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Abstract:

With the recent wave of development
in Virtual Reality (VR) technology,
new purposes have been found for the
medium. The complex motion track-
ing and limitless environments allows
for interesting new ways of interacting
with musical instruments. Recently, re-
searchers have examined the concept of
musical interaction in VR, which has
led us to a new category in expres-
sive musical interfaces; Virtual Real-
ity Musical Instruments (VRMI). The
thesis project presents interactive pro-
totypes with integrated physics-based
sound synthesis through an iterative de-
sign process of usability and crossmodal
association evaluation. The main con-
clusion of the usability evaluation in-
cludes further improvements to the ro-
bustness between gesture mapping and
collision detection system. From the
crossmodal association experiments, a
slight tendency towards successful iden-
tification of size and material of the
sound producing object was found, how-
ever, given the small sample size and
potential flaws in the experimental de-
sign, future work and evaluation re-
mains a requirement for raising the va-
lidity of the indicative tendencies.
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Chapter 1

Introduction

With the resurgence and commercialization of Virtual Reality (VR) technology, a
new wave of interactive and creatively expressive musical interfaces is surfacing the
community and world of VR. The interfaces have been investigated and coined as
Virtual Reality Musical Instruments (VRMIs) [1]. Following the definition, a set of
conceptual design principles has been established [1] with respect to prior research
in the field of New Interfaces for Musical Expression (NIME). By default, VR is
dependent on the same development platforms used in traditional game design for
3D experiences (i.e., game engines).

In terms of the audio, the wave of VR has pushed the abilities of game engines
to spatialise audio in real-time using various newly developed libraries and plugins.
However, it seems that the common approach (given e.g., Unity’s features in terms
of playback of sounds) for sound design is to use third-party software like Digital
Audio Workstations (DAW) for synthesizing, processing and recording the intended
sound design of a game.

In regards to musical experiences in VR, and the sophisticated and low-cost
motion tracking that most common VR systems include, the idea of using motion
data for interacting with musical tones generated by mathematics should be more
accessible than ever. The following thesis project will pursue the task of investigating
options for real-time embedment of sound synthesis in game engines intended for
musical interaction in Virtual Environments (VE), while establish and discussing
the technicalities in the development of interactive audio plugins for use in a VE.
The thesis project will also document several implementations of real-time sound
synthesis related to interaction with and realism of musical instruments.

1.0.1 Background

The following sections will briefly describe the core areas of research in the thesis
project.

1



2 Chapter 1. Introduction

Virtual Reality The current state of the art VR technology allows for multi-
ple tracking points (e.g., head and hands obtained from the Head-Mounted Display
(HMD) and hand-held controllers) with positional and rotational information, which
allows for complex gestures in controlling behaviour within games and VEs. The
hand-held controllers enable the interfaces to be partly tangible with its physical
form and interactive buttons, however, the actual virtual environment is intangi-
ble and absent of true haptic feedback – unless information about user actions is
conveyed through the actuators of the hand-held controller.

The author of the thesis has previously co-authored a paper considering the use
of VR for musical instruments [2]. Part of the paper concerned an implementation
of virtual percussive instruments designed for a commercial VR system containing a
HMD, hand-held controllers, and room-scale tracking (6DoF). The main conclusion
from the evaluation of the design and implementation was that a lack of dynamic
audio, related to the gestures being generated in real-time, decreased the playability
of the VRMIs. The term of playability has been discussed in [3], however, throughout
the following thesis project the term will be simplified to merely describe interaction
as feasible for simple musical performances. A larger scale study on playability might
be performed in the future covering all aspects of playability.

Synthesis Engines Various development platforms and programming languages
like SuperCollider 1, JUCE 2, Max/PD 3, CSound 4 and FAUST 5 allows for im-
plementation and control of real-time audio synthesis models and more. A strong
motivator for the thesis project has been the intrusiveness of providing high-quality
sound synthesis in VR experiences. In previous personal experiences (as well as other
research projects), the audio engine has been interoperable through an Open Sound
Control (OSC) 6 network protocol connection with the aforementioned third-party
software. However, such an approach requires additional software to run on the
side, as well as an implemented library for setting up the server and listener of the
protocol. As VR is usually highly dependent on visual content, interactive virtual
environments are designed similarly to traditional video games played on a screen.
Therefore, the embedment of the sound synthesis engine into the executable VR
experience is interesting for the prevalence of musical instruments in VR that are
convenient and easy to use.

Apart from avoiding intrusive software setups, the thesis project will also be
developed under the same principle in relation to the involved hardware. As described
previously, the current state of the art in VR technology has certain restrictions on
the types of inputs that can be provided to the system, and is mostly based on
tracking of motions.

1SuperCollider: http://supercollider.github.io/
2JUCE: https://www.juce.com/
3Max: https://cycling74.com/products/max
4CSound: http://csound.github.io/
5FAUST: http://faust.grame.fr/
6Open Sound Control: http://opensoundcontrol.org/



3

By understanding the limitations of modern VR technology, the appropriate mu-
sical instruments can be chosen for implementation in a non-intrusive software and
hardware approach. By studying the field of organology, the physical realms involved
in the production of sound by musical instruments can be explained. Developing re-
alistic VRMIs requires the multisensory experience of VR to be considered. In VR,
there is a close relationship between what is seen, heard and felt. With traditional
Virtual Musical Instruments (VMI), the interaction might be physically present in
the real-world through a simplified interface controlling physical models, however, in
VR, the physical model can become part of the simulated reality.

Musical Instruments Classification of modern musical instruments goes back
to the beginning of the last century, when German and Austrian musicologists Curt
Sachs and Erich von Hornbostel [4] organized musical instruments into various dis-
tinctive classes. The distinction mainly considered the vibrating element of the
musical instruments; bodies, membranes, strings or columns of air. Thereby, the
categories were named idiophones (body), membranophones (membrane), chordo-
phones (strings), and aerophones (columns of air). The classification was revaluated
by André Schaeffner in 1932 [5], expanding the classification for any conceivable in-
strument. The new classification organised idiophones, membranophones, and chor-
dophones into the collective of gaiaphones, and maintained aerophones as its own
category. Thereby, the categorization was now based on the physical organology of
the musical instruments with respect to the bonding of atoms responsible of produc-
ing sound. The table below provides an overview of the involved forces and gestures
with musical instruments.
Name Gaiaphones Hydraulophones Aerophones Plasmaphones Quintephones
State Solid Liquid Gas Plasma Quintessence
Bonding Solid bonds Weak bonds No bonds Ionization Undefined
Material Vibrating body, membrane, string Vibration in medium Vibrating columns of air Atoms Electricity, amplification, processing units
Examples Idiophones, membranophones, chordophones Reed-based, reedless Woodwind instruments, Brass instruments Pyrophone, Rijke tube, Tesla coil Mechanophones, electrophones, optiphones, neural networks
Gesture Striking, bowing Complex Blowing Complex Complex

Table 1.1: Organological classification

By knowing the involved physics of musical instruments, the area of simulation
in real-time games and VR experiences can be investigated. The main limitation
to start off with is the support of VR development. Currently, the two widest used
game engines for designing VR experiences are the Unreal 7 and Unity 8 game en-
gines. Both game engines make use of NVIDIA’s PhysX 9 physics engine, which
includes features such as gravitation, collision detection, rigid and soft body dynam-
ics, particles and more. It might be that we in the future are able to simulate sound
by the same means of rigid body animations, however, at the current moment, it
might be more feasible to investigate the possibilities in prebuilding models based on
physics instead of entirely integrating the simulation process with the physical laws
of the game engine.

7Unreal Engine: https://www.unrealengine.com/
8Unity: https://unity3d.com/
9NVIDIA PhysX: https://www.geforce.com/hardware/technology/physx



4 Chapter 1. Introduction

Crossmodal Association The ability of the synthesis engine to induce cross-
modal associations between visuals and sound components is also an important factor
in the evaluation of the implementation of the thesis project. The crossmodal corre-
spondence between frequency and spatial properties of a sound was investigated in
[6] and provides insight in the state of theory on crossmodal correspondence between
pitch and sound objects. For example, it was shown in 1984 by Walker and Smith
that high-pitched sounds and small objects share crossmodal qualities and vice versa
in relation to larger objects and low-pitch sounds. The phenomenon was concluded
to be explained by the perception of resonance in objects. Inanimate objects res-
onate in an inverse manner depending on their frequencies (larger objects tend to
resonate at lower frequencies and vice versa), while gender and size also creates as-
sociations with pitch (e.g., males tend to have a deeper voice). Moreover, the study
conducted a test on the correspondence between frequency (Hz) and the diameter
of a two-dimensional circle. 21 tones were presented to test participants and they
were asked to match the sound with 9 circles varying in diameter. Conclusively, the
study showed a strong association between pitch and size, which is consistent with
previous research [6].

1.0.2 Summary of Research

In summary, the topics of VRMI, multimodal VR systems, previous research conclu-
sions, real-time sound synthesis, software nativity, physics and classification of mu-
sical instruments, physics simulation in game engines, and crossmodal associations
has been briefly covered in the current section providing background knowledge in
the field. The main point for investigation to be taken from the introductory sections
is the feasibility of implementing real-time sound synthesis for realistic and interac-
tive VRMIs within the development environment of a game engine. The research
areas prone to analysis will be Mixed Reality (MR), the development options for
compiling a plugin for a given game engine, the mathematics behind simulation of
musical instruments based on physical modeling, and lastly the state of theory in
VRMI research.

More specifically, the following chapters will investigate reality-virtuality contin-
uum, design principles for developing VRMIs, physical modelling in FAUST, and
plugin compilation in C++ for the Unity Audio Engine.



Chapter 2

Analysis

The following chapter of Analysis will elaborate upon the subjects of MR, music
in MR, physics-based sound synthesis with FAUST, and compiling an audio plugin
for the Unity game engine. In regards to the aforementioned subject of crossmodal
association, the phenomenon can arguably be said to add to the experience in terms
of realism and compellingness. In order to generate crossmodal associations, an
appropriate methodology for simulating realistic object dimension and material must
be investigated. The subject of Finite Element Analysis (FEA) has been found to
be useful for this purpose and will be covered in this chapter.

2.1 Mixed Reality
In order to describe the field of VR, the overall category in which it belongs must
be discussed. The categorization of Mixed Reality (MR) and involved technologies
will therefore be presented. Conceptually, MR includes technology related to Aug-
mented Reality (AR), Augmented Virtuality (AV), and Virtual Reality (VR) (see
table below). The definition follows the research of Paul Milgram et al., who pre-
sented the Reality-Virtuality Continuum in 1994 [6]. The technological solutions
have progressed incredibly over the years; however, the conceptual categorization
can arguably still be said to persist today.

Mixed Reality (MR)

Real Environment Augmented Reality (AR) Augmented Virtuality (AV) Virtual Reality (VR)

Table 2.1: Reality-Virtuality Continuum by Paul Milgram

First point of real environment is self-explanatory as the physical world in which
the universe exists in. Second concept of AR describes the addition of Computer-
Generated Imagery (CGI) in a projection of a real environment.

5



6 Chapter 2. Analysis

Since the publication of the theorem, the quality and affordability of compact
digital displays have greatly increased and products enabling the concepts described
in the continuum are now commercially available.

At the current moment, the VR market is slightly saturated by many innovation
start-ups and established technology manufacturers. Generally, the industry has not
yet settled on common approaches and solutions for output devices, which means
that many systems are marketed as peripheral equipment for VR. In 2016, a con-
ference paper on the State of the Art in VR technologies was published [7]. The
paper provides a good overview of the current state of VR hardware. The paper
summarizes input and output into the categories of visual, haptic, and multi-sensory
input/output devices and controller, navigation, and tracking input devices. The
classification is relevant for the aforementioned classification of musical instruments
to provide an overview of the possibilities within the market between VR systems
and physical sound models. A hierarchical graph showing specific products related
to the categories can be found in Appendix C.

On the software side of VR, there are multiple attempts at creating a standardized
way of implementing interaction and, most recently, cross-compiling of VR applica-
tions to any VR hardware. In regards to the implementation of interaction, the two
toolkits of NewtonVR 1 and VRTK (Virtual Reality ToolKit) 2 both already have
many commercial VR titles using their interaction implementations. In regards to
cross-compiling of VR applications, the need for a VR development standard was
identified and the Khronos Group has taken the initiative (together with companies
such as AMD, Google, Intel, Nvidia, and Samsung) to create a VR standard named
OpenXR 3. The vision of the Khronos Group is outlined in the image below.

Figure 2.1: Khronos VR

1NewtonVR: http://www.newtonvr.com/
2VRTK: https://vrtoolkit.readme.io/
3OpenXR: https://www.khronos.org/openxr
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2.2 Music in Mixed Reality
The following section will provide an overview of the current state of research in
musical interaction for MR applications.

2.2.1 Research

With the recent focus by hardware manufacturers on development of VR hardware,
the field of musical instruments in VR is quite new and yet to be fully explored.
However, in 2016, a new paper by researchers from Aalborg University Copenhagen
[1] has been published with a set of established principles for designing Virtual Reality
Musical Instruments (VRMI). The paper investigates the state of the art in previously
described virtual instruments. However, as mentioned, the keyword of virtual has
been used to describe software simulated musical instruments visualized by CGI.
By the new possibilities in creating “actual” virtual environments through binocular
vision and motion tracking, the paper also recategorizes the previous virtual attempts
by distinguishing between Digital Musical Instruments (DMI) and Virtual Reality
Musical Instruments (VRMI).

The paper also proposes a set of nine design principles for developing VRMIs.
The design principles are outlined below with a summarized description of each[1].

• Design for Feedback and Mapping
– Emphasizes the importance of designing multimodal feedback for the in-

teraction between the user and the instrument.
• Reduce latency

– Emphasizes the importance of synchronicity between sensory feedback.
• Prevent cybersickness

– Conflicting sensory feedback (especially in visual and vestibular stimuli)
should be avoided or kept at a minimum.

• Make use of Existing Skills
– Emphasizes the importance of creative solutions for the interaction by

avoiding replication of instruments from the real world.
• Consider both Natural and "Magical" Interaction

– Make use of the unlimited possibilities in virtual interaction that is not
constrained by the laws of physics or human anatomy.

• Consider Display Ergonomics
– Be aware of the VR hardware industry still being in a prototypical stage,

especially in regard to the need of a tethered connection between display
and computer.

• Create a Sense of Presence
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– Evaluate and design the experience with respect to previous research on
presence in VR.

• Represent the Player’s Body
– Emphasizes the importance of providing a sensation of virtual body-

ownership in VR.
• Make the Experience Social

– Emphasizes the potential positive impact of a social setting in VR on
performance and the experience itself.

In regards to virtual body-ownership, another study related to rhythm and VR
came out in 2012. The study focused on the appearance of a virtual body and the
relation to the person playing the percussive instrument. The study showed that full
body-ownership illusions has great impact on behaviour and performance, moreover,
possibly also influencing cognitive effects of the sensation of virtual body-ownership
[8].

Figure 2.2: Virtual Body-Ownership

Musical tutoring using VR has also been investigated in the project of VRMin [9].
A mobile VR application was developed and evaluated using a heuristic evaluation
approach together with performance logging. The visual cues of the project consisted
in informing the performer about hand-position and relation to notes and amplitude.

Figure 2.3: VRMin in action

The Theremin (the “replicated” musical instrument of the project) is notoriously
known to be an instrument that is hard to pick up and learn due to its reliance on
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contactless performance. An interesting outcome of the project was a set of design
guidelines for heuristic evaluation of VEs intended for musical tutoring [9].

• Visual feedback should not prevent a user from focusing on aural feedback
• Reduce cognitive load by limiting the amount of concurrent feedback
• Provide terminal performance feedback upon completion of the practice task

These three guidelines should aid in the design phase to ensure that focus is not
taken away from the actual task of a VRMI experience; musical performance. The
project also considered the design principles presented by Serafin et al., which was
covered previously in this section. Conclusively, the project’s evaluation resulted in
a set of design modifications for the future perspective of the project, in which a
larger scale user study will further investigate the influence of various environmental
configurations.

An overview of the current state of the art in commercial entertainment solution
related to music and rhythm in VR can be found in Appendix D.

2.3 Sound Synthesis
The following sections will elaborate upon the ways of synthesising sounds in real-
time with the programming language of FAUST. An explanation on the physical
modelling involved will also be provided.

2.3.1 FAUST (Functional Audio Stream)

FAUST is a functional programming language designed for real-time signal process-
ing and synthesis. It consists in a compiler that translates a FAUST program into
an equivalent C++ program optimized for efficiency. The compiler includes many
options for building the C++ program into various architectures. Thereby, the com-
piled FAUST program can be either specifically aimed at architectures like PD,
Android, iOS, etc. or implemented in other environments that support C++ pro-
grams. The supported plugin architectures are LADSPA plugins, CSOUND opcodes
(incl. double precision), Max/MSP externals, Native/Windows VST plugins, Super-
collider plugins, Puredata externals, Q plugins, Pure plugins. Moreover, FAUST also
supports the use of the networking protocol OSC for interoperability across software.

Compatibility

FAUST is a specification language in which signal processors can be programming
using the semantically driven compiler. The compiler translates the mathematical
functions into efficient C++ (and C, Java, Javascript, LLVM IR, and WebAssembly)
programs. By that principle, a number of C++ platforms are supported using the
faust2api commands. Recently, compiling options for the game engine Unity was
added to the distribution, which natively supports C++ plugins for extending the
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Table 2.2: Process

PhysicalParameters→ PhysicalModel→ OutputSound

functionalities in real-time. A program can thereby be designed Faust, compiled with
instructions for the Unity Audio Engine and through C# marshalling be dynamically
changed at run-time.

2.3.2 FAUST-STK

A set of virtual musical instruments based on physical modelling is part of the Faust
distribution. The work was presented in [10] and includes waveguide models for wind
(e.g., clarinet, flute, brass) , string (e.g., bass, bowed string, sitar), and percussion
(e.g., Tibetan bowl, iron bare, glass bare) instruments. A full list of the instruments
can be found in the footnote 4. The implementations are based on the open source
API Synthesis Toolkit developed and maintained by Perry Cook (Princeton Univer-
sity) and Gary Scavone (McGill University) [11]. The code was slightly changed to
adapt the models to the semantics of FAUST. As described in [10], wind instruments
are based on breadth pressure that corresponds to the amplitude of the excitation is
controlled by an envelope. The excitation is used to feed one or several waveguides
that implement the body of the instrument.

Part of the implementation for string instruments was already accessible through
the processing libraries within FAUST of filter.lib and effect.lib. The models were
spectrally enriched using non-linear all-pass filtering. The non-linearity of the filters
is generated by dynamically modulating the filter coefficients at every sample by a
function of the incoming signal [10].

Percussion instruments of FAUST-STK use excitation by a bow or a hammer and
are based on banded waveguide synthesis. Banded waveguide synthesis simulates
acoustic dispersion of an object - a wave is influenced by a medium or material and
separates its component frequencies - or inharmonic resonant frequencies of an object
[10]. The following sections will describe physical modelling and waveguide synthesis
for musical instruments.

2.3.3 Physical Modeling Synthesis

In physical modelling, a desired waveform is generated by an established model con-
sisting of mathematical equations and algorithms. The model is oftentimes con-
structed to emulate the physical properties of, for example, a musical instrument.
The physical properties (or parameters) are related to the instrument’s construc-
tional dimensions, materials, and mechanics that all influences the final sound. The
parameters can also be defined by the performer’s interaction with the instrument
[12].

4FAUST-STK overview: https://ccrma.stanford.edu/ rmichon/faustSTK/
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In music, there are generally two distinctive models in use for sound synthesis:
lumped or distributed. Lumped models describe masses, springs, dampers, and non-
linear elements, whereas distributed models describe wave propagation in strings,
bores, horns, plates, and acoustic spaces. Lumped models are typically implemented
by a two-pole digital filter and distributed models consist of a combination of digital
waveguides, digital filters, and non-linear elements [12].

2.3.4 Digital Waveguide Synthesis

Musical instruments can be computationally modelled using delay lines, digital fil-
ters, and non-linear elements. Such a signal processing chain is referred to as a
digital waveguide synthesis model [12]. Between each model there are the following
similarities:

• Sampled acoustic traveling waves
• Follow geometry and physical properties of a desired acoustic system
• Efficient for nearly lossless distributed wave media (strings, tubes, rods, mem-
branes, plates, vocal tract, etc.)
• Losses and dispersion are consolidated at sparse points along each waveguide.

Traveling waves can be simulated by a bidirectional delay line at wave impedence
R, which outputs a physical signal [12].

Figure 2.4: Output Signal

2.3.5 Finite Element Analysis (FEA)

A Finite Element Analysis (FEA) (also known as the Finite Element Method (FEM))
is a numerical method for analysis of structures, solid mechanics, dynamics and more.
FEA provides an approximate solution to the task of calculating displacement, stress
and strains at various points of a material when force is applied. The concept is
illustrated below with material points X and force P [13].

As understood from the conceptual illustration, the undeformed solid state hold
a number of measurable quantities related to the mechanical physical property of the
object. A large number of physical properties can be measured and provided as input
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Figure 2.5: Force applied to solid resulting in deformation [13]

to implementations of FEA [13]. Basic properties related to the boundary (e.g., a 3D
mesh) and the solid interior structure (e.g., density, elasticity) are commonly used as
parameters for FEA algorithms. Basic physical properties of materials include the
measures of Young’s modulus, Poisson’s ratio and density.

Young’s modulus is a unit used to describe the rigidity of an object of solid
material. In other words, it tells us about a materials ability to deform while being
exposed to a force. The unit of Young’s modulus is pascal due to its relation to
pressure. The equation can be found below:

E = Stress

Strain

Poisson’s ratio is the negative ratio between a longitudinal and lateral strain
being applied to material. Poisson’s ratio is related to the phenomenon of Poisson’s
effect, which describes a materials ability to compress or stretch when longitudinal
force is applied. Poisson’s ratio does not have a specific unity, but is often described
by the µ symbol as seen in the equation below:

µ = − Lateral strain

Longitudinal strain

Finally, the property of density is a substance or material’s mass per unit volume.
The SI unit of a material’s density is kg

m3 and is calculated by the following equation:

ρ = m

V
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Methodology

The evaluation of the design and implementation will focus on usability testing
(playability in the context of music) and crossmodal matching tasks. The design
and implementation of various prototypes will both involve traditional game play in-
teraction with a keyboard on a 2D screen, as well as with motion tracked hand-held
controllers and HMD.

3.0.1 Virtual Reality

The evaluation of VR applications will be performed with the user experience of the
application in focus. The related researchers and methodologies will be presented
below.

In correspondence to the evaluation methods of the state of theory in VR, us-
ability and user experience can be tested according to evaluation methods presented
in [14] [15] [16] [17].

The methodologies presented in the publications on presence and user experience
can be used post-sessional to evaluate the most recent experience. Qualitative data
will be obtained verbally through interviews or in written questionnaires. Analysis
of the qualitative data can be performed by the inclusion of self-reported assessment
ranking in the form of Likert-scales. Quantitative data can be obtained by the
implementation of data logging while using the MR applications. Both the qualitative
and quantitative data will be used for the process of reiterating the design of the MR
applications. Once mistakes are identified, optimization or rejection of core and new
features can be performed.

The exemplary implementation in the thesis project will be evaluated from heuris-
tic approach with the usability (i.e. playability for musical instruments) in focus.
Features and design choices will individually be questioned through the observations
during interaction and evaluated on test participants using questions from the stan-
dardized usability testing like the UEQ questionnaire. Throughout the development
process, pilot tests will be performed to evaluate certain approaches, minor changes,
and interaction threshold constraints. The factors in a successful design will be based

13
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on the design principles and guidelines found in the previous section of Evaluation.
Findings from the evaluation will be presented through commentary transcripts of
user feedback from the testing sessions.

3.0.2 Crossmodal Associations

The evaluation and data acquisition of the crossmodal associations between visual
and auditory components will be performed by a match-to-sample task between
sensory stimuli. The methodology follows the evaluation methods of aforementioned
studies related to crossmodal perception [6]. Test participants will be presented with
an auditory stimulus and asked to choose the associated visual component related
to the sound. A questionnaire will be used to obtain the reportings of crossmodal
associations.



Chapter 4

Design

In the previous chapter and sections of 2 and 1.0.1, the topics of physical modelling,
organology of musical instruments, and FEA was described. The exposition on the
classification of musical instruments based on physics will now be used together with
physical models to provide an overview of what is possible within the scenario of
musical interaction in VR. Apart from the creative approach of natural or magical
musical interaction, the physical models can also be investigated in terms of realism
and compellingness in the relationship between audio and visuals. Such a design
does not neccesarily require implementation in a VE, as important factor here is the
crossmodal correspondance perceived by static users.

Delimitation As presented in 1.0.1, there can be said to exist five ways that
musical instruments produce sound. The required input modality can be used in
the context of sensors enabling a system to simulate the same sensory interaction.
It should be noted that interaction with musical instruments can semantically be
done through protocols (i.e., MIDI or OSC) connecting the sound synthesis to any
digital interface. The digital representation can come in many forms and is com-
monly used by keyboards with one or multiple playable octaves. However, given the
multimodality of VR and its close relation to actual reality, the requirements should
accommodate true interaction with said musical instruments. Recalling the clas-
sification of musical instruments: gaiaphone, hydraulophones, plasmaphones, and
quintephones.

Due to the complexity of materials involved in hydraulophones, plasmaphones
and quintephones, an implementation would require extensive physics simulation of
liquid and electricity. Currently, these musical instruments will be excluded from
the requirements due to the abilities of game engines, which ultimately decides the
simulations unless complex extensions are added to the current state of the art in
VR technology. However, it should be noted that the category of quintephones is
arguably the most fitting for any musical instrument implemented for VR interaction
given its abstract and unlimited concept.

15
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4.0.1 VRMI Interaction

With the exclusion, the remaining categories of gaiaphones and aerophones can be
discussed in a VR setting. The discussion will be based on the VRMI design principle
of Natural/Magical interaction (see Section 2.2) and provide potential solutions for
both interaction types. Properties of the musical instruments is summarized in the
table below.

Types Chordophones Idiophones Membranophones Aerophones

Example
Vibrating element String Body Membrane Air
Gestural interaction Striking Striking Striking Blowing
Digital detection Collision Collision Collision Air pressure change
Sensor type Optical/Inertia Optical/Inertia Optical/Inertia Anenometer/Microphone

Table 4.1: Gaiaphones and Aerophone Classification

By deriving the type of interaction and required technological sensors from the
vibrating elements of the musical instruments, a set of requirements can be formed for
a VR system enabling interaction with said instruments. From analysis of the state
of the art in VR technology [7], it is known that no systems currently include sensor
types for aerophones (i.e., anemometer or microphone). However, a microphone
would be possible to integrate, but become intrusive given the attention hardware
required.

It should be noted that the entire discussion here is based on the principle of im-
plementing a system that allows for natural interaction with the musical instruments.
However, in the music production industry, digital interfaces (e.g., MIDI keyboards)
are commonly used to interact with any given synthesis module that is compatible
with the standardized MIDI specification (i.e., Note on/off, key number, velocity,
etc.).

In regards to chordophones, idiophones, and membranophones, the implemen-
tation is possible through prebuilt physics-based models or potentially the physics
engine of a game engine. As described in 1.0.1, common game engines includes the
PhysX physics engine, which can deal with collision detection between virtual objects
in real-time. This allows for the gestural interaction of striking, which is naturally
done with the aforementioned musical instruments. From a hardware perspective, it
is also known from the analysis presented in [7] that most VR systems include both
inertial sensors (embedded in either the HMD or hand-held controllers) and optical
tracking solutions for room-scale interaction. This will allow for real-time detection
of collision between real-world motions and virtual objects to trigger musical events.

A set of requirements can be established for designing interaction with VRMIs.
As part of the requirements, the solutions for of mapping gestures to the sound
synthesis model are also proposed. The requirements are summed up in the bullet
points below.
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4.0.2 Non-Immersive Interaction

In the case of designing non-immersive (e.g., the absence of a HMD) interaction
with the synthesis of a physical model, the user is restricted to keyboards with
notes mapped to various layouts. The layout with a traditional computer keyboard
requires mapping with physical model parameters and the buttons of the computer
keyboard. Additionally, the mapping can be redirected in the syntax of MIDI for use
with external hardware allowing for note control with a musical keyboard.

4.0.3 Summary of Requirements

The chapter of design will be summed up in various lists of requirements related to
the interaction with physical models in a VE. The lists will serve as guidelines in
the process of implementation to make sure that the design follows previous research
and preliminary conclusions found in the thesis report. It should be noted that the
term of immersion is merely used below to distinguish between media perceived on
a two-dimensional display and through a head-mounted display with stereoscopic
vision.
• Immersive Interaction

– Natural interaction in current VR systems can be implemented for chor-
dophones, idiophones, membranophones by collision detection

– "Magical" interaction in current VR systems chordophones, idiophones,
membranophones, and aerophones by (e.g., MIDI) mapping

• Non-Immersive Interaction
– Mapping of notes between physical model and keyboard buttons
– Interface for parametric configuration
– MIDI wrapper for mapping of notes and parameters with external MIDI

compatible hardware
• Technical Requirements (VR)

– High-definition HMD with inertial and optical tracking
– Motion tracked hand-held controller with physical interface
– Software Development Kit compatible with major game engines
– Game development platform with physics simulation supporting collision

detection
• Interoperability

– Integrated in game engine using marshalling and mapping
– Third-party software or hardware using Open Sound Control (OSC) or

Musical Instrument Digital Interface (MIDI)
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Chapter 5

Implementation

The following section will show and describe an exemplary implementation of musical
expression in VR. The main features will be the following:

• Compatible with the HTC Vive VR system
• Implemented using the Unity game engine and SteamVR API
• Natively supported real-time physical modelling synthesis using FAUST
• Sound configurability through hand-held controllers or Graphical User Interface
(GUI)

5.0.1 Plugin Workflow

The implementation of the project started by the compilation process of the Unity
plugin. The process is visualised in the diagram below. The first three steps con-
cern the compilation of the plugin, whereas the last three concern the mapping of
parameters between sound synthesis and gestures.

Figure 5.1: Workflow for Plugin Development

Unity supports native plugins written C++ that are compiled into a Dynamic-
Link Library (DLL). Given that FAUST is written in C++, this seems like the
optimal solution for building the plugin. The process starts by the .dsp file, which
contains instructions of the program for digital signal processing and synthesis. The
entirety of FAUST is only partly supported on Windows, however, the tools of

19
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FaustLive and Faust Online Compiler provides similar compilation features as found
in the main FAUST distribution. It is therefore possible on a Windows machine to
upload a .dsp file and configure the compilation for the intended architecture and
formatting. The FAUST Online Compiler (and FaustLive) has recently (spring 2017)
added compiler options for Unity on iOS/OSX. However, the compiler still provides
the option for a self-contained .cpp file, which can be modified to work on Windows
as well. Windows is an important technical requirement to the implementation, due
to VR systems exclusively working on high-end computers running Windows. Once
the self-contained C++ program is obtained through the FAUST Online Compiler,
the file can be added to a Visual Studio project together with a header file obtained
from the online repository of Unity Audio Plugin SDK (https://bitbucket.org/Unity-
Technologies/nativeaudioplugins/src). Three modifications were made to fix issues
from compiling:

• A namespace must be declared around the DSP and synthesis processes of the
program

• The name of the plugin must be defined

• Numbered labelling for the parameters instead of strings to avoid issues with
prefixes

Once this was done, the last thing is to add the name of the plugin to the
PluginList.h header file. Building the Visual Studio solution will generate the DLL-
file contained all audio processes, parameters, and naming. By standard, Unity
checks for the file name within the Assets folder and the default prefix for validation
is to add “UnityAudioPlugin” before the relevant name of the generator or effect.
Once this is done, the synthesis model can be added to a Unity Mixer Group and
parameters are visible in the inspector of said object on a mixer channel. The further
process of marshalling values and mapping parameters between the synthesis model
and motions is discussed in Section 5.0.4.

5.0.2 Physical Model Parameters

The design and implementation of FAUST-STK allows for changing of parameters
of the physical model in real-time through either a GUI or an OSC connection. The
physical models include either partly or all of the following parameters:

• Basic Parameters (e.g., frequency, gain, note on/off)
• Physical Parameters (e.g., excitation selection, bow pressure/position, etc)
• Nonlinear Filter Parameters (e.g., modulation type/frequency, nonlinearity,
etc)
• Envelopes (e.g, ADSR durations)
• Vibrato (e.g., frequency, gain, ADSR, etc)
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A full list of the parameters of the specific models implemented in the project
(prototype 1 and 2) can be found in Appendix E.

Due to an issue with the prefixes on the parameters’ labeling, the C++ code was
modified to label each parameters by numbers. As an example, the parameters of a
Tuned Bar physical model viewed in the Unity Inspector can be seen in the image
below.

Figure 5.2: Inspector View of the Unity Audio Plugin

5.0.3 Virtual Reality

The following sections will explain and document an implementation of the inter-
active environment in VR using Unity and the HTC Vive. The HTC Vive is pro-
grammable using the SteamVR library obtained from the Unity Asset Store.

SteamVR

SteamVR can be imported as a custom package in Unity, however, room scale cal-
ibration and general setup of the HMD is done within Steam itself. By drawing
the dimensions of the room with controller, the user defines the area in which it is
possible to move around. The SteamVR runtime application is running at all times,
and when Unity is set to render, the information regarding room dimensions is trans-
ferred to Unity – the accessible area is visually indicated by a blue boundary in the
Unity editor. In VR, the boundary is shown when the user approaches the edge of
the room by a distance threshold limit.

By the use of the SteamVR Camera rig prefab, the stereoscopic rendering is
setup for the two eyes. In order to access and use the controls/buttons of the Vive
Controllers, a script from the VRTK library was used to change inheritance properties
of the objects. The main purpose of doing this was to enable the reaching and lifting
of virtual objects by the controller.
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Virtual Reality ToolKit (VRTK)

The Virtual Reality Toolkit is an asset collection of scripts and prefabs for rapid
prototyping and designing of VR experiences. The asset is built for Unity and sup-
ports both the SteamVR and Oculus SDK. The collection of scripts and prefabs
contains solutions for implementing locomotion, interaction gestures, UI elements,
environmental physics in VR. The main use in the project has been to implement
gestural interaction and configuration through buttons of the hand-held controller.
The most essential scripts from the toolkit that was used in the implementation
is that of the VRTK_ControllerEvents and VRTK_BaseGrabAttach. The scripts
allows for manually configuring events related to the semantic actions of grabbing,
holding, and releasing virtual objects. Respectively, the scripts enabled sound events
to be mapped to the events of the controllers (i.e., spawning, translating, rotating
and scaling a virtual object by the click of specific buttons on the hand-held con-
troller). The VRTK_ControllerEvents is semantically built up in a way that allows
for adding of specific events (e.g., transformations, collision detection, etc) within the
defined events of touch (minimal button press), press (halfway button press), click
(full button press). This event controlling is implemented for each of the buttons of
trigger (7), touchpad (2), and grip (8), which are illustrated below.

Figure 5.3: The hand-held HTC Vive Controller - 1. Application Menu,
2. Touchpad, 3. System Menu, 4. Status Light, 5. Micro-USB Port, 6.
Tracking Sensor, 7. Trigger Button, 8. Grip Button

The implemented behaviour was mapped in the following way:

• Trigger spawns a prefab at the current position

• Touchpad changes position and rotation of nearest virtual object while pressed

• Grip changes scale of nearest virtual object by moving the secondary controller
while primary controller’s grip is pressed
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Table 5.1: Screenshots from implementation showing spawning, scaling, translating

Virtual Environment

The description of the virtual environment will be based on the content of the Hi-
erarchy View in Unity. Conceptually, the environment consists of basic geometric
primitives such as a plane for the floor, a rectangular box for the spawnable object,
a cylinder for the interaction, and the more complex models of the HTC Vive con-
troller, which appears during runtime and mapped to the position tracked by the
system. By default, prefabs for SteamVR and VRTK has to be present in the Unity
scene.

The CameraRig prefab from SteamVR handles the setup for stereoscopic vision,
hand-held controller IDs, and room-scale tracking with the child objects of Con-
troller (left/right) and Camera (Head), where the latter contains setup for visual
and auditory rendering through the camera and audio listener components.

The prefab of VRTK contains the SDK Manager and mapping options for the
HTC Vive controller. The SDK Manager is used to define the system that the VR
experience is designed for and contains options for SteamVR, Oculus VR, Daydream,
and their own Simulator SDK, which can be used to design interaction without a
VR system connected to the computer.

The two main objects enabling the interaction are the prefab Bar found in the
assets folder and the VRTK child object of RightController. Conceptually, the con-
troller setup enables spawning of the prefab by the click of the trigger button on the
HTC Vive controller. The required scripts of the controller to enable such behaviour
are the VRTK_ControllerEvents, which maps actions to certain buttons, and the
script of VRTK_ControllerEvents_Listener, where behaviour is added in code for
the previously defined actions. The main behaviour, which was added to the specific
action of the trigger being pressed, is the instantiating of the prefab and is done by
the following line of code:

Instantiate ( bar , transform . position , Quaternion . LookRotation ( transform .←↩
right ) ) ;

The parameters of the Unity function Instantiate are the game object, position
and rotation that the object is intended to contain at spawning. The rotation has
been implemented to follow the current rotation of the controller, ensuring consis-
tency in the behaviour.
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The first parameter of game object refers to the prefab Bar, which was premade
to contain components of a collider, mesh renderer, the VRTK_InteractableObject
script, RigidBody, theVRTK_ChildOfControllerGrabAttach script, theVRTK_Axis-
ScaleGrabAction script, the customly made Bar Tone script, and an audio source.
The VRTK scripts enable the object to be grabbed, transformed and scaled, whereas
the Bar Tone is responsible for collision detection and mapping to the physical sound
model. The collision detection was implemented using the function of OnCollisio-
nEnter and checks for the tagged name of the cylinder used for striking the bars
for triggering sounds. The mapping between motions and synthesis parameters is
elaborated upon in the next section.

5.0.4 Parametric Mapping using C# Marshalling

In computer science, marshalling is the process of translating an object represented
in the memory to a data format prone to be stored or transmitted between parts of
software or programming languages. Marshalling was required in the project in or-
der to enable the communication between the Dynamic-Link Library (DLL) compiled
from C++ code to the scripting language of Unity, in which the game or experience
is designed. The Unity runtime is written in C++, whereas the application’s be-
haviour and UI is programmable in C#. While the implementation of marshalling
on Windows can be done using the Marshal Class of the .NET framework 1, Unity
natively supports C# marshalling by exposing parameters viewed in the inspector
of a native plugin. It is therefore possible to choose a parameter from the plugin, re-
name it for use in C coding, and changing the values by the function of SetFloat. The
principle exists regardless of the implementation concerning animations, materials,
or audio processes. In the case of the project, the purpose is to change parameters
of the sound synthesis engine and thereby the appropriate way of dealing with this
is to instantiate the Audio Mixer intended for playback and recalling the name of
the parameter with a variable or static value that should be mapped. An example
of mapping between physical model paramters and gestures can be seen below.

Physical Model Parameter Transformation Parameter
Tone Frequency (Hz) Y-position in World Space
Tone Gain (0 - 1) X-rotation (Forward Vector)
Modulation Frequency (Hz) Rotation Magnitude

Table 5.2: Parametric Mapping

Given the varying intervals of values, the range of each parameter needed to
be remapped to obtain the effect of dynamic control. This task can be done by
interpolation using a combination of the two mathematical functions of the Unity
API; Mathf.Lerp and Mathf.InverseLerp. An example can be seen below with two
different intervals and a variable (X) with the incoming data:

1Marshal Class: https://msdn.microsoft.com/en-us/library/system.runtime.interopservices.marshal.aspx
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f l o a t myVariable = Mathf . Lerp ( low2 , high2 , Mathf . InverseLerp ( low1 , high1 , X )←↩
) ;

5.0.5 Revisited Version for Crossmodal Experiment

An additional implementation was performed with the FAUST programming lan-
guage. A subset of the distribution includes the tool of mesh2faust 2. The tool takes
a volumetric mesh as input and performs Finite Element Analysis (FEA) on the
triangles of the mesh and generates a corresponding physical model contained in a
static library file with the extension .lib. Furthermore, several additional arguments
are provided to further define and improve the analysis of the mesh. Mesh2Faust
is dependent on the libraries of Intel Math Kernel Library (Intel MKL)3, ARPACK
4, and Vega FEM 5. For this specific implementation, the FAUST repository was
installed on Linux Mint 6 and run in a Virtual Box (VB) 7on a PC with Windows
10 installed.

Once FAUST was installed, the tools of mesh2faust and faust2unity were used to
compile the Unity plugin. Initially, the command of mesh2faust requires a 3D mesh
as input. The 3D mesh of a percussive bar has previously designing and modelled by
the developers of FAUST, and the specific mesh in use for the perceptual experiment
can be found in the online documentation 8. The mesh can be seen below.

Figure 5.4: The 3D model of the bar

Mesh2Faust

As previously mentioned, mesh2faust performs FEA on the mesh of the 3D model
that a physical model is intended to be generated from. The mesh should be exported
as a Wavefront OBJ file (.obj), which contains data about vertex positions, normals,

2Mesh2faust: https://github.com/grame-cncm/faust/tree/master-dev/tools/physicalModeling
3Intel MKL: https://software.intel.com/en-us/mkl
4ARPACK: http://www.caam.rice.edu/software/ARPACK/
5Vega FEM Library: http://run.usc.edu/vega/
6Linux Mint: https://www.linuxmint.com/
7Oracle VM Virtual Box: https://www.virtualbox.org/
8FAUST Tutorials: https://ccrma.stanford.edu/ rmichon/faustTutorials/
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faces, and UV/texturing coordinates. A physical model can be generated by navi-
gating to the folder containing the mesh (“cd [directory]” on Linux) and running the
following command in the terminal:

mesh2faust −−infile filename . obj −−name toneBar

The command results in a generated model with default parameters (e.g., material
properties of aluminium) and the name toneBar. Furthermore, arguments defining
frequency control, modes (min. and max. frequency), and excitation positions can
be provided. The full list of arguments can be found in the aforementioned Github
repository of FAUST.

For the implementation in this project, the argument of –material was used to
define five bars of different materials. The arguments require three values related to
the mechanical properties of the material; Young’s Modulus, Poisson’s Ratio, and
the density. These properties were described in chapter 2 and the common materials
of wood, glass, stone, plastic, and aluminium were chosen for the implementation
and experiment. The mechanical material properties were obtained from Polymer
Data Handbook 9 and the online repository of The Engineering Toolbox 10. The
chosen materials are described in common terms and are generalisations due to the
vast variety of types of each material. The values of the properties can be seen in
the table below:

Table 5.3: My caption

Material Young’s Modulus ( N
m2 ) Poisson’s Ratio (n/a) Density kg

m3

Aluminium 70 e9 0.35 2700
Wood 10 e9 0.43 800
Glass 70 e9 0.23 2400
Stone 55 e9 0.25 2400
Plastic 2.4 e9 0.40 1400

Thereby, the values can be provided to the commands for compiling the physical
models of the bar with various materials. The physical models were compiled with
the following commands:

//Wood
mesh2faust −−infile bar . obj −−nsynthmodes 50 −−nfemmodes 200 −−maxmode 15000←↩

−−expos 3624 3975 4403 −−debug −−freqcontrol −−material 10 E9 0 .43 800 ←↩
−−name woodBarModel

// Glass
mesh2faust −−infile bar . obj −−nsynthmodes 50 −−nfemmodes 200 −−maxmode 15000←↩

−−expos 3624 3975 4403 −−debug −−freqcontrol −−material 70 E9 0 .23 2400 ←↩
−−name glassBarModel

9The Polymer Data Handbook: https : //app.knovel.com/web/toc.v/cid : kpP DHE0004
10Engineering Toolbox: http : //www.engineeringtoolbox.com/material − properties − t24.html
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// Stone
mesh2faust −−infile bar . obj −−nsynthmodes 50 −−nfemmodes 200 −−maxmode 15000←↩

−−expos 3624 3975 4403 −−debug −−freqcontrol −−material 55 E9 0 .25 2600 ←↩
−−name stoneBarModel

// P l a s t i c
mesh2faust −−infile bar . obj −−nsynthmodes 50 −−nfemmodes 200 −−maxmode 15000←↩

−−expos 3624 3975 4403 −−debug −−freqcontrol −−material 2 .4 E9 0 .4 1400 ←↩
−−name plasticBarModel

//Aluminium
mesh2faust −−infile bar . obj −−nsynthmodes 50 −−nfemmodes 200 −−maxmode 15000←↩

−−expos 3624 3975 4403 −−debug −−freqcontrol −−material 70 E9 0 .35 2700 ←↩
−−name aluBarModel

Faust2Unity

The FAUST distribution includes a collection of scripts for generating plugins for
various audio platforms (e.g., C-sound, Pure Data, Max, VST, SuperCollider, etc.)
from FAUST DSP programs. For this project, the Faust2Unity script was used to
compile the Unity plugin from the DSP program and the library file generated from
Mesh2Faust. The DSP files for each bar was set up in a similar manner as seen
below:

import ( " s t d f a u s t . l i b " ) ;
import ( " modalModel . l i b " ) ;

toneBar = modalModel ( freq , exPos , t60 , t60DecayRatio , t60DecaySlope )
with{

freq = 6 5 . 4 ;
exPos = 0 ;
t60 = 0 . 1 ;
t60DecayRatio = 1 ;
t60DecaySlope = 5 ;

} ;

excitation = button ( " gate " ) ;

process = excitation : toneBar <: _ , _ ;

The modalModel.lib contains the data of the FEA analysis and takes five argu-
ments that configures the real-time sound synthesis. The GUI element of excitation
was applied to a button working as a gate to enable sound output. The Faust2Unity
process also generates a C# script, which is used in Unity for C# marshalling needed
to control the synthesis in real-time. The Linux command for compiling the plugin
for Unity 64-bit can be seen below.

faust2unity −w64 bar . dsp

The C script provides control for initialization of the synthesis parameters and can
be accessed in other scripts by the number of the parameter and the SetFloatParam-
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eter() function. AudioManager scripts were written in C# to control the behaviour
of the synthesis. The behaviour was controlled using mapping of keyboard buttons
to enable the gate of the output for certain models (see Appendix A for code).

Virtual Environment

In order to create a visual association with certain materials, UV-mapped textures
were created to fit the 3D model of the bar. The textures were made using Blender
11, GIMP 12, and finally Unity itself. Initially, a texture image of each material (i.e.,
stone, wood, aluminium, glass, and plastic) were obtained from the internet. The
UV-mapping coordinates were obtained using Blender, where the 3D model of the
bar was imported and the unwrapping of faces were performed. The UV-map was
then exported as a PNG-file and imported in GIMP for applying the texture image
and remove imaging beyond the borders of the UV-coordinates. The texture image
was then imported in Unity and applied to the Bumped/Diffuse Shader, which is
prepacked with Unity. The shader requires a normal map, which was generated using
the open-source Github repository Normal-Map Online developed by Christian Petry
13. When the texture image and normal map is configured in the shader options, the
material can be applied to the gameobject of the bars. Multiple point lights and a
reflection probe were setup in the scene to enable the material’s reflection of light.
The resulting visuals can be seen below.

Figure 5.5: The virtual environment containing the five visual objects of
various materials

11Blender: https://www.blender.org/
12GIMP: https://www.gimp.org/
13Normal Map Online: https://github.com/cpetry/NormalMap-Online
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Figure 5.6: The virtual environment containing the five visual objects of
various sizes

Figure 5.7: The virtual environment containing one octave C-major scale
objects for free interaction
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Chapter 6

Evaluation

The following chapter will present and discuss the results of the two evaluations con-
ducted; the usability test of the interaction prototype and the crossmodal association
experiment.

6.0.1 Usability Testing

Evaluation of the first prototype was conducted on ten test participants (9M/1F,
average age 25.2 years). The participants were gathered through convenience sam-
pling [14] and were not within a defined target group, as the project’s initial usability
testing is not oriented towards a specific group of participants. Three out of the test
participants had previous experience with musical instruments, however, none were
to be considered experts in the field. All of the participants had previous experience
with VR from a user perspective, and thereby, not from a technical perspective on
the implementation of VR. The duration of the tests spanned within in the interval
of 10 to 20 minutes, mainly due to the instruction of being free to explore the in-
teraction for as long as a test participant would feel was needed. Test participants
were mainly asked to explore and evaluate the features of spawning, translating,
rotating, and scaling virtual tone bars with the physical models attached to them.
After spawning and adjusting the tone bars, the test participants were able to in-
teract and play tones by colliding with the tone bars. After each test, an interview
was conducted to evaluate the experience and responses were transcribed in note-
form. The questions were related to the design principles as proposed by [1], and
mainly concerned the factors influencing playability (e.g., responsiveness, configura-
tion, and limitations). Additionally, test participants were offered to contribute with
comments on the overall experience, as well as feature improvement and addition.
The full transcriptions can be found in the Appendix A. The main points from the
qualitative evaluation can be found below in a merged form as interpreted by the
author of the thesis project. The identified issues and feedback are:

• High-latency/Unregistered triggering motions
• Scaling feature was hard to operate
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• Needs a frequency mapped to note option (incremental scaling)
• Needs an octave option
• “Boring” and "non-percussive sounds (provide more presets for instrument that
are "drum-like")
• Looping option or beat option (looping real-time or "offline" beats/metronome)

From the qualitative data, the issues involving the playability seem to stem from
the approach of real-time collision detection for striking interaction. Ideas on further
improvements can be found Chapter 7.

6.0.2 Crossmodal Association

In the evaluation of the physical models ability to generate crossmodal association
related to visuals, the test participants were presented with a match-to-sample task.
Two groups of five varying auditory stimulus were presented to the test participants.
Respectively, the groups had one variable each; size and material of the tone bar. The
task of the test participants were thereby to listen to a sound, identify the associated
visual object as sound producing, mark the associated object in the questionnaire
and repeat for the next auditory stimulus. For each variable, this procedure was
repeated five times. The frequencies related to size were implemented by increments
of 100 Hz starting from 200 Hz. In regards to the properties of the material, section
5.0.5 contains a table of the values related to each material. The test was conducted
on 15 test participants (11M/4F, average age 28.6 years). Test participants were
found through convenience sampling [14]. The order of stimulus related to size and
material of the sound producing bar was provided in a pseudo-random manner by
three predefined groups. The non-randomized subgroups and stimulus types can be
seen in the table below.

S1 S2 S3 S4 S5
Size Small Semi-Small Medium Semi-Large Large
Material Wood Glass Stone Plastic Aluminium

Table 6.1: Table with test variables

The replies of test participants were obtained through a questionnaire provided
in a Google Form. The questionnaire consisted of three parts; a preliminary section
for personal information (i.e., age, gender and occupation) and multiple choice ques-
tions for the evaluation of the experiment with size and materials as variables. The
questions were provided five times for each experiment and contained the following
statements:

• Please choose the virtual object with the size that you associated the sound
with.
• Please choose the virtual object with the material that you associated the sound
with.
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The statements had five options each related to the variables of size and material
(see Table 6.1 for options).

Data Results

The data results’ of the questionnaire has been resorted to maintain the same order
of questions and stimuli. The reordered data results can be found in the table below.
The table is organized by the two sub tests of Size and Material and each stimulus
number.

S1 S2 S3 S4 S5
Size 53.33 % 33.33 % 46.67 % 33.33 % 66.67 %
Material 73.33 % 46.67 % 33.33 % 20.00 % 26.67 %

Table 6.2: Table with data results on test (Percentage of correct answers for each stimuli number
and type

Size Perception The data shows a slight tendency towards identification of
extremities in the perception of object size and frequency. The small, medium and
large have the highest success rate of respectively 55.33 %, 46.46 %, and 66.67 %,
whereas the intermediates of semi-small and semi-large were only correctly identified
in 33.33 % of the test participants.

Material Perception The data shows a slight tendency towards identification
of the Wood material with success rate of 73.33 % in identifying the object material
of the sound producing tone bar. The lowest success rate in identification was found
for the stone material with a success rate of only 20.00 %.
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Chapter 7

Discussion

The thesis project has investigated the potential of using physical models for synthe-
sizing real-time audio for musical interaction in game engines. The evaluation was
conducted on two factors of the interaction: usability and crossmodal associations.
The purpose of conducting multiple evaluations was to:

• Identify problems and improve the usability of mapping solutions between pa-
rameters of physical models and gestures
• Evaluate crossmodal correspondence with physical modelling using FEA of a
3D object

The outcome and potential reasons to problems will be discussed in the following
sections.

7.0.1 Interaction Prototype (VR)

From the conducted evaluation consisting of several stages, the design and implemen-
tation of musical interaction in VR has been modified. The evaluation consisted of
short usability tests throughout the development process. A mid-test was conducted
on ten participants for the evaluation of the first interaction approach. The initial
approach relied of real-time collision detection between a static sound generating
object in 3D space and the motion captured gestures of the user. The test results
showed several bugs in the implementation, which ultimately disabled the playability
in a musical performance context. Through subjective analysis of the qualitatively
structured interviews conducted after user testing, the conclusion was found to lie
within the approach of using an unmodified version of the standard collision detection
system natively supported by Unity in its PhysX physics engine.

The evaluated parameters were presented in Chapter 3 and outlined in Chapter
6. For now, the implementation has proven to be sufficient in terms of establishing a
sensation of presence, comfortability through an ergonomic VR system, partly body-
ownership by abstract representation of hand positions through hand-held controllers,
and a minimal level of cybersickness induced by sensory mismatching. These qualities
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are suspected to have been present due to the use of standardized libraries for setting
up room-scale motion tracking, virtual interaction between user and environment,
and high-end VR hardware (i.e., SteamVR, VRTK, and the HTC Vive). However, the
influence of the remaining factors of further multimodality (i.e. addition of haptic
feedback), making use of existing skills, full body-ownership, and adding a social
element to the experience should be further evaluated in future work. Additional
features for improving the practical use purpose of the implementation was also
pointed out during evaluation. During evaluation, the test participants were given
the opportunity of expressing their opionion in regards to further improvement of
the entire experience. Further options for use in a scenario of musical tutoring
were expressed by several test participants. They included the addition of a looping
mechanism of the musical interaction, the presence of other musical instruments
presented in a looping matter for matching the rhythms, more visual indications of
the interaction, and the opportunity to switch between octaves in the sound synthesis
of the physical models.

Improvements From the first evaluation, it was decided that a new approach
should be investigated. Given the number of work-around solution that would be
needed for collision detection system to work, the new approach changed the inter-
action from being based on impacts to more continuous motions resulting in sounds.
The implementation was very preliminary and is therefore not thoroughly described
in technical details in Chapter 5, however, even with the short period of develop-
ment, the approach seems promising for certain types of musical instruments, which
gestures already involve continuous motions. In short, the user would instead of
striking sound generating rectangular boxes, submerge their hands into areas con-
taining various physical models. During the submersion, data related to motions
were calculated and mapped to parameters of the physical models.

Reiterated Design

It was found that a new approach to the interaction with the physical models had to
be taken. In conjunction with the work for the crossmodal association experiment,
a number of features were implemented for traditional interaction by keyboard with
the physical models. The details of the revisited design can be found in Chapter
5. The new approach was needed, due to problems identified in the preliminary
usability test of the first prototype. Currently, there is more work needed to be done
on the behaviour and data formatting of the input provided to the physical models.
In other words, the complex data from motion tracking was not sufficiently organized
before mapping in the first prototype. A decision was therefore taken on taking a few
steps back in terms of complexity and provide interaction with the physical modelling
synthesis through keyboard input. Heuristically speaking, the new design allows for
robust interaction, however, a larger scale usability (playability in regards to musical
performance) study needs to be conducted in the future to verify this statement.
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7.0.2 Crossmodal Experiment

An experiment on the ability of the physical models to generate crossmodal asso-
ciations between the auditory and visual stimuli was conducted. The experiment
tested the influence of sound frequencies on the associated visual objects, as well
as the influence on visual association by parametric adjustments to the mechanical
properties of the physical models generated by FEA.

Size Initially, the test results show a difficulty among test participants in iden-
tifying intermediate sizes (i.e., semi-small and semi-large) by the crossmodal associ-
ations. This meant that a higher percentage of participants were able to identify the
correct size of the middle and the extremities of the range in the stimulus (i.e., small,
medium and large). The difficulty with intermediate stimulus types is suspected to
be related to an unfocused target group - musically trained participants could po-
tentially be better at identifying all associations, however, initially the experiment
was thought as to be perceptual exploration and therefore open to most groups of
participants.

Material The second crossmodal experiment revolved around the identification
of the material of the tone bar. Five different collections of material properties (wood,
glass, stone, plastic, and aluminium) were used as input parameters to the process
of Mesh2Faust, which uses FEA to generate a physical model from a 3D object. The
materials were visualized in Unity using their Material component, which made use
of diffused shading with image textures and normal maps. The test results showed
that participants were able to identify a tone bar of wooden material by 73.33 %.
The rest of the four materials were found to be difficult to identify with success
rates of 20.00 - 46.67 %. The difficulty is suspected to be related to the input values
provided to the Mesh2Faust process. The values of mechanical properties were found
through data books and might be prone to adjustments. When looking at the values
provided to Mesh2Faust, it can be noticed that the range of values in the command
for wood differs from the rest. The high value of Poisson’s ratio and low value of
density might have been differentiated the auditory stimulus to such an extend that
it was more easily identified than the rest of materials.

7.0.3 Future Perspective

From the findings of the prototype evaluations and crossmodal association experi-
ments, a number of valuable objectives for future work can be drawn. The evaluations
of the prototypical design showed that continuous motions for interaction with the
physical models might potentially work the best with an unmodified collision detec-
tion system. Preliminarily, this issue should not be understood as impossible, but
instead it can be concluded that the initial design and implementation focused too
much on configurative aspects of the experience. A feasible design and implementa-
tion of collision detection for percussive interaction in VR needs to be established.
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Furthermore, a larger scale usability study on the mapping between gestures and
synthesis models’ parameters can be conducted after establishment of feasible imple-
mentation.

In regards to the perceptual experimentation performed in the thesis project,
the main problem with the conducted evaluation seems to stem from an unfocused
target group. The aspect of crossmodal associations related to size might arguably
be an ideal testing scenario for trained musicians, however, the initial steps show a
potential inducement of realism by the definition of mechanical properties of sound
producing objects.



Chapter 8

Conclusion

In this thesis, the area of physics-based sound synthesis intended for musical inter-
action in VR has been examined. A main objective for the thesis project was to
investigate the possibilities of providing synthesized audio within a game engine to
avoid the intrusiveness of previous methods for delivering dynamic audio for vir-
tual environments. By the analysis of the fields of MR (VR in particular), research
on musical interaction in VR, physical modelling synthesis, and programming and
compiling options, a set of design requirements were presented in Chapter 4. From
evaluation of multiple design approaches, it was concluded that the initial imple-
mentation did not deem successful in delivering real-time sound synthesis in a robust
manner, which ultimately had negative influence on the playability of the VRMIs.
A redesign and new approach was needed, which led to a new implementation with
robustness of the sound synthesis engine in focus. By the improvements of the be-
haviour of input to the physical models, the design was feasible for further evaluation.
The new evaluation revolved around static observation by test participants for the
purpose of evaluating the sound from a perceptual point of view. Data regarding
crossmodal associations generated by the auditory stimulus (i.e., sound synthesis by
physical models) and visual stimulus (i.e., texturing and shading of 3D objects) was
obtained through a match-to-sample task with a corresponding questionnaire. The
crossmodal associations were found to be most accurate in extremities related to the
size of the sound producing objects and most accurate for the physical model with
the most unique mechanical properties (i.e., a wooden material). The evaluation is
currently inconclusive due to the limited sample size and unfocused target group,
however, it remains promising for future work as a method of evaluating the realism
of physical models in use with corresponding visual stimuli.
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Appendix A

Acronyms

VR Virtual Reality
VRMI Virtual Reality Musical Instrument
VMI Virtual Musical Instrument
MR Mixed Reality
AR Augmented Reality
AV Augmented Virtuality
NIME New Interfaces for Musical Expression
VE Virtual Environment
HMD Head-Mounted Display
6DoF 6-Degrees-of-Freedom
OSC Open Sound Control
FEA Finite Element Analysis
FEM Finite Element Method
CGI Computer Generated Imagery
VRTK Virtual Reality ToolKit
DMI Digital Musical Instrument
FAUST Functional Audio STream
MIDI Musical Instrument Digital Interface
DLL Dynamic-Link Library
SDK Software Development Kit
ADSR Attack-Decay-Sustain-Release
GUI Graphical User Interface
DAW Digital Audio Workstation

Table A.1: Acronyms
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Appendix B

Scripts

MaterialAudioManagerScript

us ing System . Collections ;
us ing System . Collections . Generic ;
us ing UnityEngine ;

p u b l i c c l a s s MaterialAudioManagerScript : MonoBehaviour {
p u b l i c FaustPlugin_aluBar aluBar ;
p u b l i c FaustPlugin_woodBar woodBar ;
p u b l i c FaustPlugin_glassBar glassBar ;
p u b l i c FaustPlugin_plasticBar plasticBar ;
p u b l i c FaustPlugin_stoneBar stoneBar ;

p u b l i c i n t NoteOn ;
p u b l i c i n t NoteOff ;

p u b l i c GameObject aluBarObject ;
p u b l i c GameObject woodBarObject ;
p u b l i c GameObject glassBarObject ;
p u b l i c GameObject plasticBarObject ;
p u b l i c GameObject stoneBarObject ;

// Use t h i s f o r i n i t i a l i z a t i o n
void Start ( ) {

aluBarObject = GameObject . FindWithTag ( " Alu " ) ;
woodBarObject = GameObject . FindWithTag ( "Wood" ) ;
glassBarObject = GameObject . FindWithTag ( " Glass " ) ;
plasticBarObject = GameObject . FindWithTag ( " P l a s t i c " ) ;
stoneBarObject = GameObject . FindWithTag ( " Stone " ) ;

aluBar = aluBarObject . GetComponent<FaustPlugin_aluBar> ( ) ;
woodBar = woodBarObject . GetComponent<FaustPlugin_woodBar> ( ) ;
glassBar = glassBarObject . GetComponent<FaustPlugin_glassBar> ( ) ;
plasticBar = plasticBarObject . GetComponent<FaustPlugin_plasticBar> ( ) ;
stoneBar = stoneBarObject . GetComponent<FaustPlugin_stoneBar> ( ) ;

}

// Update i s c a l l e d once per frame
void Update ( ) {
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i f ( Input . GetKeyDown ( KeyCode . Q ) ) {
glassBar . setFloatParameter (0 , 1) ;

}
i f ( Input . GetKeyDown ( KeyCode . W ) ) {

aluBar . setFloatParameter (0 , 1) ;
}
i f ( Input . GetKeyDown ( KeyCode . E ) ) {

woodBar . setFloatParameter (0 , 1) ;
}
i f ( Input . GetKeyDown ( KeyCode . R ) ) {

stoneBar . setFloatParameter (0 , 1) ;
}
i f ( Input . GetKeyDown ( KeyCode . T ) ) {

plasticBar . setFloatParameter (0 , 1) ;
} e l s e i f ( Input . anyKey == f a l s e ) {

aluBar . setFloatParameter (0 , 0) ;
woodBar . setFloatParameter (0 , 0) ;
glassBar . setFloatParameter (0 , 0) ;
plasticBar . setFloatParameter (0 , 0) ;
stoneBar . setFloatParameter (0 , 0) ;

}
}

}

SizeAudioManagerScript

us ing System . Collections ;
us ing System . Collections . Generic ;
us ing UnityEngine ;

p u b l i c c l a s s SizeAudioManagerScript : MonoBehaviour {
p u b l i c FaustPlugin_tunedBar tunedBar ;
p u b l i c f l o a t frequency ;
p u b l i c f l o a t initialFrequency ;
p u b l i c i n t note ;
p u b l i c i n t excitationSel ;

p u b l i c Shader shaderNoOutline ;
p u b l i c Shader shaderOutline ;

p u b l i c GameObject cBar ;
p u b l i c GameObject eBar ;
p u b l i c GameObject gBar ;
p u b l i c GameObject aBar ;
p u b l i c GameObject bBar ;

// Use t h i s f o r i n i t i a l i z a t i o n
void Start ( ) {

tunedBar = gameObject . GetComponent<FaustPlugin_tunedBar> ( ) ;
initialFrequency = tunedBar . getFloatParameter (0 ) ;
initialFrequency = frequency ;
excitationSel = 1 ;
tunedBar . setFloatParameter (8 , excitationSel ) ;

shaderNoOutline = Shader . Find ( " Legacy Shaders /Bumped D i f f u s e " ) ;
shaderOutline = Shader . Find ( " Toon/ Basic Out l ine " ) ;

cBar = GameObject . FindWithTag ( "C" ) ;
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eBar = GameObject . FindWithTag ( "E" ) ;
gBar = GameObject . FindWithTag ( "G" ) ;
aBar = GameObject . FindWithTag ( "A" ) ;
bBar = GameObject . FindWithTag ( "B" ) ;
//c , d , e , f , g , a , b

}

// Update i s c a l l e d once per frame
void Update ( ) {

i f ( Input . GetKeyDown ( KeyCode . Q ) ) {
frequency = 200.00 F ;
note = 1 ;

}
i f ( Input . GetKeyDown ( KeyCode . W ) ) {

frequency = 300.00 F ;
note = 1 ;

}
i f ( Input . GetKeyDown ( KeyCode . E ) ) {

frequency = 400.00 F ;
note = 1 ;

}
i f ( Input . GetKeyDown ( KeyCode . R ) ) {

frequency = 500.00 F ;
note = 1 ;

}
i f ( Input . GetKeyDown ( KeyCode . T ) ) {

frequency = 600.00 F ;
note = 1 ;

} e l s e i f ( Input . anyKey == f a l s e ) {
note = 0 ;

}
tunedBar . setFloatParameter (2 , note ) ;
tunedBar . setFloatParameter (0 , frequency ) ;

}
}

AudioManagers for FAUST-STK Physical models

us ing System . Collections ;
us ing System . Collections . Generic ;
us ing UnityEngine ;

p u b l i c c l a s s TunedBarManagerScript : MonoBehaviour {
p u b l i c FaustPlugin_tunedBar tunedBar ;
p u b l i c f l o a t frequency ;
p u b l i c f l o a t initialFrequency ;
p u b l i c i n t note ;
p u b l i c i n t excitationSel ;

p u b l i c Shader shaderNoOutline ;
p u b l i c Shader shaderOutline ;

p u b l i c GameObject cBar ;
p u b l i c GameObject dBar ;
p u b l i c GameObject eBar ;
p u b l i c GameObject fBar ;
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p u b l i c GameObject gBar ;
p u b l i c GameObject aBar ;
p u b l i c GameObject bBar ;
p u b l i c GameObject c2Bar ;

// Use t h i s f o r i n i t i a l i z a t i o n
void Start ( ) {

tunedBar = gameObject . GetComponent<FaustPlugin_tunedBar> ( ) ;
initialFrequency = tunedBar . getFloatParameter (0 ) ;
initialFrequency = frequency ;
excitationSel = 1 ;
tunedBar . setFloatParameter (8 , excitationSel ) ;

shaderNoOutline = Shader . Find ( " Legacy Shaders /Bumped D i f f u s e " ) ;
shaderOutline = Shader . Find ( " Toon/ Basic Out l ine " ) ;

cBar = GameObject . FindWithTag ( "C" ) ;
dBar = GameObject . FindWithTag ( "D" ) ;
eBar = GameObject . FindWithTag ( "E" ) ;
fBar = GameObject . FindWithTag ( "F" ) ;
gBar = GameObject . FindWithTag ( "G" ) ;
aBar = GameObject . FindWithTag ( "A" ) ;
bBar = GameObject . FindWithTag ( "B" ) ;
c2Bar = GameObject . FindWithTag ( "C2" ) ;
//c , d , e , f , g , a , b

}

// Update i s c a l l e d once per frame
void Update ( ) {

i f ( Input . GetKeyDown ( KeyCode . Q ) ) {
frequency = 261.63 F ;
note = 1 ;
cBar . GetComponent<Renderer> ( ) . material . shader = shaderOutline ;

}
i f ( Input . GetKeyDown ( KeyCode . W ) ) {

frequency = 293.66 F ;
note = 1 ;
dBar . GetComponent<Renderer> ( ) . material . shader = shaderOutline ;

}
i f ( Input . GetKeyDown ( KeyCode . E ) ) {

frequency = 329.63 F ;
note = 1 ;
eBar . GetComponent<Renderer> ( ) . material . shader = shaderOutline ;

}
i f ( Input . GetKeyDown ( KeyCode . R ) ) {

frequency = 349.23 F ;
note = 1 ;
fBar . GetComponent<Renderer> ( ) . material . shader = shaderOutline ;

}
i f ( Input . GetKeyDown ( KeyCode . T ) ) {

frequency = 392.00 F ;
note = 1 ;
gBar . GetComponent<Renderer> ( ) . material . shader = shaderOutline ;

}
i f ( Input . GetKeyDown ( KeyCode . Y ) ) {

frequency = 440.00 F ;
note = 1 ;
aBar . GetComponent<Renderer> ( ) . material . shader = shaderOutline ;

}
i f ( Input . GetKeyDown ( KeyCode . U ) ) {
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frequency = 493.88 F ;
note = 1 ;
bBar . GetComponent<Renderer> ( ) . material . shader = shaderOutline ;

}
i f ( Input . GetKeyDown ( KeyCode . I ) ) {

frequency = 523.25 F ;
note = 1 ;
c2Bar . GetComponent<Renderer> ( ) . material . shader = shaderOutline ;

} e l s e i f ( Input . anyKey == f a l s e ) {
note = 0 ;
cBar . GetComponent<Renderer> ( ) . material . shader = shaderNoOutline ;
dBar . GetComponent<Renderer> ( ) . material . shader = shaderNoOutline ;
eBar . GetComponent<Renderer> ( ) . material . shader = shaderNoOutline ;
fBar . GetComponent<Renderer> ( ) . material . shader = shaderNoOutline ;
gBar . GetComponent<Renderer> ( ) . material . shader = shaderNoOutline ;
aBar . GetComponent<Renderer> ( ) . material . shader = shaderNoOutline ;
bBar . GetComponent<Renderer> ( ) . material . shader = shaderNoOutline ;
c2Bar . GetComponent<Renderer> ( ) . material . shader = shaderNoOutline ;

}

tunedBar . setFloatParameter (2 , note ) ;
tunedBar . setFloatParameter (0 , frequency ) ;

}
}
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Appendix C

Virtual Reality Technology

Figure C.1: State of the Art in Virtual Reality Technology [7]
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Appendix D

Musical VR Applications

Music Room

The Music Room 1 is a collection of instruments designed for the HTC Vive. By
using the hand-held controllers of the HTC Vive, the platform enables interaction
with a set of percussive instruments – both pitched and unpitched. Moreover, the
philosophy around The Music Room is that it acts as a MIDI controller for use in
any DAW. The software package includes the DAW Bitwig for instant integration.
Additionally, The Music Room also supports MIDI triggers for example adding of
a kick drum operated by the foot – a fourth tracking point that the HTC Vive
currently does not support, apart from the tracking of head and hand orientation
and position. However, with the recent introduction of the HTC Vive Tracker, the
need for additional equipment outside the HTC Vive system might not be needed.

Figure D.1: Music Room

1Music Room: http://musicroomvr.com/

53



54 Appendix D. Musical VR Applications

Soundstage VR

Soundstage VR 2 is a music instrument sandbox. Similar to The Music Room, the
Soundstage VR is also compatible with the HTC Vive with its room-scale motion
tracking. Apart from the interactive VRMIs, the sandbox also includes a modular
mix chain with a library of effects and processing. Soundstage VR also implements
a looping and recording stage for use in post-production or other media productions.

Figure D.2: Soundstage VR

Percussive VR

Percussive VR 3 consists of a collection of VRMIs such as replications of a marimba,
steel drums, and glockenspiel. The platform is still in the early development stages;
however, the aim of the experience seems to put more weight on the practice of
melodic and rhythmic performances.

Figure D.3: Percussive VR

2SoundstageVR: http://www.soundstagevr.com/
3Percussive VR: http://store.steampowered.com/app/536370/PercussiveV R/
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LyraVR

LyraVR 4 is a fully configurable musical platform for composition of and interac-
tion with musical sequences. The platform features GUI interfaces for configuration
and playback behaviour, while being designed with a node approach for connecting
musical instruments.

Figure D.4: LyraVR

Stage Presence

A slightly different approach to a musical experience in VR is that of the yet to be
released game Stage Presence 5. The game is operated using a person’s voice to sing
with a band on stage in front of a virtual crowd. There can be said to be an absence
of VRMIs as compared to the solutions presented, however, still incorporates musical
expressions by the user’s singing voice as instrument.

Figure D.5: Stage Presence

Music Inside: A VR Rhythm Game

Currently compatible with both the HTC Vive and Oculus Rift (incl. Oculus Touch
for interaction), the game Music Inside 6 has similar elements to the classic digital

4LyraVR: http://lyravr.com/
5Stage Presence: http://store.steampowered.com/app/391640/StageP resence/
6Music Inside: http://www.musicinsidevr.com/
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musical game of Guitar Hero. The user is presented with a percussive setup and
receives visual cues related to a rhythmic task that is motivated to the user by the
scoring of points related to performance.

Figure D.6: Music Inside: A VR Rhythm Game

AudioShield

AudioShield 7 is a rhythmic game that takes any song (or streamed song from a
database) as parametric input to the game play. The aim is for the user to maintain
rhythm related to the provided song by hitting a stream of visual cues synchronized
with the music. AudioShield is currently compatible with the HTC Vive system.

Figure D.7: AudioShield

Holodance

Similar to AudioShield, Holodance 8 is a rhythmic game, however, compatible with
both the HTC Vive and the Oculus Rift. Different from AudioShield, Holodance

7AudioShield: http://audio-shield.com/
8Holodance: http://holodance-vr.com/
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takes input from so-called beatmaps generated with the standalone rhythmic game
osu!. In short, the game provides the user with elements cued to the beatmaps, which
the user has to interact with to advance in the game.

Figure D.8: Holodance

Björk VR Music Videos

In regards to purely visual experiences, that are only interactive by changing head
orientation, Icelandic singer and songwriter Björk is working on an album with videos
for VR. The virtual environments are made of CGI and artistically expresses the
singer’s vision with the songs. Two teaser for the singles of Family VR and NotGet
has been released on Youtube.

Table D.1: Music Videos in VR by Björk
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Appendix E

Physical Model Parameters

• Basic Parameters

– Frequency (Hz)
– Gain (0-1)
– NoteOff/NoteOn (0-1)

• Physical Parameters

– Bow Position (0-1)
– Bow Pressure (0-1)
– Excitation Selector (0=Bow, 1=Strike)
– Integration Constant (0-1)
– Base Gain (0-1)
– Bow Pressure (0-1)
– Bow Position (0-1)
– Resonance (0-1)

• Nonlinear Filter Parameters

– Modulation Type (Incoming signal, average incoming signal, squared in-
coming signal, sine wave at frequency X)

– Nonlinearity (0-1)
– Frequency Modulation (Frequency of the modulating signal)
– Nonlinearity Attack (Attack duration of the nonlinearity)

• Envelopes and Vibrato

– Vibrato Frequency (Hz)
– Vibrato Gain (0-1)
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– Vibrato Begin (Vibrato silence duration before attack)
– Vibrato Attack (Vibrato attack duration)
– Vibrato Release (Vibrato release duration)
– Envelope Attack (Envelope attack duration)
– Envelope Decay (Envelope decay duration)
– Envelope Release (Envelope release duration)
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