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Summary

In this Master thesis we will study the public verifiable secret sharing protocol
and how it can be used in an electronic voting application based on the work
from [Sch99]. Based on this knowledge we will design and implement a web
based electronic voting application.

Our work with this protocol leads to the following main topics which should
cover our objective about Shamirs secret sharing, multiparty computation, pub-
lic verifiable secret sharing protocol and our implementation of an electronic
voting application.

1. Voting

2. Mathematical understanding

3. Multiparty computation

4. Electronic voting protocol

5. Designing the application

6. The application

7. Reflection

We start with describing the concepts of electronic voting and the challenges
with the different types of electronic voting applications. We will use other stud-
ies and their demands for concrete security requirements, which we can include
in our consideration for our electronic voting application.

To understand the public verifiable secret sharing protocol one need some basic
mathematical understanding and some knowledge about cryptographic tools.
Modular arithmetic and group theory will be key elements in understanding
how the protocol works. Regarding to the cryptographic tools we will present
the discrete logarithm problem which is the security primitive for this protocol.

Multiparty computation is basically about allowing parties to compute some
function on some private inputs, in such a way that they learn the result but
not the inputs from the other parties. Secret sharing is about hiding information
in a random polynomial. By using this polynomial, parties can create shares
based on evaluations in the polynomial. If enough parties then collect their
shares together they will be able to recover the secret. We will present a simple
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secret sharing example which illustrate how a secret can be distributed and re-
constructed. In addition to these properties the public verifiable secret sharing
protocol gives us the ability to publicly verify the validity of the shares among
the parties involved in this protocol. This means that the protocol is secure
against malicious parties which try to send votes which they are not supposed
to do.

The part describing the electronic voting protocol is divided into two parts, a
basic and a more-in-depth description of the protocol. The first part is intended
to supply enough basic knowledge for a software developer to implement a sim-
ple voting application based on the protocol. The second part is intended to
give a more thorough insight of the protocol, here we describe the mathematical
justifications behind the protocol as well as the proofs to verify the correctness
and the consistency of the protocol.

Designing the application is about architectural strategies for our application
based on the knowledge from literature of [BCK12] and [Chr10]. We took the se-
curity requirements of electronic voting in general as described in [Cet09] as the
functional demands for our application. To extract the architectural demands,
such as Interoperability, Modifiability and Testability, we used Quality attribute
scenarios which is a way of defining a clear architectural measurable demands.
In order to illustrate the impact these demands have on the architecture we will
use several documentation methods here among diagrams. The process of de-
riving these demands is done through an Quality attribute workshop [BEL+03].
Since we have limited time we only used the structure of the Quality attribute
workshop for deriving the Quality attributes scenarios without actually holding
a workshop. Furthermore the structure of the workshop helped us prioritize
among a long list of demands, and helped us derive the most important scenar-
ios which we then proceeded on implementing.

In the application part, we will elaborate on how we have implemented the final
design of the architecture on a proof-of-concept application.

Lastly the reflection part, summarizes the most important reflections on our
results from the theoretical and the practical parts of this thesis.
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Chapter 1

Introduction

1.1 Introduction
In this master thesis we will study how to implement an electronic voting scheme
application based on cryptography tools, most importantly the Publicly Verifi-
able Secret Sharing (PVSS) protocol and the multiparty computation protocol
(MPC). The main paper for this protocol will be Berry Schoenmakers paper "A
Simple Publicly Verifiable Secret Sharing Scheme and its Application to Elec-
tronic Voting" [Sch99].

The PVSS protocol is based on Shamirs secret sharing. Secret sharing is way
of distributing a secret among multiple parties, where each party gets a sub-
set of the secret. The individuel party member cannot extract any information
about the secret from his subset alone, but if enough parties pulls there shares
together, they will be able to recontruct the secret. More technically the idea is
to hide a secret inside of a polynomial so that given certain partial information
of the polynomial we can recover the secret that was hidden in it.

The MPC protocol is a protocol which uses secret sharing and allows several
parties to compute some function on some private inputs, in such a way that
they learn the result but not the inputs from the other players. MPC is not
using conventional methods, where some commonly trusted party, could gather
sensitive information. In the left image of figure 1.1 it shows a judge who all
participants trust to give their secret inputs. The trusted party can then com-
pute the outcome of the process, for instance the sum of all inputs, and reveal
the output. The right figure is how an equivalent MPC would work. Here there
is no trusted party, but by using multiparty computation they can still achieve
the same level of secrecy, but without having to trust someone.
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Figure 1.1: Multiparty computation overview

This leads to a core observation namely that without a trusted party the ability
to validate the input the MPC protocol relies on the participants honesty. The
PVSS protocol used in this thesis proposes a solution to this problem. The idea
is that not only can the participants verify their own shares, but that anybody
can verify the correctness of the transmitted data.

1.2 Motivation
There are theoretical papers about how participants can communicate secure.
For different reasons there are fewer papers which propose how to implement
their theoretical results. It could be interesting to combine the knowledge we
gained from our lectures in it-security and software architecture, to describe,
design and implement a MPC protocol. In collaboration with our mentor we
decided to study and implement the electronic voting solution based on the
PVSS protocol describe in [Sch99]. In this solution we will have focus on de-
signing a secure and scalable distributed architecture. Using known software
design principle from [BCK12] and [Chr10], we discuss and reflect on different
solutions.

1.3 Objectives
This master thesis consist of two main parts. The first a theoretical background
where we study the electronic voting protocol described in [Sch99]. In order
to understand the protocol, some study in the basic field of cryptography is
required. In the second part of the project, we will try to design and implement
a web based electronic voting application based on the protocol. Basically this
master thesis have the following objectives.

1. Describe the theory behind Shamirs secret sharing and multiparty com-
putation as well as the cryptographical concepts needed to understand it.
The aim is to describe the theories clearly and with examples such that
one really understand how it works.

2. Describe the electronic voting protocol [Sch99] and the mathematically
justification behind it, again aiming to describe the protocol clearly and
with examples to really understands how it works.
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3. Design and implement a secure and scalable web based electronic voting
application based on the protocol. Known software design principles will
be used to acquire high and reliable software quality. The aim is to make
the application web based, such that it is easily accessible to a broad
audience.

1.4 Limitations
The following limitations have be identified.

• The field of multiparty computation is broad and there exist numerous
of scientific papers describing different protocols. This thesis will only
focus on the main concepts in order to understand the electronic voting
protocol.

• Even though the aim is for high and reliable software quality, the appli-
cation designed and developed in this thesis is to be considered proof-of-
concept.

• As this project involves three large objectives, we cant document every
details due to time constrain. Regards to the third objective we will only
document our theoretically approach and the final implementation of our
electronic voting application. Leaving out documenting the agile devel-
opment process that normally involves implementing the design iterative
and reevaluating the design through out the process.
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Chapter 2

Voting

In this chapter we will briefly describe electronic voting in general. In order to
develop an electronic voting application, its important to understand the chal-
lenges and secure parameters for an electronic voting. This knowledge will help
us define system requirements for the design of the electronic voting systems.
And it will ultimately serve as parameters which we can hold our implementa-
tion accountable.

2.1 Introduction
In many aspects of our life’s we encounter the act of voting, from simple things
as voting whats for dinner, to the more complex things as a government election.
The later involving a large number of people from different geographical loca-
tions. These election is normally handled by dividing the people into sections
based on location, each section handling it’s own sub-election and submitting
the result to a overall tally. Though many countries still mostly rely on the old
fashioned paper based ballots, we have in the recent years seen an increase in
electronic voting. Electronic voting refers to the act of voting through an elec-
tronic devices and depending on the voting equipment and location, this can be
divide into five categories [Cet09].

2.2 Classification
DRE voting Direct Recording Electronic is a specialized standalone electronic

voting machine, which have the attributes of being physically hardened
and have software specifically for voting installed. Votes casted on a DRE
is done within a voting booth located on a polling site, and the votes is
then recorded into a electronic ballot box.

Poll-site voting The voting is located on a polling site, votes are cast on public
computers located on the site, in favour for voting booths. The computers
on site are connected to a counting authority server though a closed and
controlled network. Authentication can be done prior to the voting period
or at the polling site.
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Poll-site kiosk voting Votes are casted inside a voting booth located at a
polling site, using a terminal. The terminal is connected to a counting
authority server through a closed and controlled network. Authentication
is done at the polling site before allowed access to the voting booth.

Poll-site Internet voting Votes are casted on public computers located on a
polling site. The public computers on site is online and connected to a
counting authority server over uncontrolled network. Authentication can
be done prior to the voting period or at the polling site

Remote Internet voting Simply requires internet access and can be done
from a home computer. Authentication is done prior to the voting an
typical involves password or some type of authentication token.

The electronic voting application design and implemented in this thesis will be
working within the Remote internet voting classification.

2.3 The Voting Process
Similar to the classification, there exist several of different systems and protocols
for electronic voting. But they typically all follows the same process and includes
the same actors as illustrated and describe below [Cet09].

Figure 2.1: Voting process

Voter Voter refers to a person who is eligible and who has registered for the
privileges of voting in a given election.

Registration authority Registration authority refers to the authority that
is responsible for registering eligible voters, and ensuring that only these
voters are allowed to vote. Furthermore they ensures that voters only vote
ones.

Collection authority The collection authority refers to the authority that is
responsible for properly collecting all the votes. This authority can be
represent as a simple electronic ballot box.
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Tallying authority Tallying authority are responsible for counting the votes
of the election and publishing the result.

The voting process as illustrated on figure 2.1 holds true for any voting system,
and includes four stages.

Registration Prior to an election, people who are eligible for voting, signs
up to vote in the election. These voters are then registered, thus hereby
ensuring no double voting acquires.

Authentication and Authorisation Registered voters are authenticated, if
they are found eligible and have not voted yet. Ones authenticated, the
voter is giving access to cast his vote in the election.

Voting The voters cast there votes.

Tallying In this final stage the votes are counted, and of course only valid votes
are being included. Ones the counting process is finished the final count
is published.

The terminologies introduced in this section will be used throughout the rest of
the thesis.

2.4 Challenges
Though the process of electronic voting have many similarities with paper based
voting systems, there is still concern of the security. In paper based voting sys-
tems, the security is easily noticeable as this is represented by officials observing
every stages of the process. The process typically goes along the lines of: When
arriving to the polling site a voter typically already have proofs that he is eli-
gible and is simply registered and handed the paper ballots. The paper ballot
is fulfilled in a voting booth where only the voter himself is present. When the
ballot is fulfilled, it is folded or put in an envelope, in order to hide the vote,
and then put in a ballot box located on the polling site. Note that ballot is
anonymous and typical only requires a simple mark. Ones all the votes have
been cast or a deadline is reached then the votes is counted. Throughout this
entire process there are neutral officials physical present typically along with
represents from each party in the election and passive observers.

In electronic voting systems the security is not this visible and if the system falls
into the classification of Poll-site Internet voting or Remote Internet voting then
uncontrolled network is used and the group of potential adversary is significantly
increased. To ensure security and public trust an electronic vote system should
aim to fulfill the goals listed below [DGS02].

Privacy Throughout the process no information should be leaked, only the
final counting should be made public. At no time should a vote could be
linked to the voter.

Robustness The system should be tolerant against cheating. Only valid and
correctly fulfilled ballots should be counted. Nobody should be able to
manipulating the final count.
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Universal verifiability The final count should be public verifiable. Anyone
should be able to convince himself of the fairness of the election. This
should be done without gain any other information.

2.5 Security Requirements
The previous three goals are fairly board and can with benefit be specified into
concrete security requirements as done in [Cet08]

• Voter Privacy No one should be able to link a vote back to the specific
voter, and only the voter should know his vote. These requirements shall
hold during and after the election.

• Eligibility Only Eligible and registered voters can vote.

• Uniqueness Only one vote per registered voter should be counted.

• Fairness None should be able to gain any knowledge of the outcome of the
election, before the ending. This is to prevent voters of voting accordingly
to any leaked information.

• Uncoercibility Nobody should be able to extract the value of a vote. This
is to prevent anybody from compelling a voter by force, intimidation, or
authority to cast a vote in a specific way.

• Receipt-freeness The voting system should not produce a receipt that re-
veals any information about the casted vote. This is to prevent a voter
from trading his vote.

• Accuracy The final tally should be correctly computed from valid casted
votes. It should not be possible to manipulate the final tally without being
detected.

• Universal Verifiability It should be possible for any participants and ob-
servers to validate individual votes as well as the final tally of the election.

• Individual Verifiability Every registered voter should be able to verify that
his vote is counted correctly.

2.6 Cryptography
Fulfilling all of the the above security requirements, working within the classi-
fication of Remote Internet voting is not a simple task. However the field of
cryptography provides us with the tooling and the protocols to construct such
an application. As the field of cryptography is comprehensive, we will only, in
this thesis, be looking at the concepts used in the protocol to which this thesis
is based upon. Building on the figure 2.1 from section 2.3 and the concepts
described in [Cet09] we show in figure 2.2 below how the cryptography interacts
with the voting process.
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Figure 2.2: Voting process and cryptography

Marked with the blue boxes we see the cryptography concepts that will be used
in this thesis. Most of the concepts will be described in depth in the following
chapters, in fact the only concept we will elaborate on here is the bulletin board
the rest we will briefly present.

Zero Knowlegde proofs refers to proofs, that have the notion of a prover
and a verifier. The proofs promises that if the prover is honest then the
verifer will always accept and if the prover is dishonest the verifier would
reject with overwhelming probability. It also promises to not leak any
information besides the outcome of the verdict.

Homomorphic Encryption is a concept that allows one to compute on the
combination of data entities without having to retrieve the individual en-
tity. Thereby preserving the confidentiality of the individual entity. This
also allows one to compute the calculations on encrypted data without
decrypting it first.

Threshold Cryptography is in this thesis represented using Shamirs secret
sharing as described in the introduction.

Cryptographic Hash function is a function that takes a arbitrary size input
and outputs a fixed length output. Its required that the output is easily
computed given any input, and that it is hard to invert the output into
the given input.

Bulletin board as described in [Cet09], is a public broadcasting channel where
parties may publish there information. All communication to the bulletin
board is public an can thereby be monitored. Generally it is only allowed
to publish and read information on the bulletin board, no parties is allowed
to delete or alter the published information. The public nature of the
bulletin board prevents good support in order to fulfill the requirements
of Universal Verifiability and Accuracy.
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Chapter 3

Mathematical understanding

In this chapter we describe the mathematical concepts and theories behind the
electronic voting protocol. As we do not except the reader to have a fully
comprehensive mathematical background, we will be describing the required
concepts and theories here.

3.1 Method
To ensure structure the sections will be constructed based on one or more of
the following parts.

1. General structure

(a) Informal description
(b) Definition
(c) Example
(d) Mathematical justification

2. Pseudo code

General structure The general rule will be that every section will start infor-
mal description of the subject. Here we will give a informal description of
why this it is relevant to our rapport. After that a more formal description
will come. Their will be parts where the formality will require a more in
depth explanation. To avoid disruption we then put this formality last in
the section.

Pseudo code We will use pseudocode as an informal technique to outline the
structure of our algorithms. This technique aims to describe a solution so
that it is easy to read for humans.

3.2 Modular arithmetic
“Modular arithmetic is a system of arithmetic for integers, where numbers ‘wrap
around’ upon reaching a certain value—the modulus” - Wikipedia
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An intuitive example of modular arithmetic usages is given a 12-hour clock. Let
the clock be 10:00 now, then in 5 hours the clock will show 3:00 and not 15:00.
3 is the remainder of 15 modulus 12. We can define this as.

Definition 3.2.0.1: Modulo Operation

Let a, r,m ∈ Z (where Z is a set of all integers) and m > 0 and we write

a = r mod m

if m divides a− r.
m is called the modulus and r is called the remainder.

Computing the remainder By example we can compute the remainder
according to the definition. Given: a,m ∈ Z we compute the remainder by the
following fomular: a = qm + r. This example illustrate that the remainder is
not unique. Though the remainder will be unique in set [0, m ).

42 = 4 · 9 + 6 =⇒ r = 6, by definition : (42− 6) = 36, 9|36
42 = 3 · 9 + 15 =⇒ r = 15, by definition : (42− 15) = 27, 9|27
42 = 5 · 9 + (−3) =⇒ r = −3, by definition : (42− (−3)) = 45, 9|45

Equivalence classes Above can also be written with the modulo operator.
Here we show that all have different remainder but are in the same equivalence
class modulo 9. This means that all members of a given equivalence class behave
equivalently. Note also that one can compute with negative integers.

42 = 6 mod 9

42 = 15 mod 9

42 = −3 mod 9

Computing the inverse As we will see later, computing the inverse be-
comes an important part in this protocol for how to divide modulo an integer
arithmetically. For this we have the Extended Euclidean algorithm which allows
us to compute the inverse modular some integers. This computation results in
computing the inverse.

Extended Euclidean algorithm To compute the inverse means that we
want to compute the following a · x mod q = 1 where a, x, q are integers and
x is the inverse of a. The condition for the existence of the inverse is that the
gcd(q, a) = 1. This means that the only number which divides both q and a is 1.
So if gcd(q, a) = 1 the Extended Euclidean Algorithm computes the inverse of a.

Explanation of the Extended Euclidean algorithm (EEA) Since we
will use an implementation of the EEA in our electronic voting application we
will explain the EEA by example. In order to explain the EEA we will explain
the regular Euclidean algorithm (EA). The first two lines (6-7) in the algorithm
is the EA, which computes the gcd. It turns out that if the gcd(n, a) = 1 and
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we give the EEA gcd(n, a), where n is the modulo integer and a is an integer,
then the t parameter will be the inverse of a. [PPP09]

Algorithm 1: Extended Euclidean Algorithm (EEA)
Input: positive integers r0 and r1 with r0 > r1
Output: gcd(r0, r1), as well as s and t such that gcd(r0, r1) =

s · r0 + t · r1.
1 Initialization:

2

s0 = 1 t0 = 0
s1 = 0 t1 = 1
i = 1

3 begin
4 do
5 i = i+ 1
6 ri = ri−2 mod ri−1
7 qi−1 = (ri−2 − ri)/ri−1
8 si = si−2 − qi−1 · si−1
9 ti = ti−2 − qi−1 · ti−1
10 while ri 6= 0;
11 return
12 gcd(r0, r1) = ri−1
13 s = si−1
14 t = ti−1

The EA works that given to integers r0 = 911 and r1 = 301. The gcd is
computed by reducing the problem of finding the gcd of two given numbers
to that of the gcd of two smaller numbers. The example shows that the gcd
between 911 and 301 is 1.

911 = 3 · 301 + 8 gcd(911, 301) = gcd(301, 8)
301 = 37 · 8 + 5 gcd(301, 8) = gcd(8, 5)
8 = 1 · 5 + 3 gcd(8, 5) = gcd(5, 3)
5 = 1 · 3 + 2 gcd(5, 3) = gcd(3, 2)
3 = 1 · 2 + 1 gcd(3, 2) = gcd(2, 1)
2 = 1 · 1 + 1 gcd(2, 1) = gcd(1, 1)
1 = 1 · 1 + 0 gcd(1, 1) = gcd(1, 0) = 1

Example Extended Euclidean algorithm We will now extend the EA

example with EEA with the same values r0 = 911 and r1 = 301 . Here the main
point is that the last iteration we compute the parameter t, from two previous
iterations. This t parameter is the inverse of r1. On the left-hand side, we
compute the standard Euclidean algorithm, i.e., we compute new remainders
r2, r3, ... Also, we have to compute the integer quotient qi−1 in every iteration.
On the right-hand side we compute the coefficients si and ti such that ri =
sir0 + tir1.
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i ri−2 = qi−1 · ri−1 + ri ri = [si]r0 + [ti]r1
2 911 = 3 · 301 + 8 r2 = 8 = [1]911 + [−3]301
3 301 = 37 · 8 + 5 r3 = 5 = 301− 37 · 8

r3 = 301− 37(911− 3 · 301)
r3 = −[37]911 + [112]301

4 8 = 1 · 5 + 3 r4 = 3 = 8− 5
r4 = 1 · 911 + (−3) · 301− (−37 ·
973 + 112 · 301)
r4 = [38]911− [115]301

5 5 = 1 · 3 + 2 r5 = 2 = 5− 3
r5 = −37 · 911 + 112 · 301− (38 ·
911− 115 · 301)
r5 = −[75]911 + [227]301

6 3 = 1 · 2 + 1 r6 = 1 = 3− 2
r6 = 38 · 911− 115 · 301− (−75 ·
911 + 227 · 301)
r4 = [113]911− [342]301

7 2 = 1 · 1 + 1 r7 = 1 = 2− 1
r7 = −75 · 911+227 · 301− (113 ·
911− 342 · 301)
r7 = −[188]911 + [569]301

From the EEA we have now computed the inverse of 301 modulo 911 as 569
from the following equation 1 = −188 · 911 + 569 · 301.

To understand how the EEA works we observe that the righthand side is always
constructed with the help of the previous linear combinations. We will now
derive recursive formulae for computing si and ri in every iteration. Assume
we are in iteration with index i.The two previous iterations we computed the
values.

ri−2 = [si−2]r0 + [ti−2]r1

ri−1 = [si−1]r0 + [ti−1]r1

In the current iteration i we first compute the quotient qi−1 and the new re-
mainder ri from ri−1 and ri−2:

ri−2 = qi−1 · ri−1 + ri

This equation can be rewritten as:

ri = ri−2 − qi−1 · ri−1

The goal is to represent the new remainder ri as a linear combination of r0 and
r1 as ri = [si]r0 + [ti]r1. The core step for achieving this is by substitute ri−2
and ri−1 by the following. The general formula is derived by substitute ri−2
and ri−1 as:

ri = (si−2r0 + ti−2r1)− qi−1(si−1r0 + ti−1r1)

If we rearrange the terms we obtain the desired result:

21



ri = [si−2 − qi−1si−1]r0 + [ti−2 − qi−1ti−1]r1
ri = [si]r0 + [ti]r1

3.3 Group theory
A computer cant work with infinite set. If we look at the set of reel numbers we
have infinite numbers like 1

3 = 0.33333...3, we can therefor not work with reel
numbers. We therefor turn to integers which we know dont have these types
infinite representation. However the set is also infinite. We therefor need find a
subset of integers which can form a finite group. We need this subset of integers
to uphold certain properties. We start by looking at the definition of a general
group [PPP09].

Definition 3.3.0.1: Group

A group is a set G along with a binary operation ◦ for which the following
conditions hold:.

• (Closure:) For all g, h ∈ G, g ◦ h ∈ G.

• (Existence of an identity:) There exists an identity e ∈ G such
that for all g ∈ G, e ◦ g = g = g ◦ e

• (Existence of Inverses:) For all g ∈ G there exists an element
h ∈ G such that g ◦ h = e = h ◦ g such that an h is called an inverse
of g and e is an identity.

• (Associativity:) For all g1, g2, g3 ∈ G, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3)

When G has a finite number of elements, we say G is a finite group and let
|G| denote the order of the group; that is, the number of elements in G.
A group G with operation ◦ is abelian if the following holds:

• (Commutativity:) For all g, h ∈ G, g ◦ h = h ◦ g

As we described above we should find a subset of integers which satisfies the
group definition. By using modulo we define a subset of integers, as G = Zq
where q is an modulo integer. By example we have the following Z4 = {0, 1, 2, 3}

Closure Closure means when we do operations in the set we always end up
with an element from the set. The modulo operation ensures that we always
reduce computations into a closed set.

Existence of Inverses The inverse means that we want to compute a number
such that a · x mod q = 1. For the integers we have to ensure that the greatest
commend divisor is 1 to ensure the inverse property. By example we see the
following Z4 = {0, 1, 2, 3}. Removing all the numbers that does have a gcd with
4 larger then 1 gives set of Z∗4 = {1, 3} . Note the star in the notation. This
refers to a set with none greatest common divisor larger then 1. If we take
a prime we know that the gcd holds for every number up to the prime. So
Z7 = {0, 1, 2, 3, 4, 5, 6} becomes Z∗7 = {1, 2, 3, 4, 5, 6}. To compute the inverse

22



we will use Extended Euclidean algorithm which is described in section 3.2.

Existence of an identity There should always be a neutral element. When
the operation is mulitplication the neutral element is 1 and when the operation
is addition the neutral element is 0.

Associativity By example one can show that associativity holds. If we
take Z∗10 with the following two expressions (3 · 7 mod 10) · 9 mod 10 and
(3 · (7 · 9 mod 10) mod 10). This can be reduced to (3 · 7 mod 10) · 9 mod 10 =
1 · 9 mod 10 = 9 mod 10. This can be reduced to (3 · (7 · 9 mod 10) mod 10) =
3 · 3 mod 10 = 9 mod 10.

Cyclic group A cyclic group is if the group contains at least one element
(generator) with the order of the cardinality (number of elements) of the group.
This can also be formulated as the maximum cycle length which is p− 1, which
means when the generator begins to repeat the elements it is said to be cyclic.

Generators An example of a generator could be the following. Let q = 5
and Z∗q be a group with Z∗q = {1, 2, 3, ..., q − 1}. It can be seen that g = 2 is a
generator because, 21 = 2, 22 = 4, 23 = 8 (mod 5) = 3, 24 = 16 (mod 5) = 1,
generates every element in the group. Here we see that 2 have the maximum
order ord(2) = 4 of the group which i 4 and therefor this group is said to be
cyclic.

Definition 3.3.0.2: Cyclic Group

A group G which contains an element α with maximum order ord(α) = |G|
is said to be cyclic. Elements with maximum order are called generator.

Field The protocol uses finite field because the protocol uses Shamir secret
sharing. Particular we are using field in the exponents where we are summing
and multiplying. In the base we multiplying. But before we can explain a finite
field we should know a field. A field is a algebraic structure which forms an
additive group and multiplicative group respectively with group operation ad-
dition and multiplication. Remember that a field also contains subtraction and
division operator. Subtraction can be formulated through addition of a nega-
tive number. Division can be formulated as a multiplication between number
an inverse.

Definition 3.3.0.3: Field

A field F is a set of elements with the following properties:

• All elements of F form an additive group with the group operation
+ and the neutral element 0.

• All elements of F except 0 form a multiplicative group with the group
operation · and the neutral element 1.

• When the two group operations are mixed, the distributivity law
holds, i.e., for all a, b, c ∈ F : a(b+ c) = (ab) + (ac).

Finite field A finite field is when one does operation in the set the result
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stays in the set. When we do operation e.g. do multiplication and uses modulo
we will stay in the set.

Definition 3.3.0.4: Finite fields

A finite field is a field F which contains a finite number of elements. The
order of F is the number of elements in F .

3.4 Cryptographic tools
The following section will be about the cryptographic assumptions which are
used in the PVSS protocol. We will also describe some techniques which will be
used in practical part of coding the protocol.

3.4.1 Zero knowledge proof
In cryptography, a zero-knowledge proof is a protocol by which one party (the
prover) can prove to another party (the verifier) that a given statement is true,
without revealing any information apart from the fact that the statement is
indeed true.

Zero knowledge proof is a important part of the PVSS protocol. It is used
for verifying the correctness of the data. Intuitively Zero knowledge proof is a
protocol between two parties a prover and a verifier. The prover tries to convince
the verifier about some statement, for which he uses additional knowledge. In
the last step in the protocol, the verifier either accepts or rejects the proof. A
zero-knowledge proof must satisfy following three properties:

• (Completeness:) If the prover is honest and the statement is true, then
the honest verifier always accept.

• (Soundness:) If the statement is false then it should fail with overwhelm-
ing probability.

• (Zero-knowledge:) If the statement is true, no cheating verifier learns
anything other than the fact that the statement is true.

3.4.2 Discrete Logarithm problem

One-way function One-way functions are easy to compute but it is very
difficult to compute their inverse functions. Thus, having data x it is easy to
calculate f(x) but, knowing only the result of f(x) it is hard to calculate the
value of x. We say a function f(x) is easy to compute if this can be done in
polynomial running time. In order to be useful in practical crypto schemes, the
computation of f(x) should be fast enough that it does not lead to unaccept-
ably slow execution times in an application. The inverse computation of f(x)
should be so computationally intensive that it is not feasible to evaluate it in
any reasonable time period. We define a One-way function as
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Definition 3.4.2.1: One-way function

A function f() is a one-way function if:
1. y = f(x) is computationally easy
2. x = f−1(y) is computationally infeasible

An example of a one-way function is n = pq where p and q are primes, it is easy
to compute n given p and q but hard to find p and q given only n. Inverting
this function requires finding the factors of n. Another example of a one-way
function is Discrete logarithm.

Discrete logarithm (DL) A discrete logarithm is a integer a exponent that
solves ga = c, where g is a generator and c is a element of a cyclic group. Given
a its easy to compute, but given only g and c its very hard to find a. We define
discrete logarithm as

Definition 3.4.2.2: Discrete logarithm (DL) problem

Given a group G, generator g and c ∈ G, find integer a, such that ga = c

An example of the DL problem could be the following. Given a group G = Z∗47,
an generator g = 5, and an element c = 41 find a integer a to solve:

5a
?
= 41 mod 47

To solve this DL problem we need to find
a = 15 as 515 = 41 mod 47

To solve this DL problem we could just tried all possible solution of
{g0, g1, g2, ..., g46} mod 47 until we find the correct answer. However it is easy
to see that given a large enough group this would be ineffective, actually the DL
problem is believed to be notoriously hard, for instance in Z∗p for large prime p.

We use the DL problem in the following

Diffie-Hellman problem (DHP) One of the best known application of
the DL problem is in the Diffie-Hellman problem an in particular in the Diffie-
Hellman key exchange. Though the Diffie-Hellman key exchange is not used in
the PVSS protocol we will use it to illustrate the discrete logarithm problem.
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Diffie-Hellman Key Exchange

Public: a group G and a generator g

Alice EveAdversery Bob

Step 1 Choses : a ∈R G
Compute : A = ga

A−−−−−−−−−−−−→

Step 2 B←−−−−−−−−−−−− Choses : b ∈R G
Compute : B = gb

Step 3
C = (B)a

= (gb)a

= gab

encryptC(message)←−−−−−−−−−−−−−→
C = (A)b

= (ga)b

= gab

Figure 3.1: Diffie-Hellman Key Exchange

As shown in step 1 Alice is independently from Bob choosing an random ele-
ment from the group G and using this to create a DL problem A which is sent
to Bob. In step 2 Bob is doing the same procedure as Alice and sends a DL
problem B to Bob. In step 3 they both independently from each other using the
received DL problems to create a key C. Both Alice and Bob will compute the
same value C which can be used as a key in a cryptographic scheme.

If we look at the exchange from Eve’s point of view, we can see that Eve knows
the public elements G and g aswell as A and B from step 1 and 2. If Eve can
compute C = gab then Eve would be able to decrypt any message sent between
Alice and Bob. We define this problem as.

Definition 3.4.2.3: Computational Diffie-Hellman (CDH) prob-
lem

Given a group G, generator g and A = ga, B = gb, where a, b is are
randomly independently chosen from Zq, compute C = gab

If Eve knows an efficient algorithm to solve the DL problem, then Eve would
also be able to solve the CDH problem. Finding a from A = ga or b from B = gb

then Eve can easily compute C the same way that Alice and Bob was able to.
which leads us to

Lemma 3.4.2.1. The CDH problem is no harder then the DL problem

It is not known if the opposite direction is true in general, but in some groups,
the problems are equivalent.

Decisional Diffie-Hellman (DDH) problem The CDH problem have an-
other property namely if given a group element and the claim that this solves a
CDH instance, then is not easy to verify that the solution is correct unless we
can solve the CDH problem. We would need to decide if, given ga, gb, gc, if it
holds that c = ab mod q. We define this as.
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Definition 3.4.2.4: Decisional Diffie-Hellman (DDH) problem

Given a group G, a generator g and A = ga, B = gb and C = gc, where
a and b are randomly and independently chosen from Zq and where c is
chosen either as c = ab or uniformly random from Zq. Now guess if c is the
product of ab or randomly chosen.

Looking at the key-exchange protocol again, then if Eve calculate a value C and
present this to Alice with the claim that this is a valid C, then Alice could easily
tell if this is true or false as Alice is able to compute C = gab and could then
just simply compare the two values. However if reversed as in Alice gives Eve a
value C and the claim that this is valid, then Eve cannot verify this unless Eve
is able to solve the CDH problem, this lead us to.

Lemma 3.4.2.2. The DDH problem is no harder then CDH problem

In the PVSS protocol The security of the PVSS protocol can be reduced
down to the hardness of the DL problem. Which means that if there can be
found a efficient algorithm to solve the DL problem with large expoents then
the entire PVSS protocol is insecure. In the next subsection we will look at
known algorithms for solving the DL problem.

3.4.3 Solving the Discrete Logarithm Problem
We will here look at some of the known algorithms to solve the DL problem. It
is known that the DL problem can be solved given enough time and compute
power, so we only ask that this cannot be done within polynomial time. In order
to increase the computation time needed to solve the DL problem, we increase
the size of the groups we operate within. However the consequence of increasing
the group size is an increased execution time of our protocol.

Below we have listed some of the known algorithms. These algorithms all takes
the same input and gives the same output. The input is a cyclic group G, an
generator g and a element c ∈ G, and we can calculate the t = ord(G). The
output is an integer a that solves ga = c

1. Brute-force / Exhausted search
This algorithms tries every solution until it finds the correct one, by simply
calculating g0, g1, g2, g3....gt−1 and then testing if gi ?

= c.
This algorithm have a running time of O (n), as it have to calculate every
single potential solution.

2. Square-root attacks
The main idea with square-root attacks is to divide the DL problem into
small problems, which can be calculate more efficiently and faster.
As the name square-root attacks implies, the running time is around
O (
√
n)

There are several known square-root attacks, one of them is the [Baby-
steps Giant-steps algorithm] which we will look at in details below.
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3. Index-Calculus attacks
Index-Calculus attacks are the best known attack against the DL problem,
but it only works in certain groups, here amongst Z∗q . The topic of this
algorithm is beyond the scope of this thesis. As such we will not elaborate
on this any further other then stating, that according to [PPP09] one
would need a set q of bit length at least 1024 to achieve an 80 bit security

Baby-steps Giant-steps algorithm We will here look in details how the
Baby-steps Giant-steps algorithm works. For simplicity and as our implantation
of the PVSS protocol operates in Z∗q we will only look at the algorithm in this
group.

The idea of the algorithm is to divide the group into smaller sub-groups. Given
a cyclic group G, a generator g and an element c ∈ g, we can then think of all
the elements in G as points in a circle

1 = g0, g1, g2, ..., gn−2, gn−1, gn = 1

We then divide the circle into intervals of u = d√qe sizes, each interval is the
Giant step whereas the elements in the intervals is the baby steps which there
are at most u of. We can now look at the exponent a as the product of a = ui+j
where 0 ≤ i, j ≤ u. This allows us to restate the problem as such

c = ga

c = gui+j

c = gui · gj

c(g−u)i = gj

The goal now, is to find an integer j and i such that c(g−u)i = gj . this can be
done by computing gj for j = 0, 1, ..., u− 1 and c(g−u)i = gj for i = 0, 1, ..., u−
1 and then finding a match between the two lists. The details are given in
algorithm 2

Algorithm 2: Baby-steps Giant-steps algorithm
Input: Group G of order p, a generator g, an element c ∈ G
Output: An integer a such that ga = c

1 begin
2 u = d√qe
3 for j = 0 to u− 1 do
4 Compute gj mod q and store the pair (j,gj) with gj as key, in a

table t
5 Compute g−u mod q
6 for i = 0 to u− 1 do
7 Compute x = c(g−u)i

8 if x is in table t then
9 return a = ui+ j

By example we valid the algorithm. Let p = 31, g = 3 and c = 6.
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1. u = d√qe = 6

2. Computing 1, g, g1, ..., g5 gives us

0 ≤ j ≤ u− 1 g0 g1 g2 g3 g4 g5

gj mod q 1 3 9 27 17 26

3. Next we compute g−u = 3−6, we can use the euclidean algorithm to find
g−1 = 3−1 = 21. Using this result we get 3−6 = 216 = 2 mod 31.

4. Using the result for the previous step we can efficiently compute c(g−u)i
for an increasing i until we find a match with the result from step 2.

0 ≤ i ≤ u− 1 6 · 20 6 · 21 6 · 22 6 · 23 6 · 24
c(g−u)2 = 6 · 2i mod 31 6 12 24 17 3

We found a match as c(g−u)4 = g1 mod q.

5. We can then compute a = giu+j = g4u+1 = g4·6+1 = g25 = 325 = 6mod 31

3.4.4 Hash function
Hash functions is a function that takes a message of arbitrary size and outputs
a digest hash value of a fixed size. The hash functions used in this project are
collision resistant hash function, which means that they are considered as one-
way function. we define collision resistant hash function, denote just as hash
functions onward, as.

Definition 3.4.4.1: Hash function

1. Takes a message of arbitrary size and outputs a value of fixed size

2. Is deterministic so the same message always results in the same hash

3. Is quick to compute the hash value for any given message

4. Is collision resistant, mean it is infeasible to find two inputs x and x′
such that H(x) = H(x′), and x 6= x′

5. A small change to a message should change the hash value so ex-
tensively that the new hash value appears uncorrelated with the old
hash value

A function hash function: {0, 1}≤L → {0, 1}` is called collision resistant
if it is hard to find x ∈ {0, 1}≤L and x′ ∈ {0, 1}≤L such that x 6= x′ and
H(x) = H(x′) - the value (x, x′) is called a collision. Here {0, 1}≤L denotes the
set of bitstrings of length at most L. If L ≥ `, then of course collisions exist, so
they can be found given enough time, which is fine as we only ask that they are
computationally hard to find.

3.4.5 Fiat Shamir
The Fiat–Shamir heuristic is a technique in cryptography for taking an interac-
tive proof of knowledge into a non interactive proof. This way, some fact (for

29



example, knowledge of a certain number secret to the public) can be proven
without revealing underlying information. This means that transforming a in-
teractive proof into a non-interactive proof. Instead of the verifier creates a
challenge the prover creates a challenge, on some previous data, based on a
hash function.
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Chapter 4

Multiparty Computation

4.1 Multiparty Computation
Multiparty computation can be defined as the problem of n-parties computing
the same function on their input in a secure way. This problem was first intro-
duced by Yao in 1982 and exemplified through what is known as the "millionaire
problem" [Yao82]:

“Two millionaires wish to know who is richer; however, they do not want to
find out inadvertently any additional information about each other’s wealth.

How can they carry out such a conversation?”

There are two types of MPC protocols. First there are MPC protocols which
are secure against passive corruption which assumes that everyone is honest
and sends correct data. Then there are MPC protocols which are secure against
active corruption where adversary is able to send incorrect data. Here we need
more advanced protocols like the Verifiable secret sharing protocol (VSS) and
Zero knowledge proofs. Here the protocol allows the involved participants to
verify their shares as consistent. This means that the VSS will be able to detect
incorrect shares.

An extension to the VSS protocol is PVSS protocol where the goal is not just
that the participants can verify their own shares, but that anybody can verify
the correctness of the transmitted data.

4.1.1 Adversaries
The reason for this is that we cannot rely on every participants in a MPC
protocol to behave as intended. Some participants could be corrupted, we divide
these adversaries into two main groups [KL14].

• Passive corruption is that a participant (semihonest) gets access to
information which the participant is not entitled to, e.g. if a voter ask
another voter about his information and tries to compare the information
and get some more information in that way. By using secret sharing we
can prevent passive corruption, because the scheme guaranties that if t-
participants are corrupted then they will not be able to gain anything.
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• Active corruption happens when the participant (malicious) try to send
values that they are not supposed to send - so the voters deviate from the
protocol. The PVSS prevent these attacks.

4.2 Secret Sharing
In this section we look at theory behind secret sharing. Secret sharing is a
method for splitting a secret into shares and distributing each shares among
a group of participants. None of the participants, on there own, knows any
information about the secret from there given share, but by pooling a sufficient
number of shares together the secret can be reconstructed.

The basic model for secret sharing, as described above can be divide into two
parts.

Distribution The dealer divides the secret into shares and distributing these
shares among a group of participants

Reconstruction The secret is reconstructed, given enough participants is pool-
ing there induvidiel shares together.

There are several secret sharing schemes, but we will only be looking at the one
used in the electric voting protocol, which is Shamir secret sharing.

4.2.1 Shamir Secret Sharing
The PVSS protocol uses secret sharing as tool to distributes pieces of informa-
tion. Basically it is about hiding information in a polynomial p. For example, a
participant chooses a random polynomial of the degree 1, which is a line. The
secret is the evaluation of p in 0. Each participant receive a share, the evalu-
ation of p in some other point. Like as participant 1 receives p(1), participant
2 receives p(2) and etc. To construct a line we need at most two point. One
can see that if we don’t have at least 2 points then the line can be constructed
in many ways, which is the same as saying we don’t know the evaluation of p(0).

In the general case, the polynomial is chosen to be of degree t-1. The scheme
requires we need t points to reconstruct the secret. This means that if we have
(t-1)-participants they would not be able to obtain anything about the secret.

4.2.1.1 Lagrange interpolation

In secret sharing the secret is reconstructed using Lagrange interpolation. The
idea is that we know some evaluations points. With Lagrange interpolation, we
have a formula, with which we can reconstruct the polynomial. The general
formula, Lagrange interpolation, looks like:

Definition 4.2.1.1: Lagrange polynomial interpolation

p(x) =
∑
i∈C

p(i)λi(x), where λi(x) is defined by λi(x) =
∏

j∈C,j 6=i

x−j
i−j
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In secret sharing scheme each participant get some shares ("points") and if
there are enough participants then the participants can reconstruct the secret
by reconstructing the polynomial. By example we will show how the formula
works. We have a polynomial p, where we know the evaluation of some points.

1 2 3 4

1

2

3

4

Figure 4.1: polynomial p

Instead of solving the polynomial, we will start to divide the problem into smaller
pieces and solve them one by one. We create a polynomial, λ1, λ2, λ3 and λ4,
one for each point from polynomial p. These polynomial takes value 1 in one
point and 0 in the other points. For example λ1 takes 1 in 1 and 0 in 2,3 and 4.

1 2 3 4

1

2

3

4

approximately λ1

1 2 3 4

1

2

3

4

approximately λ2

Note that the evaluation in 0 will depend on the secret. For the sake of the
drawings it is just an approximately of the point.
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1
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3

4

approximately λ3

1 2 3 4

1

2

3

4

approximately λ4

To construct the polynomial p is to take each polynomials and multiply the
corresponding coefficient from p and then sum the polynomials together 2·λ1 +
4·λ2 + 3·λ3 + 4·λ4. We started with the polynomial p and we ended with four
polynomials, which takes value 2,4,3,4 and 0 in the other points. From the sum
we see that the value in the first point 2+0+0+0. It is clear this will work in
the other points.
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approximately λ1
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approximately λ2
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approximately λ3
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approximately λ4

We will now construct one of the λ-polynomials by example, by showing it from
λ1 polynomial. We have the following points λ1(1) = 1, λ1(2) = 0, λ1(3) = 0 and
λ1(4) = 0. We take the polynomial (x−2)(x−3)(x−4), and we see that if we get
correct evaluation in λ1(2) = 0, λ1(3) = 0 or λ1(4) = 0. To get correct evaluation
in λ1(1) = 1 we divide by −6 because we see that (1 − 2)(1 − 3)(1 − 4) = −6
and then we end up with a polynomial (x−2)(x−3)(x−4)

(−6) . The polynomial still
satisfies the conditions because when we divide zero with "something" we get
zero. The formula for constructing λ1

λ1(x) =
∏

j∈C,j 6=1

x−j
1−j = x−2

1−2 ·
x−3
1−3 ·

x−4
1−4 = (x−2)(x−3)(x−4)

−6

λ1 gives 1 in point 1 and 0 in the other points. What this mean is that in
λ1(1) = 1 and all other points j(2, 3, 4) we have λ1(j) = 0. We can construct
λ1, λ2, λ3 and λ4 in the same way.

λ2(x) =
∏

j∈C,j 6=2

x−j
2−j = x−1

2−1 ·
x−3
2−3 ·

x−4
2−4 = (x−1)(x−3)(x−4)

−2

λ3(x) =
∏

j∈C,j 6=3

x−j
3−j = x−1

3−1 ·
x−3
3−2 ·

x−4
3−4 = (x−1)(x−2)(x−4)

−2

λ4(x) =
∏

j∈C,j 6=4

x−j
4−j = x−1

4−1 ·
x−3
4−2 ·

x−3
4−3 = (x−1)(x−2)(x−3)

−6

With the knowledge of the evaluation of p(1), p(2), p(3) and p(4) we construct
the formula for polynomial evaluation in p(0). We use the Lagrange polynomial
interpolation formula p(x) =

∑
i∈C

p(i)λi(x) and we get the evaluation on some

polynomial in 0.

p(0) = p(1)·λ1 + p(2)·λ2 + p(3)·λ3 + p(4)·λ4 = 2·λ1 + 4·λ2 + 3·λ3 + 4·λ4

The idea of constructing the smaller polynomials is that we can reuse them
for constructing other polynomials. From the smaller pieces and the evaluation
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points we can construct the polynomial from Lagrange interpolation. From
the secret sharing scheme we know the degree of the polynomial is bounded.
Because the voter will share its secret by choosing a random polynomial of the
degree at most t-1.Then we need t point to reconstruct the p(x). If the degree
1 (line) then we need two points. The parable is where the degree is 2, here we
need 3 points to construct the polynomial etc.

1 2 3 4

1

2

3

polynomial of degree 1

−1 1 2 3

1

2

3

4

polynomial of degree 2

In the PVSS protocol we will use a simplified version of Lagrange interpola-
tion formula. So instead of recovering the polynomium we just recover the eval-
uation in zero. The following will happen if take the formula λi(x) =

∏
j∈C,j 6=i

x−j
i−j

and evaluate in zero λi(0) =
∏

j∈C,j 6=i

0−j
i−j =

∏
j∈C,j 6=i

j
j−i . We reduce the formula

by evaluating in 0 and then one can multiply the numerator and denominator by
−1 and then we get a the above formula. Below we computed the coefficients for
3 static participants. These coefficients will be used in our simplified example
of the protocol in appendex B.1.

λ1(0) =
∏

j∈C,j 6=1

2

2− 1
· 3

3− 1
=

3

1
= 3

λ2(0) =
∏

j∈C,j 6=2

1

1− 2
· 3

3− 2
=

1

−1
· 3
1
= −1 · 3 = −3

λ3(0) =
∏

j∈C,j 6=3

1

1− 3
· 2

2− 3
=

1

−2
· 2

−1
= 1

4.2.2 Example computation using Shamir Secret Sharing
We have now explained the basic for secret sharing. This section will show a full
concrete computational example on distribution and reconstruction of a secret
between 5 participant where we want to tolerate t = 2 corrupted parties. The
computation is computed in Z∗11. The example is that one participant, p1, has
a secret, s = 7 and creates shares to the other participants (p2, p3, p4, p5). Then
if 3 participants combines the shares they will be able to reconstruct the secret.

First the participant p1 creates a random polynomium, p(x) at degree t = 2
which is the following polynomium p(x) = s + a1x + a2x

2, where s = 7 is the
secret and a1 = 4 and a2 = 1 is coefficient uniformly randomly choosen from
Z11. The following will show the distribution where p1 create shares to the other
parties. In the reconstruction we show how 3 parties will be able to reconstruct
the polynomial and the secret by their shares using Lagrange interpolation.
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4.2.2.1 Distribution

The shares s1, s2, s3, s4, s5 is computed from p(x) = 7 + 4x+ x2 as

s = p(0) = 7 + 0 + 0 (mod 11) = 7

s1 = p(1) = 7 + 4 + 1 (mod 11) = 1

s2 = p(2) = 7 + 8 + 4 (mod 11) = 8

s3 = p(3) = 7 + 12 + 9 (mod 11) = 6

s4 = p(4) = 7 + 16 + 16 (mod 11) = 6

s5 = p(5) = 7 + 20 + 25 (mod 11) = 8

Each party now recieve their shares secure. So p2 = s2, p3 = s3, p4 = s4, p5 = s5.
No that the secret is p(0) = s = 7.

4.2.2.2 Reconstruction

A subset, 3 > 2, of participant p3, p4, p5 wants to reconstruct the secret by their
shares using Lagrange interpolation. First every party computes a polynomial.
After that the parties will be able to combine their polynomial and their shares
to reconstruct p(x).

p3 computes:

λ3(x) =
∏

j∈C,j 6=3

x− j
3− j

=
x− 4

3− 4
· x− 5

3− 5
=

(x− 4)(x− 5)

(3− 4)(3− 5)

= (x2 − 9x+ 20)((3− 4)(3− 5))−1 (mod 11)

The inverse of ((3− 4)(3− 5)) = 2 is 6 since 2 · 6 mod 11 = 1. We now have the
following polynomial

λ3(x) = (x2 − 9x+ 20)6 (mod 11) = (x2 + 2x+ 9)6 (mod 11)

= 6x2 + 12x+ 54 (mod 11)

= 6x2 + x+ 10 (mod 11)

We verify the following

λ3(3) = 6 · 32 + 3 + 10 (mod 11) = 67 (mod 11) = 1

λ3(4) = 6 · 42 + 4 + 10 (mod 11) = 110 (mod 11) = 0

λ3(5) = 6 · 52 + 5 + 10 (mod 11) = 165 (mod 11) = 0

p4 computes:

λ4(x) =
∏

j∈C,j 6=4

x− j
4− j

=
x− 3

4− 3
· x− 5

4− 5
=

(x− 3)(x− 5)

(4− 3)(4− 5)

= (x2 − 8x+ 15)((4− 3)(4− 5))−1 (mod 11)

The inverse of ((4− 3)(4− 5)) = −1 is 10 since −1 · 10 (mod 11) = 1. We now
have the following polynomial
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λ4(x) = (x2 − 8x+ 15)10 (mod 11) = (x2 + 3x+ 4)10 (mod 11)

= 10x2 + 8x+ 7 (mod 11)

We verify the following

λ4(3) = 10 · 32 + 24 + 7 (mod 11) = 121 (mod 11) = 0

λ4(4) = 10 · 42 + 32 + 7 (mod 11) = 199 (mod 11) = 1

λ4(5) = 10 · 52 + 40 + 7 (mod 11) = 297 (mod 11) = 0

p5 computes:

λ5(x) =
∏

j∈C,j 6=5

x− j
5− j

=
x− 3

5− 3
· x− 4

5− 4
=

(x− 3)(x− 4)

(5− 3)(5− 4)

= (x2 − 7x+ 12)((5− 3)(5− 4))−1 (mod 11)

The inverse of ((5− 3)(5− 4)) = 2 is 6 since 2 · 6 mod 11 = 1. We now have the
following polynomial

λ5(x) = (x2 − 7x+ 12)6 (mod 11) = (x2 + 4x+ 1)6 (mod 11)

= 6x2 + 24x+ 6 (mod 11)

= 6x2 + 2x+ 6 (mod 11)

We verify the following

λ5(3) = 6 · 32 + 6 + 6 (mod 11) = 66 (mod 11) = 0

λ5(4) = 6 · 42 + 8 + 6 (mod 11) = 110 (mod 11) = 0

λ5(5) = 6 · 52 + 10 + 6 (mod 11) = 166 (mod 11) = 1

To construct the polynomial p we take each polynomials and multiply by the
corresponding shares. More formally we apply p(x) =

∑
i∈C

p(i)λi(x) to construct

the p(x).

p(x) = s3λ3(x) + s4λ4(x) + s5λ5(x)

= s3(6x
2 + x+ 10) + s4(10x

2 + 8x+ 7) + s5(6x
2 + 2x+ 6)

= (6s3 + 10s4 + 6s5)x
2 + (s3 + 8s4 + 2s5)x+ (10s3 + 7s4 + 6s5)

Since the polynomial is of the form p(x) = s+ a1x+ a2x
2 we have that

s = 10s3 + 7s4 + 6s5 (mod 11)

a1 = s3 + 8s4 + 2s5 (mod 11)

a2 = 6s3 + 10s4 + 6s5 (mod 11)

We can now replace the variables with shares s3 = 6, s4 = 6, s5 = 8

s = 10 · 6 + 7 · 6 + 6 · 8 (mod 11) = 150 (mod 11) = 7

a1 = 6 + 8 · 6 + 2 · 8 (mod 11) = 70 (mod 11) = 4

a2 = 6 · 6 + 10 · 6 + 6 · 8 (mod 11) = 144 (mod 11) = 1

The reconstruction gives us the final polynomial p(x) = 7+4x+x2 and thereby
the secret value 7.
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4.2.3 Verifiable Secret Sharing (VSS)
Where the basic model of secret sharing assumes that every participants involved
is honest, the VSS requires its participants to prove so. The objective of the VSS
is to resist malicious participants such as malicious participants can mislead as
follows [Sch99]

• Dealer is sending incorrect shares to some or all participants in the distri-
bution phase

• Participants is submitting incorrect shares during the reconstruction phase

By requiring proof of correctness of the shares, from the participants, in the
distribution and the reconstruction phase, the VSS model solves the problem
of malicious participants. These proofs is constructed in such a way that only
the participants is able to construct and verify the proofs. Where it is a logical
requirement that only the participants is able to construct the proofs, it is a
different story with the verification. In fact in most case it would be ideal if
anybody could validate the proofs.

4.2.4 Public Verifiable Secret Sharing (PVSS)
In a PVSS schemes it is required that, not only the participants but anybody,
is able to validate the shares. It is therefore not assumed that there are private
channels between the participants. All communication in PVSS schemes is
done over authenticated public channels using public key encryption, which also
means that the secret is only computationally hidden. A common structure for
the PVSS protocols is as follows.

Initialization Each participants registers itself and must have a public key.

Distribution consists of a distribution and a verification phase

1. Distribution of the shares

(a) Dealer creates shares
(b) Dealer publishes encrypted shares
(c) Dealer publishes a proofD

2. Verification of the shares

(a) Anybody who knows the public key can verifier the shares
(b) If the verification on proofD fails the dealer fails and the protocol

is aborted

Reconstruction consists of a decryption phase and pooling the shares phase

1. Decryption of the shares

(a) The participants decrypt their shares
(b) The participants publishes a proofpi

2. Pooling the shares

(a) proofpi are used to exclude dishonest participants
(b) Reconstruction of the secret by any qualified set of participants
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4.2.5 Homomorphic Secret Sharing
A homomorphism is a transformation from one algebraic structure into another
of the same type so that the structure is preserved. Importantly, this means
that for every kind of manipulation of the original data, there is a corresponding
manipulation of the transformed data.

A homomorphic encryption scheme is a crypto system that allows computa-
tions to be performed on data without decrypting it. It is an encrypting scheme
which allows computations to be carried out on ciphertext, thus generating an
encrypted result which, when decrypted, matches the result of operations per-
formed on the plaintext.

Homomorphic Secret Sharing is a type of secret sharing algorithm in which the
secret is encrypted via homomorphic encryption. In the PVSS scheme we use
this property that one can sum the shares which are equal to the sum of the
secrets.
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Chapter 5

Electronic voting protocol

In this section we look at the electronic voting protocol described in [Sch99].
The protocol is based on the PVSS protocol described in the same article. We
will only describe the electronic voting protocol but as doing so, the relevant
elements from the PVSS protocol will be taking into the description. For the
rest of this chapter we will be referring to the electronic voting protocol, as
simply the protocol, unless specified otherwise.

Giving the complexity of the protocol we divided this description into three
parts. In the first part we will describe the protocol as simple as possible, leaving
out mathematical justification and proofs. We provide a calculated example for
low values for the basic parts of the protocol in B.1. In second part we will be
looking at the mathematical justification, describing this in the same order as
in the first part. Finally we will look at the proofs in the last part.

5.1 The protocol
The overall concept of the protocol is to allow a group of voters to cast there
votes in the form "no" or "yes" , and publish the result to a public bulletin
board. When a deadline is reach or when all votes have been casted a group
of talliers takes the votes and calculates the end result. Using MPC and PVSS
protocols this is done in such a way that none other then the voter knows the
value of his vote, but everyone can validates the correctness and consistence
of the vote. Below we present a simple overview showing the progress of the
protocol.

Short overview of the protocol The protocol is divided into three main
parts, each part representing a different phase in the election, roughly put one
can say pre-election, the election and post-election.

1. Initialization This represents the pre-election phase where the prepa-
ration for the actually election happens. Here the requirements for the
election is demented and the different authorities is registered.

(a) The system publishes the system parameters and the security re-
quirements. In our implementation an admin user will log into the
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system and start the election. The admin will choose the security
parameter and the amount of required talliers. Last he will initiate
the computation of the system parameters.

(b) Each tallier generates a private and a public key.

(c) Each tallier registries their public keys on the bulletin board.

(d) Each voter signs it credentials on the bulletin board.

2. Ballot casting This represent the actually election, where the registered
voters castes there votes and publish the result to the bulletin board.

(a) Each voter votes 1 or 0

(b) Each voter generates a random secret.

(c) Each voter creates shares of the secret to each tallier and encrypts it
with the corresponding public key of the tallier. Each voter supply
this secret share with evidence of its consistency with a DLEQ proof.

(d) Each voter supply evidence for a valid vote with PROOFU .

3. Tallying This represents the post-election phase where the tallying au-
thorities, which where registered in Initialization, counts the votes together
and publish the result to the bulletin board.

(a) At least t tallier accumulates and decrypts their shares.

(b) One authority completes the final computation of the total votes.

In the following we will describe the central parts of the protocol, leaving out
the complexity of mathematical justification and proofs. The idea is to get an
understanding of how the protocol works without know exactly why it works.

For efficiency we will limit the computation of the votes to a finite number of
talliers. There are m voters and n talliers.

5.1.1 Initialization
The bulletin board publishes all system parameters which is the pub-
lic elements a prime q, the generators g and G and a security param-
eter t.

q ∈R {2l−1, ..., 2l}, where l > 1024

f ∈R {2, ..., 2q − 1} → g = f2 mod 2q + 1

F ∈R {2, ..., 2q − 1} → G = F 2 mod 2q + 1

t ∈ Z∗q = {1, 2, 3, ..., q − 1}

The prime q is uniformly randomly chosen from Z, but in practise we use the
subset 2l−1 to 2l. l is chosen larger then 1024 because of the security require-
ments described in section 3.4.3. The generators g and G are computed as
squares from the sets f and F , the reason for this is elaborated in section 5.2.1.
2q+1 must also be a prime and the reason why we use 2q+1 is because we are
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working with Shamirs secret sharing in the exponents which also is described
in section 5.2.1. t is chosen based on the system requirements for our fault
tolerance against corrupted parties.

The tallier generates a private key xi and a public key yi.

Private key : xi ∈R Z∗q = {1, 2, 3, ..., q − 1}
Public key : yi = Gxi , i ∈ {1, 2, 3, ...., n}

Every tally generates a uniformly randomly chosen private key from Z∗q where
q is a prime. The star notation refers to a set with none greatest common
divisor larger then 1 respectively with q, which is described in section 3.3. The
public key is computed on an exponentation on G, which essentially gives us
the security of the discrete logarithm problem described in section 3.4.2.

5.1.2 Ballot casting
The Ballot casting consists of distribution of the shares and verification of the
shares.

First the voter either votes "no" or "yes" corresponding to 0 or 1. The voter
select a uniformly random secret s ∈ Zq. The PVSS protocol is then used to
distribute shares which contain a combination of the secret s and the vote. Ev-
ery voter will construct a random polynomial at degree t− 1 and then evaluate
the shares to each of the talliers.

The voter casts his vote, either 0 or 1. The voter creates a random
secret s and a random polynomial of degree at most t−1 and computes
the shares.

V ote : v ∈ {0, 1}
Random secret : s ∈R Zq

Random polynomium : p(x) = s+ α1x
1 + α2x

2+, ...,+αt−1x
t−1, αj ∈R Zq

Secret Shares : p(0) = s, p(1), p(2), ..., p(n)

The degree of the polynomium is based on the security parameter t described
in section 5.1.1. Each voter chooses uniformly random the coefficients α in Zq
and a random secret s and computes the shares using Shamirs secret sharing
which is described in section 4.2.2.

The voter distributes the encrypted share and creates the proofs
PROOFU and DLEQ.

Encryption of the share : Yi = y
p(i)
i , 1 ≤ i ≤ n

Hidden vote : U = Gs+v

Each voter creates encrypted shares to tally 1, tally 2,..., tally n. The p(i) refers
to the share in a point corresponding to a given tally. The shares are encrypted
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using the tallys public key yi. U is a DL problem that hides the vote as the
exponentiation. As the vote v only can hold the values 0 or 1 this wouldn’t
make a hard problem. By reusing the secret s and adding this to v, then given
a large s, U should be a hard problem. The above is then published to the
bulletin board.

Besides the above, the proofs PROOFU and DLEQ are computed and pub-
lished. The PROOFU proofs that the vote is either 0 or 1 without revealing
the actual value of the vote. The DLEQ proofs that the shares are constructed
correctly and consistent. Both proofs are elaborated in details later in section
5.3

5.1.3 Tallying
Tallying is the process of counting the votes. Here the tallier uses their private
keys to collectively compute the final tally, based on the valid ballots.

The tally decrypts their shares and publishes a DLEQ proof

Multiplum of encrypted shares : Y ∗i = (

m∏
j=1

Yij) (mod 2 · q + 1)

The homomorphic secret sharing property ensures that each tally will be able to
multiply the shares and then decrypt. Let Yij be the value Yi computed by the
j-th voter, which is the encrypted share Yi = y

p(i)
i , as described in the section

5.1.2. This means that the i is referring to tally 1, tally 2 and tally 3 etc. and
j is referring to voter 1, voter 2 and voter 3 etc. Y ∗i is then the multiplum of
encrypted shares for a given tally i. Tally i is now able to decrypt the multiplum
Y ∗i using his private key xi.

Decrypted multiplum of shares : S∗i = (Y ∗i )
1
xi (mod 2 · q + 1)

S∗i is the decrypted multiplum of all tally i shares. As this is the multiplum of
shares then no information of the individual share is revealed and tally i can
safely publish the decrypted result to the bulletin board.
Note that besides decrypting the shares the talliers will publish a DLEQ proof
which shows that the decrypting was done correct. See figure A.2 of the DLEQ
proof. Also note that we need to computing the inverse of the key xi. To com-
pute the inverse we can use Extended Euclidean algorithm described in section
3.2.

A master authority applies Lagrange interpolation
After the tallier has published their decrypted shares S∗i a master authority will
be able to compute the sum of the secrets from the voters.

(S∗1 )
λ1· (mod q) · (S∗2 )λ2 (mod q) · (S∗n)λn (mod q) (mod 2 · q + 1) = G

m∑
j=1

sj
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With all the S∗i we can compute the sum of the secrets. We apply the lambdas
to exponents on S∗i , which is computed from the Lagrange interpolation formu-
lar, λj from section 4.2.1.1. We can then multiply the S∗i which can be reduces
to the sum of the exponents, which are equal to the sum of the secrets.

A master authority computes the votes
The last step is to isolate the votes and then compute the final result. By
multiplying Uj from the voters we obtain the following.

(

m∏
j=1

Uj) (mod 2 · q + 1) = G

m∑
j=1

sj+vj

From the previous step we computed G

m∑
j=1

sj
. To isolate the sum of votes v

in the exponent we can multiply (
m∏
j=1

Uj) by the inverse of (G

m∑
j=1

sj
)−1 in the

following.

G

m∑
j=1

sj+vj
· (G

m∑
j=1

sj
)−1 = G

m∑
j=1

vj

To solve the computing of the votes one can compute G0, G1, G3, ..., Gvj by
exhaustive search. The final vote count will be the exponent raised on G. A
more efficient algorithm is to use Baby-step giant-step algorithm described in
section 3.4.3.

5.2 Protocol details
In this part we will elaborate on the mathematical justification based on our
explanation of the protocol.

5.2.1 Initialization
Elaboration of computation of 2q + 1
In our implementation we will pick a prime, q, so we avoid doing the gcd com-
putation. The protocol states that we have to compute in a group of order
q. This means that when we are doing operations in the exponent this prop-
erty should be satisfied gq = 1 where q is prime. If we are doing mod q in
the exponent we have gq = g0. The reason for doing operation in the exponent
mod q is because we are using Sharmir secret sharing which require a finite field.

One can see that given a generator g = 2 and a prime q = 5, then 25 mod 5 =
32 mod 5 = 2. For this to be true, we take the square of numbers modulo a
prime in this form 2q + 1. This is also called a strong prime. By using this
mathematical structure this property holds. We can choose b = a2. Then we
see the property holds bq = 1 mod 2q + 1. Using the same values as before, it
is clear that (22)5 mod 11 = 1024 mod 11 = 1. Fermat little theorem states
that bq−1 mod q = 1 where q is prime. So we know if we pick our q and b (as
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a square) in this form (a2)q+1−1 mod 2q + 1 = 1 = a2q mod 2q + 1 = 1 the
property holds. This means if we are working in the exponents we (mod q) and
if we are working in the bases we (mod 2q + 1).

Elaboration of the generators
The generators is randomly chosen in the set between 2 and 2q− 1. We remove
1 because if 1 get squared it will always gives 1 and can therefor not be used as
a generator. We remove 2q because (2q)2 = 1 mod 2q + 1. That means if you
square 2q it will also give 1 and can therefor not be used as a generator.

5.2.2 Ballot casting
Elaboration of computation of Yi
The Yi is the shares encrypted using the talliers public key yi as described in
section 5.1.2.

V oter 1 : Y1,1 = y
p1(1)
1,1 , Y2,1 = y

p2(2)
2,1 , .., Yn,1 = ypn(n)n

V oter 2 : Y1,2 = y
p1(1)
1,2 , Y2,2 = y

p2(2)
2,2 , .., Yn,2 = ypn(n)n

V oter m : Y1,m = y
p1(1)
1,m , Y2,m = y

p2(2)
2,m , .., Yn,m = ypn(n)n

When computing the encryption of the shares Yi, then each voter will compute
the above to each of the talliers. For clarification we add the tally to the no-
tation such that we have Yij where i is the i-th tally and j is the j-th voter
referring to Y1,1, Y1,2 etc.

Constructing the variable Cj and Xi to proofs DLEQ and Proofu
As briefly described in section 5.1.2, the voter publishes proofs that he have
voted and distributed this vote accurately. The proof Proofu uses the variable
C0 and the DLEQ uses the variable Xi. In order to construct the proofs each
voter creates the following variables.

hidden coeffiens : Cj = gαj , j ∈ {0, 1, 2, 3, ...., t− 1}, where α0 = s

multiplum of hidden coeffiens : Xi =

t−1∏
j=0

Ci
j

j = gp(i), 1 ≤ i ≤ n

Cj holds all the coeffiens αj including the secret α0, as these are hidden in the
exponent of g, this is secured by the DL problem.

The p(i) raised in the exponent of g is the polynomial p(i) = α0 + α1i
1 +

α2i
2+, ...,+αt−1i

t−1 created by each voter in the Ballot casting phase described

in section 5.1.2. The way we can reduce the following statement Xi =
t−1∏
j=0

Ci
j

j

to gp(i) is as follows.
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Xi =

t−1∏
j=0

Ci
j

j =

t−1∏
j=0

(gαj )i
j

= g

t−1∑
j=0

αj ·ij

= gα0·i0+α1·i1+α2·i2,...,αt−1·it−1

= gp(i)

To clarify, if the voter creates 3 shares, that means the voter has to compute
X1, X2 and X3 which means one Xi foreach share. This makes sense because
the voter has to prove his honesty foreach of the shares.

X1 =

t−1∏
j=0

Ci
j

j = C10

0 · C11

1 · C12

2 = gα0·10+α1·11+α2·12 = gp(1)

X2 =

t−1∏
j=0

Ci
j

j = C20

0 · C21

1 · C22

2 = gα0·20+α1·21+α2·22 = gp(2)

X3 =

t−1∏
j=0

Ci
j

j = C30

0 · C31

1 · C32

2 = gα0·30+α1·31+α2·32 = gp(3)

5.2.3 Tallying
Elaboration of computation of Y ∗i and S∗i
As described in section 5.1.3 the Y ∗i is then the multiplum of encrypted shares
for a given tally i and S∗i is the decrypted multiplum of all tally i shares.

Multiplum of encrypted shares : Y ∗i = (

m∏
j=1

Yij) (mod 2 · q + 1) = y

m∑
j=1

pj(i)

i

Decrypted multiplum of shares : S∗i = (Y ∗i )
1
xi (mod 2 · q + 1) = G

m∑
j=1

pj(i)

Y ∗i is equal to y

m∑
j=1

pj(i)

i and S∗i is equal to G

m∑
j=1

pj(i)

.

y

m∑
j=1

pj(i)

i = (Gxi)

m∑
j=1

pj(i)

= G
xi

m∑
j=1

pj(i)

= (G
xi

m∑
j=1

pj(i)

)
1
xi = G

m∑
j=1

pj(i)

We derive S∗i by applying the talliers private key to Y ∗i . Note that we are raising
to the multiplicative inverse of the private key in q. The pj is the evaluations
by the j-th voter. More concrete this can be written as the following.

Y ∗1 = y
(p1(1)+p2(1)+p3(1),..,pn(1))
1 , S∗1 = G(p1(1)+p2(1)+p3(1),..,pn(1))

Y ∗2 = y
(p1(2)+p2(2)+p3(2),..,pn(2))
2 , S∗2 = G(p1(2)+p2(2)+p3(2),..,pn(2))

Y ∗n = y(p1(n)+p2(n)+p3(n),..,pn(n))n , S∗n = G(p1(n)+p2(n)+p3(n),..,pn(n))

Each tallier can publish S∗i and Y ∗i . Note that the exponent on the yi and G
is the evaluation from each voter in some point in a given polynomial h(1) =
p1(1) + p2(1) + p3(1), .., pn(1), h(2) = p1(2) + p2(2) + p3(2), .., pn(2), ..., h(n) =
p1(n) + p2(n) + p3(n), .., pn(n).
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Tally 1 publish: S∗1 = G

m∑
j=1

pj(1)

and Y ∗i = y

m∑
j=1

pj(1)

i

Tally 2 publish: S∗2 = G

m∑
j=1

pj(2)

and Y ∗i = y

m∑
j=1

pj(2)

i

Tally n publish: S∗n = G

m∑
j=1

pj(n)

and Y ∗i = y

m∑
j=1

pj(n)

i

Elaboration of the step where the master authority applies Lagrange
interpolation

(S∗1 )
λ1· (mod q) · (S∗2 )λ2 (mod q) · (S∗n)λn (mod q) (mod 2 · q + 1) = G

m∑
j=1

sj

We can substitute the S∗ with G. The final result in the exponents is a eval-
uation in some polynomium in 0 which corresponds to the sum of secrets s
computed by the voters.

= G

m∑
j=1

λjpj(1)

·G
m∑

j=1
λjpj(2)

· ... ·G
m∑

j=1
λjpj(n)

= G

m∑
j=1

λjpj(1)+
m∑

j=1
λjpj(2)+...+

m∑
j=1

λjpj(n)

= G

m∑
j=1

(λjpj(1)+λjpj(2)+,...,+λjpj(n))

= G

m∑
j=1

pj(0)

= G

m∑
j=1

sj

The
m∑
j=1

pj(0) correspond to the sum of the secret values of s for the voters. More

formal it corresponds to the evaluation of some polynomial h(0) = s1+s2, ..., sn.

Elaboration of the step where the master authority computes the
votes

Sum of the secrets and the votes : (

m∏
j=1

Uj) (mod 2 · q + 1) = G

m∑
j=1

sj+vj

From the previous we saw that by multiplying Uj we obtained the sum of the
secrets and the votes in the exponent. To recap more concrete we have the
following.

The voters computes U

V oter 1 : U1 = Gs1+v1

V oter 2 : U2 = Gs2+v2

V oter n : Um = Gsm+vm

The master authority mulitplies the U
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(

m∏
j=1

Uj) = U1 · U2·, ..., ·Um = Gs1+s2,...,sm+v1+v2,...,vm

To isolate the votes in the exponent we multiply the (
m∏
j=1

Uj) by the inverse of

(G

m∑
j=1

sj
)−1. This leads to the following mathematical justification.

G

m∑
j=1

sj+vj

G

m∑
j=1

sj

= G

m∑
j=1

sj+vj−
m∑

j=1
sj

= G

m∑
j=1

vj

5.3 Proofs
In this section we will elaborate the mathematical justification of the proofs
DLEQ and PROOFU . We will present an interactive and a non-interactive
proof of the DLEQ between the voter and the verifier. The non-interactive
DLEQ proof is elaborated in appendix A.1. As mentioned there is also aDLEQ
proof provided by the tallier which is elaborated in appendix A.2.

5.3.1 DLEQ interactive proof between voters and verifier
DLEQ stands for discrete logarithm equality and it proofs that the exponent
are equal Xi = gp(i) and Yi = y

p(i)
i without revealing p(i) and if the prover is

honest, then it should be the case that we get the same computed values in the
end meaning a1 = gw = gr · XC

i and a2 = ywi = yri · Y Ci . The prover must
compute same amount of Xi as he creates shares. In practice this means that
the prover supply a DLEQ proof foreach of the shares. We will present the pro-
tocol and after that we will give concrete examples. Last we will describe the
mathematical justification. An example of the proof is calculated in appendex
B.2.

The verification of the shares in the interactive proof happens by the following
interaction between the prover and the verifier.
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DLEQ protocol
Input : g,Xi, yi, Yi where Xi = gαi and Yi = yαi

i

Prover Verifier
Step 1 w ∈R Zq

a1 = gw

a2 = ywi
a1, a2−−−−−−−→

Step 2 C ∈R Zq
C←−−−−−−−−

Step 3 r = w − p(i) · C

Step 4 r−−−−−−−−→
checks if :
a1 = gr ·XC

i

a2 = yri · Y Ci

Figure 5.1: DLEQ interactive

Note that the verifier sends a challenge C, after the prover has computed a1 and
a2. The check only passes if the prover used the same exponents. The proof
shows that there exist some element α such that gα = Xi and yαi = Yi. In the
following there is an argument whyDLEQ works through Zero knowledge proof.

Correctness for DLEQ
Correctness means if the prover is honest and the statement is true, then the
honest verifier always accept. Correctness is shown by verifying the a1 = gw

?
=

gr ·XC
i and a2 = ywi

?
= yri ·Y Ci are well constructed. Correctness for a1 is shown

by the following.

a1 = gr ·XC
i

= gr · (gp(i))C

= gr · gp(i)·C

= gr+p(i)·C

= gw−p(i)·C+p(i)·C= gw

Correctness for a2 is shown by the following.

a2 = yri · Y Ci
= yri · (yp(i))C

= yri · yp(i)·C

= y
r+p(i)·C
i

= y
w−p(i)·C+p(i)·C
i = ywi

Example on DLEQ and why we need a random challenge
We will show a concrete example why we need a challenge and it needs to be
random. If the challenge is already known by the prover, for example assume it
is 1, then the prover can "prepare" and cheat with a wrong statement.
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1. The prover sends a1 = g6, a2 = y7i , Xi = g2 and Yi = y3i to verifier.

2. The verifier creates a challenge C = 1 to prover.

3. The prover computes r = w−p(i) ·C = 6−2 ·1 = 4 and sends r to verifier.

4. The verifier knows the following a1 = g4 ·Xi and a2 = y4i · Yi and now he
verifies:

(a) The verifier checks if: a1 = g4 ·XC
i = g4 · g2·1 = g6

(b) The verifier checks if: a2 = y4i · Y Ci = y4i · y3·1i = y7i

Even though the exponents are not the same, both checks passes, despite that
the prover is dishonest. This shows that if there is no random challenge there
wouldnt be soundness because the prover could cheat.

Example on DLEQ with a random challenge which satisfies soundness
Next example shows the verification with a random challenge.

1. The prover sends a1 = g6, a2 = y7i , Xi = g2 and Yi = y3i to verifier.

2. The verifier creates a challenge C = 9 (mod 5) to prover.

3. The prover computes r = w− p(i) ·C = 6− 2 · 4 (mod 5) = 3 and sends r
to verifier.

4. The verifier knows the following a1 = g3 ·Xi and a2 = y3i · Yi and now he
verifies:

(a) The verifier checks if: a1 = g3 ·XC
i = g3 · g2·4 = g3 · g3 = g6 = g1 = g

(b) The verifier checks if: a2 = y3i · Y Ci = y3i · y3·4i = y3i · y12i = y3i · y2i =
y5 = y0 = 1

Note that soundness is fulfilled because the check doesn’t pass because a1 = g6

is different from a1 = g and a2 = y7i is different from a2 = y0i . Recall that sound-
ness is if the statement is false then it should fail with overwhelming probability.

The mathematical justification for soundness
In the following we are showing that a prover will fail with overwhelming proba-
bility if he is dishonest which satisfies soundness. Since the verifier doesent know
if the first step Xi = gp(i) and Yi = y

p(i)
i has been computed correctly. We de-

note these exponents by a1 = gw and a2 = yw
′

i and Xi = gmi and Yi = y
m
′
i

i .
We know a1 = gw is equal to gr ·XC

i = gr · gmi·C = gr+mi·C and a2 = yw
′

i is

equal to yri · Y Ci = yri · y
m
′
i·C

i = y
r+m

′
i·C

i . Based on this we can now write two
inequalities. In order for these inequalities to be true we can rewrite.

a1 = gw = gr ·XC
i = gr · gmi·C = gr+mi·C

a2 = yw
′

i = yri · Y Ci = yri · y
m
′
i·C

i = y
r+m

′
i·C

i

We can now write two inequalities
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w = r +mi · C (mod q) =⇒ r = w −mi · C (mod q)

w
′
= r +m

′

i · C (mod q) =⇒ r = w
′
−m

′

i · C (mod q)

These two inequalities has to be equal, therefor we can rewrite

w −mi · C = w
′
−m

′

i (mod q) =⇒ (w − w
′
)− (mi −m

′

i) · C = 0 (mod q)

The prover has to be honest if this equation must be true. It is overwhelming
unlikely that, if the prover has been dishonest, where mi 6= mi′ , that he will
succeed. Since the C is known afterwards the construction of w and w

′
the

probability will be 1
q for a convincing the verifier. Lets clarify with an example

with a dishonest prover C = 5, (w − wi) − (mi − m
′

i) = 2 and q = 5. The
dishonest prover will then succeed because 2 · 5 = 0 (mod 5). Since the q is a
large number the dishonest prover should fail with overwhelming probability.

Zero knowledge
The zero knowledge in this context means that the verifier doesn’t learn any-
thing about the p(i). One way to argue zero knowledge is by showing that the
values sent in the protocol doesn’t depend on the p(i). So if one can construct
the values a1, a2, r without knowing p(i) shows that they do not depend on
p(i) and we thereby do not learn anything about p(i). One way of doing this is
though experiment where on can change the order of the protocol. In is out of
this thesis scope to go further depth on this subject.

5.3.2 Description of PROOFU

In this section we show with PROOFU that the voter either votes 1 or 0. This
is achieved by the voter proving that there is consistency between the expo-
nents of how U and C0 is constructed from U = Gs+v and C0 = gs. The
exponents only vary when 1 or 0 is voted. We will show the interactive proof
and through Fiat–Shamir we transform an interactive proof of knowledge into
a non-interactive proof of knowledge. The protocol illustration includes both
scenarios where the voter votes either 0 or 1. If the voter votes 0 step 1a, 2, 3a,
4 will be followed. If the voter votes 1 step 1b, 2, 3b, 4 will be followed. An
example of the proof is calculated in appendex B.3.
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PROOFU protocol
Public : U = Gs+v, C0 = gs

Prover Verifier

Step 1a

if vote(v) = 0
w ∈R {1, ..., q − 1},
r1 ∈R {1, ..., q − 1},
d1 ∈R {1, ..., q − 1},
a0 = gw,

a1 = gr1 · Cd10 ,
b0 = Gw,
b1 = Gr1 · ( U

G1−v )
d1 = Gr1 · (UG )

d1

a0,a1,b0,b1−−−−−−−−−−→ Publish to bulletin

Step 1b

if vote(v) = 1
w ∈R {1, ..., q − 1},
r0 ∈R {1, ..., q − 1},
d0 ∈R {1, ..., q − 1},
a0 = gr0 · Cd00 ,
a1 = gw,
b0 = Gr0 · ( U

G1−v )
d0 = Gr0 · Ud0 ,

b1 = Gw

a0,a1,b0,b1−−−−−−−−−−→ Publish to bulletin

Step 2
Publish to bulletin

C ∈R {0, ..., q − 1}
C←−−−−−−−−

Step 3a
if vote(v) = 0
d0 = C − d1 mod q,
r0 = w − s · d0 mod q

d0, r0, d1, r1−−−−−−−−−−−−→ Publish to bulletin

Step 3b
if vote(v) = 1
d1 = C − d0 mod q,
r1 = w − s · d1 mod q

d0, r0, d1, r1−−−−−−−−−−−−→ Publish to bulletin

Step 4

Verification:

C = d1 + d0,

a0 = gr0 · Cd00 ,
b0 = Gr0 · Ud0 ,
a1 = gr1 · Cd10 ,
b1 = Gr1 · (UG )

d1

Figure 5.2: PROOFU
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Explanation of the protocol
In step 1 the voter publish a0, b0, a1, b1. Note that the difference between
voting 0 or 1 is just by swapping the values between the variables a0, b0 and
a1, b1. The point is that the verifier will not be able to distinguish the value of
the vote and thereby gain knowledge about the vote.

Step 1: Voter either votes 0 or 1:

1. Voter votes 0 and creates: v = 0, w ∈R {1, ..., q−1}, r1 ∈R {1, ..., q−
1}, d1 ∈R {1, ..., q − 1} and publish: a0 = gw, b0 = Gw, a1 =
gr1 · Cd10 , b1 = Gr1 · ( U

G1−v )
d1 = Gr1 · (UG )

d1 .

2. Voter votes 1 and creates: v = 1, w ∈R {1, ..., q−1}, r0 ∈R {1, ..., q−
1}, d0 ∈R {1, ..., q − 1} and publish: a1 = gw, b1 = Gw, a0 =
gr0 · Cd00 , b0 = Gr0 · ( U

G1−v )
d0 = Gr0 · (U1 )

d0 = Gr0 · Ud0

Step 2: The verifier creates a challenge C ∈R {0, ..., q − 1} to the voter.

Step 3: The outcome from step 3 is that the voter publish d0, r0, d1, r1. Note
that the voters computation depends on the challenge from the interaction
between the verifier. Voter either votes 0 or 1:

1. Voter votes 0 computes: v = 0, d0 = C − d1 mod q, r0 = w − s ·
d0 mod q

2. Voter votes 1 computes: v = 1, d1 = C − d0 mod q, r1 = w − s ·
d1 mod q

Step 4: In step 4 the verifier will be able computes and verify consistency.
C = d1+d0, a0 = gr0 ·Cd10 , b0 = Gr0 ·Ud0 , a1 = gr1 ·Cd10 , b1 = Gr1 ·(UG )

d1

We can turn this into a non-interactive proof by replacing step 2 with the voter
using a hash function and thereby avoiding interaction with the verifier. The
prover will then compute a hash of C = H(U, C0, a0, b0, a1, b1). Because of
time constraint we are not able to elaborate further on this optimization.

Mathematical justification for correctness
In the following we derive the mathematical justification from step 4. Here we
will replace with earlier expression from above and replace by the actual value
of the vote. This means is that the math depends on the value of the vote.

Explanation of a0 = gr0 · Cd00

The voter votes 0 and we show that a0 = gw
?
= gr0 · Cd00 is well constructed

a0 = gr0 · Cd00
= gw−sd0 · gsd0

= gw−sd0+sd0

= gw

The voter votes 1 is trivial because a0 is constructed from a0 = gr0 · Cd00
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Explanation of b0 = Gr0 · Ud0

The voter votes 0 and we show that b0 = Gw
?
= Gr0 · Ud0 is well constructed

b0 = Gr0 · Ud0

= Gw−sd0 ·G(s+0)·d0

= Gw−sd0 ·Gsd0

= Gw

The voter votes 1 and we show that b0 = Gr0 · ( U
G1−1 )

d0 ?
= Gr0 · Ud0

b0 = Gr0 · ( U

G1−v )
d0

= Gr0 · ( U
G0

)d0

= Gr0 · (U
1
)d0

= Gr0 · Ud0

Explanation of a1 = gr1 · Cd10

The voter votes 1 and we show that a1 = gw
?
= gr1 · Cd10 is well constructed

a1 = gr1 · Cd10
= gw−sd1 · gsd1

= gw−sd1+sd1

= gw

The voter votes 0 is trivial because a1 is constructed from a1 = gr1 · Cd10 .

Explanation of b1 = Gr1 · (UG )
d1

The voter votes 1 and we show that b1 = GW
?
= Gr1 · (UG )

d1 is well constructed

b1 = Gr1 · (U
G
)d1

= Gw−sd1 · (U ·G−1)d1

= Gw−sd1 · (Gs+1)d0 ·G−d1

= Gw−sd1 ·Gsd0+d0 ·G−d1

= Gw

The voter votes 0 and we show that b1 = Gr1 · (UG )
d1 ?

= Gr1 · ( U
G1−v )

d1 is well
constructed

b1 = Gr1 · ( U

G1−v )
d1

= Gr1 · ( U

G1−0 )
d1

= Gr1 · (U
G
)d1
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We will not go to depth in Soundness and Zero knowledge for PROOFU . Here
we will refer to another paper. [CDS94]
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Part III

Practical
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Chapter 6

Designing the application

The first part about Voting, Mathematical understanding, MPC and Electronic
voting protocol served as an introduction to one of the goals of this thesis: an
implementation of the electronic voting protocol. This chapter will describe
and discuss our theoretical aspects behind our implementation of the electronic
voting application.

6.1 Introduction
One of the goals of the thesis is to design and implement a scalable electronic
voting application. As software engineers our focus is on the software architec-
ture and we will follow the definition from [BCK12].

Definition 6.1.0.1: Software architecture

The software architecture of a system is the set of structures needed to
reason about the system, which comprise software elements, relations
among them, and the properties of both.

Our approach towards implementing a software architecture is based on a sys-
tematic analysis of the demands for the application. To achieve this we will
use methods and techniques from previous causes in Software architecture such
as Quality attribute workshop [BEL+03], Quality attribute scenario (QAS) and
architectural decisions etc. A quality attribute (QA) according to [BCK12] is
as follows.

Definition 6.1.0.2: Quality attribute

..A quality attribute is a measurable or testable property of a system that
is used to indicate how well the satisfies the needs of its stakeholders..

A core observation is that a QA should be measurable or testable quality. The
key point is when working with QA we use them in a given context/scenario
and therefor we informally call these as QAS.
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Figure 6.1: The parts of a quality attribute scenario

One of the core aspects of the definition of software architecture, is that software
architecture is a set of structures, which we can use to reason about the system.
To assist and visualize these structures, elements, relations and properties we use
Module-, Component & Connector (C&C)- and Allocation viewpoints [CCH16].

1. Module viewpoint is concerned with how functionality of the system maps
to static development units. The focus will be on elements such as classes
and interfaces and relationships such as associations, generalizations, re-
alizations and dependencies.

2. Component & Connector viewpoint is concerned with the runtime map-
ping of functionality to components of the architecture. Components are
the executing things that perform a function. Connectors are the com-
munication channels between components. The purpose is to focus on the
flow of data and responsibilities such as a network call or method call etc.

3. Allocation viewpoint is concerned with how software entities are mapped
to environmental entities. Here the focus are on the physical stuff such as
computer or a network. We specify the environment in order to make the
software running.

These viewpoint originates from 3 + 1 article [CCH16], where the +1 is the
architectural requirements. These architectural requirements can be formulated
through QAS.

We will discuss different tactics on software architecture for achieving the busi-
ness goal for the electronic voting application. A tactic according to [BCK12]
is defined as.

Definition 6.1.0.3: Tactic

Tactic is a design decision that influences the achievement of a quality
attribute response.

We will introduce a case which gives an overall description of how a user creates
a vote through an electronic voting application. The purpose of the case is de-
scribing business/mission requirement of the electronic voting application. Here
we will emphasize that it should be clear it reflects the security requirements
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from the first part. We use the general security requirement for an electronic
voting scheme described in chapter 2 as functional requirements for the ap-
plication. These requirements are well studied and discussed and should be
comprehensive for an electronic voting scheme.

6.2 Method
To ensure a solid systematic approach for this part of the thesis we will use

1. Case

2. Functional requirements

3. Quality attribute workshop

(a) Quality attributes

(b) Quality attribute scenario

4. Tactics

Case The purpose of the case is an informal description of the requirements
for the electronic voting application. We use this as a introduction to a
business/mission for the most important requirements for the electronic
voting application.

Functional requirements The purpose of the functional requirement is to
capture the electronic voting application behavior based on the case de-
scription. However as described in the introduction to this chapter, we will
be using the security requirements of a general electronic voting scheme as
functional requirements for our application. Even though the functional
requirements is not in focus in this thesis we will use these requirements
as guidelines to help define the architecture. Therefor throughout this
chapter we will only be referring to the requirements in relations with the
architecture requirements.

Quality attribute workshop The purpose of the Quality Attribute Work-
shops (QAWs) is a systematic method for identifying a system’s architec-
ture critical quality attributes, such as availability, security and modifia-
bility, that are derived from mission or business goals. For the scope of
this thesis we will follow the phases in the QAW on a theoretical level, to
derive the most important QA for the electronic voting application. We
will use the structure of the QAW but we will not hold a practical work-
shop. Based on the QA we will formulate the most important Quality
attribute scenarios and describe related tactics.

Tactics For the selected QAS we will describe tactics that meets QAS response.
For a given tactic we will describe the tactic and support it with diagrams
which illustrate the influence on the architecture.
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6.3 General design concepts
In the follwoing we will explain some general design concepts which will be used
through out our software sections [Chr10].

Design pattern A solution to a repeated design problem in a given context.

Maintainability (According to ISO 9126) The capability of a software prod-
uct to be modified. Modifiaction may include corrections, improvements
or adaptation of the software to changes in the enviroment and in require-
ments and functinal specifications.

Variability point A well defined section of the code whose behavior it should
be possible to vary.

Change by addition We are only adding new code instead of modifying ex-
isting code.

Coupling Coupling is the degree of how dependent one software module is on
other software modules.

Cohesion Cohesion refers to the degree of how related the responsibility of a
software module belong together.

Test stubs Test stubs are replacements that simulate the behaviors of a soft-
ware module that a module undergoing tests depends on.

The compositional process is as follows [Chr10].

1. Identify the behavior that varies.

2. Always program against an interface which encapsulate the variable be-
havior.

3. Delegate the responsibility to a specialized class which handle the concrete
responsibility.

6.4 Case
A user applies for voting for a given election and a registration authority will
either accept or reject his application. If the user is accepted then he should
be able to logon a voting page and cast his vote. When all the registered
voters have casted their votes or a deadline is reached, the system should tally
the votes and then publish the result on a webpage. of cause only valid votes
are included in the tallying process. The tally process should be handled by
registered talliers. During this process none of the talliers should be able relate
a vote to a voter. Nor should a tally be able to manipulate the tallying process
by either adding, removing or alter votes. Each tally should be hold accountable
for his participant in the tallying process. If the tally is discovered in cheating
he is replaced by another tally during the tallying process. This replacement
should not have influence on the result nor should it required re-election.
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6.5 Architectural requirements

6.5.1 Quality Attributes workshop
In this section we will present 8 phases of the QAW as described in [BEL+03].
Despite that a workshop is not held we still see clear benefits by using this model
namely to determine the qualities for the electronic voting application before
it is implemented. We are well aware that the outcome of the workshop is not
perfect and will only cover the perspectives from a software developer and the
security requirements.

QAW Presentation and Introductions QAW facilitators describe the mo-
tivation for the QAW and explain each step of the method.

Business/Mission Presentation A representative of the stakeholder com-
munity presents the business and/or programmatic drivers for the system.

Architectural Plan Presentation A technical stakeholder presents the sys-
tem architectural plans as they stand with respect to early documents,
such as high-level system descriptions, context drawings, or other arti-
facts that describe some of the system’s technical details.

Identification of Architectural Drivers Architectural drivers often include
high-level requirements, business/mission concerns, goals and objectives,
and various quality attributes. During this step, the facilitators and stake-
holders reach a consensus about which drivers are key to the system.

Scenario Brainstorm Stakeholders generate real-world scenarios for the sys-
tem. Scenarios comprise a related stimulus, an environmental condition,
and a response. Facilitators ensure that at least one scenario addresses
each of the architectural drivers identified in Step 4.

Consolidation Scenarios that are similar in content are consolidated.

Prioritization Stakeholders prioritize the scenarios through a voting process.

Refinement The top four or five scenarios are further clarified and the follow-
ing are described:

1. the business/programmatic goals that are affected by those scenarios

2. the relevant quality attributes associated with those scenarios

The above concludes the overview of the phases in the workshop. We will now
use the structure of the phases to derive and define the QAS which will be the
basic for our architecture.

6.5.1.1 3. Architectural Plan Presentation

We will use this step to wrap up our first iteration for a high level overview of the
system. This first overview is all based on the knowledge we got from the first
part. We illustrate this overview through a component connector view. This
viewpoint is concerned with the run-time functionality of the system. At this
point we have a component for a voter, tallier, observer, bulletin board and a
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registration process. We see the voter, tallier and the observers as clients and as
active processes which all are communicating with the bulletin board. Therefor
their must be a connector between the clients and bulletin board. The purpose
of the registration authority is that every active participant must be registered
through some registration authority before they can attend the electronic voting
election.

Figure 6.2: Initial draft of component & connector viewpoint

6.5.1.2 4. Identify architectural drivers

The purpose of this step is to identify architectural drivers. Architectural drivers
are the keys to realizing quality attribute goals for the system. The architectural
drivers are often found through requirements and business goals. We found ar-
chitectural drivers by reflection and discussion against the security requirements
of earlier described electronic voting application. Based on our architectural
drivers, we begin to see the following quality attributes.

Voters point of view

Usability The system should be easy to use for a voter
and give feedback

Availability
The system should be available when needed
and if errors occours then the user should be
least affected by this.

Interoperability
A voter should be able to cast a vote
from a given device with a internet
connection

Table 6.1: Voters point of view
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Robustness

Performence Should be able to handle a large amount
of user within a reasonable time

Testability
Given the nature of systems complexity it
should be easily testable to ensure
robustness and reliability

Security The integrity should withhold even though
if cheating occurs.

Universal verifiability

Interoperability
Not only participant but also passive observers
should be able to validate through out the
election and afterwards.

Future proof

Modifiable
Only a registered user should be able to vote.
This registration should be easily replaceable
depending on the nature of the election.

Modifiable The system should modifiable such that
core elements are replaceable

Table 6.2: Owners point of view

6.5.1.3 5. Scenario brainstorming

The purpose of this step is to design QAS, based on our architectural drivers.
That is, here we form QAS in a form such as described in [BCK12]. Here there
should be a clear stimulus and response measurement.

Scenario # Description
1 A user should be able to cast a vote under runtime

and the PVSS client registers the vote with a confirm
message, within 2 minutes experimentation.

2 An internal crash occurs and the bulletin board is
out of reach during normal operation. The response
is that the error is logged and the system is running
in degraded mode. The system should be up running
within 5 minutes.

3 A PVSS client cast a vote to the bulletin board from
a given device with internet connection under run-
time and the system is updated and 100% of the
information is exchanged and processed correctly.

4 An observer client validates a vote from the the bul-
letin board under runtime. The validation is pro-
cessed, and the bulletin board is updated and 100%
of the information is exchanged and processed cor-
rectly.

5 5 mill. users intiate their votes to the bulletin board
under normal operation. The votes are processed
and saved with average latency of 2 seconds.
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6 An unitester should be able to code a unit on the
system under development and the test suite are ex-
ecuted and result are captured and 85% of the system
are coverage within 3 hours.

7 A developer should be able to make a change to the
registration code under runtime and the change are
made and tested within 3 hours.

8 A developer should be able to make a change to the
random number generator code under runtime and
the change are made and tested within 3 hours.

9 A cheater cast a invalid vote to the bulletin board
under normal operation. All valid data should be
preserved and the system should be able to detect
invalid from valid data before the total counting of
the votes.

Table 6.3: First step towards quality attributes scenarios

6.5.1.4 6. Scenario consideration

The purpose of this step is to merge scenarios that have similar features. At
the workshop there were no scenarios that could be merged.

Usability is very vague described. It turns out that usability is closely related
to modifiability in terms of preparing the architecture so the user interface can
easily be replaced. Therefore, it’s about building an architecture where business
logic does not have a high coupling with the user interface, so one can easily
add a new user interface.

Scenario 3 and 4 are both about Interoperability. We choose to merge scenario
4 with scenario 3, which means that scenario 4 is removed. This means that
scenario 3 should contain the parts where the votes get validated. And of cause
the scenario should take into account that an observer client should be able to
communicate with the bulletin board.

6.5.1.5 7. Scenario prioritization

The purpose of this step is to draw up a priority list based on the total votes. The
list is long but we will limit this thesis to focusing on a few and the rest we will
comment. The list is primarily prioritized based on the security requirements.

Scenario 3 There is focus on the fact that as many people as possible can access
electronic voting application. One way to achieve this is to create the
application as a web application. This ensure that everyone the have an
internet connection and a device with a modern browser should be able to
access the application. In addition to a web application, we want to ensure
that as many devices as possible can communicate with our electronic
voting system. One way to ensure this, is to construct a standardized
interfacing which is compatible with different clients.
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Scenario 9 Since the PVSS is a public verifiable protocol, there will be a high
focus on fulfilling the Universal verifiability requirement. This means if
there are invalid votes they should be detected through public verification.
The PVSS protocol has proves which ensures that if there is a "cheater"
who cheats with their vote they will high with probability be discovered.

Scenario 6 To ensure Accuracy as in that final tally is computed correctly,
there will be high focus on ensuring the complex part of the code is
testable.

Scenario 7 To ensure Eligibility and Uniqueness there will be high focus on
creating a flexible registration module which first of all ensures authen-
tication and authorization such that only registered voters can vote and
only have permissions to vote one time. But the module should be flexible
enough to be change to integrate to other registration data.

Scenario 8 There will be high focus on ensuring the Fairness property regard-
ing that none should be able to gain any knowledge of the outcome of the
election. Also the Uncoercibility property part regarding no one should
be able to extract the value of a vote. Therefor the need to have a mod-
ule which can generate/compute large numbers. The security can change
over time and the need of computing larger numbers will therefor be a
demand. The code should therefor be flexible if there is need for replacing
the module with another number generator.

Scenario 2 If the electronic voting application should be used by many par-
ticipants then the architecture must be able to carry out the task it is
supposed to do when needed. The architecture must be ready to mask or
repair its errors within a given time period.

Scenario 5 If the electronic voting application should be used by many par-
ticipants then the architecture must be ready to handle such a load.

Scenario 1 The electronic voting application should be easy to use. One way
of finding the best candidate to an user interface is to create usability test.
Based on the test result we must be able to change the user interface with
breaking the whole codebase.

6.5.1.6 8. Scenario Refinement

The purpose of this step is to form QAS, where divide into source, stimulus,
artifact, environment, response and response measure. We will work on the first
five of the scenarios. The rest can be found in appendex C.1, C.2 and C.3.
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Scenario(s): # 1: A PVSS client cast a vote to the bulletin board
from a given device with internet connection under
runtime and the system is updated and 100% of the
information is exchanged and processed correctly

Relevant Quality
Attributes:

Interoperability

S
ce
n
ar
io

P
ar
ts Source: A webbrowser

Stimulus: Cast a vote
Artifact Bulletin board system
Environment: Runtime
Response: If the vote is valid it is accepted. If the vote is in-

valid it is rejected and the vote is removed from the
bulletin board

Response
Measure:

100 % of the information is exchange and processed
correctly

Table 6.4: Interoperability QAS

Scenario(s): # 2: A cheater cast a invalid vote to the bulletin
board under normal operation. All valid data should
be preserved and the system should be able to detect
invalid from valid data before the total counting of
the votes

Relevant Quality
Attributes:

Security

S
ce
n
ar
io

P
ar
ts Source: A cheater

Stimulus: Cast a invalid vote, with purpose of influencing the
finale votes

Artifact Bulletin board system
Environment: Runtime
Response: If the vote is valid it is accepted. If the vote is in-

valid it is rejected and the vote is removed from the
bulletin board

Response
Measure:

100 % of the information is exchange and processed
correctly

Table 6.5: Security QAS
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Scenario(s): # 3: An unitester should be able to code a unit on
the system under development and the test suite are
executed and result are captured and 85 % of the
system are coverage within 3 hours.

Relevant Quality
Attributes:

Testability

S
ce
n
ar
io

P
ar
ts Source: Unittester

Stimulus: Code unit completed
Artifact Code
Environment: Design time
Response: Result captured
Response
Measure:

85 % path coverage in three hours

Table 6.6: Testability QAS

Scenario(s): # 4:A developer should be able to make a change to
the registration code under runtime and the change
are made and tested within 3 hours

Relevant Quality
Attributes:

Modifiability

S
ce
n
ar
io

P
ar
ts Source: Developer

Stimulus: Needs to replace the registration module
Artifact Code
Environment: Design time
Response: Replacement made and Unit tested
Response
Measure:

In three hours

Table 6.7: Modifiability QAS

Scenario(s): # 5: A developer should be able to make a change
to the random number generator code under runtime
and the change are made and tested within 3 hours.

Relevant Quality
Attributes:

Modifiability

S
ce
n
ar
io

P
ar
ts Source: Developer

Stimulus: Needs to replace the random generator
Artifact Code
Environment: Design time
Response: Replacement made and Unit tested
Response
Measure:

In three hours

Table 6.8: Modifiability QAS
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6.5.2 Tactics
This section is about tactics which satisfies the QAS derived from the QAW. A
tactic is a design decision that influences the achievement of a quality attribute
response. We will discuss our choosen tactics based on our QAS developed
from the QAW. We will describe them in the same order in which they are
arranged above. For each tactic there will be a description and an argument
of the choosen tactic. Depending on the tactics, we will complement with the
necessary views that affect the architecture including module-, component and
connector- or allocation viewpoint.

6.5.2.1 Interoperability

This QA is related to QAS 1. Interoperability is about how systems meaningfully
exchange information through interfaces in a given context. Since there will
be different devices interacting with the bulletin board there is a demand on
designing a standard interface which can serve these devices. Discover Service
stands for the location of a data exchange service and that it is visible to those
who need it. The service can be located by type of service, by name, by location
or by some other attribute.

Figure 6.3: Interoperability tactics [BCK12]

With Discover service we will create a clear line between clients and the bulletin
board. We will implement a REST API for this tactic.

REST - Representation State Transfer
The idea behind REST is that every resource has it’s own URL (name) and you
use the different HTTP methods to interact with those resources. REST consists
of set of principles [FT02], but we will only use a subset of these principles as
follows.

1. Transferring a representation of data in a format matching one of standard
data types such as JSON, XML, HTML etc.

2. A resource is information that is identified by a URL provided by the
server. A URL is Uniform Resource Locator which describe the address
of a particular resource on the internet.
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3. Interactions are stateless where each request contains all the information
necessary. This is because of the scaling property.

The HTTP methods such as GET, POST, PUT and DELETE allow us to
interact with the resources through an interface.

6.5.2.2 Security

This QA is related to QAS 2. Security is concerned with the ability to protect
data and information from unauthorized access while still providing access to
people/systems that are authorized. The PVSS protocol ensures that only valid
votes are accepted and counted. This prevents that invalid votes are counted in
the final counts and thereby they will not effect the result. The Verify message
integrity tactic employs techniques such as checksums or hash values to verfy
the integrity of a message. After the system has detected an attack the system
must react on the attack.

Figure 6.4: Security tactics [BCK12]

TheDLEQ and PROOFU proofs verifies the message integrity. With the proofs
the protocol will be able to detect attacks. The verify message integrity consists
of:

1. The DLEQ proof provided in ballot casting process ensures consistency
in the encryption process.

2. The PROOFU ensures that the voter votes either 0 or 1.
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3. The DLEQ proof in the tallying process ensures that the decryption is
done correct.

As already described this tactic is a part of the protocol which is described
in section 5.3. We use the Verify message integrity tactic in relation with the
proofs which ensures that the vote is either 0 or 1 and that the shares are con-
structed correctly and consistent. Our work consists of realizing the tactic in
code. Another important decision to make, is if an attack is detected then the
system, must react. The tactic Inform actors includes other systems to be no-
tified. One way could be marking the vote in the database as not valid. The
means that the vote is not counted in the tallying phase.

Component and Connector viewpoint
This viewpoint shows the runtime functionality regards how responsibility are
flows in creating and verifying the proofs between the prover, bulletin board
and the verifier.

Figure 6.5: Sequence diagram which shows an overall flow of verifying the proofs

Step 1 The vote is casted and the voter creates the data for the proofs. The
voter is an active process which the double bars on the box indicates. The
voter is active process because it constantly awaits input from the user.

Step 2 The bulletin board recieves the ballot from the voter. It saves the ballot
into a storage. It notifies the tally with the ballot. The bulletin board is
an active process since it always listen on a specific port with purpose to
serve incoming request.

Step 3 The tally verifies the proofs and revoke a method on the bulletin board
with a parameter which indicate if the proof was accepted or rejected. For
now we have choosen that the tally is an active process under the entire
election.

Step 4 The bulletin board saves the ballot proof into a storage. We will em-
phasize that we always saves and never update. This constraint helps the
system resist unauthorized users from updating any data in the storage.
The storage is an active process because it constantly awaits incoming
request.
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6.5.2.3 Testability

This QA is related to QAS 3. Testability is concerned with the ease with
which the software can be made to demonstrate its faults. This application
contains a fair amount of computation which is the core of the application -
namely to compute the final votes. Testing is needed, to ensure accuracy of the
computations. When new features are introduced to the system, one should be
able to execute all tests and results are captured and 85 % of the system are
coverage within 3 hours.

Figure 6.6: Testability tactics [BCK12]

The Voter client is build in Javascript which means that we have to adapt to the
opportunities (dynamic, untyped, and interpreted run-time language) which the
language provides. This tactic will be limited to webclient since they contain
all computations. The tactic Limit structural complexity is about isolating, en-
capsulating dependencies and reduce dependencies between components. These
principles leads to limited complexity and thereby better testability.

For a system to be testable we need to be able to control components inputs
and be able to change its internal state and then observe its output. One of the
ways for achieving this is through various design patterns such a strategy pat-
tern. In general one should strive to use composite patterns that encapsulates
responsibility which we use in section 6.5.2.5

Component and Connector viewpoint
Figure 6.7 shows the flow on the Voter client of the various functions which
need to be executed in order to compute the ballot casting and proofs.
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Figure 6.7: Voter client functions which needs to be testable

All functions ought to be relatively easy to test because they are fairly isolated.
The communication with the bulletin board can be abstracted away in a testing
environment through Test stubs [Chr10].

6.5.2.4 Modifiability

This QA is related to QAS 4. Modifiability is concerned with the ease with which
the system supports change. In a reel electronic voting application scenario there
will be need of a certain registration process. Depending on the scenario the
registration process may go through state authorities, google, linkedin or even
a third solution. Therefor the system must be able to support changes on the
registration process depending on the use.
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Figure 6.8: Modifiability tactics [BCK12]

Module viewpoint
Figure 6.9 shows the module viewpoint of a the strategy pattern on the process
of registering a voter.

Figure 6.9: Module viewpoint of the strategy pattern on the registrations process

The RegistgrationsController gets an instance of the type IRegistrationStrategy.
It can either be an instance of a GoogleRegistrationStrategy or a FakeRegist-
grationStrategy. Each of these classes has their implementation of the method
ValidateVoter. The GoogleRegistrationStrategy should implement a registra-
tion process to Google API. The FakeRegistgrationStrategy just contain "true"
which means that the voter is a valid voter in the registration process. This
strategy is only meant for testing purposes.

The process which led to this pattern is the compositional process which is as
follows.

Identify the behavior that varies: In this case it is the registration process.
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Use interface which encapsulate the variable behavior: In this case we
create an interface IRegistrationStrategy which defines a responsibility of
registering a voter.

Delegate the responsibility to a specialized classes: In this case we have
FakeRegistgrationStrategy and a GoogleRegistrationStrategy.

By implementing a strategy pattern on the registration process, we have used
the tactic Encapsulate and efficiently encapsulated this functionality and made
the system ready to change to other registration authorities. Answering the
question if we are able to reach the response measure from the QAS, depends
on how complicated it is to integrate against an external registration system.

6.5.2.5 Modifiability

This QA is related to QAS 5. As described modifiability is concerned with the
ease with which the system supports change. To further prove the security of
the implementation we must take into account that the random generator easily
can be changed. This is an advantage if we need to work with, for example,
larger numbers in the future.

The tactic encapsulate, from figure 6.8, reduces the coupling between modules.
The goal is to create an interface to the number generate so that we are able to
shield of the concrete implementation of a given number generator and thereby
reduce the coupling between modules. If we later then need to change the im-
plementation we can create a new implementation of the number generator and
replace the old one.

This tactic is limited to webclient since they contain all computations and the
number generator. The following will be a proposal for an implementation of
the concrete number generator and how one can encapsulate it with an interface.

Module viewpoint
This viewpoint shows the use of a strategy pattern as described in [Chr10]. The
idea with the strategy pattern is to define a family of business rule, encapsulate
each one and make them interchangeable. The strategy pattern lets the business
rules vary independently from clients that use it. It delegates the responsibility
to an object instead of doing the work it self.
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Figure 6.10: Module viewpoint of the strategy pattern on the random number
generator

Figure 6.10 shows the VoterClient gets an instance of a randomGen which has a
method randBetween. It can either be an instance of a RandomGenStrategy or
a FixedNumberStrategy. Each of these classes has their implementation of the
method randBetween. The RandomGenStrategy implements the reel random
number generator. The FixedNumberStrategy returns a controlled value which
we can set, for testing purposes.

The process which leds to this pattern is the compositional process which is as
follows.

Identify the behavior that varies: In this case it is the random number gen-
erator.

Use interface which encapsulate the variable behavior: In this case we
create an interface randomGen which defines a responsibility of returning
a random number.

Delegate the responsibility to a specialized classes: In this case we have
RandomGenStrategy and a FixedNumberStrategy.

By implementing a strategy pattern it should be relative easy to switch out
the random number generator and thereby making changes to this part of the
system.
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Chapter 7

The application

In chapter 6 we described the theoretical aspect behind our system. A software
architecture was designed and the most significant scenarios was formalized and
solved on a theoretical level. In this chapter we describe how we implemented
the design into a application.

7.1 Introduction
Implementing a software design can be a difficult task, as design modules rarely
maps directly into code. Using the approach of different viewpoints and sce-
narios helps in this regard, but challenges due arise which could not have been
foresee nor illustrate in the design phase. Challenges can come from our de-
sign of the development environment to the physical restricts of the deployment
environment.

7.2 Method
The final result is described in a top-down approach. We start with an informal
description of the system, and from here gradually go into details starting with
the module views which describes the static structures of the implementation.
Then, follows the component and connector view to describe the dynamic struc-
tures. After the presentation of the implementation we will look at how choosen
tactics have been implemented and how we solved the functional requirements
of an electronic election.

7.3 Development environment
The implementation have been done using Microsoft ASP.NET framework, C#
and Javascript programming language. ASP.NET is a widely used and sup-
ported framework for creating web application. This framework is used both
as the backend RESTful server, bulletin board and for the web server host-
ing the clients. The clients, voter and tallier is implemented using Javascript.
Javascript have the benefits of running inside all modern browser and is widely
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used, thus giving us a very large set of libraries to our disposal.

7.4 Final result
In this section we describe the final implementation of the software design.

7.4.1 Overview

Figure 7.1: Overview of the system

Figure 7.1 illustrates an overview of the system and the information flow in the
different phases of the protocol. From left to right we see the voters each cast-
ing there votes and hiding their votes within a secret. Though secret sharing
the vote is divided and encrypted into pieces corresponding to the number of
talliers. The ballot casting phase ends with the voters publishing there votes
and secret to the bulletin board. Ending the ballot casting phase starts the
tallying phase where the talliers each collects there individual pieces of the se-
cret, multiplying the shares together, decrypting the multiplum and publishes
the decrypted multiplum to the bulletin board. The last segment of the tally
phase, where the votes are calculated is not illustrated in the figure, but is none
the less implemented by letting a dedicated tally do the calculating and posting
the result to the bulletin board.

The overview does not introduce many new elements to the implementation not
previously known from the protocol, in fact the only new element introduced is
the Client server which serves as a web-server for the voters, to which the voters
logon in order to cast there votes. However the overview clearly shows the
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topology of the implementation, namely a star topology with a server (bulletin
board) in the middle and Clients all around. There is no directly communication
between the clients, all communication goes through the Server. This is due to
the nature of an election, though we require the talliers to have a persistent
connection to the server. We don’t expect voters to stay connected throughout
an entire election. The reason the bulletin board needs to have an persistent
connection to the talliers is because after the ballot casting phase. The bulletin
board needs to be able to notify the talliers for tallying phase.

7.4.2 Viewpoints
We use viewpoints as we further describes the implementation in details. We
start with the module viewpoints which shows the static elements of the imple-
mentations, elements like packages, interfaces, classes and relations.

7.4.2.1 Module view

Starting from the top we look at how the implementation is structured into
packages, where each packages contains elements that focuses on the same re-
sponsibility. Structuring our implementation this way follows the design prin-
ciples of high cohesion and low coupling introduced in chapter 6 and lays the
ground for code that is flexible and easily maintainable.

Figure 7.2: Package overview

Figure 7.2 shows a package overview of the entire implementation. The figure
show both the packages included in the implementation of the Client and the
bulletin board. The Client include packages containing logic specific for a Voter,
Tally, Admin and the Domain package which holds logic used across the Client.
The package overview of the bulletin board with only the two packages Busi-
nessLogic and WebApi looks on the surface very simply, but below we unfold
each package showing a more complex structure.

78



Figure 7.3: Package overview of bulletin board business logic

Figure 7.3 shows the packages revealed when unfolding the BusinessLogic pack-
age. This include the sub-packages BusinessLogic, Storage, Doubles and Do-
main. The packages BusinessLogic, Storage and Domain is fairly self explana-
tory. The package Double holds the logic we used in order to unit test our
implementation.

Figure 7.4: Module view of bulletin board

Figure 7.4 shows the interfaces and classes within the BusinessLogic package of
the bulletin board. Note that the package Doubles have been left outside the
container of the BusinessLogic, this is due to the fact that its responsibilities
only evolves around testing and the packages is not used in the production
environment. Also noticeable is the Domain package have not been specified
further. The reason for this is, that it simply holds the representation of physical
elements like a ballot, a voter, a share etc, which contain no business logic.

IRegistrationService is an interface that holds the responsibility of the Regis-
tration authority specified in section 2.3. Is validates and registries eligible
voters. For this implementation we only included the class FakeRegistra-
tionService which implements responsibilities from the IRegistrationSer-
vice.
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IServant is an interface that have the responsibilities of the bulletin board also
the described in section 2.3. It handles the communication with the Clients
and insures the persistence of the election data such as the ballots and
shares etc. The class BulletinBoardServant implements the responsi-
bilities of the IServant. A key functionality of the BulletinBoardServant is
that most of its methods is read-only, this helps to ensure that no honest
or dishonest user removes information.

IStorage is an interface that have the responsibilities of persisting and re-
trieving data. Both the classes MongoStorage and FakeStorage im-
plements the responsibilities of the IStorage. The MongoStorage also
acts as a client to a Mongo database to which it stores the data, where the
FakeStorage simply stores the data in memory, meaning that the data
is lost when the application stops.

Figure 7.5: Module view of Client

Figure 7.5 shows the interfaces and classes of the Client. Again the package
Double is left outside the content of the Client, due to the same arguments
stated above.

util is a simple class that holds some helper function, that is used across the
system.

bignum is a class that inherits the functionlitites from its superclass bigIn-
teger. This structure enables us to expand or alter the functionalities of
the bigInteger without changing the class.

INumberGenerator is an interface which have the responsibility of generat-
ing random integers and primes. The classes RandomGenStrategy and
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FixedNumberStrategy both implements the responsibilities of INum-
berGenerator. FixedNumberGenerator is used for testing and enabling
us to control the numbers return.

AdminClient is a class that holds the responsibilities of creating an election
and generating the public elements used in the election. The AdminClient
is depending on the class Bignum, and the Interface INumberGenerator.

VoterClient is a class that holds the responsibilities of a Voter described in
the protocol, section 5.1.2. This class, like the AdminClient is depending
on Bignum and INumberGenerator.

TallyClient is a class that holds the responsibilities of a Tally described in the
protocol, section 5.1.3. This class, is also depending on the Bignum and
INumberGenerator.

This last module view concludes the overall static structure of the implementa-
tion, we however have not further specified the elements in the Webapi package
shown in figure 7.2. The reason for this, is that it does not hold any elements
related to the protocol but only elements regarding the implementation of the
REST interface describe in the Interoperability tactic in section 6.5.2.1 and this
implementation is discussed later.

7.4.2.2 Component and Connector view

For this next part we will look at how the dynamic components in the imple-
mentation interacts during runtime. We will present an overall insight of the
system’s interaction.

Figure 7.6: Overall Component and Connector view

Figure 7.6 shows how the system interact overall. As we have seen in the mod-
ule views, there is no interacting between the components in the Client. They
each operates independently and they all communicates with the bulletin board
through the REST API. The communication between the Clients and the bul-
letin board is done through an HTTPS connection. This connection uses Secure
Socket Layer (SSL) or Transport Layer Security (TLS) to encrypt the messages
sent or received. All successful communication done with the REST API is
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forward to the Servant component that handles the business logic. If there is a
need for persisting data, then the Servant sends the data to the Storage.

The following sequence diagram shows the overall flow of the system from the
ballot casting phase to the result. The internal method calls and calculations
done on each individual class is not show, in order to present a better overview.

Figure 7.7: Overall Sequence diagram

7.4.2.3 Allocation view

Finishing out the viewpoints we lastly have a deployment view showing the
systems requirements to the deployment environment.
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Figure 7.8: Final deployment view

Figure 7.8 shows that the system requires three servers, a database server run-
ning a mongo database, a web-server with a Internet Information Server (IIS)
installed to host the bulletin board RESTful Webapi and lastly a web-server
also with IIS installed to host the Webclient. We also require that devices that
is to communicate with the system needs to have a modern browser installed,
that is able to execute Javascripts.

7.5 Implementing the tactics
In this section we will highlight selected implementation of previously described
tactics from chapter 6.

7.5.1 Interoperability: REST API
As stated earlier we use a REST interface which should be easily accessible by
everyone. This means that our bulletin board is build on some of the REST
principles. Figure 7.9 illustrate an informal webservice model which describes
our resources on the bulletin board. The process of constructing this diagram
gives overview and insight of how we could design a REST interface on the
different resources.
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Figure 7.9: Overview of REST electronic voting web service model

Figure 7.1 shows our final REST api. The urls shows how the REST api can be
accessed together with the HTTP methods which shows which methods can be
invoked on the different urls.

Resource URL HTTP methods

Elections /elections GET GetAllElections
POST CreateElection

Election /elections/{electionId} GET GetElection

Votes /elections/{id}/votes GET GetAllVotes
POST CreateVote

Talliers /elections/{id}/talliers GET GetAllTalliers
POST Register

Shares /elections/{id}/talliers/{id}/shares GET GetAllTallyShares
POST CreateDecryptShare

Decrypted
shares /elections/{id}/talliers/shares GET GetAllDecrypted

TallyShares

Table 7.1: REST api to the bulletin board

Since our webclients is build purely on Javascript, all communication is done
through ajax call to the bulletin board. Listings 7.1 illustrates how one can
interact with REST api. The example shows how to create an election. This is
called by the Admin client which starts the election.

1 $ . a jax ({
2 type : "POST" ,
3 u r l : "api/bulletinboard/elections" ,
4 data : jsonData ,
5 su c c e s s : function ( data ) {
6 i f ( ca l lBack )
7 ca l lBack ( data ) ;
8 } ,
9 contentType : "application/json"

10 }) ;

Listing 7.1: Javascript example
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7.5.2 Modifiability: Number generator
Implementing this tactic proved to be fairly easy. However as the dynamic na-
ture of Javascript does not support the concept of interfaces as we know it from
Java and C#, we had to introduce a method to secure that the injected Num-
berGenerator strategy applies to its responsibilities. To construct this method
we utilizes the concept of Duck Typing which basically states that if an object
walks like a duck and quarks like a duck, then to the concerns of Javascript it
is a duck!.

1 // example duck typing method
2 var Inter faceMethods = function ( obj /*, method list as strings

*/ ) {
3 var i = 1 , methodName ;
4 while ( (methodName = arguments [ i ++]) ) {
5 i f ( typeof obj [ methodName ] != ’function ’ ) {
6 return fa lse ;
7 }
8 }
9 return true ;

10 }

Listing 7.2: Implementation of Duck typing

In the following listing 7.3 we show how the InterfaceMethod method is used to
check for an interface object. It checks if the methods specified in the parameters
is to be found on the object passed as the first parameter. In the example below
it checks for the methods "randBetween" and "randPrimeBetween".

1 var vo t e rC l i en t = function ( serv , opt ions ) {
2 . . .
3 . . .
4 var randomGen ;
5

6 i f ( opt ions ) {
7 i f ( opt ions . randomGen) {
8 i f ( u t i l . Inter faceMethods ( opt ions . randomGen , ’

randBetween ’ , ’randPrimeBetween ’ ) ) {
9 randomGen = opt ions . randomGen ;

10 }
11 }
12 }

Listing 7.3: Checking for an interface

As shown in the listing 7.3 the NumberGenerator strategy is simply injected
into the VoterClient upon creation. Methods within the VoterClient can now
execute the methods randBetween and randPrimeBetween on the injected object
through the variable randomGen.

7.6 Analyzing the application
In this section we will list the security requirements from section 2.5. We will
then evaluate these requirements against our application.

7.6.1 Electronic voting secure requirements
Voter Privacy No one should be able to link a vote back to the specific voter,

and only the voter should know his vote. These requirements shall hold
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during and after the election.

This requirement is meet by our implementation, infact its one of the core
elements in the election voting protocol from section 5.1. Every voter only
publish his vote though U = Gv+s where G is a generator and v ∈ {0, 1}
and s ∈ Zq. As s is only known by the voter and is uniformly random
picked then the sum of s and v is also unknown for any potential adversary
under the security of the DL problem. And one could ague that even if an
adversary should be break the DL problem then, unless he knows s, the
vote v would still be unknown.

Eligibility Only Eligible and registered voters can vote.

Unlike Voter Privacy, this requirement of non-eligible voters not being
able to vote is not fulfill by the protocol it self. First we need a list of
eligible voters which acts as a reference list for which voter are allowed
to vote. Second our registration service handles registration which is de-
scribed in section 6.5.2.4. This enable us to change the registration service
accordingly to the nature of the election.

Uniqueness Only one vote per registered voter should be counted.

Uniqueness is about making sure only one vote is counted for each eligible
voter. This requirement is meet by having a separate table in the database
with all eligible voters containing an id and a 0/1 (no or yes). This table
will be updated when votes arrive to the bulletin board.

Fairness None should be able to gain any knowledge of the outcome of the
election, before the ending. This is to prevent voters of voting accordingly
to any leaked information.

This is achieved in our implementation by only starting the tally phase
when all votes are casted or when a deadline is reached and the ballot
casting phase ends. Only the bulletin board have the authority to notify
the talliers when to begin the tallying phase.

Through the property of secret sharing used in the protocol, the secret to
decrypt the vote is shared amoungst three or more talliers. These shares
are again encrypted with the public key of the corresponding tally. As a
consequence, no one except the tally with the corresponding private key
is able to decrypt the share.

Uncoercibility Nobody should be able to extract the value of a vote. This
is to prevent anybody from compelling a voter by force, intimidation, or
authority to cast a vote in a specific way.

Since our application is classified as a remote internet voting described in
section 2.2, we are not able to control the physical environments to where
the votes are casted. Therefor we are not able to fulfill this requirement to
its fullest. However the protocol ensure that no coercer is able to extract a
specific value of a vote, due to properties already mentioned in the previous
requirements.

Receipt-freeness The voting system should not produce a receipt that reveals
any information about the casted vote. This is to prevent a voter from
trading his vote.
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Our application only confirms the success of a voting, not the value of the
vote. There is no functionality that enables any participants nor observers
to gain information about the value of a vote.

Accuracy The final tally should be correctly computed from valid casted votes.
It should not be possible to manipulate the final tally without being detected.

Our implementation utilizes the proofs from the protocol to fulfill this
requirement.

Under the ballot casting phase of the protocol, we require that the voters
proofs the correctness of there votes. This is done through the ProofU and
DLEQ proofs, which is required to be published along side the encrypted
vote U . Should one of the proofs fail, then the vote is marked invalid and
this vote is ignore in the preceding processes.

In the tally phase of the protocol, the tally multiplies its shares and then
decrypts them and publishes the end result. Along with this result we
require that the DLEQ proof is published aswell. This allows us to verify
the correctness of the tallying process for each tally. Should aDLEQ proof
from a tally fail then the tally’s shares is ignored in the preceding process.
The protocol requires the shares from at least t talliers, in order to extract
and calculate the end result. Should it be the case that this requirement
is not fulfill an re-election is require but untill then the implementation
simply ignores the shares from the tally in question.

Should an adversary gain access to the database serving the bulletin board,
it would be possible for this adversary to manipulate the verdict of a proof
but not the proofs them self, as the construction of the proofs prevent this.
Though our application does not take this scenario into account it would
be fairly easy to make a functionality that reevaluates the proofs, should
such a breach have been detected. One could argue that an adversary with
full access to the database could also remove elements such as a casted
vote or the information that a given voter have voted. The later would
effectually enable the given voter the ability to double vote. This scenario
is not handled in our application. The first scenario is also possible but
given the fact that our application have voter privacy and the votes is
secure under the DL problem then the adversary would not know if he is
removing and "no" or a "yes" vote.

Universal Verifiability It should be possible for any participants and observers
to validate individual votes as well as the final tally of the election.

The protocol is basically designed around this requirement as voters pub-
lishes their ballot and proofs to the bulletin board. The Tally will also
publish a proof under the tallying phase. Any participant or observers
can validate the proofs since it is public.

Everything on the bulletin board is publicly available both for participants
and none participants of the election. ProofU verifies that an encrypted
vote U is either 0 or 1 and the DLEQ proofs verifies the consistence of the
shares for both the voters and the talliers. The end result can be calculated
from the publicly known information available after the tallying phase.
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Individual Verifiability Every registered voter should be able to verify that
his vote is counted correctly.

This requirement is contradicting with the requirement of receipt-freeness.
The challenge is how can one voter verify that his vote is calculated and
included in the final tally correctly. This can not be done directly - however
we state with the following two new informal requirements, every votes is
calculated and included in the final tally and as such his vote is calculated
and included correctly.

1. All votes from the ballot casting is included in the final tally.

2. Every vote from the ballot casting is calculated correctly.

With the protocol we can fulfill these two requirements. However we have
not implemented the necessary functionality in the application. We will
elaborate on these two statements under the discussion section 8.2.2.
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Part IV

Reflecting
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Chapter 8

Discussion

In this chapter we will discuss and reflect our challenges regards to our work
with this thesis objectives.

8.1 Theoretically
The learning curve has been steep regards to learning the electronic voting pro-
tocol. The literature is on a very high mathematical academic level seen from
the perspective of a software developer. We see this is as a challenge that a
protocol is only described for such a narrow audience, especially one that re-
quires knowledge of such a specific field as cryptography. Most of the concepts
used to describe the protocol assumes a certain background knowledge. When
reading the article on protocol there is often reference to other literature that
the protocol is build upon. This makes the article hard to read, as the reading
flow is interrupted.

With this thesis we have tried to break down the protocol such that it is under-
standable for a broader audience. We have constructed this thesis such that the
reader gradually gains the required mathematical knowledge to understand the
basic elements of the protocol. The description of the protocol has been divided
into a basic and a detailed description. The basic description will give the reader
basic knowledge about the protocol and should provide enough knowledge for
a simple implementation of the protocol. Of cause this simple implementation
will not fulfill all the security requirements for an electronic voting application.

8.1.1 Knowledge accumulation
Starting this thesis we had the subjects of multiparty computation and secure
secret sharing in mind, but after guidance with our supervisor we agreed on
working with the electronic voting protocol described in [Sch99]. In order to
connect the theoretically part of the thesis with the practical part, we felt that
additionally knowledge about electronic voting in generally were needed. After
reading other articles on the subject we got a better overview on the concepts
of electronic voting. It turns out that the security requirements for electronic
voting is one of the key elements linking the theoretical part together with the
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practical part. This research helped us being able to include different issues,
that we by our self would not consider immediately, such as our consideration
regarding Eligibility and our reflection on the Individual verifiability. In general
our research on the subject have given us a more critical approach to which
security parameter we will have to take into consideration. For example we have
given a short description of different known attacks on the discrete logarithm
problem. Knowing these different attacks gives knowledge for how large q must
be, which is essential for our practical part.

8.2 Practical
We have spend much time on understanding the protocol and the security re-
quirements regarding electronic voting. This has been costly for the practical
part of this thesis. We have not been able to develop a complete application,
but rather a proof of concept, where we have tested the protocol and our archi-
tectural strategies. We would like to have spend more time on the practical part
so that we could have tested our QAS such as performance and the availability.
Since these two attribute is central for a software architecture on a large scaled
application.

Basically the entire protocol is about doing computations such as exponenti-
ation, multiplying, addition, modulo reduction, hash functions and generating
random large primes etc. Doing it and doing it right is a challenge - all these
computation together makes the system complex and challenging to debug. We
created several proof of concept with small numbers, which was manageable to
follow. We haven’t found a optimal way yet for debugging the computations
with large numbers.

As developers we are concerned with achieving maintainability and readability
of the code, therefor code quality is an important aspect to take into account.
The protocol works with variables like g, G, Y , Y ∗, DLEQ, and Proofu etc.
We ask our self what is the best naming conventions for these variables. Our
naming conventions is based on trying to be consistent and give variables signing
names.

8.2.1 Generating Prime
Generating very large primes is a computationally hard task and thus time
consuming. Given the fact that the prime q used in our implementation is
public known, it is easy to think that one could simply use one or a set of very
large hardcoded primes. However, by performing a large precomputation for a
given prime, an adversary can quickly calculate arbitrary discrete logarithms in
that group. And efficiently reducing the computation cost for all targets that
uses this group [ABD+15].

8.2.2 Individual Verifiability
Here we will elaborate on these two informal requirements from section 7.6.1
regarding Individual Verifiability.
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1. All votes from the ballot casting is included in the final tally.

2. Every votes from the ballot casting is calculated correctly.

As stated earlier our job is to convince the voter about the above statements.
If this is possible, we mean that we have argumented for our statements and
thereby the security requirement. To elaborate these requirements we will need
some illustration of the ballots and the tallying phase. Figure 8.1 shows a simpli-
fied list of all valid ballots from the ballot casting phase. Figure 8.1 also shows a
simplified list of the multiplied shares and the corresponding proofs by each tally.

As for the first statement we refer that anyone can verify the correctness of
the votes and the consistency of each share. By definition all is public and any-
one are able to verify the validity of the outcome of the proofs under the election.

So if the list is trusted and accepted by everyone then with high probability we
can say it is correct. To ensure that all ballots are included in the final tally we
have to be convinced, that each of the shares are included in the tallying phase.
Each tally will compute Y ∗, S∗ and a proof based on the shares belonging to
them. The key is that anyone are able to confirm the Y ∗ to ensure that all
shares are included in the computation of Y ∗. As for the second statement all
can verify that the decryption of the shares are done correctly. All information
needed in order for calculating the final tally is publicly available on the bulletin
board and thus anyone are able to recalculate the final tally.

Ballot casting
Ballot Valid
1 Yes
2 Yes
3 Yes
4 Yes
5 Yes
6 Yes

Ballots with proofs validation

Tallying phase
Tally Y ∗ S∗ Valid
1 10 3 Yes
2 8 9 Yes
3 5 8 Yes
4 9 4 Yes
5 9 3 Yes
6 2 8 Yes

Tallying phase

Figure 8.1: Tables showing the states of a Ballots and Tally shares after each
phase in a election

8.3 Lesson learned
Looking back, we should have been better at narrowing the scope of the the-
oretical part of this thesis. However this is a hard task with our experience
within the field of cryptography. With our programming experience and our
knowledge in the field of software we can certainly say it has not been a trivial
task to implement and at the same time getting the required knowledge of the
different parts of the protocol. As a consequence we had to prioritize the project
using the elements of "The Project Manager’s Three-Legged Stool". Here we
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have three elements time, cost and quality which are parameters in a project.
For this thesis time and cost are relatively fixed, which leads to one parameter
to adjust namely quality. As stated earlier there is still work for us to do, on
the practical part of our application.

Our choice of development environment has been Visual Studio with ASP.NET,
C# and Javascript as main programming languages. Based on our knowledge
that these technologies is widely used within our profession, the choice was clear
for us. We have encountered challenges in our process to gather knowledge
about certain technical aspects, revolving different cryptographic libraries in
our development environment. The documentation for these libraries covering
our development environments have been poor. A consequence of this have been
that we have use more time then planned, on our application. We have read a
lot of forums and documentation using other technologies on this subject. An
recommendation will therefor be that one should be careful when choosing the
tools to implement an application in this field.
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Chapter 9

Conclusion

In this thesis three objectives were studied: The theory behind Shamir secret
sharing and multiparty computation as well as the cryptographical concepts
needed to understand it. The electronic voting protocol and the mathematical
justification behind it. Design and implement an secure and scalable web based
electronic voting application based on the protocol. We will in the following
summarize our main achievements.

By combining the theoretical knowledge gained through session with our su-
pervisor and through studying the field of cryptography, with applied practical
experience gained by implementing the protocol in a proof-of-concept applica-
tion. We have accomplish, most of the objectives in this thesis.

1. We have gained comprehensive knowledge in regards to Sharmirs secret
sharing and multiparty computation as well as the concepts surrounding
them. Furthermore we feel that we have managed, through elaboration
and the use of examples, to describe these concepts in such a way that
peers with a similar backgrounds as us, as a software developers, can learn
the concepts with a lesser steep learning curve.

2. We have taken the description of the PVSS protocol and the electronic
voting protocol described in [Sch99] merging them together, for then to
divide the description into three different parts each elaborating the pro-
tocol further. We see this structure as an optimal way for learning the
protocol while trying the concepts in practice, as it allows for iterative
implementing the protocol.

Gaining knowledge about the theoretical concepts behind the protocol, have
helped us understand how to implement the protocol. Even though we have
practical programming experience, we none-the-less faced several situations
where the theory helped us clarify how to solve the situation.

1. While implementing the electronic voting application we had the chance
to combine the theoretical knowledge with our programming experience.
This has been a huge advantage in our learning process. One thing is
to understand the mathematics behind the protocol. Another thing is
knowing what is needed in order to implement the protocol. We have found
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it beneficial to gain comprehensive knowledge of the mathematics and
cryptography concepts behind, not only the protocol but also electronic
voting in general. This unfortunately have been more time consuming
then expected, which in the end had the consequence that we have not
yet reach our objective with our application. Nevertheless we got insight
into designing and implementing a cryptographic protocol.

2. Our design of the electronic voting application have been heavily influ-
enced by the security requirements for electronic voting. We see these
requirements as an essential part of developing an electronic voting ap-
plication. While most of the requirements is taken into account by the
protocol it self, there where some requirements that we had to incorpo-
rate into the application our-self. Even though our web based electronic
voting application is not finished, we have prepared an architecture which
is build upon known design principles from [BCK12] and [Chr10] such as
Quality attributes (QA), Quality attribute scenarios, tactics and design
patterns. Furthermore we would like to highlight these QA, Interoperabil-
ity, Modifiability, Security and Testability which the architecture is build
upon.
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Appendix A

Proofs

A.1 DLEQ non-interactive proof between voters
and verifier

In section 5.3.1 we elaborated an interactive DLEQ proof between voter and
verifer. Here we present how one can turn an interactive proof to a non interac-
tive proof. This is also known as the Fiat Shamir where we are transforming an
interactive proof into a non interactive proof which is described in section 3.4.5.
Instead of the verifier computes a challenge, the prover computes the challenge
as a random function as described in 3.4.4. We will present two ways off doing
this transformation, a non optimized and an optimized version. Last we will
describe an example on how this can be done.

The prover computes a1 = gw (mod q) and a2 = ywi (mod q), w ∈R Zq.
Then the prover computes the hash C = H(Xi, Yi, a1, a2). Then the prover
computes r = w − p(i) · C (mod q). Last the prover publish a1, a2, r, C.

The verifier computes the following computations a1 = gr ·XC
i (mod q)

and a2 = yri · Y Ci (mod q) and C = H(Xi, Yi, a1, a2).
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DLEQ protocol
Input : g,Xi, yi, Yi where Xi = gxi and Yi = yxi

i

Prover Verifier

Step 1

w ∈R Zq
a1 = gw (mod q)
a2 = ywi (mod q)
C = H(Xi, Yi, a1, a2)
r = w − p(i) · C (mod q)

Step 2 a1,a2,r,C−−−−−−−→

checks if :
a1 = gr ·XC

i

a2 = yri · Y Ci
C = H(Xi, Yi, a1, a2)

Figure A.1: DLEQ non interactive

Note in above that there is no interaction between the prover and the verifier.

DLEQ optimized
In the following we will show how one can improve the amount of computation
of the challenge C. Instead of computing the challenge n times, one can compute
it once and reuse the challenge.

1. The prover publish a1,i = gwi (mod q) and a2,i = ywi
i (mod q) for 1 ≤ i ≤

n, wi ∈R Zq.

2. The prover computes the hash C = H(Xi, Yi, ..., Xn, Yn, a1,1, a2,1,
a1,2, a2,2, ..., a1,n, a2,n).

3. The prover computes ri: ri = wi − p(i) · C (mod q) and publish ri, C.

4. The verification contains of the following computation:

(a) The verifier checks if: a1,i = gr,i ·XC
i (mod q)

(b) The verifier checks if: a2,i = yrii · Y Ci (mod q)

(c) The verifier checks if: C = H(Xi, Yi, ..., Xn, Yn, a1,1, a2,1,
a1,2, a2,2, ..., a1,n, a2,n)

DLEQ computation voter
Hence the hash contains all the ai the prover will compute this proof once for
all p(i) which improve efficiency. This means that if there are 3 shares, then the
above computation has to be done 3 times, one for each tally, but same hash
can be computed once for every tally.

1. The prover publish a1,1, a2,1, a1,2, a2,2, a1,3, a2,3.

2. The prover publish C, r1, r2, r3.

3. The prover selects w1, w2, w3 ∈R Zq.

4. The prover computes a1,i = gwi (mod q) and a2,i = ywi
i (mod q).
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5. The prover computes the hash C = H(Xi, Yi, ..., Xn, Yn, a1,1, a2,1,
a1,2, a2,2, ..., a1,n, a2,n).

6. The prover computes ri : ri = wi − p(i) · C (mod q) .

7. The verification contains of the following computation:

(a) The verifier checks if: a1,i = gr,i ·XC
i (mod q)

(b) The verifier checks if: a2,i = yrii · Y Ci (mod q)

(c) The verifier checks if: C = H(Xi, Yi, ..., Xn, Yn, a1,1, a2,1,
a1,2, a2,2, ..., a1,n, a2,n)

Zero knowledge proof for the DLEQ
The same arguments holds for correctness, soundness and zero knowledge, which
is described in section 5.3.1 about the interactive DLEQ.

A.2 DLEQ proof by the talliers
The talliers will do computations on each of their shares. Each tally uses the
DLEQ to prove that the decryption of their shares is done correctly. It proofs
that the exponent are equal G = yxi

i and Yi = Sxi
i without revealing xi and if

the prover was honest, then it should be the case that we get same computed
values in the end meaning a1 = Gw = Gr · yCi and a2 = Swi = Sri · Y Ci .

First we show the interactive proof and then transform it to a non-interactive
proof. The input values are (G, yi, Si, Yi) where G = yxi

i and Yi = Sxi
i . We

have some initial values g1 = G, hi = yi, g2 = Si, h2 = Yi, α = xi and
w ∈R {0, ..., q − 1}.

In step 1 the prover computes a1 = Gw, a2 = Swi . In step 2 the verifier creates
a challenge C. In step 3 the tally computes r = w−C ·xi. In step 4 the verifier
computes a1 = Gr · yCi , a2 = Sri · Y Ci .

DLEQ protocol by the talliers
Input : G, yi, Si, Yi where G = yxi

i and Yi = Sxi
i

Output : 0 or 1
Prover Verifier

Step 1 w ∈R Zq
a1 = Gw

a2 = Swi
a1,a2−−−−−−−→

Step 2 C ∈R Zq
C←−−−−−−−−

Step 3 r = w − xi · C

Step 4 r−−−−−−−−→
checks if :
a1 = Gr · yCi
a2 = Sri · Y Ci

Figure A.2: DLEQ
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Note the interaction in step 2 where the verifier creates a challenge to the prover.
Through Fiat–Shamir we transform an interactive proof of knowledge into a
non-interactive proof of knowledge by replacing step 2 with a hash algorithm
C = H(G, yi, Si, Yi, a1, a2).

Mathematical justification
To justify correctness of the computations in step 4, we can do the following
verification on a1 = Gw

?
= Gr · yCi and a2 = Swi

?
= Sri · Y Ci .

a1 = Gr · yCi = Gr · yCxi
= Gr+xiC = Gw−Cxi+xiC = Gw

a2 = Sri · Y Ci = Sr · YxC
i
= Sw−Cxi · Sxi·C

i = Sw−Cxi+xi·C= Swi

To show soundness and zero knowledge the same process from section 5.3.1 can
be followed.
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Appendix B

Calculations

B.1 Simple review of calculations in the protocol
We will present a simplified example of the calculations through the protocol,
which illustrate casting the votes and tallying the final counts of the votes. The
structure follows the protocol as described in section 5.1. This example does
not contain calculations of the proof. These are described in section 5.3. In
this calculation there are 3 voters (m) and 3 talliers (n). The example shows 3
voters which cast their votes and how 3 talliers are able to reconstruct the sum
of all votes.

The bulletin board publishes all system parameters which is the pub-
lic elements a prime q, the generators g and G and a security param-
eter t.

Public elements
Prime q 5
Security parameter t 3
Generator G 5
Generator g 9
Lambda λ1, λ2, λ3 3,−3, 1

Table B.1: The lambda is based on the calculation from section 4.2.1.1

The tallier generates a private key xi and a public key yi.

Talliers
Public key yi Private key xi

Tally 1 5 1
Tally 2 3 2
Tally 3 4 3

Table B.2: Public and private keys for the talliers

The voters casts their votes, either 0 or 1. and creates a random secret
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s and a random polynomial of degree at most t− 1 and computes the
shares.

Voter 1
Vote v 1
Random secret s 2
Random polynomial p(x) 2 + 2x+ 4x2

Voter 2
Vote v 1
Random secret s 3
Random polynomial p(x) 3 + x+ 4x2

Voter 3
Vote v 1
Random secret s 4
Random polynomial p(x) 4 + 3x+ 4x2

Table B.3: 3 voters creates their vote, secret and polynomial

The voters creates their shares p(x)
Voter/point p(0) Tally 1 Tally 2 Tally 3
p1(x) = 2 + 2x+ 4x2 2 3 2 4
p2(x) = 3 + x+ 4x2 3 3 1 2
p3(x) = 4 + 3x+ 4x2 4 1 1 4

Table B.4: The shares are computed p1(1) = 3 (mod 5), p1(2) =
2 (mod 5), p1(3) = 4 (mod 5) etc.

The voter distributes the encrypted share.

Encryption of the shares Yi = yp(i) using
the talliers public key
Voter/Talliers Tally 1 Tally 2 Tally 3
Voter 1 53 = 4 32 = 9 44 = 3
Voter 2 53 = 4 31 = 3 42 = 5
Voter 3 51 = 5 31 = 3 44 = 3

Table B.5: The encryption consist of raising the share in the exponent on the
Talliers public key such as ypj(i)i (mod 11).

The tallier multiplies the encrypted shares Y ∗i and decrypt the mul-
tiplum of shares S∗i .
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Tallier computes Y ∗

Tally 1 Y ∗1 = (4 · 4 · 5) = 80 = 3 (mod 11)
Tally 2 Y ∗2 = (9 · 3 · 3) = 81 = 4 (mod 11)
Tally 3 Y ∗3 = (3 · 5 · 3) = 45 = 1 (mod 11)
Tallier computes S∗

Tally 1 (x1)
−1 = 1 · x = 1 (mod 5) = 1, S∗1 = 31 = 3 (mod 11)

Tally 2 (x2)
−1 = 2 · x = 1 (mod 5) = 3, S∗2 = 43 = 9 (mod 11)

Tally 3 (x3)
−1 = 3 · x = 1 (mod 5) = 2, S∗3 = 12 = 1 (mod 11)

Table B.6: The talliers computes Y ∗ and S∗.

A master authority applies Lagrange interpolation

Apply lambda to S∗

S∗·λ1
1 33 (mod 5) = 33 (mod 11) = 5

S∗·λ2
2 9−3 (mod 5) = 92 (mod 11) = 4

S∗·λ3
3 11 (mod 5) = 11 (mod 11) = 1

Multiply S∗ which is the sum of the secrets

G

m∑
j=1

sj
= S∗·λ1

1 · S∗·λ2
2 · S∗·λ3

3 5 · 4 · 1 (mod 11) = 9

Table B.7: A master authority multiples the decrypted shares.

A master authority computes the votes

The values of U = Gs+v

U1 for voter 1 52+1 = 4 (mod 11)
U2 for voter 2 53+1 = 9 (mod 11)

U3 for voter 3 54+1 (mod 5) = 50 = 1 (mod 11)
Multiply the Ui which is the sum of the secrets and the votes
m∏
j=1

Uj = U1 · U2 · U3 = G

m∑
j=1

sj+vj
(4 · 9 · 1) (mod 11) = 3

Table B.8: A master authority multiplies all the votes.
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Compute the final sum of the votes G

m∑
j=1

vj

through Ui/(S
∗
i )
λ = G

m∑
j=1

sj+vj
/G

m∑
j=1

sj

G

m∑
j=1

sj+vj
3

G

m∑
j=1

sj
9

Inverse of (G

m∑
j=1

sj
)−1 9 · x = 1 (mod 11) = 9 · 5 = 45 (mod 11) = 1

G

m∑
j=1

sj+vj
/G

m∑
j=1

sj
3 · 5 (mod 11) = 4

Table B.9: We can isolate the sum of all votes by multiplying with inverse.
Hereafter one can use exhaustive search to extract the final tally.

The final computation is solving the following Gx (mod 11) = 4 where x is the
total vote count. Since 53 (mod 11) = 4 the total vote count is 3, which is the
correct vote count since we know that the three voters voted 1 which gives a
total of 3 votes.

B.2 Simple review of calculation of DLEQ be-
tween voter and verifier

We will present a simplified example of the calculations through the DLEQ,
which proofs that the shares are constructed correctly and consistent as de-
scribed in section 5.3.1. The calculation will be based on the values from ap-
pendix B.1. We will use voter 1 with a polynomial 2+2x+4x2 and we will use
tally 1, 2 and 3 as the verifiers. This means we will also use calculation with
these values y1 = 5, Y1 = 4, y2 = 3, Y2 = 9, y3 = 4, Y3 = 3 since the DLEQ
needs the variables g,Xi, yi, Yi. Since the example is based on 3 shares, there
will be 3 corresponding DLEQ proves. To compute X1, X2, X3 we first need
to compute the Cj .

Voter 1 computes Cj (gα)
αi gα

C0 2 92 (mod 11) = 4
C1 2 92 (mod 11) = 4
C2 4 94 (mod 11) = 5

Table B.10: The α is the coefficiens from voter 1 polynomial, where α0 =
2, α1 = 2, α2 = 4.
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Voter 1 computes X1 =
t−1∏
j=0

C1j

j for share p(1)

ij Ci
j

C01

0 10 = 1 41 = 4 (mod 11)

C11

1 11 = 1 41 = 4 (mod 11)

C21

2 12 = 1 51 = 5 (mod 11)

X1 =
t−1∏
j=0

C1j

j = gp(1) = (4 · 4 · 5) = 3 (mod 11)

Table B.11: Computation of X1 by voter 1.

Voter 1 computes X2 =
t−1∏
j=0

C2j

j for share p(2)

ij Ci
j

C02

0 20 = 1 41 = 4 (mod 11)

C12

1 21 = 2 42 = 5 (mod 11)

C22

2 22 = 4 51 = 9 (mod 11)

X2 =
t−1∏
j=0

C2j

j = gp(2) = (4 · 5 · 9) = 4 (mod 11)

Table B.12: Computation of X2 by voter 1.

Voter 1 computes X3 =
t−1∏
j=0

C3j

j for share p(3)

ij Ci
j

C03

0 30 = 1 41 = 4 (mod 11)

C13

1 31 = 3 43 = 9 (mod 11)

C23

2 32 = 9 = 4 54 = 9 (mod 11)

X3 =
t−1∏
j=0

C3j

j = gp(3) = (4 · 9 · 9) = 5 (mod 11)

Table B.13: Computation of X3 by voter 1.
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DLEQ protocol
Input : g = 9, X1 = 3, y1 = 5, Y1 = 4

where X1 = gp(1) = 93 = 3 and Y1 = y
p(1)
1 = 53 = 4

Prover Verifier
Step 1 w = 4

a1 = gw = 94 = 5

a2 = yw2 = 54 = 9
a1, a2−−−−−−−→

Step 2 C = 3
C←−−−−−−−−

Step 3 r = w − p(1) · C
r=4−3·3=−5=0

Step 4 r−−−−−−−−→

checks if :
a1 = gr ·XC

1

a1=90·33=1·5=5

a2 = yr1 · Y C1
a2=50·43=1·9=9

Figure B.1: DLEQ interactive proof for X1

DLEQ protocol
Input : g = 9, X2 = 4, y2 = 3, Y2 = 9

where X2 = gp(2) = 92 = 4 and Y2 = y
p(2)
2 = 32 = 9

Prover Verifier
Step 1 w = 4

a1 = gw = 94 = 5

a2 = yw2 = 34 = 4
a1, a2−−−−−−−→

Step 2 C = 3
C←−−−−−−−−

Step 3 r = w − p(2) · C
r=4−2·3=−2=3

Step 4 r−−−−−−−−→

checks if :
a1 = gr ·XC

2

a1=93·43=3·9=5

a2 = yr2 · Y C2
a2=33·93=5·3=4

Figure B.2: DLEQ interactive proof for X2
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DLEQ protocol
Input : g = 9, X3 = 5, y3 = 4, Y3 = 3

where X3 = gp(3) = 94 = 5 and Y3 = y
p(3)
3 = 44 = 3

Prover Verifier
Step 1 w = 4

a1 = gw = 94 = 5

a2 = yw3 = 44 = 3
a1, a2−−−−−−−→

Step 2 C = 3
C←−−−−−−−−

Step 3 r = w − p(3) · C
r=4−4·3=−8=2

Step 4 r−−−−−−−−→

checks if :
a1 = gr ·XC

i

a1=92·53=4·4=5

a2 = yr3 · Y C3
a1=42·33=5·5=3

Figure B.3: DLEQ interactive proof for X3

B.3 Simple review of calculation of PROOFu be-
tween voter and verifier

We will present a simplified example of the calculations through the proof
PROOFu. As described in section 5.3.2 the PROOFU proofs that the vote
either is 0 or 1 without revealing the actual value of the vote. The calculation
will be based on the values from appendix B.1. The example will show a voter
which votes 1. We use voter 1 with vote v = 1 and his secret s = 2 in this
example.
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PROOFU protocol
Public : U = Gs+v = 5(2+1) = 4,
C0 = gs = 92 = 4

Prover Verifier

Step 1b

vote(v) = 1
w = 4,
r0 = 4,
d0 = 4,
a0=g

r0 ·Cd0
0 =94·44=5·3=4,

a1=g
w=94=5

b0=G
r0 ·Ud0=54·44=9·3=5,

b1=G
w=54=9

a0,a1,b0,b1−−−−−−−−−−→ Publish to bulletin

Step 2
Publish to bulletin

C = 3
C←−−−−−−−−

Step 3b d1=C−d0 mod q=3−4=−1=4,
r1=w−s·d1 mod q=4−(2·4)=1

d0, r0, d1, r1−−−−−−−−−−−−→ Publish to bulletin

Step 4

Verification:

C=d1+d0=4+4=8=3,
a0=g

r0 ·Cd0
0 =94·44=5·3=4

b0=G
r0 ·Ud0=54·44=9·3=5,

a1=g
r1 ·Cd1

0 =91·44=9·3=5,
b1=G

r1 ·(U
G )d1=51·(4/5)4

b1=5·(4·9)4=5·4=9

Figure B.4: PROOFU
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Appendix C

Quality attribute scenario

C.1 QAS - Availibility

Scenario(s): # 6: An internal crash occurs and the bulletin board
is out of reach during normal operation. The re-
sponse is that the error is logged and the system is
running in degraded mode. The system should be up
running within 5 minutes.

Relevant Quality
Attributes:

Availibility

S
ce
n
ar
io

P
ar
ts Source: Internal

Stimulus: Crash
Artifact Bulletin board
Environment: Normal operation
Response: Error is logged
Response
Measure:

The system is running in degraded mode in max 5
minutes

Table C.1: Availibility QAS
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C.2 QAS - Performences

Scenario(s): # 7: 5 mill. users intiate votes to the bulletin board
under normal operation. The votes are processed
and saved with average latency of 2 seconds.

Relevant Quality
Attributes:

Performence

S
ce
n
ar
io

P
ar
ts Source: 5 mill. users

Stimulus: Initiate their votes
Artifact Bulletin board
Environment: Normal operation
Response: The votes are processed and saved
Response
Measure:

With average latency of 2 seconds

Table C.2: Performence QAS

C.3 QAS - Modifiability

Scenario(s): # 9: A developer needs to replace the user interface
for the voter client under design time. The replace-
ment is made within 3 hours.

Relevant Quality
Attributes:

Modifiability

S
ce
n
ar
io

P
ar
ts Source: A developer

Stimulus: Needs to replace the user interface
Artifact Voter client interface
Environment: Design time
Response: Replacement made
Response
Measure:

Within 3 hours

Table C.3: Modifiability QAS
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Appendix D

Installation guides

D.1 Technology stack
We have used the following technologies:

1. IDE: Microsoft Visual studio

2. Languages: ASP.NET, Javascript and C#

3. Database: Mongo database

4. Testning: Jasmine

5. Modern browser

D.2 Installation guide for Visual studio and IIS
express

1. Download Visual studio:
https://www.visualstudio.com/vs/visual-studio-express/

2. Consult microsoft for installations guide for Visual studio:
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio

3. If the IIS express do not install with installation of Visual studio then
follow this installation guide.

Download IIS express:
https://www.microsoft
.com/en-us/download/details.aspx?id=48264

D.3 Running the code

D.3.1 Installing the electronic voting application
1. Unzip the file containing the project PublicVerifiableSecretSharing.zip into

a local folder
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2. Start the project by clicking the PublicVerifiableSecretSharing.sln inside
the project folder just unzipped.

3. Set PVSS.Client.Web as StartUp project, as illustrated below

Figure D.1: Visual Studio - set start project

4. Start the application by press F10 inside Visual Studio.

This will start both the Client web server and BulletinBoard webAPI. In
the bottom right corner an icon of IIS Express should be visible, by right
click this icon, it should be visuable that both web service is running

Figure D.2: Homepage

5. When starting the application the following screen should be presented in
your default browser as illustrated below. Alternatively if the programs
runs in the visual studio, then paste this url http://localhost:5751/ into a
browser.
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Figure D.3: Homepage

6. By clicking the button [Run test] an election will start with 3 voters.

Hereafter a log of all the actions in the electronic voting scheme will be
listed below. It is possible to change what the voters vote by clicking on
the radio buttons. By default all voters votes "yes".

Figure D.4: Homepage with result

7. Navigate to Jasmine tests by clicking the [Go to test overview] on the
homepage
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This page shows the test results of the unit tests define in PVSS.Client
.Web.jasmine.spec

Figure D.5: Jasmine testpage
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