recharge, mostly to be overused on privileged people, animals, lands and many more. 

Reckless behavior as such has already caused several states across the USA, areas in India 

and European countries to become or be almost water deficit [4, 5, 6]. On top of abusing 

freshwater reserves, the drawn water is frequently mistreated and ends up being polluted. 

Pollution can be caused by oil, carcasses, chemicals and fecal matter. Whatever the source, 

if the spoiled water is not dealt with, it will end up damaging people’s health.  

Water treatment is a solution to the sustainability concerns mentioned above. In general, 

there are three aims of water treatment technologies. Firstly, to produce clean drinking 

water from different sources such as rivers, lakes and seawater. Secondly, to treat 

wastewater from sewage and lastly, to develop methods for purification of industrial 

wastewater. There are numerous ways to purify water and during this project membrane 

technology is mostly focused on.   

Membrane technologies have been said to be low-energy separation processes and they can 

be applied under ambient conditions, but the membrane operation cannot be said to be 

cheap. The membranes themselves are costly and in case of reverse osmosis high operating 

pressures raise the cost even more. In addition, membranes have the tendency to decrease 
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in efficiency and need protection for continuous operation. Over the years the membrane 

separation technology has gained an important role within the subject of water treatment. 

New materials and production technologies have been used to produce new types of 

membranes suitable for a wide range of applications. There is pressure-driven 

microfiltration, ultrafiltration, nanofiltration and more, that can be used to remove 

contaminants from drinking and wastewater. Membranes have been implemented in 

drinking water treatment, wastewater treatment, water reclamation and desalination 

processes. Many novel hybrid and composite membranes with new materials have been 

reported, one of the examples being graphene oxide. An addition of new control 

technologies in the membranes against loss of efficiency have been developed, such as 

implementation of TiO2 nanoparticles, and many more exciting novelties are being 

researched into. The innovation concerning the membrane technology and integration of 

different membrane units has resulted in greatly enhanced process efficiency, reduced 

energy consumption, treatment cost and stability in long-term applications, but overall 

there is still plenty of room for improvement. 

To illustrate a recent breakthrough in the water treatment field, the development producing 

drinking water from seawater should be looked at. The Middle East is one of the areas that 

suffers under constant water stress. So far, thermal techniques have been implemented to 

distil safe drinking water from seawater, but the process is energy intensive and costly. The 

persistent development work on the reverse osmosis method has provided a cheaper 

alternative to distillation.  

The ultimate aim of the research concerning water treatment is of course to create a 

filtration device that will produce potable water from seawater or wastewater with minimal 

energy input. A material which shows great potential for membrane production is graphene 

oxide due to its large surface area, its oxygen rich functional groups making it hydrophilic, 

and graphene based structure, which can provide particle selectivity [7]. Graphene oxide 

has shown be a great material to be combined with titanium dioxide (TiO2) nanoparticles.  

TiO2 is a commonly used photocatalyst in water treatment. It has great chemical stability, 

low toxicity and cost-effectiveness. It can completely decompose organic pollutants into 

CO2 and water, and enhance a membrane’s flux, contaminant removal and fouling 

resistance [8]. Together, the two materials, could possibly create a so called self-cleaning 

membrane, which can provide great quality water and reduce the cost of operation 

noticeably.    

  

 

 



5 
 

2 THEORY 

In the theory section subjects relevant to the project goals and results are presented. In the 

first part the introduction to membranes and how they work is outlined. The second part is 

dedicated to the introduction to the main material used for membrane production during 

this project – graphene oxide. The section starts off by introducing the reactant graphite 

and graphene based compounds followed by an overview of common synthesis methods, a 

detailed description of the formation of the graphene oxide and some of its unique 

behaviors. The third part is about the thermal reduction of graphene oxide. The fourth part 

is purely dedicated to titanium dioxide (TiO2), where its characteristics and properties are 

discussed. The theory section will be finished by a section where previous work done at the 

development of the graphene oxide and titanium dioxide membrane is presented up until 

now. 
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2.1 MEMBRANES 

This part is dedicated to give a brief overview of membranes, their categorization and how 

they work addition, the recommended. In qualities for a membrane are presented and 

common weaknesses are discussed. 

2.1.1 CLASSIFICATION OF MEMBRANES 

Membranes, which are pressure-driven, can be categorized based on their pore size. There 

are four general categories: microfiltration (MF), ultrafiltration (UF), reverse osmosis (RO) 

and nanofiltration (NF). The largest pore sized membranes belong to the microfiltration 

from 5 – 0.05 µm, followed by ultrafiltration 0.1- 0.005 µm, nanofiltration 0.008-0.001 µm 

and reverse osmosis < 0.001 µm [9]. The type of particles being rejected by different pore 

sizes can be seen on Figure 2.1.1.1. Schematic diagram of the membrane filtration spectrum 

. 

 

Figure 2.1.1.1. Schematic diagram of the membrane filtration spectrum [10]. 

Microfiltration membranes are normally applied to separate the microorganisms in 
drinking water. They can be used in applications such as solid–liquid separation (milled 
flour), separation of oil/water emulsions, beverage and pharmaceuticals industries, 
biological wastewater treatment, and as pre-step to remove particles to avoid problems in 
further treatment steps. 
 
Ultrafiltration (UF) membranes involves removal of suspended solids, viruses, bacteria, and 
macromolecules. UF finds use in oil–water separation, fruit juice clarification, milk and 
whey production, purification of pharmaceuticals, potable water production, and secondary 
or tertiary wastewater reuse. 
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Nanofiltration (NF) membrane processes can remove most organic molecules, viruses and 
a range of salts. Monovalent ions can pass through the membrane, but highly charged multi 
valent salts and low molecular weight organics are rejected. In water treatment processes, 
NF membranes are used for hard water softening and synthetic dye removal.  
 
Reverse osmosis (RO) membranes are a high-pressure and energy-efficient process, which 
removes minerals and monovalent ions in water. RO has been applied in seawater 
desalination, fruit juice concentration, cheese whey concentration, ice-making, applied on 
ships to clean water and car wash water reclamation. The ranges of pressure, which need to 
be applied for different membrane separation process are shown in Table 2.1.1.1. 
 
Table 2.1.1.1 Different types of membranes and its application pressures [11].  

Classification Type Applied pressure (bar) 

Microfiltration 0.5-3 

Ultrafiltration 1-10 

Nanofiltration 7-40 

Reverse osmosis 25-100 

 

The second way to divide different membranes is the way they are constructed [12]. 

Membrane filters are usually manufactured as flat sheet stock or as hollow fibers and then 

formed into several different types of membrane modules. In general, there are four main 

types of membrane configurations: plate-and-frame (Figure 2.1.1.2 Different membrane 

modules top left), tubular (Figure 2.1.1.2 top right), spiral wound (Figure 2.1.1.2 bottom left) 

and hollow fiber (Figure 2.1.1.1a bottom right).  

 

Figure 2.1.1.2 Different membrane modules [13]. 

The plate-and-frame is the simplest form and is made from two end plates, the flat 

membrane and spacers. The tubular module has the membrane located in the tube and the 

feed passes through the tube during the process. The third configuration, the spiral wound, 

is widely implemented for nanofiltration or reverse osmosis processes. A flat sheet 
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membrane is wrapped around a perforated permeate collection tube, where the feed flows 

on one side of the membrane and the permeate is collected in the other side while it is 

spiraling in towards the collection tube. Lastly, the hollow fiber configuration is made of 

hollow fibers in a pressure vessel. This construction has a couple of ways to flush through 

the feed. One of them is where the feed moves along the outside of the fibers and exits at 

the end of them. The second is called a bore-side feed configuration, where the feed is 

circulated through the fibers. 

The third way to classify membranes is based on the membrane material [11]. Most 

membranes can be split into three groups as shown in Table 2.1.1.2. The material mostly 

defines the properties the membrane is going to have. 

Table 2.1.1.2. Membrane categories based on the membrane material with their advantages 
and disadvantages [11]. 

Type Properties Advantage Disadvantage 

Ceramic Brittle, strong Chemical and thermal 
resistance 

Expensive 
production 

Polymeric Ductile, flexible Cheap production and 
wide range of applications 

Bad chemical 
resistance 

Composite String and flexible Enhanced properties Expensive 
production 

 

Lastly membranes can be categorized based on how many materials are used to build a 

membrane. Isotropic membranes are dense or porous with a homogeneous composition. 

On Figure 2.1.1.3 different type of membranes is shown that all fall under isotropic due to 

their structure.  

 

Figure 2.1.1.3. Examples of different commonly used isotropic membranes. [9] 

Microporous membranes have a structure of interconnected pores. They are similar to 

conventional filters. Nonporous membranes are dense films, where transport across the 

membrane is dependent on the diffusivity and solubility of the filtrate in the membrane 

material. Electrically charged membrane can be dense or microporous with positive or 
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negative surface charge or ions at the pore walls. The purification process is based on the 

charge of the ions.  

Anisotropic membranes are made using different types of material making them 

heterogenous membranes with a number of layers with different structures and 

permeabilities (Figure 2.1.1.4).  

 

Figure 2.1.1.4. Three widely used anisotropic membranes [9]. 

Anisotropic membranes often have a thin surface layer referred as skin layer, whose purpose 
is to define the flux. The skin layer is mechanically supported by a thick porous structure, 
which should affect the flux. Loeb-Souriajan membranes is made of homogenous material, 
but its unique layered assembly, which give it pore size variation, makes it anisotropic 
membrane. The thin-film composite membrane is made of a thin and dense film, that are 
highly cross-linked polymer mounted on the surface of a microporous support. The cross-
linking provides the selectivity. Liquid membranes are often used on pilot scale for removal 
of heavy-metal ions and organic solvents from industrial waste streams. 
 

2.1.2 MEMBRANE TRANSPORT THEORY 

In water treatment, membranes are used for separation processes, which covers a wide 

spectrum of problems concerning everything ranging from particles to molecules. To solve 

the issues, a large selection of membranes has been developed over the years. The 

membranes differ from each other in material, structure and design, but the general 

mechanism of the separation is common for all types. A membrane is a semipermeable 

barrier, which allows either molecules or ions to pass through, while everything else is 

rejected [11, 12].  The separation process is driven by a specific driving force, that is 

transporting a particle through the membrane, from one phase to another (Figure 2.1.2.1).   
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Figure 2.1.2.1. Basic model for membrane filtration [14]. 

Two important parameters to characterize the membrane separation process is selectivity 

and flux. Selectivity shows which compound is preferably transported through the 

membrane. Selectivity is expressed by using the retention factor (R) or separation factor 

(𝛼). 

𝑅 =
𝐶𝑓𝑒𝑒𝑑 − 𝐶𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒

𝐶𝑓𝑒𝑒𝑑
= 1 −

𝐶𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒

𝐶𝑓𝑒𝑒𝑑
 

C is the solute concentration in both phases. 

𝛼 =  
𝑦𝑎

𝑦𝑏
÷

𝑥𝑎

𝑥𝑏
 

Compound A and B concentration in feed (xa, xb) and permeate (ya, yb). 

Flux is the flow of a specific component. Flux is defined through the driving force, which 

makes the transfer from one phase to another happen. Traditionally, for each membrane 

process a specific flux equation describing that particular membrane transport is employed 

with a particular driving force. A unified approach regarding the driving forces and flux 

equations is rarely utilized. For a specific membrane process, an appropriate driving force 

must be chosen to determine the correct flux equation that describes correctly the 

membrane transport under investigation. The force acts on the molecule or particle and 

makes the transportation across the membrane possible. The amount of force depends on 

the difference or gradient in potential across all the membrane. The main potential 

differences in membrane processes are chemical (Δµ) and electrical potential difference. 

Common driving forces are pressure, concentration and temperature differences. 

2.1.3 MEMBRANE FOULING 

By now, the general knowledge of how the membranes work and how they are made brings 

us to the part about the drawbacks of the technology. The biggest weakness membranes 

have is fouling. Fouling is a process, where the solute or particles deposit themselves either 

onto a membrane surface or into a membrane, that disrupts and degrades the membrane’s 
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performance. Fouling usually causes flux decline and affects the quality of the produced 

water [15].  

There are several types of pollutants that cause fouling: colloidal (clays and flocs), biological 

(bacteria and fungi), organic (oils, polyelectrolytes and humics) and scaling (minerals) [11]. 

The pollutants have several ways of interacting with the membrane. Firstly, an 

accumulation of particles can occur by adsorption (Figure 2.1.3.1 a) or deposition (Figure 

2.1.3.1 b). The former is caused by interaction between the membrane and the particles, 

whereas the latter is rejected particles building up at the surface of the membrane. 

Pollutants can cause pore blockage (Figure 2.1.3.1 c), where partial closure of pores causes 

reduction in flux. Lastly, some macromolecules can form a gel, when the concentration at 

the surface of the membrane is high enough [15].    

 

Figure 2.1.3.1. Different scenarios of fouling [15]. 

The occurrence of fouling depends on many factors such as the type of membrane, the 

properties and surface properties of the membrane, the type and the characteristics of the 

pollutants and the mode of operation [15]. If generalized, the particles that have the 

tendency to cause fouling, are often of hydrophobic nature and carry a surface charge. This 

does mean the hydrophobic membranes are more sensitive towards fouling compared to 

hydrophilic, but in no way, it means the latter are not susceptible to fouling.  The surface 

charge on a membrane is another important property to fight against fouling. As organic 

matter in water at neutral pH carries often a negative charge, the membranes should also 

be modified to have a negative charge to encourage repulsion [16]. Lastly, the roughness of 

the membrane plays a role, as membranes with smoother surfaces tend to experience less 

fouling compared to rougher surfaces [15, 17].  

If particles do manage to cause fouling the disruption can be either reversible or irreversible. 

In the former case, the pollutant can be removed with backwashing, which requires 

additional systems to be built in for this purpose. The latter is a strong attachment, which 

cannot be removed by physical cleaning, but only through chemical means [9].  

There are a variety of chemicals to choose from that may be used for membrane cleaning, 

and each of them is targeted to remove a specific form of fouling. For example, citric acid is 

used to remove inorganic scaling. Strong bases are typically used to dissolve organic 

material. Detergents and surfactants can also be used to remove organic and specific 

foulants, especially those that are difficult to dissolve. Chemical cleaning may also use a 

strong chlorine solution to control biofouling. Due to the variety of the pollutants presence, 
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it is often necessary to use a combination of different chemicals to address multiple types 

of fouling [18]. Some membranes have poor resistance towards chlorine and other chemical 

used for cleaning, which reduces their life time. In case of severe fouling, excessive 

backwashing or chemical cleaning, a replacement of the membrane is needed. Issues as such 

bring up the cost of the treatment and are the main problem of why membrane technology 

is costly.  Therefore, the incorporation of nanoparticles with photocatalytic properties such 

as titanium dioxide (Section 2.5) have been investigated to find alternatives ways to fight 

against fouling and expand the lifetime of a membrane.  

To sum up this section on membrane technology, a list of characteristics for an ideal 

membrane applied in UF, NF and RO operations should possess is presented: 

• High water flux, which would keep the capital cost low 

• High solute rejection, resulting in premium quality water 

• Long-term stability of water flux and rejection, minimum fouling 

• Mechanical, chemical and thermal stability 

• Minimum pretreatment 

• Can be produced into large-scale membranes and modules 

• Low-priced 

2.2 GRAPHITE OXIDE 

This part is to introduce the main material used for membrane production – graphene oxide. 

Its origins, most popular models, commonly used synthesis methods and formation are 

discussed in detail. In addition, the theory section is finished by introducing previous 

investigation done concerning the developed membrane.   

2.2.1 GRAPHENE 

Graphene is considered as the simplest form of carbon element compounds. It has been 

given the title as the thinnest material ever produced as it is made of a single atomic layer 

of sp2 carbon atoms in a hexagonal lattice structure, which can be displayed as a honeycomb 

as shown in the figure below [19].  In this hybridization state the carbon atom has 3 sigma 

bonds, which it shares with the neighboring carbons. Carbon also has an additional fourth 

bond, which is made of two π orbitals, orientated out of the graphene plane (Figure 2.2.1.1 

left image), and is called the π bond. The fourth bond is the reason why graphite has the C-

C double bond and conjugation with in the hexagonal rings.  
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Figure 2.2.1.1 An image of the honeycomb structure of graphene and a model of its sp2 
hybridization [20] 

Due to its unique structure, it can form an array of shapes such as a nanotube, a sphere, 

known as fullerenes, or build a three-dimensional block by layering graphene on top each 

other as shown on Figure 2.2.1.2.    

 

Figure 2.2.1.2 Different shapes made of graphene plane. [19] 

Graphene with minimal defect has some great characteristics such as high thermal 

conductivity and Young’s modulus, a large specific surface area and an optical transmittance 

of up to 98%  [21, 22, 19].  

2.2.2 GRAPHITE 

Graphite is made of graphene layers that are stacked on top of each other and kept together 

by weak Van der Waals forces. The typical bond lengths and distance between the planar 

graphene can be seen on Figure 2.2.2.1. 
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Figure 2.2.2.1. The crystal structure of graphite [23]. 

The structure of graphite gives it an anisotropy property, which means that its physical 

properties differ along the plane. It is marked in the x-y surface on the figure above, and z- 

axis direction, which is pointing out from the plane of the graphene sheet. In other terms, 

it means the layers of graphene can slide over one another, creating an opportunity where 

the weak interlayer force could be overcome, thus making graphite apt to be chemically 

converted. 

Graphite compounds and their production have some specific terminology that need to be 

addressed as they are used in the following paragraphs. A reactant that permeates between 

the layers of graphene is also referred to as intercalate and composite which is formed this 

way is called intercalation compounds and the whole process is referred as intercalation 

[23]. 

2.3 GRAPHENE OXIDE  

Graphite oxide (GO) does not occur naturally and was synthetically produced in 1855 [24]. 

Since its discovery, it has presented challenges to the research community concerning how 

it is formed and how the structure of the compound looks like in detail. Throughout the 

years, graphite oxide’s structure has remained mostly unagreed because the result of its 

material complexity, although several models have been presented in an attempt to clarify 

it. Graphene oxide is defined as a two-dimensional compound made from a layer of carbon 

atoms in sp2 hybridization, with the occasional variation of functional groups, that have 

formed during the oxidation at the edges and vacancy defects in the material [25]. In this 

report, in the next two sections, the production of the compound and the two most widely 

spread and dissimilar models are discussed in detail. In both sections, possible reaction 

pathways are presented to give explanations to several properties of GO.  
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2.3.1 GRAPHENE OXIDE SYNTHESIS 

The introduction to the graphene oxide and its characteristics is started by presenting the 

methods of production as it lays a good foundation for the next section where the different 

models are discussed. As mentioned above, the compound is synthetic and on the next 

figure the evolution of the manufacturing methods is shown, which end with the two most 

popular production methods. 

 

Figure 2.3.1.1. Most commonly used synthesis methods of GO. 
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The Figure 2.3.1.1 above shows the developed methods of the production of the GO up until 

2010. Afterwards numerous small modifications to the Improved Hummers method have 

been established, although the essential structure remains the same: concentrated sulfuric 

acid, permanganate and perhaps nitrate forming a highly oxidizing environment [26, 25]. 

Few attempts to find an environmentally friendlier way of production has also been made 

using K2FeO4 as an oxidant [27].  

The details concerning the mechanism of the formation of GO are still not completely clear, 

but few investigations have given good insight of some of the steps involved.   

Nowadays the Hummers method is the most common way for the synthesis of GO, therefore 

making it the target for most investigations of the reaction mechanism compared to 

alternative ways. The findings concerning the steps during the production of GO are 

relevant and easily applied to this project, although the original Improved Hummers 

method, also referred to as Tours, was used to produce GO. 

The oxidation of graphene into GO has been found to consist of three distinct steps as 

shown on Figure 2.3.1.2 [28].  

 

Figure 2.3.1.2. Conversion of bulk graphite into pristine graphene oxide [28]. 

2.3.1.1 FORMATION OF INTERCALATION COMPOUND 

The first part (stage 1) is dedicated to the preparation for the oxidation stage (stage 2) 

because, in order to oxidize graphite, the oxidant needs to make its way between the 

graphene layers. At first, the distance between the layers is too narrow for the oxidant to 

penetrate the structure, creating the need to modify graphite to an intercalation compound. 

Sulfuric acid has shown to form a sulfuric acid-graphite intercalation compound (H2SO4-
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GIC) when combined with graphite as shown on Figure 2.3.1.2 in steps 1-2. The suggested 

formula of the stoichiometry of the stage is: 

𝐶(21−28)
+ ∙ 𝐻𝑆𝑂4

− ∙ 2.5𝐻2𝑆𝑂4  

The intercalation process is instantaneous from the moment graphite is exposed to the acid 

medium, taking less than 10 minutes to be complete, depending on the size of graphite 

flakes and applied reaction conditions. On Figure 2.3.1.2 stage 1 the colour change from grey 

to blue has been linked to the formation of the GIC [29, 30]. The intercalant penetrates the 

graphite from the edges and makes its way towards the middle of the flake over time. The 

wavy nature of graphite oxide is formed mostly during the intercalation stage of the 

synthesis.  

2.3.1.2 FORMATION OF PRISTINE GRAPHENE OXIDE 

The second stage (Figure 2.3.1.2) is the occasion of the oxidant entering between the planes 

of graphene resulting in the conversion of GIC into pristine graphene oxide. Although the 

formation of the PGO has been shown to start almost simultaneously with the formation of 

H2SO4-GIC [30], which shows that as soon the oxidation agent makes contact with carbon, 

it reacts immediately. But, the completion of the whole process of oxidizing graphite can 

take from few hours up until few days and has been shown to be dependent on the 

morphology of the graphite flakes [28, 31]. The transformation from GIC to pristine GO was 

visually perceived by reflective light, under what the blue color gradually changes to light-

yellow-pearl (Figure 2.3.1.2  stage 1 and 2). The space between the graphene layers after the 

formation of GIC are suggested to be filled with H2SO4 molecules and HSO4
- ions leaving 

no extra room for the oxidizing agent to enter. The only way in is through replacing the 

intercalated molecules or placing itself between them. The reaction moves the same way as 

the intercalation process – from the edges of graphite towards the center.  Based on the 

experimental data the diffusion rate of the oxidant has been shown to be much slower 

compared to the oxidation reaction [28]. Therefore, the explanation for the long reaction 

time is due to diffusion between the densely-populated graphene layers. As the process is 

diffusion controlled, it brings up the importance of the size of the graphite flakes and the 

uniformity of the size distribution. In addition, the morphology of graphite has an impact 

to the reaction kinetics, emphasizing the necessity to have graphite from the same source. 

Already different flakes in the same reaction mixture have been reported to have a large 

variation in the progression of the reaction simply due to the structure, where samples with 

high crystallinity take longer to oxidize compared to samples with disorder and defects [28, 

31]. The oxidizing agent which makes its way in is suspected to stay trapped between the 

layers of graphene up until exfoliation because the addition of water takes place [28]. 

An oxidation threshold (TOD) has been found to be approximately 4 weight equivalents as 

anything below the amount doesn’t result in high enough density of functional groups and 

increasing doesn’t seem to influence the structure and composition of GO significantly [32].  



18 
 

Common functional group forming during the oxidation of the graphite are epoxides, 

ketones, hydroxyl groups, on the basal plane, carboxyl and hydroxyl groups, covering the 

edges of the layers of graphene as seen on Figure 2.3.3.1 [33, 26]. Regardless which method 

for the synthesis has been used the same functional groups have shown to form in the 

material, expect sulfates, that originate from the application of H2SO4 during synthesis [34, 

35, 32].  

For a long time, the presence of sulfur had been neglected and thought of as impurity, but 

now the formation of sulfates or hydrogen sulfate from the previously formed epoxides is 

believed to occur during the oxidation of graphene and a possible formation route shown 

on Figure 2.3.1.3 [32]. 

 

Figure 2.3.1.3. Formation of covalent sulfates [32]. 

It is suggested sulfuric acid or hydrogen sulfate acts as a nucleophile towards epoxides and 

results in an intermediate state of a sulfate ester (1-2). The reaction can continue if the ester 

reacts with another neighboring epoxide forming a 1,2-cyclic sulfate (3). Alternative product 

to 1,2-cyclic sulfate is 1,3-cyclic sulfate. As a result of these reactions the formation of two 

hydroxyl groups is occurring.   

In addition, CO2 production as a byproduct during the synthesis has been confirmed, which 

can either originate from the permanganate reduction into MnO2 (Equation 2.3.1.4.1), where 

water and carbon dioxide is also formed or but from another reaction path, which has not 

yet been identified. 

2.3.1.3 FORMATION OF GRAPHENE OXIDE 

The third stage is where the PGO is converted into GO after it has been exposed to water. 

Pristine graphene oxide has been identified to have white to light yellow coloration, which 

will start to change as soon as larger quantities of water has been added, rising suspension 

of an initiation of chemical reactions [32]. The original need for the addition of water and 

peroxide is to quench the reaction and exfoliate graphene oxide.   

The purpose of the peroxide is to deal with the leftover quantities of KMnO4, by 

transforming it to salts (Equation 2.3.1.3.1), which can be then easily removed due to their 

affinity to dissolve in water.  
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5H2O2 + 2KMnO4 +2H2SO4 → 5O2 + K2SO4 + 2MnSO4 + 8H2O   Equation 2.3.1.3.1 

The few other reactions triggered by the addition of water is discussed in Section 2.3.4, 

where the observations on the material’s behavior was used to come up with a new model 

to describe graphene oxide [33]. In a separate investigation the change of color during the 

quenching and purification was under taken. Changes in compounds color is often an 

indication of a chemical transformation and it is seeming to be the case with GO as well. 

The brown color, which is gained in time, possibly suggests increased conjugation of the π-

system as polycyclic aromatic domains with 6 and above ringed systems tend to be colored 

deeply [36]. The proposed reaction sequence of the hydrolysis of the GO is shown on  Figure 

2.3.1.4.  

 

Figure 2.3.1.4. Transformation of GO by reaction with water [32].  

The concept is that the quantity of sp2-carbon is increased during the hydrolysis and the 

process is initiated by the hydrolysis of the protective sulfates. On number 6-7 one of the 

hydroxyl group are ionized with leads to a C-C bond cleaving. Ketone and an enol is formed 

as the result. Simultaneously one of the hydroxyl group is eliminated and a carbon-carbon 

double bond is created. The enol is capable to ionize into an additional double bond. The 

ketone group in the 8 can undergo hydration and transform into gem-diols 9. The gem-

diols can be transform into hemiacteals 10. 

Another reaction which will be discussed in this section is concerning the identified sulfur 

moieties. The sulfate esters formed in the last step (Figure 2.3.1.3) are suspected to hydrolyze 

when water is added into the system. The process of hydrolysis in acidic environment takes 

hours and result in C-O bond cleavage forming monosulfate (3-5). The formed product 

continues to hydrolyse if it is in acetic media and ends in formation of 1,2-diol (5) and the 
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release of a sulfuric acid molecule, which can be one of the reason of the low pH value of 

GO. 

 

Figure 2.3.1.5. Hydrolysis of the covalent sulfates. 

In some cases, incomplete exfoliation of graphene oxide was registered with SEM images 

and ended in assumptions that covalent sulfates are not only just present as functional 

group attached to the basal plane of graphene, but they are also suspected to form bridges 

between different layers of graphene [32].  

The change in the structure during the synthesis of graphene oxide is illustrated in Figure 

2.3.1.6 below. 

 

Figure 2.3.1.6. Illustration of the structural changes occurring throughout the synthesis. 

2.3.1.4 THE OXIDIZER 

The oxidizer used during the synthesis is potassium permanganate (KMnO4) which 

undergoes transformation when added into the blend of the concentrated acids. The exact 

details of what is happening to the compound and in what form it oxidizes the graphite is 

still unclear. At the moment, two attempts have been done to explain the process.  
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The most popular and referred theory is the formation of diamanganese heptaoxide 

(Mn2O7) [37]. The moment KMnO4 is added to the acids mix, formation of green color can 

be seen (Figure 2.3.1.7). It could be viewed as evidence for the presence of Mn2O7, as it is its 

characteristic color [38]. 

 

Figure 2.3.1.7. Coloration when KMnO4 is added to the H2So4/H3PO4 mixture. 

The suggested overall reactions between potassium permanganate and sulfuric acid, during 

what diamanganese heptaoxide is formed, is shown below [38]. 

𝐾𝑀𝑛𝑂4 + 3𝐻2𝑆𝑂4−> 𝐾+ + 𝑀𝑛𝑂3
+ + 𝐻3𝑂+ + 3𝐻𝑆𝑂4

− 

𝑀𝑛𝑂3
+ + 𝑀𝑛𝑂4

−−> 𝑀𝑛2𝑂7 

Mn2O7 has been shown to possess selectivity towards unsaturated aliphatic double bonds 

over aromatic double bonds [39] therefore it could give explanation of how graphite is 

converted into GO, although no solid evidence of the existence of the compound has been 

released. A serious disadvantage of this compound is its tendency to detonate when 

temperature rises above 55°C or if mixed with certain organic compounds [38]. 

The second and less spread theory with very limited available information is the formation 

of planar permanganyl (MnO3
+) cation that attaches itself to HSO4

- or SO42- ions and forms 

MnO3HSO4 or (MnO3)2SO4 molecules. In the environment of concentrated sulfate acid, the 

compounds are said to exist mostly in nonionized form, but in dilute acids medium 

ionizations occurs [28].    

The oxidation of graphene is complicated and many different reactions are happening 

simultaneously. What becomes of the reactant potassium permanganate has also been 

debated and one of the theories is presented as a reaction seen on equation 2.3.1.4.1. It is 

believed some of the permanganate is converted into manganese oxide, carbon dioxide, 

sulfates and water [40].   
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4𝐾𝑀𝑛𝑂4 + 3𝐶 + 2𝐻2𝑆𝑂4−> 4𝑀𝑛𝑂2 + 3𝐶𝑂2 + 2𝐾2𝑆𝑂4 + 2𝐻2𝑂   Equation 2.3.1.4.1 

2.3.1.5 PHOSPHORUS ACID 

Phosphoric acid has been added to the synthesis process as it had revealed a potential ability 

to protect graphene planes form additional damage in harsh oxidation conditions. Less 

damage has been registered to the planes compared to different acids used in alternative 

techniques [41]. The explanation is believed to be due to the formation of five-member 

phosphor rings, which forbids further oxidation shown in Figure 2.3.1.8. 

 

Figure 2.3.1.8. Reaction mechanism by H3PO4 to protect the carbon layers [41]. 

 

2.3.2 IMPROVED HUMMER’S METHOD 

As mentioned in section 2.3.1.3 above that qualitatively similar graphene oxide is obtained 

with different synthesis methods, displaying some consistency in its behavior. The 

morphology of graphite has shown to affects the kinetics of the oxidation and the 

purification procedure has been demonstrated to have much a larger effect on the structure 

and properties of the material that expected.   

During this project, the Improved Hummers method (also referred to as Tour’s method) is 

used to keep the option of comparison between the previous projects possible. Tour’s 

method has also demonstrated higher yield compared to other popular methods [26] and 

doesn’t have toxic gases such as NO2 and N2O4 released during the synthesis as sodium 

nitrate is not used. The manuscript for Tour’s method is also straightforward, easy to follow 

less time consuming and has the potential to be applied in large-scale production [26].   
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2.3.3 LERF-KLINOWSKI MODEL 

The most widely spread and agreed upon model (Figure 2.3.3.1) of GO was proposed by Lerf-

Klinowski (LK) in 1998 [42]. According to their experimental data they suggested the 

structure to consist of two types of randomly distributed regions. One of them being 

aromatic areas with unoxidized graphene in sp2 hybridization and the second being a 

domain of oxidized carbon in sp3 hybridization.  They also concluded the relative size of the 

domains to be dependent on the level of oxidation. Epoxide and hydroxyl functional groups 

were hypothesized to be located between the graphene layers and larger carboxyl groups on 

the edges of the structure. In addition, the wavy behavior of GO was signed to be caused by 

the OH-groups converting the hybridization of carbon into sp3, which does not have a 

planar nature compared to sp2 state [34, 43].   

 

Figure 2.3.3.1 Structural model of GO and the functional group [43]. 

Most other models have minor difference compared to the LK model concerning the extent 

of sp2 hybridization of the carbon and the presence of some specific functional groups for 

example the existence of hydroxyls and four membered rings 1, -3 or the presence of 

carboxylic acids versus quinones [43].  

The Lerf-Klinowski and alternative models give good insight of the GO, but do not provide 

an explanation to all of the properties of GO, such as its acidity or its ability to reduce under 

strong alkaline conditions.   

2.3.4 THE DYNAMIC STRUCTURAL MODEL 

A new approach to explain GO is using a dynamic structural model (DSM) by Ayrat Dimiev’s 

group [33]. Based on their experimental data, they have concluded GO to be a system which 

is continuously changing its structure as a result of its interactions with water. The model 

suggests GO to develop most acidic groups only when exposed to water, which results in 
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the change of pH over time and a low pH of the GO gel. Their model has been able to 

provide the explanation to two properties of GO, which had not been done before - the low 

acidity and the ability to reduce under basic conditions. 

Their first observation of continuous processes was concerning the moment during the 

synthesis of GO when water is added to the reaction mixture to quench and terminate the 

process. A gradual transformation in color over time was noticed possibly indicating 

expansion of conjugated areas [32].  

The second insight was connected to the constant presence of sulfur when analyzed with 

EA. For a long time, researches signed it off as sulfuric acid’s residue, which isn’t completely 

removed during purification. Only later it was noticed that at a certain point the 

concentration of sulphur remains persistent (0.5-2%) no matter how many times GO was 

washed with water [44]. The evidence leading to a discovery of covalently bond sulfates 

within the structure of GO (Section 2.3.1.3). 

The detection of sulfur moiety has contributed one possible explanation to the low pH of 

GO, which has not been address successfully until the moment, although it is definitely not 

the only contributing factor. Graphene oxide has a pK value between 3-4 in aqueous 

environment, which is significantly lower than the suggested carboxyl or hydroxyl groups 

can achieve, but it is achievable if there are enough sulfate groups [43].  

They made a detailed investigation of the acidic properties of GO and expanded the 

understanding of the types of reactions, which are potentially undergoing, especially 

reactions with water. 

A typical titration curves of GO are shown on Figure 2.3.4.1 where the lack of distinguishable 

inflection points can be seen. This phenomenon has been explained to be caused by the 

overlapping of numerous acidic functional group [45, 46]. It is common for several 

properties of GO to vary severally between different batches and different synthesis 

methods, which make it not reliable and difficult to work with. However, qualitatively same 

or very similar analytical data is collected with SSNMR, FT-IR and XPS of all the GO 

samples, which indicates the presence of reoccurring oxygen-containing functional groups 

despite the production method used or other variances, meaning the conclusion for the 

absence of inflection points to be not correct. Dimiev’s group suggests the reason for such 

behavior is GO’s reactions with water that results in gradual generation of acidic functional 

groups and an additional contribution originating from the electrical double layer at the 

GO’s interface.   

The calculated average value for the content of acidic sites for an aqueous GO was 

determined to be around 1 per 25 carbon atoms, but for the GO obtained after forward 

titration with basic solution the value is reduced to 1/17, showing an increase value of acidic 

sites during analysis. In addition, during the reverse titration less HCl solution was used 
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than expected giving evidence to conclude activated acidification during the insertion of 

basic solution. The generation of protons was a continuous process as the pH kept lowering 

when the GO was left to rest.  

 

Figure 2.3.4.1. The forward and reverse titration curves of graphene oxide [33]. 

Although the existence of sulfates was already established and their role of the materials 

acidity was obvious, analyzing the collected data from titration it became apparent that it 

was not plausible for this functional group to be the only cause of the intriguing behavior 

explained above. In addition, GO which has been synthesized without using H2SO4 

(Brodie’s method) and doesn’t have existing sulphates in its structure, still has the same low 

acidity. The reached conclusion was that the main factor for the acidity of GO is the 

generation of protons when the compound is exposed to water and the reaction is 

exaggerated by the addition of strong bases.  

The GO was investigated in a basic environment using analytical tools such as XPS, FT-IR, 

TGA and UV-Vis to find the answer to the constant change in pH. The gathered data gave 

complementing results to each other showing the decrease of the oxygen containing 

functional group during the increase of pH, which lead to the conclusion that the process 

is GO disproportionation. 

In addition, the formation of CO2 was detected giving an indication that carbonate, and 

bicarbonate could be formed after the addition of basic solution. 

Firstly, when pH is below 10 and the conditions are mild the deoxygenation of GO is 

happening, where the epoxides and OH groups are converted from oxidation state +1 to 0 

as elemental carbon and as a ketone with oxidation of +2: 
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Figure 2.3.4.2. Deoxygenation of GO under mild conditions. 

The scheme demonstrates deoxygenation of GO, where a fragment of GO with two vicinal 

diols and a ketone is present. The process involves cleave of the carbon – carbon bond, loss 

of two hydroxyl groups and a creation of one ketone, which results in the decrease of oxygen 

atoms in the structure.  

Secondly, under strong alkaline conditions and elevated temperature, decarboxylation 

happens where CO2 is produced as byproduct and highest oxidized form of carbon: 

 

Figure 2.3.4.3. Decarboxylation of GO under strong conditions. 

The second explanation to the shifting pH is the GO’s colloidal nature. GO’s surface charge 

has been measured to be negative [47, 48, 49, 50] in water medium where the zeta potential 

(ζ) is ranging from -15 to -45 mV. The large negative charge stabilises the colloidal solution 

and keep the particles from coagulation. GO with its negative charge is countered by 

positive ions to balance out the charge. This layer consists of two subparts: the Helmholtz 

plane and diffuse layer (Figure 2.3.4.4). 
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Figure 2.3.4.4. Distribution of ions near negatively charged surface [51]. 

The diffuse layer is made of ions that are not bonded to the GO permanently and actively 

exchange ions from the surrounding medium. This behaviour possibly has an additional 

effect on the acetic properties of GO such as the lack of inflection point (Figure X) and the 

gradual drop in pH over time. For example, when the concentration of protons in the bulk 

solution has decreased due to neutralization reaction when NaOH is added to GO, some of 

the protons from the diffuse layer can move into the bulk solution and the vacancy is filled 

by a similar ion such as Na+. The addition of Na+ was shown to generate higher negative 

charge compared to pure GO in water demonstrating the ability to possibly build a more 

effective counterion layer resulting in accelerating the reaction between GO and water. In 

addition, the addition of NaOH into GO solution brings up the negative charge even more 

strongly. Therefore, the Na+ ions have been concluded to be used as building blocks for the 

electrical double layer and by increasing the negative charge of GO surface they intensify 

the reaction between GO and water, which would still occur even without the cations, just 

at lower reaction rates.  The occurring process can therefore be categorized as acid to salt 

conversion, where vinylogous carboxylic acid is transformed into its corresponding salts.  

Two possible scenarios for reactions which end up in the build-up of electrical charge and 

production of protons are shown on Figure 2.3.4.5 and Figure 2.3.4.6. The first reaction route 

is in a neutral aqueous solution. 

 

Figure 2.3.4.5 C-C bond cleave due to ionization of the alcohol group [33]. 
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The structural state number 6 shown on the scheme above is a small part of GO, that has 

developed by the opening of epoxides and a ketone to form a vicinal diol at the vacancy 

defect. As the environment has been declared to be neutral, a water molecule is the 

transporter for the proton, which makes the process slower, and results in the acidification 

of the solution. As in a basic solution the hydroxyl ions would gladly extract the proton and 

the reaction would be proceeding at a faster rate. The process results in vinylogous 

carboxylic acid (7), which brings down the pH when ionized (8). The structural state shown 

in 8 is stabilized by resonance, where the negative charge is delocalized over the graphene 

domain. The accumulative negative surface charge is neutralized by the electrical double 

layer.  

During the reactions described on the scheme above the proton is produced from the 

hydroxyl functional group. The next hypothetical route to produce the proton is its 

formation from water molecule, that ends up becoming part of the GO structure during the 

process. 

 

Figure 2.3.4.6. C-C bond cleave due tp extrinsic water molecule [33]. 

The structure of GO on Figure 2.3.4.6 number 9 has only one sp3 hybridized carbon atom 

close to a vacancy defect. The graphene layers consisting of the sp2 hybridized carbon atoms 

is resistant to chemical reactions, but the carbon atoms in sp3 hybridization are susceptible 

to a chemical attack. Hence the place for the water molecule to attack is the carbon next to 

the sp3 hybridized one. By doing this the water molecule becomes an intermediate cation 

(10), which will push the structure to transform into the shape on 11, resulting in the release 

of one proton. The next step is the cleave of C-C bond which leads into the formation of 

vinylogous acid (12), which when ionized will turn into the form shown on 13 [33]. 

To sum up, a new type of model created about the GO material, which states the system to 

be in a state of constant development due to its weakness towards water. Interactions 
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between the compound and water generates protons and a negative charge on the surface 

of the GO, which is neutralized by resonance and electrical double layer. In addition, all the 

above proposed reaction schemes demonstrate a C-C bond cleave, meaning the material 

seems to be degrading over time if exposed to water medium. It has been suggested that in 

acidic environment the destruction happens at a slower rate [33].   

2.4 THERMAL REDUCTION OF GRAPHENE OXIDE 

Many different methods have been developed to reduce graphene oxide to graphene. The 

techniques can be split into two categories: chemical and thermal reduction. Thermal 

reduction is of interest in this project as two other projects have been previously committed 

in the relevant area in Aalborg University Esbjerg Campus. Thermal reduction is simple to 

perform and contaminates the material less with impurities compared to chemical 

reduction. In addition, the effect of chemical and thermal reduction on the properties of 

graphene oxide fibers was investigated by Zheng, X., et al. group [52]. The fibers reduced by 

thermal annealing obtained better tensile strength and electrical conductivity compared to 

the samples reduced using chemical means. The reason for the difference was said to be due 

to the decrease in the interlayer distances and defects in the material and growth of the 

ordered graphite crystallites, which gives material with better mechanical properties 

compared to the compound obtained through chemical reduction. 

An investigation with XRD was done to see the temperature dependent evolution of the 

interlayer distance of GO in the range from room temperature (RT) up to 1000°C. To help 

with the interpretation of the obtained results a model is introduced, which explains how 

the interlayer distances differ from graphite and an intercalation compound.  

 

Figure 2.3.4.1 Model for the graphene (a), graphene oxide (e) and thermally reduced graphene 
(b-d) [53]. 
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On Figure 2.3.4.1 (a) the orientation of graphene layers in bulk graphite can be seen in their 
organized manner, where the GP represents a graphene layer, d002 the distance between the 
layers and θ the scattering angle. The GP layers have been shown to own a nanocurvature 
distortions [53], which means the distance between the layers (dGP) is slightly larger 
compared to bulk graphite (d002). Graphene oxide has been reported to have defects and 
holes in its structure, which is represented on Figure 2.3.4.1 (c). This means the graphene 
obtained through reduction will also have defects in its structure. The holes also give room 
for oxygen functional groups (Figure 2.3.4.1 d) to be present, which increases the distance 
between the layers (dOx) significantly. The highest value for the interlayer distance does 
belong to GO (Figure 2.3.4.1 e), as in addition to the oxygen groups, water is infused into 
the system, which expands the material. The range for dGO is between ~5 to 9 Å, depending 
on the number of intercalated water molecules. The increasing order of the defined 
interlayer distances is dGO > dOx > dDf > dGP > graphite. As seen on the figure the three middle 
stages dOx > dDf > dGP are similar to each other and if the defects in the structures are large 
enough, functional groups and water could be only placed in the empty spaces, which would 

mean dOx ≈ dDf or dOx ≈ dGP. The authors of the article believe that during thermal reduction 
GO has intermediate structure made of dOx and dDf, but the crystal structure grows by the 
removal of dOx and dDf as graphene oxide devolves towards graphite.  
 
Figure 2.3.4.2 is the sum of all the XRD plots gathered during the investigation and shows a 
shift from left to right is occurring during the increase of the temperature. The characteristic 
peak of GO around 11 2θ varies in intensity and FWHM values as the temperature is brought 
up.   

 

Figure 2.3.4.2. Combination of all XRD plots of the GO reduction from 25-1000°C [53]. 

Analyzing the plots individually shows the data to divide into four segments during the 

thermal reduction. The first stage is from RT-130 C, where only one peak is present and 

belongs to GO (Figure 2.3.4.3). Only a small decrease in the values of interlayer distance and 

in the FWHM were registered. The miniscule change in measured values were signed to 

belong to mild evaporation of H2O. The second stage is between temperature 140-180°C. 

The peak I values for d and FWHM change severely and a new peak appears (peak II Figure 
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2.3.4.3) next to it. The reduction in the size of d and the widening of the FWHM is due to 

drastic vaporization of intercalated water molecules. The vaporization of the water 

molecules can be seen on Figure 2.3.4.3 (b), where the plots obtained by FT-IR become 

flatter as the temperature rises. During the removal of the H2O gases exfoliation occurs and 

the size of the GO crystals are decreasing, which is the reason a new peak with broad FWHM 

is registered in the XRD plot. The exfoliation of the material happens when the 

decomposition rate of the epoxy and hydroxyl groups exceeds the diffusion rate of the 

evolved gases, which creates pressure that surpasses the van der Waals forces holding the 

sheets together [54]. 

The third stage is from 180-600°C, during which the values for d and FWHM are reduced 

even more due to the removal of oxygen functional groups such as -COOH and -OH. The 

fourth stage, which happens above 600°C, where the values for the interlayer distance seems 

to rise again and the FWHM narrow, is explained by complex lattice relaxation and 

disordering processes.  

 

Figure 2.3.4.3. Left: The evolution of GO during thermal reduction from 25-1000°C [53]. 
Right: FT-IR spectra changes during thermal reduction [53].  

Based on gathered results from several methods (XRD, FT-IR, Raman, FE-SEM and FE-TEM) 
a thermal reduction process for GO was formed and the scheme of it can be seen on Figure 
2.3.4.3. 
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Figure 2.3.4.4 Model of the developments during GO thermal reduction [53]. 

Five important temperatures were pinpointed: 140, 180, 600, 800, and 1000°C. In the first 

stage the d002 value of GO is gradually lessened within the range of RT−130°C due to earlier 
mentioned vaporization of the intercalated water molecules. The d002 value is severely 

reduced within 140−180°C, where the evaporation of water (S2) and a partial exfoliation of 

GO sheets (S7) is responsible for it. In the range 180−600°C due to the removal of the main 
carboxyl groups (S3), GO (S2) and exfoliated GO (S7) gradually reduce their lattice. In the 
range of 600 – 800°C (S4) out-gassing of the leftover carboxyl and hydroxyl groups is 
happening as partial lattice relaxation is occurring. 800 – 1000°C (S5) the epoxide group is 
removed, which causes load of defects in the lattices, and the in-plane C=C plane cracking 
is going on. 1000-2000°C growth of the crystal, which also results in the decrease of defects 
in the layers (S6). The processes of thermal reduction of GO always has small number of 

amorphous structures (2θ = ~23−25°) within the 140-2000°C, that come from the complex 
folding structures, combination of different hybridizations, defects and impurities within 
the material.  

 
Figure 2.3.4.5. Schematic of folding and unfolding processes in the ranges of 200−600°C, 

800°C, and 1000°C [53]. 
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The folding and unfolding (Figure 2.3.4.5), which are said to be taking part in the higher 
temperature ranges depend heavily on the existence of chemical and hydrogen bond 
between the interlayers.  
 

Another investigation done by M. M. Storm during which the thermal reduction of 

graphene oxide was monitored using in situ XRD analysis, came up with a theory based on 

the results where the material seems to be going through three stages during the thermal 

reduction [55]. The defined stages are: a GO stage, a disordered stage and an ordered rGO. 

The conclusion was done based in the plots seen on Figure 2.3.4.6, where three distinct 

ranges are pointed out on the left side of the plot.   

 

Figure 2.3.4.6. A 2D plot of the diffraction patterns during conversion of GO to rGO, 5°C/min 
heating rate, where the approximate duration of the GO, disordered and rGO stage have 

been indicated in the left of the plot [55]. 

The disordered stage falls into the temperature range, where the water molecules are rapidly 

exiting the material and causing exfoliation of the material, as discussed in the previous 

section, which indeed can explain the disorganization. The peak II seems to be the visual 

evidence of the disordered stage within the graphene oxide. The temperature range, where 

the disordered state dominated, shifted when different ramps were used for heating, but it 

was seen during all the tests, even at very low ramp rates. The application of high ramp rates 

such as 50°C/min resulted in material with widespread disordered state and the formation 

of more ordered material when heated more seemed to be inhibited, which was not the case 

during the application of lower ramp rates. The formation of outspread amorphous phase 

when shock heating is applied has been mentioned by Mcallister et al [56]. The behavior is 

signed to be caused by the rapid diffusion of the intercalated water and gasses from the 

membrane, which rips apart the crystals. In case of low heating ramp (less than 5°C/min), 

the diffusion is slow enough to avoid exfoliation of the graphene oxide and allows formation 

of ordered rGO.   
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Membranes made out of GO has been reported to have a risk of explosion during thermal 

reduction. This behavior has also been reported during the previous projects done at 

Aalborg University [48], where the membranes when exposed to temperature above 200 °C 

were ripped apart to pieces. The identified cause for rapid exfoliation is said to be the 

exothermic reduction of graphene oxide in cooperation with the ratio of mass to size, which 

results in limitations in heat and mass transfer leading to a thermal runaway reaction [57]. 

Heat from decomposition reaction cannot dissipate fast enough to the surrounding 

medium, resulting in localized temperature rise. 

2.5 TITANIUM OXIDE 

The properties of TiO2 which will be discussed in the next sections are the main reasons for 

its applications in the membrane production. The biggest problem with membranes to this 

day is fouling, where organic matter blocks the system. The superhydrophilicity of TiO2 

could decrease the danger of fouling by making the material more hydrophilic, as the 

fouling material often tends to be hydrophobic, and if something still ends up attached to 

the membrane the photocatalytic process could take care of it. Implications as such would 

mean savings in money, time and increase in the lifetime of the membranes. In addition, 

TiO2 have other great attributes such as thermal stability and antibacterial properties, 

which would only benefit the product.        

Titanium oxide (TiO2) is naturally occurring in different kind of rocks and sands. In 

addition, the production of the compound already has a long history as its manufaction 

started in the early 20th century [58]. It means there are numerous studies throughout the 

years concerning the characteristics of the compound. Some of the valued properties of 

TiO2 are its chemical inertness, thermal stability, ability to be resistant against UV 

degradation and few more, which will be discussed in more details below [59]. The 

compound also has high refractive index, whose value is even higher than a diamond’s, 

giving its high brightness and the ability to scatter most of the light [60].  

TiO2 can exist in three types of crystalline form – anatase, rutile and brookite [58, 59]. In 

this project only anatase type of TiO2 has been used and will be mostly focused on. The 

compound is a semiconductor and the anatase configuration has a band gap of 3.23 eV. The 

size and morphology of the particles, that make up TiO2, can be varied by controlling the 

conditions during synthesis, which gives the compound a wide range of application 

possibilities [59]. TiO2 often finds implications in different products as nanoparticles to 

establish self-cleaning and anti-bacterial properties on different surfaces [58], which are 

great assets to add to water purification membranes.   

2.5.1 PHOTOCATALYTIC PROPERTIES OF TIO2 

The first characteristics of TiO2, that is discussed in more detail is its photocatalytic 

property. As mentioned earlier TiO2 is a semiconductor with the band gap of 3.23 eV (in 

anatase form). By converting the 3,23 eV energy of a photon into a wavelength, the results 
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is 388 nm. This is in the range of the UV light, meaning the compound can be 

categorized/labeled as UV-activated catalyst.  

 

Figure 2.5.1.1. Activation of the TiO2 nanoparticles and its photocatalytic active types [58]. 

When light with wavelengths less than 388 nm hits the surface of TiO2 particle, an 

excitation of an electron can occur. If the photon has energy, that is equal or higher 

compared to the band gap of the compound, a jump from valence band onto the higher 

energy state conduction band can happen (Figure 2.5.1.1). As a result of the relocation, a 

hole is created in the valence band, which is called the electron-hole pair. There are two 

possible ways the excited electron is used. 

The first possibility is called recombination, meaning the excited electron falling back to its 

original location. The process of generating electron-hole pair and the recombination are 

continuous processes during the exposure to the UV light. The second possibility is due the 

favorable duration of the electron-hole pair generation that creates a circumstance where 

the electron-hole pair could be transferred to species that have adsorbed itself on to the 

surface of the TiO2 [61]. The excitation process is shown below [58]: 

𝑇𝑖𝑂2 + ℎ𝑣(𝜆 < 390 𝑛𝑚) → 𝑇𝑖𝑂2(𝑒− + ℎ+) 

The potential of the conduction band is negative, which could reduce oxygen molecule, and 

the positive potential of the valence band could produce hydroxyl radicals through redox 

reactions at the surface if the TiO2. The reaction to occur two requirements need to be 

fulfilled. The conduction band potential needs to be thermodynamically higher than the 

redox potential of the acceptor molecule, so to accept the electron. Secondly, the potential 

of the valence band must be thermodynamically lower compared to the donor molecule to 

donate an electron to the vacant hole [61]. The production of hydroxyl radicals on the 

surface of the TiO2 particles based on the concept above is shown on the equations below 

[58, 62].  
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𝑇𝑖𝑂2(𝑒−) + 𝑂2(𝑎𝑑𝑠) → ⦁ 𝑂2 (𝑎𝑑𝑠)
−                              Equation 2.5.1.1 

𝑇𝑖𝑂2(ℎ+) + 𝐻2𝑂(𝑎𝑑𝑠) → 𝑇𝑖𝑂2 + 𝐻+ + ⦁𝑂𝐻(𝑎𝑑𝑠)     Equation 2.5.1.2 

𝑇𝑖𝑂2(𝑒−) + 𝐻2𝑂2 (𝑎𝑑𝑠) → 𝑇𝑖𝑂2 + 𝑂𝐻− + ⦁𝑂𝐻(𝑎𝑑𝑠) Equation 2.5.1.3 

 

The electron-hole pair is capable of redox reactions with adsorbate as shown in the reactions 

above. An oxidized electron donor and a reduced electron acceptor are formed during the 

processes. The photocatalytic activity of TiO2 has been shown to heavily depend on the 

involvement of molecular oxygen, which in addition serves as a trap for the photo generated 

electrons [62].    

TiO2 has been often said to possess a so called self-cleaning property under UV light. This 

ability is brought up by the redox reaction on the surface of TiO2, which produces hydroxyl 

radicals. These radicals are powerful oxidizing agents, which can degrade nearby organic 

matter (OM) into harmless species such as CO2 and H2O [62]. Simplified reactions of the 

process are as followed [58]:  

ℎ+ + 𝑂𝑀 → 𝑂𝑀⦁+ → 𝑂𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑂𝑀   

⦁𝑂𝐻(𝑎𝑑𝑠) + 𝑂𝑀 → 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑂𝑀 

 

2.5.2 PHOTO INDUCED SUPERHYDROPHILICITY 

The second important property of TiO2 is superhydrophilicity. The definition of the term is 

extra attraction to water, excess hydrophilicity. In superhydrophilic materials, the contact 

angle of water is equal or very close to zero degrees. 

In the case of TiO2 the state of increased hydrophilicity is achieved with the help of UV 

light [63]. This phenomenon is explained firstly by the structural changes triggered by the 

UV irradiation and secondly by the process of eliminating organics from the surface of the 

material by photocatalysis [61].  

The superhydrophilicity due to exposure to the UV light has been investigated with high 

resolution X-ray photoelectron spectroscopy (XPS) [63], atomic-force spectroscopy (AFM) 

[61], contact angle [63] and Fourier-transform infrared spectroscopy (FT-IR) [61]. All the 

above-mentioned methods have resulted in data, that shows signs of change in behaviors 

and patterns when TiO2 is exposed to UV light. The compound has shown to have increase 

of hydroxyl groups and water adsorption when UV light is applied. In addition, if TiO2 is 

surrounded by molecular oxygen environment the superhydrophilic state is still achieved 

by the UV irradiation [64], which demonstrates the importance of the presence of O2. The 

number of hydroxyl groups present on the surface of TiO2 has shown to directly affect both 

https://en.wikipedia.org/wiki/Contact_angle
https://en.wikipedia.org/wiki/Contact_angle
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the photocatalytic activity and the superhydrophilicity [61], which indicates some sort of a 

synergy between these two.  

The superhydrophilicity of TiO2 is a property which needs to be initiated. It is triggered as 

mentioned above with UV irradiation and the property, after activation, has shown not to 

be affected by the increase of irradiation. The property can also be stopped, and the original 

state of the material has been shown to be restorable. UV treated TiO2 can convert back to 

its original hydrophobic state by simply storing it in dark conditions [64].     

A theoretical surface of TiO2 and all the three stages – non-activated TiO2, activated TiO2 

and after UV irradiation are shown on Figure 2.5.2.1.      

 

Figure 2.5.2.1. The nonactive state (A), the activation state (B) and activated TiO2 
nanoparticles (C) [63].  

2.6 GO AND GO/TIO2 COMPOSITE MEMBRANE  

In the chapter below the previous three projects committed at Aalborg University Esbjerg 

and brief literature study on the development of the GO and GO/TiO2 membranes are 

introduced.   

Two projects [48, 49] were done two years ago at Aalborg University Esbjerg, where the 

synthesis of graphene oxide and the optimal temperature for thermal reduction was 

investigated. Two of the most popular synthesis methods were tested – Hummer’s and 

Tour’s – with the conclusion of the Tour’s superiority in safety and simplicity.  

Graphene oxide has a layered structure from its original state as graphite. This structure has 

various functional groups, which have increased the interlayer distance between graphene 

layers, and defects, inherited from graphite and from harsh oxidation process. These 

properties create pores and channels which could be used as transportation ways for 

particles through the material (Figure 2.5.2.1).   
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Figure 2.5.2.1. Possible transportation ways through graphene oxide material [65]. 

The pristine graphene oxide membranes has been found to be unstable in water 

environment, which meant an addition of a reduction step was necessary.  Therefore, the 

second stage of the investigation was to find a way to treat the membranes where a balance 

between the amount of hydrophilic functional groups and graphene hydrophobic backbone 

was to be found. 

There are two general options to choose from when reduction of graphene is considered. 

To either choose among numerous chemical reduction methods, or thermal reduction. The 

second option was found to be more appealing due to its simplicity and least contaminating 

to process the GO membranes. The effects of thermal reduction on the membrane are 

discussed in the Section 2.4. 

Firstly, the threshold for the beginning of the thermal reduction was found. Based on results 

gained from XRD and FT-IR one of the project reported 100°C to be the starting point [49], 

while 135 C° based on TGA testing was said to be the lowest temperature thermal reduction 

occurred by the other group [48].  

As mentioned above in one of the projects the effect of the reduction was evaluated using 

mostly XRD and FT-IR methods. The XRD results will be demonstrated in this chapter as 

some of the goals for this master thesis evolved from it. From Figure 2.5.2.2 the behavior of 

graphene oxide when reduced under different temperatures is seen in the form of XRD 

plots. It seems the higher the reduction temperature, the more amorphous the material 

structure seemed to be. The decrease in crystallinity can be seen as the plot loses its sharp 

peak as the reduction temperature rises.   



39 
 

 

Figure 2.5.2.2. Collection of XRD plots from different reduction temperatures in different 
environments [49]. 

The temperature 120°C stands out, as its peak’s location is midway between non-reduced 

and membranes in mostly amorphous state. This phenomenon raised a question of how the 

implication of different reduction temperature affects the structure of the membrane. Is 

reduction occurring at 120°C at all? Or if the reduction is committed at a lower temperature 

and an over longer period, could it influence the poor size of the membrane compared to 

the rapid crystallinity transformation during the reduction at higher temperatures?  These 

were some of the questions, which emerged from the data. To sum their results, the optimal 

duration for thermal reduction was said to be 1 hour and the optimal reduction 

temperatures for air and nitrogen environment were found to be between 140 - 160°C [48, 

49]. GO membranes, which were reduced under these circumstances, were found to be most 

durable in water environment. The membranes did also have vapor permeability higher 

than the pristine GO and were found to be insoluble in water from 4-9.5 pH. 

Membranes made either completely out of graphene oxide or incorporation of the material 
has been successfully tested in several filtration and separation processes. The research 
concerning GO as a membrane material is in its beginning stage as the number of 
investigations is still quite small, but increasing gradually. The membranes with GO have 
shown to be impermeable to assortments of liquids, vapors and gases with the exception for 
water [66]. Ultrathin reduced GO membrane supported by a microporous substrate has 
demonstrated high pure water flux of 21.8 Lm-2h-1bar-1, high retention (>99%) of organic 
dyes and retention of ion salts of 20-60% [67]. In addition, development of GO membranes 
for water desalination are undergoing [68]. 

The second project took the development of the membrane even further by incorporating 

TiO2 nanoparticles [48]. This innovation opens the possibility to develop membranes with 

abilities to fight fouling and reduce operation costs of the membrane technology. The 
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photocatalytic activity was tested by exposing the membranes to UV light and seeing if the 

surface properties of the membrane were affected by it. A decrease was registered in the 

zeta potential as shown on Figure 2.5.2.3 below, which indicated the possibility of increase 

in the amount of oxygen functional groups due to TiO2 photocatalytic properties (see 

section 2.5). 

 

Figure 2.5.2.3. Zeta potential of mixture A membranes, with and without UV irradiation 
[48]. 

Drop shape analysis (DSA) results also showed an increase in the membranes 

hydrophilicity, providing evidence of its state of superhydrophilicity. For example, one of 

the membranes contact angle changed from 78.9 to 20.8 after being exposed to UV-C light 

for 30 min [48].  

In the literature GO and TiO2 have been tested as part of different membrane 

configurations. They are mostly incorporated in small quantities into a membrane to 

enhance its properties or they are layered on top of each other and other membranes. The 

addition of GO and TiO2 has demonstrated photocatalytic activity by degrading synthetic 

dyes in aqueous solution [69, 8, 70, 71]. In addition, different membranes, which have been 

modified with the two materials, have shown improved hydrophilicity, higher pure water 

flux, flux recovery ratio and antifouling abilities compared to the results before the addition 

of the two [72, 73].   

Unfortunately, the membranes developed at Aalborg University Esbjerg has a serious 

disadvantage - its lack of strength. The membrane is too fragile to sustain any pressure what 

so ever, which leads to the third project.  

The third project [74] was mostly focused on finding a support material for the previously 

developed membrane. The selected mode for the membrane is plate-and-frame, where 

GO/TiO2 membrane would be cast on top a support membrane and be bonded together. 

Nylon membranes were found to be suitable for the support role and the two membranes 

became fixed upon each without any assistance.  
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The pore size of the GO/TiO2 membrane was found to be 9.5 nm, which make the 

membrane to categorized among the nanofiltration. This membrane doesn’t only work 

based on its pore size, but also its functional groups on the surface of graphene make the 

membrane to carry a negative charge and are used during the particle transportation across 

the membrane, making it an electrically charged membrane. Due to incorporation of several 

materials to produce the GO/TiO2/Nylon membrane, it can be categorized as anisotropic 

membrane.  

Based on the chapters above a sum of good properties GO/TiO2 membranes have been 

found to own are demonstrated in the Table below.  

Table 2.5.2.1. Properties of GO and TiO2. 

Property GO/TiO2 membrane 

High water flux X 

High solute rejection X 

Antifouling properties X 

Photocatalytic activity X 

Thermal stability X 

Antibacterial property X 

Large-scale production X 
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3 PROJECT OBJECTIVES 

Filtration is considered as a promising separation and water purification technology due to 

its easy operation, energy saving property and high efficiency. A potential material for water 

purification membranes investigated is graphene oxide due to its great properties and 

relatively low cost. 

Graphene, that is the backbone of graphene oxide, is hydrophobic and the oxygen 

functional groups attached to graphene layers in graphene oxide modify the material to 

have a hydrophilic nature. Researchers have reported the combination of graphene oxide 

and anatase TiO2 to form a membrane, which exhibits properties such as 

superhydrophilicity. This leads to increased antifouling, and photocatalytic properties. This 

type of membranes is produced and investigated during this Master’s thesis.  

 

Below are the objectives to be investigated during this project: 

• Changes in the composition of graphene oxide during the purification stage. Insight 

into the purposes, effects and efficiency of the two washing solutions used to purify 

the synthesized gel.  

 

• Structural changes to graphene oxide during application of different reduction 

temperature and duration. Based the section 2.4, where thermal reduction’s effect 

on the structure is discussed, the membranes are predicted to have different 

crystalline structures between the different thermal reductions.  

 

 

• Experiments concerning the effect of thermal reduction temperature and the length 

of the process on the pore size of the composite membranes. Thermal reduction 

done at mild conditions should leave room for the material to readjust itself and 

possibly affect the membrane properties such as the pore size.  

 

• Investigating the effect of different reduction temperature and duration on the 

photocatalytic properties by exposure using UV-C lamp of the developed 

membrane. UV light is used to activate TiO2’s photocatalytic properties, which 

results in the photoinduced superhydrophilicity property that increases the 

hydrophilicity of the membrane. The photoinduced superhydrophilicity should 

result in a smaller contact angle with DSA and increased zeta-potential.  

 

• Testing and quantifying the photocatalytic activity using methylene blue solution 

and UV irradiation. TiO2’s photocatalytic properties can degrade organic matter. 

Therefore, a difference between the membranes under the UV lamp and the 
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membranes without the lamp is theorized to happen. The membranes with UV 

irradiation will degrade the dye as the non-activated membrane will not affect the 

concentration of the dye. 
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4 EXPERIMENTAL DESIGN 

 

Figure 2.5.2.1. The outline of the project.  

The project can be divided into 4 general stage, as seen on Figure 2.1.1.1. The first part is 

solemnly dedicated to produce the graphene oxide gel and its characterization to make sure 

it has the necessary qualities.   

The second part is the thermal reduction stage, where temperature 120 and 140°C were 

applied, with durations of 15, 30, 60 and 120 minutes. The reduced membranes were 
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characterized and investigated with several analytical techniques to register the changes to 

the membrane.  

The third part is the investigation of the effect of UV exposure to the incorporated 

properties of TiO2 nanoparticles and the changes it brings to the properties of the whole 

membrane.  

The last part is about the quantification of the reduction of methylene blue under UV lamp 

in an aqueous environment. 

All the methods for the production of the materials and membranes, thermal reduction and 

the analytical methods are briefly introduced in the next chapter. 
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5 METHODS  

This chapter is dedicated to provide all the scripts with commentaries for the laboratory 

work and analytical techniques.   

5.1.1 IMPROVED HUMMERS METHOD 
1.) A 9:1 mixture of concentrated H2SO4/H3PO4 was added to a mixture of graphite flakes 

and KMnO4 in ratio of 1:6.  

Firstly, the two solid reactants, approximately 3 g graphite flakes and 18 g KMnO4, were 

weighed, mixed and added into 1000 ml flask equipped with a magnetic stirrer. A blend 

(360:40 ml) of concentrated sulfuric acid (H2SO4) and phosphoric acid (H3PO4) was 

prepared mixed together separately and let to cool down to room temperature before adding 

it the solids in the flask. The flask containing the solids was placed into an ice bath as the 

addition of acid produces an exothermic reaction (35-40 °C). The temperature during the 

addition part was kept between 5-10 degree. The mixture of acid was added to the solids 

very slowly using disposable pipettes and the speed of the magnetic stirrer was held on 

minimum during the first 100 ml of acid. The color of the solution was green as shown on 

Figure 2.3.1.7.  

2.) After the addition of acids, the solution is removed from the ice and left to be stirred 

overnight at 50 °C for approximately 14 hours.  

 

The solution should be of brown color by now and be more viscous than before.  

 

3.) The reaction was cooled to down to room temperature using an ice bath. 400 mL of water 

was slowly added to the reaction solution while the temperature was kept below 40 degrees. 

Finally, 30% H2O2 was added to finalize the reaction.  

 

The ice bath was used during the whole process. During addition, a color change occurs 

again from brown into red/purple. The mixture may be removed from ice before the 

termination of the reaction step where 30% H2O2 is added to the mixture. The volume 

needed depends on the level of oxidation of GO and can be between 3–5ml. The addition 

of peroxide must be stopped, when the solution´s colour changes into yellow. 

 

4.) GO is left to settle overnight.  

The obtained solution was divided into two measuring cylinders in order to settle the GO, 

which was completely dispersed in water/acid mixture. Around 200ml of solution was 

transferred into the cylinders and topped up with additional 200ml of deionized water. 

After a day or two the slurry had separated into two layers and the colour had turned from 

orange to brown. The majority of the top layer was removed by decanting and with the help 

of 5ml automatic pipette.  

 

5.) Over the course of 3-4 days the obtained GO is washed with 1 M HCl solution 3 times and 

with deionized water 4 times using centrifugation. 

The purification stage was done firstly with acid solution. GO was dissolved in approx. 

25ml of the acid solution using spatulas and vigorous shaking followed by centrifugation 
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at 6000 RPM for 10 minutes. This procedure needs to be repeated 3 times. Following the 

HCl wash, the GO was dissolved in the same volume as before of deionized water and 

followed by centrifugation at 6000 RPM for 4 hours. The washing with water must be done 

4 times.  

 

5.1.2 OPTIMIZED IMPROVED HUMMERS METHOD 

The amounts had to be reduced compared to the description in the article due to the 

limited amount of reactant available at the time. 

1.) 200ml of concentrated H2SO4 acid is placed into a flask and 1:3 weight ratio (5g and 

15g) of graphite/KMnO4 is added into the liquid phase in small dosages while 

keeping the temperature less than 10 degrees. 

2.) The reaction mixture is left to be stirred for 3h. 

3.) The reaction mixture is cooled down to room temperature and placed into an ice 

bath for the addition of 400ml of water. Water is added slowly and close attention 

was kept on the temperature to be below 40 degrees. This was followed by adding 

30% H2O2 to bring an end to the reactions with in the system.  

4.) The obtained solution was split in two measuring flasks and approximately 200ml 

of water was added into each of the containers. It was left to settle overnight in the 

fume hood. 

5.) The purification step should be done using vacuum filtration with 200ml of 

deionized water, 200ml 1 M HCl solution. 

5.1.3 TiO2  

The TiO2 nanoparticles used for the experimentation was synthesized during a previous 

project. The discussion about the synthesis of TiO2 can be found in the separate report [47], 

where the manuscript and theory are written down in detail.  

Before every membrane production the TiO2 solution was sonicated with probe-type 

sonication at 40% power setting for approximately 1 minute to ensure the nanoparticles are 

dispersed into smaller particles.   

5.1.4 MEMBRANE PRODUCTION 

All the membranes were produced the same way, with the same weight ratio of 1:15 

TiO2/GO. 10 grams of GO gel and 0.6 µl of TiO2 mixture was poured into a petri dish, which 

was used as the cast (Figure 5.1.4.1 A-C). The membrane was left to dry in the fume hood for 

at least 48 hours. A very detailed description of the production process and of the removal 

of the membrane from the mould can be found in a separate report [47] done at Aalborg 

University Esbjerg.  
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Figure 5.1.4.1. The procedure to produce the GO/TiO2 membranes [74]. 

5.1.5 COMPOSITE MEMBRANE PRODUCTION 

Membranes with the support material are done similarly to what was described in the 

membrane production part. Based on the diameter of the nylon membrane the amount of 

GO was decreased proportionally to have the same thickness as the full-sized membrane. 

3 grams of GO gel was mixed with 0.2µl of TiO2 solution. The mixture was poured on top of 

the nylon membrane and left to dry in the fume hood for at least 48 hours. To quicken the 

drying of the membrane, layers of filtration paper were put under the nylon membrane. On 

Figure 5.1.5.1 the cast for the membrane production is shown. 

 

Figure 5.1.5.1. The plastic cast used for the GO/TiO2/Nylon membrane production. 

5.1.6 THERMAL REDUCTION 

The dried membranes were reduced with different durations in nitrogen purge at 
200ml/min using the Carbolite (Figure 5.1.6.1 left) oven at 120 and 140°C. 
 
The membranes were set in the oven at room temperature. The heat rate was kept at 5°C 

/min. The “rough” side of the membrane is recommended to be situated outwards, while 
inserting the membrane in the oven. Doing this has shown to help the membrane to relax 
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back into flat surface better after the removal from the heating system. An example of a 
reduced membrane can be seen in Figure 5.1.6.1 (right). 
 

 
Figure 5.1.6.1. Left: the Carbolite oven used for reduction. Right: A photo of a reduced 

membrane. 

5.1.7 ACTIVATION OF TIO2 PARTICLES WITH UV LIGHT 

The lamp used for experimentation is equipped with UV-C light with wavelength of 254 nm. 
The UV exposure was kept to 30 minutes, where the intensity on the membranes was around 
2 𝑚𝑊/𝑐𝑚2. The experiment set up was surrounded with a wooden box to have control over 
the surrounding environment for more precise measurements. These parameters were kept 
constant throughout the experimentation. The UV-C lamp setup is illustrated in Figure 
5.1.7.1. 
 

 
Figure 5.1.7.1. The experiment setup for the UV irradiation of the membranes. 
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5.1.8 THERMOGRAVIMETRIC ANALYSIS (TGA) 

TGA is a technique, where the weight percentage (wt. %) of a sample is monitored as a 
function of temperature or time in controlled atmosphere. The duration, final temperature, 
the heat rate and other parameters are user defined. The programme used for the analysis 
of GO can be found in the Table below. 

 
Table 5.1.8.1. The program for the concentration of GO. 

Starting 
temp. 1 (°C) 

Heating 
rate  

(°C/min) 

End temp. 1 
(°C) 

Starting 
temp. 2 (°C) 

Heating 
rate 

(°C/min) 

End temp. 
2 

(°C) 

25 10 150 150 25 550 

 

5.1.9 X-RAY DIFFRACTION (XRD) 

For most analysis the Panalytical X’Pert Pro MPD X-ray Diffractometer with a cobalt-
sealed tube (Co K𝛼 X-rays of 0.179 nm) operating at 45 kV and 20 mA was used. The 
measurements concerning GO were done with a method named KRA50, where the scanning 
was only done up until 50°. A sample mounted into the solid’s sample holder can be seen 
on Figure 5.1.9.1.  
 

 
Figure 5.1.9.1. The XRD sample holder with a membrane. 

 
The collected XRD data can be used to calculate the characteristics of the crystal structure. 
The distance between the crystalline layers is calculated using the Braggs’s Law: 

𝑛 ∗ 𝜆 = 2 ∗ 𝑑 ∗ sin 𝜃  → 𝑑 =
𝑛 ∗ 𝜆

2 ∗ sin 𝜃
 

Where n is a positive integer number, 𝜆 the specific wavelength, d is the distance between 
crystalline layers and 𝜃 is the diffraction angle.  
 
The Scherrer equation is used to calculate the average height of the laminar layer of GO: 

𝐻 =
𝐾 ∗ 𝜆

𝛽 ∗ cos 𝜃
 

 
K is the Warren shape constant, that is taken to equal 0.9, and 𝛽 is the measured full width 
at half maximum (FWHM). FWHM can be found form the XRD plot (Figure 5.1.9.2).  
 



51 
 

 
Figure 5.1.9.2. XRD plot with the full width at half maximum. 

Lastly the number of crystalline unit cells forming a laminar layer is calculated using the 
previously calculated values: 

𝑛 =
𝐻

𝑑
 

 

5.1.10 DROP SHAPE ANALYSIS (DSA) 

The Krüss DSA equipment was used for the analysis. The used solvents were deposited onto 
the membrane by a sessile drop method. An image of the drop is recorded with a camera 
and transferred to the drop shape analysis software. The program performs a contour 
recognition based on the grey-scale analysis of the image. The data is then fitted to a 
geometrical model to the contour. Young-Laplace-Fit method was chosen to calculate the 
contact angle during this project. The contact angle is estimated between the drop shape 
and the baseline (Figure 5.1.10.1). 

 

Figure 5.1.10.1. Contact angle at the three-phase contact point. 

Membranes were characterized using two solvents - distilled water and diiodomethane, to 

be able to perform the two-component surface energy characterization. The membranes 

must be attached to a microscope glass slider with double sided tape for the duration of the 

analysis. This ensures the membrane remains flat and does not change shape during 

measurements.  
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To evaluate the surface energy the two-components surface energy theory based on Good’s 

equation was used. The solid’s dispersive component was calculated using the equation 

below. 

𝛾𝑠
𝐷 = (𝛾𝑙/4)(cos 𝜃 + 1)2                                 Equation 5.1.10.1 

𝛾𝑠
𝐷 is the dispersive component of surface energy for the solids, 𝛾𝑙 is the overall surface 

tension of the liquid and the θ is the measured contact angle. The value of 𝛾𝑙 for 

diiodomethane is taken 50.8 mN/m.  

The polar components of the surface energy for the solid was evaluated using the equation 

below.  

(𝛾𝑠
𝐷 ∗ 𝛾𝑙

𝐷)1/2 + (𝛾𝑠
𝑃 ∗ 𝛾𝑙

𝑃)1/2 =  𝛾𝑙
(cos 𝜃+1)

2
       Equation 5.1.10.2 

𝛾𝑙
𝐷 is the dispersive component of the surface tension for the liquids, 𝛾𝑠

𝑃 is the polar 

components of the surface energy for the solids, 𝛾𝑙
𝑃 the polar component of the surface 

tension for the liquids and 𝛾𝑙 is the overall surface tension of the liquid. 

The values for  𝛾𝑙
𝑃=46.4 mN/m, 𝛾𝑠

𝐷 is calculated with Equation 5.1.10.1, 𝛾𝑙
𝐷is taken as 26.4 

nM/m and 𝛾𝑙 is 72.8 mN/m.  

The surface polarity was calculated by: 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 = 100% ∗
𝛾𝑠

𝑃

𝛾𝑠
 

5.1.11 ZETA POTENTIAL 

 
When an electrode surface is brought into contact with an electrolyte, an electrical charge 

is created. Zeta potential (ζ) is an electrokinetic measurement of the electrical charge, 
which is created at the interface between the liquid phase and the membrane. The created 
potential is measured at the shear plane, which is the slipping location of the moving liquid 

phase compared to the stationary liquid phase as demonstrated on the Figure 5.1.11.1. The 
zeta potential of a particle or surface is the physical property that describes the 
electrostatic stability of a particle in a colloidal solution. 
 

 
Figure 5.1.11.1. Surface with a negative charge, that is balanced by positively charged counter-

ions. The position of the shear plane and the diffuse layer [75]. 
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Depending on the chemical structure of the material or particle, the surface charge can 
either be positive or negative. For a solid surface such as membranes, the zeta potential 
gives information about the surface functionality, specific interaction of dissolved 
compounds with the solid surface and liquid-on-surface adsorption processes [76]. By 
changing the pH, the zeta potential will change due to ionization of the surface groups. 
When the pH is increased, the surface charge of a sample becomes neutralised and the 
electrostatic repulsive forces decrease between surfaces causing a colloidal solution to 
become unstable and a porous structure to breakdown [77]. The pH at which the zeta 
potential reaches zero is the isoelectric point and is the point where the system is least 
stable. 
 
Hence the analytical tool gives us the information about the stability of the GO/TiO2 
membranes. In addition, their capabilities of repelling sudden ions as well as minimize 
fouling and degradation can be evaluated. The decreasing effect to fouling is in the range, 
where the zeta potential is highest and nonchanging as the surface charge is at its maximum 
and thus, the membrane is capable of repulsing more of the fouling with the same charge 
sign (negative or positive), which acts as a barrier of the membrane efficiency. The SurPass 
analytical equipment was used for the investigation. 
 

5.1.12 BRUNAUER–EMMETT–TELLER  (BET) 

BET is a characterisation tool, which is used to measure the surface area and the pore size 
distribution of a sample. The BET analysis uses gas adsorption, which is measured as a 
function of relative pressure, to evaluate the specific surface area. The gas needs to be 
physically adsorbed on the surface of the sample by weak bonds, for example by the Van 
der Waals forces. No permanent bonding should occur as desorption by the decrease in 
pressure at the same temperature is required to happen. As the result of adsorption and 
desorption techniques, determination of pore area and specific pore volume is possible to 
be evaluated. 
 
The pore size of the GO/TiO2 membranes determines which type of particles are rejected 
during purification processes and the categorization of the membrane. The surface area 
gives an idea of how exposed are the nanoparticles as the greater the surface area, the more 
organic matter could be exposed to the TiO2’s photocatalytic reactions. 
 
The BET equipment used in this project is of the brand CE Instruments Sorptomatic 1990 
Series. For one measurement 2,5 full sized membranes were cut into fine pieces and 
transferred into the sample holder. Each sample is needed to be degassed to remove gas and 
vapors which might have been adsorbed onto the surface from the air. This is normally done 
by using a vacuum system. The degassing process for the GO/TiO2 membranes are done at 
80°C, to make sure no further thermal reduction is occurring, for until the pressure in the 
sample holder is zero. 
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5.1.13 PHOTOCATALYTIC ACTIVITY TESTING WITH SPECTROPHOTOMETER 

This procedure is based on a standard testing DIN 52980. The method is meant to quantify 

the activity of photocatalytic surface through degrading organic matter in aqueous 

environment. The necessary step to prepare and set up the experiment are as follows: 

1.) The sample need to be tested for its stability in water, as it will be submerged for 5 

hours. A perfect sample should have higher density than water, so the sample would 

not float. The active surface should have a size between 100 and 1500 mm2, thickness 

between 1-5 mm and a maximum of length of 60 mm at the longest point. 

 

2.) The samples are first immersed in an aqueous 20 µM methylene blue solution in a 

dark environment for 2 hours. The samples need to have the methylene blue 

preabsorbed on the surface so the adsorption during testing deteriorates only due 

to photocatalytic activity. 

 

3.) Wash the tubes and cuvette with 10 µM methylene blue solution, to make sure no 

water is left into the system from previous testings. About 20 minutes before the 

beginning of the experiment switch on the UV-light (365 nm), so it would be 

warmed up and make sure the membrane will be situated in a location, where the 

intensity of the lamp is 2 mW/cm2. 

 

4.)  After the two hours of pretreatment the sample transferred into a separate 

container and immersed in 30 ml of 10 µM methylene blue solution. The 

spectrophotometer is prepared by selecting the kinetics mode. The most suitable 

wavelength for the experiment with methylene blue is 660 nm and the length of the 

experiment can be between 3-5 hours. During this project the spectrophotometer is 

set to take measurements every second, but the time can be set up to 2 minutes. The 

photocatalytic activity of the sample can be seen on the graph which is shown on 

the computer screen. If the sample is photocatalytically active, the graph will 

decrease over time, which means that methylene blue is degraded. 

 

5.) After the experiment wash the system with deionized water to keep the system from 

saturation of methylene blue.  

 

The experiment setup can be seen on Figure 5.1.13.1 . The area with the lamp and the 

membrane was covered with a wooden box, to be more in control over the surrounding 

area for the purposes of precision.   
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Figure 5.1.13.1. The setup for the quantification of photocatalytic activity testing.  

 

5.1.14 CALIBRATION CURVE OF METHYLENE BLUE 

Calibration curve for methylene blue was done to provide the opportunity to convert 

absorption value from UV-Vis to concentration. A stock solution of 20 µM was done, which 

was used to make other necessary solutions. In total 5 calibration solutions (Table 5.1.14.1) 

with known concentration were made and measured.  

Table 5.1.14.1. Calibration solutions of methylene blue. 

Concentration 

(µM) 

Methylene blue 
solution (ml) 

Water 

(ml) 

Final volume 

(ml) 

20 25 0 25 

15 18.75 6.25 25 

10 12.5 12.5 25 

5 6.25 18.75 25 

2.5 3.125 21.875 25 

Two calibration graphs (Figure 5.1.14.1) were done to make sure all experiments can be 

included. Most of the experiments were done at 660 nm, except one, which was measured 

at 680 nm. The obtained trendline equations are used for the evaluation of concentration.  
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Figure 5.1.14.1. Calibration curve for 660 and 680 nm. 
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6 RESULTS AND DISCUSSION 

In the following sections all the gathered results are presented. The first part is focused on 

the synthesis and purification of the graphene oxide. The second chapter introduces the 

process of characterization of the synthesized graphene oxide. Thirdly the effect of different 

temperatures and duration applied during thermal reduction on the membrane 

characteristics is discussed. The part after that will be focusing on the effects and 

quantification of the photocatalytic activity. And lastly, the miscellaneous results section 

report on data, which didn’t fit in any of the previous sections.      

6.1 GRAPHENE OXIDE SYNTHESIS 

Throughout the results sections the abbreviation GOS_ will be used, which stands for 

Graphene Oxide Synthesis and is used to differentiate between different attempts of making 

the material for membrane production. In Table 5.1.14.1  an overview of all the trials of 

making graphene oxide, including the method, what was varied during the experiment, 

amount of H2O2 used to finish the reaction and if the synthesis was successful in the end, 

is shown.  

Table 5.1.14.1 Sum of all the synthesis committed throughout the project. 

GO 

batches 
Method Variable 

H2O2 

used 
Successful 

GOS1 Impr. Hummers No ice bath - No 

GOS2 Impr. Hummers Ice bath 6.5 Yes 

GOS3 Opt. Impr. Hum. Concentration 7 No 

GOS4 Impr. Hummers Solids into acids 6.5 Yes 

GOS5 Impr. Hummers Acid onto solids 6.5 Yes 

GOS6 Impr. Hummers No changes 6.5 No 

GOS7 Impr. Hummers No changes 6 Yes 

 

6.1.1 GOS1 

GOS1 was the first attempt to synthesize graphene oxide. Another project [47] that dealt 

with graphene oxide synthesis had a suggestion concerning the unnecessity of the ice bath 

during the addition of acids. This idea was tested to see if it is possible to add the acids slow 

enough to avoid a burn out. To test it out the solids were placed in a 1000 ml flask and the 

acid mixture was slowly added to the blend of the solid compounds. After adding 1 ml of the 

acids blend, the reaction mixture burst into flames resulting in the eruption of burned 

graphite and KMnO4 from the flask. The main trigger for the explosion was the magnetic 
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stirrer that added unnecessary heat due to friction when the solids were smeared against 

the glass flask and too vigorous stirring between concentrated acids and the reactants. The 

detonative behavior of the reaction blend is consistant with the theory of the existence of 

the dimanganese heptoxide (Mn2O7), that is said to be explosive when the temperature 

exceeds 55 °C. In addition, the colors seen during the addition of the acid mixture matches 

with the reported green color of the compound (2.3.1.4). It can be concluded that an ice bath 

is strongly recommended for safety purposes.  

6.1.2 GOS2 

The second attempt to synthesize graphene oxide (GOS2) was done by following the steps 

explained in Section 5.1.1 with the cooling during the addition of the acids. The synthesis 

was successful and resulted in GO gel with good properties. In most of the articles 

concerning the synthesis of the compound, the obtained gel is usually exfoliated using an 

ultrasound probe as one of the last steps before its application in various situations.  

This hadn’t been tested yet during the previous projects and an attempt was done during 

this project. The settings for the probe were chosen to be mild and the time for the 

procedure was 3 min. This test ended up damaging the gel and making it unusable. 

There are few possible ways to explain the effect. Firstly, the gel could have been damaged 

by the temperature rise during the procedure. Although, the exposure of the gel to the 

sonification was not long and the rise of the temperature was not drastic, yet noticeable by 

touching the container, the procedure still could have had resulted in reducing the gel 

enough for it to be not suitable to make membranes.  

The second explanation could be the process decreased the crystal size of the GO. Often the 

size of particles of the materials used for membranes production are preferred to be of a 

smaller size as it deposits better on other surfaces and provides a smoother surface. GO 

could be an exception, which needs to have larger sized particles to be able to form a 

membrane. 

The damaged gel was analyzed with XRD and DLS to test which of the theories is a better 

fit to describe what happened. XRD results obtained (Table 6.1.2.1) by examining a 

membrane before and after sonification do show a slight difference.  

Table 6.1.2.1 XRD results from analyzing a membrane made of the gel before and after 
sonification. 

Sample d (nm) H n 

GOS2 – before 0.8411 11 13 

GOS2 - after 0.8276 12 14 

Thermal reduction decreases the height between the interlayers (d-value) and could be the 

potential explanation. Yet the value 0.8276 nm is higher than what was obtained in one of 
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the previous projects, where a gel with the d-value of 0.802 nm [47] was successfully used 

to produce membranes. So theoretically the gel should be good enough for membrane 

production. 

To test if the size of the crystals is reduced during the exfoliation of the gel, DLS analysis 

was done to a gel before and after sonification. Two dilutions – 1:50 and 1:100 - of the stock 

GO gel were done and analyzed.    

 1/100 G6 before 
(nm) 

1/100 G6 after 

(nm) 

1/50 G6 before 

(nm) 

1/50 G6 after 

(nm) 

 341 262 384 308 

 301 287 375 272 

 269 268 359 283 

 255 239 356 297 

 237 258 348 294 

 237 253 358 273 

 231 249 347 282 

 235 256 355 292 

 241 255 348 284 

 262 260 352 274 

 285 242 359 284 

 296 233 - 272 

 326 244 - 273 

Average 270 254 358 283 

In the case of both dilution the size of the particles decreases after sonication, which means 

the reason GOS2 was not usable after sonification was most likely due to the reduction of 

the particles size, not thermal reduction. Two membranes were made, where one of them 

was sonicated before casting. On Figure 6.1.2.1 the difference in their appearance is shown.  
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Figure 6.1.2.1. Left: membrane made using sonicated GO gel. Right: membrane made of the 
same GO gel before sonication. 

6.1.3 GOS3 

GOS3 was synthesized using suggestions from an article [78] which was focused on the 

optimization of the Improved Hummers method (Tour’s method) and presented great 

results and ideas to make the production process quicker and more effective. The 

manuscript for the synthesis can be found in Section 5.1.2. The optimized method for GO 

production was not successful and here is why. 

The first claim in the article was the accomplishment of reducing the reaction time from 

12h to 3h while maintaining the same level of oxidation of the raw material. The conclusion 

about the level of oxidation was made based on spectrum gathered with Raman, which 

indeed showed very similar patterns and the intensity of the D band indicating similar 

structural disorder and great number of defect in the graphene layers in both cases. By 

replicating the condition from the, different results were found because a lot of the graphite 

has not as the kinetics of the reaction has been shown to be time consuming due diffusion 

of the oxidant between the crowded layers of graphene as explained in section 2.3.1.2. The 

graphite which did oxidize during the 3 h can possibly be equally good compared to the 

graphene oxide obtained by 12h reaction, but the yield of the whole process was severely 

affected by it. In addition, using only one analytical method to analyse a complex compound 

such as GO, which hasn’t yet been completely understood by the research community, is 

not always enough.  

The second implemented optimization was the ratio of solids and liquids. The usual amount 

of the solid reactants used are 3g of graphite and 18 g of KMnO4, which are combined with 

total of 400ml of H2SO4/H3PO4 (9:1 ratio) mixture as explained in section 5.1.1. Based on the 

discussed article the optimum combination was found to be 400ml of H2SO4, 15g of graphite 

and 45g of KMnO4. Due to limited availability of graphite during this project the repeat 

experiment was done with proportionally reduced amounts. In general, the viscosity of the 

reaction mixture during the oxidation using the normal 3g of graphite has always been 

something to keep an eye on as it increases with time and has caused the magnetic stirrer 

to be blocked. So, with the additional amount of solids suggested in the article caused the 
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mixture’s viscosity to increase so much that the very needed stirring was seriously hindered 

from the beginning of the reaction and ended up in completely stopping the mixing as time 

passed by. The lack of stirring made the graphite to “sit” at the bottom of the flask and 

resulted in it not being exposed to the acid/oxidant mixture as much as it should have been, 

again affecting the overall yield of the process.  

Another optimization proposal was made concerning the purification stage, where the steps 

and quantities were suggested to be halved. The data based on what the conclusion of the 

unnecessity of longer purification was gathered using Raman spectra. Only one analytical 

method is not enough to back the statement of the efficiency of the smaller quantities ability 

to remove impurities from the product and Raman is not a direct method to investigate the 

compound’s purity. During this project EA analysis was done throughout the purification 

part to see the changes in composition and to check the validity of shorter procedure. The 

details concerning the exact obtained results will be discussed in section 6.2.1, but the 

conclusion of the paragraph is the suggestion not to decrease the quantities of the 

purification. Perhaps an increase in the amount should be applied to make sure the 

impurities are removed. The gel should be as clean as possible, so no harmful or unwanted 

compounds would not seep into water, if the material is used to produce water purification 

membranes. 

The authors of the discussed reported a higher yield of the final product (graphene oxide) 

compared to the original Tour’s method and lower manufacturing costs, but based on the 

experiments committed during this project the obtained results did not match with what 

was reported in the discussed article.  In addition, the synthesized gel didn’t turn out to 

have good enough quality ending up being unusable again.  

6.1.4 GOS4 

GOS4 synthesis was done following instructions from the section 5.1.1. The only change 

made to the prescript was concerning the ending of the reaction, where the original method 

said to add water in small quantities into the reaction mixture which mostly consists of 

concentrated acids, but instead a switch was made where the reaction mixture was slowly 

added into the cooled water. The switch didn’t seem to have any severe effect on the 

synthesis outcome as the obtained results were identical to previous tests where the 

opposite was done. In the end, it seems it doesn’t matter which way around the addition of 

water occurs and based on the numerous experimentations with Tour method adding water 

to the acetic mixture is a cleaner and easier procedure although it goes against the basic 

knowledge of the acid into water concept. The experiment turned out to be a success and a 

good quantity of quality GO gel was obtained, which was used for membrane production. 
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6.1.5 GOS5 

The fifth synthesis (GOS5) was done following the prescript from section 5.1.1. The reaction 

was left to be stirred over night for 12h. At some point during the night the magnetic stirrer 

had stopped working due to either malfunction of the equipment, the viscosity of the 

solution or the combination of both. The GOS5 product, while purified, behaved in a new 

way, as a large amount of white precipitation was noticed for the first time ever (Figure 

6.1.5.1 left photo). 

The usual silver-grey precipitation (Figure 6.1.5.1 right photo) is signed to belong to 

unreacted graphite, which can be noticed often in small quantities in the solution 

throughout the purification. The dissimilarity between the newly detected white and the 

usual graphite grey precipitation indicates a different origin. 

 

Figure 6.1.5.1. Right: photo of the never seen before white prcipitaion. Left: unreacted 
graphite residue  

The amount of the white precipitation lessened with each wash and in some cases, it 

disappeared completely from the solution. There are two possible explanations for this. In 

the section 2.3.1.2, the color of pristine graphene oxide has been detected to range between 

white and light yellow, if no significant amount of water has been added to initiate the 

hypothesized hydrolysis. The fact that the quantity decreases with each wash and taking 

into consideration the time it takes to perform one wash (4 hours with water and 10 min. 

with 10% HCl solution) and the slightly elevated temperature in the solution during 

centrifugation, could create an environment where the material is reacting with water in 

accelerated speed. 

The second explanation could be the conditions of the solution made some of the impurities 

in their salts form to precipitate and their quantity is lessened during each wash as they are 

gradually removed from the solution. Potassium sulfate (K2SO4) is one of the existing salts 

and is known to have white color. In addition, MnSO4 has also been reported to have a pale 
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pink color, which could appear whitish in the background of the brown graphene oxide 

solution (section 2.3.1.3). As the priority at that point was to obtain GO gel so membranes 

could be produced, no analysis was done to identify the chemical characteristics of the 

precipitation leaving only the option theoritize of what it could have been.  

Although the experiment was expected to be ruined because of failed stirring, the purified 

GO gel was unpredictably good enough for production of membranes and was used for 

further experimentations.         

6.1.6 GOS6 

In the contrast to the fifth synthesis, where usable GO gel was obtained although crucial 

part of the synthesis failed, and anomalies occurred during purification, GOS6 that was 

done following the same prescript, during which everything went without any problems, 

ended in a gel that was unusable. The gel produced membranes which were too fragile to 

work with an example how the appearance of the gel varies can be seen on Figure 6.1.6.1 on 

the right. All the membranes are done using 10 g of the GO gel. The darker membranes are 

made using GOS5 and the light-colored membrane is done from GOS6. 

 

Figure 6.1.6.1. Left: produced membranes using GOS5 and GOS6. Right: the bottom 
membrane done using GOS6 after resting time of 4 months.  

The GOS6 gel was revisited for testing 4 months later. The gel’s colour in the storage unit 

and the membranes produced from it have much darker colour (Figure 6.1.6.1 left). In 

addition, the membranes produced from GOS6 are not fragile anymore and with a smooth 

surface (Figure 6.1.6.1 right). It could be indication of changes occurring over time to the 

material, which matched with the proposed theory in section 2.3.1.3., meaning GO is not a 

stationary material, but a dynamic one. A second explanation could be the aggregation of 

the GO particles over time, which also would mean darkening in colour as light is reflected 

less. 
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6.1.7 GOS7   

The last synthesis of graphene oxide is the GOS7. The synthesis was done by following the 

manuscript from section 5.1.1. The whole process went as planned and no deviations 

occurred. The gel was left to sit for 3 full days and during the standstill the solution had 

again the white precipitation and new addition in the form of bubbles (Figure 6.1.7.1) were 

registered. The white precipitation disappeared quickly during the wash with HCl or H2O 

solutions. 

 

Figure 6.1.7.1. White precipitation and bubbles after the synthesis of the gel. 

6.1.8 PURIFICATION OF GRAPHENE OXIDE 

The persistent failure to come up with a manuscript, that would result in consistent supply 

of similar composition and structured GO gel still raises the question what is not being 

regulated yet. 

The focus so far has been mostly on the first part of the production, the synthesis, thinking 

a mistake of some sort is being repeated. During one of the previous project [47] a mistake 

was done indeed by not keeping the temperature under control, but it has been corrected 

during this project due to an article, in which a group reported their discovery of the most 

important factor affecting the synthesis is temperature and that high temperature causes 

harm to the graphene oxide [79]. Although everything seems to be taken into consideration 

when it concerns the synthesis of graphene oxide, but still the obtained gels vary largely 

between batches.  

The only part of the production that does not include a detailed description is the 

purification step, which based on section 5.1.1, could be the actual time when most changes 

to the structure of GO are occurring. None of the projects done at Aalborg University 

Esbjerg [48, 49, 47] have recorded a detailed description over what time period and how 

exactly purification was done, making it likely to be the point where the biggest variation 

occurs. For example, was the purification stage started as soon as the gels were ready or 

were they left to sit for a while? It is not clear if the gel, when left into the fume hood 
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overnight, is topped up with the solution used for washing or not. Was one wash done per 

day or were several? How long did it take before the purified gel was used for membrane 

production? These are the most important questions to find answers to because if the 

compound reacts with water as reported in section 2.3.1.3, time is of the essence and should 

be defined.    

The second sign of potential changes to the gel during purification is seen when the 

sequence of the washing solutions is changed. When water is used for washing, gelation is 

triggered as the compound seems to swallow it throughout the whole process and the 

volume of the gel increases with each wash as shown on Figure 6.1.8.1. 

 

Figure 6.1.8.1. The change in the appearance of GO while washing with water. 

If water is the last solvent the gel is washed with, the GO gel will stay in a state as 

demonstrated on the last picture above. The gelation can be easily explained by the fact that 

the compound’s affinity to dissolve in water. The gels colour starts to change as soon it is 

exposed to water. The light brown colour becomes darker over time when in aqueous 

solution. The colour change is hypothesized to be caused by chemical process and the 

phenomenon is explained in section 2.3.1.3 or aggregation of the GO particles over time. 

On the other hand, when HCl solution is used for washing, the material stays relatively 

compact, meaning expansion doesn’t occur the way it does with water, and the colour 

change is not as noticeable and drastic as with water (Figure 6.1.8.2). 
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Figure 6.1.8.2. GO after the last wash with HCl solution. 

 

6.1.9 SUMMARY 

As demonstrated in the above sections the unpredictable nature of the synthesis of 

graphene oxide has been a big issue not only during this project, but is a common theme 

throughout all the relevant research done within this field at Aalborg University Esbjerg 

Campus [48, 49, 47]. 

On one hand the material shows sign of insensitivity, where it is still applicable even though 

the reaction conditions weren’t ideal (GOS5 synthesis during this project). Yet again GOS6 

where every requirement and condition were carefully followed, with no mistakes, resulted 

in unusable gel, with no obvious explanation why, indicating as if it is sensitive.  

The random behavior of the compound refers strongly to the fact its mechanics are still not 

fully known and rises the demand for investigations. At this stage, the process has very low 

chance of replication, which needs to be solved before mass production is put in motion.  

In addition, the purification part of the synthesis is not well defined yet, meaning the 

variation of the gel between different batches could be the origins of the variation in 

properties problem.   

6.2 GRAPHENE OXIDE CHARACTERIZATION  

The synthesized graphene oxide gel goes through a series of analytical techniques to 

evaluate its properties to verify the quality and to check if it fits with previously collected 

data. In addition, the changes in the composition of graphene oxide during purification part 

is presented.     
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6.2.1 ELEMENTAL ANALYSIS (EA) OF THE GRAPHENE OXIDE 

The produced graphene oxide gel needs to be cleaned from impurities. This is done by 

washing the material with 1M HCl solution and distilled water. The different stages of 

purification of gel GOS2 and GOS7 were analyzed with Elemental Analysis (EA) to 

investigate the changes in the elemental composition. In addition, if it is possible to reduce 

the quantities used for the washing of the gel. 

The coding systems for the samples in Table 6.2.1.1 and Table 6.2.1.3 T stands T for tube, W 

for water wash and A for acid wash. The last number represents the sequence number of 

the washing step.  

All the samples were left out to dry minimum for 48h in the fume hood which was followed 

by 1 hour at 105°C in an oven to make sure most water has been removed. The two following 

tables have the obtained results from both investigated gels.  

The purification of the gel GOS2 was a continuous process and was done as soon as possible, 

while the time period for washing GOS7 was longer, where there were few days in between 

washing with acid and water. A variation in the sequence of the washing stages were made, 

where half of the gel was purified with the normal way of acid wash first followed by water 

wash and other half where water wash was applied before the acid wash. 

Table 6.2.1.1. Composition of GOS2 with sequence of water – acid wash.  

Purification stage Sample codes Carbon Hydrogen Sulfur 

Pre-purification T6 7 5 17 

Water TW 45 1 2.3 

Water + acid  TWA 45 0.5 1.9 

 

Table 6.2.1.2. Composition of GOS2 with sequence of acid-water wash. 

Purification stage Sample codes Carbon Hydrogen Sulfur 

Acid TA 41 1.2 3.3 

Acid TA 41 2 3.3 

Acid TA 41 1.3 3.7 

Acid+water TAW 45 1.5 2 
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Table 6.2.1.3 Composition of GOS7 during water-acid wash.  

Purification stage  Sample codes Carbon Hydrogen Sulfur 

Pre-purification T0 7.2 4 18.37 

Water  TWS2 40.4 -0.99 2.21 

1st Water + acid  TWA1 41.1 -2.11 1.44 

2nd Water + acid  TWA2 41.9 -1.09 0.95 

2nd Water + acid TWA2 42.9 0.01 0.94 

3rd Water + acid TWA3 43.0 -1 0.78 

 

Table 6.2.1.4. Composition of GOS7 during acid-wash wash. 

Purification stage  Sample codes Carbon Hydrogen Sulfur 

1st Acid  TA1 26 2.83 11.21 

1st Acid TAS1 32.9 3.36 6.63 

2nd Acid TA2 38.4 0.71 5.59 

3rd Acid TA3 40.8 -1.42 4.715 

1st Acid+Water TAW1 44.3 -1.18 2.04 

2nd Acid+Water TAW2 44.8 -1.61 2.79 

4th Acid+Water TAW4 44.9 2.14 2.3 

 

The first sample was taken before the beginning of the purification and is marked as T6 or 

T0 in the tables above. The numerical values are similar to each other in both cases and 

show the high levels of sulfur and oxygen. It is sensible, as the synthesis requires large 

amount of sulfuric acid to be used, which in this case has not yet been fully removed. The 

acid’s presence is also indicated with the large amount of hydrogen percentage if you 

compare the value to the other results obtained after purification steps and take into 

consideration the size/weight of the hydrogen element.  

The percentage of sulphur element content changes during each wash, decreasing from 17 

to 1.9 (Table 6.2.1.1 column 5). This is very common as explained in section 2.3.1.3 where the 

leftover acids and salts are being washed out. In addition, at some point, the level of 

sulphate should become stable due to the permanently bonded functional groups.  

In the case of GOS2 no matter what sequence, the same level of sulphur (approx. 2% from 

Table 6.2.1.1 and Table 6.2.1.2) was achieved after the purification. The percentage of sulphur 

behaves differently with GOS7, where the results for water-acid (Table 6.2.1.3 - 0.78 %) 

sequence is significantly lower compared to acid-water (Table 6.2.1.4 - 2.3%). The different 

values could be a result of unstable machinery as the values for H2 in the Table 6.2.1.3 and 

Table 6.2.1.4 are nonsensical because it is highly unlikely hydrogen is not present in some 
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of the samples. But if the obtained results are taken as trusted, a fitting explanation can be 

found. As mentioned in the beginning of this results section, the time period for the washing 

of GOS7 was longer than what was spent on GOS2. The acid-water wash part for GOS7 was 

done with the similar speed as GOS2 gels and the results are indeed comparable to each 

other. There was a week’s gap between the water-acid wash, where the water wash was 

completed, and the gel was left to sit in a fume hood before acid wash was done. If the ideas 

presented in section 2.3.1.3 are true, it is possible that the sulphates were slowly hydrolysed 

during the time period into H2SO4 and were removed during the water wash resulting in 

overall lower sulphur level.   

6.2.2 TGA OF THE GRAPHENE OXIDE 

At the moment, the only way to evaluate the concentration of the graphene oxide in the gel 

is using TGA method. A typical plot describing the process can be seen on Figure 6.2.2.1. Up 

until the temperature has reached 100°C a gradual change can be seen, which could be 

assigned to the evaporation of water. After the water has been removed the weight 

percentage reaches a stable value, which is considered to be the rough concentration of the 

GO in the synthesized gel. The reason it is described as the rough concentration is the fact 

the gel still includes other compounds, such as impurities, than just GO. 

 

Figure 6.2.2.1. Typical plot obtained when GO concentration is measured with TGA. 

The averaged result for the successful GO gels synthesized during this project has been 

found to be 2.1%, which matches well with results obtained during previous projects [48, 

49, 47].  

6.2.3 FT-IR OF THE GRAPHENE OXIDE 

The evaluation of the presence of the typical functional groups is done by analyzing a 

membrane produced from the synthesized graphene oxide with FT-IR method. 

Preprocessed spectra of one of the membranes can be seen on the figure below.  
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Figure 6.2.3.1. Spectrum of non-reduced graphene oxide membrane. 

In general, the qualitative composition of the GO has shown to be consistent and not 

depending on the method of synthesis. Nevertheless, the spectrum is a difficult one to 

interpret as many of the functional groups tend to overlap or affect each other. The collected 

spectrum of the material synthesized during this project is analyzed to see if the usually 

reported bonds and functional group are present.  

The first bond to be identified in the material is typically O-H. By starting to read the 

spectrum (Figure 6.2.3.1) from the left to the right a broad peak can be seen between 3500 – 

2700 cm-1. It is typical placement for the oxygen – hydrogen (O-H) bond. The bond can 

represent the presence of alcohol group, which usually leaves a mark on the FT-IR spectrum 

between 3500-3200 cm-1. The second possibility is it belonging to a OH- fragment within 

carboxyl group (COOH-), that adsorbs in the range of 3330-2500 cm-1. The extra broad 

absorption range on the spectra on Figure 6.2.3.1 is from 3500 – 2700 cm-1, in which both of 

the functional groups ranges fit into leading to conclusion where it is believed to show the 

existence of both alcohol and carboxyl groups in the material.  

The next small absorption can be seen in the range of 2300-2000 cm-1 and up until now the 

existence of the peak on other FT-IR spectra has not been discussed in the relevant 

literature. It has been identified to originate from the reactant graphite [47], but it is not 

clear what it shows exactly. It could indicate the presence of graphite as impurity, which 

was not completely removed during the purification of the GO gel. The second hypothesis 

presents the possibility of it representing the existence of conjugated carbon bonds within 

the graphene layers which are supposed to have sp2 hybridization. In many of the articles 

concerning the analysis of the GO compound the carbon in sp2 hybridization is associated 

with the peak found at 1600 cm-1, that is said to belong to carbon-carbon double bond [26]. 



71 
 

It is also a known theory that during the reduction of the material these areas with sp2 

hybridization should increase as some of the oxidized graphene is converted back into its 

original form (Section 2.4). In one of the previous projects [47] a slight increase in 

adsorption was seen with the peak at 2300-2000 cm-1, but a noticeable decrease was seen 

with the peak at 1600cm-1. Patterns as such leads the trail of though more towards the peaks 

at 2300 cm-1 to represent carbon in sp2 hybridization and raises question which functional 

group does the peak at 1600 cm-1 characterize. The answer to the question is believed to be 

water [80, 45, 81]. The peak is associated with the adsorbed water molecules in the material, 

which during the thermal annellation would decrease as water is exported from the 

compound resulting in noticeable decrease in the peak’s size.   

Next typical bond which should be present is the carbon- oxygen double bond. The peak 

located at 1700 cm-1 is believed to belong to it. This fragment is the second part of the 

carboxyl group, when combined with the earlier discussed presence of -OH adds more 

confidence in the existence of the carboxylic functional group. The second functional group 

it can represent is ketones, whose existence in the material is very probable. It has been 

reported that the only way to register the presence of ketones is after the reduction of the 

compound, as the first groups which tend to reduce are -OH and -COOH, leaving more 

thermally stable functional group such as ketone behind [82]. 

6.2.4 XRD 

 XRD is used to characterize the crystalline structure of the synthesized graphene oxide. 

This method allows to measure the distance between the layers of graphene (d), the average 

height of one laminar layer (H) and an estimation of how many graphene layers are in one 

laminar layer (n). 

The first step after every synthesis is to measure how much has the distance between the 

graphene layers expanded compared to the reactant. Before starting to report on the 

numerical values calculated from the measurements gathered with XRD, a small 

explanation about the relationship between the level of oxidation and the d-value is 

relevant. The d-value, which will be discussed much, has been used to evaluate the level of 

oxidation. The idea behind is: the larger the gap between the two layers of graphene, the 

more functional groups have been formed during the oxidation [25]. In the previous project 

the d- value for graphite was measured to be 0.335 nm [47], which is the exact value reported 

in the literature [25]. The gathered results are presented in the Table 6.3.4.2, where different 

batches of non-reduced graphene oxide were examined.  
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Table 6.2.4.1. Crystalline properties for different membranes calculated from XRD plots.   

Composition Sample name d (nm) H n 

Graphite  0.335   

GOS4 + addi. H20 M17 0.8438 11 14 

GOS4 M10 0.8383 12 14 

GOS4+TiO2 + addi. H20 M25 0.8739 12 14 

GOS4+TiO2 M18 0.8636 12 14 

GOS5 M29 0.8608 14 16 

GOS6 spring M48 0.8504 10 12 

GOS6  G6 0.8346 10 11 

GOS6+TiO2  M51 0.8735 9 10 

 

The transformation from graphite to graphene oxide can be seen on Figure 6.2.4.1, where 

the peak on the right originates form the reactant graphite. The narrow sharp feature of the 

peak shows an organized crystalline structure in graphite. The discreet peak on the left 

belongs to graphene oxide. Comparing the two peaks, there is no doubt a chemical 

conversion has happened as the shape and location has changed noticeably. The broadened 

shape of the peak is conveying a message the crystalline structure has been disturbed and 

the order has been broken, which result the formation of an amorphous state. The addition 

of TiO2 particles seem to decrease the order even more as the intensity of the blue peak is 

lowered compared to the other two graphene oxide peaks, where TiO2 is not added (Figure 

6.2.4.1). 

 

Figure 6.2.4.1 XRD plots of graphite (purple), graphene oxide (yellow and red) and reduced 
graphene oxide (blue). 
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During the autumn 2016 project the reported d-value for the GO was 0.802 nm, which was 

so far, the lowest obtained value. The measured distances during this project are 

significantly higher and a better match with the reported values of 0.825 nm from autumn 

2015 [49] and 0.848 nm from the Master’s thesis 2016 [48]. The reason for the higher d results 

during this project are due to being very attentive towards the temperature during the 

addition of the acid blend and later the water, as it has found to severely affect the 

compound [79], which was mostly neglected in the autumn 2016 project [47]. 

An unexpected result is the measurement obtained analzying the GOS5 as the synthesis 

didnt go according to plan and had a stirring malfunction (Section 6.1.5). The synthezed GO 

gel was showing unusual signs during the purification and was excpeted to result in a failure. 

Contrary to the expectation, it ended in a gel, which not only was fine to work with, but 

apparately the oxidazion had been very successful as the distance between the layers was 

measured to be the highest it has ever been (Table 6.2.4.1, row 6). 

GOS6 gel was analysed right after its synthesis and the d-value was calculated to be 0.8503 

nm. The same gel was used months later to produce and analyse a membrane with XRD and 

the value had lowered during the resting time to 0.8346 nm. The gradual reduction in the 

interlayer distance value can be interpreted to mean a reduction of graphene oxide over 

time. This theory has been discussed in Section 2.3.1.3, where an explanation is given to the 

self-reduction of graphene oxide through hydrolysis, meaning graphene oxide is a dynamic 

material, which keeps developing its properties over time, especially in the presence of 

water.  

Another enlarging factor to the d-values seems to be the addition of TiO2 particles. The 

distance between the layers grows noticably as shown in Table 6.2.4.1 comparing rows 2-3 

and 4-5.  

A small increase in the distance between the layers could be also seen if additional water is 

added to the membrane (M17 and M25) just before it is poured into the mold and left to dry 

compared to the others where no modifications were done to GO gel (M10, M18 and M38). 

The water could be absorbed into the systems due to hydrolysis, which result in the 

formation of new functional groups. The second reason could be the material’s hydrophilic 

nature, which means it could be adsorbing water into the system and expand the material. 

6.2.5 SUMMARY 

New insight about the components change during the purification stage was gained by 

analysing the steps with EA. The successful graphene oxide batches achieved a good level 

of oxidation based on the calculated d-values. All the reported bonds in the literature – OH, 

C=O, C=C, C-O - [26] were identified to be present in the synthesized graphene oxide. The 

concentration of the GO gels was measured to be in average 2.1 wt%, which is in the same 

range as in previous projects. XRD results showed the d-values obtained during this project 
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to be in good match with previous projects. Also, a change over time in GO gel was 

registered, which indicates a potential chemical process occurrence. The d-value size is 

affected by the addition of TiO2 particles and addition of water before casting the 

membrane.  

6.3 THERMAL REDUCTION OF THE COMPOSITE MEMBRANE 

In this chapter the effect of different temperature and duration for thermal reduction on 

the properties of GO/TiO2 membrane is focused on. The analytical techniques used for 

investigation are XRD, Zeta Potential, Drop Shape Analysis (DSA) and Brunauer–Emmett–

Teller (BET). 

6.3.1 XRD 

The aim for using XRD was to investigate if and how the crystallinity of the material is 

affected by varying temperature and time. Two different temperatures were studied by 

varying time of reduction. The explanation for the reasons behind the chosen temperatures 

can be found in Section GO AND GO/TIO2 COMPOSITE MEMBRANE2.6.  The two discreet 

temperatures are 120 and 140 °C. The gathered XRD plots will be discussed before the 

numerical values. 

On the first plot (Figure 6.3.1.1) the behaviour of GO during the reduction at 140°C is shown. 

This temperature is in the range of optimal reduction conditions reported in previous 

projects [48, 49]. The red line on the figure represents reduction done for 60 minutes, which 

is the reported optimal duration for the thermal reduction [48, 49]. The blue coloured plot 

shows results gathered from thermal reduction at 140°C for 30 minutes.  

When comparing the two plots an effect on the crystallinity of the GO can be seen, where 

the main peak at 13° 2θ not only shifts, but also loses some of its intensity and sharpness. 

This type of behaviour usually means either a chemical conversion or crystallinity/phase 

changes. While the GO peak is lessening, a second very broad peak emerges in the range of 

22-28° 2θ. It is reported to belong to the GO crystals, which are lessened in size during rapid 

evaporation of gasses from the membrane layers, and the disordered phase (Section 2.4). It 

is direct evidence of GO being converted into rGO. The height of the broad peak is larger 

during the 60-min. reduction period than the 30-min. one, meaning that more GO is 

reduced as time passes on. The second highest peak at approx. 30° 2θ belong to TiO2, as 

reported in project of autumn 2016 [47].  
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Figure 6.3.1.1. XRD results from thermal reduction at 140°C for 30 minutes (red) and 60 
minutes (blue).  

The next plots (Figure 6.3.1.2) show the results obtained when the membrane was reduced 

at 120°C. The plots for the duration 15 (blue) and 30 (red) minutes seem to have no deviation 

from each other. No appearance of the second large peak is seen, meaning no reduction of 

graphene oxide is happening within the first half hour at 120 °C.  

 

Figure 6.3.1.2. XRD results from thermal reduction at 120 °C for 15 (blue) and 30 (red) 
minutes. 

The third plot is obtained by using a different XRD machine to analyse the third sample and 

the gathered results are not suitable to be combined with the previous two on the figure 

above. The third analysed membrane was reduced at 120°C for 2 hours. The thermal 

reduction has begun as the second broad peak can be seen to emerge just like it does with 

140°C.  
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Figure 6.3.1.3. XRD result from thermal reduction at 120 °C for 120 minutes. 

The calculated values from the XRD plots are all presented in the Table 6.3.1.1. In the case 

of the experiments at 140°C, as seen on the Figure 6.3.1.1, thermal reduction is taking place 

as the d-value is decreasing noticeably. It seems the reduction is triggered very quickly when 

the membrane is exposed to the 140°C condition. The percentages of reduction are 

calculated using the value 0.8383 nm for M21-M22 and value 0.8608 nm for M32-33, M40 

from Table 6.3.1.1 as the starting point of the reduction. Evidence for the lessening in size of 

the crystal structure is seen from the decreasing values of H and n. It shows the layers of 

graphene lessening and the laminar layer thinning as thermal reduction goes on. The reason 

being exfoliation due to gasses leaving the structure (Section 2.4).  

Table 6.3.1.1. Crystalline properties for different thermal reduction conditions.  

Temp. 
(C) 

Duratio
n (min) 

Sample 
name 

d (nm) H n Percentage of 
reduction (%) 

140 30 M22  0.7538 8 11 10.0 

140 60 M21 0.6969 5 7 16.8 

120 15 M32 0.8119 13 16 5.6 

120 30 M33 0.8132 13 16 5.5 

120 120 M40 0.7981 5 7 7.2 

At temperature 120°C the reduction seems to either have an incubation period of some sort 

or very slow conversion process. The first hour or so only a small decrease in the d-value is 

registered. The H and n results stay similar and demonstrate the existence of larger 

crystalline structure. The minor lessening in the interlayer distance is from the permeated 

water evaporation process and the evaporation process seems to be mild enough where the 

exfoliation is not as violent as seen with the results from 140°C. At around two hours, the 

reduction starts, the crystalline structure is ripped apart just like with 140°C, but the d-

values have not been reduced as severely as in the case of 120°C. 
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6.3.2 ZETA POTENTIAL  

The zeta potential and the stability of differently reduced membranes were determined 

using Surpass Streaming Potential equipment.   

The zeta potential value was larger for the membrane reduced at 140°C for 30 minutes then 

reduction done at same temperature, but for the duration being 60 minutes (Figure 6.3.2.1). 

The charge of the membrane surface depends on the number of functional groups present. 

In case of the 30-minute reduction, the process of removal of the functional groups is not 

as far developed compared to the 60 minutes one, as also discussed in the previous XRD 

section, resulting in higher surface charge.   

 

Figure 6.3.2.1. Zeta potential at different pH values for two types of thermally reduced 
membranes.  

The stability of the membrane doesn’t seem to be affected by the different reduction 

conditions. The instability for both membranes start around the same 9+ pH, showing the 

construct to be stable in acidic environment and vulnerable if the pH is raised too much. 

6.3.3 DSA 

The hydrophilicity and surface energy of the differently reduced membranes were 

investigated using the Drop Shape Analysis. The first result in the Table 6.3.3.1 belongs to 

non-reduced GO/TiO2 membrane to set a reference point.  

The next 3 rows are measurements from membrane reduced at 120°C at different durations. 

A decrease in the polarity of the membrane has happened when compared to the non-

reduced membranes values. The reason being evaporation of infiltrated water molecules 

leaving the layers of the material. In general, the quantities are very similar to each other 

and matches with the XRD results, where no thermal reduction was registered within the 

first 30 minutes. According to the results with DSA no thermal reduction seems to be 

occurring at the 60-minute benchmark either.    
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The results obtained from membrane reduced at 140°C has a small variation between the 

different durations. The surface energy and polarity decrease when the membrane has been 

exposed to the temperature for more than 30 minutes. More functional groups have been 

removed from the system as the time passes on resulting in lower hydrophilicity and surface 

energy of the membrane.   

 

Table 6.3.3.1 DSA results from membranes reduced in different thermal reduction 
environments. 

Temp. Time H2O DIM Polar c Dispers c Overall Polarity 
% 

0 0 39.8 49.0 24.9 34.8 59.8 42.7 
120  15 50.5 36.6 15.3 41.2 56.4 26.7 

120 30 44.5 30.1 17.2 43.9 61.3 27.6 

120 60 46.7 30.7 16.3 43.8 60.2 27.1 
140 15 50.7 30.1 13.8 44.2 58.0 23.8 

140  30 47.9 32.5 15.8 43.1 58.9 26.8 
140  60 59.9 37.1 10.2 41.0 51.2 19.7 

 

The numerical values in the rows 2-5 (120°C and up to 140°C/30 min) are very similar in its 

hydrophilicity and surface energy, although structure-wise as seen in XRD Figure 6.3.1.1 and 

Figure 6.3.1.2, a difference can be seen.  

6.3.4 BET 

The membrane surface characteristics such as a specific surface area and the average pore 

size were measured with BET. The results obtained from membranes, which were reduced 

under 140°C at different durations, are similar to each other as seen in the first two rows in 

Table 6.3.4.1. In the XRD section 6.3.1, the plots (Figure 6.3.1.1) and calculated crystal 

properties (Table 6.3.1.1) demonstrated the occurrence of graphene oxide conversion to 

reduced graphene oxide at 30 minutes. The process seems to be immediate at 140°C, leaving 

the material no opportunity to rearrange and is just violently shredded. The values for 30 

and 60 minutes are most likely to be similar due to the rapidity of the reduction process 

when 140°C is reached. The third row belongs to a repeatability test, where left over pieces 

were used, and the measurement gave almost identical quantities to the previous one.     
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Table 6.3.4.1. Specific Surface and Pore size for different reduction temperature and time.  

Temp Tim
e 

Membran
e nr 

Mono-
layer 

Specific 
Surface 

C 
value 

Pore 
V 

Max 
Pore V 

140 30 M27 7.3 31.63 39 0.033 0.034 

140 60 M28a 6.9 30.09 39 0.031 0.033 

140  60 M28b 6.9 30.11 39 0.031 0.033 

120 15 M32 6.1 26.76 38 0.028 0.029 

120 60 M41 9.1 39.70 42 0.041 0.043 

Thermal reduction at 120°C does affect the properties of the membrane more than at 140°C. 

The reduction at 120°C seems to have a delay or the process is so slow it takes time before 

the conversion process is registered. During the delay water molecules are exiting the layers 

of graphene oxide, but no conversion is happening. The properties gained by analysing 

120°C/15min. membrane can be considered as non- reduced membrane, because, as seen in 

the XRD section, the conversion process had not yet begun. Only the membrane reduced 

for 2 hours at 120°C showed signs of reduction. Based on the measurement results in the 

table above, a reduction could be seen from 1 hour. In addition, the effect on the surface 

area seems to be bigger when the reduction is done at a lower temperature, where the 

material seems to be exfoliated more then with 140 °C.  

The pore size distribution was not majorly affected by varying the temperature nor the 

duration of the reduction as seen in Table 6.3.4.2. 

Table 6.3.4.2. Pore size distribution in relative volume in percentage value. 

Pore size 
range 
(nm) 

120°C/15min 

 (%) 

120°C /60min 

(%) 

140°C /30min 

(%) 

140°C /60min 

(%) 

100-10 1 1.36 1.17 1.12 

10-5 5.46 5.34 5.4 5.42 

5-2 49.61 49.28 49.45 49.5 

2-1.5 14.59 14.55 14.57 14.58 

1.5 – 1 29.34 29.47 29.4 29.38 

 

6.3.5 SUMMARY 

Based on the gathered XRD plots and calculations the thermal reduction was found to be 

almost instantaneous when 140°C is used. Thermal reduction done at 120°C seems to take 

either some time before the conversion to rGO begins or before the slow conversion is 

registered by analytical tools. The reduction starts to show up in the results somewhere after 

1 hour of exposure as at the 2-hour benchmark the reduction peak on the Figure 6.3.1.3 is 
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emerging. The surface charge for the membrane reduced for shorter duration was measured 

to lower compared to the membranes reduced for longer time period. The delay in the 

reduction at 120°C was confirmed with DSA as well, because the polarity and surface energy 

doesn’t change within the first hour of reduction. The membranes reduced at 140°C have a 

decrease in the polarity of the membrane as the duration of the process increases. The 

surface area and pore size for membranes reduced at 140°C were similar even at different 

durations. The surface area was found to vary a little between the membranes reduced at 

120°C. The pore size distribution did not change as a results of the variation of temperature 

and duration.   

6.4 PHOTOCATALYTIC AND HYDROPHILIC PROPERTIES 

This chapter is dedicated to investigating the photocatalytic activity and hydrophilicity of 

the composite membranes and pristine graphene oxide using Zeta Potential and DSA. An 

attempt to quantify the photocatalytic activity was done using UV-Vis. 

6.4.1 ASSESMENT OF PHOTOCATALYTIC ACTIVITY USING UV-VIS  

Before starting with the presentation of the results few expectations of the behavior are 

introduced. A difference in the slope was predicted between the samples measure with the 

UV lamp and samples not exposed to UV light. Based on the theory in section 2.5.1 the 

membranes with TiO2 nanoparticles are expected to have a steeper slope in the 

concentration change of the dye compared to membranes with only GO as its material. The 

dye should be oxidized quicker in the presence of the photocatalyst.  

The first testing with the UV-Vis was done with the methylene blue solution and the support 

membrane, to make sure the components of the composite membrane doesn’t have any 

part in the oxidation of the dye. In addition to a regular nylon membrane, testing with 

thermally annealed nylon (140°C/60min) membrane was committed to make sure no 

changes occur to the properties. Miniscule deviation was registered by the nylon membrane 

on the dye solution during 2 hours of testing. The gathered blank data can be seen Figure 

6.4.1.1. 
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Figure 6.4.1.1. Results from testing the nylon membrane in methylene blue solution. 

The list of the investigated samples for the photocatalytic activity is shown in Table 6.4.1.1 

below. The gathered data from UV-Vis (original Figure 6.4.1.2) is plotted as the natural 

logarithm of the concentration of methylene blue versus time, to be able to calculate the 

slope of the process. For more precise results in terms of concentration of methylene blue, 

a calibration curve was measured to estimate the exact concentration of the dye at any given 

moment. The calibration curves and how they were made is introduced in Section 5.1.14. 

The gathered preprocessed data from the investigation with UV-Vis is demonstrated on 

Figure 6.4.1.3 and the calculated slopes from the data are to be found in Table 6.4.1.1 below.    

The gathered results were unexpected as none of the prediction about the results were met, 

because change in the concentration of methylene blue was detected during all the 

measurements. This means the concentration of the dye decreases whether the UV- lamp 

was on or not, or if TiO2 was added to the membrane or not. 
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Table 6.4.1.1. The calculated slopes and R values obtained by measuring the concentration 
change of methylene blue with and without UV lamp exposure.  

Temp. Time 
Sample 
name 

Composition UV Slope R 

140 60 N13 GO No -0.0133 0.9966 

140 60 N2 GO Yes -0.0092 0.9943 

140 60 N9 GO Yes -0.0157 0.9948 

140 60 N5 GO/TiO2 No -0.0098 0.9785 

140 60 N6 GO/TiO2 Yes -0.0097 0.9829 

140 60 N0 GO/TiO2 Yes -0.0092 0.9954 

140 60 N7 GO/TiO2 Yes -0.0122 0.9976 

140 30 N10 GO/TiO2 Yes -0.0183 0.9978 

The GO/Nylon membranes were measured with and without UV lamp exposure. No 

photocatalytic activity was predicted to happen during these experiments due to lack of 

TiO2 particles, but it turned out to be wrong. The concentration of methylene blue 

decreases independent from the exposure of the UV light. The calculated slope for just 

GO/Nylon membrane without the UV lamp exposure is -0.0133. The value is very similar to 

the slopes calculated when the UV lamp was used ( -0.0092 and -0.0157), which means the 

change in the concentration of methylene blue can be concluded not to be originated from 

a photocatalytic effect.   

To make sure the decrease in methylene blue concentration is not originating from 

photocatalytic activity, membrane made out of GO were additionally investigated using 

DSA and Zeta Potential in section 6.4.2 and 6.4.3 GO demonstrated an increase on the zeta 

potential of the membrane when UV irradiation was done (Section 6.4.2), possibly 

indicating an increase in the number of functional groups on the surface, but DSA results 

show no increase in hydrophilicity and surface polarity (Section 6.4.3). No conclusion can 

be made based on the gathered results if graphene oxide is also photocatalytically active, 

due to the contrary nature of the data. The fact that the dye’s concertation decreased even 

without the UV irradiation indicates a possibly different type of process than oxidation of 

methylene blue due to photocatalysis.   
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Figure 6.4.1.2. The original data of methylene blue concentration change over time gathered 
with UV-Vis. 

 

Figure 6.4.1.3. Preprocessed data of the change in concentration of methylene blue over time.  

The second unexpected behavior is the lack of difference between the slopes gathered from 

the membranes, which had incorporated TiO2 particles. The slopes obtained from UV 

irradiated membranes have two results, which are smaller or similar (-0.0097 and -0.0092) 

to the blank test (-0.0098) and only one that is larger in value (-0.0122). The steepest slope 

(-0.0183) was measured with a membrane made of GO/TiO2/Nylon and was reduced 30 
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minutes instead of 60 minutes as all the previous samples were. The increase could be an 

outlier or an insight to what is really happening to methylene blue.  

An assumption of a chemical reaction occurrence was made before the start of the 

experiments. The focus was mostly set on the photocatalytic properties of TiO2 particles, 

which left the other component, graphene oxide, overlooked. Methylene blue (Figure 

6.4.1.4) has three N-H groups, which are in its protonated form in aqueous solution at low 

pH. 

 

Figure 6.4.1.4. Chemical structure of methylene blue. 

Graphene oxide has several oxygen functionalities, which give the membrane its negative 

surface charge. The negative and positive dipoles resolve in electrostatic interaction, which 

means the results gathered during this project reflect the dye molecules adsorbing on to the 

surface of GO [83]. 

From the adsorption point of view the steeper slope measured with 140°C/30minute (Table 

6.4.1.1 bottom row) membrane could be understood purely based on the number of 

functional groups. All the other membranes have been reduced for an hour, meaning they 

have less functional groups left in their structure compared to the one reduced less time, 

meaning less areas where electrostatic interaction can occur. The lack of effect of TiO2 

particles under UV light is still surprising, but the low concentration of TiO2 in the 

membranes could be the reason why steeper slopes were not registered. 

6.4.2 ZETA POTENTIAL 

The composite and graphene oxide membrane’s photocatalytic and hydrophilic properties 

were tested by measuring the zeta potential before and after UV irradiation. Both of the 

membranes used during the testing were reduced at 140 °C, but at different durations. The 

same trend can be seen on Figure 6.3.2.1 as in section 6.3.2, where the surface charge of the 

30-minute reduction (-40 mV) is higher compared to the 60-minute (approx. -20 mV).  

In both cases the membranes’ zeta potential is increased after it has been exposed to a UV 

lamp, possibly indicating the photocatalytic properties of the membrane. The charge of -20 

mV of the membranes reduced at 60 minutes is taken down to -25 mV. A similar increase 

in charge is occurring with 30-minute reduced membranes from -40 mW to – 45 mW. The 

zeta potential could be increasing due to the TiO2 particle activation, which adds new 

hydroxyl groups to the surface of the membrane (Section 2.5.1).  
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Figure 6.4.2.1. Zeta potential change during variation of pH for differently reduced GO/TiO2 
membranes. 

The second important investigation is concerning the graphene oxide membrane. The GO 

membrane was tested the same way as the previous GO/TiO2 membranes, where half of the 

membrane was exposed to UV irradiation while the other side wasn’t. Based on the plot 

below, an effect on the surface charge of the GO membrane is registered. The surface charge 

was increased when UV-C light is applied just like in the case of GO/TiO2 membranes. 

Based on this result only GO cannot yet be concluded to have photocatalytic properties.  

 

Figure 6.4.2.2. Zeta potential change during variation of pH for GO membrane. 
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6.4.3 DSA 

Lastly, DSA was used to measure the effect of UV light exposure to the polarity and surface 

energy of GO and GO/TiO2 membranes. The behavior of the irradiated GO membrane 

seems to be opposite to GO/TiO2 membranes. The composite membrane’s contact angle 

with water severely decreases after its been exposed to UV light. For example, membrane 

reduced at 140°C/30min. angle changes from 39° to 11° (Table 6.4.3.1). The change in the 

contact angle with water also means the polarity of the membranes increases compared to 

before and after the UV lamp application as shown in the last column in Table 6.4.3.1. This 

trend shows the activation of TiO2 particles, which adds more oxygen functional groups to 

the surface, resulting in the increase of the hydrophilicity.  

This is not the case with membranes made of only GO. UV exposure has the opposite effect, 

it decreases the contact angle with water (from 41° to 52°). The irradiation seems to lessen 

the hydrophilicity of the material and its polarity (drops from 30% to 27%). Perhaps a 

photolytic degradation is triggered for a functional group or an impurity in the membrane, 

which affects the contact angle with water. The behavior is indicating GO doesn’t have 

superhydrophilic properties, but doesn’t rule out photocatalytic property.  

Table 6.4.3.1. Collected and calculated results from DSA. 

Temp/time Material UV H2O DIM Polar c Dispers 
c 

Surface 
energy 

Polarity 
% 

140/60 GO   41.1 30.0 18.9 44.2 63.2 30.0 

140/60 GO X 52.1 40.1 15.1 39.5 54.6 27.6 

120/60 GO/TIO2   55.6 34.8 12.0 42.1 54.1 22.0 

120/60 GO/TIO2 X 41.4 32.0 19.2 43.4 62.6 30.7 

140/30 GO/TIO2   39.0 33.1 20.7 42.9 63.6 32.6 

140/30 GO/TIO2 X 11.2 21.1 29.1 47.4 76.5 38.0 

140/60 GO/TIO2   28.5 34.6 26.4 42.2 68.6 38.5 

140/60 GO/TIO2 X 9.0 18.9 29.0 48.1 77.1 37.7 

 

6.4.4 SUMMARY 

Quantification of the photocatalytic activity was done to the composite membrane. During 

the testing, the concentration of the dye decreased with all samples, which lead to believe 

either graphene oxide has photocatalytic properties or something else was happening than 

the oxidation of methylene blue. The reason was identified to be adsorption of the dye 

molecules on the surface of GO due to electrostatic interactions. GO was tested with DSA 

and Zeta Potential for photocatalytic activity and hydrophilicity changes, but results turned 

out to be contradictory, which doesn’t permit to obtain a conclusion.  
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The change in zeta potential due to UV exposure for the GO/TiO2 membranes were found 

to have a similar level of effect, independent from reduction temperature or duration. The 

stability of the membranes was not affected by the duration of the reduction nor the 

exposure to UV. 

The photocatalytic properties were registered for the GO/TiO2 membranes, where the 

contact angle decreased, and polarity increased severely after UV light exposure. 

Membranes made out of graphene oxide did not show signs of superhydrophilicity unlike 

the GO/TiO2 membranes, the contact angle increased when it was treated with UV light.    

6.5 MISCELLANEOUS RESULTS 

In this chapter a couple of results are presented, that didn’t fit into the sections above, but 

are worth mentioning. They mostly deal with the membrane behaviours, that makes it 

difficult to work with, and aspects which needs to be resolved before moving on in the 

development of the composite membrane.  

During the analyses with the zeta potential rapid swelling of the membranes became 

apparent and caused problems. The swelling during the different analysis were recorded 

and can be seen on Figure 6.4.4.1 below. 

 

Figure 6.4.4.1 Swelling of the produced membrane. 

The gap decreased from approximately 110 nm down to 75 nm, which is 30% change with in 

1 hour of operation. Overall the rate of swelling seems to be the very similar, not depending 

on the composition or exposure to UV. The swelling wasn’t only occurring during the 

change of pH, but started from the moment the equipment was filled with water, where the 

gap decreased over time, if left to sit. Swelling could cause some changes in the membrane 
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properties, such as pore size and strength. Hence, these factors should be investigated and 

taken into consideration in the future development.  

The second drawback of the composite membrane is the poor bondage between the nylon 

membrane and GO/TiO2. This was unexpected as the GO/TiO2/Nylon membrane was very 

durable when tested with tensile strength and in Sterlitech cell under elevated pressure 

during another project [47].  

The membranes produced as part of this project were soaked in methylene blue solution for 

2 hours, which most of the time ended weakening the bond between the two layers of 

membrane. The GO layer ended up becoming loose on top of the nylon membrane and if 

caution wasn’t practised, the material fractured (Figure 6.4.4.2).  

 

Figure 6.4.4.2. A failed experiment due to breakage of the membrane. 

This should be resolved by either investigating how to bond the two membranes better or 

find an alternative way to support the GO membrane.  
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7 CONCLUSIONS 

During this project several attempts to synthesize graphene oxide was done. The 

unpredictable nature of the synthesis of graphene oxide became apparent, as not all the 

attempts were successful. 

The temperature control during the addition of acids blend and water is found to be very 

important. This was seen by obtaining graphene oxide with larger d-values (0.8383, 0.8608 

and 0.8346 nm Table 6.2.4.1) compared to another project (0.802 nm [47]), where it was 

neglected.  

The graphene oxide gel has demonstrated a change in its properties over time. A 

transformation was noticed with the GOS6 as it was not usable for membrane production 

directly after it had been synthesized, but after few months the gel produced good 

membranes. The coloration of the gel had darkened and the d-value showed to decreased 

(0.8504 nm to 0.8346 nm) in size if the gel is left to rest.  

The purification stage of the gel production was investigated with Elemental Analysis to see 

what changes in the composition of graphene oxide occur. A difference between the content 

of sulfur was registered if the gel was left to rest for a couples of days after purification with 

water. The reason for the phenomenon is believed to be due to the hydrolysis of the sulphate 

moieties over time. In addition, the amount HCl solution used for purification is concluded 

to be enough, but the amount of water should be increased, as the composition didn’t reach 

the level, where the content of elements became stable.   

As previously mentioned, the gels used for membrane production, were characterized to 

have all the reported bonds in the literature – OH, C=O, C=C, C-O - [26]. The concentration 

of the GO gels matches the data obtained in previous projects and was measured to be in 

average 2.1 wt%. 

The gathered XRD results showed an almost instantaneous thermal reduction when 140°C 

was used. The exfoliation of the GO crystals is seen on the XRD plots from the reduction 

duration of 30 minutes and upwards. The pace of the thermal reduction at 120°C is much 

slower and needs some time before the conversion to rGO is seen on the XRD plots.  

The slow speed in the reduction at 120°C was seen in the results from DSA as well. The 

polarity and surface energy changed very little within the first hour of reduction at 120°C. 

The membranes reduced at 140°C have a noticeable decrease in the polarity of the 

membrane as the duration of the process increases. 

The conversion rate of GO to rGO could be affecting the surface area of the membrane, but 

not the pore size distribution. The membranes reduced at 140 °C had similar pore size 

distribution and specific surface even at different durations of reduction. The surface area 
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was found to vary slightly between the membranes reduced at 120°C, while the pore size 

distribution remained the same. Zeta potential was measured to be more negative for 

membrane with shorter reduction duration compared to longer ones.  

An attempt to test and quantify the photocatalytic activity using methylene blue solution 

and UV irradiation was done. During the testing the concentration of the dye decreased 

with all samples, which lead to believe either graphene oxide has photocatalytic properties 

or something else was happening than oxidation of methylene blue. The reason in the 

change of the concentration of methylene blue is believed to be adsorption of the dye 

molecules on the surface of GO due to electrostatic interactions.  

The photocatalytic and hydrophilic properties of GO were tested with DSA and Zeta 

Potential. The results turned out to be contradictory, where the zeta potential became more 

negative when exposed to the UV lamp, but DSA did not register any superhydrophilicity 

occurrence. The gathered results due to their contradictory nature doesn’t allow 

conclusions to be made about the photocatalytic activity of GO.  

The superhydrophilicity state of the GO/TiO2 membranes was registered. The 

photoinduced superhydrophilicity resulted in a smaller contact angle with water when 

measured with DSA and the UV exposed composite membrane’s zeta-potential was 

measured to become more negative.  
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8 RECOMMENDATIONS  

The seemingly random behavior of the graphene oxide refers strongly to the fact its 

mechanics are still not fully known and rises the demand for investigations. At this stage, 

the process has a very low chance of replication, which needs to be solved before mass 

production is put in motion.  

A method for the approximation of the end of the reaction should be developed as now the 

reaction is left to stir a certain number of hours. There isn’t any way to know how far the 

reaction has gone.  

Thorough investigation into the purification of the GO gel should be done, where the effect 

of time and number of washes is focused on, to define the procedure a little better than it 

is now.  

In addition, the properties of the GO over long-time period should be investigated. The pH, 

the sulphur content, the d-value, Raman analysis, particle size should be measured to see if 

any and what changes occur.  

The possible photocatalytic activity and the adsorption property of GO needs to be tested 

in more detail and quantified.  

A detail investigation on the swelling of the membrane and its ramification on the 

membrane properties. A more efficient way to attach the nylon and the GO/TiO2 

membrane should be found to avoid the degradation of the composite membrane. In 

addition, alternative materials as support material should be looked into.  
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