
Semester: 4

Title:
Security and Privacy in IoT Architectures

Project Period:
Autumn 2017

Semester Theme:
Master Thesis

Supervisor(s):
Henning Olesen

Project group no.:
4SER 4.7

Members
(do not write CPR.nr.):
Magnus Nebel Sohn

Pages: 71
Finished: 30-10-2017

Abstract:
In the past decade the idea of Internet of Things (IoT),
where everything from sensor devices to TV’s are
connected to the internet, has emerged.
With a great amount of different vendors and software
solutions, there is a need to address how to mitigate
security in the connected devices, and ensure the
consumer’s privacy.
This thesis presents a design for an IoT security gateway
that can raise the level of security in IoT devices, without
demanding the devices to be designed in a specific way.
The thesis is based on research about current IoT
security solutions and consumer products on the market.
This in combination has provided the relevant
information to be able to create gateway, that by the help
of meta data from the transmssion of IoT devices is able
to notify user’s about possible security breaches, and
possibly block transmissions if desired.

Aalborg University Copenhagen
A.C. Meyers Vænge 15
2450 København SV

Semester Coordinator: Henning
Olesen

Secretary: Maiken Keller

When uploading this document to Digital Exam each group member confirms that all have
participated equally in the project work and that they collectively are responsible for the content of the
project report. Furthermore each group member is liable for that there is no plagiarism in the report.

Security and Privacy in IoT
Architectures

Magnus Nebel Sohn

Master Thesis

Innovative Communication Tehcnologies and Entrepreneuship

AAU - Copenhagen

� af �1 71

Security and Privacy in IoT Architectures	 1

1. Introduction	 4

1.2 Motivation	 4

1.3 Delimitations	 6

2. Methodology	 7

3. Background	 8

3.1 The CIA Triad	 8

3.2 Related Research	 9

3.2.1. Risks and Threats	 11

3.2.2. IoT Security Solutions	 14

3.2.3 Frameworks	 16

3.3. State of The Art	 19

3.3.1. Known Attacks	 19

3.3.2. Smart home devices	 20

3.3.3 Scenarios	 21

3.3.4. Technologies	 25

4. Analysis	 28

4.1 Preface	 28

4.1.1 Deducting Scenarios	 28

4.1.2 Protocols and frameworks	 29

4.2 Overview	 30

4.3 Meta Data	 31

4.3.1 Hardware	 32

4.3.2 Internet Protocol	 32

4.3.3 Various Meta data	 34

4.4. Gateway - Logging	 35

4.5 Security Mechanisms	 36

4.5.1. Risks and Threats	 37

4.5.2 Logic	 41

4.5.3 Policies	 43

4.5.4 Training	 45

4.5.5 User Interaction	 46

4.6 Requirements	 47

5. System Design	 51

5.1 System Overview	 51

5.2 Gateway	 52

� af �2 71

5.3 Policy	 55

5.4 Policy Repository	 57

5.5 Web application	 58

6 Implementation	 60

6.1 Deployment	 60

6.2 IoT Security Gateway	 61

6.2.1 Logging	 61

6.2.2 IP Tables:	 63

6.3 Policy Setup	 63

6.4 Proof of Concept	 65

7. Future Work	 67

7.1 Web application	 67

7.2 Registration	 67

7.3 Automation	 68

8 Discussion	 69

9 Conclusion	 71

� af �3 71

1. Introduction

Throughout the past decade the term Internet of Things (IoT), has been more frequently
within the world of ICT. The term IoT covers, as the name suggests, things connected to
the internet by various technologies. This could be anything from a regular WiFi
connection and Bluetooth Low Energy to RFID technologies. The “things” connected vary
from TV’s and coffee machines, to embedded sensors in industrial manufacturing
machines. Common to all of the devices are, that they are able to connect to other devices
and servers, transmit and receive data, and to some extend, act upon this autonomously.
Within the recent years the number of IoT devices has exploded in both the industrial, and
consumer industry. This means that the number of connected devices have extended
several billions. With so many devices and a vast amount of manufacturers, there is a
great need for some kind of standardization and regulation within the area. This both in
regard to protocols and technologies, both especially in terms of security and privacy of
both the devices, and the data they handle.
Almost every month, new examples of IoT devices being compromised appears in the
media, this could be anything perpetrators taking over a number of connected devices and
include them in a botnet, as to a connected “nanny-cam” sending a live footage through an
insecure connection for everyone to watch.

1.2 Motivation

As stated in the introduction of this thesis there is a lack of privacy and security controls
within the world of IoT. Therefore there could be huge benefits for both consumers and
manufacturers to investigate the security and privacy measures in these devices, which
also is the motivation for this thesis. However there is a big difference between devices
made for the industry, which often are designed for a very specific purpose, and running in
an internal network, and devices for private consumers, that are mass produced at a low
cost, and not taking the individual consumer’s knowledge, technological skills, and setup
into account.
Therefore the main focus of this thesis will be on the security measurements and privacy
objectives in consumer-oriented IoT products.
The aim is to investigate how the security can be increased in the huge amount of IoT
devices consumers are offered today. This in such a way that the consumer should not
need any deep technical skills to increase the security in his or hers devices, and should
not have to be aware of which manufacturers his or hers devices origin from. Furthermore
a goal is to let the owner of the devices have control over his or hers own data, and to
whom it is shared.

� af �4 71

By this, the research question of this thesis will be as follows:

How can security measures and privacy in IoT consumer products be raised with
the help of a combined hardware and software gateway, that puts the user in

charge?

With the following sub-questions:
Without changing the design and implementation of the devices?

Without taking the type and make of the device into account?

The outcome of the research question will be a thorough analysis of how to secure, and
ensure privacy in IoT devices, based on scientific research and real life products. This will
lead to a proposal of an architecture of how to design a gateway that can handle various
security risks in the end devices, and at the same time help managing the user’s data, and
thus his or hers privacy.
Furthermore a prototype will be developed from the outcome of the proposed architecture,
in order to demonstrate how such a setup could work in a real life environment. The
prototype should be able to handle and manage security risks towards IoT devices with the
help of relevant frameworks and policies.
To get a better understanding of the outcome, of the thesis, a very early overview of the
system will be presented in the following figure:

Figure 1: Initial overview of system architecture

� af �5 71

Figure 1 above shows a proposal of how an IoT setup could be. Every device is connected
to the gateway, which will handle the security measurements and the policies for the
device, as well as the connection to a possible server outside the perimeter of the local
network. Furthermore the IoT Gateway also connects to a web application, which is
responsible for handling the policies and to communicate with the owner of the IoT
devices, letting him or her take action upon possible incidents, which subsequently is
communicated back to the IoT Gateway, which enforces the rules.
Besides this, an IoT device can also be connected directly to a smartphone, depending on
type of the device. Regardless of how the devices connect, the gateway will always be the
entity handling the security and privacy rules for all devices within the network.
This kind of setup will in that way, be able to handle to whom the user’s data should be
presented, and monitor the IoT devices traffic for malicious activity.

1.3 Delimitations

This thesis will primarily focus on raising the level of security in IoT devices by the means
of a gateway, however will be areas within this field that will not be the focus of the thesis,
these areas are:

• User Interface
• Bootstrapping of the devices
• User authentication and authorization

It is clear that these parts are needed in order to create a full implementation of the
proposed system, however it is considered out of scope for this thesis and therefore will
not be analyzed and implemented. The last chapters of the thesis discussing future work
might lightly touch some of the areas, but they are not seen as an essential part of this
project.

� af �6 71

2. Methodology

The methodology used in this thesis cannot be described as a straight road to, create a
solution to the problem stated in the early beginning of the thesis. If any it is better
described as a bumpy gravel road from the beginning to the end.
As many projects, this started with an idea of a problem one has noticed in during one’s
everyday life, in this case the rising of IoT devices, and the problems that lies within
connecting all kinds of products to the internet. Also as for many other ideas, the solution
to a problem is imagined right away, without concerns about whether the problem already
has been solved, or for that matter how to solve it, which was also the case for this project,
with the envisioned solution lightly described in the introduction. Needles to say, the case
is seldom that easy to solve.
Therefore a structural approach to solve the problem was needed. The first thing to do was
to take a look into what kind of real devices existing on the market, to get a grasp of the
functionalities and technical setup of these devices. This has helped provide an idea of the
subjects that had to be protected and as such how the system should be able to solve this.
Naturally it is of interest to look into what have been done before this project, both to know
how researchers propose to solve this problem in general, and what tools can be used to
solve the problem. Last but not least, it was interesting to look into known attacks towards
IoT devices.
All of this information has been used as background information for solving the problem. It
has been the basis for the analysis in the thesis, and thus the basis for the system as a
whole.
Yet the approach has not been a direct research, analyze, develop approach. During a
process like this, new information will be uncovered, forcing one to revisit both all different
sections of the project, all the way through the process. New ideas emerge, making initial
findings seem obsolete and therefore needs to be changed. This has indeed also been the
case for this project.
The process and method of this project, can in that way said to be very iterative, where
every part and chapter has been revisited with new findings, whenever they would arise.
In the same way the research and analysis part have not been totally separated from the
developing part, as the thoughts about how to develop the solution has been in the
background throughout all phases of the project, and that development and testing
solutions and technologies has been a parallel track to the research and writing. It could
be called an agile process, where one hasn’t decided on a single solution in the beginning
and sticks to that until the end. In reality it is the only feasible solution to do this, as the risk
of a lot of work would be wasted by basing everything on a waterfall model, just going
straight from one end to another.

� af �7 71

3. Background

The following chapter is going to cover the relevant background research for this thesis.
The aim is to create a basic overview of IT security, both general security principles, and
how they relate to IoT systems. Additionally the chapter will reveal information about
attacks, vulnerabilities, and how they can be mitigated. This primarily by going through
research within the area, to uncover already known problems and how they have been
mitigated. Lastly the chapter will present relevant work trying to mitigate threats in IoT
services, that will help to understand what to focus on, when designing a system that
should be able to protect IoT home systems.

3.1 The CIA Triad

When working with IT security, often three core concepts comes into play, namely
“Confidentiality, Integrity, and Availability”. These three concepts are also commonly
referred to as the CIA Triad. As described in [1] these concepts covers most aspects of IT
security, described as the following:

“
Confidentiality: Preserving authorized restrictions on information access and disclosure,
including means for protecting personal privacy and proprietary information. A loss of
confidentiality is the unauthorized disclosure of information.

Integrity: Guarding against improper information modification or destruction, including
ensuring information nonrepudiation and authenticity. A loss of integrity is the unauthorized
modification or destruction of information.

Availability: Ensuring timely and reliable access to and use of information. A loss of
availability is the disruption of access to or use of information or an information system.
“[2].

Even though the CIA triad provides a good high level overview of different aspects of
security, it is very generic, and does not specify relevant functions of security and how to
implement these.
Regardless of this, it has been used for several years, and is still used today. Therefore it
will also be a part of the analysis in this thesis, as the model is easy to manage, and thus
can be used as a guideline, when analyzing the problems opposed to.

� af �8 71

3.2 Related Research

The literature about IoT is vast, since the term was first mentioned by Kevin Ashton in
1999[3], the research conducted within the area has been tremendous. Everything from
very simple applications with RFID chips getting scanned, to IoT networks covering whole
cities is a part of this area of research. However in this section the focus will primarily be
on “newer” IoT applications where the devices is interconnected both to each other, and to
the internet, either directly, through a gateway, smartphone, or similar. As the aim of this
thesis is to create a solution for devices that are constantly connected, and not just when
scanned by a RFID or NFC reader.

In a blogpost on eSecurity Planet, Sekhar Sarukkai states that a Hewlett Packard study
from 2014 reveals that up to 70 percent of IoT devices are vulnerable to an attack, and
another study from Data Corporation estimates that by this year 90 percent of
organizations will have a breach related to IoT.[4]
Furthermore a white paper released by Canonical in January this year elaborates on the
threats to IoT devices and why they exits. The paper lists some of the vulnerabilities to IoT
devices, by the security researcher Brian Krebs[5]:

“
• Hard-coded passwords
• Fundamentally weak security at both the software and hardware levels
• Lack of software updates
• The size of the opportunity

“

The reasons listed above, are obvious and probably on the first page in the book of
security researchers and advisors, nevertheless it still poses a problem for the industry. As
this thesis does not aim to explain why IoT devices are so vulnerable compared to other
ICT systems there will not be thorough analysis of why these vulnerabilities still exits in
products, whose very nature are connectivity and data transmission. However it is
interesting to look into the flaws of IoT security and privacy, and what researchers and
professionals have done to mitigate some of these vulnerabilities.

In an analysis conducted by Gaona-garcía, Paulo et. al. they divide the IoT into three main
layers, similar to the OSI model, as the following[6]:

• The lower level, is the perception layer used mainly to capture, gather, distinguish and
identify object information. The layer includes RFID tags and literacy devices, cameras,
GPS, sensors, laser scanner, and so on.

• The second level is the network layer, which is used to transmit and process information
obtained by the layer of perception and provides such information to the application
layer, with the support of reliable communication.

� af �9 71

• The upper level is the application layer, used to process data intelligently, and
aggregation of data from various sources with different types. The layer implements
control and information management, making use of cloud computing, data mining etc.

As the study suggests, this model is one way to help design a reliable and secure IoT
network.
Looking at the models three layers, the lower level, which can be compared to the physical
layer in the OSI model, takes care of the data capturing done by the IoT devices. For a
third party it is hard to change anything in this level, as it is build into the hardware.
The second and upper level on the other hand deals with the network and application
layer. In these levels of the infrastructure it is possible to for at third party, which is not the
manufacturer of the product, to work to improve the security, both in terms of analyzing the
traffic and mitigating attacks.

From this model, it makes sense to take a look into the relevant layers, how they work and
their security and privacy measurements. The same study, has depicted a model that
identifies the security areas in IoT(see figure 2)

�
Figure 2: Security areas in IoT[6]

From this model especially three areas are of interest: “Communications”, “Actuators” and
“Devices”.

Communications: The type of communication technology and protocol, the type of security
implemented, if any.

Devices: How are they secured, and how can they be infected e.g. with malware that are
capable of DDOS attacks or transmitting private data.

� af �10 71

Actuators: Who are the actuators, what can they do with the devices and what kind of data
do they get access to?

Some of the conclusions from the study, shows what vulnerabilities IoT devices face, such
as:
“If communication channel is not adequately protected by encrypting data, it can be easy
for an attacker to carry out attacks.”[6]. and “Another common feature characteristic to a
large quantity of IOT devices, is that they use cloud services. In this case these
applications have other potential risk; for instance; if there are deficiencies in the
management or update the platforms; intruder would be able to access the information
store and even take control of the IOT device.”[6]
Which leads to another risk, which have been debated a lot lately, namely the following:
“There is a specific need for research into the availability of communication due to DDoS
and service provided by IP. In addition, the integrity of the devices must ensure their
freedom from malware such as spyware or rootkits, seeing the need for more research.
Finally, almost all areas lack mechanisms applicable in the privacy of Internet of Things”[7]

Despite the fact, that there are great risks associated with IoT and the devices,
frameworks trying to handle some of the problems with IoT have been developed, or is
under development. In a research paper by Mohammad Irshad from the Singtel Cyber
Security Institute[8] 4 different frameworks are analyzed in order to get an overview of how
the security threats are handled according to ISO 27001. Even though these frameworks
are able to handle some of the security issues in IoT, they are not able to take care of the
issues if the connected devices themselves does not implement the means from the
frameworks. Therefore, until the frameworks suggested are implemented in the devices,
there will be no assurance that the devices are able tot handle the security risks they are
faced with.

3.2.1. Risks and Threats

In order to be able to mitigate risks and threats in the world of IoT, an overview of these
are needed. As there exists several threats and risks for regular computer systems and
networks, so does for the IoT. Several studies emerge around this issue. In this
subsection, some of the findings from the research about this topic will be revealed, in
order to gain knowledge about the focus areas of the subject. The section will be a
summarization of the relevant findings, meaning that not all risks and threats will be
covered, merely those found relevant to the specific problem stated earlier.

In the study “Threat-based Security Analysis for the Internet of Things” by Ahmad W.
Atamali and Andrew Martin[9] three IoT use cases, their threats and impacts are reviewed.

� af �11 71

In the study three sources of threats are discovered, namely: Malicious User, Bad
Manufacturer and External Adversary[9]. From this different security properties and privacy
issues, in regards to IoT are deducted, whereas the most relevant to this project are:

“
• An access control mechanisms is needed in each device in order to prevent

unauthorized access from compromising the entire system…
• Identification and authorization mechanisms should be employed…
• The data exchanged between a user and the IoT devices should be protected so that an

attacker eavesdropping on the communication can't infer information about the user…
• The messages exchanged between IoT devices must not reveal Personal Information

Identity (PII) of the user.
• Signals from a device must be sent in a privacy preserving manner so as not to reveal

the device's function since this can reveal information about the user.
• The IoT devices should keep a record of personal user information only when absolutely

necessary, and in such a case it should be for a limited time only.
• Only data that doesn't reveal the personal information of the user can be collected such

as aggregated data, e.g keeping a record of the number of people in a building, but not
data relating to their identity like name, ID, and visual image.

• The user should be made aware what and when data is being captured.
• The user must be able to securely erase all private data from a device, e.g. if the device

is to be resold.
“

Depending on the device and their services, the above listed properties might not be
desirable nor necessary. Regardless, they provide a good overview of what to take care in
terms of privacy and security in IoT devices.

Another study, “Security and privacy in the Internet of Things: Current status and open
issues” from the same year, also assesses the status of security and privacy in IoT[10].
Also here it is found that some of the threats to IoT is Denial-of-Service attacks as well as
attacks on privacy. Where some of the attacks on privacy are described as: Eavesdropping
and passive monitoring, Traffic analysis and Data mining[10].
Besides this the study finds that some of the challenges within IoT consist of User Privacy
and Data Protection, Authentication and Data Management, Trust Management and Policy
Integration, and Authorization and Access Control.[10]

A third study from 2012 by Kozlov et. al.[11] maps threats in IoT Architectures in different
operational areas such as health care and home electronics. The conclusion from the
study reveals the important threats are as follows: eavesdropping, man-in-the-middle, data
confidentiality and getting control of components by malicious and unauthorized persons.
[12]

� af �12 71

In a study by Barbar et. al. [13] a proposed hardware and software design method is
presented. As the study focuses on the full stack of IoT devices including the hardware
design, not every of the findings are relevant, however some of the proposals are of
interest to this thesis:
“
User identification: It refers to the process of validating users before allowing them to use
the system.

Secure network access: This provides a network connection or service access only if the
device is authorized.

Secure data communication: It includes authenticating communicating peers, ensuring
confidentiality and integrity of communicated data, preventing repudiation of a
communication transaction, and protecting the identity of communicating entities.

Identity Management: It is broad administrative area that deals with identifying individuals/
things in a system and controlling their access to resources within that system by
associating user rights and restrictions with the established identity.
“

Another more recent study by Pasha et. al.[14] describes a security architecture divided
into groups, namely the physical part which constitutes the following: Local IoT devices,
Local Networks, Physical access to local devices and networks.
The network part: Back end cloud services, communication between cloud and IoT
devices
The application part: Communication between mobile applications and IoT devices,
communication between the user’s application and cloud services.
The study proposes several ways to mitigate the threats, such as making sure to change
default passwords, making sure the cloud is protected and to check security
measurements before buying a product. Regardless of these suggestions, it does not help
to protect an unsecured or vulnerable device, which is also discussed in the paper,
suggesting that IoT devices should be secure by design.
Furthermore the study lists nine important attack vectors relevant to IoT systems. These
vectors lists as the following[14]:
“
1) Weak authentication or authorization.
2) Weak security on network services.
3) Weak security configuration.
4) Lack of encryption in transportation.
5) Weak security on cloud interface.
6) Weak security on mobile interface.
7) Weak Firmware security.
8) Weak physical security.“

� af �13 71

By this, it has been established, that there indeed exists security and privacy threats within
the world of IoT that needs to be addressed. Even though many of the threats looks similar
to the ones known from regular computing and networking, they way to mitigate these
threats calls for different solutions than the ones already known. Primarily because most
IoT devices are very limited in terms of interfaces and computing power, compared to
regular computers. This means that the user will have another way of interacting with the
devices compared to a “regular” computer. Therefore the user will not necessarily know
when an IoT device is attacked. Furthermore, due to the limited resources of these
devices, normal countermeasures such as antivirus and similar are not applicable, making
the devices harder to protect.

3.2.2. IoT Security Solutions

When looking into security in IoT devices, one have to consider the differences between
these kind of devices and regular computers and security measurements related to those.
Seen from a high level perspective the objectives one wants accomplish are the same as
known for computer security in decades, namely: Confidentiality, Integrity and Availability,
naturally depending on the application of the device. However, as the devices used for IoT
applications often differ from regular computers, the means to accomplish these goals can
be very different as those known from regular computer or IT security. Which has also
been described in the preceding section.
Several reports have been analyzing how security frameworks for IoT devices could be
designed in the future. This section aims to elaborate some of that work, in order to help
identifying how a system to enhance IoT home devices security could be designed.

In the research paper “Security Requirements Analysis for the IoT” by Se-Ra Oh and
Young-Gab Kim[15] findings about security requirements in IoT is presented, whereas
some of the most important are the heterogeneity in the field of IoT, where it is argued that
“The biggest problem of heterogeneity is absence of common security service”, and “For
providing common security service, unified IoT security standard has to be
established”[15]. It is also argued that due to the lack of performance in many IoT devices,
it is not possible to integrate known standards such as TLS and AES in the devices,
therefore new algorithms taking this problem into consideration should be designed.
Furthermore the work mentions different attacks related to IoT, most of them are known
from regular IT security such as: buffer overflow, sniffing, man-in-the-middle and spoofing.
However it is stated that namely because of the heterogeneity in IoT devices, it is hard to
overcome such attacks, and because of the lack of performance in IoT devices, it is also
increasingly difficult to overcome the problems with e.g. A DOS attack.
Similar to the paper by Se-Ra Oh and Young-Gab, Jarkko Kuusijärvi et al. has presented a
research paper “Mitigating IoT Security Threats with a Trusted Network Element” where a
question from the SANS institute is presented, as the following: “What do you think the
greatest threat to Internet of Things will be over the next 5 years?”[16] 31% of the replies

� af �14 71

was “Difficulty patching Things, leaving them vulnerable”[16]. This answer can to some
extent be seen in relation to the findings in the paper by Se-Ra Oh et. al. and the
heterogeneous nature of IoT devices. However Jarkko Kuusijärvi et al. introduces a more
specific solution to the problem namely what they call a “Trusted Network Element”.

Figure 3: SECURED logical architecture[17]

The figure (3) above, depicts an overview of how the solution with a trusted network
element works. As described in the paper[18] the idea is to let all user terminals, that be a
regular computer or an IoT device, be connected to the Network Edge Device (NED) which
then handles the security for the user terminal. This is done by the help of different
repositories in example the PSA repository is described as follows: “The user's security
policies are enforced by Personal Security Application(s) (PSAs) running in the NED. The
PSAs are the security controls required for enforcing confidentiality, integrity and
availability. The PSAs are fetched by the NED from a PSA repository.”[19]. Furthermore
the NED adds another layer of policy handling, as it also provides a “Policy repository”
where policies in different levels can be defined, depending on the type of user and
organization the user terminal belongs to, in example a specific company or
organization[20].
The general ideas of these policies are that the can be enforced by the NED, depending
on the user terminal (in this case an IoT device) connected to the NED. The NED enforces
different policies making it possible to raise the level of security for the user terminal
connected through the NED. As examples specific for IoT devices, can be mentioned
policies such as bandwidth control, malware detection, logging and several other
functionalities (for a full list of the functionalities, see appendix A).

� af �15 71

The NED also features other functionalities such as verification and authentication
services, which are highly relevant as well, however this section will not go into details with
that, as the most relevant parts are the offloading of security services to the NED instead
of letting the user terminal/IoT device handle the security.
This approach to IoT security aligns very well with some research from Gartner Inc. In an
analysis from November 2016, “Predicts 2017: Security Solutions”[21] some of the key
findings and recommendations are as follows:

“Expect a shift in spend from endpoint-based IoT security to gateway-based security
features.”

“As a result of current network firewalls' limited ability to understand, share and collaborate
on internal network threats, firewall providers will adapt existing firewall policies to
incorporate historical threat detection into access control policy decisions.”

“The adoption of public cloud computing will drive demand for MSSPs to provide security
monitoring capabilities. This will create competitive differentiation opportunities for the few
providers with security monitoring service capabilities for public cloud environments.”

“The specific nature of many IoT devices and sensors makes many traditional security
controls inadequate; therefore, develop new security delivery models, such as IoT security
gateways and embedded security features at the semiconductor level”.

From the preceding chapters it becomes apparent that the risks and threats for IoT
solutions indeed exists, and these problems in many ways are the same as known from
general IT security. However it is also shown that the trying to solve these problems cannot
necessarily be handled in the same way as it has been done with regular computers.
The findings clearly shows a tendency for IoT security handling to be expanded beyond
the actual IoT end devices, to an end point similar to the suggestions presented in the
paper “Mitigating IoT Security Threats with a Trusted Network Element”.

3.2.3 Frameworks

In order to have a basis on how to analyze and solve some of the security problems in IoT
consumer devices, it makes sense to have a described framework to define objectives of
what should be accomplished. As it has already been described earlier, the world of IoT is
very heterogeneous, therefore the frameworks to be used should not be to specific to a
certain area, but more generic, in order to use them as a guideline for the analysis.

A good example of such a framework is the “Framework for Improving Critical
Infrastructure Cybersecurity” by NIST[22]. The framework is not specific to IoT devices, but

� af �16 71

helps with a good high level overview of how to address IT security, whether to be used in
organizations or in this case to analyze security in IoT devices.

Figure 4: Framework Core Structure[23]

Figure 4 above shows a high level overview of the framework, where five different
functions are defined. By the publication, it is described that the functions aids in
expressing the management of cybersecurity risks, addressing threats, and improving and
learning from previous activities[24].
The categories and subcategories of each function is used to split each function into lower
level activities such as access control and detection processes.
According to the publication each function can be described by the following:

- "Identify – Develop the organizational understanding to manage cybersecurity risk to
systems, assets, data, and capabilities.

- Protect – Develop and implement the appropriate safeguards to ensure delivery of
critical infrastructure services.

- Detect – Develop and implement the appropriate activities to identify the occurrence of a
cybersecurity event.

- Respond – Develop and implement the appropriate activities to take action regarding a
detected cybersecurity event.

- Recover – Develop and implement the appropriate activities to maintain plans for
resilience and to restore any capabilities or services that were impaired due to a
cybersecurity event.”[25]

� af �17 71

As the framework is not directly related to IoT security, it is not necessarily all functions
that can be implemented as described, and some might not even be applicable to the
concept, regardless of this, it is believed to be a good guideline when analyzing the
proposed solution.

Another paper by Dong Hee Kim et. al.[26] identifies some of the key requirements of
security in IoT for service providers. The paper focuses on ranking the most important
security requirements in an IoT services lifecycle for service providers of IoT. This means
that some of the requirements requires access to the software of the device in example to
ensure the use of secure protocols, therefore not all requirements of this model will be
applicable to this project, as the aim is to raise security without having the possibility to
change the implementation of different IoT devices, regardless, the model gives a good
overview of important requirements for IoT security.

Figure 5: ANP Network model for IoT security requirements[27]

Especially Phase A and C as shown in figure 5 above are of interest, noticing that objective
A1 aligns very well with the NIST framework described in the preceding section, and
phase C; operate and manage are of high interest, as the proposed solution will have a
high focus on managing the security of IoT devices connected to a consumer’s home
network.

These two frameworks will be a basis of the analysis in order to be able to design a
system that raises the security level of IoT home devices. Therefore these will be referred
to throughout th analysis among with the other findings of the background chapter.

� af �18 71

3.3. State of The Art

In the following chapter State of The Art relevant real world attacks, products and
technologies for this thesis will be elaborated. The chapter will cover a broad number of
subjects. The first part of the chapter is going to focus on known attacks at different IoT
services to show that these problems exists outside the academic literature.
Furthermore some of the IoT consumer devices on the market today will be described, this
description will lead to create more generic scenarios of how different IoT setups are
designed, to help analyze setups and data flow of such devices.
Lastly some of the technologies that will be used to design the prototype, that should be
the outcome of this thesis will be described, this is done create an outline of the
capabilities of the technologies used in the design of the system.

3.3.1. Known Attacks

One thing is how researchers and companies within the world of IoT analyses threats and
tries to design IoT systems more persistent to threats than those known today. Another
thing is how IoT systems weaknesses are actually exploited in todays world. This
subsection will investigate some of the known attacks to IoT devices, in order to uncover
what problems exists in the world of IoT today. It will not be possible to uncover all attacks,
but it will provide and overview of what the world has seen in the recent past.

Voice Recordings Held for Ransom
A news story from February 2017[28] tells the story about a kids product, a stuffed teddy
bear able to record voice conversations, has been attacked. Two million voice recordings
were held ransom. The product is able to record voices and conversation, and by the help
of an application installed on the user’s smartphone store and transmit those recordings to
other users’. The attack happened due to an insecure MongoDB at the company’s
backend. The insecure database let the attackers harvest all the information, delete the
original information, and thus demand a ransom to let the users get access to their
information again. Furthermore the general login information was very weak, making it
easy to access user information such as email addresses and login data.

Worm Infecting Light Bulbs
This attack is developed by scientists that explore the Philips Hue light Bulbs. In a story
from The Register[29] It is explained that researchers have been able to create a worm
that exploits hardcoded encryption keys, and thus is able to jump from bulb to bulb just via
the direct Zigbee connection between bulbs. The worm is described as the following by the
researchers:

“The worm spreads by jumping directly from one lamp to its neighbors, using only their
built-in ZigBee wireless connectivity and their physical proximity. The attack can start by

� af �19 71

plugging in a single infected bulb anywhere in the city, and then catastrophically spread
everywhere within minutes, enabling the attacker to turn all the city lights on or off,
permanently brick them, or exploit them in a massive DDOS attack.”[29]

The Mirai Attack
The Mirai attack happened in October 2016, where a massive DDOS attack was aimed at
Dyn (an internet infrastructure company), around the world. The attack primarily came
from insecure IoT devices. As Brian Krebs describes on his blog KrebsonSecurity[30], the
attacks was primarily performed by hacked IoT devices. The Mirai searches the internet for
unprotected devices with the aim of overtaking them for a DDOS attack. The attack is
mainly possible due to badly protected IoT devices with weak usernames and passwords.
An example of this is provided by the Computerworld[31] which is telling the story that a
Chinese manufacturer with the name of Hangzhou Xiongmai Technology who produces
DVR’s and internet connected cameras, became a part of the attack. Due to weak default
passwords, not changed by the buyer of the product, the Mirai Malware spread to more
than 500.000 of their products, helping the attackers to create a major bonnet able to
perform a massive DDOS attack.¨

3.3.2. Smart home devices

Philips Hue
The Philips Hue, is possibly one of the most known commercial IoT systems for the home.
The Philips Hue System is a connected set of light bulbs which can be managed via a
smartphone application or similar. The system consists of four main components[32]

Apps: This can be anything from the official smartphone app from Philips to home
composed apps created by the helps of the Hue API.
Bridge: The bridge handles the connection between the bulbs and the apps through API’s
Where most of them requires a direct connection to the bridge.
Portal: A web portal provided by Phillips that connects the bridge, and thereby the bulbs to
the internet.
Lights: This is the actual LED light bulbs. The lights are able to create a mesh network
between each other, and naturally connect to the bridge, all of this communication is
handled through the Zigbee technology[33].

The Philips Hue system let developers create their own applications by the help of their
RESTful API, however it is important to note that it is only possible to use the API if the
application is running on the same network as the bridge[32], whereas Philips’ proprietary
smartphone application lets the user control the lights from anywhere as long the device is
connected to the internet[33].

� af �20 71

Google Nest
The products from Nest, are mainly based on home automation and connectivity, they
started building their first prototype of a thermostat in the end of 2010 [34]. Now the
company offers several products such cameras for surveillance and connected smoke
alarms[35].

Directly connected devices
Another type of products within the world of home IoT devices, are the ones that are
directly connected to the home’s internet gateway through WiFi of Ethernet. These kind of
products, does not come with a manufacturer controlled bridge like the ones presented
previously, but are connected directly to the internet like at smartphone or home computer.

An example of a directly connected device is the coffee machine Smarter Coffee by the
manufacturer Smarter[36]. The manufacturer does not tell much about the architecture of
the coffee machine, besides that it comes with WiFi connection and app from where you
can control the coffee machine. However looking at the manuals for the machine on their
web page[37], it shows that connecting the machine to the internet, is very similar to
connecting any other WiFi device, namely choosing a network to connect to and enter the
required credentials. As the product does not offer any APIs or web interface, the only
means of control for the user is through the proprietary app provided by the company. This
also means that user does not have any control of how the device connects to the internet
and what kinds of data it transmits to the company’s server.

Local connected devices
A third way of connecting devices, is through a local connection directly to a computer or
smartphone. An example of this is the Nespresso device Prodigio [38]. This machine has a
Bluetooth connection, that connects directly to a smartphone and by the means of the
Nespresso app, it is possible to brew a cup of coffee, check status of the machine, etc. In
this case the device’s connection to the outside world is handled by the user’s smartphone
and the app provided by the manufacturer. This means that the device is can only
communicate when connected to a smartphone via bluetooth. By This, it is solely the
smartphone and the belonging application that decides what kind of data to transmit and
when to do it. This makes the user unable to control what he or she shares with the
manufacturer (and others), and the user has to rely solely on the user agreement provided
by the manufacturer.

3.3.3 Scenarios

From the preceding section, it has been shown that IoT devices can work and be
connected in several different ways. The four examples of IoT products in State of The Art,
does far from cover every application or scenario, but it provides an overview of some of
the functionalities IoT home/home automation devices comes with. The devices described

� af �21 71

all have different functionalities, however the actual functionality is not the most important
discovery. If the device provides a way to control a home’s lights, temperature or coffee
making, is not of interest. The important note is the architecture of the devices and how
they connect.
The products described in the preceding section is not analyzed completely both in
regards to functionality and architecture, this is mainly due to two things; the lack of
information provided by the manufacturer, even though some of the devices presents API’s
for customers and others to use, and because even though a full review of the devices
was possible it would not change the fact that all of the devices are proprietary and is
meant to work “out of the box”. Therefore is it not possible to change how their hardware
nor software actually works.
Instead the assessment of these products will be used to create an overview of the
different ways IoT devices can connect to each other and the internet, in order to be able
to analyze how the security and privacy for the user can raised.
In the coming paragraphs, different setups for IoT devices will be presented in a generic
way, based on the reviews in the section 3.3.2.

Setup A:
The first setup is deducted from the functionality and architecture of the Phillips Hue
system and the Nest system. This setup is based on the actual “things” in where the
functionality lies. These things have a communication channel, in the case of Philips it is
Zigbee, but it could also be Bluetooth LE or similar. The main thing to notice is, that the
things themselves are not able to connect to the internet, a smartphone or computer, they
need an intermediary, which in the case of the Philips Hue system is a bridge that
connects the devices to the home router, from where it is possible to communicate with
other devices. However the things can create a mesh network where they are able to
communicate in-between, so not all of them has to have direct connection to the bridge,
information from the bridge can travel to a “thing" far away by the mean of other “things”
closer to the bridge.
To get a better overview of how such a system would look like a generic setup of such a
system is illustrated in figure 6 below. 

� af �22 71

Figure 6: Generic overview of setup A

As visualized in figure 6, the setup consist of 4 IoT devices connected to a bridge, either
directly or through a mesh network, letting the devices furthest away connect to the bridge
through other devices. The bridge mitigates the connection to the home router. The home
router then takes care of the connection to the user agent, in this case visualized by a
smartphone. This can be done in two ways: To a user agent connected directly to the
home router, or through the internet with the possibility of going through several servers
provided by the manufacturer of the IoT device.

Setup B:
The second scenario, describes IoT devices that are directly connected to the home router
and thereby the internet. These kind of devices has their own WiFi chip, and are thereby
able to connect without an intermediary, just like a computer or smartphone that is WiFi
enabled.
In this case the user agent, it be a smartphone or computer, will connect directly to the IoT
device through an interface, either provided on a manufacturer controlled web server, or by
connecting directly to the device which runs it own interface.

Figure 7: Generic overview of setup B1 with no manufacturer controlled web server
� af �23 71

Figure 7 shows how a setup with the IoT device directly connected to the home router and
no manufacturer controlled web server used to control and setup the devices. In this setup
the user agent connects directly to the IoT device either within the local network, or
through the internet, only with the home router as an intermediary letting the IoT device
connect to internet.

Figure 8: Generic overview of setup B2 with a manufacturer controlled web server

The above figure shows a setup of scenario B, again where the devices are directly
connected to the internet through the home router. However in this case a manufacturer
controlled server on the internet handles the communication between the device and the
user agent, and thus the server provides the interface, instead of the actual IoT device.
The two setups differ in the way the interfaces to the devices are handled, as one has a
manufacturer server provided, and the other has the interface directly build into the device.
However they go into the same group, as the commonality is their direct connection to the
internet, through the home router. This in reality entails that the only security measurement
between the devices and the great internet is the home router, possibly with a build in
firewall.

Setup C:
The last setup differs most from the two others, in this case the IoT device does not have
the possibility to connect to the internet without an intermediary nearby. The
communication has to go through a smartphone with a manufacturer developed app
installed. 

� af �24 71

Figure 9: Setup C: Generic overview of local connected IoT devices

In figure 9, an overview of how local connected IoT devices works. These kind of devices
needs a connection to a smartphone in order to be able to communicate with the outside
world. This connection goes through an app provided by the manufacturer, and thus it is
solely the manufacturer that controls the functionality of the device through the
functionalities in the app. Furthermore the device’s connection is restricted to when a
smartphone with the manufacturer provided app is in proximity of the device. In other
terms the devices can only be controlled when the user is inside or very close to his or
hers home.

The three scenarios described in this section, are elicited by the IoT products described in
section 3.3.2. The idea behind the scenarios is to present an overview of how different IoT
setups looks like in a generic way. Not taking the specific service or product into account.
With the help of these three setups the coming analysis will be able to uncover how a
system should be setup in order to solve the problem definition claimed in the beginning of
this resport, and thus deduct a requirement specification for such a system.

3.3.4. Technologies

In the following section some of the relevant technologies to be used in the project will be
described to create an overview of what they are capable of. The description will merely
serve the purpose of an overview, more detailed explanations can be given throughout the
report

Raspberry Pi
The Raspberry Pi[39] is small computer with limited capabilities, running on an ARM
system, making it perfect for running a Linux distribution. The Raspberry Pi employees an
ethernet port on all model and for some also a WiFi chip. As the machine is physical small,
low cost and low power it makes a good case for running the IoT gateway in the proposed
setup.

Python
Python is an object oriented programming language[40] which runs of a variety of Unix
platforms, Mac OS and Windows. The programming is supported with a huge number of
libraries, in example over 1000 packages for network programming exists for Python[41].

� af �25 71

REST
REST is an architecture that is defined by being stateless and uses HTTP methods. It was
originally described by Roy Felding in 2000[42].
A RESTful setup provides the possibility to communicate with a web services through well
known http methods such as: POST, GET, PUT and DELETE. It provides the possibility to
communicate with a web service and request and update resources only through these
methods. Furthermore it transfers both XML and JSON formats which can be useful when
communicating between the devices.

Mongo DB
Mongo DB is a document oriented database, which stores data in JSON like formats[43].
This also means that it is not relational like in example MySQL databases. Naturally this
have both it benefits and drawbacks, however for this system the MongoDB seems like a
good choice, this is for several reasons:

• The database is supported by Python and is easy to connect to through Python
• The JSON like format makes it easy to transfer objects to and from the database by a

RESTful service without having interpret the data transmitted.
• As the database is not relational it is easy to update with new information without having

to update the structure of the database. This can be an advantage in a project like this
very additional discoveries might occur both during the design, but also when the
system is running.

NodeJS
For building a server or web application it makes sense to use NodeJS, possible in
collaboration with other tools. NodeJS is by themselves defined as “Node is designed to
build scalable network applications.”[44].
Node is build in Javascript and by the help of HTTP, this also makes sense in relation to
the RESTful methods thought to be used throughout this project.
In example to create a server object is quite simple, see figure 10 below:

Figure 10: Create server object in NodeJS[45]

The server is called whenever a HTTP request goes into it, which makes it perfect for a
distributed setup where HTTP is thought to be the backbone of communication.

� af �26 71

Furthermore MongoDB is directly supported by NodeJS and can be installed relatively
easy, this also argues for NodeJS as a good choice for running the server.

Digital Ocean
Last but not least a host for the server is needed. There exists several services providing
web hosting, but for this project Digital Ocean has been chosen. This because it offers a
service called droplets, where a virtual server can be created with a few clicks, and is
automatically setup with the desired operating system[46]. Furthermore it exposes a public
IP address, so it can be called from anywhere without dodging around with different hacks
and difficult setups.
The choice of Digital ocean for running the web services has not been undergoing and
analysis and decided upon that, it was chosen only because of the easy setup and
manage. It might not be the best choice if undergoing an extensive analysis, but for this
project it fits its purpose.

By this the choice of technologies in this project will be concluded. The relevant
technologies in use has been described in general. More details about how they have
been implemented and where they have been used will be described in the
implementation section of this report.

� af �27 71

4. Analysis

In this chapter the focus will be on analyzing how a system as imagined in the first chapter,
could be designed. The aim is to be able to create a system that can help raise the
security level for IoT home devices, without influencing or modifying the hardware and
software of the device. The analysis will be based on the findings in the Background and
State of The Art chapter. More specifically the scenarios of IoT setups build from real IoT
home products. The outcome of the analysis will be a requirements specification for the
IoT security system, which will be used to create the system design and thus the
implementation of the system.

4.1 Preface
Before going into depth with the solutions of the IoT security system, it is important to set a
basis for the analysis, in order to make sure to focus on the right and technical feasible
solutions. This section will try sort out the sheeps from the goats, in that way the remainder
of the analysis will only focus of the relevant solutions for such a system.

4.1.1 Deducting Scenarios

As a beginning we will take a look at the three scenarios described in chapter 3, State of
the Art. Two of the scenarios, namely A and B are constructed in away where their
connection will be, either directly or indirectly connected to a home router and through that
to an internet connection. Thus making it safe to assume that the way these devices
connect would be rather static, always connected to the same router and the same internet
connection. This also makes it possible to setup an intermediary or gateway that can help
protect the IoT devices setup in the home, and thus there will be something to work with.
On the other hand, looking at scenario C (as depicted in figure 11 below), which interacts
through a smartphone and a dedicated app is harder to cope with. As a smartphone has
many other functionalities than acting as a gateway for an IoT device, there will be a lot of
connections to and from the phone, furthermore the phone works in a more dynamic
environment, where it will connect through different means, such as the cellular connection
and WiFi connections to different access points.

� af �28 71

Figure 11: Scenario C with different connection types and routes

Looking at figure 11, some different type of connections for at smartphone is visualized. To
be able to raise the security for IoT devices with the help of an intermediary, in this picture
called IoT gateway, it would require the phone only to connect through that gateway, and
not the home router or directly to the cellular network.
This is believed not to be a feasible solution, as it will limit the phone owner’s possibilities
to use the phone, furthermore many phones connects to the internet via the best available
connection, meaning that a bad connection through the IoT gateway could lead the phone
to connect directly through the cellular network or another WiFi connection.
Even though the phone would be setup to connect only through the IoT gateway, a
smartphone has a huge amount of connections, as it is not only used to control IoT
devices but anything from web browsing to gaming.
In figure 11 the IoT device’s data stream is depicted as a green dashed line an all other
connections with a red line. To let an IoT gateway be able to distinguish between these two
types of connection will be almost impossible. Just trying to do it, will possibly lead to a
huge amount of false indications of security breaches, and thus annoy the user rather than
help him/her.
By the above arguments, scenario C, where the connection from the IoT devices goes
through a smartphone to connect to the internet, will not be a part of the solution, as it is
believed to do very little good, and there neither be relevant in the rest of the analysis.

4.1.2 Protocols and frameworks

Another important consideration in the design of this solution is the idea of implementing it,
without access to the manufacturers hardware, software design, and ways of
implementation. Going through the literature theres exists several protocols and framework
proposals that should be able to raise the security level within IoT networks, however, all of
these requires the devices to have implemented such protocols, or at least access to
implement them, which is not the focus of this thesis. Furthermore, as stated in the related
research, heterogeneity of IoT devices and networks is still a huge issue, meaning that

� af �29 71

even though some devices might have implemented security features, which of course
would be a good thing, the chance is that many other devices in a user’s home might not.
Therefore implementation of different security protocols or frameworks directly to the IoT
devices will not be a part of the proposed solution and therefore not the analysis as such.

4.2 Overview

Having established what to focus on, and what not, in the analysis of the proposed system,
an overview is presented, in order to ease the understanding of how the system could be
designed and what relevant entities such the system consists of.
Figure 12 below, shows a high level overview of how a system to raise the level of IoT
security devices in a home environment.

Figure 12: High-level overview of an IoT security system

The relevant scenarios from State of the Art, have been combined and an intermediary
called IoT security gateway has been introduced between the home router and IoT
devices/IoT bridges.

The reasoning behind the IoT security gateway comes with different arguments, one of
them is from 3.3.2, where it has been shown how a network edge device, can be
introduced to help manage the security risks for IoT devices, however the setup shown by
Kuusijärvi et. al. was heavy and not as such appropriate for much simpler home setups.
Another argument is that this setup should be able to raise the security without having to
modify software and hardware in the actual IoT devices, therefore, this cannot be done
without placing an intermediary as shown in figure 12.

By the placement of the IoT security gateway, the network traffic both to and from the IoT
devices will go through this device and thus it will be possible analyze some of the data
going through the network, and by implementing the right mechanisms raise the level of
security.
In figure 13 below, an overview of the data flow between entities in the system, and the
function of the IoT security gateway.

� af �30 71

Figure 13: Data flow of different entities in the system and function of the gateway

As it is depicted the IoT security gateway should have the functionality to log the data flow
and analyze the logged data with the goal of discover and act upon possible security
breaches or misuse. As the security gateway should be able to work, no matter what kind
of IoT device connected to it, it is not feasible to let it analyze the actual payload of the
data packets transmitted, as this will differ from device to device, might be in proprietary
formats, encrypted or just impossible to understand for others than the designers of the
given device.
By this the only possibility for the gateway is to log data that makes sense to analyze, in
this case it will be the metadata from the data transferred in the network, and subsequently
try to use this data to interpret what is going on in the network.

4.3 Meta Data

As mentioned above meta data is going to play a very important role in this system, as this
is the only transmitted data that is in a standardized format, and therefore easily can be
interpreted.
By definition metadata is: “A set of data that describes and gives information about other
data.”[47]. So instead of interpreting the actual payload of the transmission, the aim is to
interpret data about the payload(data about the data). The aim of this section is too look
into the kind of metadata that is possible and relevant to extract from the network
communication flowing through the IoT security gateway, as all communication to and from
the IoT devices goes through the gateway.

In the preceding section an overview of the system is depicted in a high level, from this
overview it is clear that the IoT devices in the system in one or another way will
communicate through the internet. This means that the hardware whether it is the IoT
device itself or a bridge mediating the communication must have some networking
hardware able to connect by the means of regular network protocols such as ethernet or
WiFi. Furthermore the communication is assumed to go through the Internet Protocol[48]
which will be discussed later, however it is important to note, that the Internet Protocol (IP)

� af �31 71

in its current use exists in a version 4 and version 6 or IPv4 and IPv6 respectively.
Regardless IPv6 is the newer and the most powerful of the two, the protocol is still not
adopted widely around the world. By Google IPv6 statistics[49] it is shown that in Denmark
the penetration of IPv6 is only 2,24%, therefore in this analysis only IPv4 will be a target,
as this is still the most widely used technology.

4.3.1 Hardware

Looking at the hardware devices connected to the IoT security gateway, it will use either
the ethernet of WiFi standard, which both are of the IEEE 802 family. This means that both
of the technologies have implemented a MAC address, which is a unique hardware
address assigned to the network interface of the device. From IEEE it is described: “All
MAC protocol data units contain addressing information. The addressing information
consists of two fields: the destination MAC address and the source MAC address.”[50].
The Mac address will always be a part of the transmission inside the local area network
(LAN), to which the device is connected. This provides useful information as it will always
be possible to know the physical source and destination of a packet transmitted inside the
network.

Figure 14: Example of a MAC address for the WiFi controller in Mac OS X

As the MAC address is fixed and bound to the actual physical device, differing from the IP
address, which change depending on the network connected to, the MAC address is a
way to uniquely identify which entities are communicating which each other, and thus very
helpful analyze the communication within the network

4.3.2 Internet Protocol

Another important way extract meta data, is by the help of the internet protocol, as the IP
protocol specifies the format of how data is transported through the internet from the
source to the destination. From the standard of IPv4[51] it is described that: “ The internet
protocol implements two basic functions: addressing and fragmentation.” Which means

� af �32 71

the protocol is able to address the destination of a datagram send from any given source,
furthermore it is able to fragment data packets into smaller peaces to transfer them
through the internet and reassemble the packets at its destination.
Figure 15 depicts and example of how an internet datagram looks like by the IEEE
standard. As it has been established, this system is not aiming at analyzing the data, or
payload in the transmitted packets, therefore the interesting parts of the datagram is the
information elicited from some the fields not containing the data, also specified as the
header[52].

Figure 15: Example Internet Datagram[51]

From the header it is possible to elicit different types of information that is of interest to IoT
security gateway, not all of them will be used, but some might be interesting in order to
analyze what is going on in the network, and thus trying to interpret if some of the IoT
devices are working in a malicious way. Therefore it makes sense to go through the fields
to investigate which of them carrying relevant information.

• Ver = Version: As it has already been established this will focus on version 4 of the IP,
therefore it is also assumed that all packets uses version 4

• IHL = Internet Header Length: Informs about the length of the header to be able to see
where the payload starts. As this is merely for the receiver to know where the actual
payload starts it it not relevant to the internet security gateway.

• Type of service: Indicates what quality of service the sender desires through the network
to the destination. This is used throughout the network if supported to decide the route
to the destination. This is not of interest to the gateway as it does not give any
information about the what kind of data that might be transmitted or to whom.

• Total Length: The total length of the datagram about to be transmitted. This might be of
interest to the IoT security gateway as the length of the datagram can be relevant
information if it is combined with knowledge of the type of service the device transmitting
the datagram is providing.

• Identification: Used to help assemble fragmented datagrams. This is of no relevance to
the IoT security gateway.

� af �33 71

• Flags: Also used to help assembling the datagram, therefore of no interest to the
gateway

• Fragment offset: Help to assemble fragments of the datagram, of no interest to the
gateway

• Time to Live: Decides how long the datagram lives in the network, from source to
destination, of no interest to the gateway

• Protocol: Tells what protocol is used in the next level of the network model (eg. TCP/
UDP), this can be of interest if combined with information about the services the sending
devices provides.

• Header checksum: Checksum to be computed by each hop in the network, therefore not
relevant to the gateway.

• Source Address: The source IP address of the data packet, this is highly relevant as it
with the aid of other services can be determined whether the sender of the packet is
legitimate

• Destination address: As with the source address the destination address can be also
help to decide the legitimacy of the destination.

The points shows what can be gathered from the IP header, and what of the data that
could be relevant to the design of the IoT security gateway, the relevant data will be
elaborated further in the coming chapters

4.3.3 Various Meta data

Besides the predefined meta data from different protocols, it is also possible to gather
other types of data, that could be relevant to the gateway and analysis of the data
transmitted through it, however this is metadata is not standardized from protocols or
similar, and therefore requires work to be identified, these types of data will be discussed
below.

Timestamps
It can be of high relevance to know when devices transmits and receives data, this
knowledge combined with the type of device can help to identify if the transmitted data is
legitimate or not. Take an example of IoT light bulbs, that can be controlled from a
smartphone app or similar. A usual pattern of controlling light bulbs in one’s home would
be when one is actually home, and the sun is set, usually not in broad daylight. Naturally
there can be situations, where this is not the case, if there is a poorly lit room in the house,
or one wants it to look like there is somebody home to discourage burglars. However the
usual pattern can be assumed to be during night time, or early mornings. If such a device
suddenly starts to transmit or receive a lot of data outside the timeframe it is supposed to
be used, it could be an indication of a problem or a malicious takeover. Thus it makes
sense to know when a devices is transmitting or receiving data, and timestamps is way to

� af �34 71

mediate this, simply by letting the IoT security gateway log the time for every packet send
or received through the gateway.

Location
The location of the data packets transmitted and received can also be a way to discover if
something is wrong. As already described it is highly relevant to know the destination and
source IP addresses of the datagrams sent, these IP addresses, can amongst other things
be used to locate where a communicating party is located. Naturally the location of the IoT
device will always be known as it is in the owner’s position, however this is not the case for
the parties the device is communicating with.
Assume an American made product by Google, it will likely communicate with Googles
servers, maybe in America or with a Google data center it Europe. However if the ´product
suddenly starts to transmit data to, or receive data from a server in China or Russia there
might be something wrong. Of course it is not certain, Google might have decided to
reroute the traffic to that location, but it should definitely raise a suspicion if everything is
right. By the help of the IP address in the packets transmitted, and an IP location service
such as keycdn[53] it is possible to connect an IP address to a location, and thus detect
whether the location of a communicating party could be suspicious.

Amount of data
One thing is the data transmitted to and from a device, another thing the amount of data
transmitted. Depending on the service of the IoT device, the amount of data transmitted
can be helpful to determine if the device is only acting as supposed to. If a device, only
designed transmit relatively small amount of data this could be commands such as “turn
on”, “turn off”, “set value to x” etc., suddenly starts to transmit a huge amount of data this
can be an indication of something not right, thus it makes sense to log the amount of data
a device transmits or receives.

All of the metadata presented in this section, in combination with the type of IoT device
and the device’s services, can be used to help analyze if there is a security threat to the
devices, or if a device is misbehaving and pose a security threat to others. Therefore the
data is highly relevant to log to the IoT security gateway in order to help analyze the
network traffic.

4.4. Gateway - Logging
By the help of meta data it becomes possible to gather information about transmissions in
the network without analyzing the actual payload transmitted. By this it becomes clear that
the IoT security gateway should be able to gather the data described in the preceding
section. Thus a high level setup of the gateway would look like depicted in figure 16

� af �35 71

Figure 16: Overview of data logged by the IoT security gateway.

The gateway simply has to log all of the data depicted in the figure. The logging must be
from both sides of the network, meaning it most log both the data transmitted from IoT
devices and the data received from the home router. The logged data should then be
analyzed in order to decide whether an IoT device is acting malicious or is under attack
from an outside perpetrator. Therefore the gateway needs not only to log the data, but also
interpret the logged data. The interpretation of the data can be done either by the gateway
itself or by a third party connected to the gateway, only letting the gateway be responsible
for the logging and the transmission of the data.
A setup with a third party could have several advantages, such as computational power,
the possibility to share information with other gateways, if in example a malicious IP has
been discovered. The more detailed setup will be discussed in the chapter System design.

4.5 Security Mechanisms
In order to be able to used the logged metadata to anything it is evident to look at the
security mechanisms in such a system. This chapter is going to look into different aspects
of security in order to create the right mechanisms to design a setup where the IoT
security gateway will be able to raise the level of security for the devices connected to it.
In order to do this, different risks and threats will be analyzed, and security objectives for
the system will be identified. This will be done in accordance to data available to the
system and the limitations of the system such as the lack of possibilities to implement
better protocols or change the design of the IoT devices. The goal of the chapter is to end

� af �36 71

with a set of objectives that can be implemented in the IoT security gateway, to aid the
requirements specification and design of the IoT security gateway.

4.5.1. Risks and Threats

The first phase of this chapter is to identify some of the risks and threats IoT devices are
exposed to. To do this the background chapter will be revisited, in order to get an overview
of the known problems within the world of IoT. From chapter 3.2 it is shown that for this
project three parts are highly relevant to look into, namely; communications, devices and
actuators. In the communication it is relevant to look into if the channel used by the
devices is secured, For the devices, it is interesting to look into the capability of the IoT
device, and thus the risks and threats it exposes. Lastly the actuators are interesting, who
are they and what are their possibilities exploit the IoT devices.
From the background, different risks and threats have been described by the help of
different research papers and known attacks. In the following these findings will be
grouped into where they belong; devices, communications and actuators. It is important to
note that not all findings will be described as some of them are overlapping, regardless it
will provide and overview of the IoT devices vulnerabilities.

Table 1: Risk/Threats for IoT devices

In table 1 above, the most outstanding risks and threats to IoT devices, has been listed
according to the group it belongs to, which provides a good overview, however to get the
understanding of the plotting the arguments will be listed below:

Weak device security: Lack of security in the physical IoT device, such as hardcoded
passwords and lack of ability to encrypt data.

� af �37 71

Risk/Threat Device Communication Actuator

Weak device security X

Lack of software updates X X

Cloud service storing data X

Malware X X

Confidentiality X X X

Integrity X X X

Availability X X

Privacy X X X

Identity Management X X

Lack of software updates: Leaving the IoT device exposed to attacks if security
vulnerabilities in the software are not updated. The same could happen on the actuator
side, e.g., lack of ability to update server side software.

Cloud services storing data: Lack of the ability to protect data on the actuators side
could lead to loss of data and privacy.

Malware: If not protected correctly the IoT device can be exposed to malware.

Confidentiality: Lack of encryption in either hardware/actuator side or in the
communication channel can lead to loss of confidentiality.

Integrity: Lack of possibilities to sign data in the device or lack of security in the
communication channel or actuators side of the network can lead to lack of data integrity.

Availability: If not secured correctly, the IoT device can be made unavailable by e.g. a
DOS attack. Furthermore the device itself can be infected, and be a part of a DDOS
(distributed denial of service) attack, either inside the local area network connected the
device is connected to, or to outside services.

Privacy: If not protected at both the device, in the communication channel and at the
actuator, data can be stolen and lead to a loss of privacy

Identity Management: If not handled on both the device and at the actuator, personal
information might be shared with unauthorized persons.

With the above overview of risks and threats and what entities they belong to in an IoT
system, there is need to structure the elements in a reasonable way to be able to identify
how the IoT security gateway should be able to mitigate some of the risks and threats IoT
systems are exposed to.
In order to do this, the NIST Framework presented in chapter 3.2.3. will be used, in order
to create a better understanding of the objectives that has to be accomplished in order to
raise the security by the help of an IoT security gateway.
The framework will be used in the following way: The already identified threats and risk
will be broken down to sub categories, that defines the implications of the each risk or
threat. From the breakdown different protection and detection methods will be defined, in
combination with at proper respond, if there is a need to do a recovery of the system or
some of the devices, the appropriate action will be stated.
Furthermore the functions “Protect” and “Detect” might be interchanged in some cases, as
situations where detection is needed before it is possible to protect the device.

� af �38 71

Table 2: Identification of risks and threats

By the help of the breakdown presented in table 2, it is possible to take a look into how the
different categories can be protected and detected. This will be done with respect to the
possibilities the proposed IoT security gateways possess. Meaning that only the meta data
it collects can be used. Therefore mechanisms such as implementing encryption on the
devices, making cloud storage more secure and other things demanding a change in the
design of the IoT devices and respective communication parties will not be proposed. 

Identify

Categories Sub categories

Weak device security Lack of encryption

Low complexity/hardcoded passwords

Altering of data - loss of integrity

Lack of software updates Exploration of security vulnerabilities on old software

Cloud service storing data Lack of encryption

Altering of data - loss of integrity

Stealing data - loss of privacy

Malware Stealing data - loss of privacy

Altering data - loss of integrity

Botnet - used to DoS attacks

Ransomware - encrypting data

Attack other devices in the local area network

Confidentiality Lack of encryption

Stealing data - loss of privacy

Integrity Altering data

Ransomware - Encrypting data

Availability DOS attack towards to device

DDOS attack from the device controlled by a botnet

Privacy Lack of encryption - stealing data

Identity Management Unauthorized access to the device

� af �39 71

Table 3: Protection of IoT devices

In table 3 presented above, the methods to protect an IoT by the means of the IoT security
gateway is presented, the sub categories marked with N/A means that the vulnerability
cannot be mediated by the possibilities the proposed gateway implements. From the table
the protection by just blocking the communication that constitutes potential risks seem
trivial. However that is far from the case, as one has to known what is a potential risk and
what not. Of course there might be certain cases where it is obvious, but besides these
cases, it requires a well considered logic to handle. Therefore the detection of possible of
security incidents plays as an important role as the protection.

Protect

Categories Sub categories

Lack of encryption Block transmissions through unsecured protocols

Low complexity passwords Urge the user to change password if possible

Altering data N/A

Lack of software updates N/A

Stealing data Block transmissions through unsecured protocols

Block transmission to unknown hosts

Botnet Block transmissions to/from suspicious IP
addresses

Ransomware N/A

Attack other devices in the local area network Block communication with other devices in the
network

DDoS/DoS to from the device Block transmissions to/from suspicious IP
addresses

Unauthorized access to device Block transmissions to/from suspicious IP
addresses

� af �40 71

The following table will present the detection mechanisms of the system and how to make
a logic of what the system should analyze and thus be able not only to detect incidents,
but also help to protect the IoT devices.

Table 4: Detection mechanisms of IoT security gateway

From table 4 above, different methods to detect security methods are shown, categories
and sub categories are defined by the knowledge from different attack types, and the meta
data the IoT security gateway should be able to log.

4.5.2 Logic

To be able to create a meaningful detection, and thus protection of the IoT devices
connected to the security gateway, there is a need for a logic helping the gateway to be
able to detect whether a transmission is desired or not. The following section will focus on
how this logic should work with respect to the objectives defined in the preceding section.
The goal is to be able to combine the metadata provided by the gateway with knowledge
of the IoT device’s services and usage, and let the output help the gateway to detect and
protect against security incidents.

Detect

Categories Sub categories

Lack of encryption Log transmission protocol

Low complexity passwords N/A

Altering data Log transmission IP source and destination

Log timestamp

Lack of software updates N/A

Stealing data Log transmission protocol

Log transmission IP source and destination

Log timestamp

Botnet Log transmission IP source and destination

Log timestamp

Ransomware N/A

Attack other devices in the local area network Log transmission MAC address

DDoS/DoS to from the device Log transmission IP source and destination

Log transmission total length

Log amount of data

Log timestamp

Unauthorized access to device Log transmission IP source and destination

Logt timestamp

� af �41 71

In order to build this logic, it is needed to look into some different factors, namely what is
known, what is expected and what falls outside either the known or expected rules for the
given IoT device. Depending on the service the IoT device offers known and expected
factors might differ. In example an IoT-light bulb should transmit less data than a
surveillance camera offering a video feed. Therefore it is not possible to create one true
logic that can be applied to all connected devices, and different rules will apply depending
on the of interest.

The known factors naturally will be defined by the metadata extracted by the IoT gateway,
whereas the expected factors can be defined by knowledge of the devices and informing
the gateway about expectations, in other ways, training the gateway, either by the help of
the user or by previous knowledge from similar devices.

In order to design such a logic, it makes sense to take a real life case, as an example the
Philips Hue light bulb, described in State of the Art. This device can be described as a
“command and control” device, where the primary function of the connectivity build into the
device is to be able to control it, and let the device respond to the control commands send
to it. This means that the amount and the size of the data packets transmitted is expected
to be rather low. As the devices of interest are light bulbs, it can also be expected that they
are only communicating in certain times during the day; when it is dark outside and people
are awake, depending on location and time of the year, this timespan of usage might differ,
however, it is possible to define a span in which the bulbs are expected to communicate.
Also the setup might be communicating through a manufacturer controlled web service,
making it possible to expect a specific destination for the commutation, or if not a location
to where the communication is going (e.g., Denmark, Europe, U.S. etc).

This kind of interpretation of the metadata that is logged can help to build a logic at the
gateway, to let it be able to decide whether the communication going through it is
expected/allowed or if it is unexpected and might pose a security risk.

Table 5: Overview of interpretation of metadata in the IoT security gateway

Type of device: Light bulb

Meta data Expected Unexpected

IP: Total lenght Short Long

Various: Amount of data Low High

IP: Source address received packet Known address Unknown address

IP: Destination address transmitted packet Known Unknown

Various: Timestamp [07:00-10:00] - [17:00-23:00] Outside expected

Various: Location Nothern Europe Anywhere else

� af �42 71

Table 5 above, presents an overview of how an interpretation of the communication
transmitted by an IoT light bulb/light bulb bridge could be set up. Naturally for a computer
system to understand this, the rules needs to be specific, e.g. the amount of data needs to
be a fixed number, or set to an exact threshold, however this relies of some real life
testing, and therefore is not possible to define in this part of the thesis.

The interpretation of such a rule set can be set to different levels of acceptance. So the
user gets a higher level of control, depending on his/hers preferences. A proposal of such
settings could be:

• Meta data: All - Unexpected behavior: Notify user:
• Meta data: Location: Unexpected behavior: Block communication until further notice

This could also be interpreted as the respond to occurred security incidents, as seen in the
NIST framework. Depending on the type of device and the occurrence of the unexpected
event, different responses can be invoked. In all cases it makes sense to notify the user of
the IoT devices, so he/she has a possibility to react on the event. However depending on
the service of the device and the importance of the service to the user, an actual action,
such as blocking for communication must depend on the user’s preferences as there can
be differences in valued the service is to the user, thus the user might want to risk the
possibility of a security breach to keep the service available. Therefore the responds to
security incidents has to be a distinguished by both the user and the type of service the
IoT devices offers.

4.5.3 Policies

To be able to build the logic discussed in the preceding section, a set of rules is needed,
better described as policies by Kuusijärvi et.al.[54]. These policies will the backbone of the
system in order to protect the system and detect security incidents, thus they have be
considered very carefully. To describe these policies a top down approach will be taken,
using the information already known from the Background, State of the Art and preceding
chapters of the analysis.

It is clear that IoT devices in a home can take different forms and offers very different
services, by this it makes sense that each device, or at least each type of device should
invoke its own policy, meaning that the same set of policies does not necessarily apply to
all devices connected in the network, as a light bulb or thermostat offers a very different
service than a webcam. Therefore there is a need to identify each device, which can be
done by the unique MAC address all devices are equipped with. Even though all devices
needs a unique set of policies, some devices in the network might be the same or be very
similar in its services, in example “command and control” devices, where the functionality
is similar. Consider two set of light bulbs where one set is placed somewhere in the

� af �43 71

household only used in the evening, and the other set placed somewhere used both early
morning and in the evening. From table 5, a lot of the expected behavior can be identical,
however the timespan of expected use might differ. In the light of such a setup it makes
sense not only to define individual policies, but also a group policy where the basic
settings are the same, but with individual preferences depending on the IoT device.

The actual policy of course needs be setup with respect to the gathered meta data
described in section 4.3, but there are differences in the way it makes sense act on
different metadata. In example the IP protocol metadata is determined by the design of the
given IoT device, if it transmits through UDP or TCP. This cannot be changed by the
security gateway, therefore it does not makes sense to create a policy that blocks a
transmissions through a given protocol, yet it is considered to be important to let the user
know whether a devices transfers data through an insecure protocol, even though it cannot
be changed, it gives the user the possibility to decide if, and to what he/she wants to use
the connected device.
On the other hand there will be situations where it makes sense not only to notify a user,
but also block transmissions to and from device, this could be in the case of transmissions
from an unknown source located in a place known for problems with hacking, or if the
amount of transmitted data rises to unusual amount. Therefore the policy should have the
possibility both to act not only by notifying a user, but also to block connections in desired
cases.
Besides the way a policy can be setup up and how it enforces breaches of the rules, a
policy needs the information about what is expected or desired behavior and what is
unexpected/undesired behavior. Depending on the type of meta data, the way this data is
represented differs, from IP addresses to protocol names. This means that the system
needs to be able to interpret the different data present in a policy, in example a policy
could allow communication with only one specific IP address, in that case the gateway
needs to be able to compare if the policy IP corresponds to the transmitted destination IP
address. On the other hand, a policy could also define a maximum amount of data packets
transferred within a given time period, in this case the gateway need not only to compare
values, but count the number of packets transmitted within in a certain timespan and hold
the value up to definition in the policy.
Therefore in general, the gateway should be able to enforce a policy depending on the
type of metadata and the definition of the policy. How this enforcement should work will be
described in the System Design.

The way to design a policy could be done in several ways, but in this case it makes sense
to work with two different methods, namely black- and whitelists, which means that for a
given IoT device and corresponding policy there should be either a black or whitelist for
each set of metadata.
A blacklist, as the name suggests would be a set of actions/communication that is not
allowed, anything else will be accepted. Whereas a whitelist would be a set of
transmissions/actions allowed, everything else is disregarded.

� af �44 71

Whether to work with a black- or whitelist is highly depended on the IoT device, and the
knowledge of it. An example could be a device which is known always to communicate
with the same server on the internet and nobody else. In this case it does not make sense
to create a list of a huge amounts of IP not allowed, that has to be gone through for each
transmission. Instead it makes sense to create a small list (in this example only one),
which is checked, and if it matches it is allowed. On the other hand if the device is
communicating with various different servers and services considered legit, but it has been
discovered that communication with a certain server might be insecure, it makes sense to
create a blacklist where the address of the insecure server(s) is stored, again so the
gateway only has to check a small list for each transmission. In this way it makes sense to
let the policies implement black- and whitelists as a mean of enforcing a given policy.

4.5.4 Training

In order for the IoT security gateway to work, naturally it needs to have policies to enforce,
and the policies needs to be meaningful in order to be able to protect and detect security
incidents. As the idea of the gateway is that it should be possible to raise the level of
security no matter the IoT device connected to it, at list of preset policies will not be an
efficient way to solve the problem. Of course the gateway could have some presets with
blacklists of known malicious IP addresses and locations or similar, however this is not
enough. As the devices can offer very different services and have different ways of
communicating with the outside world, the gateway needs to be taught what is accepted
and what is not. Therefore the gateway should employ a way of learning what is
acceptable behavior for a given device.
This means that each time a new device, not known to the gateway is connected, a
training period should be setup, in where the gateway will prompt the user when the device
engage in activities. Naturally such prompts should be understandable by the user,
meaning the gateway should not ask: “Your device is communicating with IP address:
xyz.zyx.y.xz”, but rather: “Your device is communicating with a server in location Y, is this
plausible?”. In the same way other questions could be asked, such as: “Your device
transmits a lot of data, is it expected to do so?” And “Somebody is interacting with your
device, was it you”? By the user’s respond it will be possible to let the gateway learn the
acceptable rules for the policies, and thus be able to secure the IoT devices.

Even though a training period is needed in order for the IoT gateway to learn how policies
should be setup, this can be a heavy task, therefore it makes sense to look into ways to
ease the setup.
A way to do this is to introduce a policy repository as described in the related research.
The policy repository should contain all policies for all known IoT devices connected to an
IoT gateway, and it should be possible for the gateway to report incidents to the policy
repository, so policies can be updated over time, when new knowledge gained. In order to

� af �45 71

make such a repository really useful, it should be a shared resource between all users of
the IoT gateway, this have two explicit benefits.

• It is same to assume that some user’s have the same IoT devices connected, with a
policy repository users with new IoT devices can ease the training period if knowledge
about policies for the given device already exists in a central location, and can be
fetched by the IoT gateway.

• Security incidents discovered by a single gateway can be sent to the policy repository
and thus shared between users of the same type of IoT device.

By this, it makes sense, not only to let a policy repository be a part of the system, but let it
be an external resource that can be shared amongst all users of the IoT security gateway,
as it will ease the setup of policies and in the same time make incident respond faster as
similar devices can share newly gained knowledge.

4.5.5 User Interaction

The last thing to look into is the user interaction, as it has become clear, both for the setup
of the device and training period, as well as for the need of notifying users about security
incidents, the system should be able to interact with the user.
Such a setup can be designed in several ways, however in it should be accessible to the
user no matter where he/she is. As many private internet connections does not have a
public IP address, letting the user interface run on the gateway itself will be problematic, as
it requires additional configuration to make it accessible outside the local area network.
Furthermore, as it has been argued that an external policy repository needs to be setup, it
makes sense to let the user interface run as an external web service (possibly in
combination with the policy repository), and let this web application be the link between the
IoT security gateway and the user.

By the above analysis from including everything from the relevant logging data, how to
protect the IoT devices and from what, to how this is possible and how the user will
interact with the IoT gateway, the analysis part of this thesis will be concluded with an
overview of how the setup will look from the knowledge gained (figure 17). 

� af �46 71

Figure 17: Overview of entities in the IoT security gateway system

All of the revelations in this chapter makes it possible to start defining the specific
requirements for the systems, which will be the basis of how to design the system. The
coming chapter will focus on defining all relevant requirements for the system.

4.6 Requirements

The coming chapter will primarily focus off the requirements for IoT security gateway
system. The requirements elicited will be for all parts of the system as depicted in figure 17
in the preceding chapter. This means that it will not only focus on the gateway itself bu also
on the other relevant parts of the system.
The requirement specification will be presented int the following way, each part of the
system will have its own section where each requirement will have an ID and a
specification. The requirements will be divided into Functional and Non functional where
the functional requirements will be presented below, and the non functional requirements
can be found in appendix B.
Often a requirement specification will present a prioritization of the all the requirements,
however in this case all requirements are considered essential for the system to work as
desired, therefore all of them can be considered a “must have”. 

� af �47 71

Table 6: Functional requirements for the IoT security gateway 

Gateway

Requirement ID Specification

GWFR1 The gateway shall be able to log defined metadata

(MAC address, IP: Total length, IP protocol, IP
source address, IP destination address, Timestamp,
Amount of data, location)

GWFR2 The gateway shall identify all connected IoT
Devices

GWFR3 The gateway shall connect to a external service to
be able to:

Communicate with users and to exchange
information

GWFR4 The gateway shall be able to fetch policies from the
policy repository

GWFR5 The gateway shall be able to enforce policies

GWFR6 The gateway shall employ a training period for new
devices

GWFR7 The gateway shall enforce policy breaches in
correspondence with the most recent policy from
the policy repository

GWFR8 The gateway shall report security incidents (policy
breaches) to a web app

GWFR9 The gateway shall be able to block transmissions if
the policy requires it

GWFR10 The gateway shall be able to associate an IP
address with a location

� af �48 71

Table 7: Functional requirements for the policies

Table 8: Functional requirements for the Policy Repository 

Policy

Requirement ID Specificiation

PFR1 A policy shall contain rules about all metadata
specified in GWFR1

PFR2 A policy shall be identifiable to a specific device

PFR3 A policy shall be able to contain a black/whitelist to
relevant metadata

PFR4 A policy whitelist must be enforced before a policy
blacklist

PFR5 A policy shall be updatable

PFR6 A policy shall contain information about how to
enforce it (block transmission or notify user)

PFR7 A policy shall be readable to both the gateway and
the policy repository

PFR8 A policy can belong to a group

Policy Repository

Requirement ID Specification

PRFR1
 The policy Repository (PR) shall contain all policies

PRFR2 The PR shall expose policies upon request

PRFR3 The PR shall be able to identify a policy upon
request

PRFR4 The PR shall be open to policy updates

PRFR5 The PR shall update policies only if requested by
the user

PRFR6 The PR shall be able to suggest updates to policies
for devices of the same type

PRFR7

� af �49 71

Table 9: Functional requirements for the Web application

In the tables 6 to 9 above all the functional requirements for the system has been define,
these will be the basis for the design of the system presented in the coming chapter. The
requirements will also conclude the analysis of this thesis. 

Web application

Requirement ID Specification

WAFR1 The Web Application (WA) shall connect be able to
connect to the gateway

WAFR2 The WA shall be able to connect to the PR

WAFR3 The WA shall be able to communicate with the user
through a user interface

WAFR4 The WA shall be open to requests from the gateway

WAFR5 The WA shall be able to fetch policies from the PR

WAFR6 The WA shall be able to transmit the policies to the
gateway

WAFR7 The WA shall be able to receive information about
policy breaches from the gateway

WAFR8 The WA shall be able to communicate security
breaches to the user

WAFR9 The WA shall be able to let the user interact on
such security breaches

WAFR10 The WA shall be able to update a policy in the PR
corresponding to the user’s decision

WAFR11 The WA shall let the user choose a device category
to which the device belongs

� af �50 71

5. System Design

The coming chapter aims at explaining the design of the system. This design will be based
on the requirements elicited at the end of the analysis in the preceding chapter. The
system design will carefully described from each requirement by the help of Unified
modeling language (UML). In this way it will possible to deduct how every part of the
system should be developed, in order to fulfill the system requirements.

5.1 System Overview

In order to start design the system in a correct way, an overview of the system will be
created, in that way it will be possible to see the relevant entities of the system and how
they are expected to interact.
Even though the IoT security gateway is the heart of the system, it does not communicate
directly with all entities of the system. Therefore it makes sense to start with an overview of
the web application, which can be seen as the link between the gateway, user and policy
repository. An overview of this is presented in the Context diagram below.

Figure 18: Context diagram of the web application

As shown in the diagram (figure 18), the web application interacts with both the user, the
IoT security gateway and the policy repository, binding all of the communication together.
The reason for letting the web application be the binding entity, is that the all updates to
policies has to be confirmed by the user, to whom the IoT gateway does not have a direct
connection, besides that the user has to be notified in the case of a security breach, which
also has to go through the web application.
Regardless the IoT gateway is the heart of ensuring the security, therefore it also makes
sense to create an overview of the entities communicating with the gateway. 

� af �51 71

Figure 19: Context diagram of the gateway

From Figure 19 it can be seen that the IoT gateway communicates with not only the IoT
devices and the web application, but also a location service and naturally the policies
stored. The two entities “policy” and “location service” could in principle be fetched through
the web application but as it is assumed that one gateway has a limited number of IoT
devices, it makes sense to store the policies locally and update them when needed. In the
case of the location service, which is binding IP addresses to a location, this service is a
third party, thus it makes sense to request it directly instead of adding the web application
as another link in the process.

5.2 Gateway

From the overview, an overall structure of the system has been presented, with information
of all the entities and how they connect. The next step will be to design the gateway itself,
which is the purpose of this sub chapter.

The first thing as corresponding to GWFR1 is to let the gateway log the metadata from the
packets both transmitted and received at the IoT device, as depicted in figure 20.

� af �52 71

Figure 20: Sequence diagram of the data packet transmission and logging

From this the gateway is not only logging the metadata of the transferred packets, but is
also able to identify the device transmitting data by the unique MAC address, thus the
gateway is able to identify the device of interest corresponding to GWFR2.

From the requirements it is also specified that the gateway should be able to communicate
with external entities (GWFR3) which is a natural consequence of the findings in the
analysis, however it seems rather excess to show it here, therefore a generic overview of
communication between different entities in the system can be found in appendix C.
However it makes sense to show how the gateway will fetch a policy (GWFR4), which is
shown in figure 20 below.

Figure 20: Fetching of policies

� af �53 71

As it can be seen the gateway will request the web application for a policy with given MAC
address, a request the web app will forward to the policy repository. If the policy exits it will
be returned to the gateway, however if it does not exist, a “no policy” will be sent. This will
tell the gateway that the IoT device transmitting is a new device and accordingly invoke a
training period for the device(GWFR6) which can be seen in appendix D.

With the design of how the gateway logs and fetches policies, it makes sense to show how
a policy is enforced. Naturally a prerequisite for this is that the gateway has at least one
policy that can be enforced. The following sequence diagram (figure 20) will show how
enforcement of the policies work which also covers the remaining requirements for the
gateway (GWFR5, GWFR7, GWFR8, GWFR9, GWFR10).

Figure 20: Sequence diagram of how to handle policy enforcement and possible breaches

As it is shown the gateway will check and IP packet from an IoT device against the
corresponding policy. If the policy contains information about location restrictions, such as
packets to China are not allowed, the gateway requests a location based on the

� af �54 71

destination IP, this is handled by a third party service. Depending on the policy, if a breach
occur, the gateway will either drop the packet and notify the web app, or transmit the
packet and notify the web application. If the policy is obeyed, the packet is just transmitted
without further notice. The depicted diagram shows an IP packet transmitted from the IoT
device, naturally the policy check works in the same way if the packet is transmitted from
somewhere on the internet towards the IoT device. The functionality and possible impact
would be the same, the packet is just going in the opposite direction.

By this, the system design of the IoT security gateway will be concluded, a hands on
approach of how this design could work will be suggested in the chapter Implementation
further down in this thesis.

5.3 Policy

The design of the policy is as important as other parts of the system, even though it can
seem like a simple task. The design and contents of a policy has to be considered
carefully in order to make sure the gateway acts as intended, and thus is able to raise the
level of security. In this section the design of a policy will be defined, so it complies with the
requirements and works as intended.
The first step is to look into, what a policy should contain and how it should be build. From
chapter 4.3 it is known what kind of metadata is available, which would be the basis of the
policy:

• Hardware: MAC address
• IP: Total length
• IP: Protocol
• IP: Source address
• IP: Destination address
• Various: Timestamp
• Various: Amount of data
• Various: Location

Besides this, the policy needs to know, whether the rule is for outgoing or incoming traffic,
e.g., a destination IP for incoming traffic will always be known as it belongs in the local
network, and thus will not be helpful to prevent attacks, whereas a destination IP for
outgoing traffic may vary, and thus is relevant to decide whether traffic is legit or not. 

� af �55 71

Figure 21: The information a policy must contain

In figure 20, two policies classes is depicted containing a policy for outgoing transmissions
and for incoming transmissions.
The gateway must identify the type of transmission by the MAC address; if the source
MAC address is identified as a device connected to the security gateway the outgoing
policy must be used, and vice versa if the destination MAC address is identified as a
device connected to the gateway the incoming policy must be used.
The policy is defined in the way it should be enforced, this is relevant especially to the
white- and blacklists. If there is a whitelist (meaning the policy entity whitelist is not empty),
this must be checked first, if the actual destination or source IP (depending on the policy in
use) does not comply with the policy, the gateway must enforce the police. Next step is to
check the blacklist and again enforce the policy and so on.
The last section of the policy is enforcement, which tells the gateway what to do, if a
breach in one or several of the rules is detected, the enforcement will contain information
about all the rules, and how to enforce them where the value “0” is very liberal and means
no enforcement, the value “1” means notify the user and the value “2” means notify user
and block transmission.
Above a single policy is described, however it is also important to know the relations a
policy can have, which is specified PFR8, this is both to know to whom the policy belongs,
and also to be able to interchange policies between users, by the help of the policy
repository.

� af �56 71

Figure 22: Policy associations

As it is shown in figure 22, a policy a policy consists of an incoming an outgoing policy
(depicted in figure 21). A policy can belong to many devices, but a device only have one
policy, which makes sense if a setup contains several identical devices. Furthermore a
device belongs to only on user, and naturally a user can have more devices in his or hers
setup. Lastly a device can belong to a group of devices. This makes good sense in terms
of the policy repository, as it makes it able to group with similar functionalities and thus
similar policies. Doing this, will in time make it possible to suggest suiting policies to new
devices, so the training period will be minimized.
Thus all of the requirements for a policy has been covered and this concludes the policy
subsection.

5.4 Policy Repository

The policy repository is an entity meant to contain all policies existing, not only for a single
gateway but for all gateways used. Therefore it needs to run outside the local area

� af �57 71

network, and in the same time expose itself to all connected gateways. Therefore it makes
sense to let the communication with the repository go through the web application, as this
is the entity the gateway and the user connects with.
The repository can basically be seen as a big collection of all policies with functionality to
handle policies as defined in the PRFR specification. The fetching of policies (PRFR2) has
already been described by figure 2o. Besides this the policy repository must also be able
to act upon user decisions provided through the web application as shown in figure 23
below.

Figure 23: Policy update flow

By letting the policy updates go through the web application and let the user decide what
should happen in case of a breach, it is ensured that policies is always compliant with the
user’s decision, and the policies wouldn’t start to update itself autonomously.
The last requirement for the policy repository (PRFR6) will not be explained in this section
as it is tightly coupled to the web application and user information, therefore it makes more
sense to show the design in the coming chapter dealing with the web application.

5.5 Web application

The last part of the system design aims at showing functionality of the web application.
The web application is the part of the system that binds the communication between all the
devices together as well as letting the user interact with the system.
However, as this system should be seen as a whole, where every entity is needed in order
for the system to work, some of the requirements has already implicitly been designed
throughout the preceding chapters. Therefore this section will focus on how the interaction
on the users should be. 

� af �58 71

Figure 24: web application and user interaction

In figure 24 above a flow with user interaction of policy breaches can be seen, here it is
shown that the user will be presented with policy breaches, when he/she requests it from
the web application. Depending on the enforcement choice of the user, the web application
will update the policy repository. Even though the above figure shows interaction in terms
of policy breaches, the flow for a device in training period will be the same, as the training
in principle can be considered as “constant” breaches of the policy of the device
undergoing “training”.
It becomes clear that this does not state how exactly the user interacts with the web
application, this is merely because the user interface could be reached by different means
in example through a regular web interface or a smartphone application. The way of
interacting with the interface does not change the flow and activities of the web application,
for which reason the specific interface has not been designed, however this will to some
extend be covered in the coming chapter about the implementation of the system.

This chapter has shown how the theoretical design of the system looks like, by the help of
different diagrams in combination with description of the activities. It is believed that the
system design in combination with the requirements will provide enough information of
how the system containing an IoT security gateway, a web application and a policy
repository should be designed, without demanding any specific technologies or needs to
implement the system.
In the coming chapter suggestions to how to implement the system in practice will be
discussed containing relevant technologies and means of implementation, in order to
make the system a reality.

� af �59 71

6 Implementation

The implementation chapter is going to focus on how the proposed system could be
implemented in reality. This means that the section will focus on how the system design
could be realized by the means of real methods and technologies. Some of the
technologies in use have been described in chapter 3.3.4, and will be referred to from
there, whereas other and more specific methods might be described on during the chapter.
The chapter will end with a proof of concept, showing how system could work, it will not be
a fully implemented system, but it will show the general idea of how the security gateway
functions.

6.1 Deployment

To gather a more practical overview of how the system interconnects and communicates, a
deployment diagram will be presented. This diagram serves the purpose of showing
different entities in a more detailed and practical view than the context diagram presented
in the early phase of the system design.

Figure 25: Overview of the entities in the system with specified technologies

As it can be seen in figure 25 above, the system works with four different entities with
different objects. The communication between the IoT gateway and the IoT device has
been defined as IP, which naturally will be through either Ethernet or WiFi protocol, as
defined earlier. In the gateway a logger, handling the actual data logging is present along
with a set of policies for the connected IoT devices stored in a MongoDB.
The communication between the IoT security gateway and the web application is through
HTTP towards a NodeJS server, exposing the relevant API’s to the IoT gateway. Lastly the
NodeJS server is connected to the policy repository (PR) which is a MongoDB containing
all policies. In this setup the policy repository is located at the same server as the web
application, why only a Mongo call from node is needed to fetch or update a policy. The PR

� af �60 71

could also be located at an external server, in which case the connection between the web
application and the PR would be HTTP.

6.2 IoT Security Gateway

The first thing to take a look into is the IoT security gateway. It is known that this device is
an intermediary between the IoT device and the home router connecting to the internet,
therefore this gateway must be able to handle the logging of the data passing through it as
well as enforcing the policies for a given device.

It has been decided to use a Raspberry Pi as the hardware resource for this project. The
Raspberry can run a variety of different Linux distributions, but the most widely used is the
distribution aiming directly at the Raspberry, namely Raspbian[55]. The operating system
runs smoothly on the Raspberry Pi and works with Python out of the box.

6.2.1 Logging

The gateway needs to be able to log information about the data packets transmitted, there
are several ways to do this, in this project it has been chosen to use the Python library
Scapy[56]
Scapy provides a quite useful feature, called sniffing[57]. The sniffing method in Scapy
simply provides a possibility to sniff data packets on a given network interface in example
WiFi.

Figure 26: A dump of the output using Scapy’s sniffing method

� af �61 71

From figure 26 above it is shown that Scapy can provide most of the relevant metadata for
every IP packet transmitted through a given interface, just by calling the sniff() method in
Scapy.
The only data missing is the amount of data transmitted or received by a single device, the
time and the location,

Time stamp:
The timestamp can be retrieved by using Python’s time package[58], the current time can
simply be retrieved by using the time() method, and add this to the package information.
In example: currentTime = time.ctime() will add the current time in the following format:
Sun Oct 29 12:08:29 2017

Amount of data:
The amount of data transmitted is a bit more arbitrary, as this have to be calculated within
a given time period. It does not make sense to just count every time a packet is
transmitted from a device, if the boundaries are not defined. Here it makes sense to create
a counter that is limited to a certain time period, in example 60 seconds, again the time
library from Python can be used:

amountOfData = 0
currentTime = time.time()
countingTime = currentTime + 60

while time.time() < countingTime:
 if macSrc == [mac address]:
 amountOfData + 1

This above code shows an example of a counter that will count the number of packets
transmitted by a given MAC address within 60 seconds. This will provide the desired
information about how much data transmitted by a single device. Naturally counting time
can be adjusted to what makes sense, however it will rely on actual testing on devices to
know.

Location:
The last meta data needed is the location, which will be fetched from an external service
as described earlier. The fetching of the location relies on the either the destination IP or
source IP depending on the data flow. The service, keycdn[59] going to be uses, has an
API where a simple get request including the IP address of interest will return the location
information of the given address:
By calling the address:
“curl "https://tools.keycdn.com/geo.json?host={IP or hostname}””

� af �62 71

With the relevant IP, a JSON response would returned with all the information, see figure
27 below:

Figure 27: Request and response from keycdn geolocation tool

This respond can be made from python with a simple get request. The response will then
be loaded as json, thus it is searchable for the actual location, the source code for the
location search can be seen in the attached file “pythonGet.py” attached to this thesis.

By this it is possible to gather all meta data relevant to the logging device, in order to be
able to check if the transmissions to and from IoT devices obeys the rules in the policy.

6.2.2 IP Tables:

The last thing the gateway needs to implement is IP tables[60]. IP tables is a program
included in all newer Linux distributions. The program opens for the possibility to filter IP
addresses within the system, and as such it can be used to implement the blocking
functionality of the gateway.
The function “drop” in IP Tables, simply drops an incoming packet if it the IP is listed to be
dropped [61].
By using IP Tables in the IoT gateway, it will be possible to drop packets, violating a policy
and has the enforcement rule to block a package.

6.3 Policy Setup

As we know from the System design a policy contains many different types of information.
All of the information that constitute a policy will be stored in a MongoDB described section
3.3.4. The MongoDB seems like a good choice as one does not need to define strict
relations between the data contained in a policy. One document in the database will simply
make up a policy.

The MongoDB naturally has to be setup, which is quite an easy task. For the case of this
project we will create a database called policies, with a collection called policy to which the
actual policy can be inserted as a document. As the MongoDB uses a JSON like format, it
is quite easy to insert and structure the data that constitutes a policy. From the system
design it has been shown how a policy should be designed, so the task is simply to use
this is simply to insert this data into a document in the database.

� af �63 71

Figure 28: Example of creating a policy in the mongoDB

In figure 28, an example policy inserted into a MongoDB is shown. The policy contains a
group, in that way it is possible to let it belong to a certain group of devices, furthermore it
contains a deviceID which is the MAC address belonging to the IoT device of interest. The
policy itself, in this case a policy for outgoing transmission contains all the rules as
described earlier, some rules can just be a single value, e.g. “IPAllowedLength”, telling the
system what the maximum allowed length of a datagram is, whereas others can contain
several values such “ipDstWl” which is the destination IP whitelist, in here all IP addresses
that are whitelisted will be stored. Lastly the policy has enforcement part, where the rules
of enforcement is specified. “eIPDstWl” which is the enforcement rule of the IP whitelist is
set to the value 2, meaning that if destination IP is not on the whitelist it should be
enforced by the rule 2, which is notify the user and block the IP address.
In the same way it is possible to insert data to a MongoDB, it offers quite simply query and
update functions.

Querying a policy for a given device, is simply done by a find method:
db.policy.find({key : value})

By this a policy for a given device can be fetched by providing the key “deviceID” and the
MAC address of the device as value.
In the same way the database can be updated by the method db.policy.update() providing
a key value for the collection to be updated, and what to be updated.
In example the value of data transmitted could be set by the following method:

� af �64 71

db.policy.update({“deviceID” : “MAC address”}, {$set: {“dataTransmitted” : “newValue”}})

This way of implementing policies to different devices is quite simple and easy to setup.
Furthermore the setup can be used both by the IoT security gateway and the policy
repository, as both supports the MongoDB. The results are presented in JSON which
makes it easy interpretable by Python, as shown with the location service, thus it is
possible to compare policies with logged data from the gateway and by that enforce the
policies.

6.4 Proof of Concept

Due to the time limitations of this project and the fact that this is a single person project, it
has been decided not to implement a full version of the system, but instead a proof of
concept showing that it is possible to log data flowing through an IoT gateway and act
upon it.
This also means that the web application discussed throughout the thesis will not be
implemented at the current time, however it is a hope to be able to create an
implementation later on, so the system will function to its fullest. Even though the web
application is not going to be a part of the implementation, it is believed that considerations
from the analysis and system design are usable and can be used to implement the web
application at some point.

The proof of concept focuses on the gathering of metadata and the possibility to act upon
it by the means of a policy. This all done by a Python program running on the Raspberry
Pi, in combination with a MongoDB which acts as the policy repository.

Sniffing packets:
The Scapy sniffing function is the first that will be used to capture the meta data in the
packets transmitted. Furthermore all relevant meta data will be stored in order to compare
with the policy as shown in figure 29:

Figure 29: Sniffing and saving metadata

� af �65 71

The next thing is to fetch the policy relevant to package, this is done by connecting to the
MongoDB and thus using the find() method to fetch the relevant policy as shown in figure
30 below:

Figure 30: Connection to MongoDB and requesting policy.

The policy from the Mongo DB is then saved to a variable named “policy” to use when
checking for breaches, which is done by a method called “check_policy”. The method
simply checks if there is there is a difference in what the policy allows and what the packet
contains, and example of this is shown in figure 31 below.

Figure 31: Policy check

As the web application has not been implemented, the policy breach in this scenario is
only to print a statement, that the policy has been breached, which is also shown in the
bottom of the picture. Naturally this is not a very intuitive, much less useful way to notify
about a policy breach, but it fits the purpose of testing if the gateway actually reacts to
policy breaches, which it does.

Even though the implementation is far from being fully done, it is believed that this small
part has shown that it is possible to create a system that is able to check whether the
systems is exposed to security risks by the help of logging and interpreting data
transmitted to and from IoT devices connected to a gateway in the home. Furthermore this
can be done without interfering with the way the IoT devices work from the manufacturer.
This means that it is actually possible to create a system that raises the level of security in
any for any IoT device connected through the gateway. 

� af �66 71

7. Future Work

The aim of this chapter is to discuss some of the future work and improvements to the
system. The discussion will be based on suggestions and known solutions from other
services implementing similar solutions.

7.1 Web application

As it has not been possible to implement to web application in the current state of this
project it is natural to do this as the next step in the system.
The web application can be implemented in various ways, but it is believed that using a
technology that supports RESTful communication will be a good basis, such as NodeJS
described in chapter 3.3.4.
The web application should bind the user, IoT gateway and policy repository together, and
is depended on a user interface in order to make decisions as most actions in this system
is depended on a given user’s choice.
The reason to build the web application using RESTful principles, is that it is stateless. In a
distributed system like the one proposed, it makes sense as the application does not need
to store previous states of the system, everything can be done by requesting and updating
information in the moment of the transaction and then forget about it, no matter whether
the application needs to talk to the IoT gateway or the policy repository and vice versa.
Furthermore the user interface needs to be discussed, as no decision has been made
towards how to interact with the system. However it is believed that creating it as a
responsive web site, would cover the needs of the interface, as it will run on any modern
device containing a web browser and access to the internet. A further development could
be to develop a smartphone application taking advantage of the possibilities provided by a
such, in example it would be easier to send push notifications directly to the user when an
incident occurs and thus let the user react immediately instead of having to login to a web
site, to check for breached of a policy.
However this will require a lot more work, and therefore would not be the first choice of
designing the user interface, but it could be an add-on later in the implementation of the
system.

7.2 Registration

The coming discussion emerges around some of the subjects that is not a part of this
thesis, but deserves to be discussed, namely the registration of devices in the system.
It has been described that the IoT security gateway should work as an intermediate
between the actual IoT devices, and the home router and thus the internet. This means
that every device needs to connect to the IoT gateway. This connection is imagined to

� af �67 71

work in a similar way to when one connects a device directly to a router, you either plugin
a ethernet cable or connects through the WiFi by choosing the WiFi name to connect to
and the correct passphrase to the WiFi.
This could be done by creating an interface directly at the gateway, where it is possible to
login and set WiFi parameters, similar to how it is done with a home routers first setup.
Besides this, it should also be possible to register the IoT gateway towards the web
application so the gateway can be bound to a user.
This could be done by letting the gateway generate a pseudorandom key upon the first
login, combined with a serial number of the gateway, this information should be used by
the user to register a gateway when logging in to the user interface of the web application.
In this way a single gateway can be tied to a user account within the web application.
Furthermore the user should be able to create an account at the web application, whether
it should be a regular registration process with email and password or it should use a third
party identity provider, such as Google or Facebook, to validate a user would be up to
debate when designing the web application. However it could be argued to use a third
party to avoid storing sensitive information about a user and password in the system itself,
which will require additional focus on the security in the web application. By letting a third
party handle the login process, the storing of such information is not to be considered,
making the web application more simple to implement.

7.3 Automation

The last thing to look into would be far in the future, but nevertheless a significant
improvement of the system, namely to implement a logic, that will be able to automate the
policy rules.
Machine learning and automation in general, would be a huge possibility for this system, if
the amount of users and data in the system would reach a critical point it would be
possible to combine and analyze data from all devices, and let the policies be updated
automatically based on a such analysis. This could help to raise the level of security even
further. A benefit of this could be better protection of IoT devices before an attack has even
been detected.
An example of this could be that the web application discovers that a lot of IoT devices is
under attack in a specific region of the world, if the attack is expanding, the web
application could automatically push policy updates to all types of IoT devices under
attack, and thus provide improved protection before the damage is done.
Naturally such a function requires a lot of data and a logic that is able to analyze the data
flow, however it is believed that it could raise the level of protection significantly.

By this the small chapter on future work will be concluded. The next part of this thesis is
going to discuss the work done in terms the problems stated in the introduction of the
report.

� af �68 71

8 Discussion

The coming chapter is going to discuss the findings in this thesis in relation to the problem
stated in the beginning. It is going to touch some security problems related to IoT and what
has been done to mitigate does, and try to draw a bigger perspective of the work done.

There is no doubt the term IoT has been a buzzword for many years, predicted to improve
anything from home automation over traffic control to the production industry. Also there is
no doubt that the IoT market in many ways have been a wild west with different
manufacturer launching all kind of products of varying quality.
One of the biggest problems in terms of IoT is probably the one sided focus on smart
functionality without keeping an eye on the security and possible misuse of these kinds
products.
The “regular” computer industry has had many years to improve life cycles of products and
ensure right implementation of the software in the products. This is not the case in the IoT
industry. Ironically, the simplicity of many of the products also is the biggest drawback in
terms of implementing well known features such as continuous updates and encryption.
Until the industry is able to implement standardized frameworks and lifecycles into their
product, this problem will most likely exist.

Trying to improve the security of IoT devices is a huge task, and this thesis has only
grasped a bit of what could be done. With the limitations of not being able to change the
implementation of a given IoT device, well known security principles such as ensuring
confidentiality and integrity are hard to accomplish. This is why the approach to create a
gateway to help mitigating the problems has been taken. The gateway cannot directly
ensure the general CIA principle stated in the beginning of this thesis, however it can notify
the user of possible problems with the communication with the IoT devices, and by this
indirectly help to accomplish the principles. It cannot know whether the data is encrypted,
but it can tell if it is transmitted through an insecure channel, or transmitted to someone it
is not designated to, and thus alert the user of a possible breach. In the same way it
cannot ensure the availability of the service, but it can, with the correct setup protect
against an attack aiming at making the device unavailable, and maybe even more relevant
it can detect, whether a device is acting abnormally, in example being used to DDOS
attack against others, and block the device from communicating, thus protect other entities
on the internet about becoming unavailable.

Does this system help at all one could ask, the answer is yes and no. With the current
state of implementation it would not be very useful, however a design has been provided,
showing how it could work with a full implementation, in which it can raise the level of
security for a user of the system. However a real benefit of the system will depend of the
adoption of it. As stated IoT products is still very undeveloped in terms of security and is
expected to be many years to come. Implementing such a system will help raise the

� af �69 71

security both for specific devices who have adopted the system, but also entities on the
internet, that might suffer attacks from IoT devices.
Imaging router manufacturers adopting the principles and design shown in this thesis, so
every home router will be able detect and protect against perpetrators misusing the
devices. This would be a huge advantage to the internet as a whole and to the single user
of IoT devices.
That would probably not be the case in the near future, but depending on how much IoT
devices, and their traffic will take part of the transmission on the internet, it could be a
future scenario.
Nevertheless, until the IoT industry has figured out a way to secure their products and
ensure they aren’t misused, the proposals in this thesis could be a way for the individual
user to raise the level of security in the devices he or she employs. 

� af �70 71

9 Conclusion

The first question to ask in this concluding chapter of the thesis is:
Has it been shown how to raise the level of security in IoT devices by the means of
implementing a gateway as an intermediary?
The short answer is that it has, regardless the system has not been fully implemented.
However the research done for this project has shown that it is a feasible way to raise the
level of security. The background chapter uncovers that IoT devices in general lack
sufficient security in their design, and therefore there is a need to address the problem.
Naturally the best solution would be to implement security by design in the devices, but as
this cannot just be accomplished over night, it is believed that using a gateway as shown
in this thesis can help mitigate some of the problems. The functionalities and design of the
gateway has been based on generic systems derived from real world products, combined
with known vulnerabilities. Security frameworks has been used to break down the different
risks and threats IoT devices are exposed to in order to deduct the requirements for the
system. This has lead to a system design showing how a security gateway by the help of a
set of policies can raise the security in IoT devices, lastly a proof of concept has been
shown of how data could be logged and interpreted in a gateway, to notify the user about
possible threats towards a device.
It is believed that this system design, and the principles and thoughts behind, with further
work can be much needed contribution to securing IoT devices, until the time has come
where the single devices are mature enough to ensure the security by design.
Therefore the research question being the basis of this thesis is seen as answered, thus
concluding the current work on this thesis

Magnus Nebel Sohn

� af �71 71

References
[1] Stallings W. Network Security Essentials - Applications and Standards, Fourth Edition 2011, pp.
4
[2] Stallings W. Network Security Essentials - Applications and Standards, Fourth Edition 2011, pp.
5
[3] Kevin Ashton. 2009-06-22. That ‘Internet of Things’ Thing. Available: http://www.rfidjournal.com/
articles/view?4986
[4] Sekhar Sarukkai. 2016-05-19. Ransomware and the Internet of Things: A Growing Threat.
Available: http://www.esecurityplanet.com/network-security/ransomware-and-the-internet-of-things-
a-growing-threat.html
[5] Canonical. 2017-01. Whitepaper. Taking charge of the IoT’ssecurity vulnerabilities.
[6] Gaona-garcía, Paulo, Montenegro-marin, Carlos Prieto, Juan David Nieto, Yuri Vanessa
Distrital, Universidad José, Francisco Mateo, Fundación San. 2017. Analysis of Security
Mechanisms Based on Clusters IoT Environments.. International Journal of Interactive Multimedia
and Artificial Intelligence Special Issue on Advances and Applications in the Internet of Things and
Cloud Computing Analysis vol 4 issue 3 pp. 55-60.
[7] Atamli A. W., Martin A. Threat-based Security Analysis for the Internet of Things. 2014.
International Workshop on Secure Internet of Things. pp. 35-43
[8] Mohammad Irshad. December 2016. A Systematic Review of Information Security
Frameworks in the Internet of Things. IEEE 18th International Conference on High Performance
Computing and Communications pp. 1270 - 1275
[9] Atamli A. W., Martin A. Threat-based Security Analysis for the Internet of Things. 2014.
International Workshop on Secure Internet of Things. pp. 35-43
[10] Abomhara M., Køien G. M. Security and privacy in the Internet of Things: Current status and
open issues. 05-2014. Privacy and Security in Mobile Systems (PRISMS)
[11]Kozlov D., Veijalainen J., Ali Y. Security and privacy threats in IoT architectures. 2012.
BodyNets '12 Proceedings of the 7th International Conference on Body Area Networks. pp.
256-262.
[12]Kozlov D., Veijalainen J., Ali Y. Security and privacy threats in IoT architectures. 2012.
BodyNets '12 Proceedings of the 7th International Conference on Body Area Networks. pp. 260.
[13] Babar S., Stango A., Prasad N. Proposed embedded security framework for Internet of Things
(IoT). Wireless Communication, Vehicular Technology, Information Theory and Aerospace &
Electronic Systems Technology (Wireless VITAE), 2011 2nd International Conference on. 03-2011
[14] Pasha M., Shah S., Syed M. W., Pasha U. Security Framework for IoT Systems. International
Journal of Computer Science and Information Security. 11-2016
[15] Oh S., Kim Y., Security Requirements Analysis for the IoT., 2017 International Conference on
Platform Technology and Service (PlatCon), Feb 2017, accessed: 2017-05-25
[16] Kuusijärvi J., Savola R., Savolainen P., Evesti A. Mitigating IoT Security Threats with a
Trusted Network Element. 2016 11th International Conference for Internet Technology and Secured
Transactions (ICITST), december 2016, accessed: 2017-05-20. pp. 260
[17] Kuusijärvi J., Savola R., Savolainen P., Evesti A. Mitigating IoT Security Threats with a Trusted
Network Element. 2016 11th International Conference for Internet Technology and Secured
Transactions (ICITST), december 2016, accessed: 2017-05-20. pp. 262, figure 1.
[18] Kuusijärvi J., Savola R., Savolainen P., Evesti A. Mitigating IoT Security Threats with a Trusted
Network Element. 2016 11th International Conference for Internet Technology and Secured
Transactions (ICITST), december 2016, accessed: 2017-05-20.
[19]Kuusijärvi J., Savola R., Savolainen P., Evesti A. Mitigating IoT Security Threats with a Trusted
Network Element. 2016 11th International Conference for Internet Technology and Secured
Transactions (ICITST), december 2016, accessed: 2017-05-20. pp. 262
[20]Kuusijärvi J., Savola R., Savolainen P., Evesti A. Mitigating IoT Security Threats with a Trusted
Network Element. 2016 11th International Conference for Internet Technology and Secured
Transactions (ICITST), december 2016, accessed: 2017-05-20. pp. 262
[21] Contu R., Kish D., Lawrence P., Deshpande S., Predicts 2017: Security Solutions, November
2016. Accessed: 06-2016

http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986
http://www.esecurityplanet.com/network-security/ransomware-and-the-internet-of-things-a-growing-threat.html
http://www.esecurityplanet.com/network-security/ransomware-and-the-internet-of-things-a-growing-threat.html
http://www.esecurityplanet.com/network-security/ransomware-and-the-internet-of-things-a-growing-threat.html
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6963210
http://search.proquest.com/pubidlinkhandler/sng/pubtitle/International+Journal+of+Computer+Science+and+Information+Security/$N/616671/PagePdf/1879098708/fulltextPDF/E73628F4B8B8429FPQ/1?accountid=8144
http://search.proquest.com/pubidlinkhandler/sng/pubtitle/International+Journal+of+Computer+Science+and+Information+Security/$N/616671/PagePdf/1879098708/fulltextPDF/E73628F4B8B8429FPQ/1?accountid=8144

[22] National Institute of Standards and Technology, Framework for Improving Critical Infrastructure
Cybersecurity v. 1.0, February 2014, accessed: June 2017
[23] National Institute of Standards and Technology, Framework for Improving Critical Infrastructure
Cybersecurity v. 1.0, February 2014, figure 1, pp. 7, accessed: June 2017
[24] National Institute of Standards and Technology, Framework for Improving Critical Infrastructure
Cybersecurity v. 1.0, February 2014, pp. 7, accessed: June 2017
[25] National Institute of Standards and Technology, Framework for Improving Critical Infrastructure
Cybersecurity v. 1.0, February 2014, pp. 8-9, accessed: June 2017
[26] Kim D. H., Cho J. Y., Lim J., Developing IoT Security Requirements for Service Providers,
International Information Institute (Tokyo). Information; Koganei vol 19, Feb 2016, accessed: June
2017.
[27] Kim D. H., Cho J. Y., Lim J., Developing IoT Security Requirements for Service Providers,
International Information Institute (Tokyo). Information; Koganei vol 19, Feb 2016, Figure 2, pp. 600
accessed: June 2017.
[28] Chirgwin R. Two million recordings of families imperiled by cloud-connected toys' crappy
MongoDB. The Register. https://www.theregister.co.uk/2017/02/28/cloudpets_database_leak/ .
published: Accesed April 2017
[29] Pauli D. IoT worm can hack Philips Hue lightbulbs, spread across cities, The Register. http://
www.theregister.co.uk/2016/11/10/
iot_worm_can_hack_philips_hue_lightbulbs_spread_across_cities/. Published: 2016-11-10.
Accessed: April 2017
[30] Krebs B. Hacked Cameras, DVRs Powered Today’s Massive Internet Outage,
KrebsonSecurity. https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-
massive-internet-outage/. Published: 2016-10-21. Accessed: April 2017
[31] Kan M. Chinese firm admits its hacked products were behind Friday's DDOS attack.
computerworld.com. http://www.computerworld.com/article/3134097/security/chinese-firm-admits-
its-hacked-products-were-behind-fridays-ddos-attack.html. Published: 2016-10-23. Accessed: April
2017
[32] Philips. https://developers.meethue.com/documentation/how-hue-works. How Hue Works.
Accessed 04-2017
[33] Philips. http://www2.meethue.com/da-dk/om-philips-hue/#aboutthesystem. Intelligente
lysstyringssystemer. accessed: 04-2017
[34] Nest. https://nest.com/about/. Nest is home. accessed: 04-2017.
[35] Nest. https://nest.com. accessed: 04-2017
[36] Smarter. http://smarter.am/coffee/. Accessed 04-2017
[37] Smarter. http://smarter.am/support-coffee/. Smarter Coffee. Accessed: 04-2017
[38] Nespresso. https://www.nespresso.com/dk/da/kaffemaskine/prodigio. Nespresso Prodigio
Kaffemaskine. accessed 04-2017
[39] Raspberry Pi FAQ, https://www.raspberrypi.org/help/faqs/#introWhatIs, accessed: October
2017
[40] General Python FAQ, https://docs.python.org/3/faq/general.html#what-is-python, accessed:
October 2017
[41] Python Package index, https://pypi.python.org/pypi?:action=browse&show=all&c=460,
accessed: October 2017
[42] Rodrigues A., RESTful Web services: The basics, https://www.ibm.com/developerworks/
library/ws-restful/index.html, 11-06-2008, accessed: October 2017
[43] What is MongoDB, https://www.mongodb.com/what-is-mongodb, accessed: October 2017
[44] NodeJS, About NodeJS, https://nodejs.org/en/about/, accessed: October 2017
[45] NodeJS, Anatomy of an HTTP Transaction, https://nodejs.org/en/docs/guides/anatomy-of-an-
http-transaction/, accessed: October 2017
[46] Digital Ocean, Droplets, https://www.digitalocean.com/products/compute/, accessed: July 2017
[47] English Oxford Living Dictionaries, metadata, https://en.oxforddictionaries.com/definition/
metadata, accessed: July 2017
[48] DARPA Internet Program, RFC 791, September 1981, https://tools.ietf.org/html/rfc791,
accessed: July 2017

https://www.theregister.co.uk/2017/02/28/cloudpets_database_leak/
http://www.theregister.co.uk/2016/11/10/iot_worm_can_hack_philips_hue_lightbulbs_spread_across_cities/
http://www.theregister.co.uk/2016/11/10/iot_worm_can_hack_philips_hue_lightbulbs_spread_across_cities/
http://www.theregister.co.uk/2016/11/10/iot_worm_can_hack_philips_hue_lightbulbs_spread_across_cities/
https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/
https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/
https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/
http://computerworld.com
http://www.computerworld.com/article/3134097/security/chinese-firm-admits-its-hacked-products-were-behind-fridays-ddos-attack.html
http://www.computerworld.com/article/3134097/security/chinese-firm-admits-its-hacked-products-were-behind-fridays-ddos-attack.html
http://www.computerworld.com/article/3134097/security/chinese-firm-admits-its-hacked-products-were-behind-fridays-ddos-attack.html
https://developers.meethue.com/documentation/how-hue-works
http://www2.meethue.com/da-dk/om-philips-hue/#aboutthesystem
https://nest.com/about/
https://nest.com
http://smarter.am/coffee/
http://smarter.am/support-coffee/
https://www.nespresso.com/dk/da/kaffemaskine/prodigio
https://www.raspberrypi.org/help/faqs/#introWhatIs
https://docs.python.org/3/faq/general.html#what-is-python
https://pypi.python.org/pypi?:action=browse&show=all&c=460
https://www.ibm.com/developerworks/library/ws-restful/index.html
https://www.ibm.com/developerworks/library/ws-restful/index.html
https://www.mongodb.com/what-is-mongodb
https://nodejs.org/en/about/
https://nodejs.org/en/docs/guides/anatomy-of-an-http-transaction/
https://nodejs.org/en/docs/guides/anatomy-of-an-http-transaction/
https://www.digitalocean.com/products/compute/
https://en.oxforddictionaries.com/definition/metadata
https://en.oxforddictionaries.com/definition/metadata
https://tools.ietf.org/html/rfc791

Appendix A[62]

Appendix B

Non Functional Requirements

Gateway

Requirement ID Specification

NFGW1 The gateway must contain connection through WiFi
and Ethernet

NFGW2 The Gateway must be connected to the home
router

NFGW3 The gateway must run on a linux platform

NFGW4 The gateway must have internet connection

Policy

Requirement ID Specification

NFP1 The policy must be stored in easy updatable format

Policy Repository

Requirement ID Specification

NFPR1 The policy repository (PR) must be stored so its
accessible to all gateways

Appendix C

Generic communication flow between entities

Appendix D

Sequence diagram of how to invoke training period

Prerequisite: No known policy exists

	Security and Privacy in IoT Architectures
	1. Introduction
	1.2 Motivation
	1.3 Delimitations
	2. Methodology
	3. Background
	3.1 The CIA Triad
	3.2 Related Research
	3.2.1. Risks and Threats
	3.2.2. IoT Security Solutions
	3.2.3 Frameworks
	3.3. State of The Art
	3.3.1. Known Attacks
	3.3.2. Smart home devices
	3.3.3 Scenarios
	3.3.4. Technologies
	4. Analysis
	4.1 Preface
	4.1.1 Deducting Scenarios
	4.1.2 Protocols and frameworks
	4.2 Overview
	4.3 Meta Data
	4.3.1 Hardware
	4.3.2 Internet Protocol
	4.3.3 Various Meta data
	4.4. Gateway - Logging
	4.5 Security Mechanisms
	4.5.1. Risks and Threats
	4.5.2 Logic
	4.5.3 Policies
	4.5.4 Training
	4.5.5 User Interaction
	4.6 Requirements
	5. System Design
	5.1 System Overview
	5.2 Gateway
	5.3 Policy
	5.4 Policy Repository
	5.5 Web application
	6 Implementation
	6.1 Deployment
	6.2 IoT Security Gateway
	6.2.1 Logging
	6.2.2 IP Tables:
	6.3 Policy Setup
	6.4 Proof of Concept
	7. Future Work
	7.1 Web application
	7.2 Registration
	7.3 Automation
	8 Discussion
	9 Conclusion

