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Due to the high growth in renewable
energy generation, more and more re-
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tured for household usage. Integrating
PV system accompanied with energy
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completely disconnect from the grid.
One of the biggest consumer in a
building is the heating system. This
work focuses on representing a com-
plex system composed of: house, heat-
ing, battery, PV system, backup gener-
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power is pursued, consequently the
usage of fossil fuels is reduced. Also,
the predictive controller commands:
heating of the house, energy storage
and backup generation, thus keeping
the house temperatures within com-
fort limits. Finally, a MPC strategy
is implemented and verified through
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Chapter 1

Introduction

In this chapter a short motivation will be presented, after which we will look into
the literature relevant to this study, followed by describing the green smart house
(GSH) concept and providing a case study example. Next the modeling of the
system will be done in Chapter 2 while the optimization will be handled in Chapter
3. Further on, simulations and results will be presented in Chapter 4, and finally
the conclusions of this project will be drawn in Chapter 5.

1.1 Motivation

In the last two decades there has been a high growth in renewable energy pro-
duction, such that more renewable equipment systems are being manufactured for
consumers households. By choosing "green energy" sources consumers can sup-
port the development of clean energy that will reduce the environmental impacts
associated with conventional energy generation and increase energy independence.
Moreover, these technologies can help houses by reducing bills for different util-
ities on a mid-long term basis. Energy systems technologies have reached to a
point that they can be reliable as standalone systems, hence pushing towards a
decentralization of the energy market.

In this sense, a house equipped with such a system accompanied by energy
storage would provide the energy needed for daily consumption. But, there will
be situations when there will not be enough energy to provide to the house due to
weather circumstances. In most cases, a solution is to have a backup generator run-
ning on fossil fuels that will provide energy in the situation described previously.
Another solution would be to schedule some of the devices in such a manner that
will avoid using the backup generator, or draining the whole battery. Addition-
ally, the applicability of such a scheduling system would provide optimization of
energy consumption, but also it can be extended to other fields of study.

1



2 Chapter 1. Introduction

This thesis will focus on optimizing the GSH by scheduling the household
consumption when green energy is available, using the backup generator as little
as possible. Moreover, it will undertake the process of building the system model
and finding a proper optimization method. Furthermore, the implementation of
the models and optimization method will be pursued, followed by a presentation
of the findings.

1.2 Literature

Nowadays, the environmental issues are more and more alarming as: "primarily
the burning of fossil fuels and deforestation caused by industry and urbanization—is re-
sponsible for a sharp and continuing rise in the concentration of carbon dioxide (CO2)"
[16]. Thus, the energy generated by means of burning fossil fuels must come to an
end.

An alternative to these solutions is the well known renewable energies: so-
lar, wind and hydro. In [6] a simulation framework has been developed, where
some renewable energy systems are described, for example: wind and solar power
plants. Moreover, in the same study the description of an energy storage model is
provided.

Further, in [8] the authors undergo an optimization (using Matlab’s linprog
function) by exploiting weather forecast and energy prices in conjunction with
prediction models of house dynamics and floor heating systems using heat pumps.
Also, it is shown the possibility to move substantial amount of energy from one
time to another, whilst keeping the inhabitants within their comfort zone. Another
approach is followed in [4], where model predictive control (MPC) is used to con-
trol heating and cooling of a simple house. Moreover, the predictive controller
takes into account the current thermal conditions of the house and 1-day-ahead
weather forecast. A different approach is taken in [15] that aims to predict the en-
ergy consumption of a residential thermal HVAC model. Such that, a second-order
thermal model of the house is built in Matlab, while GridLAB-D is used to control
the HVAC based on temperature, time and occupancy pattern.

In [3] a solution to the scheduling problem of smart home appliances using
mixed-integer programming (MIP) is proposed. The goal, given in a load demand
profile, is to minimize electricity cost fulfilling duration, energy requirement, and
user preference constraints. Additionally, this study shows that by adding a PV
system in a home this would result in energy bills reduction. Another scheduling
approach is tackled in [1], where the study concerns optimal scheduling of a set
of house appliances taking into account costs, comfort level and time. Such that,
using a mixed-integer linear programming (MILP) model and a heuristic algorithm
that accounts for a typical household with solar panels and energy storage. On
the other hand, in [7] the authors formulate an optimization to schedule eletrical
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loads given short term prediction of time-varying power production, using an MPC
approach with constraints, to store a limited amount of energy in the battery.

In this work, a different approach has been taken for the purpose of optimizing
energy and reducing fossil fuels consumption when combining different systems
such as: solar panels, energy storage, backup generator and heating system. This
was achieved by having the aforementioned studies as basis and inspiration.

1.3 Green Smart House

Along this section an explanation of what is the Green Smart House (GSH), what
utility it provides and how it can be used further, is given. Moreover, going through
the literature discussed in 1.2, one can observe that a different approach is taken
in the work at hand.

Further on, assuming that the energy provided to a GSH should rely mostly
on renewable energies (solar panels, wind/hydro turbine or other). In most cases
these renewable energies are somewhat limited due to natural causes (e.g. clouds
blocking the sun, not enough wind). Such that, in order to be self-sustainable in
an “off-grid” scenario, the green smart house system (GSHS) is defined with the
following components:

• House with defined parameters that relate to its construction.

• HVAC system that provides heating to the house.

• PV system that generates power depending on weather conditions.

• Battery that stores the power from the PV system for later usage.

• Backup generator used when insufficient power is not provided to HVAC.

Figure 1.1: GSHS diagram. How the individual systems within the GSHS, such as solar panels,
backup generator, HVAC and battery, relate and cooperate.
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Furthermore, the block diagram of how the GSHS would look in a realistic
scenario can be seen in Figure 1.1. Given the weather conditions the solar pan-
els would generate power, while the charge controller would decide if the power
would be stored in the battery or served to the heating system (HVAC) for pro-
viding heat to the house. Moreover, in the case of insufficient power the backup
generator would provide the power shortage to the HVAC in order to keep the
house temperature at a certain comfort level.

1.4 GSH Case Study

In this section a case study will be presented, and establish some basic assumptions
regarding some of the house parameters and HVAC. Such that, let us consider the
following house plan depicted in Figure 1.2, having a total area of 120m2 with 6
spaces, 7 doors (depicted in blue, 2 of them communicating to the outside and 5
inside) and 10 windows (depicted in orange). Moreover, all of these house com-
ponents will impact to some extent the performance of the house, in particular the
indoor temperature and consequently the overall energy consumption.

An important factor in modeling a house is knowing the thermal resistances
of roof, walls, floors, windows and doors. To give an example, a house with poor
insulation will be problematic since the indoor temperature will fluctuate more
frequently. From a control point of view this would make it harder to schedule
the heating system. To give a comparison for the house parameters one can take
the examples of a poor (GSH1), average (GSH2) and good (GSH3) house insulation
chosen regarding the International Energy Conservation Code in [11] and trans-
lated to SI units. The respective parameters shall be used later on in simulations to
provide a comparison. In Table 1.1 the thermal resistance values of each structure
of the house regarding different thermal integrity levels can be seen.

GSH Roof[ Km2

W ] Wall[ Km2

W ] Floor[ Km2

W ] Door[ Km2

W ] Window[ Km2

W ] Level
1 2.64 0.88 0.88 0.53 0.14 Bad
2 5.28 1.94 3.34 0.59 0.30 Medium
3 8.45 3.34 3.87 0.88 0.37 Good

Table 1.1: House parameters based on different types of insulation

The heating, ventilation and air conditioning (HVAC) considered for this study
uses an electric ON/OFF heat pump [2]. First, the efficiency of the heat pump
is defined as the coefficient of performance (COP), which is determined by the
ratio between energy usage of the compressor and useful heat extracted from the
condensor in the case of a heat pump. Choosing a high COP value represents
high efficiency of the heat pump. Another important aspect of the HVAC is to
specify the heating setpoint which will be 21◦C and the deadband ±3◦C. An
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important safety measure is the time limitation between ON and OFF cycles which
is considered 15 minutes in this case. Control of house heating will be made based
on weather forecast and PV generation.

This study will pursue to aggregate all the components presented in Section
1.3 as one self-sustainable system defined as the GSHS. In order to achieve this,
modeling of each component will be done beforehand in Chapter 2. Afterwards,
integration, controlling and optimizing the GSHS will be presented in Chapter 3.
Last but not least, the results achieved in this study will be highlighted through
simulations, based on a Matlab and CVX implementation Appendix A, explained
in Chapter 4.

Figure 1.2: Example of GSH plan with: a total area of 120m2 with 6 spaces, 7 doors (depicted in blue,
2 of them communicating to the outside and 5 inside) and 10 windows (depicted in orange).





Chapter 2

Modeling

The modeling chapter defines the theoretical background of the green smart home
system (GSHS) components, such that a house dynamic model is built in Section
2.1, the PV system is defined in 2.2, while the energy storage is provided in 2.3.
Afterwards, discretizing all the components and forming the GSHS will be done in
Section 2.4 which will be used further for the optimization presented in Chapter 3.

2.1 House Dynamics

Earlier, in Section 1.3 the house description has been made, such that in this part
the heat transfer processes using resistance-capacitance equivalent models (RC net-
works) are presented, for details see [22]. For this house model an abstraction has
been made, such that all the rooms in the house will be represented as one room
with a single air TA and mass TM temperature. Moreover, the house parameters
(UA, UM, CA, CM) relate to the materials and construction of the house as described
in [18]. Knowing this, in Figure 2.1 the equivalent thermal resistance circuit of the
house is shown, where:

• TO[
◦C] - outdoor air temperature.

• TA[
◦C] - house air temperature.

• TM[◦C] - house mass temperature.

• QA[W] - heat transfer from HVAC.

• QR[W] - heat transfer from solar radiation added directly to the room mass,
bypassing air medium.

• UM[W/◦C] - house mass surface conductance (ceilings, interior walls and
exterior walls).

7



8 Chapter 2. Modeling

• UA[W/◦C] - house envelope conductance (walls, windows, doors, floor and
ceiling).

• CM[J/◦C] - house thermal mass capacitance.

• CA[J/◦C] - house air thermal capacitance.

Based on the study found in [8] the heat transfer from the HVAC system QA
will be considered to be equal to the power provided PH multiplied with a constant
COP factor as in Equation (2.1).

QA(t) = COP · PH(t) (2.1)

As discussed earlier the house thermal performance is based on a reduced
equivalent thermal parameter (ETP) model in which parallel heat flow paths and
series thermal mass elements are lumped into a few parameters and portrayed as
a basic DC eletric circuit as in Figure 2.1. Such that, by looking at the circuit in
Figure 2.1 the heat balance on the indoor air temperature node TA can be derived
in Equation (2.2), whilst in (2.3) the heat balance on mass temperature node TM

can be observed. These equations describe the thermal performance of the house
model. Hence, a realistic analysis can be made under changeable circumstances
such as weather conditions in this case the outdoor temperature TO and heat gain
from solar radiation QR, but also the heat transfer from the heating system (HVAC)
QA.

For a better understanding one can follow Equations (2.2) and (2.3) with Fig-
ure 2.2 where the heat gains/losses of the house are shown. Thus, for the air
medium TA one can observe the heat gain from the heating system QA, while the

Figure 2.1: Equivalent thermal parameter (ETP) circuit of the house model.
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heat gains/losses towards the house mass QAM and outdoor temperature QAO are
determined by the difference in temperature between each of the mediums. Re-
garding the mass medium TM, the main gain is the solar radiation QR, whilst the
heat flow towards the air medium is identified as QMA. Moreover, the use of the air
CA and mass CM capacitances is to realistically dampen the effect of the difference
in temperature between each media, the heat sent from the heating system QA
and by the solar radiation QR respectively. These matters are important, because
they directly impact the energy consumption of the house and need to be taken
into account. Hence, the house dynamics are essential to compute the air TA and
mass TM temperatures in order to predict the amount of power PH that needs to
be provided to the HVAC system, thus keeping the house temperature within an
appropriate comfort interval.

COP · PH(t)︸ ︷︷ ︸
QA

−UA[TA(t)− TO(t)]︸ ︷︷ ︸
QAO

−UM[TA(t)− TM(t)]︸ ︷︷ ︸
QAM

−CAṪA(t) = 0 (2.2)

QR(t)−UM[TM(t)− TA(t)]︸ ︷︷ ︸
QMA

−CMṪM(t) = 0 (2.3)

Figure 2.2: Schematic of heat flows between each media within the house.
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Going forward, rewriting Equation (2.2) for the heat balance on the air temper-
ature node TA in the form of (2.4) and (2.3) for the mass temperature node TM as
(2.5).

ṪA(t) =
1

CA
[−(UA + UM)TA(t) + UMTM(t) + COP · PH(t) + UATO(t)] (2.4)

ṪM(t) =
1

CM
[UMTA(t)−UMTM(t) + QR(t)] (2.5)

State-space model

Further, using Equations (2.4) and (2.5) and arranging them in the continuous time-
invariant state-space model representation having the general form as in (2.6).

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (2.6)

• x is the state vector in (2.7), x ∈ R2x1

x(t) =
[
TA(t) TM(t)

]T
(2.7)

• u is the input or control vector in (2.8), u ∈ R3x1

u(t) =
[
PH(t) QR(t) TO(t)

]T
(2.8)

• y is the output vector in (2.9), y ∈ R2x1

y(t) =
[
TA(t) TM(t)

]T
(2.9)

• A is the system matrix in (2.10), A ∈ R2x2

A =

−
UA+UM

CA

UM
CA

UM
CM

−UM
CM

 (2.10)

• B is the input matrix in (2.11), B ∈ R2x3

B =

COP
CA

0 UA
CA

0 1
CM

0

 (2.11)

• C is the output matrix in (2.12), C ∈ R2x2

C =

[
1 0
0 1

]
(2.12)
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Figure 2.3: Block diagram representation of the liniar state-space in Equation (2.6).

For a better understanding of the state-space given in Equation (2.6) the block
diagram representation of the system is depicted in Figure 2.3, where the corre-
sponding terms are given in Equations (2.7) - (2.12). Moreover, this shows how the
input u changes the current state of the system x which will yield the output y at
a given time instance.

System poles and time constants

Following the investigation of the transfer function matrix in Appendix B, further
analysis of the system poles can be made, first by finding the roots of Equation
(2.13), where the coefficients of each term can be found in (2.14)-(2.16).

as2 + bs + c = 0 (2.13)

a = 1 (2.14)

b =
CM(UA + UM) + CAUM

CACM
(2.15)

c =
UAUM

CACM
(2.16)

Knowing that all the parameters in Equation (2.18) have positive values and that
the mass conductance UM is larger than the air UA, implies that the discriminate ∆
is positive which means that the roots will be real numbers.

r1,2 =
−b±

√
∆

2a
(2.17)

∆ = b2 − 4ac

=
(UA + UM)2

C2
A

+
U2

AU2
M

C2
AC2

M
+ 2

UM(UM −UA)

CACM
> 0 (2.18)
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Now, using Equation (2.17) and knowing the house parameters, the roots can be
calculated in (2.19). Moreover, using these roots factorization of Equation (2.13) can
be done in (2.20), such that it can be remarked that the eigenvalues of the system
are negative real values which means that the system is asymptotically stable as
time evolves.

r1,2 = −CM(UA + UM) + CAUM

2CACM
±

√
(UA + UM)2

C2
A

+
U2

AU2
M

C2
AC2

M
+ 2

UM(UM −UA)

CACM
(2.19)

as2 + bs + c = (s + r1)(s + r2) = (s + 13.506)(s + 0.114) (2.20)

In the case of the thermal system at hand the time constants are at most im-
portant since they are directly connected with how fast the mediums cool or warm
under the influence of external factors. Such that, using Equation (2.21) we can
isolate the terms and find the time constants τ1 and τ2 found in (2.22) and (2.23).
Moreover, by looking at the time constants values it can be said that τ1 relates to
the capacity of the air inside the house, whilst τ2 describes the time needed for the
house mass to cool/warm.

(s + r1)(s + r2) = τ1τ2(
1
τ1

s + 1)(
1
τ2

s + 1) (2.21)

τ1 =
1
r1

= 0.074 [hours] (2.22)

τ2 =
1
r2

= 8.772 [hours] (2.23)

As a remark it can be said that in a realistic scenario, for example when opening
a window, the room air temperature would take more or less the same time in order
to cool/warm as described by the time constant τ1 (≈ 4.5 minutes). Further, we
shall assume that there are local controllers that will keep the air temperature TA
near the desired set-point.

Given the fact that the large capacity of the house mass leads to slower changes
in temperature TM, this enables heat storage for longer periods. In this case, it
is more of interest to look at the time constant τ2 when choosing the sampling
time Ts. A best practice for choosing the sampling time, in this situation, would
be at least 20 times the time constant as shown in Equation (2.24). Such that, a
sampling period of 15 minutes shall be used further on, in finding the discrete
model discussed in Section 2.4 and the simulations to come.

Ts ≤ 0.05τ2 (≈ 26 minutes) (2.24)
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House model comparison and verification

As a verification step, a model comparison of the house has been made with a sim-
ilar implementation used within a well-known system simulation tool, GridLAB-D
[19]. Thus, the comparison between the model within GridLAB-D tool and the
control model will be presented in order to confirm the implementation of the
house dynamics. To be noted that, the GridLAB-D house model is limited, but it
is fairly reliable since it is used in most research studies. For more insight on how
the house dynamics are implemented within this simulation tool refer to [23].

Furthermore, the house dynamic model relies on the weather data in order to
compute the indoor temperature TA. Such that, both models have the same house
parameters and weather data provided by the climate module in [17] composed
of: the outdoor temperature TO and solar radiation QR parameters. Moreover, the
climate data includes parameters as temperature, humidity, and solar radiation,
which are used to calculate temperature gain that is the result of heat gained from
direct exposure of a surface to sunlight. On top of that, for determining the solar
radiation the model taking into account the change in tilt of the Earth polar axis
with respect to the plane of the orbit around the sun through the year based on
[13].

The house dynamics presented in this section has been implemented using
Matlab, as provided in Appendix A. Two different scenarios have been built in
order to be analysed: winter in Figure 2.4a and summer in 2.4b, where TA,ctrl is the
indoor temperature of the current implementation whilst TA,hi f i is the one provided
by GridLAB-D.

For example, in Figure 2.4a the simulation starts off with the same indoor TA
and outdoor TO temperatures, around 3− 4◦C, and near sample 30 (equivalent to
hour 7:00, when the sun would come up) the outdoor temperature also starts to
rise. After a while, the temperature in the house starts to change due to the solar
radiation and ambient temperature. Also, it can be seen that the change in the
indoor temperature does not occur instantly which would be the case in reality
due to house insulation. Moreover, the room temperature exceeds the ambient,
with almost 4◦C, since the heat is stored in the house longer period of time.

Observing both figures it can be see how each model performs in different
temperature situation given the same input data. Hence, we can conclude that
the models fit, thus verifying the control model derived in 2.1 which will be used
further in the implementation.
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(a) February

(b) July

Figure 2.4: Simulation and control model comparison showing indoor temperature TA,hi f i and TA,ctrl
in two different weather scenarios with outdoor temperature TO.
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2.2 PV System

In order to take advantage of the sun, one or more solar panels are needed to be
put in series or in parallel. A solar panel is composed out of multiple photovoltaic
cells connected in series. Such that, a solar cell absorbs some of the light parti-
cles falling on it, called photons each of them containing small amounts of energy.
Thus, when a photon is absorbed, it releases an electron of solar cell material. Since
every part of the solar cell is connected to a cable, a current will flow through it
causing the cell to produce electricity that can be used immediately or stored in
the battery. In the case when the battery is full and there is no other household
consumption the surplus power can be given to the electricity grid or stored as
heat. Depending from what material the solar cells are manufactured their effi-
ciency differ. Moreover, the efficiency of the cell is measured in the percentage of
irradiance solar energy which is transformed into electric energy.

Prated = ηPV ∗ APV ∗ Irated (2.25)

In most cases, there are some restrictions regarding the total nominal power of
a household PV system, to give an example, according to the energy authority in
Denmark the total nominal power should not exceed 6 kW [12]. Knowing this, it is
mandatory to calculate beforehand the rated power of target PV system. Such that,
knowing the rated irradiance value (Irated = 1kW/m2, found in [5]), the efficiency of
each PV module ηPV and the total area of the system APV it is possible to compute
the rated power Prated of the PV system by using Equation (2.25). To give some
examples, in Table 2.1 there are presented different types of installed PV systems
and their corresponding peak power. Given the fact that the PV panels are typically
overrated a possibility is to install a larger system and when necessary limit the
power produced in the inverter.

No APV [m2] ηPV [%] Ppeak [kW]
1 20 20 4
2 30 20 6
3 40 15 6
4 40 20 8

Table 2.1: Examples of parameters of PV system and total nominal power

Further, in order to build a near to reality PV generation model the sun inci-
dence angle at each time instance has to be included. Given the fact that Earth is
not stationary the sun’s angles have to be into account, hence impacting the output
power of the PV system. Such that, with respect to the PV array position on the
earth the sun azimuth θs and altitude φs angles in Figure 2.5a can be determined
based on models found in [13]. Additionally, the zenith angle φz can be calculated
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with Equation (2.26). Both azimuth and zenith angles will be needed forward to
determine the sun incidence angle on the PV array.

φz(t) =
π

2
− φs(t) (2.26)

(a) Sun orientation with azimuth angle, θs, altitude angle φs and zenith angle φz.

(b) PV array orientation with azimuth angle, θ0, and tilt angle φ0.

Figure 2.5: Sun and PV array orientation.
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Furthermore, observing Figure 2.5b, the PV array is fixed on the surface and its
orientation is composed out of the azimuth angle θ0 and tilt angle φ0. These angles
are based on the geometric relashionships defined by the array orientation and sun
angles.

Given the sun and PV array orientations one can compute the sun incidence
angle, αsun, defined as the angle between the beam irradiance and a line normal
to the PV array surface. Thus, using Equation (2.27) the incidence angle can be
calculated.

αsun(t) = sin φz(t) cos (θs(t)− θ0) sin φ0 + cos φz(t) cos φ0 (2.27)

The output power of the PV system, PS, depends on the sun incidence angle
αsun and direct normal irradiance Ib at time t given by the daily weather forecast
as seen in Equation (2.28). Moreover, the parameters of the PV system: area APV ,
module efficiency ηPV , azimuth θ0 and tilt φ0 angles are constant.

PS(t) = ηPV · APV · Ib(t) cos αsun(t) (2.28)
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2.3 Energy Storage

In the case of an “off-grid” house scenario energy storage has to be taken into
account. Such that, the power generated by the PV system related in Section 2.2
has to be stored. To give an example, a possible home energy storage based on
Lithium-Ion battery modules which supports complete disconnection from the grid
supply.

The energy storage dynamics is based on [6] and in Figure 2.6 an example is
shown how can it be connected to other components of the system. Hence, the
energy stored EB is expressed in Equation (2.29) by means of the initial battery
level EB(0) and the difference between power from PV generation PB,in and con-
sumption PB,out in time which is denoted by PB(t). Additionally, the charging and
discharging efficiency defined by η in (2.30) are taken into consideration in the
model along with the battery drain rate ηd. Moreover, the main limitation of the
energy storage is set by the constraint in (2.31), where EB,min and EB,max are the
minimum and maximum battery energy levels. In addition, the power ramp limi-
tations on PB are included in (2.32), where PB,min and PB,max are the minimum and
maximum power consumption/injection in the battery.

EB(t) = ηdEB(0) +
∫ t

0
η [PB,in(t)− PB,out(t)]︸ ︷︷ ︸

PB(t)

dt (2.29)

η =

{
ηin, for PB(t) ≥ 0

ηout, for PB(t) ≤ 0
(2.30)

EB,min ≤ EB(t) ≤ EB,max (2.31)

PB,min ≤ PB(t) ≤ PB,max (2.32)

Figure 2.6: Energy storage block diagram usage example.
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2.4 Discrete Models

In order to solve the problem in the context of convex optimization in Chapter
3, there is a need to discretize the models present in this chapter. Looking at
the block diagram in Figure 2.7 all the GSHS components can be seen while in
Table 2.2 the list of variables is presented. Given the fact that there are distinctive
components and variables present within the GSHS, an adequate sampling time
has to be defined. Hence, the sampling time Ts is considered to be 15 minutes
on account of the weather data based on the assumption that there are no drastic
changes within this time interval. Also, this period acts as a safeguard measure
for the HVAC and backup generator since there should be a limitation between
ON/OFF cycles.

Given the sampling time Ts is 15 minutes a day would be divided into 96 time
slots k, where the first time slot (k = 1) starts at 00:00 and end at 00:15 which is the
starting time of second slot (k = 2) whilst the last time slot (k = 96) in that day will
start at 23:45 and end at 00:00. Such that, this can be extended for any number k
when multiple day scheduling of the GSHS.

Having the continuous-time house dynamic model obtained in Section 2.1 this
should further be discretized. Thus, by employing zero-order hold to the state-
space in (2.6) with the sampling time Ts (15 minutes = 0.25 hour), the discrete-time
model is obtained in Equation (2.33), where the matrices (Ad, Bd) and vectors (x,
u) are the same dimensions as their continuous-time counterparts. The weather
data (QR, TO) is provided as inputs to the house model by the simulation tool
GridLAB-D [19] at each sample while the control input PH will be managed by the

Figure 2.7: GSHS block diagram logic showing the power flows and how the weather impacts the
system.
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optimization.

x(k + 1) = Adx(k) + Bdu(k)

y(k) = Cdx(k) (2.33)

where,

x(k) =
[
TA(k) TM(k)

]T

u(k) =
[
PH(k) QR(k) TO(k)

]T

y(k) =
[
TA(k) TM(k)

]T

The PV system continuous-time model described in Section 2.2 is given in dis-
crete form in Equation (2.34). Knowing that the PV generation depends on the
weather data which consists of the solar irradiance Ib and sun incidence angle
αsun which are reduced to the solar irradiance beam IB as this input will be given
directly by the simulation tool GridLAB-D [19] for each sample.

PS(k) = ηPV · APV · Ib(k) cos αsun(k)︸ ︷︷ ︸
IB(k)

(2.34)

Regarding the energy storage dynamics presented in 2.3 will have the corre-
sponding discrete form described by Equation (2.35). The intake power PB,in is
given in Equation (2.36), where PBP is the power bypassing the battery for HVAC
direct usage and PS is the power generated by the PV system. On the other hand,
the output power PB,out is drained for HVAC consumption in the case of inexis-
tent PV generation. In the situation when the battery would empty between time
samples, this would be handled by the constraints imposing that enough energy is
stored inside it for a whole sampling period.

EB(k + 1) = ηdEB(k) + Ts[ηinPB,in(k)− ηoutPB,out(k)] (2.35)

PB,in(k) = PS(k)− PBP(k) (2.36)

Last but not least, a backup generator running on fossil fuels with output power
PG is included in (2.37) as a last energy resource in the case of energy shortage
when PV generation or energy storage is not available. In the case of a negative
power PG, a zero value will be given by the constraint while having a large positive
power value will be limited to an upper bound.

PG(k) = PH(k)− PBP(k)− PB,out(k) (2.37)
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Notation Unit Description
TA [◦C] Temperature of the house air
TM [◦C] Temperature of the house mass
TO [◦C] Outdoor temperature
PS [W] Power output of PV system
PG [W] Power output of backup generator
PH [W] Power consumption of HVAC system
PBP [W] Power bypassing the battery for HVAC consumption
PB,in [W] Power intake from the PV system
PB,out [W] Power drained from the battery for HVAC consumption
EB [kWh] Energy stored in the battery
QR [W] Heat transfer from solar radiation
IB [W/m2] Solar beam irradiation
APV [m2] Area of the PV system
ηPV [%] Efficiency of PV modules
ηd [%] Battery drain rate
ηin [%] Battery charging efficiency
ηout [%] Battery discharging efficiency
COP [−] Coefficient of performance of HVAC
Ts [s] Sampling time
k [−] Time slot

Table 2.2: List of variables of the GSHS





Chapter 3

Optimization

This chapter deals with solving the optimization problem of the green smart house
system (GSHS) presented in Chapter 2 which in this case will be to minimize the
backup generator usage and consequently reduce fossil fuels consumption. Such
that, in Section 3.1 the objective function will be formulated with the constraints
defined in 3.2 and the problem variables given in 3.3. Furthermore, in Section
3.4 the control strategy used for optimization will be presented while in 3.5 the
implementation method will be approached.

Figure 3.1: GSHS block diagram logic showing the power flows and how the weather impacts the
system.
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3.1 Objective Function

The scope of this section is to state the problem and construct the objective func-
tion that will minimize backup generator usage PG while keeping the house air
temperature TA to a reference TA,re f for user comfort. First, by looking at the block
diagram in Figure 3.1 the following GSHS components can be identified:

• House with defined parameters given in Table 3.4 that relate to its construction
will be observed at each time step in order to maintain the indoor tempera-
ture within an interval. Moreover, the house dynamic model will depend on
the weather conditions and heat provided by the HVAC system.

• HVAC system will provide heating to the house based on the power intake PH

and COP factor. The sources supplying power to the HVAC are as follows:
(1) PV generation PS, (2) battery PB,out and (3) backup generation PG (each
number symbolizes the priority on which source should be used first when
it is available).

• PV system has specific parameters provided in Table 3.4 and will generate
power PS depending on solar irradiation IB. The power will be either stored
PB,in into the battery or bypassed PBP to the HVAC for immediate use.

• Battery that stores the power from the PV system for later usage. Moreover,
the battery model is characterized by parameters that can be found in Table
3.4.

• Backup generator used in the case of insufficient power for the HVAC consump-
tion PH. However, the aim of the optimization is to minimize the generator
usage.

• Weather data (forecast) that provides the outdoor temperature TO, solar ra-
diation QR and solar irradiance beam IB used in the PV and House mod-
els to predict future values of generated power PS and house temperature
TA. Moreover, these predicted values will help on finding optimal values for
HVAC consumption PH and backup generator output power PG.

As stated before, the house temperature depends on HVAC heating to keep
the temperature within an interval. Such that, an optimization task is to find
the optimal values for HVAC power consumption PH. Moreover, in the case of
insufficient power the backup generator needs to be used in order to provide power
to the heating system. Thus, there is a need in declaring a multiple objective
function J(·) that will satisfy the needs of the GSHS.
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As a first and main objective in (3.1) the usage cost of the backup generator PG
has to be minimized, consequently reducing fossil fuels consumption.

fO1 = minimize
N

∑
k=1

PG(k) (3.1)

The second objective in (3.2) deals with the comfort of the household, mean-
ing that a big difference between house air temperature TA and the predefined
reference temperature TA,re f will issue a demand to the HVAC to provide heat.

fO2 = minimize
N

∑
k=1
|TA(k)− TA,re f (k)| (3.2)

The last objective in (3.3) regards minimizing the battery usage PB,out with the
idea of giving priority to the use of power generated by the PV system which
bypasses the battery PBP for direct HVAC consumption.

fO3 = minimize
N

∑
k=1

PB,out(k) (3.3)

Further, by combining all the objectives from Equation (3.1), (3.2) and (3.3), the
main objective function J(·) can be built in Equation (3.4). Moreover, in order to
match the units difference and to establish which objective is a priority proper
weight factors have to be defined for each. Such that, a larger weight on tempera-
ture WT than on backup generator usage WG and battery WB provides comfort at
the expense of higher energy consumption. Since the aim is to use less fossil fuels,
the weight factor WG should have a higher impact on the objective function in (3.4),
followed by the weight on temperature WT and last being the battery WB.

J(TA(k), TA,re f (k), PG(k), PB,out(k), WT, WG, WB) =

N

∑
k=1
|TA(k)− TA,re f (k)|WT + PG(k)WG + PB,out(k)WB (3.4)

Finally, the optimization problem is formulated as in (3.5), where the multiple
objective function J(·) described in Equation (3.4) is minimized subject to the dis-
crete models found in Section 2.4 and the constraints that are presented in Section
3.2. The purpose is to find the optimal values for the decision variables found in
Table 3.2 that will minimize the function J(·).

minimize J(TA(k), TA,re f (k), PG(k), PB,out(k), WT, WG, WB) (3.5)

subject to (2.33)− (2.35)

(3.6)− (3.14)
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3.2 Constraints

This section continues with establishing the constraints of the optimization prob-
lem at hand. To begin with the constraint on the backup generator as given in
(3.6), where PBP is the power bypassing the battery and depends on PV generation
PS and should be used as a first resource, PB,out is the power drained from the
battery and PH represents the power consumption of the heating system at time
slot k. Furthermore, the limitation on backup power generation PG is dealt by (3.7),
where PG,max is the maximum output power of the generator.

PH(k) = PBP(k) + PB,out(k) + PG(k) (3.6)

0 ≤ PG(k) ≤ PG,max (3.7)

Considering the discrete house model in Equation (2.33), the constraint on mass
temperature TM can be defined in (3.8) with the comfort interval set by the mini-
mum TM,min and maximum TM,max bounds. The reason why there is no constraint
on the air temperature TA is that feasibility problems may occur, since it is directly
in the objective function (3.4).

TM,min ≤ TM(k) ≤ TM,max (3.8)

HVAC limitation constraint on how much power PH it can consume is given in
(3.9), where PH,max is the maximum power that can be provided to the system.

0 ≤ PH(k) ≤ PH,max (3.9)

Regarding the energy storage, an important constraint has to be defined in
(3.10) for the power. Additionally, the battery level limitation is given in (3.11) by
the lower EB,min and upper EB,max bounds of energy level. Moreover, the limit on
power injection PB,in is managed by constraint (3.11) while the inequality (3.12)
deals with bounding the output power PB,out of the battery, where PBi,max and
PBo,max are the upper bounds for injection and consumption respectively. Last but
not least, the constraint on the power bypassing the battery PBP is limited to the
total generation PS provided by the PV system.

PS(k) = PB,in(k) + PBP(k) (3.10)

EB,min ≤ EB(k) ≤ EB,max (3.11)

0 ≤ PB,in(k) ≤ PBi,max (3.12)

0 ≤ PB,out(k) ≤ PBo,max (3.13)

0 ≤ PBP(k) ≤ PS(k) (3.14)
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3.3 Problem Variables

In this section a classification of the problem variables will be done before a thor-
ough implementation will take place. First, the variables that represent the dynam-
ics of each model presented in Section 2.4 can be seen in Table 3.1.

Variable Unit Description
TA [◦C] Temperature of the house air
TM [◦C] Temperature of the house mass
PS [W] Power output of PV system
EB [kWh] Energy stored in the battery

Table 3.1: List of model variables

Secondly, the list with all the decision variables is given in Table 3.2. These
variables may change their values over the runtime of the optimization to solve the
problem in an optimal way.

Variable Unit Description
PH [W] Power consumption of HVAC system
PG [W] Power output of backup generator
PBP [W] Power bypassing the battery for HVAC consumption
PB,in [W] Power intake from the PV system
PB,out [W] Power drained from the battery for HVAC consumption

Table 3.2: List of decision variables

Furthermore, expressions and constraints rely on other data to perform the
calculations to find the optimal values for the decision variables. Particularly, the
list of data inputs is presented in Table 3.3, where this data is provided through
the use of the simulation tool GridLAB-D [19].

Data Unit Description
TO [◦C] Outdoor temperature
QR [W] Heat transfer from solar radiation
IB [W/m2] Solar beam irradiation

Table 3.3: List of data inputs

Last but not least, the parameters that define all the GSHS components and
simulation specification are described in Table 3.4. The parameters regarding each
component relate to the construction or characteristic of the house, battery, HVAC
or PV system, whilst the simulation parameters describe how the system should
perform and within which boundaries. Moreover, each parameter can be modified
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and tuned in order to create specific, close to reality, scenarios. To be noted that,
the list of variables can be extended by improving existing components or adding
new ones to the GSHS, thus making the problem more complex and realistic.

Parameter Unit Description
TA,re f [◦C] House reference temperature
TA,min [◦C] House minimum allowed temperature
TA,max [◦C] House maximum allowed temperature
PH,max [W] HVAC maximum power consumption
PG,max [W] Backup generator maximum power output
PBi,max [W] Battery maximum power injection
PBo,max [W] Battery maximum power output
EB,min [kWh] Battery minimum level
EB,max [kWh] Battery maximum level
EB0 [kWh] Battery initial level
WT [−] Weight factor on temperature temperature
WG [−] Weight factor on backup power generation
WB [−] Weight factor on battery usage
UM [W/◦C] House mass surface conductance
UA [W/◦C] House envelope conductance
CM [J/◦C] House thermal mass capacitance
CA [J/◦C] House air thermal capacitance
APV [m2] Area of the PV system
ηPV [%] Efficiency of PV modules
ηd [%] Battery drain rate
ηin [%] Battery charging efficiency
ηout [%] Battery discharging efficiency
COP [−] Coefficient of performance of HVAC
Ts [s] Sampling time
k [−] Sampling step
N [−] Prediction horizon

Table 3.4: List of system parameters
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3.4 Model Predictive Control

In order to handle the optimization problem stated in Section 3.1 this study will
look into the framework of predictive control, particularly Model Predictive Con-
trol (MPC). The main reason for choosing this is that MPC is the control technol-
ogy which can handle multivariable control problems, deal routinely with diverse
equipment and safety constraints [21]. Furthermore, it is necessary to point out the
essential features of the predictive control strategy such as:

1. Internal model capable of simulating and predicting the plant behaviour faster
than real time.

2. Receding horizon idea in which the prediction horizon remains the same length,
whilst moving along by one sampling interval at each step.

3. Computation of future control inputs which optimizes the predicted plant be-
haviour.

Thus, having the predicted behaviour of the plant depending on the assumed
control inputs, over a future prediction horizon, it is possible to choose the in-
put that would result in the best predicted behaviour. To be noted that, each future
control input is given depending on the conditions at the current time frame. More-
over, in the case of having several inputs that would result in the same behaviour, it
is preferable (in the case at hand) to choose the input that requires the least amount
of energy to be spent.

Figure 3.2: Control hierarchy of current setup.
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Control hierarchy

On another note, there is a need to discuss the different control layers which
present within the GSHS. Such that, by taking a look at the control hierarchy of
the current setup as depicted in Figure 3.2, it can be observed that at the bottom
level there are, depending on each component, control loops associated with in-
dividual actuators, such as motors, pumps, valves and switches. Going a layer
upwards, the traditional controllers: proportinal (P), proportional-integral (PI) and
proportional–integral–derivative (PID) can be found individually controlling pres-
sure, temperatures, voltages, currents on each system respectively. On top of these,
the MPC layer is comparable to a bridge between the different components present
inside the GSHS. Moreover, this upper layer deals with all the conditions which
cannot be fulfilled by the elementary one control loop paradigm.

MPC advantages

To make a comparison with the classical PID-controller based control solution, one
advantage of MPC is that it integrates useful future information in taking control
decisions, for example incorporate forecast weather data as outdoor temperature,
solar radiation and other predicted disturbances in the optimization procedure.
Another advantage of using MPC in the case at hand is that it allows definition
of system constraints, for example defining house temperature intervals or finite
amount of heating power of HVAC system. As a last advantage, MPC can find
the optimal control actions to fulfill the goals of the system which can be using
less energy, or less fossil fuels, or keeping the temperature to a reference, or their
combination. On the other hand, a disadvantage of using MPC is related to the
computing power necessities. For example, in the case of a complex problem with
a high number of variables, depending on the processing capabilities available,
the time required to compute the optimal inputs may vary from a few seconds to
several hours. Given the recent advancements in technology, at this moment of the
writing, computing power required to run MPC has become less troublesome.

Problem assumptions

First of all, we shall assume that the internal model that will be used further on
is linear, whilst the predictions will be made over constant prediction horizon.
Another important assumption that has to be made is in regards to the previous
air TA and mass TM temperatures required for each new iteration. Such that,
further we shall assume that these temperatures are either measured by a sensor
or estimated by an observer.
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MPC problem

Given the background and advantages posed earlier in this section, the problem
in (3.5) is reformulated in the context of MPC. Such that, the objective function in
Equation (3.15) is minimized subject to the discrete models found in Section 2.4
and the constraints that are presented in Section 3.2.

minimize
N−1

∑
i=0
|TA(k + i)− TA,re f (k + i)|WT + PG(k + i)WG + PB,out(k + i)WB

(3.15)

subject to (2.33)− (2.35)

(3.6)− (3.14)

where,

• N is the prediction horizon, chosen to compute the next control sequence;

• k = 1, 2, ..., 96 is the current sampling step that relates to a sampling time of
15 minutes, which means that a day would be divided into 96 time slots k,
where the first time slot (k = 1) starts at 00:00 and end at 00:15 which is the
starting time of second slot (k = 2) whilst the last time slot (k = 96) in that
day will start at 23:45 and end at 00:00;

• i = 0, 1, ..., N − 1 is the iteration step;

• TA(k + i) is the air temperature predicted at step k + i, by applying the inputs
to the house model in (2.33) starting from current temperature TA(k);

• TA,re f (k + i) is the house reference temperature that has to be taken into ac-
count at time step k + i;

• PG(k + i) is the predicted optimal value for backup generation at time step
k + i which needs to be fulfilled in the absence of other power sources;

• PB,out(k + i) is the predicted optimal value for battery usage at time step k + i,
which provides power to the heating system;

• WT temperature weight, WG backup generator usage weight, WB battery us-
age weight factors used to balance the GSHS requirements, choosen as de-
scribed in Section 3.1 and later on in the simulation.

The goal of the MPC problem described above is to find the optimal values for
the decision variables found in Table 3.2 over a prediction horizon N, by iterating
from the current state k of the system until the end of the horizon, namely at time
k + N. Thus, knowing the requirements of the MPC problem, further we shall look
into how to implement it.
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3.5 Convex Optimization

In this section the theoretical background of convex optimization is presented
which comes as a prerequisite in order to implementing the MPC problem de-
scribed in Section 3.4.

To be noted that there are several way of implementing MPC, an example is to
formulate the problem as a quadratic (QP) or linear (LP) program as described in [21]
and solving them using standard Matlab function such as quadprog() or linprog().
However, formulating the problem as a QP or LP is often possible, but in this
case it requires reformulating the actual optimization problem, by adding other
variables and constraints in order to get it into QP or LP form. These methods
would demand extra preparatory work, for example expanding the control system
in order to cover the whole prediction horizon, before using the Matlab functions
aforementioned. Moreover, this implies an augmented implementation, which can
be prone to mistakes and eventually more time consuming.

Considering the problem formulated along this chapter it has been decided
that this study will focus on convex optimization by using Matlab and a plug-
in called CVX [14]. In particular, this method has been chosen since it respects
all the requirements of the optimization problem at hand such as handling multi
objectives, constraints and finding the decision variables needed as control inputs
to the whole GSHS.

As a first step, formulating the problem in 3.4 as a convex optimization problem
is atmost important in order to solve it efficiently. Such that, by observing Equation
(3.16) the general form of the convex optimization problem is presented, as found
in [10].

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, ..., m (3.16)

hj(x) = cj, j = 1, ..., p

where,

• x = x1, ..., xn is the optimization problem variable;

• f0 : Rn → R is the objective function;

• fi : Rn → R with i = 1, ..., m, are the inequality constraint functions;

• b1, ...bm are the constraints boundries for inequalities;

• hi : Rn → R with j = 1, ..., p, are the equality constraint functions;

• c1, ...cp are the constraints boundries for equalities;
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• x∗ = x∗1 , ..., x∗n is the solution of the problem, if it gives the lowest objective
function of all vectors which satify the following constraints ∀z:

f0(z) ≥ f0(x∗)

f1(z) ≤ b1, ..., fm(z) ≤ bm

h1(z) = c1, ..., hp(z) = cp

Moreover, in order for the optimization problem to be convex this implies that
the objective and constraint functions are convex, that is satisfying the inequality
given in Equation (3.17) for all x, y ∈ Rn and all α, β ∈ R, knowing that α + β = 1
with α ≥ 0 and β ≥ 0. This inequality would imply that the line segment between
(x, fi(x)) and (y, fi(y)) lies above the graph of the function fi as pictured in Figure
3.3.

fi(αx + βy) ≤ α fi(x) + β fi(y) (3.17)

On the other hand, in the case where the constraint functions are equalities
they would obey Equation (3.18) for all x, y ∈ Rn and all α, β ∈ R, knowing that
α+ β = 1. For affine functions as in (3.18) it is already implied that they are convex
if the equality holds. Controversely, it can be said that any function that is convex
is also affine.

hi(αx + βy) = αhi(x) + βhi(y) (3.18)

Figure 3.3: Graph of a convex function, where the line segment between any two points on the graph,
for example the chord from x and y, stands above the graph.
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Furthermore, the domain D of the optimization problem is given by Equation
(3.19), representing the set of points for which the objective function and all con-
straint functions are defined. The problem is said to be feasible if there exists at
least one feasible point x ∈ D which satisfy the constraints in Equation (3.16), and
infeasible otherwise.

D =
m⋂

i=0

dom fi ∩
p⋂

j=1

dom hi (3.19)

CVX is a modeling framework that allows convex programs to be specified in a
mathematical form. However, the use of CVX requires that one must obet the rules
governed by disciplined convex programming (DCP). Thus, to give an example a
set of rules of DCP will be given as found in [20], followed by an analysis of the
optimization problem presented in this chapter:

• Problem type, a valid DCP can be:

– "T1 a minimization: a convex objective and zero or more convex constraints";

– "T2 a maximization: a concave objective and zero or more convex constraints";

• Constraints can be:

– "T4 an equality constraint with affine left- and right-hand expressions";
a f f ine = a f f ine

– "T5 a less than (<,≤) inequality, with a convex left-hand expression and a
concave right-hand expression";
convex ≤ concave or convex < concave

– "T6 a greater than (>,≥) inequality, with a concave left-hand expression and
a convex right-hand expression";
concave ≥ convex or concave > convex

• Product-free rules:

1. "The sum of two or more convex (concave, affine) expressions is convex (con-
cave, affine)";

2. "The product of a convex (concave) expression and a nonnegative constant ex-
pression is convex (concave)";

3. "The product of a convex (concave) expression and a nonpositive constant ex-
pression, or the simple negation of the former, is concave (convex)";

4. "The product of an affine expression and any constant is affine".
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The optimization problem in (3.15) is defined as a minimization T1 and further
investigation regarding the convexity of the objective function in (3.20) is necessary.

N

∑
k=1
|TA(k)− TA,re f (k)|WT + PG(k)WG + PB,out(k)WB (3.20)

• |TA(k)− TA,re f (k)| is defined as an absolute value function and as detailed in
[10] this function is convex.

• PG(k) is described by the affine function in (3.6) and convex constraint in
(3.7), meaning that PG(k) is convex.

• PB,out(k) is described by the affine function in (3.6) and convex constraint in
(3.13), meaning that PB,out(k) is convex.

Furthermore, given that the weight factors (WT, WG, WB) are assumed to be
non-negative constants all the objectives obey product-free rule (2) and since they
are convex, following rule (1) it can be stated that their sum in (3.20) will be also
convex.

Regarding the constraints in Section 3.2, one may observe both convex and
affine expressions along the section. Given as reference the rules in T4 and T5, it
can be said and verified that the constraints obey the rules of DCP.

Provided that the current problem is formulated as a convex optimization prob-
lem, further implemention of MPC can be pursued using CVX and Matlab. Hence,
by the respecting the rules of DCP [20] we can define the objective 3.1, constraints
3.2 and variables 3.3 using CVX tool.

For a smoother understading of the whole optimization problem one can look
at the block diagram illustrated in Figure 3.4. This shows how the GSHS provides
the current state of the system (of each component) to the MPC block which inte-
grates the weather forecast (Q′R, T′O, I′B) in order to provide the optimal values for
the decision variables found in Table 3.2.

Along this section it has been shown that the MPC problem stated in Section 3.4
fits in the context of convex optimization, thus enabling to further pursue a practi-
cal implementation using CVX and Matlab [14] that can be found in Appendix A,
whilst the simulation results are presented in Chapter 4.
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Figure 3.4: Block diagram of GSHS connected with the MPC solver which provides the optimal control inputs based on current state of the system
and weather forecast, where the variables found in Section 3.3.



Chapter 4

Simulation

Inside this chapter a series of simulations will be performed regarding the opti-
mization problem found in Equation (4.1), explained along Chapter 3, followed by
a discussion based on the results. At first, a preliminary example is shown in Sec-
tion 4.1 using only the backup generator to exemplify how much power needs to
be generated, such that the indoor temperature stays near the reference in a winter
scenario. Next, in Section 4.2, an extension is made by integrating the PV system
generation and battery energy storage to the GSHS in order to observe the im-
pact on energy generation. Last but not least, a comparison between two different
scenarios is provided in Section 4.3 in pursuance of lowering fossil fuel usage.

minimize
N−1

∑
i=0
|TA(k + i)− TA,re f (k + i)|WT + PG(k + i)WG + PB,out(k + i)WB

subject to (2.33)− (2.35) (4.1)

(3.6)− (3.14)

Regarding the implementation, found in Appendix A, this was done in Matlab
by making use of the CVX plug-in [14]. The parameters used across all simulations
may be observed in Table 4.1, with the mention that the asterix (∗) means that the
value may vary depending on the scenario. Moreover, the weight factors in (4.1) are

Figure 4.1: House reference temperatures chosen during a day for each 6 hour interval.
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chosen taking into account the difference in measurement units, since WT weighs
temperature, whilst WG and WB weighs power. Such that, their values are chosen
in the idea to keep the house temperature TA to the reference TA,re f which is set
for each time interval, as illustrated in Figure 4.1. The reason for choosing these
intervals is that in many cases between the interval 18:00 to 06:00 the inhabintants
are in their house, thus the need to choose a temperature near 21 ◦C. On the other
hand, between the interval 06:00 to 18:00 the occupants are most likely to be away,
hence lower temperatures of 18-19 ◦C may be applied for reducing consumption.
In regards to the weather data, this is provided by GridLAB-D climate module
[17] and it is specific to the climate in the state of Colorado, USA. Moreover, all
the simulations are made taking into consideration winter temperatures, hence the
scope of this study is limited to provide heating to an usual household.

Parameter Value Unit Description
N 20 [−] Prediction horizon
TA,min 15 [◦C] House minimum allowed air temperature
TA,max 24 [◦C] House maximum allowed air temperature
TM,min 15 [◦C] House minimum allowed mass temperature
TM,max 24 [◦C] House maximum allowed mass temperature
PH,max 3 [kW] HVAC maximum power consumption
PG,max 8 [kW] Backup generator maximum power output
PBi,max 3 [kW] Battery maximum power injection
PBo,max 5 [kW] Battery maximum power output
EB,min 2 [kWh] Battery minimum level
EB,max 20 [kWh] Battery maximum level
WT

∗0.7 [−] Weight factor on temperature temperature
WG

∗0.002 [−] Weight factor on backup power generation
WB

∗0.001 [−] Weight factor on battery usage
UM 9889 [W/◦C] House mass surface conductance
UA 566 [W/◦C] House envelope conductance
CM 9286 [kJ/◦C] House thermal mass capacitance
CA 2290 [kJ/◦C] House air thermal capacitance
APV 45 [m2] Area of the PV system
ηPV 20 [%] Efficiency of PV modules
ηd 99 [%] Battery drain rate
ηin 99 [%] Battery charging efficiency
ηout 101 [%] Battery discharging efficiency
COP 3.5 [−] Coefficient of performance of HVAC

Table 4.1: List of GSHS parameters values used throughout the simulations
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4.1 Preliminary Example

This preliminary example is meant to provide some insight on the case when only
the backup generator is used as a source of power in order to see how important
renewable energies are in an "off-grid" situation. Such that, across this scenario
simulation the power generated by the PV system PS and energy storage EB will
be considered zero, as if they are absent.

Given the assumptions made previously at the beginning of this chapter, the
preliminary example will run as a MPC problem (4.1), defined in Section (3.4).
Moreover, the integration of weather forecast, composed of solar radiation QR and
outdoor temperature TO is made over a prediction horizon N of 5 hours, equivalent
to 20 samples ahead prediction. Such that, using this weather forecast the predic-
tive controller keeps the house temperature TA,c near the reference TA,re f shown
in Figure 4.1. This can be observed in Figure 4.2, where both the house tempera-
ture in normal conditions TA,n (without heating) and controlled TA,c start from the
same point of 18 ◦C, but drift apart from each other since TA,c is provided heat
from the HVAC system. Moreover, both temperatures are affected by the weather
represented by the outdoor temperature TO and the solar radiation QR (scaled in
kW, such that it can be observed on the same plot). This in particular can be ob-
served clearly on TA,n, where the solar radiation QR keeps the house temperature

Figure 4.2: Preliminary example: House controlled temperature TA,c with house temperature in
normal conditions TA,n, outdoor temperature TO and solar radiation QR.
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above the ambient temperature TO with approximately 4-5 ◦C, from sampling step
40 onwards.

Furthermore, in the case of TA,c the predictive controller is raising the temper-
ature by demanding more heat from the HVAC, whilst TA,n goes down due to
the influence of the outdoor temperature TO. Additionally, a good sign that the
MPC is working properly is given by the fact that TA,c firmly follows the reference
temperature TA,re f for each interval of the day.

A remark can be made on the sudden fall of QR in the middle of the day,
samples 47 to 51, due to the cloud coverage during that interval. Even though the
impact of the fall is not seen clearly on TA,n this can be observed on the power of
the HVAC in Figure 4.3a, where the consumption is greater for samples 47 to 49
than the previous ones in order to compensate for the decrease of solar radiation.

Regarding the power performance of the HVAC, depicted in Figure 4.3a, it can
be said that for the first samples the high consumption is matched with the increase
in temperature in 4.2. Also, the same is applicable starting from sample 73, where
the reference temperature TA,re f changes to 21 ◦C by means of providing comfort to
the inhabitants. On the other hand, the change of the reference to 18 ◦C, beginning
from sample 22 and ending at 25, provides the HVAC with a ’resting time’ (OFF
mode), hence the zero consumption in that interval seen in 4.3a.

As stated in the beginning of this section, this scenario has been built to take
into account only the backup generator as power source and give a sense on how
much fossil fuels would be used, by associating this with the power generated
PG. As expected, for this scenario the power consumption of the HVAC PH is
equivalent to the backup generation PG, as it can be observed in both Figure 4.3a
and 4.3b. Also, this serves as an additional confirmation that the implementation
is satisfactory for further investigation.

As a last remark, provided the energy profile in Figure 4.3b it can be concluded
that the backup generation needed to keep the heating system running for a whole
day in the cold season is fairly alarming, totalling 17 kWh. Thus, it is important to
investigate further how to exchange some of the backup generation with renewable
energies and pursue on to optimizing this process.
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(a) Power flows of backup generator PG and HVAC power consumption PH at each
sample k.

(b) Energy profiles of backup generation EG and HVAC consumption EH .

Figure 4.3: Preliminary example: Power and energy performances, excluding PV generation ES and
storage EB.
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4.2 Battery Example

This scenario is built in order to observe the impact on the system when PV gener-
ation and energy storage is taken into account. Considering the list of parameters
provided in Table 4.1, this example will start with half the energy stored in the
battery (10 kWh) and discussed further on the energy performance. Moreover, the
reference temperatures considered in the simulations are the same as in Figure 4.1.

Regarding the weight factors in the optimization problem (4.1), these are chosen
in order to prioritize the needs of the system: (1) minimize backup generation WG,
(2) keep temperature to reference WT and (3) save battery storage WB. To give an
example, without taking into account the difference regarding the measurements
units of each objective, the relation between the weight factors is given as follows:
WB < WT < WG.

At first, by examining Figure 4.4 one can be verify if the constraint in (3.10)
is fulfilled. This shows, more or less, how the battery is charged PB,in or/and
how much power bypasses PBP for direct consumption, adding up to the solar
generation PS. Moreover, the fluctuations seen on the PV power generation PS are
due to the variations in solar radiation, as pictured in Figure 4.7a. This verifies that
the implementation is working within its boundries, providing a realitisc approach
to the problem at hand.

Figure 4.4: Battery example: PV generation PS splitting the power to bypass PBP to HVAC and power
injection to battery PB,in.
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Figure 4.5: Battery example: HVAC power consumption PH depending on bypass power PBP, power
drained from battery PB,out and generated power PG.

Further on, Figure 4.5 shows all the power sources provided for HVAC con-
sumption PH. Also, given that from the start the battery output PB,out follows PH

and later on the HVAC load is handled by the PV generation PBP, one can check
easily that constraint (3.6) is met. Moreover, it is important to observe if the con-
troller is prioritizing consumption based on PV generation over the other power
sources. Such that, it can be seen that as soon as PV generation PS is available,
starting from sample 25, it will immediately bypass the battery PBP and provide
power to the heating system PH. Shortly after sample 32, the consumption switches
to use only solar power until sample 68 (equivalent to hour 17:00, sunset).

In order to get an overview of the total energy generated (EG and ES), stored
EB and consumed EH, one may look in Figure 4.6. In the beginning of this section
it was stated that the initial battery level is half (10 kWh) of its maximum capacity,
this can be verified by looking at the starting point of the energy storage EB. Also,
it can be seen how the energy storage EB is drained, whilst the HVAC energy
consumption EH increases. Later on, around sample 35, the battery begins to
accumulate as a result of PV generation ES increase. Further, it can be observed
that there is no backup generation EG at all involved, meaning that this would
somewhat solve the problem of fossil fuels usage. However, in the problem at hand
the other household consumers (e.g. water heater, washing machine, dishwasher)
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Figure 4.6: Battery example: Energy profile of PV generation ES, storage EB, backup generation EG
and HVAC consumption EH .

and the inhabitants disturbances are not taken into consideration. Nonetheless, it
is a good starting point using only the HVAC system for now since it is the biggest
and most important consumer of a household.

Moving on to the controller performance, following temperature TA,c in Figure
4.7a, it can be seen that the HVAC follows through and provides the heat necessary
to keep the temperature to the reference TA,re f . However, this comes with a cost in
power consumption PH, depicted in Figure 4.7b, starting from the first sample the
controller enforces the HVAC to provide an indoor temperature of 21 ◦C. Hence,
this is shown in the HVAC consumption, top left of 4.7b, where within the first
5 samples more power is required, starting from 2 kW and decreasing onwards.
Moreover, when the reference lowers to 18 ◦C (k=22) the heating system takes a
break (no consumption) until the house temperature reaches that reference (k=25).
Additionally, to confirm that the battery is not charging PB,in and discharging PB,out

at the same time one may look on the right side plots of Figure 4.7b.
Based on this scenario we can conclude that the MPC had a good performance

with respect to the demands of the system. Moreover, with the assumed half
energy storage on a winter day no backup generation was used, but the simulation
did not account for other household consumers. Additionally, this example shows
how important energy storage and renewable energies are in an "off-grid" scenario.
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(a) House controlled temperature TA,c with house temperature in normal condi-
tions TA,n and outdoor temperature TO.

(b) Power flows of the different systems within the GSHS at each sample k.

Figure 4.7: Battery example: Power and temperature performances of the system.



46 Chapter 4. Simulation

4.3 Scenario Comparison

Along this section a scenario comparison is presented in order to highlight some
improvements regarding minimization of fossil fuel usage. Furthermore, the pur-
pose of this example is to show the trade-off between discomfort and backup gen-
erator usage when using MPC. Such that, in Scenario 1 there is a need to keep the
house temperature near the reference while Scenario 2 focuses on minimizing fossil
fuel usage. These scenarios were built using the same weather data (forecast and
real), initial battery (5 kWh) and reference temperature Tre f , as defined in 4.1).

(a) Scenario 1

(b) Scenario 2

Figure 4.8: Scenario comparison showing the temperature trade-off.
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Further, by comparing Figures 4.8a and 4.8b it can be observed that the house
temperature TA,c in Scenario 1 strictly follows the reference temperature while in
Scenario 2 there is a significant drop in temperature to 16 ◦C around sample 25. To
be noted that for the lower bound on temperature TA,min has been reduced to 16 ◦C
in the idea of lowering backup generation. Regarding the weight factors in (4.1), in
the case of Scenario 2 the weight on temperature WT2 has been given a lower value
than the weight WT1 in Scenario 1, such that: WT2 < WT1.

(a) Scenario 1

(b) Scenario 2

Figure 4.9: Scenario comparison: HVAC power consumption PH depending on bypass power PBP,
power drained from battery PB,out and generated power PG.
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Going forward and analysing Figures 4.9a and 4.9b, it can be seen that the
HVAC power demand PH is fulfilled by the different providers in the GSHS: at first
from the battery PB,out, secondly from the backup generator PG and last from the
PV system bypassing the battery PBP. Further, by comparing the backup generator
power PG it can be said that there is more generation in the case of Scenario 1 in
4.9a as opposed to Scenario 2 in 4.9b. In this case Scenario 2 takes advantage of the
prediction horizon (N=20, 5 hours ahead) and ’knows’ that PV generation will kick
in around sample 28, thus not using the backup generation opposed to what can
be seen in Scenario 1 for the same period.

(a) Scenario 1

(b) Scenario 2

Figure 4.10: Scenario Comparison: PV generation PS splitting the power to bypass PBP to HVAC and
power injection to battery PB,in.
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Observing Figures 4.10a and 4.10b, the PV generation PS, bypassing PBP and
battery power injection PB,in are shown for each scenario. For Scenario 2 there is a
higher need to bypass power to the HVAC (starting from sample 30) in order to
recover from the temperature deviation from the reference in 4.8b around sample
25, opposed to Scenario 1 where the temperature TA,c is already to the reference.
As expected, by looking at the battery output PB,out this is facilitated when there is
no PV generation bypassing PBP, while PG is used as a last resource of power.

(a) Scenario 1

(b) Scenario 2

Figure 4.11: Scenario comparison of energy profiles within the GSHS: PV generation ES, storage EB,
backup generator EG and HVAC consumption EH .
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In order to compare quantitatively the two scenarios in Figures 4.11a and 4.11b
the total amount of energy consumption (EH), generation (ES, EG) and stored EB

can be compared. At a first glance it can be observed that the scenarios are equiva-
lent from the perspective of the total HVAC energy consumption EH, but the shape
differs since consumption was moved later when PV generation was available. This
can be seen starting from sample 30 when the energy generation ES commenced.
Further, it can be examined that in both scenarios the battery level reaches its lower
bound EB,min around sample 20 as defined in the constraints to safeguard the bat-
tery. Moreover, due to the recovery need in Scenario 2 the battery charging starts
later at sample 36, opposed to Scenario 1 which occurs at the beginning of sample
32 providing an extra 0.5 kWh seen clearly by looking at sample 65. Last but not
least, regarding the backup energy EG it can be observed that there is a difference
of almost 1 kWh meaning that Scenario 2 would save around a quarter more fossil
fuels than Scenario 1 in this specific day.

A different perspective of all the power flows in the system is shown in Figures
4.12a and 4.12b. Thus, comparing the battery output PB,out one can see that in both
scenarios they are the same, however in the case of input power PB,in in Scenario 1
this occurs earlier at sample 32 than its counter part at sample 36. Furthermore, by
taking a look at the HVAC consumption PH in the case of Scenario 2 it can be seen
how some of the consumption was moved to later samples when PV generation
PBP was available. Concluding on the backup power generation PG it can be seen
more clear that the system in Scenario 2 is producing less than the one in Scenario
1, consequently consuming less fossil fuels.

In conclusion, in this comparison it has been shown how a trade-off between
temperature and backup generation has been achieved without too much comfort
being expended. Such that, Table 4.2 it can be seen clearly the benefits in the case
of Scenario 2, where on the bright side less HVAC consumption EH (−0.5 kW) and
power generation EG (−1 kW) is made, but having a bit less battery EB (−0.2 kW),
in this particular day. Moreover, a positive result has been accomplished towards
minimizing the backup generation (reducing fossil fuel usage), hence Scenario 2
used less backup generation than Scenario 1.

Case ES [kW] EH [kW] EB [kW] EG [kW]

Scenario 1 15.5 17 6.9 4
Scenario 2 15.5 16.5 7.2 3
S2 − S1 0 -0.5 -0.2 -1

Table 4.2: Difference between Scenario 1 and Scenario 2 (*approximated values), showing the benefits
of Scenario 2 with less consumption EH and power generation EG, but a bit less battery charge EB.
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(a) Scenario 1

(b) Scenario 2

Figure 4.12: Power profiles of GSHS showing battery usage PB,in and PB,out, PV generation bypassing
PBP, backup generator PG and HVAC consumption PH .
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Conclusion

At first, a house dynamic model with heating system (HVAC) has been built based
on a reduced thermal heat flow circuit. This model has been verified with a sim-
ilar one implemented in well-known simulation tool used for academic research,
GridLAB-D [19]. Additionally, PV system and energy storage models have been
taken into account. These along with the house model and backup generation
compose the green smart house system (GSHS) which can be seen in Figure 3.4.

Furthermore, the optimization problem of the GSHS has been formulated in
the context of model predictive control (MPC). The implementation of the MPC
problem has been achieved using Matlab in conjunction with the CVX plug-in.
Moreover, the implemented MPC has proven worthy through simulations, thus
providing optimal inputs to the system with respect to its dynamics, initial condi-
tions, constraints and weather forecast. This solution has shown in the simulations
that it integrates harmoniously all the GSHS components, a block diagram is pro-
vided in Figure 3.4. Also, it has proven that it can minimize fossil fuels consump-
tion by scheduling house heating in an interval where PV generation is available
instead of using backup generation. This was done without expending too much
inhabitants comfort, thus making the MPC implementation a practical solution.

Further work can be made in this direction by building a more complex house,
HVAC system and/or backup generator model. Another step can be taken by
including other household appliances, for example water heater, dishwasher and
washing machine. Additionally, house illumination and human disturbances may
be added to the system. Also, other control strategies may be studied, implemented
and compared with the current results. After concluding this master programme
and thesis, a scientific article based on the study at hand may be pursued for
publishing within a control conference.

At the beginning of this study a great amount of time was spent for pursu-
ing a more complex house model, but had to be abandoned since it was too time
consuming and would have been more difficult to integrate with the other compo-
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nents of the system. This was overcame by implementing the current house model
which is more limited than the one approached initially. Moreover, integrating
all the components of the GSHS and making them work together was a bit of a
challenge since they are diverse.

In conclusion, to my best knowledge and literature review up until the point
of writing this work, such an approach has never been done before. Such that,
it makes somewhat an original contribution on how to integrate and control the
different systems in a green smart houses. Moreover, in this study different subjects
in the area of control and automation have been approached, such as modeling of
different systems and optimization through the implementation of MPC.
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Appendix A

CVX-Matlab Implementation

Implementation of GSHS models and MPC optimization using CVX and Matlab:

%% d e s c r i p t i o n
% t i t l e : MPC implementation of gshs opt imizat ion problem
% author : Robert Popescu
% group : CA1033
% Aalborg Univers i ty

%% parameters and run opt imizat ion
c l e a r a l l ; c l o s e a l l ; c l c ;
TA0 = 1 8 ; % i n i t i a l /current house a i r temperature
TM0 = 1 8 ; % i n i t i a l /current house mass temperature
EB0 = 0 .25∗20∗10^3 ; % i n i t i a l /current b a t t e r y l e v e l
WT = 0 . 7 ; % weight on house temperature − comfort
WG = 0 . 0 0 2 ; % weight on using backup generator
WB = 0 . 0 0 1 ; % weight on using the b a t t e r y

%% csv weather ( f o r e c a s t ) data input from gridlabd
data = csvread ( ’ data3 . csv ’ , 9 , 1 ) ; % read csv f i l e
Ta = data ( : , 1 ) ; % a i r temperature
Tm = data ( : , 2 ) ; % mass temperature
To = data ( : , 3 ) ; % outdoor temperature
Qr = data ( : , 5 ) ; % s o l a r r a d i a t i o n
Ib = data ( : , 6 ) ; % s o l a r i r r a d i a n c e beam
% Ib = zeros ( length ( Ib ) , 1 ) ; % f o r no b a t t e r y and no PV s c e n a r i o

%% ’ rea l ’ weather by adding d e v i a t io n s to the predic ted weather
rng ( 1 2 3 1 2 3 ) ; % random number generator seed
To_real = (1+ randn ( length ( To ) , 1 ) / 4 9 ) . ∗To;% ’ rea l ’ outdoor temperature
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Qr_real = (1+ randn ( length ( Qr ) , 1 ) / 1 9 ) . ∗Qr;% ’ rea l ’ s o l a r r a d i a t i o n
I b _ r e a l = (1+ randn ( length ( Ib ) , 1 ) / 1 9 ) . ∗ Ib ;% ’ rea l ’ s o l a r i r r a d i a n c e

%% gshs parameters
Ts = 0 . 2 5 ; % sampling time 15min = 1hour/4
Ua = 5 6 6 ; % house a i r conductance
Ca = 2 .290∗10^6 ; % house a i r capac i tance
Um = 9889 ; % house mass conductance
Cm = 9.286∗10^6 ; % house mass capac i tance
COP = 3 . 5 ; % hvac coef of performance
A_pv = 4 5 ; % PV area
e_pv = 0 . 2 ; % PV e f f i c i e n c y
e_d = 0 . 9 9 ; % b a t t e r y drain e f f i c i e n c y r a t e
e_in = 0 . 9 9 ; % b a t t e r y charging e f f i c i e n c y
e_out = 1 . 0 1 ; % b a t t e r y discharging e f f i c i e n c y

%% house s t a t e−space model
A = [−(Ua+Um)/Ca Um/Ca ; Um/Cm −Um/Cm] ;
B = [COP/Ca 0 Ua/Ca ; 0 1/Cm 0 ] ;
C = [1 0 ; 0 1 ] ;
gsh = ss (A, B , C, 0 , ’ StateName ’ , { ’ Ta ’ ’Tm’ } , . . .

’ InputName ’ , { ’ Ph ’ ’Qr ’ ’To ’ } ) ;
gshd = c2d ( gsh , Ts ) ; % d i s c r e t e s t a t e−space model
[Ad, Bd , Cd, Dd, Ts ] = ssdata ( gshd ) ;

%% convex problem parameters
M = 1 1 6 ; % duration of c o n t r o l process
N = 2 0 ; % p r e d i c t i o n horizon ( looking 5 hours ahead )
% Tref = 2 1 ; % r e f e r e n c e temperature
TAmin = 1 8 ; % minimum a i r temperature
TAmax = 2 1 ; % maximum a i r temperature
TMmin = 1 8 ; % minimum mass temperature
TMmax = 2 1 ; % maximum mass temperature
EBmax = 20∗10^3; % maximum b a t t e r y l e v e l
EBmin = 0 . 1∗EBmax ; % minimum b a t t e r y l e v e l
PGmin = 0 ; % minimum backup generat ion
PGmax = 3∗10^3; % maximum backup generat ion
PHmin = 0 ; % minimum HVAC consumption
PHmax = 3∗10^3; % maximum HVAC consumption
PBin_min = 0 ; % minimum power i n j e c t i o n to b a t t e r y
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PBin_max = 3∗10^3; % maximum power i n j e c t i o n to b a t t e r y
PBout_min = 0 ; % minimum power drain from b a t t e r y
PBout_max = 5∗10^3; % maximum power drain from b a t t e r y
PBP_min = 0 ; % minimum bypass power
% user pre ference on r e f e r e n c e temperature f o r 2 days
Tref = [21∗ ones ( 2 4 , 1 ) ; 1 8 ∗ ones ( 2 4 , 1 ) ; 1 9 ∗ ones ( 2 4 , 1 ) ; 2 1 ∗ ones ( 2 4 , 1 ) ; . . .
21∗ones ( 2 4 , 1 ) ; 1 8 ∗ ones ( 2 4 , 1 ) ; 1 9 ∗ ones ( 2 4 , 1 ) ; 2 1 ∗ ones ( 2 4 , 1 ) ; ] ;

%% def in ing v e c t o r s of the system parameters
Ta_sys = zeros (M−N+ 2 , 1 ) ;
Tm_sys = zeros (M−N+ 2 , 1 ) ;
Eb_sys = zeros (M−N+ 2 , 1 ) ;
Ps_sys = zeros (M−N+ 2 , 1 ) ;
Ph_sys = zeros (M−N+ 2 , 1 ) ;
Pg_sys = zeros (M−N+ 2 , 1 ) ;
Pbin_sys = zeros (M−N+ 2 , 1 ) ;
Pbout_sys = zeros (M−N+ 2 , 1 ) ;
Pbp_sys = zeros (M−N+ 2 , 1 ) ;

%% i n i t i a l s t a t e /condi t ion of system
Ta_sys ( 1 ) = TA0 ;
Tm_sys ( 1 ) = TM0;
Eb_sys ( 1 ) = EB0 ;

%% running mpc with cvx plug−in
f o r k = 1 :M−N+1 %the main loop as i f i t i s in rea l−time
cvx_begin quie t
v a r i a b l e P_H(N, 1 ) ; %hvac power consumption
v a r i a b l e P_Bin (N, 1 ) ; %b a t t e r y input power
v a r i a b l e P_Bout (N, 1 ) ; %b a t t e r y output power
v a r i a b l e P_BP (N, 1 ) ; %bypass b a t t e r y
v a r i a b l e P_G(N, 1 ) %backup generator power output

express ion P_S (N, 1 ) ; %PV generat ion
express ion E_B (N, 1 ) ; %b a t t e r y energy l e v e l
express ion T_A(N, 1 ) ; %house a i r temperature
express ion T_M(N, 1 ) ; %house mass temperature

%i n i t i a l condi t ions a t each time step k
T_A ( 1 ) = Ta_sys ( k ) ;
T_M( 1 ) = Tm_sys ( k ) ;
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E_B ( 1 ) = Eb_sys ( k ) ;
P_S ( 1 ) = Ps_sys ( k ) ;

OBJ = 0 ;
f o r i =1:N−1

%mpc using predic ted ( f o r e c a s t ) weather data Qr , To , Ib
T_A( i +1) = Ad( 1 , 1 )∗T_A( i ) + Ad( 1 , 2 )∗T_M( i ) + . . .

Bd ( 1 , 1 )∗P_H( i ) + Bd ( 1 , 2 )∗Qr ( k+ i ) + Bd ( 1 , 3 )∗To ( k+ i ) ;
T_M( i +1) = Ad( 2 , 1 )∗T_A( i ) + Ad( 2 , 2 )∗T_M( i ) + . . .

Bd ( 2 , 1 )∗P_H( i ) + Bd ( 2 , 2 )∗Qr ( k+ i ) + Bd ( 2 , 3 )∗To ( k+ i ) ;

P_S ( i ) = A_pv∗e_pv∗ Ib ( k+ i ) ;

E_B ( i +1) = e_d∗E_B ( i ) + ( e_in ∗P_Bin ( i ) − e_out∗P_Bout ( i ) ) ∗ Ts ;

OBJ = OBJ+(norm (T_A( i )−Tref ( k+ i ) , 1 )∗WT +P_G( i )∗WG +P_Bout ( i )∗WB) ;
end

minimize OBJ ;
s u b j e c t to

P_S == P_Bin + P_BP ;
P_H == P_G + P_Bout + P_BP ;
P_BP <= P_S ; %P_BP <= PBP_max ;
P_BP >= PBP_min ;
T_A <= TAmax ;
T_A >= TAmin ;
T_M <= TMmax;
T_M >= TMmin;
P_H <= PHmax;
P_H >= PHmin ;
P_G <= PGmax ;
P_G >= PGmin ;
E_B <= EBmax ;
E_B >= EBmin ;
P_Bin <= PBin_max ;
P_Bin >= PBin_min ;
P_Bout <= PBout_max ;
P_Bout >= PBout_min ;

cvx_end
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cvx_s ta tus
k

% compute r e a l gshs with ’ rea l ’ values of Qr_real , To_real , I b _ r e a l
Ta_sys ( k+1) = Ad( 1 , 1 )∗ Ta_sys ( k ) + Ad( 1 , 2 )∗Tm_sys ( k ) + . . .

Bd ( 1 , 1 )∗P_H( 1 ) + Bd ( 1 , 2 )∗ Qr_real ( k ) + Bd ( 1 , 3 )∗ To_real ( k ) ;
Tm_sys ( k+1) = Ad( 2 , 1 )∗ Ta_sys ( k ) + Ad( 2 , 2 )∗Tm_sys ( k ) + . . .

Bd ( 2 , 1 )∗P_H( 1 ) + Bd ( 2 , 2 )∗ Qr_real ( k ) + Bd ( 2 , 3 )∗ To_real ( k ) ;
Ps_sys ( k ) = A_pv∗e_pv∗ I b _ r e a l ( k ) ;
Eb_sys ( k+1) = e_d∗Eb_sys ( k ) + ( e_in ∗P_Bin ( 1 ) − e_out∗P_Bout ( 1 ) ) ∗ Ts ;

% d ec i s io n v a r i a b l e s t h a t w i l l be input to the r e a l system
Ph_sys ( k ) = P_H ( 1 ) ; % hvac consumption −> heat house
Pg_sys ( k ) = P_G ( 1 ) ; % backup generat ion
Pbp_sys ( k ) = P_BP ( 1 ) ; % pv generat ion bypassing b a t t e r y
Pbin_sys ( k ) = P_Bin ( 1 ) ; % b a t t e r y charging
Pbout_sys ( k ) = P_Bout ( 1 ) ; % b a t t e r y discharging
end

% p l o t i n g r e s u l t s
run ’ plot_mpc .m’ ;





Appendix B

House Dynamic Model

When choosing the state-space variables of an physical system, the required num-
ber of states is typically the same to the number of energy storages [ref]. In the
case of the house dynamic model the heat from the weather and heating system it
is chosen to be stored by means of using a temperature variable. Hence, the heat
balance equations on each of these temperature nodes are given in Equations (B.1)
for the indoor air temperature TA and (B.2) for the house mass temperature TM.

ṪA(t) =
1

CA
[−(UA + UM)TA(t) + UMTM(t) + COP · PH(t) + UATO(t)] (B.1)

ṪM(t) =
1

CM
[UMTA(t)−UMTM(t) + QR(t)] (B.2)

B.1 Transfer Matrix

In control system theory, the transfer function of single-input single-output (SISO)
systems has been generalized to multiple-input multiple-output (MIMO) systems
by means of a transfer function matrix [9]. Thus, in order to observe the relation
between the inputs and outputs of a linear time-invariant (LTI) system the transfer
matrix must be achieved. Further, the general representation of the transfer matrix
in terms of the Laplace transform is given in Equation (B.3), where Y is a column
vector of the outputs, G is a matrix of the transfer functions, and U is a column
vector of the inputs.

Y(s) = G(s)U(s) (B.3)

In the case of the house dynamics expressed in Equations (B.1) and (B.2) the
inputs are the HVAC power intake PH, outdoor temperature TO and solar radiation
QR whilst the ouputs consists of the house air TA and mass TM temperatures of the
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MIMO system. Furthermore, following Equation (B.3) one can write the transfer
matrix of the system at hand in (B.4), where each entry in the matrix is in the form
of a transfer function relating each output temperature to each of the inputs.

[
TA(s)
TM(s)

]
=

[
G11(s) G12(s) G13(s)
G21(s) G22(s) G23(s)

] PH(s)
TO(s)
QR(s)

 (B.4)

Further by translating Equations (B.1) and (B.1) to the Laplace domain result in
(B.5) and (B.6) respectively.

sTA(s) =
1

CA
[−(UA + UM)TA(s) + UMTM(s) + COP · PH(s) + UATO(s)] (B.5)

sTM(s) =
1

CM
[UMTA(s)−UMTM(s) + QR(s)] (B.6)

Isolating the common terms from Equations (B.5) and (B.6) is done in the form
of (B.7) and (B.8). Next, the air temperature from Equation (B.7) is completly
isolated in (B.9) and similar for the mass temperature TM from Equation (B.8) is
isolated in (B.10).

TA(s)[s +
(UA + UM)

CA
] =

UM

CA
TM(s) +

COP
CA

PH(s) +
UA

CA
TO(s) (B.7)

TM(s)[s +
UM

CM
] =

UM

CM
TA(s) +

1
CM

QR(s) (B.8)

TA(s) =
UM
CA

TM(s) + COP
CA

PH(s) + UA
CA

TO(s)

s + (UA+UM)
CA

(B.9)

TM(s) =
UM
CM

TA(s) + 1
CM

QR(s)

s + UM
CM

(B.10)

In order to achieve the air temperature TA transfer functions it is needed to
replace the mass temperature TM from Equation (B.10) into (B.7), thus will result
in (B.11) and by re-arranging it gives rise to (B.12).

TA(s)[s +
(UA + UM)

CA
][s +

UM

CM
] =

U2
M

CACM
TA(s) + [s +

UM

CM
]
COP
CA

PH(s) + ...

... + [s +
UM

CM
]
UA

CA
TO(s) +

UM

CACM
QR(s) (B.11)
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TA(s)[s2 + s
CM(UA + UM) + CAUM

CACM
+

UAUM

CACM
] = [s +

UM

CM
]
COP
CA

PH(s) + ...

... + [s +
UM

CM
]
UA

CA
TO(s) +

UM

CACM
QR(s) (B.12)

Similar to the air temperature, the one can find the transfer functions regarding
the mass temperature TM shown in Equation (B.13).

TM(s)[s2 + s
CM(UA + UM) + CAUM

CACM
+

UAUM

CACM
] =

COP ·UM

CACM
PH(s) + ...

... +
UAUM

CACM
TO(s) + [s +

UA + UM

CA
]

1
CM

QR(s) (B.13)

Looking at Equations (B.12) and (B.13), by isolating the outputs (TA, TM) from
the inputs (PH, TO, QR) the transfer functions can be written in the form of (B.14) -
(B.10).

G11(s) =
TA(s)
PH(s)

=
COP
CA

[s + UM
CM

]

s2 + s CM(UA+UM)+CAUM
CACM

+ UAUM
CACM

(B.14)

G12(s) =
TA(s)
TO(s)

=

UA
CA

[s + UM
CM

]

s2 + s CM(UA+UM)+CAUM
CACM

+ UAUM
CACM

(B.15)

G13(s) =
TA(s)
QR(s)

=

UM
CACM

s2 + s CM(UA+UM)+CAUM
CACM

+ UAUM
CACM

(B.16)

G21(s) =
TM(s)
PH(s)

=

COP·UM
CACM

s2 + s CM(UA+UM)+CAUM
CACM

+ UAUM
CACM

(B.17)

G22(s) =
TM(s)
TO(s)

=

UAUM
CACM

s2 + s CM(UA+UM)+CAUM
CACM

+ UAUM
CACM

(B.18)

G23(s) =
TM(s)
QR(s)

=
1

CM
[s + UA+UM

CA
]

s2 + s CM(UA+UM)+CAUM
CACM

+ UAUM
CACM

(B.19)
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B.2 Poles and Time Constants

Further analysis of the poles of the system may be made by finding the roots of
Equation (B.20), where the coefficients of each term in (B.21)-(B.23).

as2 + bs + c = 0 (B.20)

a = 1 (B.21)

b =
CM(UA + UM) + CAUM

CACM
(B.22)

c =
UAUM

CACM
(B.23)

Knowing that all the parameters in Equation (B.25) are positive and that UM is
larger than UA, thus implying that ∆ is positive.

r1,2 =
−b±

√
∆

2a
(B.24)

∆ = b2 − 4ac

=
(UA + UM)2

C2
A

+
U2

AU2
M

C2
AC2

M
+ 2

UM(UM −UA)

CACM
> 0 (B.25)

Now, factoring of Equation (B.20) can be done in (B.26) using the roots found
in (B.27).

as2 + bs + c = (s + r1)(s + r2) (B.26)

r1,2 = −CM(UA + UM) + CAUM

2CACM
±

√
(UA + UM)2

C2
A

+
U2

AU2
M

C2
AC2

M
+ 2

UM(UM −UA)

CACM
(B.27)

In the case of the thermal system at hand the time constants are at most im-
portant since they are directly connected with how fast the mediums cool or warm
under the influence of external factors.

(s + r1)(s + r2) = τ1τ2(
1
τ1

s + 1)(
1
τ2

s + 1) (B.28)

τ1 =
1
r1

(B.29)

τ2 =
1
r2

(B.30)
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B.3 Step Response

Given initial state of a system, the step response represents the time evolution of its
outputs when its control inputs are Heaviside step functions as in (B.31). In control
theory and other branches of engineering, the step response is the time behaviour
of the outputs of a general system when its inputs change from zero to one in short
time.

u(t) =

{
0, t < 0

1, t ≥ 0
(B.31)

Analysis of the house dynamics is made regarding the step responses which
can be seen in Figures B.1a - B.1c, where the time behaviour of the house air TA
and mass TM temperature is observed in regards to each input of the system. To
give an example on how fast does the air TA and mass TM temperature change in
regards to the outdoor temperature TO one may look at Figure B.1b. Moreover, it
can be seen that in the case of a step increase the time constant can be found at the
point where the step response reaches 63.2% of its final value (8.8) which almost
equals to the time constant τ2 plus the delay from τ1, found previously in (B.29)
and (B.30).
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(a) Air TA and mass TM temperatures related to 1 kW power of heating
system (HVAC) PH .

(b) Air TA and mass TM temperatures related to the outdoor tempera-
ture TO.

(c) Air TA and mass TM temperatures related to 1 kW power of solar
radiation QR.

Figure B.1: Step responses of air TA and mass TM temperatures related to each of the system inputs.
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