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Abstract:

The scope of this project is: computer vi-
sion and computer graphics, where the fo-
cus is on motion capture.
Marker-based and marker-less motion cap-
ture systems present a opposing set of ad-
vantages and disadvantages in terms of
convenience and accuracy that could be
made use of by combining them in a hy-
brid system.
The aim of the project is to provide the
necessary background knowledge and a
methodology to find a combination of both
systems that would result in a more con-
venient set up.
An independent implementation and tests
are carried out in a simplified scenario
where a human leg moves and walks along
a line. It is recorded with a camera and a
marker-based system, using a set of mark-
ers attached to the different segments of
the leg. The segments obtained in both
systems are combined in different ways
and the angles for the knee and ankle are
computed and compared to those from the
full marker set.
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1 Problem Analysis

1.1 Project Proposal

The idea for this project comes from the opposite strengths and limitations that marker-
based and marker-less systems present: marker-based systems can be highly accurate but
are inconvenient in terms of setup and flexibility, whereas current marker-less systems are
not accurate enough for many applications but are extremely convenient.

Different ways of combining these systems will be explored, discussing how they help
overcome the weaknesses of both systems, as well as the benefits and drawbacks of the
chosen approach.

It would be interesting to understand how marker-based and marker-less systems could be
combined and what are the results. These results would come in the way of correlation
levels in comparison to the original high-accuracy marker-based system, by extracting
several biomechanical parameters from the movement of the estimated segments.

Said scenario will be explored in this work along with a much more simple one, consisting
of a single leg being tracked while moving in a plane. This scenario keeps the same goals
but at a much smaller scale, allowing to make assumptions on the nature of the data, and
therefore resulting in a more straightforward development of a test.

The potential of this experiment lies in the fact that, when the marker-less system provides
enough accuracy for a given segment, said segment could be dropped from the marker-based
system. This means a smaller set of markers would be needed, resulting in reduced set up
requirements. Furthermore, it allows a user to decide a trade-off between convenience and
accuracy.

The goal of this report is to document the work done, both the ad-hoc solution for the
simplified experiment and the different alternatives for a realistic situation; and ultimately
to prove that marker-based and marker-less systems can be combined to achieve halfway
results.

1.2 Background Knowledge

This section will describe some of the basic theory behind the systems, to better understand
how they work and, most importantly, to understand the challenges of combining them.
It will not discuss the theory behind the biomechanical estimations or models, as it is out
of the scope of this project.
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Group 841 1. Problem Analysis

1.2.1 Motion capture systems

The topic of this project is motion capture systems. These are computer systems that use
a variety of algorithms to estimate the motion of a subject throughout a series of video
inputs.

They have met extensive use in the film and video game industries, where the movements
of an actor are recorded and later translated into a virtual character. In these scenarios, an
animator must usually clean most of the result of small errors, usually tuning it to better
fit the intended artistic tone of the project; nonetheless, many hours of work are saved by
having the bulk animation done through motion capture.

Other common areas of use for these systems are research in biomechanics, sports analysis,
and rehabilitation. In this case, the interest lies in obtaining objective data about the
movement of specific parts of the subject.

High accuracy is of course always a desirable feature, but it is important to clarify how
its importance varies between the different cases. The significance of inaccuracies in the
data is much smaller in an animation, where an animator can fix any errors but it is
important to be able to record quickly, compared to a project in biomechanical research
where accurate numerical data is essential. This creates a spectrum of needs in terms of
the trade-off between accuracy and convenience that different systems aim to satisfy.

Surveys from different areas that employ human tracking systems, such as Augmented
Reality[1], Virtual Reality[2] and rehabilitation medicine[3], make the common distinction
between visual (or videometric), non-visual and hybrid systems.

Visual systems employ different types of cameras to determine the position of visual
landmarks associated with body parts, either directly from the shape of the body or
through the use of additional attachments—typically referred to as markers—that are
easily identifiable. These two kinds of visual tracking systems are commonly referred to
as marker-based and marker-less motion capture, and the method of choice influences the
type of camera used, as will be explained in more detail shortly.

In a typical vision-based motion capture scenario, the subject performs movement inside
of a designated scene, with one or more cameras having somewhat unoccluded vision of
the subject. Usually, the subject is required to wear special clothing in the form of tight
and sometimes dark clothes that cover them as much as possible. Of course, the exception
exists when the clothing is relevant to the performance, such as a dancer performance
dressed in a gown.

Non-visual systems use other kinds of sensors, as opposed to light sensors (such as cameras).
As summarised by Zhou et al.[3]: "Sensors employed within these systems adhere to the
human body in order to collect movement information. These sensors are commonly
categorised as mechanical, inertial, acoustic, radio, or microwave and magnetic based.". A
possible addition to this list is non-visual sensors placed on the scene where the tracking
takes place, instead of the body, such as force plates. Baillot et al.[2] review in depth
how these tracking systems work, as well as some of their strengths and weaknesses. It
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Figure 1.1: Typical motion capture scene

is important to notice that each of these present different advantages and disadvantages,
which determines when they are to be used.

Hybrid systems combine different tracking systems among the ones mentioned previously,
in order to work around some of their weaknesses. One common approach is to combine a
visual, marker-less system, which operates with high frequency and does not interfere with
the movements of the subject, with a more involved method that provides more stability
and is less susceptible to noise. Van Krevelen et al.[1] refers to hybrid approaches as "the
most promising way to deal with the difficulties posed by general indoor and outdoor
mobile AR environments", and Zhou et al.[3] notes "although still at an experimental
stage, have already demonstrated promising performance".

There is therefore a growing interest in combining existing techniques to create a more
appropriate solution for the needs of the application. The array of sensors that can
be combined make this approach quite versatile, although different combinations ask for
different methodologies and requirements.

Vision-based human tracking has experienced great interest within computer vision
research in recent decades. Several well-known surveys follow the advances in such research:
Moeslund et al. review the most prominent work between 1980–2000[4] and 2000–2006[5]
in marker-less approaches, Yang et al.[6] explore different aspects of current marker-less
approaches and compare them from a biomechanical standpoint.

These improvements in the past decade make it worth looking into additional hybrid
solutions involving visual marker-less tracking.

A study carried out in the motion-capture company Simi[7] by Becker et al.[8] shows
promising results using their marker-less silhouette-based tracking system (Simi Shape
3D[9]), and their marker-based tracking system (Simi Motion 3D[10]), greatly improving
the results obtained from the marker-less system alone.

As can be seen in table 1.2.1, correlation levels improve globally by adding a small subset of
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joint movement marker-less correlation hybrid correlation
flexion/extension 0.82 (±0.21) 0.99 (±0.02)
abduction/adduction 0.51 (±0.45) 0.94 (±0.09)hip
rotation 0.41 (±0.32) 0.93 (±0.05)

knee flexion/extension 0.98 (±0.03)
plantar/dorsal flexion 0.91 (±0.08) 0.96 (±0.04)
eversion/inversion 0.26 (±0.42) 0.38 (±0.33)ankle
abduction/adduction 0.34 (±0.40) 0.40 (±0.45)
flexion/extension 0.96 (±0.02)
abduction/adduction 0.89 (±0.16) 0.94 (±0.05)shoulder
rotation 0.49 (±0.50) 0.95 (±0.03)

elbow flexion/extension 0.42 (±0.70) 0.92 (±0.07)

Table 1.1: Correlation in a pure marker-less and a hybrid approach compared to a full
markerset; extracted from Becker et al.[8]

markers, in some cases to great extent. It is important to notice how different movements
exhibit very different correlation levels, in part due to how they influence the silhouette of
the body differently. It can be seen from the data that the marker-less system can track
some movements very accurately on its own, which further motivates this work to explore
hybrid systems: for many applications, the necessary marker set to meet some accuracy
goals will be quite small.

However, both of the systems used by Becker et al.[8] are commercial solutions involving
complex skeleton models focused on human tracking, and the dataset gathered is specific
to the experiment, making it difficult to compare it to other existing solutions. Yang et
al.[6] describe how most of the work in marker-less motion capture research uses specific
datasets that are rarely shared for privacy purposes.

Instead, Yang et al. argue in favor of using publicly available datasets, of which the most
common is HumanEva, gathered by Sigal et al.[11]. Such dataset is however extremely
challenging, and making use of it is out of the scope of this project due to time constraints.

There are not many additional sources involving hybrid solutions combining marker-less
and marker-based visual tracking. This project will look further into this approach from a
more simplistic scenario that does not involve a commercial solution. Firstly, both tracking
methods will be discussed.

1.2.2 Marker-based motion capture

Marker-based motion capture uses attachments to the body of the subject to estimate the
configuration of the body, usually by starting at a known position where the markers can
be identified, and interpreting the movement to the next frame.

Several types of markers exist, although they all share the purpose of being easily extracted
from an image by acting as visual landmarks—typically appearing as bright points,
although some areas such as Augmented Reality might make use of fiducial markers.
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• Active markers emit a bright light, such as a LED.
• Passive markers use highly reflective material on their surface, and must be

illuminated by an external light source. It is common to attach said source to the
camera to ensure that all markers visible by the camera are properly illuminated.

It is common to employ infrared lighting to avoid confusing other light sources as markers:
infrared LEDs in an active marker, or infrared light sources and reflective material in a
passive system.

Once the markers have been extracted from an image, they must be uniquely identified.
This is essential in order to understand the configuration of the body of the subject. In
both cases, a known position can be used at the beginning of the recording, from which the
identification process can be manually or automatically done in a more trivial way. From
there, each consecutive frame will use information from the previous frame to estimate
the new position of each of the markers, which becomes a tracking problem. Additionally,
active markers can emit light in different patterns so they can be more easily identified.

The process of estimating the configuration of the body from the identified markers varies
depending on the subject. In the case of a human subject, the process typically involves
estimating the joint centres for the different segments from the marker positions. This is
a biomechanics problem and will not be discussed in this project. A skeleton model can
be built from these joint centres; the relevance of the choice of skeleton model will be later
discussed.

Besides the already discussed requirements in term of setup, marker-based systems present
a series of challenges:

• Occlusion. As the subject moves, self-occlusion occurs. Many markers will be placed
on the opposite side of the subject from a camera’s perspective; additionally, the
subject’s limbs can occlude markers on their body. This is solved to some extent by
using several cameras around the subject. However, there still exist cases where a
marker is occluded to all cameras, or where the amount of cameras that see it is so
low that the data is ambiguous. Several techniques exist for finding lost markers,
although manual interaction might be necessary if they don’t succeed.
• Setup. As has already been mentioned, marker-based systems require a lengthy setup

step due to the placement of the markers on the subject. This must often been done
by an especialist and takes a considerable amount of time.
• Joint centre estimation. A regression equation is used to estimate the centre of the

joints from marker positions. These equations are subject to some error, depending
on the marker set and the equation. In the work of Sandau et al.[12], MRI scans are
used to establish a quantitative comparison between different joint centre estimation
methods, showing significant prediction errors and proposing new equations that
minimize these. As is mentioned previously and in their work, it is common in
vision-based motion capture to take marker-based systems as ground truth, even
though they are not.
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1.2.3 Marker-less motion capture

Marker-less systems do not use any attachments on the body of the subject. The system
captures the silhouette of the subject as well as other features depending on the hardware
and approach used. Colour cameras and depth cameras are common choices.

There are two distinct approaches in marker-less motion capture:

• Model-based: it uses an internal representation of the subject and how they can
move. In the case of a human subject, it may use a simplified skeleton that is uses to
match against the current frame, obtaining a skeleton configuration as a result. The
matching process will be explained shortly. The main disadvantage is the need for
an accurate model of the subject, which encumbers the convenience of the system.

• Model-free: it estimates the shape of the subject without additional information
about it. It is agnostic to the identity of the subject, which gives this approach
its main strength. On the other hand, the output of this approach consists of the
shape of the object, but has no information about its configuration, which limits the
number of applications that can make use of this approach. Other implementations
using this approach employ additional information from the subject, such as the one
from Dou et al.[14], obtain high fidelity reconstructions of subjects with complex
clothing and movements utilizing previously captured 3D scans of the subject. This
yields incredible visual fidelity at the expense of convenience and flexibility.

Yang et al. conclude that model-based systems provide smaller error than model-free, with
Corazza et al.[15] being the best performing system. No implementation of this method
was available at the time of writing, so it was discarded as an option.

Figure 1.2: Model-based pose estimation by Starck and Hilton[13].

Figure 1.3: Model-free performance reconstruction by Dou et al.[14].
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The steps taken during the process of a model-based system change a great deal between
different lines of research; but incremental methods using image features are common,
where the estimated pose from one frame is used in the next frame.

Additionally, image segmentation is a step necessary before any features can be extracted
from the subject in the images. A common method usually available in Computer Vision
tools (such as OpenCV) is Mixture of Gaussians (MOG), where each pixel is modeled by a
mixture of Gaussians, as suggested by the name. However, the choice of the segmentation
method is highly determined by the environment in which the recordings are taken.

Regarding incremental methods, e.g. a Kalman filter, the accuracy of the first frame is
crucial. It is therefore common to set strong constraints on said first estimation, such
as expecting the subject to assume a T-pose looking toward a specific camera, where the
palms of the hands point down, the knees and head point forward, the elbows point back,
and the rotation on the hips is minimal. Another set of assumptions is possible, of course.

One example of such incremental methods is the work from Starck and Hilton[13]. It uses
several viewpoints, with the errors obtained from each viewpoint are added together to
form a final error calculation that is used for the calculations. Three fundamental steps
are described for each frame:

1. Local Optimization. Texture and contour features are extracted from all viewpoints
and matched to those from the previous frame, obtaining a reference of the movement
between both frames. One by one, the joints in the model are modified to align best
with the features. This is a very efficient procedure, and allows different branches in
the skeleton tree to be computed separately, but it also cannot recover easily from
errors; moreover, errors are carried out through a branch, meaning that an error in
a shoulder estimation will be carried out to the elbow and wrist estimations.

2. Global Optimization. In order to solve these errors that might affect entire chains
from the Local Optimization step, this second and more fine-tuning step compares the
contours of the projected model mesh and the image, measured with pixel precision.
Also, the predicted pose is used as a stabilization method. This is a very slow process,
but it will only be performed in those joints that need fixing. This is measured by an
error threshold after Local Optimization that labels joints as misaligned to fix those
joints’ entire chains.

3. Surface Estimation. This step is meant to account for loose clothing and artifacts
due to the way flesh behaves. It does so by dropping the constraint that originally
ties skeleton model and 3D mesh together to handle geometry changes that aren’t
related directly to the segment orientations.

Just like in marker-based systems, occlusion in marker-less systems is a challenge that is
partially solved by placing several cameras around the subject, when possible. Another
shared challenge is the effects of clothing and loose skin, which affects marker-less in the
same way.

This project focuses on motion capture on humans. One of the problems when comparing
different research on marker-less motion capture is the absence of golden standard to
compare against. This is discussed in depth in the review done by Yang et al.[6]. A modern
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marker-based system is usually chosen as ground truth, but as was mentioned before, this
is not without error. However, at the current state of accuracy in marker-less, it can be
considered a fair comparison, since the error is still orders of magnitude higher. Another
problem is the lack of a common dataset between different research projects. HumanEva is
the most commonly used dataset, although quite challenging. However, most research uses
its own dataset, which is commonly not public to protect the privacy of the test subjects.
On top of that, different measurements are used for quantifying error. All of this makes it
impossible to properly compare these methods.

1.3 Problem Description

This project focuses on motion capture, and some of the shortcomings of typical motion
capture systems. Marker-based systems, which use markers attached to the body of the
subject, are highly accurate but inconvenient, due to the extensive setup they require.
Marker-less systems, which use colour or depth cameras to estimate the shape of the body
of the subject, are convenient in terms of setup but are not as accurate.

The accuracy of marker-less systems makes it usable for scenarios such as the gaming
and film industry, where an animator can fix any errors, but unusable for biomechanical
research or sports analysis. On the other hand, the cumbersome setup of marker-based
systems limits the number of applications they can be used for as well.

Examples of the limitation of marker-based systems due to its setup have been documented
in research as well, where a less accurate marker-less system gives better results due to the
bigger amount of data they are able to capture[16].

This can be generalised to cases where machine learning is applied; the ease of recording
with a marker-less system might make up for its lower accuracy due to the bigger dataset
that can be created with the same effort. This difference will likely become more apparent
as the accuracy for marker-less catches up to that of marker-based.

The way these opposing advantages and disadvantages line up motivate this work to
investigate a hybrid approach, following big improvements in the recent years in marker-
less motion capture and preliminary tests such as the one at the motion capture company
Simi by Becker et al[8].

The project can also be seen as an enabling technology that would allow researchers to
perform user studies with a less cumbersome set up, maximizing the trade-off they need
between convenience and accuracy.

Through experiments carried out by students from Aalborg University at Qualisys in
Gothenburg, it was noted that the marker-less system used has varying correlation values
for the different body segments being tracked. Some of these segments consistently yielded
satisfying results, and were deemed usable by a specialist for a sports analysis application,
whereas other segments were results too inaccurate to be of any use. This agrees with the
results reported at Simi[8].

It is expected that a project using this idea could be of great interest for all these
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applications of motion capture where using marker-based system is possible, and where the
trade-off between convenience and accuracy is interesting, as opposed to a situation where
accuracy should be as high as possible throughout the entire subject. The final condition
is that some current marker-less system provides results that are close to acceptable but
not quite there yet.

1.4 Delimitations

There is a series of limitations imposed to the project due to time constraints or being out
of scope for the learning goal:

Highest accuracy This project will not try to deal with how to combine data coming
from both systems to obtain better accuracy than the original marker-based system.
It instead focuses on reducing the necessary marker set to carry out a given
application.

Disagreements It will not explore what decisions should be taken when both systems
disagree, e.g.in order for a segment from the marker-less to be incorporated into
the marker-based skeleton, the previous or following segment in the marker-based
skeleton would have to be moved since it makes no sense anatomically.

Marker dependency Markers should affect as few joints as possible. This is discussed
more in depth in Design.
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2 Design

This work explores a solution that could have an impact on scenarios where a marker-less
motion capture system gives satisfactory results for some body segments but unsatisfactory
results for others.

Extensive research exists for recovering from error when markers go missing due to
occlusion. Classically this is done by interpolating the data between the points where
the marker is lost and found, but the longer time the marker is lost, the more complex
the movement might be. Some methods incorporate biomechanical data and use other
markers as reference as to where the missing marker could and could not have been.

Using marker-less data could provide a strong reference to keep the missing marker
virtually restricted to a specific area, since missing a marker for a specific segment does
not necessarily mean that the segment will be missing from the marker-less system. In
this sense, the system recovers from error in a more straightforward way.

In a similar way, the segment with a missing marker could be dropped from the marker-
based system for the duration of these frames and the segment data could be obtained
simply from the marker-less system. This could be seen as an alternative application
where the marker-less data is only used on demand for specific segments and moments and
remains "silent" for the rest of the performance.

The opposite scenario is also possible, where only a handful of markers are attatched to
establish boundaries in the marker-less system, as explored by Becker et al.[8].

As a proof of concept, a smaller experiment was carried on, where challenges unrelated to
the subject could be removed for the sake of simplicity.

To prove that halfway results are possible by combining marker-based and marker-less
systems, one single body segment was recorded with both systems and then both data
used in different combinations as part of several tests. These tests will be explained in
detail later on.

The recording consists of a single leg moving roughly along one plane, showing different
flexing motions and walking. The data to be extracted is the orientation of the different
segments within the leg, namely: thigh, shank and foot; or from the perspective of the
joints, the rotation of knee and the ankle.

2.1 Marker-based setup

For availability reasons, the setup consists of a set of HTC Vive trackers instead of the
more common reflective or emissive markers discussed earlier. These trackers determine
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their own 3D location by using a set of special light emitting sources as reference. These
sources are commonly referred to as lighthouses due to the way they emit light, in a very
similar fashion to a lighthouse: a light source is surrounded by a spinning rotor that has
a small hole. Two of these rotors are used in each lighthouse, one spinning vertically and
one spinning horizontally.

The process begins with the lighthouses and the trackers being synchronised, which, in
the version of the HTC Vive used, is done by using a bright light and starting a counter
simultaneously on all the devices when said light is picked up by the trackers. Once the
devices are in sync, the rotors start spinning. The time it takes for a tracker to observe
the light through the spinning rotor can be directly translated to the angle between the
lighthouse and the tracker. By using a vertical and a horizontal rotor, the tracker can
determine both the horizontal and vertical angles, allowing it to calculate its own position.
This position is a 3D point, which makes it behave similarly in terms of output to a more
conventional marker-based system.

The setup consists of six trackers, two of which are actually controllers and can process
additional input from the user—but this is irrelevant for the experiment, since they track
their position in the same way. They are attached to the leg as tightly as possible to
avoid noise in the data, and are distributed in pairs for each leg segment; this makes
it straightforward to compute the rotation angle from the lines created by each pair of
trackers. figure 2.1 shows the positions of the trackers.

Figure 2.1: Position of the six trackers on the leg

12
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2.2 Marker-less setup

Since the leg will be moving mostly along a plane, and therefore roughly in only two
dimensions, a camera can be placed in a parallel plane at an appropriate distance that will
record the necessary range. This way, the whole movement can be recorded with a single
camera. The recordings will consist of colour video from this single viewpoint.

The recognition module encompasses two steps: foreground detection and segment
recognition.

Foreground detection is facilitated by recording a few seconds of video with no subject
at the beginning of each recording. The goal is to obtain a set of background images,
which can then be used to create a model. The lighting conditions of the experiment—
indoors with no incoming natural light—make it easy to create a working model, but
more complicated scenarios would require a greater degree of care to build a model robust
enough. The model chosen for the experiment is described by Zivkovic[17] as a series
of improvements on the commonly used Gaussian Mixture Model; an implementation is
readily available in the OpenCV library.

Recognition of the different leg segments is done most easily by colour. This is only possible
if the recordings are carefully setup. The thigh, shank and foot should feature tight clothing
in different colours that separate them from each other and the background of the scene.
Dressing the subject in tight clothing that stands out from the background scene is a very
common practice in marker-less motion capture, as it improves the segmentation from the
foreground detection and avoids errors originating from the use of loose clothing on the
subject. For this experiment, additionally differentiating each segment by colour eases the
recognition step. An additional noise reduction step are performed to improve the quality
of the results with the usage of simple filtering and morphology.

2.3 Synchronisation process

An important aspect to consider when obtaining movement data from different sources is
synchronising them in time, frequency and space.

The synchronisation for the experiment is done manually and ad-hoc for the sake of
simplicity, instead of implementing a more involved method that would allow higher speed
and accuracy for bigger amounts of data. Such a method would ideally be added as
hardware onto the employed systems, but a robust software solution is also possible. Sigal
et al.[11] use a software implementation to synchronise the two systems employed in the
HumanEva dataset.

Frequency sync is done based on the documentation for the hardware used, and was verified
visually. The data source with the highest frequency was decimated to the frequency of
the other source by an integer factor; therefore, no interpolation is performed.

The two systems are not synchronised in time; e.g.they start at slightly different times.
Time sync is done visually by picking an easily identifiable moment in one system and
finding it in the other one. To this end, some movements are performed in the recordings
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that would make this step easier and more precise, such as stomping quickly on the floor.
This results in relatively unreliable synchronisation, but should be enough for testing goals,
since the movements to be tracked are rather slow.

Space sync can be done in several ways, by establishing a common world origin using a
landmark easily identifiable by both systems, or by determining one of the system’s origin
in the other system. In this case, it can be done by obtaining the position of the video
camera according to the marker-based system, e.g. by placing one of the trackers in the
position of the camera in a separate recording. Units must also be converted accordingly.

2.4 Joint angle calculation

Many different parameters could be extracted from the data depending on the interests
of the application. For the experiment, the goal is to calculate the rotation of the two
joints in the model: the knee and the ankle. This is a common goal for applications in
biomechanics, where the global position of the body is not as relevant as the positions of
some body parts in respect to each other.

The positions for the trackers have been chosen so that this task is very straightforward:
because they are placed in pairs in a straight line for each leg segment, the vector between
each pair is the direction of their segment. Figure 2.4 shows this simple process visually.

Figure 2.2: The vector between the pair of markers of each segment is computed

In the marker-less system, each of the three leg segments are fit into rectangles which then
provide with a clearer orientation. Simple logic operations are done to ensure that the
orientations are not flipped, e.g. a segment should be pointing forward and down instead
of back and up. This is possible thanks to the restriction set on the experiment, but a
more robust approach would be needed in an application with less predictable movements.
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These more complete approaches use skeleton models to prevent unlikely poses, as has
already been discussed.

The angle between two segments can then be easily computed from the dot product of
their vectors u and v:

θ = arccos

(
u · v
‖u‖‖v‖

)

Figure 2.4 shows the computed angles between the segment vectors.

Figure 2.3: The angles for the knee and the ankle are computed from the segment vectors

2.5 Hybrid system

As explained previously, several methods exist for combining data acquired from different
sensors. Since the two data sources chosen for the experiment are of similar nature, they
can be combined directly for each frame after they have been aligned in space (through
the synchronisation step).

This is a simplistic approach that ignores previous data and does not build a model to
recover from missing data or noise. However, it would arguably present similar results for
a small test to a more involved and generic approach, e.g. by using Kalman Filtering. In
a practical scenario, a more robust tracking system would be greatly advised.

The data to be combined are the segment vectors which are extracted directly from the
source. The angle computations would then be done using different combinations of vectors
between both systems; one example of combination would be to combine the thigh vector
from the marker-based system with the shank and foot from the marker-less.

15



Group 841 2. Design

2.6 Expected results

The recordings will be done with the full marker set, i.e. six trackers attached to the leg.
As mentioned, different sub-sets of markers will be used for the different tests, ignoring
the rest as if they were occluded or simply not present.

The expected results will be varying correlation levels between the marker-based and the
marker-less systems depending on the leg segment; i.e.the marker-less system will behave
better for specific leg segments. Therefore, different sub-sets of markers will provide
different correlation levels when mixed with the marker-less data.

It is expected that these varying correlation levels coming from different subsets of markers
will produce interesting results in terms of the trade-off accuracy and convenience that
could be applicable for different application needs.
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3 System description

In this section the different parts of the systems are described.The system is divided into
three subsystems which process the marker-based and marker-less data and combine them
in specific ways. The data flow and the interaction between the subsystems can be seen in
figure 3.

Hybrid sytem

Marker
positions

Marker-based
system

Leg segments
vectors

Camera
position

Marker-based
segment indices

Background
images

Recording

Segments
colours

Marker-less
system

Leg segments
vectors

Knee and ankle
angles

Figure 3.1: Diagram of the different modules and data that compose the proposed system

Marker-based It loads the marker data from the specified recording and computes the
segment vectors.

Marker-less It trains the background subtractor with specified background frames, then
segments each of the following frames. It performs colour segmentation to distinguish
between the leg segments, aided by morphology operations and filtering to reduce
noise. It then fits each segment’s contour into a rectangle and computes the finds
the direction of said rectangle, therefore obtaining the segment vector.

Hybrid It converts between the coordinate systems of the marker-based and marker-less
systems using the annotated camera position. It then creates a new data array
combining the specified segment vectors from the marker-based system and the
marker-less system. Finally, it computes the angles for the knee and the ankle from
these vectors.
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4 Results

The proposed design has been tested on four acquired recordings. One colour camera and
a set of trackers from an HTC Vive system were used, following the guidelines laid out
throughout the document to ease the motion capture process; more specifically:

• The movement is performed roughly in a two-dimensional plane, walking on a straight
line and moving the leg back and forth.
• The colour camera is placed so that it looks into the leg laterally, perpendicularly to

the imaginary plane the leg is moving in. This way, it captures the whole movement.
• Before each recording, a few seconds are recorded without the subject in the image.

This is used to train the background subtractor.
• All trackers must be visible by the tracking system throughout the whole section

of the recording to be tested. The implementation tested does not attempt to
track missing markers, although the marker-based system does recover from missing
markers itself and re-identifies them properly.
• Tight clothing in different colours should be used to improve background subtraction

and allow easy recognition of the leg segments.
• The position of the camera in the coordinate system of the marker-based system

must be annotated.

The recordings feature different movements in two dimensions where the knee and the
ankle angles exhibit a large number of combinations. The data were manually annotated
to be resampled, cut and synced appropriately. In particular: the marker-based system
records at 90Hz and the marker-less system records at 30Hz, and both start and end
separately. The results from this manual process have been verified visually.

The number of frames containing only background is annotated for each video and the
background subtractor is trained with the resulting frames.

Once these preliminary steps are completed, the recordings can be processed. The segments
are identified and the pose is estimated, resulting in a three-dimensional vector for each
segment in each frame, for each system.

The angle between the vectors associated with the thigh and the shank, and with the
shank and the foot, are the final outcome of the motion capture process. These numbers
are then compared between the systems.

The correlation indices between the two systems can be seen in table 4. Since both systems
are processed in a simplified way with the most basic approach, the correlation indices are
quite low.

The different combinations of thigh, shank and foot vectors between the two systems are
then performed and the angles computed, resulting in the new correlation indices observed
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Marker-less Hybrid correlation with segment markers
Recording

correlation in thigh in shank in foot
Knee Ankle Knee Ankle Knee Ankle Knee Ankle

1 0.05 0.23 0.07 N/A 0.10 0.00 N/A 0.11
2 0.15 0.03 0.34 N/A 0.12 0.16 N/A 0.07
3 0.14 0.20 0.29 N/A 0.09 0.09 N/A 0.27
4 0.00 0.19 0.01 N/A 0.06 0.44 N/A 0.28

Table 4.1: Results from testing. Cells in green show improvement from original
correlation; cells in red show worse correlation.

in table 4. An improvement can be seen in most recordings for the combination of marker-
based thigh with marker-less shank and foot, since the thigh was the segment with the
most errors in the recognition step of the video.
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5 Discussion

The results obtain agree with the experiment carried out by Becker et al.[8], even though
this experiment did not make use of biomechanical models or more involved tracking
techniques. Unfortunately, the over-simplification of the challenging marker-less segment
recognition gave very poor correlation results in the first place, which invites to test further
with a more robust marker-less approach.

Practical difficulties during recording raised unexpected problems to recognise leg segments
without training data for an approach involving machine learning, and without a
biomechanical model. In particular, there was trouble differentiating between the thigh
and the shank due to problems with the video camera, which unfortunately affect both
knee and ankle when the shank is misplaced. A more robust approach is advised, though
time constraints did not allow for an appropriate implementation for this experiment.

5.0.1 Future work

As mentioned, a more robust marker-less approach should be used for further testing. This
could be an implementation of a chosen method from the review by Yang et al.[6], such as
the work by Corazza et al.[15].

More complete tests using a biomechanical model on a full body should be performed on a
public dataset, such as HumanEva[11], to compare against other approaches. Although a
challenging dataset, it is the most commonly used in marker-less motion capture research,
as expressed by Yang et al.[6], and it should be possible to use it for testing hybrid systems
in the same way as attempted in this work and by Becker et al.[8]: by using different
combinations of marker subsets to constrain or correct the marker-less data.
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A Appendix

A.1 Implementation details

The implementation to test the described design was carried out independently during this
work.

It was implemented in the python programming language, making extensive use of the
scipy and OpenCV libraries for numerical and computer vision methods, respectively.

The implementation was separated into the following modules:

parse_markers.py It loads marker positions from a local file or an FTP server. FTP
was used during initial tests in order to avoid transferring each new batch of files
between the recording system and the processing system.

plot_markers.py Creates an animation using pyplot with the marker positions. Used
for visual testing.

leg_detection.py Uses the improved Mixture of Gaussians implementation in OpenCV
(MOG2) for background subtraction and performs the marker-less segment
recognition using colour segmentation, and morphology and filtering for noise
reduction. It finally fits the contour of each segment into a rectangle and computes
the segment vector from the angle of rotation of said rectangle. It also plays the
recording, for visual testing.

camera_transformation.py Uses the annotated camera position to transform marker
positions in global coordinates into camera coordinates within the Unity coordinate
system.

calculate_lines.py Computes the joint angles from the segment vectors.
main.py Handles each module to go through all the recordings. It also attempts to

reduce error by discarding frames with missing segments. Finally, it computes the
correlation between the marker-less and the marker-based, as well as the different
combinations tested in the hybrid system.

Extensive use was done of the ffmpeg toolset to annotate frames in the marker and video
recordings, so they could be visually analysed and synchronised.
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