

Semester: 4th

Title: Machine Learning as a Service for

a Personalized Smart Home Environment

Project Period:

Spring 2017

Semester Theme:

Master Thesis

Supervisor(s):

Lazaros Nalpantidis

Tsampikos Kounalakis

Aalborg University Copenhagen

A.C. Meyers Vænge 15

2450 København SV

Semester Coordinator: Henning

Olesen

Secretary: Maiken Keller

Abstract:

This project emphasizes on designing and developing a

personalized service for Smart Homes and their inhabitants,

with the objective of achieving a self-operated house. The

main idea is that all “smart” devices installed in a house would

be able to function by themselves without human intervention,

based on the preferences of the house’s residents. To achieve

that, several technologies need to be utilized.

Internet of Things (IoT), Cognitive Computing and the Cloud

are used in order to control the “smart” devices and collect

historical data over time. These data contain information about

user preferences inside a house, e.g. a room’s temperature, or

if a room’s lights are on. A Cloud-based IoT platform was

utilized, along with several software-developed IoT devices

(simulating real “smart” devices in a house), with the purpose

of collecting the aforementioned historical dataset. The Smart

Home user can interact with the IoT devices directly, or by

using a smartphone application. The application was

developed to exploit Cloud-based Cognitive Computing

capabilities, resulting in a more natural interaction between the

user and the IoT devices. Once a dataset has been collected,

several Supervised Machine Learning algorithms are used, as

well as Time Series Forecasting, in order to train Machine

Learning models. These models are trained based on the

aforementioned dataset. Following that, the trained models are

evaluated in order to detect the one performed best. Then, the

model which provided the finest results is selected to be used

in a Smart Home environment.

Finally, the smartphone application can contact the previous

trained Machine Learning model, through a web service, and

request future predictions for the status of all IoT devices

inside a house over time. Then, the status of all IoT devices is

adjusted according to the received forecasts.

Project group no.:

ICTE4 SER 4.4

Members

(do not write CPR.nr.):

Konstantinos Gkentzoglanis

Pages: 94

Finished: 07.06.2017

When uploading this document to Digital Exam each group member confirms that all have

participated equally in the project work and that they collectively are responsible for the

content of the project report. Furthermore, each group member is liable for that there is no

plagiarism in the report.

I

Table of Contents

1. Introduction ... 1

1.1. Motivation .. 2

1.2. Proposed Solution .. 2

1.3. Problem Formulation.. 3

1.4. Methodology .. 5

1.5. Expected Outcome ... 7

2. State-of-the-Art ... 8

2.1. Internet of Things ... 8

2.1.1. IoT - Devices... 9

2.1.2. IoT - Network ... 10

2.1.3. IoT – Computing ... 12

2.2. Machine Learning .. 12

2.2.1. Supervised Learning ... 13

2.2.2. Time Series Forecasting .. 15

2.2.3. Evaluation ... 17

2.3. Cognitive Computing ... 18

2.4. Cloud Platforms.. 19

2.4.1. Microsoft Azure .. 20

2.4.2. IBM Bluemix .. 22

2.4.3. Amazon Web Services (AWS) ... 23

2.4.4. Differences between Cloud Platforms .. 24

2.5. Smart Home Solutions ... 27

2.5.1. Commercial Solutions ... 28

2.5.2. Research Solutions .. 31

2.6. Remarks .. 32

3. Analysis... 33

3.1. Proposed Solution .. 33

3.1.1. Differences with related work ... 35

3.1.2. Security and Privacy ... 37

3.2. Scenarios & Use Cases ... 37

3.2.1. Scenario 1 – Controlling Home Devices .. 37

3.2.2. Scenario 2 – Machine Learning as a Service .. 38

3.2.3. Use Cases .. 38

3.3. Requirements Specification.. 41

3.4. Remarks .. 43

4. Design and Implementation .. 45

4.1. Design Choices ... 45

4.1.1. System Architecture .. 46

4.2. Implementation... 50

II

4.2.1. Azure IoT Hub .. 50

4.2.2. Database .. 51

4.2.3. IoT Devices ... 51

4.2.4. Smartphone Application ... 57

4.2.5. Cognitive Computing Service ... 60

4.2.6. Machine Learning Service .. 62

4.3. Experimental Assessment .. 63

4.3.1. Dataset Acquisition ... 63

4.3.2. Machine Learning Experiments .. 64

4.3.3. Comparison between Time Series, Regression and Classification Models 69

4.4. System Prototype Deployment & Testing .. 73

4.4.1. Prototype Testing .. 74

5. Conclusion .. 78

5.1. Discussion .. 78

5.2. Future Recommendations ... 80

6. References ... 83

III

List of Figures
Figure 1: Proposed Solution.. 3

Figure 2: Methodology. .. 6

Figure 3: Cloud Platform. ... 20

Figure 4: Samsung SmartThings. .. 29

Figure 5: Nest Thermostat. ... 30

Figure 6: Google Home. ... 31

Figure 7: MLaaS – Context Diagram.. 34

Figure 8: MLaaS - Context Diagram 2. .. 34

Figure 9: MLaaS – Use Case Diagram. .. 39

Figure 10: MLaaS Complete Architecture. ... 47

Figure 11: MLaaS Implemented Architecture. ... 49

Figure 12: User House – Rooms and IoT Devices. .. 52

Figure 13: IoT Device – Type 1. ... 53

Figure 14: IoT Device – Type 2. ... 54

Figure 15: IoT Device – Registration. .. 55

Figure 16: IoT Device – Cloud-to-Device Communication. .. 55

Figure 17: IoT Device – Register to Local Database. ... 56

Figure 18: IoT Device – Store Device Status. .. 56

Figure 19: Smartphone Application. ... 57

Figure 20: Smartphone Application – Connect to Cognitive Service. .. 58

Figure 21: Smartphone Application – Retrieve Devices. ... 59

Figure 22: Smartphone Application – Bind Devices to UI. .. 59

Figure 23: Smartphone Application – Retrieve Recent Status. .. 60

Figure 24: Smartphone Application – Connect to Machine Learning Web Service. 60

Figure 25: LUIS – Training and Testing. .. 61

Figure 26: Methodology - Step 5. ... 62

Figure 27: User Preferences. ... 64

Figure 28: Azure ML Studio – Dataset every second 1. ... 65

Figure 29: Azure ML Studio – Dataset every second 2. ... 65

Figure 30: Azure ML Studio – th01 Line Plot. ... 66

Figure 31: Azure ML Studio – lb01 Line Plot. ... 67

Figure 32: Azure ML Studio – th01 ETS Training Model. .. 68

Figure 33: Azure ML Studio – ARIMA Prediction for th02 and lc01.. 72

Figure 34: Azure ML Studio – Web Service. ... 74

Figure 35: IoT Devices – Change lb03 Status 1. .. 75

Figure 36: IoT Devices – Change lb03 Status 2. .. 75

Figure 37: Smartphone Application – Change lb03 Status. .. 76

Figure 38: Smartphone Application – Change Devices' Status. ... 77

Figure 39: IoT Devices – Change Devices' Status. ... 77

IV

List of Tables
Table 1: Communication Technologies Comparison. .. 10

Table 2: Communication Protocols Comparison. ... 11

Table 3: Cloud Platforms – IoT. ... 24

Table 4: Cloud Platforms – Machine Learning... 26

Table 5: Cloud Platforms – Cognitive Computing. .. 27

Table 6: Functional Requirements. ... 42

Table 7: Non-Functional Requirements. ... 43

Table 8: Azure ML Studio – Regression & Classification Algorithms. 69

Table 9: Mean Values of Thermostats – MAPE. .. 70

Table 10: Mean Values of Light Bulbs and Lock – MASE. ... 71

V

List of Abbreviations

ACF AutoCorrelation Function ML Machine Learning

AI Artificial Intelligence MLaaS Machine Learning-as-a-Service

AMQP
Advanced Message Queuing

Protocol
MPE Mean Percentage Error

APIs Application Programming Interfaces MQTP
Message Queue Telemetry

Transport

AR AutoRegressive OMG Object Management Group

ARIMA
AutoRegressive Integrated

Moving Average
OS Operating System

AWS Amazon Web Services PaaS Platform-as-a-Service

BES Batch Execution Service PACF
Partial AutoCorrelation

Function

BLE Bluetooth Low Energy REST REpresentational State Transfer

BPNN Back Propagation Neural Network RMSE Root Mean Squared Error

CoAP Constrained Application Protocol RRS Request-Response Service

DDS Data Distribution Service SaaS Software-as-a-Service

DTLS Datagram Transport Layer Security SSL Secure Sockets Layer

ETS Error Trend Seasonality STL Seasonal and Trend using Loess

ETSI
European Telecommunications

Standards Institute
SVM Support Vector Machine

HTTP Hypertext Transfer Protocol TCP Transmission Control Protocol

IaaS Infrastructure-as-a-Service TLS Transport Layer Security

IEEE
Institute of Electrical and

Electronics Engineers
UDP User Datagram Protocol

IETF Internet Engineering Task Force UI User Interface

IHMM Improved Hidden Markov Model URIs Uniform Resource Identifiers

IoT Internet of Things UWP Universal Windows Platform

IPA Intelligent Personal Assistant UX User Experience

LTE-A Long Term Evolution-Advanced WLAN Wireless Local Area Network

LUIS
Language Understanding

Intelligent Service
WPANs

Wireless Personal Area

Networks

M2M Machine-to-Machine

MA Moving Average

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MASE Mean Absolute Scaled Error

MDP Markov Decision Process

Page 1 of 94

1. Introduction
The world as we know is changing rapidly, because of the accelerated evolution of existing

technologies and the invention of new ones. Internet of Things (IoT) is one example of the fast-

paced evolution of technology. The term IoT refers to physical-electronic devices which among

other functionalities (software, sensors, actuators, etc.) are also equipped with capabilities of

internet connectivity [1]. By using an internet connection, these devices can communicate with

other devices, i.e. Machine-to-Machine (M2M) communication. According to [2, p. 1] the

exchange of collected data is very important for achieving the IoT paradigm.

Apart from IoT, other technologies and services are constantly developed be used along with IoT

devices. They assist in the understanding of collected data and enhance their decision making.

These technologies can be found under the field of Artificial Intelligence (AI). Machine Learning

(ML) is one of them and even though is not new, it has undergone tremendous development in

recent years. By combining IoT and ML, different use cases can be implemented in different

environments, industrial and residential alike. For instance, in [3] a framework was proposed in

healthcare where an eHealth service is capable of detecting in real-time face disorders. In that

scenario, images of people’s faces can be identified and collected through IoT devices (in the

specific scenario only cameras were used) [3, p. 1]. Then, using the K-Means, i.e. an unsupervised

machine learning algorithm, faces can be further analyzed and abnormalities can be detected [3, p.

3]. Another example of IoT cooperating with ML can be seen in [4], where the behavior of people

with disabilities could be predicted by using an Improved Hidden Markov Model (IHMM) in a

Smart Home environment. In that paper, the goal was to predict the next behavior of a person by

studying his/her habits. By doing so, the necessary appliances inside the house can be

automatically activated. The interaction between the user and the Smart Home devices is based on

voice commands [4, p. 2], which makes it easier for people with disabilities.

Moreover, voice commands become more and more popular in many different use case scenarios

and many solutions are focusing on that. Companies like Google and Amazon have already on the

market products like Google Home [5] and Amazon Echo [6] which utilize speech recognition.

These devices, among other functionalities, can be also used in a house to manage all the smart

appliances installed in it [6], [7]. For instance, the user would be able to adjust the heat of the

house, turn on or off the lights, request to turn on the TV or play a specific song. Investigating

further Google Home and Amazon Echo, it can be seen that they do not only understand voice

commands but they use the power of Cognitive Computing to understand their context. To do so,

each one uses its own Intelligent Personal Assistant (IPA), Google Assistant [8] and Amazon

Alexa [6]. Because of that, the user does not have to syntax the command exactly the way the

computer is anticipating it, which also means that the user does not have to remember specific

commands. However, voice commands are only one of the few capabilities of Cognitive

Computing. Machine Learning, Speech/Vision Recognition, Natural Language Processing and

many more are also included [9, p. 8].

Although implementations of the technologies described above exist in a home environment, the

focus of this report is the further investigation of the aforementioned technologies (IoT, ML and

Page 2 of 94

Cognitive Computing). Then, a solution is proposed, on how they can be better combined and used

to deliver a unified personalized service to Smart Home users.

The rest of the chapter is structured as follows. First, the motive of why the field of Smart Homes

is of interest is examined. Then, the solution to be proposed, designed and implemented during

this project is briefly described. Furthermore, the problem that the proposed solution is going to

solve is discussed, along with the necessary research questions, objectives and limitations. Last

but not least, the methodology which was followed during the course of the project is documented

and the outcome that is expected by the end of this project is stated.

1.1. Motivation
As it was briefly discussed previously, IoT, ML and Cognitive Computing play already a big part

in all kind of “smart” scenarios, like Smart Homes and eHealth. Particularly, Smart Homes is a

popular research field that attracts many researchers and companies. Both are interested in the

development of different services and products which can make homes even smarter.

However, as seen in the State-of-the-Art chapter, chapter 2, solutions coming from researches are

quite different from the actual solutions available on the market. For instance, most of the services

and products currently provided on the market are focused on how individuals could access and

control different IoT devices installed in their house. Yet, they neglect solutions which could

automate the entire process based on user needs and habits. On the other hand, researches mostly

focus on the automation of the house without considering how their solution could be deployed in

a larger scale. The gap between the two “worlds”, i.e. the scientific and the industrial, will become

more transparent during chapter 2: State-of-the-Art. This phenomenon constitutes the motivation

factor, which initiated ideas on “How a unified service could be built which is intelligent and, at

the same time, feasible for a real-world application?”

1.2. Proposed Solution
The main purpose of this project is to design and develop a solution that involves many different

technologies. This solution is focused on Machine Learning (ML) and its use as a service for

identifying and then emulating user interactions with IoT devices inside a house over time. The

objective is to make a house autonomous, through the use of those technologies. The Smart Home

IoT devices can be accessed and controlled through the Cloud using a smartphone application. In

the Cloud, an ML web service will firstly observe user interactions with home devices. Then, an

ML model will be trained based on these interactions, thus being capable of predicting future user-

home devices interactions and control the devices instead of the user. Cognitive Computing comes

into play when the user needs to interact with the IoT devices. Specifically, Natural Language

Processing will enable users to give commands in a more natural way without the need of

remembering specific ones, for specific types of IoT devices. This proposed solution is illustrated

below in Figure 1.

Page 3 of 94

Figure 1: Proposed Solution.

By taking a closer look at Figure 1, one can observe that there can be many IoT devices in a house

with a connection to the Cloud through the Internet. These devices can be accessed and controlled

from a smartphone application, which the user interacts with by text or voice. The smartphone

application can understand voice and text commands by utilizing the power of the Cloud to

understand natural language. Once the user starts interacting with the smartphone application to

control the IoT devices, the ML component of the Cloud records user preferences over time. Then,

the trained ML algorithm is capable of predicting user preferences for specific time frames and

control all the IoT devices in the house, without the need of user intervention. At any time, the

user can see the status of all IoT devices on his/her smartphone and change it.

The first challenge of the proposed solution is the creation of a common service where many

heterogeneous devices (e.g. door locks, light bulbs, thermostats, etc.) can be connected to in order

to be accessed and controlled by the user. The next and greater challenge is to build a Machine

Learning service which would be able to train itself based on historical data of user habits, thus

predicting the future status of all installed IoT devices in real time.

1.3. Problem Formulation
In order to solve the challenges presented in the proposed solution, the research question of this

project is shaped as:

Page 4 of 94

How the Internet of Things, Machine Learning and Cognitive Computing technologies can be

used to design and develop a unified personalized service in a Smart Home environment for a

purely autonomous house?

To answer that question, it is needed to break it down to smaller sub questions and relevant

objectives.

• Research sub-questions

Following the more generic research question, sub-questions that are needed to be

answered are:

1. What is the current State-of-the-Art in Smart Homes considering the IoT, ML and

Cognitive Computing?

2. How a new solution can be designed for Smart Homes to achieve a self-operated

house?

3. How a proof of concept can be developed based on this new solution for Smart

Homes?

• Objectives

In order for the main research question along with the three sub questions to be answered,

certain objectives need to be defined. These are described below.

1. Knowledge about IoT, Machine Learning and Cognitive Computing must be

gained.

2. Research is required about other technologies such as the Cloud and how it can be

used in relation to IoT, ML and Cognitive Computing.

3. An investigation is necessary to be conducted on how IoT, ML and Cognitive

Computing technologies are currently used in a Smart Home environment.

4. Specification requirements are essential for the design of the proposed solution and

the implementation of the proof of concept.

To efficiently fulfill all the aforementioned objectives and answer the research main question,

some limitations need to be defined.

• Limitations

Due to time restrictions, several delimitations need to be set. These are:

1. It is presumed that internet connectivity is always available and no research is made

on how the proposed system would function without one.

2. Communication standards between devices are restricted to Wi-Fi only. Further

research is needed about other connectivity protocols that could be used, e.g. Z-

Wave, ZigBee, Bluetooth etc.

3. The “full-scale” solution is not implemented due to time constraints. Instead, a big

part of it will be presented as a proof of concept.

4. Although concerns about security and privacy are raised, they are not taken under

consideration during the design of the solution and the implementation of the

Page 5 of 94

prototype, except the standard security measures already implemented and required

by the communication protocols in use.

5. No physical IoT devices are used in the prototype. Instead, software applications

simulating real IoT devices are developed and used, as the focus of the solution is

not the devices themselves but the interaction between them and the rest of the

system.

6. It is assumed that all IoT devices are already installed in a house and no

initialization steps are included in the purposed solution.

7. IoT devices included in the solution are limited in number and type (only

thermostats, light bulbs and door locks were used). Further research in needed on

how the system would behave with more or less IoT devices and different types.

8. The produced data by the simulated IoT devices are going to be gathered under a

controlled environment, i.e., for only one user and for a restricted time frame.

Further research is needed for collecting and analyzing data in different

environments and users with diverse needs and habits for a longer period of time.

9. As the project is limited to only one user, it is also limited to only one user type

with full authorization access to all IoT devices. Additional research is needed to

design a system with different types of users and authorization access.

10. The data to be gathered from the IoT devices are going to be stored in a SQL

database and further investigation is needed to conclude whether it is the ideal one

or a NoSQL or a Graph database is the better choice.

11. The smartphone application is developed only for one platform, i.e. for Windows

10 Mobile, and further research is needed to decide which platform is the ideal

target.

12. The smartphone application User Interface (UI) and User Experience (UX) are

designed and developed solely on technical aspects based on the developer’s

opinion. Thereby collaboration and feedback from users is not considered, which

could improve both UI and UX.

13. Even though Machine Learning algorithms are used, only their fundamentals are

studied and an extended research is needed. As a result, the selection of one

algorithm over another is based only on the results each one produces during the

evaluation process.

14. Only a few Cloud Platforms are reviewed and the selection of one is based on that.

Further research is needed to investigate all the available platforms and which one

is the better choice.

1.4. Methodology
The methodology described in this section is the overall methodology followed through the course

of this project. As it can be seen in the following figure, Figure 2, six distinct stages are presented.

Page 6 of 94

Figure 2: Methodology.

1. Literature Review: During this step, secondary research is conducted including academic

papers, educational books, articles and journals. This research will provide knowledge

useful for fulfilling segments of all the objectives and research sub-questions described in

the previous section. As a result, the foundation for answering the main research question

will be laid. Literature review is also required for accomplishing the next stages of the

methodology.

2. Design Solution: Following the secondary research, the solution is designed along with its

architecture. This step is dedicated on analyzing all the findings discovered so far, what

technologies are going to be used and how.

3. Software Development: At this stage of the report, the required software is developed

according to the designed solution. This is the first out of three parts of the development

process as additional data are required for its continuance.

4. Data Gathering: As soon as the software development is completed, it is possible to gather

data which are important for the next phase of the development process. These data were

gathered by using primary research and more specifically quantitative approach. Data were

collected by structured observations where the behavior of people can be documented and

analyzed.

5. Machine Learning Service Development: Having a dataset, the second phase of the

development process can start. There, several Machine Learning algorithms are tested and

evaluated. Based on this evaluation, the best performing algorithm is chosen as the one to

be deployed as a web service and utilized by the proposed solution.

Page 7 of 94

6. Finalize Development & Results: Finally, the software from step 3 can be combined with

the Machine Learning service from step 5 and provide a unified service to smart home

users. The next step is to test the proposed solution, document the findings and reflect on

them.

In addition to the methodology, a Gantt chart illustrating the project schedule is available in

Appendix 01.

1.5. Expected Outcome
By the end of this report, it is expected that a smartphone application will be developed. The user

will be able to give a command by text or voice to the application in natural language. Then, the

application will be able to understand the context of the speech or text and respond back to the

user the same way. Through this interaction, the user will be able to manage the IoT devices

installed in the house, e.g. turn on the lights, adjust the heat, lock the doors etc. A single interaction

between the user and a IoT device will be accompanied by a timestamp and saved in a database.

The application will also display the current status of the house, for instance the temperature in the

bedroom.

Once the interaction between the user and the application generates enough data, the Machine

Learning algorithm will gain access to those in order to start training itself. The moment the

training is completed, the application will be able to ask the ML algorithm for predictions based

on time, through a web service. As soon as the predictions are available to the application, it will

send these data directly to the IoT devices in order to change their status, e.g. turning the kitchen

light on from off. By doing so, the automation of the house is achieved.

It is important to state that the outcome described above is the entire proposed solution and it is

further analyzed on chapter 3: Analysis. However, the prototype to be developed will have less

functionalities due to time constraints as it was stated in section 1.3 – limitations. It is also worth

mentioning that during the design and implementation of the proof of concept, several ML

algorithms are going to be tested and the one generating the best results will be selected for

deploying it as a web service.

Page 8 of 94

2. State-of-the-Art
This chapter focuses on the latest and greatest technologies currently available for building a Smart

Home solution. Moreover, it includes current solutions available on the market, as well as,

solutions developed from researchers. The purpose here is to answer the objectives:

1. Knowledge about IoT, Machine Learning and Cognitive Computing must be gained.

2. Research is required about other technologies such as the Cloud and how it can be used

in relation to IoT, ML and Cognitive Computing.

3. An investigation is necessary to be conducted on how IoT, ML and Cognitive Computing

technologies are currently used in a Smart Home environment.

The purpose of this chapter is to provide an answer to the research sub-question 1:

What is the current State-of-the-Art in Smart Homes considering the IoT, ML and Cognitive

Computing?

and set the basis for answering the research sub-question 2:

How a new solution can be designed for Smart Homes to achieve a self-operated house?.

Findings acquired from this chapter are later elaborated in chapter 3: Analysis, for answering the

main research question.

The rest of the chapter is structured as follows. First the Internet of Things is researched. Attention

is given to the term IoT, which devices can be considered part of IoT, how these devices can

communicate with each other and how autonomous decision making can be achieved. Following

that, the interest is shifted towards Cloud Platforms, Cognitive Computing and Machine Learning,

what are they and how can they influence IoT. Finally, existing Smart Home solutions are

documented and how they use the aforementioned technologies.

2.1. Internet of Things
There is not a clear definition of the Internet of Things as many organizations, partnerships

agencies and communities involved in defining technological standards and more, are in a

disagreement, each providing its own definition [1]. For instance, the Institute of Electrical and

Electronics Engineers (IEEE) describes IoT as:

“A network of items – each embedded with sensors – which are connected to the Internet.” [1, p.

10],

and the European Telecommunications Standards Institute (ETSI) as:

“Machine-to-Machine (M2M) communications is the communication between two or more entities

that do not necessarily need any direct human intervention. M2M services intend to automate

decision and communication processes.” [1, p. 12],

whilst the Internet Engineering Task Force (IETF) as:

Page 9 of 94

“The basic idea is that IoT will connect objects around us (electronic, electrical, non-electrical)

to provide seamless communication and contextual services provided by them. Development of

RFID tags, sensors, actuators, mobile phones make it possible to materialize IoT which interact

and co-operate each other to make the service better and accessible anytime, from anywhere.” [1,

p. 19].

As it can be concluded from the definitions and descriptions mentioned above, IoT refers to any

physical object/item/entity that can communicate with other objects through a network, exchange

data and make decisions. Thus, IoT can safely be distinguished into three different areas, the

devices (sensors, actuators, mobile phones, etc.), the communication network (e.g. the internet)

and the decision making (computing), each described in the subsections to follow.

2.1.1. IoT - Devices
As mentioned earlier, a thing in the IoT domain can be any physical object that can communicate

with another object and provide data and services over a network. In some cases, these objects

could also be functional without a human intervention. These objects, things or devices can be any

kind of sensors which can see, hear, talk, think (e.g. cameras, microphones, speakers, processing

units) or act (e.g. actuators). In [10], IoT devices are divided into resource-rich and resource-

constrained devices.

• Resource-Rich Devices

This type of devices are the ones that support the TCP/IP protocol suite by having the

appropriate software and hardware to do so [10, p. 20]. Still, this does not mean that these

devices are not constrained in terms of battery capacity and computational power. Because

of these limitations certain protocols have been developed for data exchange in the

application layer of the TCP/IP suite. These are the CoAP, MQTT, AMQP and others [10,

p. 20], which are going to be described in more depth later on section 2.1.2.

• Recourse-Constrained Devices

These devices, other than the limited battery capacity and computational power, they are

also constrained in terms of software and hardware which results in the failure of

supporting the TCP/IP protocol suite [10, p. 20]. Because of that, extra devices are needed

that can help establishing a communication channel between them and the internet [10, p.

20]. The devices which act as a “middleman” between the resource-constrained devices

and the internet can be simple gateways. As it will be discussed later on section 2.5, many

Smart Home solutions have developed this kind of implementation.

Resource-rich and resource-constrained devices are both important in IoT and both types are going

to exist in the future, since the selection between the two for an IoT implementation is based on

the use case and the solution that is going to be developed. For instance, in an IoT solution where

the devices need to consume as less energy as possible, the resource-constrained devices would be

more suitable, since the communication technologies they use (e.g. Bluetooth Low Energy) are

more energy efficient, as it is also documented later on section 2.1.2. On the other hand, if

immediate internet access is one of the top priorities, then the resource-rich devices should be

Page 10 of 94

considered in implementation. Other characteristics that should also be considered when choosing

between the two types of devices are throughput, range, security, cost, speed and overall

performance.

2.1.2. IoT - Network
The communication network area of the IoT is divided into two segments. The first describes the

physical layer, i.e., the implemented technologies and standards (Wi-Fi, ZigBee, Bluetooth, etc.).

The second layer is the application layer where used communication protocols are presented

(CoAP, AMQP, DDS, etc.).

Physical Layer

The devices in an IoT environment can communicate with each other by using communication

technologies over a network. There are many communication technologies for IoT solutions, some

of them are Wi-Fi, IEEE 802.15.4, Bluetooth, Z-Wave and ZigBee. Each one with its own benefits

and shortcomings in terms of power consumption, speed, range, application and cost [11, p. 2].

The following table, Table 1, summarizes all technologies based on their frequency band, data rate

and range.

 Wi-Fi

(802.11a/b/g/n/

ac/ad/ah)

[10], [11], [12],

[13]

IEEE 802.15.4

[10], [14]

Bluetooth

(Low Energy)

[10], [15]

Z-Wave

[10], [16]

ZigBee

[10], [11], [17]

Frequency

Band

1 GHz

2.4 GHz

5 GHz

60 GHz

868 MHz

915 MHz

2.4 GHz

2.4 GHz 900 MHz
868 MHz

915 MHz

Data Rate
1 Mb/s – 6.75

Gb/s

20 Kbit/s,

40 Kbit/s,

250 Kbit/s

1 Mb/s – 52

Mb/s
40 – 200 Kbit/s 250 Kbit/s

Range
20 – 100

meters
10 meters 10 – 50 meters 100 meters

10 – 100

meters

Table 1: Communication Technologies Comparison.

In [10], comparisons between the above described communication technologies take place. More

precisely, BLE outperforms the IEEE 802.15.4 and IEEE 802.11ah in power consumption [10, p.

14] yet still, between the IEEE 802.15.4 and 802.11ah, the first one is more energy efficient [10,

p. 15]. However, the IEEE 802.15.4 was surpassed by IEEE 802.11ah in terms of throughput [10,

p. 14]. Moreover, a comparison between Z-Wave and ZigBee indicated that ZigBee’s performance

was not a match for Z-Wave’s, even though ZigBee has larger data rate, and that the Z-Wave’s

implementation is more expensive than ZigBee’s [10, p. 15].

Page 11 of 94

As it can be concluded, each technology has its advantages and disadvantages and whether to use

one over the other highly depends on the use case they are going to be implemented and how well

they perform in it. It also depends on the type of devices, whether they are resource-rich or

resource-constrained (see section 2.1.1), and their hardware/software specifications and

requirements.

Application Layer

Following the previous discussion, for a complete scenario of exchanging messages between IoT

devices, communication protocols in the application layer need to be considered as well. Because

of the limited processing power and battery capacity characteristics of these devices, different

communication protocols other than the standard one, i.e., HTTP in the application layer of the

TCP/IP protocol suite, have been developed. These are:

• The Constrained Application Protocol (CoAP),

• The Message Queue Telemetry Transport (MQTT),

• The Advanced Message Queuing Protocol (AMQP) and

• The Data Distribution Service (DDS).

Their characteristics are presented in the following table.

CoAP

[10], [18]

MQTT

[10], [19]

AMQP

[10], [20]

DDS

[10], [21]

RESTful ✓ N/A N/A N/A

Transport UDP TCP TCP TCP /UDP

Security DTLS SSL SSL SSL/DTLS

Publish/Subscribe ✓ ✓ ✓ ✓

Request/Response ✓ N/A N/A N/A

Table 2: Communication Protocols Comparison.

From Table 2, one can observe that some protocols share the same characteristics. However, their

implementation is quite different, as documented in [10, pp. 8–10], and one protocol could perform

better than another in different occasions. For this reason, whether or not to choose one over the

other depends on the situation and the use case that is going to be implemented. It is also important

to consider the type of devices, whether they are resource-rich or resource-constrained (see section

2.1.1), and their hardware/software specifications and requirements. A similar conclusion was

derived in [10] as well, “each of these protocols may perform well in specific scenarios and

environments. So it is not feasible to provide a single prescription for all IoT applications.” [10,

p. 10].

Page 12 of 94

2.1.3. IoT – Computing
The decision making, or computing, is the third and final part of the IoT domain. On this step, the

IoT devices can consume the received data and make decisions. Although the idea of each IoT

device having its own computation capabilities sounds logical, it would generate difficulties

because of the limitation of these devices, as they were described in section 2.1.1. In that section,

IoT devices were divided into two categories, resource-rich and resource-constrained, both limited

on battery capacity and computational power. Thus, while basic functionalities could be

implemented on these devices, larger and more complicated tasks should be performed elsewhere

like microcontrollers, microprocessors, computers or even the Cloud.

Considering the resource-constrained devices, which require a gateway to connect to the internet

(see section 2.1.1), adding an extra component for calculating the heavy tasks makes the whole

architecture more complicated. As a result, two solutions can be considered. The first would be to

have the gateway perform these tasks, which would require including some extra processing power

in it. The second solution would be to assign these tasks to be computed in the Cloud. Both of

these are feasible as stated in [10] and solutions exists which use a combination of both, as it is

discussed later on section 2.5. In [10, p. 5], microcontrollers and microprocessors like Arduino

[22], Raspberry Pi [23], Intel Galileo [24], etc. are described as hardware devices capable of

supporting IoT applications. These devices accommodate the proper hardware and software to act

as a simple gateway but also the “brain” behind an IoT solution. It should be noted though, that

these devices are limited in computational power and if an IoT solution requires more, for instance

providing intelligent services by using Big Data, Machine Learning or Cognitive Computing, then

the Cloud can be utilized on performing these tasks [10, p. 5]. On the other hand, the resource-rich

devices, which do not require a gateway, can directly communicate with the Cloud even for the

simplest calculations.

By using the aforementioned solutions (microprocessors, microcontrollers, computers, Cloud) a

user can access the IoT devices (e.g. from a webpage or a mobile application), check their status,

give commands or even leave the devices make their own decision. The interaction between the

user and the IoT devices could be one of the simplest forms, by using specific text/voice

commands, buttons, sliders, etc. In addition, the decision making of these devices could be

performed by a simple software. Despite of that, this interaction could be enhanced and made more

natural to the user by using Cognitive Computing services and the decision making of the IoT

devices could be improved by a more complicated software using Machine Learning. Both

Cognitive Computing and Machine Learning are described in the ensuing sections.

2.2. Machine Learning
According to [25, p. 3], Machine Learning is defined as:

“Machine learning is programming computers to optimize a performance criterion using example

data or past experience. We have a model defined up to some parameters, and learning is the

execution of a computer program to optimize the parameters of the model using the training data

Page 13 of 94

or past experiences. The model can be predictive to make predictions in the future, or descriptive

to gain knowledge from data, or both.”

Specifically, as described in [25, p. 4], ML uses computer algorithms which are provided with data

as an input to train themselves and build an ML model. This model contains the entire knowledge

it has learned from the previous training. Then, the ML model can be used to understand further

the existing data and extract new information or predict future outcomes by passing new data as

an input. Machine Learning can be distinguished into three main learning techniques:

1. Supervised Learning,

2. Unsupervised Learning and

3. Reinforcement Learning.

Each learning technique has a different approach on how a computer can be trained, depending on

the imported data and the use case to be implemented, along with specific algorithms that have

been developed for each one. However, the primary focus is on Supervised techniques since the

solution to be built by the end of this report is classified as such (see chapter 3). Moreover, Time

Series Forecasting is also taken under consideration, since it can be used as a Supervised technique.

2.2.1. Supervised Learning
According to [26, p. 3], Supervised Learning requires a dataset that can be separated into two sets,

training and testing. The training set includes examples of input data along with their target values.

If the target values of the training set are numeric, then a Regression Supervised algorithm is used.

Otherwise, if the target values are nominal, then Classification is used. Based on the training set,

a Supervised ML algorithm tries to find correlation between data and build a model. Following

that, the output of the trained model can be compared to the testing set and evaluate its

performance. Regression and Classification are some of the categories to be discussed next along

with their ML algorithms. However, it should be noted that more ML algorithms and variations of

them might exist that could fall under these categories and are not researched because of the limited

timeframe.

Regression

The Regression technique tries to predict a numeric value (output – dependent variable) based on

the inputs (independent variables) which are going to be provided to the model [25, p. 9]. The

dataset that is going to be imported into a Regression model can have different attributes [25, p.

9]. Based on these attributes, the model predicts a numeric value which is later evaluated compared

to the desired value specified beforehand [25, p. 9]. Such Regression algorithms are:

• Linear Regression tries to correlate the dependent value (output) to the independent values

(inputs) based on a linear model [26, Ch. 3]. It actually attempts to fit all the available data

on a straight line and it can generate great results for data that can be illustrated as such. A

variation of Linear Regression is the Bayesian Linear Regression [26, Ch. 3], which uses

prior probability distribution as additional information for calculating the output.

Page 14 of 94

• Decision Trees [27, Ch. 18] is a graph represented as a tree made out of leaves and nodes.

Each node represents a rule on which the input data are evaluated and based on that, the

end result (output) is reached. The output is represented as a leaf. The Decision Trees can

consume a lot of memory and it takes a lot of time for training their models, but they can

be very accurate [28, p. 526]. Some variations of Decision Trees specifically for regression

techniques are:

o The Boosted Decision Tree Regression [28, p. 525] which constructs a chain of

trees, each learning from the errors of the previous one, and it can solve the

overfitting problem.

o The Decision Forest Regression [28, p. 525] also avoids the overfitting by

constructing a large set of trees, each uncorrelated to the other. The average of all

trees (the forest) produces one tree which is used as the model for predictions.

o The Fast Forest Quantile Regression [28, p. 525] is useful when the quintiles of

the predictive value are important for better understanding its distribution.

Other than Regression, Decision Trees can also be used in Classification which is discussed

later [26, Ch. 14].

• Neural Networks [27, Ch. 19] is an area of Machine Learning including algorithms

inspired by the human brain and it consist of numerous units. Each unit is connected to

each other through links and each link has a weight representing the data storage of the

whole network. A unit can act either as an input or as an output and it is doing all the

computations. Specifically for regression, the Neural Network Regression [28, p. 527]

algorithm can be used.

Classification

Classification tries to find correlation between data and separate them into classes. The output of

a Classification algorithm is nominal values that represent a class [25, p. 5]. Following the training

of a Classification algorithm, the trained model should be able to receive an input and classify it

into one of the desired classes, specified in advance [25, p. 5]. ML algorithms that support

Classification are:

• Logistic Regression [26, Ch. 4] is an algorithm which tries to predict the output based on

the probability of a certain set of inputs fitting to specific classes (output). This can be

accomplished by fitting all input data into a logistic function, an S-shaped curve.

• Decision Trees, as it was discussed earlier, can be also used in classification [26, Ch. 14].

The Classification Decision Trees function the same way as in Regression, however, the

result of their output is now a nominal value instead of a numeric one and the goal is to

categorize the set of inputs under a specific class (output). In Classification, Boosted

Decision Tree [28, p. 525] and Decision Forest [28, p. 525] algorithms can be used, as

well as the Decision Jungle [28, p. 525], which is a variation of the Decision Forest

algorithm and it can save memory but has the drawback of requiring more training time.

Page 15 of 94

• Neural Networks, as they were described previously (units connected to each other

through weighted links), they can also be applied to classification problems. Like Decision

Trees, their output is also nominal instead of numeric and their purpose is to classify

specific inputs to a specific output (class). Particularly for Classification, the Averaged

Perceptron [28, p. 528] algorithm can be used. Despite of being a primitive version of

Neural Networks, it is way faster in terms of training time, an advantage that could be of

use for smaller, less complex problems.

• Naive Bayes uses the Bayes’ rule which computes unknown probabilities of an event

happening based on known conditions [27, Ch. 14]. The Naive Bayes model assumes that

the features or attributes of the input data are independent to each other [26, Ch. 8]. This

independency between the attributes might not be the case in the real world, that is why is

called naive, but it can generate great results especially for data with large dimensionality

[26, Ch. 8]. Based on the Bayes’ rule, the Bayes Point Machine [28, p. 529] algorithm has

been developed, which calculates in approximation the theoretical ideal average of linear

classifiers.

• Support Vector Machine (SVM) calculates the boundaries between two or more classes

by using a straight line with the margins between the lines and the data points to be as wide

as possible from the closest data point [26, Ch. 7]. A variation of SVM is the Locally Deep

SVM [28, p. 529] which is a nonlinear classifier. The way it functions is by using several

smaller linear SVM methods and it is ideal when the linear SVM cannot produce enough

accurate results.

2.2.2. Time Series Forecasting
The previous techniques, Regression and Classification, were developed based on the assumption

of the input data being independent, however, in many situations, this might not be the case [26,

Ch. 13]. For instance, in order to predict the weather, specific geographical location and the time

of the day are required. Thus, making the input data dependent on time. For these reasons, when

the input data are dependent and especially on time, Time Series Forecasting techniques have been

developed.

Nevertheless, before start using a Time Series Forecasting algorithm, first the input data need to

be analyzed. During the time series analysis of the data, certain methods can be used to decompose

them into different components which can help identify patterns in the available dataset [29, Ch.

6]. These components are Seasonality, Trend, Cyclicality and Error. Seasonal patterns occur when

the data are affected by seasonal factors (e.g. yearly, monthly, daily, etc.) [29, Ch. 6], whilst Trend

is linear or nonlinear long-term increase or decrease of the data over time and can be characterized

as upward or downward [29, Ch. 6]. Cyclical pattern happens when the input data show escalations

and drops that are not of a fixed period over a long period of time [29, Ch. 6]. Error, or the

irregularity, is the remaining component after the decomposition procedure which contains

anything else in the time series data [29, Ch. 6]. Such decomposition, as described above, can be

either Additive or Multiplicative, meaning that all these components can be added or multiplied

Page 16 of 94

together to form the original time series dataset [29, Ch. 6]. As it is documented in [29, Ch. 6],

addition is preferable if the variation of the Trend pattern or the magnitude of the Seasonal pattern

does not vary with the level of the time series. On the other hand, multiplication is more suitable

if the variation of Trend or Seasonal patterns is proportional to the level of the time series dataset.

Some decomposition methods that can be used to identify the aforementioned patterns are the

Moving Average and the Classical decomposition, but more sophisticated ones are the X-12-

ARIMA and the STL [29, Ch. 6]. The X-12-ARIMA decomposition, as mentioned in [29, Ch. 6],

is based on the classical decomposition method and it provides robust results for unusual

observations. It can also handle additive and multiplicative decomposition. The drawback of X-

12-ARIMA is that only handles data which are collected monthly or quarterly. On the contrary,

the Seasonal and Trend using Loess (STL) decomposition works with a variety of seasonal

patterns, not restricted to monthly or quarterly [29, Ch. 6], and supports seasonal pattern

adjustments over long periods of time [29, Ch. 6]. However, it only works with additive

decomposition and does not handle calendar variations automatically [29, Ch. 6]. Even though

STL supports only additive decomposition, multiplicative can be implemented by using

logarithmic calculations [29, Ch. 6].

Although there are many Time Series Forecasting algorithms that can be used following the

decomposition techniques mentioned above, the most popular ones are the Exponential Smoothing

and ARIMA. These are discussed next.

• Exponential Smoothing [29, Ch. 7] uses the average of past observations to make a

forecast. These observations are weighted and the most recent ones have more weight than

older ones. To achieve that, the Error Trend Seasonality (ETS) [29, Ch. 7] technique is

utilized, where the components extracted from an earlier decomposition can be used

additive or multiplicative. It should be stated that it is not necessary to use all the

components, this highly depends on the input data. For instance, if a specific dataset does

not show seasonality patterns, then the seasonality component can be left out. Thus, for

each component of the ETS it can be assigned None, Additive or Multiplicative methods

separately. An example of how this can be presented is the ETS (N, M, A), in which N

stands for no error component, M for exponential trend where multiplication is used and A

for linear seasonality in which addition is necessary. Other examples of ETS

representations are the ETS(M,A,N), ETS(A,A,M), ETS(M,N,N) and so forth, each time

depending on the decomposed patterns.

• AutoRegressive Integrated Moving Average (ARIMA) [29, Ch. 8] is made out of three

different parts, the AutoRegressive (AR), the Integrated (I) and the Moving Average (MA),

each focusing in different aspects of the ARIMA model. The AR component is responsible

for calculating forecasts based on past observations, it looks like a linear regression and it

is represented as AR(p), where p is the term indicating the number of past observations to

be used. The MA component uses forecast errors of the past, in a model which resembles

a linear regression and is represented as MA(q), where q is the number of previous periods

of errors to be used. Last but not least, the Integrated component is represented as I(d),

which d refers to the number of transformations needed for a non-stationary time series to

Page 17 of 94

become stationary. It is important for a time series to be transformed into a stationary, if

initially it is not, because it will provide further information about the data and the

correlation to each other. An AutoCorrelation Function (ACF) and a Partial

AutoCorrelation Function (PACF) can be used for this purpose, to extract additional

information, and following their inspection, the number of p and q terms to be chosen can

be decided for the AR and MA models. Putting everything together, an ARIMA model can

be presented as ARIMA(p,d,q) and depending on the previous analysis, the p, d and q terms

can be equal to different values. Examples of that are ARIMA(1,1,0), ARIMA(0,1,0), etc.

It should be noted that the previous discussed ARIMA(p,d,q) model is relevant to a time

series which does not have any seasonal patterns. To take into consideration the

seasonality, then extra terms are needed. These terms are the capital P,D,Q and low case

m, resulting to ARIMA(p,d,q)(P,D,Q)m. The P,D,Q terms represent the seasonal aspects

of the AR, Integrated and MA components and the m refers to the number of periods in

each season.

Implementing any of the aforementioned ML algorithms and finding the best parameters for each

one, highly depends on the type of data. This process can be very complicated, time consuming,

power intensive and memory demanding. However, several tools have been developed which can

automate these processes, among them are some Cloud tools that are described later, section 2.4.

These tools can be used to help automate the implementation of specific ML algorithms. Moreover,

they provide the advantage of using remote memory and computational power. Then again, before

going into the Cloud tools, the methods of how ML algorithms can be evaluated based on their

accuracy are discussed next.

2.2.3. Evaluation
Having presented a few Machine Learning techniques and algorithms in the previous subsection,

a question rises on how specific ones should be chosen in favor of others, as there is not a single

algorithm which outperforms all others. To compare and choose an ML algorithm, certain

techniques have been developed to evaluate each one and their forecast accuracy. These techniques

are listed below. It should be noted that the following methods are focused on evaluating

supervised ML algorithms.

• Mean Absolute Error (MAE) [29, Ch. 2] is a scaled-dependent error technique. It takes

the average of the absolute difference between the predicted values and the original

observations with all differences having the same weight. The result is dependent on the

scale of the selected dataset and it cannot be compared between errors of different scales.

• Root Mean Squared Error (RMSE) [29, Ch. 2] is also a scaled-dependent error technique

and it should be used to compare algorithms on a dataset of the same scale, like MAE. It is

the square root of the average of squared differences between the predicted values and the

original observations. RMSE gives a higher weight to large errors because each difference

is squared before all differences are averaged. This is useful in predictions where large

errors are unwanted.

Page 18 of 94

• Mean Absolute Percentage Error (MAPE) [29, Ch. 2] as the name suggests, is a

percentage error technique. It takes the average of the absolute difference between the

original observations and the forecasted values divided by the original observations and all

of that multiplied by 100. This makes a percentage error technique and it can be used to

compare data which are on different scales. However, it can give values such as zero or

infinite if the observation dataset includes values equal to zero or close to zero.

• Mean Absolute Scaled Error (MASE) [29, Ch. 2] is a technique independent from the

scale of data, like MAPE, and it falls under the category of scaled error techniques. It is a

more complicated technique that requires more calculations to be performed. This method

is proposed as an alternative method to MAPE as it does not suffer from zero or infinite

values.

For all techniques mentioned above, the lowest values indicate the most accurate ML algorithm,

or the algorithm with less errors [29, Ch. 2]. Specifically for MASE, values lower than one indicate

a better forecasting in comparison to an average naïve forecast, whilst values greater than one show

a worse performance [29, Ch. 2].

2.3. Cognitive Computing
Following the discussion about Machine Learning, its techniques and algorithms, it can be seen

the huge potential it has about solving difficult, real-life problems and enable new technologies as

well. One of the technologies based on ML is Cognitive Computing.

Cognitive Computing was developed in order to provide a computer, a robot, or any electronic

device with the appropriate knowledge around a specific operating field [30]. As stated in [9],

“Cognitive systems are probabilistic, meaning they are designed to adapt and make sense of the

complexity and unpredictability of unstructured information. They can “read” text, “see” images

and “hear” natural speech. And they interpret that information, organize it and offer explanations

of what it means, along with the rationale for their conclusions. They do not offer definitive

answers. In fact, they do not “know” the answer. Rather, they are designed to weigh information

and ideas from multiple sources, to reason, and then offer hypotheses for consideration. A

cognitive system assigns a confidence level to each potential insight or answer.” [9, p. 6].

Following that, the first challenge for a Cognitive system would be to understand natural language

and its semantics. To achieve that, more sophisticated ML algorithms are needed. According to

[31, p. 1], traditional ML algorithms produce great results in numerical data, but they are not

suitable for processing and understanding natural language where semantics play a crucial part in

comprehending a sentence, a paragraph or a document [31, p. 2]. Because of this problem, in [31]

a more sophisticated ML algorithm was presented which could understand the context of a

sentence.

Nevertheless, not further research is conducted in such algorithms in the rest of this project, since

there are already implementations of them by large, well-established companies (e.g. Amazon,

Page 19 of 94

Google, Microsoft, etc.) and some of them are used later in chapters 3 and 4. Their provided

Cognitive services can be used and accessed by Application Programming Interfaces (APIs)

through their Cloud Platform (see section 2.4). Furthermore, before a Cognitive Computing system

can understand the context of a sentence, first it needs to access this sentence. For this purpose,

technologies like Speech-to-Text, Text-to-Speech, Computer Vision, Text Analytics, and many

more are used. The Cognitive services provided over the Cloud are discussed in the ensuing section

2.4.

In conclusion, depending on the used Cognitive service, a device might need to perform all the

aforementioned tasks which could be proved to be computational intense. However, by utilizing

the Cloud, any device would be able to support and deliver Cognitive services to the end users.

The Cloud and what services are provided is discussed next.

2.4. Cloud Platforms
As discussed earlier, the Cloud can be used by IoT devices in different solutions, from executing

the simplest tasks to the more complicated ones. Although there are many platforms that support

Cloud computing, only a few are researched as stated in chapter 1, section 1.3 - Limitations.

However, before diving into the description of the platforms, a short introduction to the Cloud will

follow. The purpose is to get an overview of how the Cloud can be used and which are the services

that it can offer.

A Cloud Platform can be distinguished into three types of services [32, p. 13]. These are:

1. Infrastructure-as-a-Service (IaaS): As the name indicates, IaaS provides all the

underlying infrastructure for software and applications to be built upon. Specifically, IaaS

provides the necessary servers and databases where data can be stored. It also provides

network security, including firewalls, and physical machines which host all the above. All

that are illustrated in Figure 3 [33].

2. Platform-as-a-Service (PaaS): PaaS includes all the IaaS components but also

development tools which can be used to build software, applications and/or services, see

Figure 3 [33].

3. Software-as-a-Service (SaaS): SaaS provides already developed software or applications

which can be used by users in their everyday life and they are hosted and executed in the

Cloud, see Figure 3 [33].

Page 20 of 94

Figure 3: Cloud Platform.

All these Cloud services can be used separately or in a combination, depending on the solution a

developer wants to offer. Following that, three different Cloud Platforms are researched, Microsoft

Azure, IBM Bluemix and Amazon Web Services, and the services they provide. However, the

research is limited on the Cloud services which are of interest of this report and are important for

fulfilling the second objective about the Cloud in correlation to IoT, ML and Cognitive Computing

(chapter 1, section 1.3).

2.4.1. Microsoft Azure
Microsoft Azure is a Cloud Platform which can offer many different tools and combines all the

aforementioned services (IaaS, PaaS, SaaS) that developers can utilize [34]. Nevertheless, the most

interesting one for this project is the PaaS part of it and Microsoft Azure provides plenty of tools

under this service.

More precisely, a whole platform about IoT applications can be used [35], providing connectivity

between many heterogeneous IoT devices through an IoT Hub [36, p. 8]. The functionalities of the

IoT hub are explained in [36, p. 8]. First, each device needs to register itself to the hub and a unique

identifier is given to it. By using this identifier, an IoT device can be authenticated and authorized

to access the hub. Following that, the IoT Hub is responsible for sending, receiving and redirecting

messages between the devices. Apart from the individual devices, a central component could be

built which would act as the central unit for controlling all these devices. This central unit could

be implemented in a microprocessor/microcomputer like a Raspberry Pi (see subsection 2.1.3) or

even a smartphone. Additionally, different kinds of databases (SQL or NoSQL) can be used to

store necessary information [36, p. 584] and plenty communication protocols (like the AMQP, see

section 2.1.2) [36, p. 9] can be implemented for resource-rich and resource-constrained devices

(see subsection 2.1.1).

Furthermore, Azure offers another platform called Machine Learning Studio [37], which can be

used in conjunction with the rest of the services, e.g. access a database and retrieve the stored data

[28, p. 25]. In this studio, the retrieved data can be analyzed before feed them in the available ML

algorithms and train specific models. Azure implements plenty ML algorithms for supervised and

unsupervised learning alike [28, p. 520] and it also includes Time Series Forecasting techniques

Page 21 of 94

[28, p. 103]. Having trained a model, Azure Machine Learning Studio gives the capability to make

it available to the internet through a web service and accessible by using an API key [28, p. 73].

This way, applications could send relevant data to this model and receive predictions based on

these data. It should be noted that the Machine Learning Studio is very flexible and it can provide

several models to be accessed under the same web service [28, p. 604], through a Request-

Response Service (RRS) call [28, p. 25] or a Batch Execution Service (BES) [28, p. 25]. The

difference is that the RRS can make one call at a time resulting to real-time predictions, while BES

can make multiple calls at the same time to the web service which could take some time to calculate

the predictions. Furthermore, because of the deep integration the studio has with the rest of the

Cloud Platform, a deployed model can be easily adjusted or retrained [28, p. 664], if needed, and

new data can be used for training, since a connection can be established with Azure but also non-

Azure databases [28, p. 25].

Other services Azure can offer are the cognitive ones. Microsoft Cognitive Services [38] is another

platform provided by Azure, where specific services can be access by API keys. These services

include language understanding, speech recognition, computer vision, knowledge exploration, etc.

[39]. A particularly interesting one is the Language Understanding Intelligent Service (LUIS) [39,

p. 73], [40] that can be used to build conversational intelligence into any software application. By

using LUIS, a service can be provided to users through a device, like a computer or a smartphone,

which can understand language semantics. Thus, any user would be able to communicate with

his/her device in natural language [39, p. 73]. The information given to LUIS is in text form, i.e. a

sentence. Then, LUIS analyzes the provided sentence and it can identify its context. Subsequently,

LUIS can respond to the user in text form, based on his/her initial request, and provide an answer

[39, p. 73]. Going a step beyond that, by implementing speech recognition to the same device, i.e.

using the Bing Speech API service, the user-LUIS interaction can take place entirely on voice

alone [39, p. 28]. The aforementioned process describes an intelligent bot. Essentially, a bot is a

software agent which can communicate with users and provide services to them without the

presence of a human [41, Ch. 2].

There are several ways someone can access all these platforms and based on them different

restrictions may be applied. The most common one is to start using Azure for the first month as a

free trial and then continue with a free account or as a Pay-As-You-Go subscription [42]. If a

developer uses a free account, he/she will have to face some restrictions on the provided services.

For instance, using a free database has restrictions in terms of database type, as well as, storage

capacity [43]. For Azure, the freely accessed database is an SQL one with 32 MB of storage.

Another example is the IoT Hub which restricts the number of devices to be connected, up to 1000

[36, p. 261], and the amount of messages to be exchanged per day, 8,000 [44]. The Machine

Learning Studio also comes with its own restrictions, if it is used with a free account. For example,

only Request-Response Service (RRS) calls [45] can be used. As long as the Cognitive Computing

platform is concerned, LUIS service is limited to 10,000 transactions per month [46] and the

speech recognition service to 5,000 calls per month [47].

The same model (one-month trial, free account, pay-as-you-go) is followed by other Cloud

Platform providers as well, like the ones to be discussed next, but with different kind of restrictions.

All the Cloud Platforms are summarized and compared towards the end of this section on Table 3:

Page 22 of 94

Cloud Platforms – IoT., Table 4: Cloud Platforms – Machine Learning. and Table 5: Cloud

Platforms – Cognitive Computing.

2.4.2. IBM Bluemix
IBM’s Bluemix platform, like Microsoft’s Azure, offers several services. Among them there are

an IoT platform, Cognitive Computing Services and Machine Learning. The IoT platform works

the same way as the one described in Azure and it supports many IoT devices. As documented in

[48], the connected devices can communicate with each other by exchanging messages and they

can be accessed and controlled by a central unit. The central unit can be built on the Cloud, by

using IBM’s Message Hub, or to a Bluemix application implemented in a microprocessor/

microcontroller, as the ones discussed in subsection 2.1.3 (e.g. Arduino). The communication

between the devices can take place by using certain communication protocols, which some of them

were described in section 2.1.2 (e.g. MQTT) and the data exchanged can be stored in a NoSQL

database.

Additional services are the Cognitive Computing such as speech/vision recognition, language

understanding, big data analysis and so forth. These can be accessed through Watson, by using

API calls, and makes it easy for any type of devices to be enhanced with additional intelligence.

Watson is IBM’s intelligent service that can be used for creating an intelligent bot [49], similar to

Microsoft’s LUIS. Watson can interact with a user and understand the context of the conversation

[49]. It can also be further enhanced with speech recognition, Watson Speech-to-Text [50] and

Text-to-Speech [51], for a more realistic interaction.

Apart from the aforementioned services, IBM Bluemix offers Machine Learning services as well,

although its implementation is quite different from Microsoft’s Azure. As documented in [52], the

data analysis and the training of a Machine Learning model must happen offline by using a specific

software made by IBM, the IBM SPSS, which can retrieve a dataset as input from many different

SQL and NoSQL databases [53]. Then, the trained model can be exported and uploaded to the

Machine Learning service in the Cloud. From this point forward, the model can be accessed the

same way as in Azure, by a set of REST API keys. Using these keys, applications could ask the

model for predictions based on given data in real-time, but also by providing a batch of data and

then waiting for their forecasts. A disadvantage of this method is that there is not a seamless

integration of the ML service with the rest of the Cloud tools. This drawback can restrict the

functionalities on some applications. Moreover, once a model has been deployed to the Cloud,

there is not an easy way of retraining it, unless if it was designed to be retrained before uploading

it [52]. On the other hand, the IBM SPSS software is widely used and a great variety of ML

algorithms are provided, including Time Series Forecasting [54]. The greatest advantage is that it

can automatically test several ML algorithms at the same time and in the end, suggest the one

performed the best [54].

Like Microsoft Azure, IBM Bluemix is also accessible freely and fully functional for one month,

but following that, some restrictions may be applied. These restrictions can be deducted if a Pay-

As-You-Go subscription is used. For instance, if a free account is used, the IoT Platform is limited

to support only 500 registered devices [48] and the messages exchanged between them are

Page 23 of 94

constrained in 100 Megabytes per month [55]. Also, the free database offered for storing data from

the IoT platform is a NoSQL limited to 1 GB of storage [56]. Moreover, the intelligent bot by

Watson can only make 1,000 transactions per month [57] and the speech recognition is restricted

to the first 1,000 minutes for Speech-to-Text [58] and first 1,000,000 characters for Text-to-Speech

[59]. Regarding the Machine Learning platform, there is a limited number of ML models to be

uploaded in the Bluemix platform [52] and the SPSS software used for training the models is not

freely accessible after a 30-days trial [60]. A comparison of Bluemix and the other platforms can

be seen in Table 3, Table 4 and Table 5.

2.4.3. Amazon Web Services (AWS)
Similar to the Cloud Platforms described earlier, Amazon Web Services (AWS) offer plenty and

great Cloud tools such as an IoT platform, Machine Learning and Cognitive Computing. The AWS

IoT platform and the Cognitive services work almost identical to the previous discussed platforms,

Microsoft’s and IBM’s. For the IoT platform [61], again different heterogeneous devices can be

registered and connected to the Cloud and exchange messages between them. The whole

communication is handled by a Device Gateway [61, p. 1] located in AWS and the communication

channels use specific protocols like MQTT [61, p. 1] (see subsection 2.1.2). The data coming from

the different devices can be easily stored in SQL and NoSQL databases [62].

Moreover, AWS supports Cognitive services and intelligent bots can be implemented by using

Amazon Lex [63] (utilizing Amazon’s language understanding service), similar to IBM’s Watson

and Microsoft’s LUIS. On top of that, Amazon Polly [64] can be used to enhanced Lex with speech

recognition capabilities.

Not limited to those services, AWS offers a Machine Learning platform as well, which

unfortunately is limited compared to the ones provided by the other two discussed platforms

(Azure and Bluemix) in terms of algorithms variety. Amazon Machine Learning [65] is restricted

to only three ML algorithms, which are all focused on supervised techniques [65, p. 15]. These

algorithms are the Linear Regression for Regression problems and Logistic Regression and

Multinomial Logistic Regression for Classification problems [65, p. 15]. However, AWS Machine

Learning is much simpler to use with step-by-step guides and automatic selection of the most

suitable ML algorithm [65, p. 1]. Amazon specific SQL and NoSQL databases can be used to

import the initial data for training a model [65, p. 2] and applications can make real-time & batch

requests [65, p. 34] by using specific API calls [66], after the model has been trained and deployed.

Finally, AWS can be accessed freely with some restrictions applied to its services for 12 months

and then a Pay-As-You-Go subscription is required [67]. Restrictions to the IoT platform include

250,000 messages per month [62], which is a time-limited offer and then additional charges are

applied. Following that, Amazon Lex is restricted to 10,000 text requests per month and another

5,000 speech requests per month, which again will be decreased if the trial expires. One more

important limitation is that Amazon Machine Learning is only available under a paid account [62].

Page 24 of 94

2.4.4. Differences between Cloud Platforms
To get an overview of the capabilities of each platform, a comparison was set with each other

based on the earlier discussion. The following tables (Table 3, Table 4 and Table 5) were created

in order to summarize all the relevant Cloud tools and the applied restrictions on their free services.

Considering the proposed solution briefly described in chapter 1, the Cloud services each platform

provides are more important for designing such a solution than the restrictions applied under a free

account. However, the limitations of each free Cloud service become relevant when the prototype

needs to be implemented, since a free account is intended to be used throughout the entire project.

The following table, Table 3, compares the previously discussed Cloud Platforms and specifically

their IoT Platform in terms of:

• how IoT devices can be connected (Cloud Gateway),

• the maximum number of devices each platform can support under a free account

(Connected Devices),

• the total number of messages to be exchanged per day for a free account (Total Number

of Messages per Day),

• the supported communication protocols between devices (Communication Protocols) and

• the database each platform can utilize to store data from the IoT devices (Database -

Storage), again by using a free access to the service.

Characteristics Microsoft Azure IBM Bluemix
Amazon Web

Services

Cloud Gateway IoT Hub Message Hub Device Gateway

Connected

Devices
1,0001 5001 Not specified

Total Number

of Messages per

Day

8,0001 per Day 3,3331 per Day2 8,3331 per Day3

Communication

Protocols

AMQP / MQTT /

HTTP
MQTT / HTTP MQTT / HTTP

Database –

Storage

SQL – 32 MB1

NoSQL
NoSQL - 1 GB1 SQL - 5 GB4 /

NoSQL - 25 GB4

Table 3: Cloud Platforms – IoT.

1 Free service. Can be increased if a paid account is activated.
2 The information given by IBM is 100 Megabytes per month [55], which is around 100,000 Kilobytes per month.

IBM also specifies that each message is 1 Kilobyte [55], this results in 100,000 messages per month, divided by 30

days it results in 3,333 messages per day.
3 The actual information given by Amazon is 250,000 messages per month, divided by 30 days makes it 8,333

messages per day. It should be noted that this is a limited time offer of 12-months [62] and then additional charges are

applied.
4 Trial service (1 year). Can be increased if a paid account is activated, but also decreased after the trial expires.

Page 25 of 94

From Table 3, it can be observed that, all three platforms offer similar functionalities. Moreover,

Microsoft Azure should be selected if the solution to be implemented requires the AMQP

communication protocol. However, IBM Bluemix should be avoided if the solution requires a SQL

database instead of a NoSQL one. Furthermore, if a free account is used and the storage capacity

is of importance, Azure will be limiting the prototyping process. On the other hand, if the database

is not a crucial component of the solution, AWS or Azure are the better choice. Of course, whether

to choose one platform over another also depends on the Machine Learning and Cognitive

Computing services each one offers. These are described next.

The ensuing table, Table 4, compares each platform according to their Machine Learning

capabilities and they are based on the following parameters:

• how Machine Learning functionalities can be accessed (Platform),

• what kind and how many ML algorithms are provided (Machine Learning Algorithms),

• if time series forecast techniques can be used (Time Series Forecasting),

• how a trained ML model can be accessed by other applications and services (Web Service),

• how many trained ML models can be provided under a single web service and for a free

account (Models per Web Service),

• if already deployed ML models can be retrained (Retrain Deployed Models) and

• what kind of databases can be used to make a dataset available to each ML platform

(Supported Databases to Import Data).

From that table, a meaningful distinction between the three platforms can be achieved by observing

three parameters. The first parameter is the Machine Learning Algorithms each one provides.

While Supervised Learning is offered by all platforms, AWS can implement only three.

Alternatively, Bluemix and Azure provide a large variety of them. In addition to that, Unsupervised

Learning algorithms are only available to Azure and Bluemix. On top of that, only Bluemix offers

Reinforcement Learning algorithms. The next crucial parameter in the Time Series Forecasting

algorithms, which AWS does not implement. Last but not least, the Models per Web Service is

another important parameter, as it indicates the number of ML models that can be deployed as a

web service. This number is not specified for AWS. However, Azure can have multiple ML

models, whilst Bluemix only two. Whether to choose one over another highly depends on the needs

of the solution to be designed. Nevertheless, if a free account is used, Azure should be selected as

it has fewer restrictions.

Page 26 of 94

Characteristics Microsoft Azure IBM Bluemix
Amazon Web

Services

Platform
Azure Machine

Learning Studio

Watson Machine

Learning

&

 IBM SPSS5

Amazon Machine

Learning6

Machine

Learning

Algorithms

Supervised /

Unsupervised

(Multiple)

Supervised /

Unsupervised /

Reinforcement5

(Multiple)

Supervised6

(Restricted to 3)

Time Series

Forecasting
Yes Yes5 No

Web Service

REST APIs

(Real-time &

Batch Requests7)

REST APIs

(Real-time &

Batch Requests)

APIs6

(Real-time &

Batch Requests)

Deploy as a Web

Service
Automatic Manually Automatic

Models per Web

Service
Multiple 21 Not specified

Retrain

Deployed

Models

Yes Only by design5 Not specified

Supported

Databases to

Import Data

SQL / NoSQL

Not restricted to Azure

SQL5 / NoSQL5

Not restricted to

Bluemix

SQL / NoSQL

Amazon only

Table 4: Cloud Platforms – Machine Learning.

At Table 5 below, the Cognitive services are compared. The focus is on:

• the available bots each platform has (Intelligent Bot),

• how many transactions a bot supports under a free account (Intelligent Bot Transactions

per Month) and

• if speech recognition is supported (Speech Recognition).

5 Trial service (30 days).
6 Paid service.
7 Batch requests are only available with a paid account.

Page 27 of 94

Characteristics Microsoft Azure IBM Bluemix
Amazon Web

Services

Natural Language

Understanding

(Intelligent Bot)

LUIS Watson Conversation Amazon Lex

Intelligent Bot

Transactions per

Month

10,0001 / Month 10001 / Month

10,0004 / Month

(Text requests)

5,0004 / Month

(Speech requests)

Speech-to-Text

(Speech Recognition)
Bing Speech API

Watson

Speech-to-Text
Amazon Lex

Text-to-Speech

(Speech Recognition)
Bing Speech API

Watson

Text-to-Speech
Amazon Polly

Table 5: Cloud Platforms – Cognitive Computing.

From the above table, it can be observed that the only distinction between the platforms is the

amount of transaction per month allowed for free. Despite that, all three implement an Intelligent

Bot that can understand the context of a conversation. Furthermore, they also provide services

which can convert speech to text and vice versa.

Finally, it can be concluded that all Cloud Platforms offer more or less the same services, but there

are differences on their implementation. These variations can be the main focus of whether one

platform should be chosen over another, depending on the solution to be built by a developer along

with his/her preferences and budget. Moving away from a Cloud-centric discussion, the next

section is dedicated to Smart Home solutions and how IoT, Machine Learning, Cognitive

Computing and the Cloud can shape them.

2.5. Smart Home Solutions
During this section, Smart Home solutions are discussed which are currently available on the

market. However, an investigation is conducted as well on what researchers are currently working

on to make homes even smarter. By then end of this section, there will be a clear understanding on

how IoT, ML and Cognitive Computing are used in a smart home environment. Thus, answering

the third objective - An investigation is necessary to be conducted on how IoT, ML and Cognitive

Computing technologies are currently used in a Smart Home environment. (chapter 1, section 1.3)

and finalize the study on the first research sub-question (chapter 1, section 1.3):

What is the current State-of-the-Art in Smart Homes considering the IoT, ML and Cognitive

Computing?

Page 28 of 94

The rest of this section includes commercial and research solutions for a Smart Home environment

and how the Cloud, Cognitive services, Machine Learning and the Internet of Things are utilized.

It should be noted that more solutions exist in the market and proposed by researchers, but not all

of them can be documented here. As a result, only a few were selected which represent the rest, as

they share similar functionalities, or provide a couple of unique services.

2.5.1. Commercial Solutions
In the following pages, selected solutions which are available to the market are documented. First,

examples of Complete Solutions are examined. These offer an integrated Smart Home experience

to their users and comprise of a smartphone application, a variety of IoT devices and a Hub.

Secondly, Individual IoT Devices which are not part of Complete Solutions are described. These

are devices capable of operating by themselves without the need of a central Hub. Finally,

Complementary Solutions are documented. Devices included in such solutions are capable of

controlling other IoT devices through Cognitive services. Such devices can be used to enhance the

Complete Solutions with natural language understanding capabilities. On top of that, they can

function as a bridge between the Complete Solutions and the Individual IoT Devices to create a

more versatile Smart Home experience.

Complete Solutions

As discussed earlier, Complete Solutions are designed to offer a complete Smart Home experience

by providing all the necessary components:

• a variety of IoT devices,

• a central Hub, where all devices are connected to, and

• a smartphone application, from which all device can be controlled.

Some examples of such solutions are the Samsung SmartThings [68], Bosch Smart Home [69] and

Honeywell [70]. It should be noted that many more corporations exist that offer a complete Smart

Home solution. However, since the core functionalities of each are quite similar and the time is

not enough to document every solution, only Samsung SmartThings is examined next. The purpose

for that is to gain a clear understanding on the services a Complete Solution can offer.

Samsung SmartThings is a Smart Home solution provided by Samsung [68] and it is composed of

a central unit, a variety of IoT devices and a smartphone application [71]. The type of IoT devices

Samsung offers are resource-constrained devices (see section 2.1.1), which are forced to be

connected to an extra device for internet access [72]. This extra device is the central unit called

Samsung SmartThings Hub [73], which is responsible for connecting all devices to the internet

and allow communication from and to the smartphone application. However, the SmartThings

ecosystem is highly integrated and products from other manufacturers can be used. These products

include resource-constrained and resource-rich devices (see section 2.1.1) [72]. The SmartThings

Hub connects to the smartphone application and to the internet through Wi-Fi and it communicates

Page 29 of 94

with the IoT devices with Z-Wave, ZigBee and/or Wi-Fi [73]. An illustration of the basic

components can be seen in Figure 4 [71] below.

Figure 4: Samsung SmartThings.

By using the smartphone application, the user is capable of controlling each device separately.

However, the user can also set predefined scenes/routines which, when activated, can control

multiple devices at once [74]. A routine is a scenario which can happen during the user’s everyday

life. For example, an “I am back” scene lets the Smart Home know that the user is back home, so

it should unlock the door, heat-up the living-room and turn on the lights. The devices each routine

controls are defined by the user [74]. A routine either can be activated manually by the user or

automatically by the time of the day, the geographical location of the user or a motion sensor [74].

IoT devices available from Samsung and also other manufacturers include motion sensors, water

leak sensors, smoke sensors, outlets, light bulbs, speakers, thermostats, cameras, door locks, voice

assistant devices and many more [72]. Moreover, repeater devices are also available which can

extend the range of the SmartThings Hub for Z-Wave and ZigBee enabled devices [75].

Individual IoT Devices

These devices can operate by themselves, without the need of being part of a Complete Solution.

Such devices are the Nest Thermostat [76], or the Philips Hue lighting system [77]. There are other

companies that provide Individual IoT Devices as well, e.g. Withings [78]. Nevertheless, since the

primary focus here is to understand how these devices operate, only one is documented next.

Furthermore, as Nest Thermostat is one of the few devices offering Machine Learning capabilities,

it is the one to be discussed.

The Nest Thermostat [76] falls under the category of the resource-rich devices which can be

connected directly to the internet and communicate with other IoT devices. This device is

responsible for heating up or cooling down the temperature of a specific room in a house [76]. The

Nest Thermostat can be seen in Figure 5 [79].

Page 30 of 94

Figure 5: Nest Thermostat.

The traditional ways of adjusting the temperature are to use directly the Nest Thermostat or the

companion smartphone application [76], nevertheless, Google Home can be used to control the

Nest Thermostat entirely by voice [80]. What makes this device special is being one of the few

which utilizes Machine Learning algorithms and Cloud Computing services in order to figure out

the daily schedule of the user and adjust the room temperature accordingly [81]. The disadvantage

is that one device can only control the temperature for one room and more devices are required to

cover the whole house. On the other hand, by having one Nest Thermostat to each room, it can

adapt to it and to the people’s preferences using that room, so a more personalized experience can

be provided [82].

Complementary Solutions

These solutions comprise of devices which can function either as a bridge between the Complete

Solutions and the Individual IoT Devices, or to enhance the Complete Solutions with natural

language understanding capabilities. Examples of that are the Google Home [5] and Amazon Echo,

or Echo Dot [6]. Even though more devices like the aforementioned ones might exist in the market,

the core functionalities remain the same for each, to perform tasks through voice alone. Among

these tasks are the control of Individual IoT devices, or devices included in Complete Solutions.

For that reason, only one of them is described next, as the emphasis is on how a device like this

functions and what services it provides.

Google Home is a voice assistant device powered by the Google Assistant, which among other

functionalities, can be used to control heterogeneous devices installed in a house [5]. What makes

it unique is that users can talk to this device and it can understand the context of what users are

saying. This simplifies the process of controlling different devices, as no specific commands need

to be remembered by the users and given to the device. This is possible because the Google

Assistant [8] utilizes the power of the Cloud (Cognitive services, see section 2.3) to analyze voice

commands. Once the device has received a command, it can execute it or ask the user for further

clarifications by voice. Google Home is illustrated in Figure 6 [5] below.

Page 31 of 94

Figure 6: Google Home.

Google Home is a perfect example of an IoT resource-rich device (see subsection 2.1.1) that can

be connected to the internet directly and harness the power of the Cloud. Utilized Cloud services

are the Cognitive ones, such as natural language understanding, speech recognition and knowledge

exploration (see section 2.3).

2.5.2. Research Solutions
Up until now, commercial products have been researched about Smart Homes, some focusing in

the overall Smart Home environment, e.g. Samsung, and others on how the Smart Home

experience can be enhanced by using services like Cognitive Computing and Machine Learning,

Google Home and Nest Thermostat respectively. Particularly, the latter is an area of interest for

many researches as well and many publications emphasize on how the Smart Home experience

can be improved.

In [83], many solutions are documented on how the habits of a user can be detected in the

environment of a house by using data mining techniques and unsupervised ML algorithms.

Following that, the authors of [83] proposed a solution based on fuzzy mining to model user

routines in a house environment filled with many different types of IoT devices, e.g. light bulbs,

actuators, thermostats, etc. The habits were detected by the traces a user leaves after interacting

with a specific device [83]. By the end of [83], it was concluded that four main set of habits were

detected with high confidence, these correspond to a morning routine, relax, washing dishes, and

cooking/eating. However, further research is needed before providing services to the end user

based on this solution.

In another published research, [84], a user behavior prediction solution for Smart Homes was

developed by using ML supervised techniques and a variation of the Neural Network algorithm,

the Backpropagation Neural Network (BPNN). The combination of BPNN with parallel

programing in the Cloud produced amazingly good results on predicting user habits based on input

data from the current status of heterogeneous IoT devices. Yet, not a clear description was provided

on how the produced predictions will affect the home devices and if an autonomous operating

house is possible.

Page 32 of 94

Last but not least, in [4] an Improved Hidden Markov Model (IHMM) was used along with

historical data to predict the behavior of people with disabilities in a Smart Home environment.

Specifically, in this research, the time variant was considered as it can play a crucial part on the

state of the home devices in the IHMM. Still, in this research, an answer was not given on how the

predictions from the IHMM could be utilized from a Smart Home solution in a larger scale.

2.6. Remarks
In this chapter, several aspects of Smart Homes were researched, starting from the area of the

Internet of Things, continuing to Machine Learning, Cognitive Computing and the available Cloud

Platforms and their capabilities. In the end, it became more transparent how all these technologies

are used in commercial available products and realized their potential through further research.

Thus, accomplishing the first three objectives:

1. Knowledge about IoT, Machine Learning and Cognitive Computing must be gained.

2. Research is required about other technologies such as the Cloud and how it can be used

in relation to IoT, ML and Cognitive Computing.

3. An investigation is necessary to be conducted on how IoT, ML and Cognitive Computing

technologies are currently used in a Smart Home environment.

stated in section 1.3 - Problem Formulation and answering the first research sub-question:

What is the current State-of-the-Art in Smart Homes considering the IoT, ML and Cognitive

Computing?

With the knowledge acquired so far, the rest research sub-questions can be answered, starting with

the second one in the next chapter.

Page 33 of 94

3. Analysis
This chapter sets the starting point on answering the second research sub-question stated in chapter

1 – section 1.3, which focuses on:

How a new solution can be designed for Smart Homes to achieve a self-operated house?

The chapter starts by proposing the Smart Home solution to be designed in this project. Then, it is

compared to current solutions, documented in chapter 2, in order to comprehend how the proposed

solution is different and what are its advantages and disadvantages. Moreover, the components of

the proposed solution are identified in relation to technologies already discussed in chapter 2.

Following that, a few scenarios are described, where the proposed solution can be used. These

scenarios will help to extract use cases, which are later visualized in a Use Case Diagram. Finally,

from the use cases, requirements specifications are extracted, functional and nonfunctional. These

are used in chapter 4 to design the proposed solution and implement a prototype.

3.1. Proposed Solution
As briefly mentioned in chapter 1 – section 1.2, the proposed solution consists of three main

components, as they were illustrated in Figure 1 at the same section. The first component is the

IoT devices installed in a house, the second is a smartphone application accessing and controlling

these devices and the third and final component is the Cloud, which acts as a bridge between the

first two components and also provides further functionalities.

Going into more depth, the home devices include any device that provides a specific

service/functionality to the house and it can be connected to the Cloud through a direct internet

connection. Examples of these IoT devices are thermostats, light bulbs, door/window locks,

boilers, coffee machines, fridges, TVs, etc. The Cloud provides a link between each IoT device

and the smartphone application from where the user can see the current status of each device and

change it according to his/her preferences. Apart from the IoT device – to – smartphone application

connection, the Cloud provides speech recognition and natural language understanding capabilities

to the application’s user as well, with the purpose of enhancing the interaction experience between

the user and the application.

In the Cloud, the status of each device, based on date and time, is stored for later use by the

Machine Learning service. Having gathered a respectful amount of historic data from the user –

home devices interaction, the ML service hosted in the Cloud can now train a model and use that

to forecast the status of each home device for a specified time period. The amount of historic data

to be used is later discussed in chapter 4, along with the specified time period for which the service

should forecast values. Following that, the ML model can be deployed as a web service and

accessed from the smartphone application. Then, the application can provide the ML model with

a specific date and time and receive the predictive value of each IoT device. Finally, the

smartphone application can set the status of each home device to the received forecasted values

without user intervention. The name of this proposed solution is Machine Learning-as-a-Service

(MLaaS) and a context diagram illustrating it can be seen in Figure 7 below.

Page 34 of 94

Figure 7: MLaaS – Context Diagram.

Figure 7 shows the use of the Cloud by the smartphone application and how Machine Learning

and Cognitive services are exploited. Additionally, it illustrates the accessibility of the IoT devices

to the application. However, an entity is missing from this diagram which is the user. To include

the user, an extra figure is shown next. Figure 8 below illustrates a context diagram from the

smartphone application perspective. There, the process of how a Smart Home user can access all

the Cloud services from the smartphone application and control the IoT devices becomes visible.

Figure 8: MLaaS - Context Diagram 2.

Page 35 of 94

Machine Learning Service

Particularly for the ML Service, it is intended to use historic data for training an ML model in

order to forecast future values of home devices based on the date and time, as also it was discussed

earlier. In chapter 2 – section 2.2, three different Machine Learning techniques were described and

an increased focus was given to the Supervised Learning techniques, since they are ideal for

training models based on past values. Among them, Time Series Forecasting algorithms were

described, like ARIMA and ETS, which are specifically used when the input data are dependent

on time. As a result, the focus is to use these algorithms for designing and implementing the

proposed solution (MLaaS).

The approach of using Time Series Forecasting algorithms for predicting values in a Smart Home

environment has not been tried so far, to the best of this author’s knowledge, and it is a different

method compared to the more traditional ones seen by commercial products and researchers

(section 2.5). Nevertheless, results from these types of algorithms are going to be compared to

results from traditional Supervised Machine Learning algorithms, like Regression (e.g. Linear

Regression, Decision Trees, etc.) and Classification (e.g. SVM, Naive Bayes), in order to

determine if indeed Time Series Forecasting algorithms are the better choice. The comparison of

the three different Supervised ML algorithms can be seen in chapter 4, section 4.3.

3.1.1. Differences with related work
Comparing the proposed solution to the existing ones described in chapter 2 – section 2.5, it can

be observed that they share similarities but also some significant differences. Considering the

commercial available products, Samsung SmartThings [68] ecosystem provides a variety of IoT

products with different connectivity capabilities (Wi-Fi, ZigBee, Z-Wave) which can be controlled

from Samsung’s own smartphone application. However, the traditional user – application

interaction is a downside which Google Home [5] can cover. By using a device like Google Home,

a more user friendly experience can be provided because it allows its users to control the Samsung

SmartThings [72] by natural language understanding voice commands. Still, a disadvantage

remains as both of them need user input for controlling the home devices. Based on the research

conducted on this report and at the best of this author’s knowledge, this issue has not been resolved

yet and it is not offered by any service or product in the market. The only exception is the Nest

Thermostat [76], which utilizes Machine Learning to understand the daily schedule of a user and

control the temperature of a single room in a house without user input. While Nest Thermostat is

a product aiming towards home automation, it is limited in functionality and house region (controls

only the temperature and for one room).

The solution in home automation based on user habits may come from researchers working with

Machine Learning and how it can be used to detect user behavior. Researches in [4], [83] and [84]

(discussed in chapter 2 – section 2.5) prove that identifying, detecting and predicting user habits

is possible and some of them even provide high accuracy. However, none of them discuss how

their solution can be deployed as a service or provided as a product to end-users in a large-scale.

Authors in [4] did not discuss how the IHMM predictions can reach IoT devices in a house and

how they can be utilized. In [83], it was concluded that further research is needed in order to

Page 36 of 94

provide fuzzy mining predictions to end users. Last but not least, [84] did not discuss how the

BPNN with parallel programing predictions can be used in conjunction to home devices and if an

autonomous operating house is possible.

The results from the discussion above indicate that commercial services and products focus more

on controlling several IoT devices in a house, whilst researchers’ main concern is how to detect

user habits and predict them. The proposed solution of this project fills this gap by combining

attributes from both fields, commercial and research solutions, and builds on top of that to provide

a unified-personalized experience to Smart Home users. How the proposed solution functions in

different scenarios is discussed in section 3.2.

Diving into further details about Samsung SmartThings specifically, some technical benefits and

drawbacks can be identified compared to the proposed solution. As it was described in chapter 2

– subsection 2.5.1, Samsung SmartThings supports many communication technologies, whether it

is Wi-Fi, ZigBee or Z-Wave. This has the advantage of supporting a large variety of Smart Home

devices which are already in the market. However, sometimes the SmartThings Hub is not capable

of covering the entire house (depending on the size of the house, the floors and the room distance)

and some devices may be out of range from the Hub. That is why repeater devices can be used

[75], to make out of range devices reachable. Then again, this creates another problem. If the

unreachable devices are many and scattered in a house, several repeaters are necessary to be used.

The problem escalates even more if a room away from the SmartThings Hub has installed devices

operating in all three communication technologies, then three different repeaters are needed. The

same problem exists in other solutions similar to Samsung SmartThings.

To overcome this complexity, the proposed solution in this project supports only one

communication technology. Since Wi-Fi is the one most used by users to connect devices like

computers, laptops, smartphones and tablets to the internet, it was chosen as the one implemented

in this solution. However, it can be argued if this is the correct choice in terms of energy efficient

since many IoT devices are limited in battery capacity. On the other hand, and as discussed in

chapter 2 – subsection 2.1.2, the 802.11ah standard could be used, especially for IoT devices,

which is part of the Wi-Fi family and at the same time more energy efficient than other members

of Wi-Fi. Still, further research is needed on which communication standard is the best choice

since there are many which can provide better energy efficiency (e.g. IEEE 802.15.4). However,

this research is beyond the scope of this project, as it was also stated in chapter 1 – section 1.3 –

Limitations.

Since the communication technology used (Wi-Fi) provides direct internet connection to IoT

devices, only resource-rich devices (see chapter 2 – subsection 2.1.1) can be considered in this

solution. This gives the flexibility of not implementing a hardware hub, so all home devices are

connected to the internet without an intermediate (hub) but only the Wi-Fi router. The benefit is

that no extra devices are needed to be installed by the user, which brings the complexity level

down. On the other hand, by not having a hub or a central unit in the house which can manage all

home devices, the system would not function without internet connectivity, unlike Samsung

SmartThings which can provide basic functionalities without internet because of the hub device

[85]. This could be a major drawback since without internet the user would not be able of unlocking

Page 37 of 94

the door of his/her house, or turning on the lights. This is an issue which must be addressed,

however it is not in the scope of this project as it is assumed that there is always internet

connectivity, see chapter 1 – section 1.3 – Limitations.

3.1.2. Security and Privacy
Having several IoT devices communicating with the Cloud and a smartphone application able to

access and control these devices through the internet, raises security and privacy concerns. In [86],

several Smart Home devices were tested and many vulnerabilities were detected. For instance, the

popular light bulb series Philips Hue do not encrypt the data exchange between the smartphone

application and the hub. This can lead in eavesdroppers to snoop in and check if lights are on or

off. Thus, they will be able to determine human presence, or even control the light bulbs of an

entire house. Another example is the Withings Smart Baby Monitor, which is vulnerable to “man-

in-the-middle” attacks and the camera can be exploited by hackers. By doing so, hackers can

invade the privacy of its users. These result in the necessity of strong authentication and

authorization process, in order to make sure that only the owners of the house have access to the

home devices. On top of that, a strong encryption is needed to ensure that people who eavesdrop

the communication channel cannot compromise the security and privacy of people’s lives.

An interesting solution to these problems was given in [86], where a Cloud-based network-level

security and privacy control for home devices was described. This is beneficial since it can be

applied across multiple heterogeneous IoT devices, independent from manufacturer and

communication technology. However, no further investigation is conducted during this report, as

the proposed solution does not consider security and privacy to its design and implementation, due

to time limitations (see chapter 1 – section 1.3). Yet, some suggestions are presented in chapter 5,

section 5.2.

3.2. Scenarios & Use Cases
There are two basic scenarios for which the proposed solution is beneficial. The first scenario

focuses on how a user can access and control IoT devices installed in his/her house and the second

one emphasizes on how the proposed solution can be trained, predict and control the home devices

without user intervention.

3.2.1. Scenario 1 – Controlling Home Devices
Before describing the scenario, first some assumptions need to be stated. Firstly, it is presumed

that the user’s smartphone has internet connectivity. Secondly, the user has downloaded the

application to his/her smartphone, he/she has created an account, authenticated/authorized to gain

access to it, created a virtual house with floors and rooms and registered IoT devices to his/her

account. Then, as mentioned in chapter 1 – section 1.3 – Limitations, it is presumed that all IoT

devices are already installed in the house, on top of that, internet connectivity is present and each

home device is linked to a specific room.

Page 38 of 94

Having said that, the user can now see the current status of each home device per room. So, if the

house has three rooms, the application displays these rooms, the devices installed in each one and

the status of each device. Following that, the user is able of speaking or writing to the application,

in natural language, the command which sets the device status. For instance, the user can speak or

write “Turn on the heat in the bedroom at 23 degrees”. The application then checks if there is a

device capable of controlling the heat in the specified room, e.g. a thermostat, and if yes sets the

value to 23 degrees Celsius. Subsequently, the thermostat is responsible of setting the heat up to

23. If there is not a device capable of controlling the heat in that room, then the application informs

the user. The same example applies to other devices such as light bulbs, locks, etc. It should be

noted that if the user does not give a full command, specifying action, appliance, room and value,

the application should ask the user to clarify them. For instance, if the user gives a command like

“Turn on the heat” the application should ask the user to clarify room and desired temperature.

3.2.2. Scenario 2 – Machine Learning as a Service
As the user continues interacting with the home devices, their status is stored in a database to the

Cloud, along with the date and time of each status change. After a certain amount of days (see

chapter 4) the Machine Learning service should train itself on the historic data and produce a model

capable of forecasting the status of each device based on the date and time. The model should be

available to be accessed through the Cloud by the smartphone application, which could request a

prediction of the status of each home device (the house status) in real time. Thereafter, the

application could use the predictions to change the status of the home devices. This request and

alteration of the house status should be automatic and repetitive in order to avoid user intervention

and achieve home automation.

3.2.3. Use Cases
Following the explanation of the scenarios, use cases are derived from them which define the

actions of the MLaaS system. Figure 9 illustrates the use cases in a diagram, where three actors

are present, the Smart Home user, the Machine Learning service and the Cognitive Computing

service. All these actors interact with each other through the use cases. It should be noted that the

color of some use cases is different than others. The ones colored blue are a category of use cases

which are not designed nor implemented through the course of this project because of time

restrictions. However, they are important and that is why they are included in the use case diagram.

The green colored category use cases are the ones designed and implemented in this project.

Nevertheless, a short description for each use case follows the diagram. Furthermore, the use cases

will provide necessary information in order to extract the requirements of the MLaaS

implementation.

An important thing to be considered is the Smart Home user actor who is illustrated as one type

user. However, in real life this might not be the case and more than one users could live in the

same house managing the home devices. This can result in different types of users with different

authorization access to only specific devices inside the Smart Home. While this is possible, it is

not considered as such in this project, as also stated in chapter 1 – section 1.3 – Limitations.

Page 39 of 94

Figure 9: MLaaS – Use Case Diagram.

Sign-Up

This use case is responsible for registering a user to the system. By using the smartphone

application, the user needs to create an account with the required information of an e-mail address

and a password. The user must also give permission to the application to collect data, like the status

of each IoT device installed in the house, in order to provide more personalized services, like the

real-time prediction of the status of each home device.

Log-In

By providing an e-mail and a password, the user must be authenticated to the system and

authorized. Following that, the user is now able of accessing and controlling the home devices.

Create House

In this use case, the user is able to create a virtual home representing his/her own. This can happen

by creating individual floors and rooms. The user can also provide a name for a specific floor or

Page 40 of 94

room. If no floors or rooms are created by the user, the application creates one floor and one room

with default names (Floor 1, Room 1).

Register Device

The user must be able to link an IoT device to his/her account, in order to declare ownership and

that he/she can only access and control it. Then, the user must link the IoT device to a specific

room through the smartphone application.

Manage House

The user should be able of adjusting the house floors and rooms, so he/she can change their name,

delete some of them or create new ones. The user should also be able of unlink an IoT device from

one room and link it to another. Doing this, a home device can be moved from one room to another.

Moreover, the user should have the ability of unlinking an IoT device from his/her account. This

is useful when the user wants to replace a specific IoT device with a new one.

Monitor Device Status

The user must be able to see the current status of each device installed in the house per room.

However, the status of each device must be stored (e.g. in a database) along with date and time

information in order to be used by the Machine Learning service and train a model.

Control Device

The user must be able to change the status of all IoT devices inside a Smart Home. Furthermore,

the ML service must be able to change the status of the home devices as well, following the training

of the ML model based on previous stored data.

Recognize Speech

The smartphone application should be able to recognize speech. This means that the application

should hear speech and convert it to text and receive text and convert it to speech. This is useful

because the user could give a command in voice, this command can be converted to text which

can be further analyzed by the Understand Natural Language use case. Once the analysis is

completed, the smartphone application receives an answer in text and converts to speech, so that

the user can hear it.

Understand Natural Language

The smartphone application must be able to understand natural language so it can communicate

with the user in a more natural way. For example, the user could give a command to the application

like “Turn on the lights.” by text or voice. Then, the application must understand that the user

wants to turn on an appliance inside the house and this appliance is the lights. However, not

specific room was given so it asks the user: “To which room?”. Following that, the user must speak

or text a room name like “For the kitchen.”. Finally, the application knows the room and responds:

“Turning on the lights to the kitchen!”.

Page 41 of 94

3.3. Requirements Specification
Specifying the requirements of the MLaaS solution can provide valuable information on how the

system should work, what are its functionalities and how the end-product should be designed [87].

These requirements can be divided into functional and nonfunctional.

Functional Requirements

The functional requirements can be used to describe the capabilities of the system, as well as, its

performed functionalities. These requirements can be documented either as user-friendly/general

or as developer oriented/detailed [87]. The functional requirements of MLaaS are derived from the

discussion of the previous section (section 3.2) about the scenarios and use cases, and are displayed

in Table 6 in a general form, with further details included when it is necessary.

Non-Functional Requirements

The nonfunctional requirements describe the constraints of the system on the services and

functionalities it provides [87]. The MLaaS nonfunctional requirements are presented at Table 7.

Both, functional and nonfunctional requirements are prioritized based on the MoSCoW [88] (Must

Should Could Will not) technique. The ones indicated as “Must” (M) are the focus of this project

and specifically of chapter 4, where their design and implementation is described. The

requirements marked as “Should” (S) or “Could” (C), while important for the system are beyond

the scope of this project.

Page 42 of 94

Functional Requirements

Use Case № Name Description Priority

Sign-Up

F1 Register e-mail
The user should provide a valid e-mail address for authentication

purpose.
S

F2
Register

password
The user should provide a strong password for authentication purpose. S

F3 Ask permission

The user should be asked to accept or reject the collection of data. These

data are related to the status of home devices which can help train a

Machine Learning model to be used later for real-time predictions.

S

Log-In F4
Authenticate and

authorize user
The user should be authenticated and authorized to access the system. S

Create

House

F5 Create floor

The user should create a floor and give a name to it. If no floors are

created by the user, the application creates one floor with a standard name

of 1 (Floor 1).

S

F6 Create room

The user should create a room and give a name to it. If no rooms are

created by the user, the application creates one room with a standard

name of 1 (Room 1).

S

Register

Device

F7
Link device to

user account

The user should link an IoT device to his/her account to declare

ownership and restrict access to his/her account only.
S

F8
Link device to

room

The user should link an IoT device to a specific room so that the system

would be aware of which room’s appliance this device controls.
S

Manage

House

F9
Adjust floor

settings
The user could be able of renaming a floor, delete it or create a new one. C

F10
Adjust room

settings
The user could be able of renaming a room, delete it or create a new one. C

F11
Adjust device

settings

The user could be able to unlink an IoT device from a specific room and

link it to another. Also, the user could be able of unlinking a specific

device from his/her account.

C

Monitor

Device

Status

F12
Display current

device status

The user must be able to see the current status of each device installed in

the house per room in his/her smartphone application.
M

F13
Save past device

status

The status of each device must be stored in a database along with date

and time information.
M

Control

Device

F14
Change device

status from user

The user must be able to change the status of all IoT devices installed in

his/her house.
M

F15

Change device

status from ML

service

The Machine Learning service must be able to change the status of the

home devices following the requested predictions from the smartphone

application based on the date and time.

M

Recognize

Speech

F16
Convert speech

to text

The smartphone application should receive voice commands from the

user and convert them to text for better analysis.
S

F17
Convert text to

speech

The smartphone application should convert text to speech, so it can

“speak” to the user and pronounce different results.
S

Understand

Natural

Language

F18
Understand

natural language

The smartphone application must understand natural language so it can

provide a natural conversation with the user about controlling the IoT

devices.

M

Table 6: Functional Requirements.

Page 43 of 94

Non-Functional Requirements

№ Name Description Priority

NF1
Smartphone

Application Platform

The smartphone application must be available to all mobile platforms

(Android, iOS and Windows 10 Mobile).
M

NF2 Password Strength

The password to be chosen by the user should include numbers, letters

and symbols without a common sequence (e.g. 1234 or QWERTY)

[89].

S

NF3 Internet Access
Internet access is vital for the whole system to be functional and must

always be present.
M

NF4

Smartphone

Communication

Technology

Communication technologies like Wi-Fi (IEEE 802.11a/b/g/n/ac)

and/or a cellular network (e.g. LTE) must be used to allow data

exchange between the smartphone application, the Cloud and the IoT

devices.

M

NF5 IoT Hub
A Cloud-based hub must be present where all IoT devices are connected

to, can be accessed and controlled.
M

NF6

IoT Devices

Communication

Technology

An IoT friendly and IP-based communication technology like Wi-Fi

(IEEE 802.11ah) must be used for the IoT devices to communicate with

the Cloud (IoT Hub) and the smartphone application.

M

NF7
Communication

Protocol

An IoT friendly communication protocol must be used to allow data

exchange between home devices, the Cloud and the smartphone

application (e.g. AMQP or MQTT).

M

NF8
Secure

Communication

Data exchange between IoT devices, the smartphone application and

the Cloud should be encrypted at all times to ensure high

confidentiality, integrity and availability of personal data [90].

S

NF9
Machine Learning

Algorithms

Regression, Classification and Time Series Forecasting algorithms

must be implemented and tested to choose the one which performs best.
M

Table 7: Non-Functional Requirements.

3.4. Remarks
The focus of this chapter was the proposed solution, what technologies it utilizes from the ones

documented in chapter 2 and how it is different from other solutions described in section 2.5. On

top of that, some concerns were raised and briefly discussed about the security of the system and

the privacy of its users. Following that, two scenarios were examined and how the proposed

solution fits on these, resulting in extracting several use cases. With the help of the use cases,

functional and nonfunctional requirements of the system were derived. Thus, fulfilling this

Page 44 of 94

project’s fourth objective (chapter 1 – section 1.3): Specification requirements are essential for

the design of the proposed solution and the implementation of the proof of concept.

Based on the analysis which took place in this chapter and with the help of the requirements

specification (see Table 6 and Table 7), it is now possible to start designing and implementing the

proposed solution (MLaaS) and answer the second research sub-question (chapter 1 – section 1.3).

Page 45 of 94

4. Design and Implementation
An initial discussion about answering the second research sub-question took place in chapter 3 and

it is going to be finalized in this chapter. Therefore, the focus here is on designing the solution

proposed in chapter 3 and complete the second research sub-question:

How a new solution can be designed for Smart Homes to achieve a self-operated house?

Concurrently, an implementation of a proof-of-concept is documented, which is the answer to the

third and final research sub-question:

How a proof of concept can be developed based on this new solution for Smart Homes?

The starting point of this chapter is the design choices made to create a complete system

architecture for a full-scale solution, according to the functional and nonfunctional requirements

from the previous chapter. Following that, an implemented architecture is designed as well, since

there are some restrictions on the technologies used. These restrictions are discussed throughout

the Implementation and Experimental Assessment sections. The implemented architecture is used

to develop a prototype which is the proof that the proposed solution is feasible. Finally, after the

proof-of-concept development documentation, a testing phase of the prototype follows.

4.1. Design Choices
According to the previous chapter and the nonfunctional requirements described in Table 7, there

are some which constitute the core of the proposed solution and must be considered during the

design and implementation of MLaaS. These are:

• NF1: Smartphone Application Platform, which defines that the smartphone application

must be available to all mobile platforms (Android, iOS and Windows 10 Mobile).

However, the constrained time-frame does not allow to develop the application for all

platforms and only a Windows 10 Mobile application is considered at this point. Another

reason for choosing the Windows 10 Mobile platform is that a smartphone with this

Operating System (OS) is available during the development process.

• NF3: Internet Access, which describes that access to the internet must always be present,

for the system to function correctly. This can be ensured by implementing communication

technologies for the smartphone application and the IoT devices.

• NF4: Smartphone Communication Technology. Wi-Fi (IEEE 802.11a/b/g/n/ac) and/or

a cellular network (e.g. LTE) must be present in order to provide internet connectivity to

the smartphone application and communicate with the Cloud and IoT devices.

• NF5: IoT Hub. All IoT devices must be connected to a central point from where they can

be accessed by the smartphone application and controlled. According to the proposed

solution (see chapter 3 – section 3.1), this hub is a Cloud-based hub and must be

implemented in the Cloud. In chapter 2 – section 2.4, three different Cloud Platforms were

Page 46 of 94

researched and as it is summarized in Table 3: Cloud Platforms – IoT., all of them can

support a Cloud-based hub. Looking at the same table, some differentiations can be seen

between the three platforms but they are not critical at this point since they all offer the

same functionalities in different price ranges.

• NF6: IoT Devices Communication Technology. This nonfunctional requirement

necessitates an IP-based communication technology which is applicable to IoT solutions.

An example is the IEEE 802.11ah (part of the Wi-Fi family), as also discussed in chapter

2 – section 2.1. This technology will establish a communication channel between the IoT

devices, the Cloud and the smartphone application.

• NF7: Communication Protocol. The protocol used for the communication between the

IoT devices, the Cloud (IoT Hub) and the smartphone application must be one of the

following: CoAP, MQTT, AMQP or DDS since they are IoT-friendly (chapter 2 – section

2.1). However, according to Table 3 (chapter 2 – section 2.4) the available protocols from

the researched Cloud Platforms are AMQP, MQTT and HTTP, which restricts the choices

to either MQTT (Azure, Bluemix, AWS) or AMQP (Azure).

• NF9: Machine Learning Algorithms. The selected Cloud Platform must provide

Regression, Classification and Time Series Forecasting algorithms in order to test and

compare them. Following that comparison, the best performing algorithm will be chosen

for deployment. This requirement limits the available choices of the researched Cloud

Platforms (chapter 2 – section 2.4), since AWS does not support Time Series Forecasting

algorithms according to Table 4: Cloud Platforms – Machine Learning. Out of the two

remaining ones, Microsoft Azure and IBM Bluemix, and as they were described in chapter

2 – section 2.4, Azure provides a more seamless interaction between training an ML model

and deploying it as a web service, since no extra software is required and everything can

be performed in the Cloud. This can provide the advantage of automating the entire

process. Unlike Bluemix, which requires a specific software to be downloaded and

installed locally. For these reasons, Microsoft Azure is chosen as the Cloud Platform to be

utilized in the design and implementation of MLaaS.

In conclusion, MLaaS comprises from a Windows 10 Mobile smartphone application, the

Microsoft Azure Cloud Platform and several IoT devices. Based on these choices, the next

subsection is focused on the system architecture and the interactions between each entity.

4.1.1. System Architecture
In Figure 10 the complete system architecture is illustrated, based on the aforementioned design

choices. Nevertheless, due to some restrictions in the Azure Cloud Platform and its free services,

the actual implementation of the architecture is slightly different (see Figure 11). Both

architectures, Complete Architecture and Implemented Architecture, are discussed next. The

complete architecture describes the full-scale solution, which can be developed when there are not

restrictions to the available resources (Microsoft Azure paid account). Whilst the implemented

Page 47 of 94

architecture focuses on the prototype developed to prove the concept of the proposed solution

(MLaaS).

Complete Architecture

Figure 10 below shows the complete system architecture which includes the IoT devices, the

smartphone application, the Cloud and its entities and the interactions between them. Each

interaction is represented using a different color and details about them can be seen in the bottom

right of the image.

Figure 10: MLaaS Complete Architecture.

Page 48 of 94

1. The first interaction is illustrated by the color yellow and it shows how the IoT devices

store data (their status) in a database to the Cloud. Each IoT device communicates with the

IoT Hub located in the Cloud. Then, the IoT Hub transfers the related information to

another entity called Stream Analytics, which is responsible for saving the incoming data

to a database. These data are going to be used later during step 4 by the ML service.

2. The second step (colored purple) shows how the smartphone application can access the

latest IoT device status. During this step, the user is able to see the status of each device

per room. For instance, the user can check if the kitchen’s lights are on, or if the heat is on

in the bedroom and in what degrees.

3. During this step (colored dark green), the smartphone application changes the status of a

selected IoT device upon user request. The user can text or speak to the application in

natural language. The user request is sent to LUIS where analysis can take place and

understand it. Following that, LUIS responds back to the application which can control a

specified IoT device. To better understand this interaction an example follows. The user

texts or speaks “Turn on the heat in the bedroom at 23 degrees”. This command is sent to

LUIS which can understand the user action (turn on), the appliance (heat), the room

(bedroom) and the requested value (23). LUIS responds back to the application the action,

appliance, status, room and then, the application must contact the IoT Hub and relay that

information to the specific IoT device responsible for controlling the heat in the bedroom

and adjust its value.

4. The fourth step (light green color) indicates how the Machine Learning service can access

the historic data of all IoT devices saved during the first step, pre-process them, train an

ML model and deploy it as a web service.

5. Prior to the final step, a server must be present to continuously request predictions from

the web service. These predictions are stored in a database for each IoT device separately.

Following that, step 5 (red color) shows how the smartphone application retrieves the

stored predictions from the database and adjusts the status of all IoT devices through the

IoT Hub.

These five steps also fulfill all the “Must” functional requirements stated in Table 6 (chapter 3 –

section 3.3). F13: Save past device status is achieved during the first step and F12: Display

current device status through step 2. These two conclude the Monitor Device Status use case.

Both, F14: Change device status from user and F18: Understand natural language are

achieved in step 3, thus partially satisfy the Control Device use case and complete in full the

Understand Natural Language respectively. Last but not least, F15: Change device status from

ML service is accomplished during steps 4 and 5. This completes the other half of the Control

Device use case.

Page 49 of 94

Implemented Architecture

The implemented architecture can be seen in Figure 11, which maintains the same interactions,

colors and functionalities. However, some of them are designed differently. As explained earlier,

this is due to resource restrictions that apply with the free version of Azure. For instance, as seen

in Table 3: Cloud Platforms – IoT., the freely accessible database is based on SQL and its capacity

is limited to 32MB. At this point, it was unknown the amount of data generated by the implemented

IoT devices. In order to avoid any database restrictions, in terms of capacity, a local server and

database were implemented in a computer. This choice could provide hundreds of Megabytes,

even Gigabytes, depending on the internal storage of the host computer. This decision influences

steps 1, 2 and 4. How these steps are reorganized is discussed next.

Figure 11: MLaaS Implemented Architecture.

Before moving in the discussion about the implementation steps shown in Figure 11, it should be

noted that the complete architecture is shown as transparent entities and interactions.

Page 50 of 94

1. Step 1 (yellow color) shows the way that IoT devices save their status in a database. This

time the database is local and communications are performed through a local network.

However, it still maintains the same communication technologies and protocols. In this

step, the IoT Hub, Stream Analytics and Cloud database entities are not included.

Nevertheless, the IoT Hub is still used by steps 3 and 5 as discussed next.

2. Because of the changes in the first step, in this step (colored purple) the smartphone

application needs to communicate with the local database in order to retrieve the latest

status of all IoT devices.

3. Step 3 (dark green) is not affected by the changes and it remains the same as in the

complete architecture.

4. The fourth step (light green) is affected by the migration to a local database from the one

maintained in the Cloud. Now, a manual export of the historic data must take place from

the local database, along with a manual import of the same dataset to the Machine Learning

service. This is the only difference between the complete and the implemented system

during this step. The rest functionalities remain the same, i.e., data preprocessing, training

of ML models and deploy one of them as a web service.

5. Step 5 (red) is also implemented differently, since there was not enough time to implement

the server continues requests and save the predictions in a database. Thus, the smartphone

application is directly communicating with the web service in order to get a prediction.

Then, the generated forecasts are used to adjust the status of all IoT devices through the

IoT Hub.

4.2. Implementation
Following the design choices, the implementation of the proposed solution is documented in this

section. The starting point is the Azure IoT Hub and the way IoT devices can communicate through

it with other entities in the architecture. Next, the software implementation of simulated IoT

devices is documented, along with the development of the smartphone application. It is also

important to discuss how the database was structured.

4.2.1. Azure IoT Hub
The IoT Hub in Azure Cloud is the first component to be built, as it is the bridge between the IoT

devices and the rest of the architecture. In [36, p. 16], a well written tutorial is presented by

Microsoft on how an IoT Hub can be initialized. Moreover, Appendix 02 includes the steps

followed to setup the Azure IoT Hub for this project. Once the hub has been created, it can be

accessed by a connection string which includes the Host Name, the Shared Access Key Name and

the key itself, Shared Access Key. This connection string is unique and it can be used by any

Page 51 of 94

device which wants to establish a connection with the IoT Hub, either it is a home device or the

smartphone application.

The IoT Hub offers many functionalities. Among others, the hub supports registering new IoT

devices, allow data to be exchanged from the smartphone application or the IoT devices to the hub

(Device-to-Cloud communication) and vice versa, from the hub to the IoT devices and the

smartphone application (Cloud-to-Device communication). These are a few of the core

functionalities, which can be used to build a communication channel between the IoT devices and

the smartphone application. The use of main functionalities will be discussed in the following

subsections (4.2.3 and 4.2.4). Further details about the Azure IoT Hub and its extra functionalities,

as well as, its security measures are available in [36].

4.2.2. Database
The database used for implementing the proposed solution is a local one. It is based on

Wampserver [91] which provides a local Apache web server [92] and a MySQL database [93].

Following Wampserver’s installation process, some changes were necessary to allow

communication between the Server/Database and an external device, i.e. the smartphone. The

modification process is illustrated in Appendix 02.

Following the database setup process, a local database called SmartHome is created. This

database includes two tables, termed Devices and StreamData. The Devices table contains

information about the devices themselves, such as the device id, type, description and assigned

room. The StreamData table includes the device id and the device values over time.

4.2.3. IoT Devices
As stated back in chapter 1 – section 1.3, one of the limitations is the use of simulated IoT devices

instead of real ones. This is because there was no immediate access to hardware devices since

resources and time was a limiting factor. Instead, software applications were developed, which

would act as real devices and simulate their behavior. The software applications also give the

flexibility of developing various types of IoT devices (e.g. thermostats, light bulbs and locks),

which could be proven difficult to find their counterparts as hardware devices. Moreover, the

communication technologies (e.g. Wi-Fi) and protocols (e.g. MQTT) used in the simulated devices

can be easily implemented in real devices as well, since they are widely used in IoT solutions.

The simulated devices were developed in a windows environment (Windows 10) utilizing the

Universal Windows Platform (UWP). UWP is an application platform that developers use to build

one application which could be implemented by all devices running Windows 10 (computers,

laptops, smartphones, etc.) [94, p. 14]. While this advantage does not benefit the simulated devices,

since in a real-life scenario they would not exist, it is highly useful for the smartphone application.

That is because it is not limited into smartphones and it can be used across a variety of devices

running Windows 10. This will provide the possibility to the user of controlling all the home

devices from a Windows 10 smartphone, but also from a Windows 10 computer or laptop.

Page 52 of 94

The implemented IoT devices depend on the number of rooms and home appliances the user has

in his/her house. During this project, only one person was successfully approached. This person’s

computer was fulfilling the hardware and software requirements, i.e. to have a Windows 10

computer/laptop where the simulated devices could operate. On top of that, this person was willing

to use the simulated devices during the course of four working days, in order to gather data about

his/her daily life and routine. The number of rooms this person’s house have and the types of

devices installed in it are illustrated in Figure 12.

Figure 12: User House – Rooms and IoT Devices.

Figure 12 illustrates that the user’s house has four rooms, with different IoT devices setup in each

one. The first room is the bedroom that includes one thermostat and one light bulb. The second

room is the kitchen with the same type of IoT devices as the ones found in bedroom. The third

room is the hall, represented with one door lock and a light bulb. Finally, the fourth room is the

bathroom with only one light bulb. To summarize, there are 4 light bulbs, 2 thermostats and 1 door

lock applications that must be developed in order to simulate all the IoT devices. However, for the

implementation of the aforementioned IoT devices, two types of applications need to be developed.

The first type is an application which can act as a thermostat and can take values from 5 to 30,

representing temperature measured in Celsius degrees. The second type is an application acting as

a light bulb or door lock, which can take values 0 or 1. These represent if a light bulb is off (0) or

on (1). The same applies for the door lock, 0 for unlocked and 1 for locked. Having developed

these two types, they can be easily reproduced in order to match the amount of IoT devices needed

for this scenario. Thus, the documentation of the simulated devices is restricted to only two types.

Page 53 of 94

Type 1: Thermostat

This device type is responsible for adjusting the temperature of a specific room. It should provide

the functionality of adjusting the temperature, as well as, displaying it in a screen. Also, the

thermostat should send its status to the local database in order to be stored. Last but not least, it

should allow the user to control it from a smartphone application. This device can be seen in Figure

13. In that figure, the device details and its current status (17 degrees Celsius) are shown. The

available slider can be used to change the device status within a range of 5 to 30 degrees

Figure 13: IoT Device – Type 1.

The device details include:

• the Device ID: a unique identifier for each device,

• the Device Type: what kind of device it is, e.g. a thermostat, light bulb, or lock device, and

• the Device Room: indicates in which room this device is assigned to.

This device can be easily replicated by changing the device details with primary focus on changing

the Device ID.

Type 2: Light Bulb/Door Lock

Type 2 is used to turn on/off the lights or lock/unlock the door lock in a specific room. It should

allow its user to perform the aforementioned functionalities, as well as, see the change of status.

Moreover, the status should be stored in the local database for later use and it should allow the

user to change the status from a smartphone application. The device is illustrated in Figure 14 with

its two representations, the left side represents a light bulb (off) and the right side a door lock

(locked). For both representations, there is a toggle button in the middle which can change the

device status.

Page 54 of 94

Figure 14: IoT Device – Type 2.

Similar to type 1, the device details include:

• the Device ID: a unique identifier for each device,

• the Device Type: what kind of device it is, e.g. a thermostat, light bulb, or lock device and

• the Device Room: indicates in which room this device is assigned to.

This device can be easily replicated by changing the device details with primary focus on changing

the Device ID.

Because the code behind is similar for both types, it is documented only once. The documented

code is revolved around the main functionalities of the devices, like the registration of the device

to the IoT Hub, the Cloud-to-Device communication and the storage of device status to the local

database. The complete code of all IoT devices is available in Appendix 03.

Registration

Starting with the registration process, each IoT device uses the aforementioned connection string

(section 4.2.1) in code line 38 of Figure 15, to connect to the IoT Hub. Once connected, it tries to

register itself as a new device with its unique Device ID, code line 42. If the registration is

successful, a symmetric key is generated which includes the device’s primary key, code line 49.

By using that key, the device can authenticate itself to the IoT Hub and start communicating. If

the registration is unsuccessful, which means that there is already a device with that key, then it is

assumed that the same device tries to register again, since each device id is unique, thus, bypassing

the registration in the IoT Hub and only return the primary key, code line 46 and 49.

Page 55 of 94

Figure 15: IoT Device – Registration.

Some potential security issues might exist in that code which could be resolved with extra security

measures by the IoT Hub, like using X.509 Certificates or Access Tokens [36, p. 272]. However,

the secure communication of the whole solution is out of the scope of this project.

Cloud-to-Device Communication

The communication between the Cloud (IoT Hub) and the IoT devices is shown in Figure 16. This

part of the code is responsible for relaying any command received in the Cloud (IoT Hub) and

targeted to a specific device, to the device itself. For example, any command given by the user to

his/her smartphone, it reaches the Azure IoT Hub through a Device-to-Cloud communication (see

section 4.2.4) and then, by using the Cloud-to-Device communication it reaches the specific home

device.

Figure 16: IoT Device – Cloud-to-Device Communication.

The code lines 70-72 show the connection string used to connect a device to the IoT Hub. This

string contains the name of the IoT Hub, the device’s id and its primary key. The device’s id and

primary key are used for authenticating the device to the IoT Hub. Then, code line 74 performs

the connection using the AMQP protocol. It should be noted that the MQTT protocol could be

Page 56 of 94

used as well. Once the connection has been established, the device keeps listening for any

incoming messages, lines 76-88. Then, the received messages can be used to set the device status.

Store Device Status

Before each device stores its value to the local database, first it needs to save some vital

information about it, like its unique id, what type of device it is, in which room it is assigned to

and some optional description. All these data are saved to the table: Devices, which is located in

the database. This can be seen in Figure 17.

Figure 17: IoT Device – Register to Local Database.

However, before a device can store any information to the database or even register to it, a

connection to the local server is necessary. This is possible by using a connection string (Figure

18, code line 67), which includes information about the server IP address the database is hosted,

the database name to be used and authenticate to it by using the database username and password.

Having a connection to the local database and all the devices registered to it, then, the devices can

store their statuses (deviceValue), along with their ids (deviceId) and a timestamp (dTime) by

using the SQL command in lines 79-80 (Figure 18). The timestamp is represented as “yyyy-MM-

ddTHH:mm:ss” (e.g. 2017-05-19T16:45:52). The information about the value of each device and

the timestamp are saved in table: StreamData into the database.

Figure 18: IoT Device – Store Device Status.

Concluding the development of the IoT devices, now a connection can be established from the

home devices to the Azure IoT Hub, receive messages from a smartphone application and store

their status. The flow of the whole process can be seen in Appendix 04 as sequence diagrams.

Page 57 of 94

4.2.4. Smartphone Application
The smartphone application was developed using the UWP in Windows 10. As briefly discussed

in section 4.2.2, once an application has been developed in UWP, it can be used by any Windows

10 device. This provide the flexibility of controlling the IoT devices from a Windows 10

smartphone, computer or laptop. The application must be able to retrieve the latest status of each

home device, allow the user to change the status of all the registered devices and change the status

of these devices by itself as well, by utilizing the predictions from the Machine Learning Service.

Before diving into the core functionalities of the application, it should be noted that its UI is

designed according to specified rooms shown in Figure 12 (subsection 4.2.2), including four fixed

rooms and three different sensors for each, see Figure 19. This is part of the delimitations

mentioned in chapter 1 – section 1.3, along with the user experience the application provides.

Further research is needed to design and develop an application which can add or remove rooms

and sensors dynamically, based on user/house needs.

Figure 19: Smartphone Application.

Figure 19 illustrates the developed smartphone application. On the top, there is a welcome message

with a textbox where the user can write a command in natural language. Then, the four rooms with

their installed home devices follow, while their current status is displayed. Finally, a button is

available for starting the predictions for each home device. Each one of these functionalities are

discussed next, along with their corresponding code. The following code is focused on the most

important parts of these three functionalities and the whole application code is available in

Appendix 03.

Page 58 of 94

1. Change device status from user input

The first arrow in Figure 19 shows a welcome message, a textbox and a button. The textbox is

used by the user to write the command of changing the status of a home device in natural language

and submit it by pressing the “Send” button. An example of such a command is: “Turn on the heat

to 23 in the kitchen”. The application must analyze the given command and understand that the

user wants to turn on the heat in the kitchen at 23 degrees. This analysis is done by the Cognitive

Computing service (LUIS) and further details about it can be seen in subsection 4.2.5. However,

at this point it is important to know that LUIS will return a message to the application with the

intent of the user (turn on), the appliance (heat), the room (kitchen) and the value (23). By having

this information, the application can find the home device associated with the heat in the kitchen

and adjust the value to 23. This flow is available as a sequence diagram in Appendix 04.

To connect with the Cognitive Service, LUIS, the Predict method is used (Figure 20), where an

application id and subscription key are necessary (code lines 99 and 100). These are made

available from the Cognitive Computing service (more about it can be found in subsection 4.2.5).

By using the aforementioned id and key, a connection to the LUIS client can be achieved (code

line 106). Following that, a text command can be fed to LUIS (code line 107) and analyze it by

calling the processRes method (code line 108).

Figure 20: Smartphone Application – Connect to Cognitive Service.

The processRes method receives the results computed in LUIS. If LUIS was not provided with all

the necessary information, i.e. the intention, the appliance, the room and the value, it continues the

conversation with the user and asks him/her to specify the missing information. For instance, if

the user writes “Turn on the lights”, the processRes should prompt the user the following question

“To which room?”. Once all the required information is available, the processRes method is

responsible for finding the IoT device which is responsible for the lights in the specific room and

contact the IoT Hub in the Cloud for changing its value. Finally, the user should also be notified

of the success or not of this action. The entire code of the smartphone application is available in

Appendix 03.

2. Retrieve current device status

The second arrow in Figure 19 illustrates all IoT devices per room and their status. Each room is

shown as a different box and includes three different devices: a door, a light and a heat. It is not

Page 59 of 94

necessary for each room to have all these devices installed. This can be seen by the N/A values

indicating that specific devices do not exist in specific rooms. The devices installed in a room have

their respective values (e.g. On, Off, 20 °C, Locked, etc.).

Initially the application must connect to the local server by using a connection string. This includes

the IP address of the server, the name of the database, where the information is stored, and a

username/password for authentication purposes. Following that, the application requests the

information about all IoT devices, as shown in code line 46 – Figure 21, from the Devices table.

Then, a while loop (code line 52) iterates the returned information per row (since one row

corresponds to one device) and retrieves the device id, type and assigned room.

Figure 21: Smartphone Application – Retrieve Devices.

By using the retrieved information, now the IoT devices can be bound to the UI based on the room

each device is assigned to and according to the type of each device. As it can be seen in Figure 22,

a for loop iterates through all rooms with the purpose of finding the one in which the recently

retrieved device from the database belongs to. As soon as the right room has been found, the device

is assigned to it according to the type. For example, if the device represents a light bulb, then the

device type equals to “lightbulb” and it is assigned as such.

Figure 22: Smartphone Application – Bind Devices to UI.

Page 60 of 94

Now that all devices have been retrieved from the database and are bound to the UI, individual

requests per device id of their values can be asked from table: StreamData of the same database

(see Figure 23).

Figure 23: Smartphone Application – Retrieve Recent Status.

The flow of retrieving the recent status of IoT devices can be seen as a sequence diagram in

Appendix 04.

3. Change device status from Machine Learning predictions

The final development process that needs implementation is the alteration of the status of all IoT

devices based on the Machine Learning predictions, illustrated in Figure 19 - third arrow. The

process of how the Machine Learning Service was built is documented in subsection 4.2.6. Even

so, it is important to know at this stage that the Machine Learning Web Service deployed (see

subsection 4.2.6) can be accessed by an API key. Then, an Http request can be made (Figure 24,

code line 19) with a date-time input. This input is represented as “yyyy-MM-ddTHH:mm:ss” (e.g.

2017-05-21T20:47:52). Thereafter, the ML service computes the predictions and replies back to

the application the forecasts for all IoT devices in JSON format. This response includes the ids of

the devices and the predicted values. Consequently, the application is responsible for reaching the

IoT Hub (Cloud) and send the values each home device should have. Then, the IoT Hub must

communicate with each IoT device and send the predictive value. This sequence of events is

illustrated in Appendix 04 as a sequence diagram.

Figure 24: Smartphone Application – Connect to Machine Learning Web Service.

4.2.5. Cognitive Computing Service
In the previous subsection, it was discussed how the Cognitive Computing service LUIS can

receive a command in text form, analyze it and produce an output in JSON format. However, here

Page 61 of 94

it is examined how LUIS works internally, how it analyzes a command and how it reaches an

output.

LUIS can be accessed online [40] and it can be used to create intelligent bot apps. The most basic

components of a LUIS bot are the intents and the entities. An intent states the intention of the user

over an entity. For instance, if the user wants to lock the door, the intent is the lock action and the

entity is the door. There can be more than one entities at the same time, an example is the phrase:

“Lock the door in the hall”. The intention is the same but there are two entities, the first being the

door (equipment entity) and second one the hall (room entity). Following these examples and based

on the available IoT devices discussed in 4.2.3, the Smart Home Bot consists of 6 different intents

and 4 entities. The thermostat IoT devices use intentions such as adjust the temperature, turn on

and turn off. The entities include an Appliance (e.g. heat), a Room (e.g. bedroom) and a

Temperature (e.g. 23 degrees). The turn on and turn off intentions are also used by the light bulb

home devices together with the entities Appliance (e.g. lights) and Room (e.g. kitchen). The lock

IoT devices use the lock and unlock intentions with the Equipment entity (e.g. door) and Room

(e.g. hall).

When all required intents and entities have been specified, a general training can be performed in

the bot and test its results. Figure 25 below illustrates a one-click training process, by pressing the

button “Train Application”. The training is performed in the background and it is not visible to the

developer, neither the ML algorithms used for this process. Once the training is completed, the

developer can test the bot app by writing different phrases, e.g. “turn the heat on” (see Figure 25

– left side). During this process, it is visible if the bot app understood correctly the intention and

the entities involved (see Figure 25 – right side).

Figure 25: LUIS – Training and Testing.

If the results are ideal, i.e. if the bot can successfully understand a sentence, the bot app can be

published and accessed using an API and a subscription key. With these keys, the smartphone

application is allowed to contact the Smart Home Bot, provide text commands and get results back.

The results are formulated in JSON format and provide the intention and the entities involved. The

entire process of how a LUIS bot can be built and trained is documented in Appendix 05.

Page 62 of 94

Up until this point, the software development phase has been completed. This allows to move from

stage 3 (Software Development) of the project’s methodology to stage 4 (Data Gathering), see

Figure 2, chapter 1 – section 1.4. However, the collection of a dataset is documented later in section

4.3 and this section continues with the development of the Machine Learning Service (stage 5).

4.2.6. Machine Learning Service
The Machine Learning Service can be accessed online from the Azure Machine Learning Studio

[37]. An illustration of the Studio and how it functions is presented in Appendix 06. Before an ML

service can be deployed and accessed by other services or applications, as documented previously

(subsection 4.2.4), several underlying components need to be considered. These are illustrated in

Figure 26 and are implemented in the next section, 4.3. Experimental Assessment.

Figure 26: Methodology - Step 5.

1. First and foremost, the gathered data should be preprocessed and prepared, before

feeding them into an ML algorithm. During this step, data can be visualized to get

a better understanding. They can also be preprocessed by treating their missing

values and remove noise.

2. Secondly, the resulting dataset from the previous step is used to train various Time

Series ML models, along with a combination of Regression and Classification

models. The reason why Regression and Classification models are used together is

because there are data which are different in nature. Further details about this are

encompassed in section 4.3, subsection 4.3.2.

3. The next step is to evaluate each trained ML model separately in order to find the

one performed best. By the end of this step, a single Time Series Forecasting model

must be selected along with a single Regression model and a single Classification

model.

4. Then, the performance of the Time Series Forecasting model is compared to a

combination of the Regression model, regarding a specific type of devices, with the

Page 63 of 94

Classification model, for the rest of the IoT devices. Further details about this are

available in section 4.3, subsection 4.3.2

5. Finally, the ML model yielding the most accurate predictions about sensor output

is deployed as a web service. This web service is later used by the smartphone

application, as seen in subsection 4.2.4.

4.3. Experimental Assessment
In this section, all the performed experiments are documented, from the data gathering to the

deployment of the web service. Initially, it is described how the dataset was gathered. Then, several

experiments were conducted in Azure ML Studio based on the available dataset. The first

experiment is the data preprocessing, followed by the training of Time Series Forecasting,

Regression and Classification ML models. Furthermore, all ML trained models are evaluated and

the best performing one from the Time Series Forecasting algorithms is compared to the best

Regression and Classification model. Finally, the top-performing ML algorithm from this

comparison is deployed as a web service.

4.3.1. Dataset Acquisition
So far, the software development process has been completed and a dataset can be gathered. By

using the smartphone application, the Smart Home user is capable of adjusting the status of all IoT

devices according to his/her preferences. By doing so, two different datasets were collected over

the course of four working days. The only difference between the two datasets is the sample rate,

i.e. 1 second and 1 minute. Next, the decision process is discussed on why these sample rates were

selected.

The IoT devices were designed to save their status to the database over a certain amount of time

(sample rate). From Table 3 it can be observed that each of the considered Cloud platforms (chapter

2 - section 2.4) supports a certain amount of messages to be exchanged between the IoT devices

and the Cloud-based IoT Hub per day. Specifically for Azure, messages are limited to 8,000 per

day. Taking as an example the sample rate of 1 minute, this would mean 5.55 messages per minute,

since 1 day has 1,440 minutes. This is not enough, as the available IoT devices are seven, according

to Figure 12. Thus, the required minimum number of messages to be exchanged is 7, without

considering the messages from the smartphone application to a single IoT device in order to change

its status. By increasing the sample rate to 2 minutes, 11.11 messages are supported. This sample

rate fits the requirements of 7 messages in addition to 4 extra ones that can be used to adjust the

temperature of an IoT device. Similar restrictions apply to AWS, since it supports 8,333 messages

per day, and even more to Bluemix, as it only supports 3,333 messages per day.

However, up until this point, it is not safe to assume if a dataset with a sample rate of 2 minutes

can provide better results over a dataset with a 1-minute sample rate or 10-minute. Because of that,

it was decided to perform experiments with different sample rates, in order to determine which

one can be more beneficial. Furthermore, since a local database is used in the prototype and the

status of all IoT devices is stored there, bypassing the IoT Hub, a dataset can be gathered with a

Page 64 of 94

sample rate as low as 1 second. Nevertheless, because of time restrictions, it was not possible to

perform experiments with multiple datasets over different sample rates. For this reason, only two

experiments were conducted, including a dataset with a sample rate of 1 second and another one

of 1 minute. Still, experiments with additional sample rates should be conducted in the future, as

it is also mentioned in chapter 5.

An example of the gathered dataset is illustrated in Figure 27. Figure 27 (a) shows the user’s

preferences of the bedroom’s temperature with values from 5 to 30. This variation represents

Celsius degrees. Figure 27 (b) shows the kitchen’s light status, with values 0 or 1. The value zero

represents the “Off” state of the light bulb, whilst the value 1 represents the “On” state. Both of

them derived from a dataset with a sample rate of one minute. Still, there are 5 more IoT devices

with their own line plots which are not illustrated here. These are available in Appendix 07, along

with their corresponding line plots about the dataset with a sample rate of 1 second.

(a) Bedroom thermostat – per minute. (b) Kitchen light bulb – per minute.

Figure 27: User Preferences.

4.3.2. Machine Learning Experiments
From the previous subsection, it was decided that two different datasets are going to be used in the

ML experiments, one with a sample rate of 1 second, and another one with a sample rate of 1

minute. In order for these datasets to be used, they need to be uploaded to Azure ML Studio.

Following that, the two datasets can be visualized and retrieve extra information about them. Based

on that information, the datasets can be preprocessed before using them in any ML algorithm. By

the end of all the experiments, among other results, it should be concluded which sample rate,

every second or minute, gives better results. However, further experiments should be conducted

with different sample rates (e.g. every ten minutes) in order to determine the best one. This is also

mentioned as future recommendation chapter 5.

Page 65 of 94

Data Preprocessing

Figure 29 illustrates the first dataset, every second. There, a small sample of the whole dataset can

be seen, with the total number of rows and columns. By selecting a single column, in this case the

th01 IoT device, a BoxPlot is generated which indicates the values the column has, Figure 29 (b).

Also, some statistics are shown about the selected column, Figure 29 (a).

Figure 28: Azure ML Studio – Dataset every second 1.

(a) Statistics. (b) BoxPlot.

Figure 29: Azure ML Studio – Dataset every second 2.

Page 66 of 94

Based on the visualized BoxPlot and Statistics, it can be seen that there are some values which are

unusual. As stated before, the heat IoT devices have a value range from 5 to 30, however, the

BoxPlot shows that there are two values beyond the maximum 30 (40 and 50), which is also visible

in the Statistics that shows a maximum value of 50. These should be excluded from the ML training

process, or replaced with the maximum value 30, since a heat IoT device would never set the

temperature over 30 degrees. In this case, all values above 30 are replaced with 30 as it is assumed

that this is an error which occurred in the communication channel and the value should have been

30.

Additionally, from Figure 29 (a), it can be seen that there are 298 missing values. These should be

either deleted or replaced with other values. It was decided to replace the missing values because

if they were to be deleted, entire rows would be erased from the dataset including valid values

from other IoT devices. The replacement method can be argued and further research is needed in

order to decide the best one, however, the mode technique was chosen in this case, so all missing

values were replaced with the one that appears most often in the dataset. The same techniques were

used to the remaining columns (IoT devices), for both second-based and minute-based datasets. In

particular, for the devices which store 0 or 1 as their values, it was noticed that there is an error of

values exceeding the maximum 1. All these were replaced with 1.

Following the results of the preprocessed data, Figure 30 illustrates the heat IoT device th01 line

plot per second (a) and per minute (b). It can be seen that the per minute line plot is smoother than

the per second one. Nevertheless, at this point it cannot be decided which one is better since the

per second line plot, while jittery, contains more information that could provide better prediction

results. This decision will be made later, when evaluating the trained ML models.

(a) th01 - Per Second (b) th01 - Per Minute

Figure 30: Azure ML Studio – th01 Line Plot.

In contrast to the th01 device, the lb01 per second and per minute line plots, Figure 31 (a) and

Figure 31 (b) respectively, are similar and distinctive observations cannot be made.

Page 67 of 94

(a) lb01 – Per Second (b) lb01 – Per Minute

Figure 31: Azure ML Studio – lb01 Line Plot.

The rest of the IoT devices share similar line plots, the th02 with th01 and the lb02, lb03, lb04,

lc01 with lb01. For this reason, they are not shown here, but they can be found in Appendix 07.

Time Series Forecasting Models – Training

Since no distinction has been made so far between the per second dataset and the per minute one,

the training of the ML models is continued for both available datasets.

The next experiment is about the training of Time Series Forecasting models. There, two different

algorithms were used, ARIMA and ETS. While Azure ML Studio does not provide

implementations of Time Series Forecast algorithms, as it does with Regression and Classification,

it offers a functionality in which R code can be implemented. By using specific functions of R

code, ARIMA and ETS models can be built. In [95, p. 38], the forecast() function is documented

in R language, which can be used for implementing Time Series Forecasting Models. This function

takes as arguments a time series model for which predictions need to be calculated, e.g. the values

of one device over time, the number of periods for forecasting, e.g. the next day, and the method,

ETS or ARIMA. In this case, out of the four days dataset, the three were used for training and the

remaining one for testing.

However, before feeding a time series model to the forecast function, a decomposition method can

be performed on it, if seasonal or trend information exist. As it can be seen in the previous figures,

Figure 30 and Figure 31, there is a pattern in the data follow which occurs every day. More

precisely, regarding the per second dataset, the pattern occurs every 400,86 seconds and for the

per minute dataset every 1,440 minutes, since 1 day equals to 1,440 minutes and also to 86,400

seconds (1 day = 24 hours, 1 hour = 60 minutes, 1 minute = 60 seconds). Therefore, there is a

seasonal pattern in both datasets. To take advantage of this information, the STL (Seasonal and

Trend using Loess) decomposition method can be used, which allows seasonality other than

monthly or quarterly as stated in chapter 2, subsection 2.2.2. R language supports STL with the

Page 68 of 94

use of the stl() function [95, p. 53]. Now, the time series model needs to be used in the stl() function

and the result of this can be used in the forecast function, instead of the initial time series model.

An example of creating a training model for the th02 IoT device using the ETS technique can be

seen in Figure 32 below.

Figure 32: Azure ML Studio – th01 ETS Training Model.

The same procedure is followed for the rest IoT devices, one time for the ETS algorithm and one

time for the ARIMA, for both datasets, per second and per minute. The Azure ML Studio

implementations of ARIMA and ETS for all IoT devices is available in Appendix 06.

Regression and Classification Models – Training

Despite the Time Series Forecasting techniques, ARIMA and ETS, Regression and Classification

algorithms can be also considered to predict future values based on time. Regression is used for

the thermostats (th01 and th02 IoT devices), since the targeted prediction is a number with a range

of 5 to 30. On the other hand, for the rest of the IoT devices (lb01, lb02, lb03, lb04, lc01)

Classification is used, as the targeted prediction value is nominal and specifies the class it belongs

to. About the light bulbs, 0 represents the Off class, whilst 1 the On. Regarding the lock device,

the value 0 stands for the Unlocked class and the value 1 for the Locked one.

Before feeding the two datasets (per second and per minute) to Regression and Classification

algorithms, the date and time attribute needs to be modified. So far, the date/time was represented

as “yyyy-MM-ddTHH:mm:ss” (e.g. 2017-05-19T16:45:52) and considered one attribute.

However, since Azure Regression and Classification models cannot process this attribute in that

form, it was necessary to split into several others. For the per second dataset, the date/time is

divided into 6 different attributes: year, month, day, hour, minute and second. Regarding the per

minute dataset, the distinct attributes are 5: year, month, day, hour and minute. By doing so, a more

precise sense of date and time can be given during the training of ML models. Then, for each

device an ML model is created. Appendix 06 includes figures illustrating the building blocks for

all Regression and Classification algorithms, regarding both datasets (per second and per minute),

and for all IoT devices.

Several Regression and Classification algorithms are provided by the Azure ML Studio. The

following table, Table 8, summarizes all of them [28].

Page 69 of 94

Regression ML Algorithms Classification ML Algorithms

Boosted Decision Tree Boosted Decision Tree

Decision Forest Decision Forest

Fast Forest Decision Jungle

Neural Network Neural Network

Linear Regression Logistic Regression

Bayesian Linear Regression Bayes Point Machine

 Support Vector Machine (SVM)

 Locally Deep SVM

 Averaged Perceptron

Table 8: Azure ML Studio – Regression & Classification Algorithms.

All algorithms presented at Table 8 are used during the training of Regression and Classification

models. It should be noted that each algorithm has specific settings which can be adjusted, like the

minimum or maximum number of leaves a Boosted Decision Tree can have. Nevertheless, the

default settings were used for all algorithms and further research is needed in order to examine if

an algorithm can perform better with different settings.

4.3.3. Comparison between Time Series, Regression and Classification

Models
As soon as the training has been completed, an evaluation takes place by using the accuracy() R

function [95, p. 4] for all models (Time Series, Regression, Classification). This function calculates

error measures, like the ones discussed in chapter 2 – subsection 2.2.3 (MAE, RMSE, MAPE,

MASE). In this case, two error measurements were calculated, the MAPE and MASE.

MAPE was used for the thermostats, while MASE for the light bulbs and lock devices. By using

MAPE, it is easier to understand the prediction error, since it is presented as a percentage. On the

other hand, as already discussed in chapter 2 – subsection 2.2.3, MAPE does not give accurate

results for datasets that include values equal to zero or close to zero. This affects the light and lock

devices, as many of their values are 0. Because of that, a different error measurement should be

chosen. Specifically, MASE was selected in order to measure the prediction error of the light and

lock devices, since it does not suffer from zero or infinite values compared to MAPE. A MASE

value lower than one indicates that the specific algorithm generates better predictions than a naïve

or a seasonal-naïve algorithm. On the other hand, a MASE value greater than 1 shows that a

naïve/seasonal-naïve algorithm probably would perform best. Moreover, the algorithm with the

lowest MASE value can be selected as the one producing less errors (see chapter 2, subsection

2.2.3).

The following table, Table 9, shows the Mean Absolute Percentage Error (MAPE) for the

thermostats (th01 and th02), concerning the per second and per minute datasets. The purpose is to

Page 70 of 94

compare the performance of Time Series to Regression models. By doing so, it can be determined

which one performed best and for which dataset. It should be noted that the average (mean) MAPE

value of all devices is presented in the table and the algorithm with the lowest percentage value

has the least errors. Moreover, the lowest error value is indicated with a bold font. A table with the

MAPE values for each device separately is available in Appendix 08.

Machine Learning

Algorithms

Mean Values of MAPE

(Per Second)

Mean Values of MAPE

(Per Minute)

ETS 5.56% 5.55%

ARIMA 5.56% 5.49%

Boosted Decision Tree 7.76% 9.06%

Decision Forest 6.52% 10.17%

Fast Forest 6.77% 7.23%

Linear Regression 23.34% 25.03%

Bayesian Linear Regression 23.23% 23.32%

Neural Network 17.86% 23.41%

Table 9: Mean Values of Thermostats – MAPE.

From Table 9, it can be observed that there is not a large differentiation between ETS and ARIMA

for both datasets. For the dataset with 1 second sample rate, the two algorithms have an identical

MAPE of 5.56%. The reason why this happens can be traced back to the training of these models.

Once the training of each ML model has been completed, the generated forecasted values have

many decimal digits. For instance, the predicted values of a certain timeframe for the thermostats,

regarding both ETS and ARIMA, are float numbers. However, thermostats can only accept integer

values, thus, these numbers were rounded. This results in identical error measures. Nevertheless,

in cases where the difference is greater than a few decimal points, the error measurements varies.

This is visible to the per minute dataset, where the ARIMA model generated less errors than ETS.

All things considered, the per minute dataset for ETS and ARIMA produced less errors than the

per second one. Regarding the Regression models, it can be observed that the per second dataset

performed better than the per minute. Still, the percentage error of Regression models is greater

than ETS and ARIMA. Concluding, the model that performed best is ARIMA with a 5.49% error.

The next table, Table 10, shows a similar comparison as the previous one, but for the light and

lock devices. As discussed earlier, these devices are compared separately from thermostats, since

the error measure MAPE produces zero or infinite values when applied to datasets that include

zero or close to zero values. For this reason, for both light and lock devices, the MAPE is replaced

with MASE (Mean Absolute Scaled Error) error measurement. Furthermore, the lowest error

values are indicated in a bold font.

Page 71 of 94

Machine Learning

Algorithms

Mean Values of MASE

(Per Second)

Mean Values of MASE

(Per Minute)

ETS 1744.76 31.94

ARIMA 1744.76 31.94

Decision Jungle 1729.54 33.24

Decision Forest 1782.52 32.04

Boosted Decision Tree 1711.18 34.78

Logistic Regression 2489.04 39.50

Support Vector Machine 1988.9 37.85

Locally Deep SVM 2061.70 38.67

Bayes Point Machine 2166.92 40.32

Neural Network 2130.20 39.77

Averaged Perceptron 2171.45 40.12

Table 10: Mean Values of Light Bulbs and Lock – MASE.

By examining Table 10, it can be observed that ETS and ARIMA models produced identical error

values for all light and lock devices. The reason for this is the same as the one described for the

thermostats, that forecasted values were rounded before calculating the errors. Furthermore, it can

be noticed that the per minute dataset generated significantly fewer errors than the per second one

for all ML models. Specifically, ETS and ARIMA models performed best with a 31.94 MASE

error. Still, the MASE for all ML models is way above 1, which indicates that a naïve or a seasonal-

naïve algorithm may be the better choice, compared to the tested ML models. Unfortunately, the

time was not enough to conduct further experiments with such an algorithm. Nevertheless, a naïve

and a seasonal-naïve model need to be implemented in future experiments.

Considering the results so far, a per minute dataset should be used along with an ARIMA ML

model for the deployed web service. This decision was made because ARIMA performed best

regarding the thermostats, th01 and th02, (see Table 9) and it is among the top-performed models

for the remaining IoT devices, lb01, lb02, lb03, lb04 and lc01 (see Table 10). The same result can

be reached by examining other error measures like MAE (Mean Absolute Error) and RMSE (Root

Mean Squared Error). These data are available in Appendix 08.

The following figure, Figure 33, depicts the performance of the trained ARIMA model in

predicting the status of the second thermostat (th02) and the door lock (lc01) for the fourth day.

The blue line represents the initial dataset and the red line is the fourth day prediction according

to ARIMA.

Page 72 of 94

(a) ARIMA Prediction for th02 – Complete Dataset. (b) ARIMA Prediction for th02 – Fourth Day.

(c) ARIMA Prediction for lc01 – Complete Dataset. (d) ARIMA Prediction for lc01 – Fourth Day.

Figure 33: Azure ML Studio – ARIMA Prediction for th02 and lc01.

Figure 33 (a) illustrates, as a blue line, the gathered dataset per minute for the second thermostat,

over the course of four working days. Essentially, it is the user’s preference of the heat in the

kitchen. It can be seen that its lowest value is 10 and the highest 25. As a red line is represented

the ARIMA predictions of the fourth day. A closer look of that day is visible at Figure 33 (b). In

that figure, it can be observed the accuracy of ARIMA’s prediction for that day, by comparing the

red line (ARIMA predictions) to the blue (user preferences). Similar observations can be made by

looking Figure 33 (c) and (d) but for the door lock device.

Page 73 of 94

As stated before, an R function was used to automatically train and produce ARIMA and ETS ML

models. Moreover, the default settings were used for all Regression and Classification algorithms.

If adjustments are made to Regression and Classification algorithm’s settings, and a trial and error

method is used to manual train Time Series models, the outcome could change and a different

algorithm could perform best. Nevertheless, this is not the primary focus of this project, to find the

best performing Machine Learning algorithm over time, but to prove that the proposed solution

described in chapter 3 is feasible according to the available technologies discussed in chapter 2.

On top of that, further experiments should be conducted on how the tested ML algorithms would

behave in dataset with different sample rates (e.g. five minutes) and for a longer period of time

(e.g. 2 weeks, instead of four days), including weekends. These experiments are going to be the

focus of a future research.

4.4. System Prototype Deployment & Testing
By the end of section 4.3, the ARIMA model was proven to be the best performing one and was

chosen to be deployed as a web service. However, during the deployment process, it was detected

that in order for a Time Series algorithm to provide correct prediction results, it is needed to

forecast values continuously. The time passed from training all the ML algorithms and evaluating

them created a gap between the date/time of the training dataset and the deployment of the web

service. This gap was enough to affect the predicted results. This problem can be overcome if the

web service starts predicting values from the last observed date/time included in the training

dataset. However, the time restrictions did not provide the flexibility to implement this. Therefore,

it was decided to deploy a Regression/Classification model, which provides the flexibility of

predicting values not bound in a continues timeframe. It is important to state that, the

Regression/Classification web service was deployed only to prove the proposed solution and the

ARIMA should be used in a full-scale solution. The selected Regression and Classification models

are the Regression Fast Forest for the thermostats and the Classification Decision Forest for the

light bulbs and door lock device. An example of a deployed web service in Azure ML Studio and

its building blocks is available in Appendix 06.

As soon as a web service has been deployed, Azure Machine Learning Studio offers tools that can

be used to test it before using it. Figure 34 demonstrations this process. In Figure 34 (a), the “Test”

button can be pressed and then a dialog box appears. Figure 34 (b) shows this dialog. By providing

a date and a time, formatted as “yyyy-MM-ddTHH:mm:ss” (e.g. 2017-04-12T16:20:30), a

prediction can be requested. Following that, the requested prediction is processed. Since a Request-

Response Service (RSS) is used, the request is processed in real-time and almost immediately

provides results. These are illustrated in Figure 34 (c) for all IoT devices in a JSON format.

Page 74 of 94

(a) Web Service Start Test. (b)Web Service Input.

(c) Web Service JSON Output

Figure 34: Azure ML Studio – Web Service.

4.4.1. Prototype Testing
Thus far, all the components of the proof-of-concept have been implemented. In this section, a test

phase is documented on how the smartphone application interacts with the IoT devices. The

starting point is illustrated in Figure 35, where the current status of all IoT devices can be seen.

The focus is the lb03 device, which represents a light bulb in the bathroom. In Figure 35 the current

status of lb03 device is Off. At a certain time within a day, the user wants to turn on the light in

the bathroom. The end result is illustrated in Figure 36, in which the lb03 device is On.

Page 75 of 94

Figure 35: IoT Devices – Change lb03 Status 1.

Figure 36: IoT Devices – Change lb03 Status 2.

In order to achieve this result, turning on the bathroom light, the user needs to use his/her

smartphone. Figure 37 shows how the smartphone application is used by the user. At first, the user

can see that the bathroom light is Off. Following that, he/she writes a command in natural language

“Turn the lights on”. However, the user did not provide the room in which the light should turn

Page 76 of 94

on, thus the application asks “To which room?”. Then, the user responds with “bathroom” and the

application gives its final response “Turning on the lights in the bathroom!”. Finally, the user can

see now that the light in the bathroom is turned On.

Figure 37: Smartphone Application – Change lb03 Status.

A similar interaction can take place between the user, the smartphone application and any other

IoT device. Moreover, each IoT device stores its status in a database per minute over the course of

four working days. As soon as the four days have passed, the gathered dataset is used to train the

Regression and Classification ML models, Fast Forest and Decision Forest respectively. Once the

ML models have finished training, the user can press the “Start Predictions” button in the

smartphone application, Figure 38 – second red box, and the application starts requesting

predictions from the web service. At the same figure, the first red box illustrates that a new

prediction has been received and the application is adjusting the new values based on these

forecasts. The third red box is included for developing purposes, in which the response from the

web service can be seen in JSON format. This response contains the date and time the application

requested a prediction for and the forecasted values of all IoT devices. Based on that response, the

status of all IoT devices is adjusted.

Page 77 of 94

Figure 38: Smartphone Application – Change Devices' Status.

The following figure, Figure 39, illustrates the IoT devices and their status changed according to

the previous JSON response.

Figure 39: IoT Devices – Change Devices' Status.

This test concludes the Design and Implementation chapter, as its focus was to design a new

solution for Smart Homes by taking a different approach, 2nd research sub-question, and implement

a proof-of-concept based on that solution, 3rd research sub-question.

Page 78 of 94

5. Conclusion
This project’s main focus was to propose a Smart Home solution dedicated on providing a

personalized service to its users. To achieve that, the proposed solution utilizes many technologies

to identify and then, emulate a person’s daily routines inside a house. The technologies used are

the Internet of Things, Machine Learning and Cognitive Computing. This is also stated in the main

research question:

How the Internet of Things, Machine Learning and Cognitive Computing technologies can be

used to design and develop a unified personalized service in a Smart Home environment for a

purely autonomous house?

To answer that question, a solution was proposed, designed and developed in this project that

utilizes all the aforementioned technologies. A summary of that solution follows.

The inhabitant of a house can use a smartphone application from which all IoT devices installed

in the house can be controlled. The interaction between the Smart Home user and the IoT devices

is based on voice or text commands in natural language. The application utilizes the Cloud to

understand the user commands (Cognitive Computing) and then, it executes them by adjusting the

values of the IoT devices through a Cloud-based IoT Hub. The Machine Learning comes into play,

when a certain amount of historic data has been gathered through the interactions between the user,

the smartphone application and the IoT devices. This dataset has a timestamp, which indicates the

date and time the user performed an action. Based on this dataset, several Supervised Machine

Learning models were trained, tested and evaluated in order to find the one which performed best

under these conditions. Following that, the best performing ML model was deployed as a web

service. The smartphone application can contact the aforementioned web service to request future

predictions. Finally, these predictions are used to automatically adjust the value of all IoT devices

without user intervention.

5.1. Discussion
In order to design and implement a Smart Home solution as the one described earlier, a research

was necessary on the State-of-the-Art of existing technologies and Smart Home solutions (see

chapter 2). First, the IoT area was investigated. During that research, two different types of IoT

devices were detected, the resource-rich and resource-constrained. Moreover, the communication

technologies (e.g. Wi-Fi, Bluetooth, ZigBee, etc.) and protocols (e.g. MQTT, AMQP, etc.)

currently used in IoT services were examined. Last but not least, the location where the entire

computing of an IoT solution is implemented was explored (e.g. microprocessor, the Cloud, etc.).

All this information is essential, as different design choices can eliminate some of the IoT device

types, communication technologies, protocols and processing units. In the proposed solution, the

resource-rich IoT devices were selected along with a Wi-Fi connection over the AMQP protocol

(chapters 3 and 4).

Following IoT, the Machine Learning field was researched and especially the Supervised Learning

techniques (see chapter 2). However, since the data used in the proposed solution are dependent

Page 79 of 94

on time, Time Series Forecasting techniques were also studied (see chapter 2). During that

research, several Regression, Classification and Time Series Forecasting algorithms were detected.

These were later used in chapter 4 to train different ML models. Furthermore, after evaluating each

and compare its results to other models, the best performing one was selected for a web service

deployment. Although the overall best performing algorithm was proven to be the Time Series

ARIMA, it was not the one to be deployed due to time restrictions applied on this project.

Nevertheless, the time was enough to deploy a Regression Fast Forest model for the thermostats

and a Classification Decision Forest model for the light bulbs and door lock device. Having an ML

model deployed as a web service, the application can request future predictions for all the installed

IoT devices in the house and adjust their value accordingly. Moreover, the Cognitive Computing

services were researched (chapter 2) in order to realize their capabilities and use them in the

smartphone application. From all the provided services, the Text-to-Speech, Speech-to-Text and

Natural Language Understanding were considered in the full-scale solution (chapter 3), yet the

time was enough for implementing only the Natural Language Understanding service (chapter 4).

Another important field needed investigation was the Cloud Platforms (chapter 2), which can

provide services needed for designing and implementing the proposed solution. While several

exist, only three were researched (Amazon Web Services, IBM Bluemix, Microsoft Azure),

because of the limited time, and only one was chosen; Microsoft Azure. While many reasons exist

to justify this choice, the main one was its Machine Learning Studio versatility, adaptivity and

flexibility (see chapter 4, section 4.1). Following the investigation of existing technologies, Smart

Home solutions were also researched in chapter 2. There, different products and services were

examined, from commercial ones, currently available in the market, to services proposed by

researchers. These were taken under consideration when designing this project’s proposed solution

(chapters 3 and 4).

By the end of chapter 2, the first research sub question was answered:

What is the current State-of-the-Art in Smart Homes considering the IoT, ML and Cognitive

Computing?

Chapter 3 was focused on analyzing the results from chapter 2 and together with chapter 4, they

were responsible for providing an answer to the second research sub question:

How a new solution can be designed for Smart Homes to achieve a self-operated house?

The rest of the 4th chapter was emphasized on the third and final research sub question:

How a proof of concept can be developed based on this new solution for Smart Homes?

By answering all the research sub questions, the main one can be resolved:

How the Internet of Things, Machine Learning and Cognitive Computing technologies can be

used to design and develop a unified personalized service in a Smart Home environment for a

purely autonomous house?

Page 80 of 94

5.2. Future Recommendations
This section focuses on suggestions that are interesting and going to be looked upon in the future.

These recommendations include aspects of the project which were not considered in the design of

the full solution, neither in the implementation of the prototype, due to time constraints. On top of

that, some recommendations are made which could improve the whole proposed solution and the

provided services.

Internet Connectivity, Communication Technologies and Protocols

Starting with the delimitations stated in chapter 1 - section 1.3, a Smart Home solution that requires

internet even for minor operations might not be ideal. The reason for that is the absence of internet

connectivity that might occur within a day. Thus, it should be considered how the proposed

solution could function without internet connection. A solution to this problem would be to control

all IoT devices manually as well and save the data generated from this interaction into the local

memory of each device. When the internet connectivity is restored, the saved interaction can be

sent to the Cloud. By doing so, the user can control home devices even without internet

connectivity and still, the Machine Learning service would have the required dataset to train an

ML model. Furthermore, experiments with physical IoT devices should be performed, instead of

the simulated applications. These experiments will provide insights on the performance of the

chosen communication technologies (Wi-Fi) and protocols (AMQP). Thus, from these

experiments it can be decided if the selected technologies and protocols are ideal, or if others

should be considered.

Security and Privacy

Since a lot of personal data about the user are stored in the Cloud, the security and privacy are of

concern. Even though many communication technologies and protocols provide their own security

measures, a thorough examination of the proposed solution should be conducted. Through this, all

security risks should be identified and propose countermeasures. Some of them would be the end-

to-end encryption of data, from the Cloud to the smartphone application and every IoT device, and

from the smartphone application and each IoT device to the Cloud. Another vulnerable point is

located in the encryption key exchange between entities, used for encrypting the communication

channel. No matter how strong the encryption is, if the key used to encrypt the data is discovered

by an attacker, the whole system becomes defenseless. While methods exist on how to exchange

encryption keys, further investigation is needed to choose the best one, or create a new one from

the ground up.

Moreover, the user should be able to see what kind of data are collected by the proposed solution

and at any time he/she could delete those or stop providing data to the service. Of course, this will

affect the services provided to the user and he/she needs to be notified about that. Last but not

least, the proposed solution must comply with the European General Data Protection Regulation

[90], since it will be forced across Europe by 25th of May, 2018 [96].

Page 81 of 94

IoT Devices

In chapter 1, it was assumed that all IoT devices are already installed in a house. However, the

installation process of registering a new home device under a specific user and his/her house should

also be considered. On top of that, this process must be secure enough in order to avoid irrelevant

people from installing and registering new devices. Additionally, the service built during this

project used IoT devices fixed in number and type. In the future, it should be researched how the

service could become more flexible and include several home devices and diverse types. Following

that, this service should provide an easy way to the user of adding or removing IoT devices from

his/her account and house. These changes probably will affect the implemented Machine Learning

service, since it was also built upon a fixed number of home devices and types. Thus, it should be

considered how the ML service can be adapted into these changes.

Dataset

Considering the Machine Learning experiments conducted in chapter 4, the dataset provided for

training all the ML models was limited to a timeframe of 4 working days. Within each day, an

observation was made every second or every minute. Nevertheless, the gathered data were enough

to identify user routines and eventually emulate them, which also proves the feasibility of the

proposed solution. However, a larger dataset (e.g. of 14 days) with a different sample rate (e.g. 5

minutes) could provide necessary information for training more accurate ML models, thus

providing better predictions. As a result, several experiments can follow with diverse datasets in

order to find the optimal data acquisition parameters, i.e. observed days and sample rate.

Furthermore, it would be interesting to see how extra inputs in the dataset, during the training of

ML models, could affect the accuracy of future predictions. In the implemented Machine Learning

service, the training of all ML models was based on one IoT device at a time. However, further

experiments should be conducted on training ML models per room status or even the entire house.

This means that in order to predict the status of a single home device, if the current status of all

devices included in the same room or even the house is provided, it could generate more accurate

predictions. Moreover, if weather data are also incorporated in the dataset along with the

user/house location, it could enhance the precision of the forecasts even more. The weather data

can provide information about the outside temperature, which can be helpful especially for the

devices responsible for controlling the heat. The user/house location can be used to set up a

geofence around the house and track when the user leaves from or arrives at it. This information

could really help devices such as door locks and lights. These are experiments that should be

conducted in the future to determine the ideal input data during the training of ML models.

Last but not least, the proposed solution was designed around a dataset that includes preferences

for a single user. Further investigation is needed on how this solution would behave if more than

one people live in the same house. This would be challenging, as the preferences of one user may

contradict the preferences of the other, but also interesting to implement a service capable of

considering the preferences of all users inside a house.

Page 82 of 94

Machine Learning Service

All the ML algorithms used in this report were initialized with their default settings. However,

further research is needed in order to examine if all algorithms can perform better with adjusted

settings and if some, which previously did not perform well, could provide better predictions.

Moreover, naïve and seasonal-naïve algorithms need to be considered as well, since the results

from the Machine Learning experiments (chapter 4, section 4.3) indicated that could provide more

accurate predictions. Furthermore, an enhancement of the ML service would be to allow the

deployed ML model to retrain itself with new data. This can be achieved with the help of the

smartphone application. If the application detects that the provided predictions contradict the user

preferences, it could request the ML web service to retrain the ML model. An idea of how this can

be implemented is presented next.

Smartphone Application

A welcome enhancement of the proposed solution would be the possibility to retrain the deployed

ML model as described earlier. This can be proven beneficial as the changing of the environmental

temperature and the natural sunlight can change according to the current season. This change can

influence the preferences of the user. For instance, during summer time, the user would like a

cooler home and would turn on the house lights later in time. The smartphone application should

be able to detect these changes, as user preferences, and should provide the ML model with new

data to retrain itself. By doing so, the proposed solution could become more flexible and adjust its

future predictions accordingly. Finally, the smartphone’s UI and UX should be tested in

collaboration with end users and adjustments must be made according to their feedback.

Page 83 of 94

6. References
[1] R. D. Minerva Roberto, Biru Abyi, “Towards a definition of the Internet of Things (IoT),”

IEEE Internet Initiat., 2015.

[2] A. Attwood, O. Abuelmatti, and P. Fergus, “M2M Rendezvous Redundancy for the Internet

of Things,” in 2013 Sixth International Conference on Developments in eSystems

Engineering, 2013, pp. 46–50.

[3] F. M. Al-Turjman, “Towards smart ehealth in the ultra large-scale Internet of Things era,”

in 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International

Iranian Conference on Biomedical Engineering (ICBME), 2016, pp. 102–105.

[4] E. Wu, P. Zhang, T. Lu, H. Gu, and N. Gu, “Behavior prediction using an improved Hidden

Markov Model to support people with disabilities in smart homes,” in 2016 IEEE 20th

International Conference on Computer Supported Cooperative Work in Design (CSCWD),

2016, pp. 560–565.

[5] Google, “Google Home – Made by Google.” [Online]. Available:

https://madeby.google.com/home/. [Accessed: 14-Apr-2017].

[6] Amazon, “Echo & Alexa - Amazon Devices - Amazon Official Site.” [Online].

Available: https://www.amazon.com/b/?ie=UTF8&node=9818047011. [Accessed: 14-Apr-

2017].

[7] Google, “Features – Google Home – Made by Google.” [Online]. Available:

https://madeby.google.com/home/features/#?filters=home. [Accessed: 14-Apr-2017].

[8] Google, “Google Assistant - Your own personal Google.” [Online]. Available:

https://assistant.google.com/. [Accessed: 14-Apr-2017].

[9] J. E. Kelly Iii, “Computing, cognition and the future of knowing. How humans and

machines are forging a new age of understanding,” 2015.

[10] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of

Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Commun.

Surv. Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[11] M. Sain, Y. J. Kang, and H. J. Lee, “Survey on security in Internet of Things: State of the

art and challenges,” in 2017 19th International Conference on Advanced Communication

Technology (ICACT), 2017, pp. 699–704.

[12] IEEE, IEEE Standard for Information technology--Telecommunications and information

exchange between systems Local and metropolitan area networks--Specific requirements

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications, vol. 2012, no. March. 2012.

[13] W. Sun, M. Choi, S. Choi, W. Sun, M. Choi, and S. Choi, “IEEE 802.11ah: A Long Range

802.11 WLAN at Sub 1 GHz,” J. ICT Stand., vol. 1, pp. 83–108.

[14] I. C. Society, IEEE Standard for Low-Rate Wireless Personal Area Networks (WPANs),

vol. 2015. 2015.

Page 84 of 94

[15] Bluetooth SIG, “BLUETOOTH CORE SPECIFICATION Version 5.0 Vol 0,” vol. 0, no.

December, p. 154, 2016.

[16] ITU, “Recommendation ITU-T G.9959 Short range narrow-band digital

radiocommunication transceivers – PHY, MAC, SAR and LLC layer specifications,” 2015.

[17] Z. Alliance, “ZIGBEE SPECIFICATION,” 2008.

[18] Z. Shelby, K. Hartke, and B. C., “RFC 7252 - The Constrained Application Protocol CoAP,”

2014.

[19] A. Banks and R. Gupta, “MQTT Version 3.1.1 Edited by Andrew Banks and Rahul Gupta.

29 October 2014. OASIS Standard. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-

v3.1.1-os.html. Latest version: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-

v3.1.1.html.,” OASIS Stand., no. October, p. 81, 2014.

[20] “OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0. 29 October 2012.

OASIS Standard. http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-

os.pdf.,” OASIS Stand., 2012.

[21] OMG, “Data Distribution Service (DDS),” no. April, pp. 1–20, 2015.

[22] Arduino, “Arduino.” [Online]. Available: https://www.arduino.cc/. [Accessed: 24-Apr-

2017].

[23] Raspberry, “Raspberry Pi - Teach, Learn, and Make with Raspberry Pi.” [Online].

Available: https://www.raspberrypi.org/. [Accessed: 24-Apr-2017].

[24] Intel, “The Intel® Galileo Board | IoT | Intel® Software.” [Online]. Available:

https://software.intel.com/en-us/iot/hardware/galileo. [Accessed: 24-Apr-2017].

[25] E. Alpaydin, Introduction to Machine Learning, 3rd ed. MIT Press, 2014.

[26] Bishop M. Christopher, Pattern Recognition and Machine Learning. Springer, 2006.

[27] Russel J. Stuart and Norvig Peter, Artificial Intelligence A Modern Approach. .

[28] Microsoft, “What is Machine Learning on Azure?,” 2016.

[29] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice. Melbourne,

Australia: OTexts, 2013.

[30] V. Raskin, “Semantics as the basis of truly cognitive computing,” in 2017 IEEE 15th

International Symposium on Applied Machine Intelligence and Informatics (SAMI), 2017,

pp. 000011–000014.

[31] E. Khan, “Machine Learning Algorithms for Natural Language Semantics and Cognitive

Computing,” in 2016 International Conference on Computational Science and

Computational Intelligence (CSCI), 2016, pp. 1146–1151.

[32] W. Voorsluys, J. Broberg, and R. Buyya, “Introduction to Cloud Computing,” in Cloud

Computing, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011, pp. 1–41.

[33] Microsoft, “What is SaaS? Software as a Service | Microsoft Azure.” [Online]. Available:

Page 85 of 94

https://azure.microsoft.com/en-us/overview/what-is-saas/. [Accessed: 25-Apr-2017].

[34] Microsoft, “Microsoft Azure: Cloud Computing Platform.” [Online]. Available:

https://azure.microsoft.com/en-us/. [Accessed: 07-May-2017].

[35] Microsoft, “Azure IoT Suite | Microsoft Azure.” [Online]. Available:

https://azure.microsoft.com/en-us/suites/iot-suite/. [Accessed: 07-May-2017].

[36] Microsoft, “Azure solutions for Internet of Things (IoT Suite) Microsoft Docs.”

[37] Microsoft, “Microsoft Azure Machine Learning Studio.” [Online]. Available:

https://studio.azureml.net/. [Accessed: 07-May-2017].

[38] Microsoft, “Microsoft Cognitive Services.” [Online]. Available:

https://www.microsoft.com/cognitive-services. [Accessed: 07-May-2017].

[39] Microsoft, “What is Cognitive Services?”

[40] Microsoft, “LUIS: Homepage.” [Online]. Available: https://www.luis.ai/home/index.

[Accessed: 07-May-2017].

[41] B. W. Schermer, “Software agents, surveillance, and the right to privacy: a legislative

framework for agent-enabled surveillance,” Laiden University, 2007.

[42] Microsoft, “Pricing Overview - How Azure pricing works | Microsoft Azure.” [Online].

Available: https://azure.microsoft.com/en-us/pricing/. [Accessed: 07-May-2017].

[43] Microsoft, “Pricing - SQL Database | Microsoft Azure.” [Online]. Available:

https://azure.microsoft.com/en-us/pricing/details/sql-database/. [Accessed: 07-May-2017].

[44] Microsoft, “Pricing—IoT Hub | Microsoft Azure.” [Online]. Available:

https://azure.microsoft.com/en-us/pricing/details/iot-hub/. [Accessed: 07-May-2017].

[45] Microsoft, “Pricing - Machine Learning | Microsoft Azure.” [Online]. Available:

https://azure.microsoft.com/en-us/pricing/details/machine-learning/. [Accessed: 07-May-

2017].

[46] Microsoft, “Pricing - Language Understanding Intelligent Services API | Microsoft Azure.”

[Online]. Available: https://azure.microsoft.com/en-us/pricing/details/cognitive-

services/language-understanding-intelligent-services/. [Accessed: 07-May-2017].

[47] Microsoft, “Microsoft Cognitive Services - Bing Speech API.” [Online]. Available:

https://www.microsoft.com/cognitive-services/en-us/speech-api. [Accessed: 07-May-

2017].

[48] IBM, “Getting started with Watson IoT Platform.” [Online]. Available:

https://console.ng.bluemix.net/docs/services/IoT/iotplatform_task.html#iotplatform_task.

[Accessed: 07-May-2017].

[49] ΙΒΜ, “Conversation | IBM Watson Developer Cloud Doc.” [Online]. Available:

https://www.ibm.com/watson/developercloud/doc/conversation/index.html. [Accessed: 07-

May-2017].

[50] IBM, “Speech to Text | About Speech to Text | IBM Watson Developer Cloud Doc.”

Page 86 of 94

[Online]. Available: https://www.ibm.com/watson/developercloud/doc/speech-to-

text/index.html. [Accessed: 07-May-2017].

[51] IBM, “Text to Speech | About Text to Speech | IBM Watson Developer Cloud Doc.”

[Online]. Available: https://www.ibm.com/watson/developercloud/doc/text-to-

speech/index.html. [Accessed: 07-May-2017].

[52] IBM, “Getting started with Machine Learning.” [Online]. Available:

https://console.ng.bluemix.net/docs/services/PredictiveModeling/index.html?pos=2.

[Accessed: 07-May-2017].

[53] IBM, “IBM Knowledge Center - Database Source Node.” [Online]. Available:

https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.modele

r.help/database_overview.htm. [Accessed: 08-May-2017].

[54] IBM, “IBM Knowledge Center - Modeling Nodes.” [Online]. Available:

https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/kc_gen/com.ibm.spss.

modeler.help_com.ibm.spss.modeler.help_toc-gen25.html. [Accessed: 08-May-2017].

[55] IBM, “IBM Watson IoT - Watson IoT Platform Pricing.” [Online]. Available:

https://www.ibm.com/internet-of-things/platform/pricing/. [Accessed: 25-Apr-2017].

[56] IBM, “IBM Cloudant for Bluemix Public - New Pricing Model.” [Online]. Available:

https://www.ibm.com/blogs/bluemix/2016/07/cloudant-public-improved-pricing-model/.

[Accessed: 07-May-2017].

[57] IBM, “Conversation | IBM Watson Developer Cloud.” [Online]. Available:

https://www.ibm.com/watson/developercloud/conversation.html#pricing-block.

[Accessed: 07-Apr-2017].

[58] IBM, “Speech to Text | IBM Watson Developer Cloud.” [Online]. Available:

https://www.ibm.com/watson/developercloud/speech-to-text.html#pricing-block.

[Accessed: 06-Apr-2017].

[59] IBM, “Text to Speech | IBM Watson Developer Cloud.” [Online]. Available:

https://www.ibm.com/watson/developercloud/text-to-speech.html. [Accessed: 06-Apr-

2017].

[60] IBM, “IBM SPSS Modeler.” [Online]. Available: https://www.ibm.com/dk-

en/marketplace/spss-modeler. [Accessed: 08-May-2017].

[61] Amazon, “AWS IoT - Developer Guide.”

[62] Amazon, “AWS Free Tier.” [Online]. Available: https://aws.amazon.com/free/. [Accessed:

08-May-2017].

[63] Amazon, “Amazon Lex - Developer Guide.”

[64] Amazon, “Amazon Polly - Developer Guide.”

[65] Amazon, “Amazon Machine Learning - Developer Guide.”

[66] Amazon, “Amazon Machine Learning - API Reference.”

Page 87 of 94

[67] Amazon, “Amazon Web Services (AWS) - Cloud Computing Services.” [Online].

Available: https://aws.amazon.com/. [Accessed: 08-May-2017].

[68] Samsung, “SmartThings. Add a little smartness to your things.” [Online]. Available:

https://www.smartthings.com/. [Accessed: 08-May-2017].

[69] Bosch, “Smart Home | Bosch Global.” [Online]. Available:

https://www.bosch.com/products-and-services/connected-products-and-services/smart-

home/. [Accessed: 08-May-2017].

[70] Honeywell, “Honeywell | Your Home.” [Online]. Available:

https://yourhome.honeywell.com/. [Accessed: 04-Jun-2017].

[71] Samsung, “SmartThings Support.” [Online]. Available:

https://support.smartthings.com/hc/en-us. [Accessed: 08-May-2017].

[72] Samsung, “SmartThings - Products.” [Online]. Available:

https://www.smartthings.com/products. [Accessed: 08-May-2017].

[73] Samsung, “SmartThings - Hub.” [Online]. Available:

https://www.smartthings.com/products/samsung-smartthings-hub. [Accessed: 08-May-

2017].

[74] Samsung, “Routine Defaults – SmartThings Support.” [Online]. Available:

https://support.smartthings.com/hc/en-us/articles/210613803-Routine-Defaults. [Accessed:

08-May-2017].

[75] Samsung, “A Guide to Wireless Range & Repeaters.” [Online]. Available:

https://blog.smartthings.com/iot101/a-guide-to-wireless-range-repeaters/. [Accessed: 12-

May-2017].

[76] Nest, “Meet the Nest Learning Thermostat | Nest.” [Online]. Available:

https://nest.com/thermostat/meet-nest-thermostat/. [Accessed: 08-May-2017].

[77] Philips, “Philips Hue.” [Online]. Available: http://www2.meethue.com/en-gb/. [Accessed:

04-Jun-2017].

[78] Withings, “Withings.” [Online]. Available: https://www.withings.com/eu/en/. [Accessed:

04-Jun-2017].

[79] Nest, “Nest Learning Thermostat - Install & Explore | Nest.” [Online]. Available:

https://nest.com/thermostat/install-and-explore/. [Accessed: 08-May-2017].

[80] Nest, “Works With Nest.” [Online]. Available: https://store.nest.com/works-with-nest/.

[Accessed: 08-May-2017].

[81] Nest, “Nest Labs Introduces World’s First Learning Thermostat | Nest.” [Online].

Available: https://nest.com/fr/press/nest-labs-introduces-worlds-first-learning-thermostat/.

[Accessed: 08-May-2017].

[82] Nest, “Using multiple Nest Learning Thermostats in the same home.” [Online]. Available:

https://nest.com/support/article/How-does-Nest-work-if-I-have-multiple-Nest-Learning-

Thermostats-in-the-same-home. [Accessed: 08-May-2017].

Page 88 of 94

[83] M. Dimaggio, F. Leotta, M. Mecella, and D. Sora, “Process-Based Habit Mining:

Experiments and Techniques,” in 2016 Intl IEEE Conferences on Ubiquitous Intelligence

& Computing, Advanced and Trusted Computing, Scalable Computing and

Communications, Cloud and Big Data Computing, Internet of People, and Smart World

Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016, pp. 145–152.

[84] G. Xu, M. Liu, F. Li, F. Zhang, and W. Shen, “User behavior prediction model for smart

home using parallelized neural network algorithm,” in 2016 IEEE 20th International

Conference on Computer Supported Cooperative Work in Design (CSCWD), 2016, pp. 221–

226.

[85] Samsung, “Local processing.” [Online]. Available: https://support.smartthings.com/hc/en-

us/articles/209979766-Local-processing. [Accessed: 12-May-2017].

[86] V. Sivaraman, H. H. Gharakheili, A. Vishwanath, R. Boreli, and O. Mehani, “Network-

level security and privacy control for smart-home IoT devices,” 2015 IEEE 11th Int. Conf.

Wirel. Mob. Comput. Netw. Commun. WiMob 2015, pp. 163–167, 2015.

[87] I. Sommerville, Software engineering. Addison-Wesley, 2007.

[88] Agile Business, “MoSCoW Prioritisation | Agile Business Consortium,” 2014. [Online].

Available: https://www.agilebusiness.org/content/moscow-prioritisation. [Accessed: 13-

May-2017].

[89] M. Burnett and D. Kleiman, Perfect Passwords. Technical Editor, 2006.

[90] European Parliament, “General Data Protection Regulation,” EUR Lex, vol. 11, no. April,

pp. 1–341, 2015.

[91] WampServer, “WampServer, la plate-forme de développement Web sous Windows -

Apache, MySQL, PHP.” [Online]. Available: http://www.wampserver.com/en/. [Accessed:

21-May-2017].

[92] Apache, “Welcome! - The Apache HTTP Server Project.” [Online]. Available:

https://httpd.apache.org/. [Accessed: 21-May-2017].

[93] MySQL, “MySQL.” [Online]. Available: https://www.mysql.com/. [Accessed: 21-May-

2017].

[94] Microsoft, “What’s a Universal Windows Platform (UWP) app?”

[95] R. Hyndman, M. O’Hara-Wild, C. Bergmeir, S. Razbash, and E. Wang, “Forecasting

Functions for Time Series and Linear Models,” 2017.

[96] “Home Page of EU GDPR.” [Online]. Available: http://www.eugdpr.org/. [Accessed: 02-

Jun-2017].

