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Abstract:

Introduction Over 17.5 million people die ev-

ery year due to cardiovascular disease. The most

widespread used to detect heart disease is the 12-

Lead ECG. In ECG research there has been a lot

of research in understanding its features and the

underlying grammar of the ECG not only for diag-

nostics but also for identification of a specific per-

son or even mood. Hierarchical Temporal Mem-

ory (HTM) seemed to be able to identify the un-

derlying grammar automatically in a robust mat-

ter. It was therefore evaluated to which extent

HTM could identify and use biometric grammar

of the ECG in the context of identifying subjects

based on their heartbeat from unfiltered ECG.

Methods Data subsets with different number

of subjects were created from an ECG database

with 25,000 subjects. Two sessions were included

from each subject of 500 Hz 10 seconds ECG. Lead

II was used from these ECGs and the dataset con-

tained healthy and unhealthy subjects. A HTM

model was configured and built using Numenta

NuPic software and exposed to the different sub-

sets. Subsets were applied with different number

of iterations spanning from 1 to 1,000.

Results The maximum accuracy was achieved

from using only 10 subjects where the accuracy

was found to be 31.3 % and down to 0.07 % for

1,250 subjects.

Conclusion The number of subjects decreased

this accuracy and the number of iterations had no

effect. It was not possible to determine if the accu-

racy found was due to limitation of inter-subject

variability of the ECG or to the configuration of

HTM. The authors of the software used in this

current study now provide tools that might be a

logical next step in improving the results.





Resume (Dansk)

I dette projekt er der udarbejdet en artikel og en rapport om Hierarchical Temporal Memory. I
denne sektion er det engelske resume oversat til dansk.

Introduktion
Over 17.5 milioner af mennesker dør hvert år pga kardiovaskulære problemer hvoraf størstedelen af
tilfældene er mulige at forhindre. Forskellige metoder kan bruges til at detektere hjerteproblemer
og hjertesygedomme men den mest brugte metode er det 12-ledet EKG. Egenskaber fra et EKG kan
udtrækkes og bruges i Machine Learning. Det viser sig dog at det ikke nødvendigvis er en god ide
at anvende såkaldte eksperter til at udtrække disse egenskaber fra EKGet. I EKG forskninger der
lavet en masse forskning i at forsøge at forstå disse egenskaber og den underlæggende grammatik
af EKGet, ikke kun til diagnostisk brug men også til at identificere en person eller deres humør. I
en litteratursøgning om Machine learning blev det fundet at Hierarchical Temporal Memory virker
til at kunne identificere de underliggende egenskaber og grammatik i EKG’et på en automatisk
og robust måde. Det var derfor evalueret hvor godt at en implementing af Hierarchical Temporal
Memory kunne identificere og bruge den underliggende grammatik af EKG’et til at klassificere
hvilken person et hjerteslag tilhørte baseret på et hjerteslag afledt fra ufiltreret EKG.

Metoder
Flere del-sæt hvert indeholdende et forskelligt antal personer var generet fra en EKG database
med over 25,000 personer. To sessioner blev inkluderet fra hver person hvor hver enkelt session
indeholdet 10 sekunders data og var optaget med 500 Hz. Denne data indeholdte flere led men
kun II-ledet var brugt. Det samlede datasæt indeholdte både sunde og raske personer men også
personer der led af forskellige sygdomme der havde betydning for deres hjertefunktion. Hvert enkelt
del-sæt blev splittet i træning og test data hvor der var fire gange så meget trænings data som test
data. En implementering af Hierarchical Temporal Memory blev fortaget ved at bruge software fra
Numenta kaldet NuPic. Hvert eneste del-sæt der indeholdte træningsdata blev anvendt i denne
implementering. Disse datasæt blev vist med et forskelligt antal iterationer hvor kun en enkelt
iteration blev fortaget for noget data og op til 1,000 iterationer for andet data.

Resultater
Den største nøjagtighed blev opnået ved kun at bruge 10 personer hvor at denne nøjagtighed blev
målt til at være op til 31.3 % og mindst for 1,250 patienter hvor den var under et procent. I del-sæt
hvor flere iterationer var brugt var der ikke fundet bedre resultater. Ved at kombienere forskellige
del-sæt sås der heller ikke en forbedring af resultater.

Konklusion
Det var muligt at identificere hjerteslag med op til en nøjagtighed på 31.3 % men ved at forøge
antal af personer inkluderet i klassifikationen faldt denne nøjagtighed. Slev ved at forøge antal af
iterationer hvormed data blev brugt i systemet var der ingen forbedring af resultaterne. Resulta-
terne af dette studie er stadigvæk dog forholdsvis nye og interessante ide at Hierarchical Temporal
Memory ikke har været brugt i en biometrisk applikation før. Derudover er antal af personer høje
i forhold til mængden af data per person når man sammenligner med andre studier fundet under
litteratursøgningen i dette projekt. Det var ikke muligt at finde ud af om den fundne nøjagtighed
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Chapter 0: Resume (Dansk)

var begrænset pga variabiliteten mellem personer i datasættet eller fordi at konfigurationen af Hi-
erarchical Temporal Memory ikke var god nok. Fabrikanten af det software der blev brugt i dette
studie er udkommet med et nyt værktøj kaldet “swarming” til at hjælpe med at forbedre konfig-
urationer af Hierarchical Temporal Memory. Det virker derfor som et logisk valg at bruge dette
værktøj til vider undersøgelser i forbedring af nøjagtigheden med Hierarchical Temporal Memory.
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Abstract

Introduction Over 17.5 million people die every year due to cardiovascular disease where the majority of these
cases are preventable. Different methods can be used to detect heart disease but the most widespread used is
the 12-Lead ECG. Features can be extracted from the ECG and used in machine learning. Using an expert to
extract these features does not seem to be the correct way. In ECG research there has been a lot of research
in understanding these features and the underlying grammar of the ECG not only for diagnostics but also for
identification of a specific person or even mood. Hierarchical Temporal Memory (HTM) seemed to be able to
identify the underlying grammar automatically in a robust matter. It was therefore evaluated to which extent
HTM could identify and use biometric grammar of the ECG in the context of identifying subjects based on their
heartbeat from unfiltered ECG.
Methods Data subsets with different number of subjects were created from an ECG database with 25,000
subjects. Two sessions were included from each subject of 500 Hz 10 seconds ECG. Lead II was used from these
ECGs and the dataset contained healthy and unhealthy subjects. Each data subset was split into a 4:1 training
to test data ratio. A HTM model was configured and built using Numenta NuPic software and exposed to the
different subsets. Subsets were applied with different number of iterations spanning from 1 to 1,000.
Results The maximum accuracy was achieved from using only 10 subjects where the accuracy was found to be
31.3 % and down to 0.07 % for 1,250 subjects. Increasing the number of subjects and combining subsets decreased
the accuracy of the system. The different number of iterations had no effect on the accuracy of the system.
Conclusion It was possible to identify with up to an accuracy of 31.3 % but the number of subjects decreased
this accuracy and the number of iterations had no effect. The results of this study are however somewhat novel
compared to other studies because of the high number of subjects compared to the amount of data for the
individual subject. It was not possible to determine if the accuracy found was due to limitation of inter-subject
variability of the ECG or to the configuration of HTM. The authors of the software used in this current study now
provide tools to improve configurations of HTM. Using these tools might therefore be a logical next step.

1. Introduction

Cardiovascular disease is the leading cause of mortal-
ity and illness in the western world [1] with over 17.5
million deaths worldwide and 80 % of them being due
to heart attacks and strokes with the majority of the
deaths being preventable [2]. Heart attacks (ischemic
heart disease) alone resulted in more than 7.4 million
deaths [2].

The 12-lead ECG is the gold standard for diagnos-
ing and monitoring coronary heart disease patients
[3]. It is also the most widely used in the diagnosis of
suspected heart disease [1].

There is a physiological reason for the usage of ECG
in diagnostics. Since ECG is the readout of the elec-

trical activity of the heart, any electrical malfunction
will change the recorded signal [4, 1]. The heart and
its electrical activity is modulated by both intrinsic and
extrinsic factors [5, 1], which means that not only heart
problems are detectable but also problems occurring
extrinsically from the autonomic nervous system (ANS)
would be detectable. The ANS also regulates internal
organs other than the heart [6] thereby the 12-lead ECG
could potentially be used for a more general health sta-
tus. One limitation of the ECG is that it doesn’t indicate
the actual mechanical contraction and pump function
of the heart [7].

Since ECG features indicate the heart’s electrical ac-
tivity [7] it can be used by a doctor to perform further
investigations or diagnosis. [1] Some of the useful fea-
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tures that can be derived from the ECG are for example
Heart Rate Variability (HRV), QT interval (to diagnose
Long QT and Short QT syndromes) and QRS width (to
diagnose e.g., bundle branch block and ectopic beats)
[1].

There is a lack of a gold standard feature set [8, 9]
as new feature sets are derived each time from disease
annotated original ECG databases [10, 11] instead of
from a pool of already defined features. Therefore,
behind much of ECG research there is a lot of work
being done to establish an underlying grammar of the
ECG as the minimal ideal reduced dataset. From this
dataset, one should be able to not only diagnose sus-
pected heart disease but also identify a specific person
or even their mood. The idea of using an expert for
feature extraction does not seem to be the correct way
but rather, features should be extracted synaptically or
statistically [8, 12, 13, 14].

The papers by Casarella M. [8], Oster et al. [12],
Agrafioti [13] and Lu et al. [14], investigating ECG
with features not extracted by an expert, show promis-
ing results thereby bypassing the feature extraction
problem. Some of these results which were found in
Casarella M. [8], Masetic and Subasi [15] and Seera et
al. [9] showed the accuracy of close to 100 % where
some algorithms used in these showed to be more ro-
bust to noise than others. These results could be due to:
overfitting, the grammar in the dataset being ideal for
the application of the respective algorithm or a general
descriptive grammar of the ECG was found.

This project therefore investigated if this general
descriptive grammar could be found by using methods
applied to another application than their original one.
The Hierarchical Temporal Memory (HTM) method-
ology used in Casarella M. [8] was chosen since the
research field fits within the scope of this article and
provides a novel feature extraction and classification
that does not require an ECG expert. The application
chosen follows Agrafioti [13] which performed identi-
fication of subjects based upon ECG heartbeats. The
application was chosen since it had higher error rates
than other application areas found, but was still found
to be within an area that showed promise [13].

The following was investigated: To what extent can
the underlying biometric ECG grammar be found with HTM
on subjects heartbeats over multiple sessions?

2. Methods

In the current study parts of the methodologies ap-
plied in Casarella M. [8] are used, that is a dataset was
prepared and a Hierarchical Temporal Memory model
(HTM) was built and configured. The HTM model is
illustrated in figure 1. Multiple experiments were run
in different configurations in order to investigate the in-
fluence of number of subjects and number of iterations
on the results. The non-shared configuration for each
of these experiments is described under the subsection
experiments.

Figure 1: The goal of the HTM model is to mimic the human
neocortex columnar structure and algorithmic property as these
properties are a big part of human intelligence [8]. This illustrates
the pyramidal nature of HTM where initially the ECG is encoded
to a binary 2D image where features get extracted and reduced
layer by layer until they are fed to a classifier. Different parts of
this image marked with red squares act as input for a set of 2D
columns each with cells marked as circles. On the left some cells
are active due to an input to their respective column. These active
cells are marked green. The yellow cells are connected to two other
cells that are active and are therefore in a predictive sate. Not every
connection is illustrated here for the sake of simplicity. The red cells
are only connected to a few cells so they are not in a predictive state.
On the right a new input has arrived. Every cell in a column is
active since none of the cells were in a predictive state before. In the
other columns the cells that were predictive before are now active.
The model learns by adjusting the weight of connections between
the input and columns and between cells through iterations. A
classifier is added in the end and performs classifications based
upon the features derived in the layers of HTM
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2.1. Application

The real life application used in this study is based on
the literature Agrafioti [13]. Described in Agrafioti [13]
are three biometric applications. The best results in
terms of having a lower error rate, was in the appli-
cation where heartbeats derived from a finite known
population’s ECG were to be identified over time. In
that application a continuous classification on a non
overlapping dataset of five seconds ECG was used.
Temporal information can be learned without the over-
lap in HTM. [8] That application is therefore mimicked
in the current study so that only single consecutive
heartbeats are used to identify a subject over time.

2.2. Software

Some preprocessing had to be done to the data since
images need to be generated from the original data
set. This was done in MatLab R© 9.1.0.441655 (R2016b).
The actual HTM model is however not supported in
MatLab R©, therefore software by Numenta NuPIC 0.7.0-
dev [16] was used. Experiments were run on 2015
MacBook Pro 15 Inch 2.8 GHz i7 with 16 GB of ram.
MacOS version 10.12.4. Python 2.7.10. Furthermore a
MongoDB 3.04 database was created with the data to
avoid memory leaks.

2.3. Dataset

The origin of the dataset is a database by the general
practitioners of Copenhagen, Denmark. It is 500 Hz
sampled unfiltered ECG for 25,000 patients each with
two sessions. There were 14,225 female and 10,775 male
with a total mean age of 64 years and a standard devi-
ation of 16.64. From each session the full length of 10
seconds was chosen. In the application being mimicked
from Agrafioti [13] they used multiple leads but in this
study the lead II was chosen to match the methodology
by Casarella M. [8]. The dataset contained both healthy
and unhealthy patients which is a broader spectrum
than both Agrafioti [13] and Casarella M. [8] who only
used either one of the two patient groups.

2.3.1. Subsampling of the dataset

Two subsampled dataset called optimisation and con-
trol were substracted from the entire dataset. Samples
were assigned to the two subsets in a random manner
automatically by the file system of the computer run-
ning the software. 1,250 subjects (5 % of entire dataset)

were included in each of the subsets. This number was
chosen in order to reduce the runtime of the software,
since initial investigations indicated that it would not
be able to finish within time scope otherwise. In order
to evaluate the influence of number of subjects, subsets
of 10 and 100 subjects were also included.

2.3.2. Segmentation of heartbeats

In order to segment the heartbeats from the ECG the
Pan Tompkins algorithm was used as suggesed by El-
gendi [17], Agrafioti [13] and Dubois et al., 2007 [10].
The Pan Tompkins algorithm, developed by Pan and
Tompkins [18], provided an accuracy of 99.3 % on 12-
lead ECG arrhythmic data and can be used on the
unfiltered ECG signal.

The width of the heartbeat was defined to be 740
ms in this current study. A fixed length was chosen
to match with the methodologies by Casarella M. [8].
The exact length of a heartbeat is affected by both dis-
ease and heart rate, but was calculated based upon it
normally being within; 80-100 ms for the P-wave, 120-
200 ms for PR-interval and 300-440 ms for QT-interval
resulting in a maximum total length of 740 ms. [8].

2.3.3. Encoding images

Images were encoded so that each sample corre-
sponded to a pixel. Since the length of a heartbeat
was calculated to be 740 ms, and each sample corre-
sponds to 2 ms, a width of 370 samples (370 pixels)
were selected for the image. This corresponds to the
length of the heartbeat normalized to the sampling
frequency.

In Casarella M. [8] the height of images were 96
pixels so the same height for images were selected for
the current study.

In order to determine the vertical pixel a sample
belonged to, a grid was created with 96 values each
representing a pixel. The distance between the value of
a sample and the 96 pixels in the grid were calculated
and the pixel with the minimum distance was selected
to be the corresponding pixel of the sample.

In case of a tie between distance of pixels, the upper
pixel was selected to be the corresponding one.

Grids were created for each individual recording
so that the maximum value of the grid corresponded
to the maximum value of the session and the mini-
mum to the minimum value. Each step in the grid was
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calculated as described in expression 2.

value(pixel) = min + pixel ∗ (max−min)/96 (1)

2.3.4. Training and test groups

The very essence of machine learning is the ability to
predict future values based upon previous experience.
Subjects data from each of their respective subsets were
therefore split into training and test groups.

In Casarella M. [8] different ratios between the two
groups are described. They describe that the imple-
menters of Numenta NuPIC suggest a 8:1 training to
test data ratio but that they usually used a 1:1 ratio.
Casarella M. [8] uses roughly a 1:2 ratio for their own
study but the ratio is not the same for each class they
investigated.

In the current study the 4:1 ratio was chosen. The
data amount is limited for each class in the current
study compared to what was used in Casarella M. [8]
and increasing the ratio gives more training data and
thereby better accuracy might be achieved.

All data on each subject was used as a combined
dataset where a 4:1 ratio of data was extracted for each
of the subjects. This gave roughly 25 beats for training
and 6 beats for test for each subject.

2.4. Configuration of algorithm

There are not yet any gold standards for selecting the
values for parameters in an implementation of HTM
as described in Casarella M. [8] and Hawkins et al.
[16]. In this section the high level parameters, such
as number of layers, are selected before the low level
parameters, such as number of columns in each layer.

As described by Casarella M. [8] whose methodol-
ogy is mimicked in the current study, parameters had
to be tweaked to fit within the problem domain. Since
the application or problem domain in the current study
is biometrics, values in this current study would not
necessarily be the same as of [8].

2.4.1. Number of layers

The number of layers to use is not directly specified by
Numenta, but experiments have been made with both
three and four layers. More layers increased the ro-
bustness of the system but decreased the accuracy. [8]
For image classification problems, three layers seemed

to produce the best results [8], therefore a three layer
structure was used in the current study.

2.4.2. Configuration of layers

The configuration of the two bottom layers were made
with the following considerations from Casarella M. [8]:
The image size, patterns within the image, the correla-
tion between number of layers and number of columns
in each layer. Following the methodology described in
that literature, two prime factors were derived based
upon the image size and used to calculate the config-
uration of columns. These calculations are made in
expression 2 and 3.

96⇒ 3× 2× 2× 2× 2× 2 (2)

370⇒ 2× 5× 37 (3)

A pyramidal regression was found in Casarella M.
[8] to be required for the proportion of the images. It
is specified that the first layer should be an eighth of
the original data set and the second layer should be a
half of the first layer. The last layer is the classifier. It is
however not possible to fulfil these requirements with
a width of 370 pixels. Therefore the images were ad-
justed to a width of 384 pixels (by chaining the width
of the window) and new primes were calculated in
expression 4.

384⇒ 2× 2× 2× 2× 2× 2× 2× 2× 5 (4)

By using the primaries it was possible to calculate
the following properties of the layers in calculation 5
and 6. This means 48 × 12 columns (width × height)
in the first layer and 12 × 3 (width × height) in the
second layer.

96/8 = 12‖12/4 = 3 (5)

384/8 = 48‖48/4 = 12 (6)

2.4.3. Capacity of learning

The capacity of a layer defines how many underlying
patterns can be stored. Essentially this is the config-
uration of the SDR. The expression for the capacity
in a layer is given in expression 7. n is number of
columns where k is number of active columns. By se-
lecting a rounded 2% suggested in Hawkins et al. [16]
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the number of columns for layer one is 48× 12 = 576,
the number of active columns is 12 and the capacity
is 2.4810e + 24. In the second layer the number of
columns for layer one is 12× 3 = 36, active columns is
only 1 and the capacity is 1.2517e + 09.

n!
k!(n− k)!

=

(
n
k

)
(7)

2.4.4. Selecting number of cells

The number of temporary contexts that can be repre-
sented is given in 8 and limited by c number of active
columns and n cells in each of the columns. Exam-
ples are given for a layer of 4 cells in each columns
in Hawkins et al. [16]. This number allows for a big
temporal memory and it is argued in Hawkins et al.
[16] that a layer of above the 4 is usually not needed.
The temporal patterns (context) that can be learned in
this implementation is therefore 16,777,216 and 4 in the
first and second layer respectively. This guideline is
also followed in Casarella M. [8].

nc (8)

2.4.5. Classifier and performance measures

The top layer (classification algorithm) was chosen to
be Naive Bayes Classifier (NBA) since it was also used
in Casarella M. [8] and a class was defined for each
subject. This classifier outputs a sample’s probability to
belong to each of the classes as a test is performed. The
three most likely classes and corresponding probability
for each of those classes were used in further analysis
from every test. The further away from the most likely
class a prediction is, the less likely it is for the system
to be able to classify such a sample and an arbitrary
cut-off of three classes was therefore chosen.

2.5. Experiments

Experiments were conducted with different numbers
of iterations in this present study as of [8]. The span of
iterations were set to be between 9,000 to 60,000 times
in the study by Casarella M. [8] and was only done on
the spatial pooler. No improvement in classification
was seen for over 21,000 iterations. Essentially it was
theorised that the more times an image is exposed to
the spatial pooler the better the underlying patterns
can be detected. For this application the ideal number

of iterations needed were not known and multiple ex-
periments were therefore conducted with an arbitrary
number of 1, 100 and 1,000 iterations respectively for
the control subset. The trial with 1 and 100 iteration(s)
were then run again but with the optimisation subset
instead. An experiment with only 1 iteration but with
a combined dataset of the control and optimisation
dataset was also run. This last experiment was con-
ducted to investigate the influence of the size of the
dataset on accuracy of classification. Investigation of
the size of the dataset was also further supported by
using the subsets that included 10 and 100 subjects
respectively. The number of iterations used for these
were 1, 10 and 100.

3. Results

The results are represented in table 1 for the different
number of iterations used and the optimisation and
control subsets.

Table 1: Results of using HTM with the different subsets are given
in this table. The accuracy of correctly classifying a sample as the
most likely or within the top three most likely is given

Iteration Subset Acc (1) Acc (3)
1 Optimise 0.07 % 0.24 %
100 Optimise 0.07 % 0.24 %
1,000 Optimise 0.07 % 0.24 %
1 Control 0.09 % 0.27 %
100 Control 0.09 % 0.27 %
1 Optimise & Control 0.04 % 0.01 %

The results did not improve with the number of
iterations. By creating a dataset consisting of both of
the subsets, the accuracy dropped to half of the mean
of the accuracies of each of the subsets. The results
from evaluating for number of subjects are presented
in table 2.

Table 2: Results of using HTM with the different subsets are given
in this table. The accuracy of correctly classifying a sample as the
most likely or within the top three most likely is given

Iterations Num subjects Acc (1) Acc (3)
1 10 8.89 % 31.3 %
10 10 8.89 % 31.3 %
100 10 8.89 % 31.3 %
100 100 4.47 % 18.5 %
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The results of these showed an improvement com-
pared to the former results of this current study with
the number of subjects influencing the accuracy of the
system. The number of iterations did not change the
accuracy. These findings align with what was already
found earlier in this study. Two classifications made
by the classifier has been included in figure 2 and 3
respectively. Figure 2 is a correct match where figure
3 is not. These figures illustrate how similar both the
correctly and wrongly classified images look with their
matches.

Figure 2: Correct match from random subject’s encoded heart-
beat. The shared pixels are marked with green, the non-shared are
marked with red and blue where each of these colours represents
two different beats

Figure 3: Wrong match from random subject’s encoded heart-
beat. The shared pixels are marked with green, the non-shared are
marked with red and blue where each of these colours represents
two different beats

4. Discussion

The results found in this study were less accurate than
what was found by Agrafioti [13], Gregg et al. [4] and
Casarella M. [8]. In Casarella M [8] the application
was not biometric but the HTM was also used and
an almost 100 % accuracy was found. That study did
however only differentiate between four classes and in
this study it was found that increasing the number of
classes lowered the accuracy of the system. Further-
more these results were achieved using 60,000 itera-
tions. When only 3,000 iterations were used the results
were an accuracy of 70 %. These number of iterations
are higher than what was used in the current study.

In the biometric application in Agrafioti [13], mim-
icked in the current study, the lowest equal error rate
was 10 %. This was however only on a database with
up to 52 subjects whereas the current study used up to

2,500 subjects. More data was used for classification in
Agrafioti [13] as they used five seconds of ECG record-
ings providing more data for the classifier to make its
decision than in the current study where single heart-
beats were used. Using more data should improve the
accuracy of the system [19, 20, 21].

Filtered ECG was used in Agrafioti [13] as recom-
mended in literature [22, 23, 24] but this was not done
in the current study. Noises might therefore be so
strong that they suppress the information about the
identity of the subject in this current study.

The study Gregg et al. [4] reported, just as the
findings in the current study, that sensitivity decreased
with an increasing number of subjects. A reason for
this could be that with a large number of subjects
the intra-subject variability might be too high for the
inter-subject variability creating a critical overlap in
the distributions of features for each subject. This can
decrease not only sensitivity but also specificity.

Training was made in this study on 294 subjects but
included more data in the form of 15 leads instead of
one lead used in the current study. Gregg et al. [4]
reported a sensitivity of 37 % but also included 8369
subjects for test that were not trained on. Since Gregg
et al. [4] tested the system by matching a trained sub-
ject’s ECG with an untrained subject’s ECG no match
should be found, thereby increasing the sensitivity of
the system without increasing the actual accuracy. In
Gregg et al. [4] the entire ECG was used to determine
if a match was found of a subject where only single
heartbeats were used in this current study. By using
the entire ECG instead of a single heartbeat, the subject
who has been suggested most frequently for any of
the heartbeats could be selected as the subject the ECG
belonged to and therefore improve the results.

4.1. Application

The current study mimicked the application described
in Agrafioti [13] but did have some differences. In
Agrafioti [13] the application was biometric identifica-
tion of subjects on ECG signals. In the current study
only single beats were used instead of five seconds of
ECG. Chaining the application in the current study to
also contain a consecutive five seconds of ECG would
allow HTM to learn more of the underlying patterns as
the number of columns to handle the input data would
increase. By introducing an overlap in the images it
would also be possible to strengthen the temporal infor-
mation in the images in HTM and thereby potentially
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increase the accuracy of the system. In this current
study only 10 seconds ECG were available and a five
seconds dataset would therefore result in a very lim-
ited size of a training and test set for each subject. This
issue could have been overcome by having multiple
either increased length of sessions or more sessions for
each subject.

The application in the current study was adapted to
also fit Casarella M. [8] who used unfiltered ECG. In a
real world application there might still be some kind of
filtering because of the issues with ECG quality [3, 25].
Good results using unfiltered ECG does however show
a more robust solution.

4.2. Software

It was not possible to use the same software version
as used in Casarella M. [8] even though attempts were
made to contact the author. Changes in software can
influence both function and stability of the software
[19] and therefore it might have affected the outcome
of this study. This did limit the possibilities of using
and replicating the experience gained by Casarella M.
[8].

4.3. Dataset

One lead was used in this study with two sessions
where each session was 10 seconds long. In the cases
of Casarella M. [8] and Agrafioti [13] they both used
ECG recordings with a length more than 100 times
greater than that of the recordings used in this current
study.

Since Casarella M. [8] showed that an increased
amount of data showed higher accuracy it might be
worth investigating the effect of an increased data size
for outcome.

Some of the ways to increase the data size could
be to introduce more sessions since the data size for
each session in this study is limited to 10 seconds. This
will also give the possibility of gaining more complex
temporal information from the ECG since only two
sessions are available. Whether or not this would be
feasible with more sessions can be discussed since it
would require resources from healthcare professionals
and patients to collect the extra amount of data.

Different leads might provide information different
from each other about the heart [1, 7]. In HTM no
additional knowledge about what the input represents
(such as its diagnostic value) is required according to

Casarella M. [8], meaning that even thought the exact
value of these leads is not fully understood in a bio-
metric application it would indeed be possible to use
multiple leads to increase the dataset.

The dataset contained a broader spektrum of pa-
tients than both Agrafioti [13] and Casarella M. [8] since
both unhealthy and healthy subjects were included in
this current study. In Agrafioti [13] it was shown that
the ability to perform the biometric application was
affected by emotions. Whether or not accuracy of the
system could also be affected in the same way but for
health status of the subject is not known, but could be
controlled for by using either only healthy subjects or
for subjects of a specific disease.

4.3.1. Subsampling of the dataset

The subsets from the entire dataset were subtracted in
a random manner. This does however also mean that a
balance between male/female, age and different diag-
nosis were not known for these subsets. Introducing
a pseudo randomisation could ensure an equal distri-
bution of these. It is however not known how these
demographics actually influence the accuracy of clas-
sification. The size of the subset did however have an
influence of the accuracy of the system as an increased
number of subjects decreased the accuracy of the sys-
tem. Databases can however require even larger group
sizes than used in this current study if comparisons
were to be made for the entire database.

4.3.2. Segmentation of heartbeats

Pan Tompkins was used to segment heartbeats. This
method has proven to be accurate and robust [18]. A
specific width was selected even though some varia-
tions in the length of a heartbeat would be present due
to factors such as the heart rate [8] thereby creating
an overlap between heartbeats. The purpose of seg-
menting heartbeats might therefore be lost and a fixed
length of time could be used instead.

4.3.3. Encoding images

The height of the image was chosen to follow Casarella
M. [8]. Even though it matched with that literature,
increasing the number of pixels would allow for more
columns in the HTM layers thus increasing the capacity
of learning for each layer.
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4.3.4. Training and test groups

Recommendations from Numenta [19] and Casarella
M. [8] were not directly followed for training to test
data ratio as they had more data available, therefore
the amount of training data was increased in this cur-
rent study. In order to avoid over-fitting of the entire
dataset and investigating the effect of different subsets,
an optimisation and control dataset was included. This
was done according to what is described by Holzinger
[20] and Daume [21]. They argue that this is a robust
method to overcome over-fitting issues when optimisa-
tion of algorithm has to be done.

The number of beats for testing were however very
limited for each subject as only 2-3 beats were available.
Since temporal information is stored as consecutive
beats and only a few are available, the change from
one subject to another might disrupt the ability to clas-
sify. Using one session as training and another one as
test would increase the amount of data available for
temporal information.

4.4. Configuration of algorithm

Only Casarella M. [8] was found to use HTM on ECG
from the literature review. There were no further inves-
tigations of literature to find out how to optimise this
HTM model other than reading through the software
documentation of HTM. Important knowledge could
therefore have been lost that could help optimise the
HTM configuration.

Numenta [19] has created a new tool since the pub-
lication of Casarella M. [8] to help optimise the model,
called swarming. This tool was however not used since
it would move the methodology of this study further
away from Casarella M. [8] but could potentially im-
prove the results according to Numenta [19]. Casarella
M. [8] did also notice that a correct configuration of the
algorithm to the problem domain would significantly
improve the results and a correct configuration was not
necessarily found in this study even though attempts
were made. It is also worth noticing that the HTM al-
gorithm is not completely implemented in the software
tool [19] used in this project.

4.4.1. Number of layers

The number of layers did follow the guidelines by Nu-
menta [19] and Casarella M [8]. It is therefore not likely
that another number would change the outcome of this
current study.

4.4.2. Configuration of layers

Each of the layers were configured to follow what was
found in Casarella M. [8]. These recommendations
were made where more temporal information was
available. Increasing the number of columns while still
maintaining the pyramidal form, would increase the
amount of spatial information that could be deducted
from the images available.

4.4.3. Capacity of learning

It was selected that 2 % of columns should be active.
This did follow all recommendations set forward by
Casarella M. [8] and Numenta [19]. Due to the limited
number of columns used in this current study however,
this value did decrease the amount of temporal infor-
mation that could be derived from the already limited
amount of temporal information that was caused by
only having a few test beats. Increasing this number
might therefore in this case prove to be beneficial for
the accuracy of the system. This could be tested with
the new swarming methods by Numenta [19].

4.4.4. Selecting number of cells

The number of cells did not have a big effect on the
amount of temporal information that could be stored
due to the limited number of active columns selected.
This number should therefore potentially be much
higher as examples given by Numenta [19] normally
include thousands of temporal patterns.

4.4.5. Classifier and performance measure

Other classifier types used than the one in the soft-
ware for this project have shown better results on other
datasets [26] and this might therefore limit results. Fur-
thermore the number of classes (subjects) to differenti-
ate between in this study was more than 100 times that
in other studies compared under results. The amount
of information about the underlying ECG grammar
from the layers before the classifier might not be suffi-
cient to differentiate between that number of subjects.
It was found that increasing the number of subjects
decrease the accuracy of the classifier.

The actual value of the probabilities of a sample
belonging to a subject were not further investigated in
the current study. With a high accuracy of the system
these might carry more information beneficial for the
understanding of underlying grammar of the ECG but
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were not used here due to the low accuracy when the
higher number of classes were used.

4.4.6. Experiments

The number of iterations chosen were much lower and
below the number of iterations tested in Casarella M.
[8]. They show a somewhat sigmoid form of the rela-
tionship between number of iterations and classifica-
tion accuracy thereby using just 1,000 iterations in the
current study might have resulted in the same accuracy
for Casarella M. [8]. In other words the number of
iterations used in this current study might have been
insufficient, but were however limited due to the time
frame of the current study. Furthermore the number
of experiments conducted on different iterations and
subsets were not great enough to actually perform any
statistics and thereby prove the effect of the subset size
and number of iterations.

4.5. Technical issues

In this project a MongoDB server had to be created
to distribute the memory load as the software had
problems crashing midway throughout the calculations.
This was due to the very large dataset above 30 GB. Fur-
thermore it took roughly a full week for the computer
to calculate results of just 100 iterations and above for
the respective subsets. This massive requirement of
hardware resources might limit the real life feasibil-
ity for usage of HTM especially in the initial training
phase. After the training phase less than a minute was
required to perform the actual classifications.

One solution could therefore be to apply online
learning or train on just a specific subject with abnor-
namlity detection enabled [19]. Only training on a
specific person and then detecting similiar ECGs from
that person was done by Gregg et al. [4]. Here, time of
training could be reduced since the amount of training
data would be limited and only two classes would be
needed: the specific subject and others (abnormal).

Another solution could be to create multiple HTM
instances. Calculations could then be distributed and
each HTM instance and in parallel detect and classify
different underlying parts of the ECG that then can be
used in a HTM instance that combine these results to
classify the subject.

4.6. Future perspective

Finding the underlying ECG grammar, especially in
an automated manner with machine learning, can be
proven to be an essential tool in both biometrics but
also in diagnosis. Casarella M. [8] points out that one
of the benefits of HTM is that no prior knowledge is
required about the underlying parameters of ECG and
their origin in the leads. This means more leads could
be included as dataset for HTM even though their rep-
resentation of the ECG grammar is not yet known and
that representation could be automatically investigated.
Indeed this current study shows that even though no
prior knowledge is known about the grammar repre-
senting biometric information from ECG lead II, some
matches could still be found. Finding the underly-
ing grammar would also help illuminate the limitation
of ECG due to for example inter- and intra-subject
variability within the grammar. This current study’s
findings show that increasing the number of subjects
and thereby introducing more variability challenges
the classifier as the accuracy drops. The study did how-
ever also find that new configurations and methods
has been introduced to counter some of these issues as
Numenta [19] introduced a tool called swarming for
HTM. Finding the right configuration for HTM rather
than completely discarding it as a tool due to the initial
low accuracy might therefore be more feasible for the
research of underlying grammar of ECG.

For ECG applications and especially the biomet-
ric application, rethinking the way that classifiers are
trained when using large datasets might be beneficial
for the accuracies of these systems due to inter- and
intra-subject variablity. A greater amount of heartbeats
can be used from the ECG and profiling can be made
for values of the underlying patterns for each individ-
ual subject such as done in Chandrakar and Monisha
[27]. In that study they managed to utilize the intra-
subject variability as a tool to detect patterns for heart
diseases specifically for each subject thereby improving
the accuracy of their system.

5. Conclusion

In order to test if the underlying grammar of ECG
could be found with HTM, another application than
that originally tested in Casarella M. [8] was chosen.
This application involved identifying a patient based
on the heartbeats derived from the ECG. Limitations of
HTM was evaluated with respect to number of subjects
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and number of iterations.
It was possible to use the underlying biometric

grammar of the ECG to classify heartbeats with an
accuracy up to 31.3 &. When the number of subjects
increased the accuracy of the system decreased and
eventually dropped below 1 %. These results persisted
with different number of iterations.

The results of this study are however somewhat
novel because of the limited dataset available for each
of the subjects compared to other studies of ECG in a
biometric application, and the high number of subjects
compared to amount of data for the individual subject.
Whether or not the results are due to the limitations
of HTM or the inter-subject variability of ECG, would
require a more similar dataset with other biometric
applications.

Furthermore, the application of ECG in HTM for a
biometric application is also novel so the right configu-
ration for a biometric application of HTM is therefore
not necessarily used in this project. It is worth investi-
gating if a different configuration HTM could improve
the results. Numenta [19] have developed a new tool
called swarming that might assist in finding the correct
configuration.
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Preface

The present report has been produced on the forth semester master of Biomedical Engineering and
Informatics on Aalborg University during a semester abroad at the Centre for Chiropractic Research
at New Zealand College of Chiropractic. The supervisors associated with the present project were
Johannes Jan Struijk from the Department of Health Science and Technology of Aalborg University
and Rasmus Nedergaard from Centre for Chiropractic Research at the New Zealand College of
Chiropractic. The purpose of the project was to perform machine learning on health record data.
This projected is made in collaboration with the New Zealand College of Chiropractic. They want
to take a novel approach to patient management and record systems by developing their own system
with research usage orientation. Further more they seek to combine their electronic system with
raw data samples from the patients such as electrocardiogram (ECG) to create a big data source
for researching. Their goal is for this system to be able to collect and contain a big interconnected
data pool that can be used in data mining and thereby improved the quality of care and data-driven
research in the field of chiropractic. Since the type of data source used in this project is similar as of
the system, this project member has therefore assisted in the development of the system alongside
with working with machine learning.

Reading instruction
The Harvard method was used for references in this report. If the reference is placed before the dot
it is referring to the sentence, if it is placed after the dot it is referring to the section. If the source
has multiple authors the surname of the first author is written followed by et al. - an example:
[Kelly et al., 2012]. Figures such as Figure 1.2 and tables without any references in the caption are
self-made. Any abbreviations used in the report will be written to its full extend followed by the
abbreviation the first time mentioned and included in headlines - an example: Machine learning
(MS).
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Chapter 1
Background

In this section, the problem, its domain, and origin in the surface electrocardiogram (ECG) is
outlined. A literature review is conducted and a problem statement is established from that review.
This section also covers a brief introduction to the data source of this project.

1.1 Introduction
Cardiovascular disease is the leading cause of mortality and illness in the western world [Bayés
Bayes de Luna, 2012] with over 17.5 million deaths worldwide. Approximately 80 % of these cases
are due to ischaemic heart disease and stroke with the majority of cases being preventable. [WHO,
2014]. Heart attacks (ischemic heart disease) alone resolved in more than 7.4 million deaths [WHO,
2014].

In order to detect these cardiovascular diseases different methodologies have been developed such
as coronarography, contrast-enhanced cardiac magnetic resonance, ECG [Bayés Bayes de Luna,
2012], Doppler echocardiography [Strasburger et al., 1986] and seismocardiography [Wick et al.,
2015].

The 12-lead ECG is the golden standard for diagnosis of coronary heart disease patients [Khunti,
2013] and it is also the most widespread used to diagnose suspected heart disease [Bayés Bayes de
Luna, 2012].

There is a physiological reason for the usage of ECG in diagnostics. Since ECG is the readout
of the electrical activity initiating a contraction of the heart, an electrical malfunction will change
the recorded signal [Gregg et al., 2016, Bayés Bayes de Luna, 2012]. The heart and its electrical
activity is modulated by both intrinsic and extrinsic factors [Martini et al., 2012, Bayés Bayes de
Luna, 2012] which means that not only heart problems are detectable but also problems occurring
extrinsically from the autonomic nervous system (ANS) would be detectable. The ANS also regu-
lates internal organs other than the heart [Zygmunt and Stanczyk, 2010] thereby the 12-lead ECG
could potentially be used for the assessment of a more general health status. One limitation of the
technique is that it doesn’t indicate the actual mechanical contraction and pump function of the
heart [Silbernagl and Despopoulos, 2009].

Since ECG features indicate the heart’s electrical activity [Silbernagl and Despopoulos, 2009]
it can be used by a doctor to perform further investigations or diagnosis. [Bayés Bayes de Luna,
2012] Some of the useful features that can be derived from the ECG are for example Heart Rate
Variability (HRV), QT interval (to diagnose Long QT and Short QT syndromes) and QRS width
(to diagnose e.g., bundle branch block and ectopic beats) [Bayés Bayes de Luna, 2012].

Detecting and using features derived from the 12-lead ECG in a form of automation of diagnosis
with machine learning on a large data set has been suggested to show potential by Gregg et al.
[2016], Eftestol et al. [1998], Bayés Bayes de Luna [2012]. In fact one of the biggest limitations with
ECG was suggested by Bayés Bayes de Luna [2012] to be the lack of expertise by the physician
doing a manual inspection and diagnosis. The idea of using medical data from a subject is further
supported by Jacobson and Dalianis [2016], Holzinger [2016], Daume [2012], Eftestol et al. [1998]
who outline some of the machine learning that can be applied to different kinds of data.

Since the field of using ECG in machine learning shows great potential, the state of the art of
that procedure along with its limitations was investigated in a literature review with the initial
problem being how to investigate the ECG with machine learning?
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Chapter 1: Background

1.2 Data source
In order to better understand the data source and its limitation, the following two subsections have
been established to understand the heart’s conduction system and theory about ECG and features
in it.

1.2.1 The heart’s conduction system
In order for the heart to pump blood efficiently in the body, a coordinated contraction of the tissue is
important [Martini et al., 2012, Balakrishnan et al., 2015] Failure results in cardiovascular problems
[Balakrishnan et al., 2015]. This coordination is autorhythmic since it is controlled by the Sinuatrial
node and Atrioventricular node. They do not require any input to initiate a contraction of the heart
muscle. [Berdajs and I. Tuna, 2011, Bayés Bayes de Luna, 2012, Christoffels and Moorman, 2009]
The frequency of these spontaneous activities in the nodes are 80-100 bpm and 40-60 bpm for the
Sinuatrial node and Atrioventricular node respectively [Martini et al., 2012] . The last backup, if
any of the nodes is failing, is the Bundle of His [Martini et al., 2012] that makes sure that at the end
of the Purkinje fibers the firing rate would be approximately 20 bpm [Balakrishnan et al., 2015].

The conducting pathway is illustrated in figure 1.1 and the innervation of the different parts of
the ANS on the system is noted in the figure text. One important pathway of conduction that is
not mentioned in the figure is the Intercalated discs. These Intercalated discs are gap junctions
in the sarcolemma of adjacent cells allowing the electrical signal to propagate between muscle cells
without direct neural innervation. This is one of the main differences between cardiac muscle tissue
and other muscle tissue. [Martini et al., 2012]

Figure 1.1: The conducting system of the heart with some labels of the different elements in the conducting
system. Used and modified from [Gilroy et al., 2008]. Parasympathetic and sympathetic ANS innervates
the Sinuatrial node, Atrioventricular node along with atrial and ventricular muscle cells [Gilroy et al., 2008,
Martini et al., 2012]

The conducting system of the heart is under constant regulation from the ANS of either sym-
pathetic or parasympathetic activity which leads to an increase or decrease in cardiac output. The
sympathetic system is for fight-or-flight responses where the parasympathetic activity is for rest-
and-digest responses. The base regulation is called the autonomic tone and is the resulting cardiac
output is a sum of not just ANS activity but also hormones epinephrine and norepinephrine, drugs
and abnormalities in the homeostasis such as increased or lowered temperature. [Martini et al.,
2012, Silbernagl and Despopoulos, 2009]

The cardiac output is a function of the heart rate times the stroke volume [Martini et al., 2012].
Only heart rate is directly affected by the ANS where as the stroke volume is the difference between
how much blood is in the ventricle prior to and after a contraction [Martini et al., 2012]. The
ANS does however regulate how much blood is left in the ventricles after their systole, this is called
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inotropism and works with a direct regulation of the muscle cell metabolism controlling the force
of the contraction of the muscle cells [Martini et al., 2012, Silbernagl and Despopoulos, 2009]

Furthermore, stroke volume is also indirectly affected by ANS as an increase in heart rate de-
creases the time available for filling, thereby decreasing the duration of the diastole. [Martini et al.,
2012].

Other factors affecting the stroke volume are venous return and afterload where an increased
return will cause a stretch reflex to produce a more forceful contraction. An increased afterload is
an increased force that the heart has to work against to pump out blood and that will ultimately
lower the stroke volume. [Martini et al., 2012, Silbernagl and Despopoulos, 2009]

The alteration of heart rate is called chronotropism and it is managed via a change of the rate
of spontaneous depolarization and repolarisation in the Sinuatrial node and Atrioventricular node
along with a change of velocity in signal conduction (dromotropism). [Silbernagl and Despopoulos,
2009, Martini et al., 2012] The change in conduction velocity is mainly for the internodal pathway
to the Atrioventricular node and through it. [Silbernagl and Despopoulos, 2009]

1.2.2 Electrocardiography
The ECG is the recording of the electrical activity of the heart [Bayés Bayes de Luna, 2012, Sil-
bernagl and Despopoulos, 2009] in the frequency spectrum from 0.05 Hz to at least 250 Hz for
children and 150 Hz for adults [Bayés Bayes de Luna, 2012]. The recorded signal is however not
without noise as surrounding muscle activity and breathing is also recorded. Muscle activity is in
the frequency range of roughly 5 Hz to 500 Hz [Van Boxtel, 2001, de Luca, 1997] suggesting that
the signal should be sampled in higher frequencies to avoid aliasing. This baseline wandering or
artifact due to breathing has been thought to be below 1 Hz [Shin et al., 2015], but just removing
that frequency component has been proven to be insufficient [He et al., 2001, Shin et al., 2015].

When the electrical activity is recorded 10 electrodes are placed in well defined locations on the
chest and arms of the subject [Bayés Bayes de Luna, 2012]. However as pointed out by Khunti
[2013] the placement is not necessarily the same each time it is placed as 50 % of nurses and more
than 20 % of cardiologists misplace some of the electrodes.

The placement of these electrodes are divided into chest and limb leads making it possible to
track the summation vector of the electrical activity of the heart in different plans and angles over
time. Electrical activity perpendicular to a lead cannot be detected in that lead. [Bayés Bayes de
Luna, 2012, Silbernagl and Despopoulos, 2009]

Multiple lead systems exist within the 12-lead ECG. These are theorized by Einthoven, Gold-
berger and Wilson where the leads from Goldberger are derived from Einthoven. [Bayés Bayes de
Luna, 2012, Silbernagl and Despopoulos, 2009, Kramme et al., 2011] The leads and placements are
illustrated in the following figure 1.2 and figure 1.3.

Page 3 of 43



Chapter 1: Background

Figure 1.2: The Einthoven and Goldberger
leads. The Einthoven leads I, II and III are bipo-
lar leads with the reference to the central ner-
minal. The Goldberger leads are unipolar leads
meaning that the potential are measured between
an electrode and the reference consisting of the
other two electrodes. [Bayés Bayes de Luna,
2012, Silbernagl and Despopoulos, 2009, Kramme
et al., 2011] Modified from Kramme et al. [2011]

Figure 1.3: The leads as defined by Wilson.
More deep coloured electrodes on the transverse
plan are usually placed where the others are op-
tional. The recordings performed are unipolar
so the three limb electrodes are combined into
a common reference and used with one of the
V electrodes. [Bayés Bayes de Luna, 2012, Sil-
bernagl and Despopoulos, 2009, Kramme et al.,
2011] Modified from Silbernagl and Despopoulos
[2009]

The lead to chose to investigate depends on what it is to be investigated since the strength of the
electrical activity is reflected by the angle in which it is recorded and the different leads represent
different angles. The following figure 1.4 represents different leads and the angle of the lead with
respect to the heart. In the figure 1.4 the chest leads are not included. By using the chest lead
different horizontal perspectives of the heart’s electrical activity can be recorded and a 3D view of
the heart also called the vector cardiogram (VCG) can be established [Silbernagl and Despopoulos,
2009, Bayés Bayes de Luna, 2012]. This VCG is however not as well studied as the ECG [Silbernagl
and Despopoulos, 2009, Bayés Bayes de Luna, 2012].

The lead that has the biggest QRS complex is defined as the electrical axis and can itself have
diagnostic value [Silbernagl and Despopoulos, 2009, Bayés Bayes de Luna, 2012]. The normal angle
is between -30 to 120 [Silbernagl and Despopoulos, 2009].
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Figure 1.4: This figure is called Cabera’s circle. It illustrates the different leads and their respective angle
of view on the heart. Modified from [Kramme et al., 2011]

The recorded ECG contains what is known as a P-wave QRS complex and a T-wave [Bayés
Bayes de Luna, 2012, Gilroy et al., 2008] as illustrated in figure 1.5. This recorded signal can be
mapped to different stages of the contraction cycle of the heart as illustrated in figure 1.6. The
initial contraction begins with a stimulation from the Sinuatrial node. From myocardial cell to
myocardial cell the stimulation signal propagates along with inter-nodal connections creating the
P-wave and resulting in a contraction of the atria. The cell to cell propagation stops at the cardiac
skeleton. The signal continues through the Atrioventricular node and Purkinje fibers, but with a
minor delay into the Arioventricular node because of the small size of nodal cells. This delay is
important since it allows the atria to fully contract before contraction of the ventricles. The QRS
complex is generated by the depolarization of the ventricles. The subsequent T-wave is generated
by the repolarization of the ventricular muscle cells. [Silbernagl and Despopoulos, 2009, Martini
et al., 2012]
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Figure 1.5: Example of one cycle ECG it is full
length with P-wave QRS complex and T-wave.
Image shows that the QT complex is varied by
heart rate where the PQ interval remains some-
what unaffected. Modified from Silbernagl and
Despopoulos [2009]

Figure 1.6: From top left to right bottom the
order of the propagation of the polarisation and
depolarization in the conducting system of the
heart mapped to second lead ECG. SA node and
AV is short for the Sinuatrial node and Atrioven-
tricular node. Modified from Silbernagl and De-
spopoulos [2009]

1.3 Literature review
In order to investigate ECG and machine learning keywords were chosen. These keywords were based
upon words related to machine learning and electrocardiography and its abbreviation ECG. These
words were: artificial intelligence, recognition, data mining, memory, deep learning, algorithm.
These are derived from Buchanan et al. [2017]. The search was carried out on aub.aau.dk since this
tool supports multiple databases in the search.

1.3.1 Inclusion criteria and search strategy
The goal of this literature review was to find the most relevant information and to establish the
state of the art and its limitation. An initial search was performed on the database for state of the
art literature for the last 10 years, meaning from 2007. This search was further limited before any
reading was done. The 10 years was chosen as an arbitrary number to be big enough to at least
show the state of the art in the field. It was done in this order to minimize exclusion of relevant
material. The limitation was done by adding extra keywords and filters to the search if the results
showed more than 80 results. One of the filters were that the keywords should be in either title,
abstract and or tags specified in the literature. The abstracts were then read and, based on the
relevance of this project, they were excluded or included. The relevance was based upon redundancy
in literature already found or whether the topic actually was machine learning or not. The full texts
of the accepted articles were then read and their citations were reviewed and read if they also had
relevance. The whole process and number of found articles is illustrated in figure 1.7. The keywords
"ECG or electrocardiography" were always used and they alone gave 462.176 hits.
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Figure 1.7: The steps of the literature review, from a broad search to a narrowed result

1.3.2 Literature included
The following table 1.1 shows the keywords used and the result from each of the keywords in every
step of the search. The articles found by each keywords are hereafter presented with respect to
what they investigated, machine learning methodologies, ECG source and findings.

Table 1.1: Keywords and their corresponding hits. The initial column hits are the unfiltered response from
the initial searches. All the search were made with the requirements of keyword ECG or electrocardiography
to be present as well. For filtering ′or′ means that the title, abstract or found material keywords should
include the keyword used in the search. ′and′ means that title and abstract should include the keyword
used in the search and ′all′ means that keywords, abstract and found material keywords should include the
keyword used in the search

Keywords Hits Filtered Abstract Full text
Machine learning 4.240 (or) 239 (and) 79 13 9
Deep learning 144 (or) 1 1 1
Algorithm 36.267 (or) 3828 (and)

823 (all) 47
7 7

Recognition 25.204 (or) 1257 (and)
354 (all) 12

4 4

Artificial intelli-
gence or AI

8 Not performed 0 0

Data mining 3.004 (or) 131 (and) 50 4 2
Memory 18.685 (or) 454 (and) 79 5 4

From the literature tables were created for each of the keywords that showed any results. The
tables contain areas describing what was investigated, machine learning methods, the ECG data
source and Results. The content of the text and table do not completely overlap but reading one
or the other would be sufficient for the understanding of the text in the next section 1.4, Problem
statement.
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Findings for memory

The following table 1.2 is for key word “memory”.

Table 1.2: Literature found for the keyword “memory” along with a description of what was investigated, the
machine learning methods used, the ECG source and findings.Aberrations used in this table: normal (NORM)
right bundle branch block (RBBB), left bundle branch block (LBBB), premature ventricular contractions
(PVC), atrial premature contraction (APC), paced beats (PB), ventricular couples (VC). Two papers are
merged into one row since it is the same study

Literature Investigated Machine learning
methods

ECG source Findings

[Casarella
M, 2012]

Diagnosis of ECG into
the categories NORM,
RBBB, LBBB on differ-
ent kind and levels of
noise

Hierarchical Tem-
poral Memory
(HTM)

Unprocessed
ECG sec-
ond lead
beats was
converted
into images

99.8 % accuracy of clas-
sifier. Robust to noise
that was not occlusion
since accuracy of clas-
sification remained the
same

[Chauhan
and Vig,
2015]

Diagnosis of ECG into
the categories NORM,
PVC, APC, PB, VC

Long short-term
memory

1 Minute
ECG sec-
ond lead
beats
recordings

precision for classifica-
tion found for each class
were: 0.96 VC, 0.99
PVC, 0.92 APC and
0.99 PB

[Chandrakar
and Mon-
isha, 2015,
Chan-
drakar and
Sharma,
2015]

Diagnosis of ECG into
the categories NORM
or abnormal with ab-
normal being LBBB,
RBBB, VPC or APC

Network Intru-
sion Detection to
perform profiling

ECG fea-
tures ex-
tracted
from
PQRST

accuracy for classifica-
tion 99.57 % correct
classification. Abnor-
mal values are not the
same of each subject

[Rahhal
et al., 2016]

Diagnosis of ECG into
the categories normal,
ventricular, supraven-
tricular, fusion of nor-
mal and ventricular and
unknown beats

Autoencoder and
softmax for opti-
misation of fea-
tures deep neu-
ral network (su-
pervised)

Baseline
corrected
ECG beats
with in-
formation
about RR
interval

100 % for both speci-
ficity and sensitivity
of classification. They
concluded than a deep
neural network with
more than two layers
did not contribute to
classification

In the thesis by [Casarella M, 2012] multiple algorithms were investigated, and it was concluded
to use Hierarchical Temporal Memory Model (HTM) as the author argues and cite Gelernter [1991]
for other algorithms to lack the ability of a by-the-model learned invariant pool rather than a pool
hard coded by the investigator. The invariant pool is the pool of features which are invariant to for
example scaling, shifting or rotation.

The novel approach to the ECG data set by [Casarella M, 2012] is to mimic the doctors so the
ECG beats were given as an binary image rather than a set of numeric features are extracted from
the ECG based on lead II. In this way no prior knowledge about ECG morphology and disease
is needed. The amount of training data increased the classification percentage with a successful
classification of up to close to a 99.8 %. The categories in which the beats were classified in were:
NORM, RBBB or LBBB. Different levels of noise and different kind of noise were added to the
image such as occlusion and salt and pepper noise. The occlusion noise was square boxes covering
parts of the image.

In the article [Chauhan and Vig, 2015] the algorithm long-short term memory (LSTM) was
used. It is a recurrent neural network. This algorithm was chosen since it limits the amount
of preprocessing needed for the data, does not require features to be hard coded as these are
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derived of the algorithm itself and it is good at overcoming the vanishing gradient problem that can
slow the training of a network. One minute ECG signals was used and classified to the following
classes: NORM, PVC, APC, PB and VC. The classification was done for the individual beats in
the individual classes with respect to a normal beat. The precision for classification found for each
class was: 0.96 VC, 0.99 PVC, 0.92 APC and 0.99 PB.

The two publications by the same first author [Chandrakar and Monisha, 2015, Chandrakar and
Sharma, 2015] investigated features and specify that often systems use these qualitative features for
classification of ECG and a method for selecting a normal value span of these features is therefore
needed. They investigate a method to identify this span so the features can be used in detecting
the difference between normal and abnormal heart beats. Abnormal heartbeats were identified to
be either: LBBB, RBBB, VPC or APC. They created a custom three stage repetition of pattern
algorithm based on the Network Intrusion Detection field that classified ECG based on those fea-
tures. They conclude that it is not possible to extract a normal feature span from the ECG that will
cover all patient so profiling is needed when the ECG waveform is analysed. Using their suggested
algorithm they achieved 99.57 % correct classification of the ECG.

In the article [Rahhal et al., 2016] the optimal feature representation to classify the ECG within
the standard of Association for the Advancement of Medical Instrumentation (AAMI) was investi-
gated. The use a combination of supervised active learning and unsupervised learning with autoen-
coder and softmax for feature learning and a deep neural network for classification according to the
standards of the AAMI. Entropy is calculated for each beat in five minute ECG recordings and the
ones with the highest entropy are given to an expert for labelling. Breaking tie beats that were not
able to be correctly classified is also feed to an expert for labelling. The deep neural network is then
trained with the new training set. This is done until successful classification converges. The number
of features and labelled training data used increased the specificity and sensitivity with close to a
100 % for both. They tested and concluded that adding more layers than two to their deep network
did not improve their results.

Findings for data mining

Only two articles were found for “data mining”. They are displayed in table 1.3.

Table 1.3: Literature found for the keyword “data mining” along with a description of what was investigated,
the machine learning methods used, the ECG source and findings

Paper Investigated Machine learning
methods

ECG source Findings

[Tyagi and
Thakur,
2015]

Different data mining
techniques for data dis-
covery

Techniques cat-
egorized under
classification,
regression and
clustering

Not de-
scribed

Classification is a better
technique

[Sufi et al.,
2009]

Compressed ECG for
diagnosis of normal,
premature ventricu-
lar contraction, atrial
fibrillation, atrial
premature beat

Expectation max-
imum clustering

unfiltered
QRST fea-
tures on
individual
heart beats

97 % accuracy

[Tyagi and Thakur, 2015] did a literature review of current data mining techniques on ECG
and concluded from the different data mining methods (classification, clustering, prediction and
association) the classification method was the best to analyse ECG data with. They did not specify
a certain algorithm to be superior. The same authors have in an earlier article Sufi et al. [2009]
and investigated clustering with 97 % accuracy. Their main focus in that article was however to
investigate compressed ECG and abnormal vs. normal ECG beats so that a patient could seek
treatment if something was wrong.
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Findings for recognition

The literature that was found for “recognition” is displayed in following table 1.4.

Table 1.4: Literature found for the keyword “recognition” along with a description of what was investigated,
the machine learning methods used, the ECG source and findings

Literature Investigated Machine learning
methods

ECG source Findings

[Xu et al.,
2010]

Classification of emo-
tions Joy, sadness and a
combination of both

Binary Particle
Swarm Optimiza-
tion algorithm
and K-Nearest
Neighbours

Features of
ECG based
upon RR
interval and
PQRST

Accuracy of classifica-
tion 86 %

[Khandoker
et al., 2009]

Detection of the sever-
ity of obstructive sleep
disorder

Support vector
machine

Wavelet
decom-
position
parameters
from ECG
beats, RR
intervals

97.59 % accuracy was
obtained using only 4
features. Using the
full feature set of 28
features gave a trade
off between true posi-
tive and false positive
where these were close
the same value

[Dong
et al., 2014]

Temporal features of
the ECG to classify be-
tween normal and my-
ocardial infraction

Radial basis neu-
ral network

10 second
ECG with
baseline
correction

Specificity of 78.8 % and
sensitivity of 92.5 %

[Agrafioti,
2011]

Biometric application of
ECG and correcting for
emotion

Methods related
to classification

Features
from empir-
ical mode
decompo-
sition of
ECG signal

By classifying to a
smaller group of people
the error rate went
down to 10 %

[Xu et al., 2010] differs from other found literature in that sense that it investigate emotions
rather than diagnosis of diseases. They do however also investigate the selection of an optimal
feature set for this task. They do this with with the Binary Particle Swarm Optimization algorithm
and K-Nearest Neighbours. They successfully classified between the emotions joy, sadness and a
combination with an average accuracy of 86 %.

As aforementioned in 1.1, Introduction ,not just the health of the heart can be investigated.
In the case of Khandoker et al. [2009] obstructive sleep apnea syndrome was detected which is an
obstruction of the airways in ones sleep. This is not a direct heart fault but can result as such. The
authors of the literature describe that studies have already been made using heart rate variability
derived from a wavelet transform and ECG-derived respiration to detect the problem although but
not the severity of the problem. In order to do so the authors tried to investigate an optimal
feature set and used a support vector machine on the features. They showed a Receiver operating
characteristic (ROC) plot that illustrated a trade off between true positive and falls positive of the
severity of disease. True positive rates would increase with falls positive rates with the values being
about the same at any point in the plot.

As mentioned by Casarella M [2012] deterministic, statistic and synaptic learning exists and Dong
et al. [2014] investigate deterministic learning. Deterministic decisions does not include information
about the underlying probably destribution of a sample to be within different classes when a class
is assigned to a sample. Statisticial methods are probebalistic based and synapitc based is neural
networks. Casarella M [2012] In Dong et al. [2014] investigations of dynamic temporal features were
made by including the entire duration of the ECG recording. This is investigated because of the
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problems with between and intra subject variations over time in the ECG [Dong et al., 2014]. They
used a radial basis neural network to model the dynamics of the ECG. They compared healthy
and myocardial infraction affected ECG. They managed to perform with a specificity of 78.8 % and
sensitivity of 92.5 %.

In the doctoral thesis Agrafioti [2011] the biometric recognition of continous ECG signal is
explored. This is not directly linked to medical diagnosis of ECG but investigates the challenges of
temporal features of the ECG. Some of these mentioned are physical activity, noise and emotional
activites as investigated also in Xu et al. [2010]. The physical stress can be accounted for [Agrafioti,
2011], but as investigated by Xu et al. [2010] the emotional stress cannot be done with high accuracy.
Agrafioti [2011] use empirical mode decomposition to detect emotional patterns. Furthermore state
features are subtracted from the ECG for state classification of the ECG beats to detect stages where
biometric detection is not possible. The ECG state features are subtracted with a Autocorrelation-
Linear Discriminant analysis and incorporates quality assessment of the ECG based on periodicity
transform. The author concluded that a generalisation of their algorithm to a larger group of
people was not feasible with error rates up to 45.5 %. By classifying to a smaller group of people
the error rate went down to 10 %. They argue that the higher error rate is due to training on a
general population rather than on each individual. They where however successful in classifying the
emotional states of with an accuracy of 96.47 %.

Findings for keywords machine learning

The literature found for “machine learning” is split into two tables because of its size. The first
found literature is in the following table 1.5.
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Table 1.5: Literature found for the keyword “machine learning” along with a description of what was
investigated, the machine learning methods used, the ECG source and findings. Abbreviations: Association
of advancement of medical instrumentation (AAMI), normal (NORM) right bundle branch block (RBBB),
left bundle branch block (LBBB), premature ventricular contractions (PVC), atrial premature contraction
(APC)

Literature Investigated Machine learning
methods

ECG source Findings

[Kora and
Sri Rama Kr-
ishna, 2016]

Optimisation of feature
set and wavelet coher-
ence on ECG beats

Levenberg Mar-
quardt neural
network

ECG beats
baseline-
corrected
features
from
wavelet
transform

Sensitivity of 96.97 %
and specificity of 99.43
%

[Shadmand
and
Mashoufi,
2016]

Diagnosis according to
AAMI with an individ-
ual tailored classifier to
fit each patient

Block-based neu-
ral network and
particle swarm

Temporal
features
and Hermit
transfer
features
extracted
from ECG
beats

Accuracy of 97 % they
highlight the impor-
tance of the patient
specific classifier

[Kumari
and Sada-
sivam,
2007]

Compression of ECG
using Wavelet trans-
form and compare it de-
compressed to the orig-
inal source

Not given Wavelet
trans-
formed
ECG com-
pared to
non trans-
formed

No data of diagnostic
value lost in compres-
sion

[Balouchestani
and Krish-
nan, 2016]

Rapid search in large
ECG data sets with
biomakers. Classifica-
tion of the data set was
done for classes normal,
supra-ventricular prob-
lems, ventricular, fusion
beat, paced beats and
unknown

K-means al-
gorithm and
K-singular value
decomposition for
calcification and
feature reduction

Probabilistic
neural net-
work

Accuracy of 99.98 %

[Yeh et al.,
2010]

Selecting optimised fea-
tures for diagnosis of
NORM, LBBB, RBBB,
VPC and APC

Range-Overlaps
Method (ROM),
clustering of fuzzy
logic methods

Baseline
corrected
beats

Accuracy of roughly 93
%

[Lu et al.,
2016]

Optimisation of feature
set for diagnosis of
NORM, LBBB, RBBB,
APC and PVC

Support vector
machine

empirical
mode
decom-
position
features of
ECG beats

The accuracy for clas-
sification was NORM
96.25 %, LBBB 99.06
%, RBBB 95 %, APC
92.81 % and PVC 97.5
% respectively

[Elbuni
et al., 2009]

More accurate estima-
tion of ECG features

discrete wavelet
transform

ECG beats
baseline
and noise
reduced

sensitivity and speci-
ficity was 98 % and 96
% percent respectively
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The article Kora and Sri Rama Krishna [2016] split abnormality detection in the ECG up into
three steps: pre-processing, feature extraction and classification. They state that conventional time
domain features are used for detection of abnormalities but suggest the usage of a wavelet coherence
technique (WTC) on the ECG beats instead. They use a Bat algorithm to optimise features from
the WTC and a Levenberg Marquardt neural network to classify atrial fibrillation. They compare
the WTC with the often used auto regressive feature extraction [Kora and Sri Rama Krishna,
2016]. The results show a sensitivity of 96.97 % and specificity of 99.43 % where the auto regressive
performs 92.5 % and 89.7 % respectively.

Just as investigated in Rahhal et al. [2016] the article Shadmand and Mashoufi [2016] investigate
the classification of ECG heart beats according to AAMI standards. They use a block-based neural
network (BBNN). They optimise the network with a Particle Swarm algorithm. The input to
the BBNN is temporal features and Hermit transfer features extracted from ECG. Results of this
approach showed an accuracy of 97 %. They argue that one of their successes is the profiling of a
BBNN to each individual subject.

Kumari and Sadasivam [2007] did not investigate diagnostics but instead used Wavelet transform
to extract features and compress the ECG. They conclude that all clinical information is still present
in the compressed ECG making it ideal for portable heart monitoring systems with what they state
as a low root mean square difference between decompressed signal compared to the original signal.

Going through large data sets of long-term ECG recording with clustering algorithms is a com-
mon source for detecting heart problems [Balouchestani and Krishnan, 2016]. Optimisation of this
process was investigated by Balouchestani and Krishnan [2016] who wanted to investigate biomark-
ers (features) in the ECG with ease and rapidly. They used an advanced K-means algorithm and
K-singular value decomposition. In order to validate the algorithm principal component analysis
was used along with other dimensionality reduction methods. The data from these reductions were
used in a probabilistic neural network. The proposed method was able to classify with an accu-
racy of 99.98 % thereby outperforming other clustering methods. The method also outperforms
other methods in the sense of speed as it requires 13 % less computation. Classes were normal,
supra-ventricular problems, ventricular, fusion beat, paced beats and unknown.

Yeh et al. [2010] investigate feature selection and especially selecting the optimal feature set from
the ECG beats (QT length etc.) as to improve accuracy of classification. They investigate a fast,
reliable method they name the Range-Overlaps Method (ROM) in order to select ideal feature sets
and improve classification on mobile devices. They were able to classify with an accuracy of roughly
93 % using a clustering or fuzzy logic method by just using four features from the ECG heart beat.
They classify for normal, LBBB, RBBB, VPC and APC.

Feature selection on ECG was performed by Lu et al. [2016] to select an optimal feature set.
This was done with a genetic algorithm and an empirical mode decomposition (EMD) where the
resulting features were fed to a support vector machine and classified. They argue that EMD is
better than wavelet transform since it not requires prior knowledge of the ECG. Initially from the
EMD output the generic algorithm used a variable-range encoding. Fisher criterion was then used
to select the most dominant features. The classification was based on the classes normal, LBBB,
RBBB, APC and PVC. The accuracy for classification was 96.25 %, 99.06 %, 95 %, 92.81 % and
97.5 % respectively. They compare their findings with other literature and conclude that they can
use fewer features but perform the same as others. They also conclude that the most dominant
features are in the first and sixth intrinsic mode function decomposed by the EMD and the fifth
moment of these.

Elbuni et al. [2009] uses discrete wavelet transform to prepare the ECG signal for further use
in statistical analysis. This was done by using the transform to remove baseline, noise and detect
the QRS complex. They proposed their method so that that features could be more accurately
estimated from the ECG. The sensitivity and specificity was 98 % and 96 % percent respectively.

The rest of the literature found for “machine learning” is given in the table 1.6.
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Table 1.6: Literature found for the keyword “machine learning” along with a description of what was
investigated, the machine learning methods used, the ECG source and findings

Literature Investigated Machine learning
methods

ECG source Findings

[Seera
et al., 2015]

Evaluation of classifiers
of types neural net-
work, statistical, deci-
sion trees and others

Multiple different
methods

ECG beats
baseline
and noise
reduced

Most common used was
neural networks but
random forest had the
highest accuracy

[Masetic
and Subasi,
2016]

Diagnosis of congestive
heart failure with mul-
tiple algorithms

Random forest
method, Neural
networks and
others

Autoregressive
burg
method
for extrac-
tion of
features
from long-
term ECG
signals

Random forest 100 %
accuracy, the worst was
99.2 % accuracy

[Dubois
et al., 2007]

Automatic extraction of
P,Q,R,S,T from ECG

Orthogonal for-
ward regression
and an Gaussian
mesa function

ECG beats Use multiple leads to
improve classification
the same lead will
not always be the
best throughout a
classification task

[Abdul-
Kadir
et al., 2016]

Classification of atrial
fibrillation and selection
of optimal feature set

neural networks
and support
vector machines

ECG beats
second-
order
dynamic
differential
equation
features

95.3 % accuracy

[Elgendi,
2013]

Faster processing of
ECG to detect QRS
complex

Their own devel-
oped technique

Baseline
adjusted
ECG

Was possible to detect
faster but with less ac-
curacy

[Jadhav
et al., 2012]

Normal vs abnormal
beats in incomplete
data sets

Generalized feed
forward neural
network

Baseline
adjusted
ECG, fea-
tures not
mentioned

Accuracy of 82.35 %.

[Liu et al.,
2015]

Performance of classi-
fication on imbalanced
training data

Weighted extreme
machine learning

Baseline
adjusted
ECG and
PQRST
features

Accuracy of 97.89 %
with only 11 seconds
training time

[Oster
et al., 2015]

Heart rate turbulence
following premature
ventricular contrac-
tion to predict patient
outcome

Clustering Auto de-
rived fea-
tures from
ECG beats

Accuracy of 99.50 %

Seera et al. [2015] made a review of state of the art classifiers and data pre processing techniques.
They split the classifiers into the statistical, neural networks, decision trees and ensemble models,
support vector machines and other methods. The most common used where neural networks, but
they concluded that the random forest method performed the best overall and especially in high
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noise signals. Furthermore they concluded that they did not investigate an optimal feature set and
that might have effected the results.

This random forest method was investigated by Masetic and Subasi [2016]. They used this
classifier for congestive heart failure and an autoregressive burg method for extraction of features
from long-term ECG signals. They compared the random forest method with neural networks,
k-nearest neighbour and support vector machines. Only the random forest method had a 100 %
accuracy but the other classifiers were, close with 99.2 % to be the worst accuracy.

Dubois et al. [2007] investigate the automatic extraction of the P, Q, R, S and T waves from
ECG. Using a orthogonal forward regression and an Gaussian mesa function. They model each beat
recorded with the ECG to be either normal or abnormal. They conclude that results from using
just one lead are better than using multiple ECG leads. Detection of the parameters PQRST in the
ECG should not necessarily be made from the same lead for each heartbeat [Dubois et al., 2007].

Classification of one problem (atrial fibrillation) was investigated in Abdul-Kadir et al. [2016]
with a second-order dynamic differential equation (SODS) system. The natural frequency, damping
coefficient amongst other features was derived from the SODS using different window lengths. The
author used ANOVA and t-tests to determine the signification features and applied them to neural
networks and support vector machines. With neural networks and a 4 second window for the SODS
it was possible to obtain an accuracy of 95.3 %

Elgendi [2013] concluded that current QRS detection method Pan Tomkins very robustness
regarding accuracy but elicit the problem of the heavy computational power it requires. They
provide an alternative technique for fast detection with less computational power but also less
accuracy than state-of-the-art standards.

[Jadhav et al., 2012] investigate arrhythmia patients into two classes: normal or abnormal using
a generalized feed forward neural network. They tested the robustness of the classifier by using
incomplete data sets from 452 different patients. It was possible to classify with an accuracy of
82.35 %.

Automatic decetion of problems from the ECG is important [Liu et al., 2015]. Liu et al. [2015]
investigated one of the methods for machine learning on the data called extreme machine learning
(ELM). They use a weighted ELM since they postulate it should have better time performance and
generalization than traditional machine learning for imbalanced ECG samples. They derive features
from the ECG such as ST segment and the QT interval for use en the weighted ELM neural network
and manage to achieve an accuracy of 97.89 %. with only a 11 second training time. Other networks
such as backward projection neural networks can perform similar results but requires more than
3050 seconds of training [Liu et al., 2015].

Oster et al. [2015] investigate a more challenging area of the automation of diagnosis via ECG.
They investigate heart rate turbulence (HRT) following PVC as it has a indication of patient out-
come after a PVC incidence [Oster et al., 2015]. They found that many systems today extract
features manually from the ECG by the PQRST complex and then try to perform a feature optimi-
sation with a following classification. Systems not relying on these features but instead relying only
on beat labels by an expert outperforms these systems. They propose a supervised learning method
with an uncertainty estimate of outcome. The idea is that in real life application it is better to not
classify than misclassifying an ECG beat. The accuracy of their system was 99.50 %.

Findings for keywords deep learning

The one article was found for “deep learning” it is displayed in following table 1.7.
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Table 1.7: Literature found for the keyword “deep learning” along with a description of what was investi-
gated, the machine learning methods used, the ECG source and findings

Literature Investigated Machine learning
methods

ECG source Findings

[Kalkstein
et al., 2011]

Data driven approach
to detect quality of
ECG instead of human
interaction

K nearest and
random forest

ECG beats
baseline-
corrected

Best accuracy for both
classifiers where roughly
93 %

As identifyed by the Khunti [2013] the quality of the ECG can be a problem. An automatic
solution to that problem is resolved by Kalkstein et al. [2011]. They suggest for a data driven
approach to this assessment of quality rather than a model based one driving features from the
ECG rather than human selected features. They use K nearest and random forest as classifiers.
The best accuracy for both was roughly 93 %. They conclude that a more uniform classification of
quality could be feasible.

1.4 Problem statement
In the application of machine learning of ECG, multiple kinds of machine learning have been applied
Khunti [2013], Oster et al. [2015], Dubois et al. [2007]. Machine learning is however limited by the
quality of data [Kalkstein et al., 2011, Oster et al., 2015] and as pointed out by [Khunti, 2013]
quality can be a problem. This is especially the case where classifiers are trained to classify noise
rather than the underlying ECG [Oster et al., 2015] and therefore also quality detection has been
investigated Agrafioti [2011].

Common in the literature is that the authors apply their technique to different features [Rahhal
et al., 2016, Chandrakar and Sharma, 2015] even in applications that are simmilar. This was done in
the articles Oster et al. [2015], Dong et al. [2014], Liu et al. [2015] who all performed diagnosis of the
heart but used a different set of features and different classes and number of classes in the classifiers.
Not only diagnosis of the heart was investigated in the literature but also emotions [Xu et al., 2010,
Agrafioti, 2011], ECG in biometrics [Agrafioti, 2011], between subject variations [Shadmand and
Mashoufi, 2016, Chandrakar and Sharma, 2015] and time variation [Dong et al., 2014] has been
investigated. The accuracy of classification for emotions and for identification of individuals was
lower than of the diagnostic classifications. The studies investigating between subject variations
concluded that profiling of ECG features had to be done for the individual patients to improve
classification of disease. The study investigating time variation concluded that it is possible to
diagnose the ECG heartbeats over time [Dong et al., 2014].

There is a lack of a gold standard feature set [Casarella M, 2012, Seera et al., 2015] as new feature
sets are usually derived each time from disease annotated original ECG databases [Dubois et al.,
2007, Yeh et al., 2010] instead of from a pool of already defined features. This is a problem for a fast
query, low cost processing and storage as investigated by Elgendi [2013], Kumari and Sadasivam
[2007], Balouchestani and Krishnan [2016], Yeh et al. [2010].

Therefore, behind much of ECG research there is a lot of work done to establish an underlying
grammar of the ECG as the minimal ideal reduced dataset so that one can identify either the person,
mood or diagnosis. The idea of using an experts for feature extraction does not seem to be the
correct way but rather features should be synaptically or statistically extracted [Casarella M, 2012,
Oster et al., 2015, Agrafioti, 2011, Lu et al., 2016].

These papers Casarella M [2012], Oster et al. [2015], Agrafioti [2011], Lu et al. [2016] investigating
ECG with features not extracted by an expert show promising results thereby bypassing the feature
extraction problem. Some of these results Casarella M [2012], Masetic and Subasi [2016], Seera
et al. [2015] showed the accuracy of close to a 100 % where some algorithms showed to be more
robust to noise than others. These results could be due to either overfitting, grammar in the data
set is ideal for the application of the classifier or a general descriptive grammar of the ECG has
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been found. If such a general descriptive grammar is found then the ECG can be reduced to this
grammar and allow for fast query, processing and storage.

Based on what was found in the literature review figure 1.8 have been generated. This figure
illustrate what was investigated in the literature found. The figure contains three clusters ECG,
Application and Performance marked with blue. Furthermore green boxes are marked. These
green boxes illustrate what is researched in this project. The ECG cluster represents areas of ECG
research where Application represents the application context of the research. The last cluster
Performance is included since it has been found to exists within multiple areas of research. This
were for example the case for the research field of unsupervised classification in Casarella M [2012],
where the performance of the classification was researched in regards to noise.

Figure 1.8: Illustration of the literature found. literature split into three clusters each illustrated by a blue
box. Green boxes represents the area of what is being research in this project. Arrows are drawn between
boxes to illustrate that these are sub research fields of the field where the arrow originates

Researched areas marked on figure 1.8 were selected since automatic extraction of features and
classification would improve the quality of machine learning research and lower the amount of
required human involvement. The biometric application was chosen since it had higher error rate
than other application areas found, but was still found to be within an area that showed promise
[Agrafioti, 2011]. Knowing the limitations of a solution a solution and the performance of the
solution is evaluated according to the accuracy of the system.

This project therefore seeks to investigate if this general descriptive grammar can be found by
using methods applied to another application than the biometric one. The HTM methodology used
in Casarella M [2012] were chosen since the research field fit within the scope of this project and
provide a novel feature extraction and classification that does not require an ECG expert.

A problem statement can be summarised to the following: Till which extent can the underlying
biometric ECG grammar be found with HTM on subjects heartbeat over multiple sessions?
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In this section a more extensive description of the algorithm HTM is made along with a detailed
description of the applied methods including the real life application used, software tools, data
preparation and the configuration of the HTM model.

2.1 Hierarchical temporal memory overview
The goal of the HTM model is to mimic the human neocortex columnar structure and algorithmic
property as these properties are a big part of human intelligence. HTM is essentially a distributed
memory model where the model learns and recalls a pattern based upon prior encounters thereby
utilising temporal information and requiring less training than conventional neural networks. One
other difference between neural networks and HTM is that various parameters are adjusted in HTM
rather than just the weight between adjacent nodes as of neural networks. These parameters are
such as threshold for establishing new connections between “neurons” and “weight” of a change in
weight between neurons. [Hawkins et al., 2011, Casarella M, 2012]

HTM is hierarchical with a single node layer (classifier) in the top and a multi-node data input
layer at the bottom (sensory layer) with multiple layers in between containing multiple nodes.
Information exchange can happen both internally within a region of a layer and both ways between
layers. Information exchanged between layers will gain a sparse distributed representation (SDR)
in the receiving layer meaning only a small percentage (2 %) of the nodes will be activated following
an input. One of the mechanisms to achieve the SDR is that highly activated nodes will deactivate
nodes with less input. Implemented in HTM is also a tiebreaker which randomly selects what to
deactivate if there is no clear indication of what columns to deactivate. [Hawkins et al., 2011,
Casarella M, 2012] The flow of information is illustrated in figure 2.1.
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Figure 2.1: Simple illustration of the exchange pathways of information in a multiple layered HTM. Top
layer is called classification layer and bottom layer is called a sensory layer. Connections are made within a
layer and between layers. Figure is recreated from [Hawkins et al., 2011]

The layers are not as simple as illustrated in figure 2.1. In each of the layers the nodes are
actually columns of what is annotated cells which are interconnected with other cells from other
columns. Essentially each cell gets activated via a input to its column. [Hawkins et al., 2011]. There
are more advanced requirements before a cell can get active. This is illustrated in figure 2.2.

Figure 2.2: Illustration of four columns with 3 cells in each column. On the left some cells are active due
to a input to the columns. These active cells are marked green. The yellow cells are connected to two other
cells that are active and are therefore in a predictive sate. The red cell is only connected to one cell so it is
not in an predictive state. On the right a new input arrived. Every cell in the first column is active since
non of the cells were in a predictive state before. In the other columns the cells that were predictive before
are now active

The bottom layers of an HTM deals with minor components of the input where the higher levels
learn more complex patterns. This is also seen in the neocortex where higher level neurons deals
with more complex patterns such as words and lower levels neurons with for example syllables of
the words. [Hawkins et al., 2011]

Basic functions exist within the HTM algorithm: encoding, learning, inference, prediction, be-
haviour and classification. [Hawkins et al., 2011, Casarella M, 2012]

The learning phase is not needed but does improve latter classification. The reason for why it is
not needed is that online learning can be used with HTM or disabled for each layer in the model.
[Hawkins et al., 2011, Casarella M, 2012]
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2.1.1 Encoding
At the sensory level an encoding should be made of the input space. The encoding is a representation
of the data set and corresponding class. HTM only finds patterns, so in order to provide essential
information about the input additional data needs to be added so the total input space will be an
encoding contain both original data and meta data. [Casarella M, 2012] Two ECG’s are encoded in
figure 2.3 and figure 2.4.

Figure 2.3: Person one heartbeat Figure 2.4: Person two heartbeat

What columns initially revive the encoded data are usually random but multiple other methods
exists including a topology method that will allow for more complex patterns to be learned of the
dataset. This however mean that more data is needed to learn patterns. [Hawkins et al., 2011]

2.1.2 Learning
Each layer learns in unsupervised manner by finding patterns in the input and the sequence of
patterns over time. The two things happening is called spacial and temporal pooling, where spacial
pooling is adjustment of connections between columns and the input space and temporal pooling is
between cells of columns. [Hawkins et al., 2011]

[Casarella M, 2012] argues that some supervised learning is happening for the classification layer
and sensory layer as the data needs to be labelled in the classification layer and data needs to be
encoded in the sensory layer.

Cells in each column are as earlier described connected to cells in multiple other columns just
as columns are connected to the output of multiple columns in their input spaces. Their initial
connections can be set in multiple ways but is usually done randomly. [Hawkins et al., 2011,
Casarella M, 2012] In figure 2.5 an illustration is made of connections between columns in each
layer of an example HTM implementation.

Figure 2.5: From A, a subset of the original ECG image is connected to a column in B. In the connections
between B and C an overlap in the data source B is illustrated. In the connection between C and D the the
entire set of C is used as a feature set for classification
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Both the spacial and temporal pooling works by cells or columns that gets activated together
strengthens their connections (permanence), cells or columns that don’t, they get a weaker connec-
tion. These trained connections functions as learned patterns of HTM. [Hawkins et al., 2011]

Inhibition was mentioned earlier as a way to obtain a SDR during spatial pooling. Besides
inhibition another mechanism called boosting also exists and can be enabled [Hawkins et al., 2011].
In homoeostasis inhibition and boosting mechanisms exists [Martini et al., 2012], and that idea is
expressed with inhibition and boosting in HTM.

Boosting allows less activated columns to be more activated and over activated neurons to be
activated less and thereby allow more complex patterns [Hawkins et al., 2011].

After a manually defined number of iterations, where these connections are adjusted, temporal
pooling is performed. [Hawkins et al., 2011, Casarella M, 2012].

The fundamentals for temporal pooling is a cells three states: active, predicting or deactivated.
Each cell will look at its connections and if a certain amount of these is active then it will go to a
predictive state. [Hawkins et al., 2011]

When a column gets an input only the neurons in a predicting mode will then be activated. If
none is in that stage then all the cells in the column will be activated as the input is unexpected.
[Hawkins et al., 2011, Casarella M, 2012]

As a cell becomes activated it will look to other cells from other columns that have been active
earlier and strengthen the connection where connections to cells that were inactive will be weakened.
[Hawkins et al., 2011]

Essentially what is learned under temporal pooling is a series of Markov models representing the
transitions between activated nodes where these models are grouped together in a Agglomerative
Hierarchical Clustering fashion. [Casarella M, 2012] A Markov model is a way to model statistical
system where only knowledge about the current state of the system is needed to make predictions
of the future (temporal memory of HTM). Agglomerative Hierarchical Clustering is illustrated in
the following figure 2.6.

Figure 2.6: This algorithm works by clustering subcomponents according to a given similarity measure into
bigger components that eventually will result in a big cluster expanding the entire dataset. [Casarella M,
2012] The figure is created from [Casarella M, 2012]. This figure illustrates that event A, B are not similar,
but A,B is more similar than B,C. Eventually the cluster converge as the similarity measure expands and a
single group containing A,B,C,D is created

The different level of the cluster is the different levels of the HTM model. [Hawkins et al., 2011]

2.1.3 Inference
Once learning is finished, educated guesses (inference) can be made about the underlying patterns
of novel inputs. Each input will be somewhat novel in that sense that variance will occur in inputs
[Hawkins et al., 2011, Casarella M, 2012] such as the same abnormality will not look identical in
each ECG image. HTM is robust to these variations because of the aforementioned generation of a
SDR set under learning. With the SDR just a partial match of the input with learned patterns is
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required to make an educated guess of the underlying patterns of the input. [Hawkins et al., 2011,
Casarella M, 2012]

2.1.4 Prediction
HTM memories transition between SDR and their ability to predict in a sense that it predicts a
following sequence of input based upon the prior input. This makes HTM very robust to noise and
missing data in a sense that prior input will help to generate a context of what is to be predicted
so that its more likely that a correct inference is made. The predictions gets more stable at higher
layers as underlying minor components of an input shifts more rapidly than higher level components.
[Hawkins et al., 2011, Casarella M, 2012]

Inference and prediction is somewhat intertwined. Output from a layer is the resulting inference
and prediction(s) made on its input and act as input to the adjacent layer. Basically the output
is a vector containing activity of all the cells in the layer. If any cell is in an active or predictive
state then the output of that column is 1, otherwise the output of that column will be 0. Multiple
predictions can be made and this help to increase the stability of the system at higher levels as
predictions change less than the input. [Hawkins et al., 2011, Casarella M, 2012]

2.1.5 Behaviour
Behaviour is very different from other functions of the HTM. Instead of recognition, behaviour
references to an actual reaction of a system. This reaction is best described as a neural motor
reaction to input to sensory input. [Hawkins et al., 2011] An reaction could be call grant access in
a biometric application or call an ambulance in a medical application.

Behaviour functionality is however not necessary in the first stages of implementing HTM and
is therefore not yet implemented in many systems. [Hawkins et al., 2011]

2.1.6 Classification
The last node in HTM can be multiple kinds such as an SVM or K-Nearest classifier. Natively to
HTM implementations are the classifier is the Naive Bayes (NBA) algorithm. [Casarella M, 2012]
The NBA classifier is also called simple Bayes and independence Bayes.

Essentially this classification algorithm is naive in that sense that it assumes the indices of the
input vector is independent. This means that correlation of features do not contribute to information
about class. [Caruana and Niculescu-Mizil, 2006]

This algorithm learns in a supervised matter. The output from the layer below the classification
layer acts as a feature set. The feature set gets labelled by an investigator with a class where
multiple of theses act as the training set for the NBA. [Casarella M, 2012]

2.1.7 Configuration
Naturally multiple parameters can be altered in an implementation of the algorithm such as number
of layers, number of columns, number of cells in each of the columns and their connections. Further
more configurations can be set for the depth of the temporal memory (size of the context). [Hawkins
et al., 2011, Casarella M, 2012] Not every parameter is covered in this section because of the excessive
amount of parameters.

Chaining parameters in any form such as increased number of cells, layers or increased context
size will allow for more complex patterns to be learned (increased learning capacity). [Hawkins
et al., 2011, Casarella M, 2012]

Selection of values for memory size, boosting or any other parameter do not have a gold standard
yet. Instead one should rely on former literature on the topic or whatever is required by the current
application of HTM. [Hawkins et al., 2011, Casarella M, 2012]
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2.2 Applied methods
In the current study parts of the methodologies applied in Casarella M [2012] are used, that is a
dataset is prepared and a Hierarchical Temporal Memory model (HTM) is built and configured.
Multiple experiments were run in different configurations in order to investigate the influence of
number of subjects and number of iterations through the dataset. The non-shared configuration for
each of these experiments is described under the subsection experiments.

2.2.1 Application
The real life application used in this study is based on the literature Agrafioti [2011]. Described
in Agrafioti [2011] are three biometric applications. The best results in form of lower error rate
were in the application where heartbeats derived from a finite known population’s ECG were to
be identified over time. In that application a continuous classification a non overlapping dataset of
five seconds ECG where used. Temporal information can be learned without the overlap in HTM.
Casarella M [2012] That application is therefore mimiced in the current study so that only single
consecutive heartbeats are used to identify a subject over time.

2.2.2 Software
Some prepossessing had to be done to the data since Images need to be generated from the original
data set. This was done in MatLab® 9.1.0.441655 (R2016b). The actual HTM model is however
not supported in MatLab® and software by Numenta NuPIC 0.7.0-dev Hawkins et al. [2011] was
therefore used. Run on 2015 MacBook Pro 15 Inch 2.8 GHz i7 with 16 of ram. MacOS version
10.12.4. Python 2.7.10. Further more a MongoDB 3.04 database was created with the data to avoid
memory leaks.

2.2.3 Dataset
The origin of the dataset is a database from the general practitioners of Copenhagen, Denmark. It is
500 Hz sampled unfiltered ECG for 25.000 patients with two sessions each. There were 14.225 female
and 10.775 male with a total mean age of 64 years and a standard deviation of 16.64. From each
session the full length of 10 seconds was chosen. In the application being mimiced from Agrafioti
[2011] they used multiple leads but in this study the lead II was chosen to match the methodology by
Casarella M [2012]. The dataset contained both healthy and unhealthy patients which is a broader
spectrum than both Agrafioti [2011], Casarella M [2012] who only used either one of the two patient
groups.

Subsampling of the dataset

Two subsampled dataset called optimisation and control were substracted from the entire dataset.
Samples were assigned to the two subsets in a random manner automatically by the file system of
the computer running the software. 1.250 subjects (5 % of entire dataset) were included in each of
the subsets. This number was chosen in order to reduce the runtime of the software, since initial
investigations indicated that it would not be able to finish within time scope of the project otherwise.

Segmentation of heartbeats

In order to segment the heartbeats from the ECG the Pan Tompkins algorithm was used as de-
scribed by Elgendi [2013], Agrafioti [2011], Dubois et al. [2007]. The Pan Tompkins algorithm were
developed in Pan and Tompkins [1985], provided an accuracy of 99.3 % on 12-lead ECG arrhythmic
data and can be used on the unfiltered ECG signal. The algorithm contains four stages: 5-15 Hz
filtering including subtraction of mean ECG, differentiation, squaring and 150 ms width integration.
A refractory period of 200 ms is included in the detection algorithm to avoid false detection of the
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QRS complex. If no certain complex has been found within 360 ms of the previous the highest slope
of the processed ECG is selected.

The width of a heartbeat were defined to be 740 ms in this current study. A fixed length was
chosen to match with the methodologies by Casarella M [2012]. The exact length of a heartbeat is
affected by both disease and heart rate, but was calculated based upon it normally being within;
80-100 ms for the P-wave, 120-200 ms for PR-interval and 300-440 ms for QT-interval resulting in
a maximum total length of 740 ms. Casarella M [2012].

Encoding images

Images were encoded so that each sample corresponded to a pixel. Since the length of a heartbeat
were calculated to be 740 ms, and each sample corresponds to 2 ms, a width of 370 samples (370
pixels) were selected for the image. This correspond to the length of the heartbeat normalized to
the sampling frequency.

In Casarella M [2012] the height of images were 96 pixels so the same height for images were
selected for the current study.

In order to determine the vertical pixel a sample belonged to, a grid was created with 96 values
each representing a pixel. The distance between the value of a sample and the 96 pixels in the grid
were calculated and the pixel with the minimum distance was selected to be the corresponding pixel
of that sample.

In case of a tie between distance of pixels, the upper pixel was selected to be the corresponding
one.

Grids were created for each individual recording so that the maximum value of the grid corre-
sponded to the maximum value of the session and the minimum to the minimum value. Each value
in the grid were calculated as described in equation 2.2.

value(pixel) = minV alue + pixel ∗ (maxV alue−minV alue)/96 (2.1)

Training and test groups

The very essence of machine learning is the ability to predict future values based upon previous
experience. Subjects data from each of their respective subsets were therefore split into training
and test groups.

In Casarella M [2012] different ratios between the two groups are described. They describe that
the implementers of Numenta NuPIC suggest a 8:1 training to test data ratio but that they usually
used a 1:1 ratio. Casarella M [2012] uses roughly a 1:2 ratio for their own study but the ratio is not
the same for each class they investigated.

In the current study the 4:1 ratio was chosen. The data amount is limited for each class in the
current study compared to what was used in Casarella M [2012] and increasing the ratio gives more
training data and thereby better accuracy might be achieved.

All data on each subject were used as a combined dataset where a 4:1 ratio of data was extracted
for each of the subjects. This gave roughly 25 beats for training and 6 beats for test for each subject.

2.2.4 Configuration of algorithm
There are not yet any gold standards for selecting the values for parameters for an implementation
of HTM as described in 2.1.7, Configuration. In this section the high level parameters are selected
such as number of levels before the low level parameters such as number of cells in each column.

In the software used by Casarella M [2012] the parametersMaximum Coincidence Count, Equalize
Group Size amongst other were mentioned. These parameters were however changed in the newer
version of the software that is described in Numenta [2017]. It was therefore not possible to do a
direct mapping of the parameters from Casarella M [2012] and parameters of HTM were therefore
as a starting point left at their default value.

As described by Casarella M [2012] whose methodology is mimicked in the current study, pa-
rameters had to be tweaked to fit within the problem domain. Since the application or problem
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domain in the current study is biometrics, values in this current study would not necessarily be the
same as of Casarella M [2012].

Amount of layers

The number of levels to use is not directly specified by Numenta, but experiments have been made
with both three and four levels. More levels increased the robustness of the system but decreased
the accuracy. [Casarella M, 2012] For image classification problems three levels seemed to produce
the best results [Casarella M, 2012], and a three level structure is therefore used in the current
study.

Configuration of layers

The configuration of the two bottom layers was made with the following considerations from
Casarella M [2012]: The image size, patterns within the image, the correlation between number of
levels and number of columns in each level. Following the methodology described in that literature,
two prime factors were derived based upon the image size and used to calculate the configuration
of columns. These calculations are made in equation 2.2 and 2.3.

96⇒ 3× 2× 2× 2× 2× 2 (2.2)

370⇒ 2× 5× 37 (2.3)

A pyramidal regression was found in Casarella M [2012] to be required for the proportion of the
images. It is specified that the first layer should be an eighth of the original data set and the second
layer should be a half of the first layer. The last layer is the classifier. It is however not possible to
fulfil these requirements with a width of 370 pixels. Therefore the images were adjusted to a width
of 384 pixels (by chaining the width of the window) and new primes were calculated in equation
2.4.

384⇒ 2× 2× 2× 2× 2× 2× 2× 2× 5 (2.4)

By using the primaries it was possible to calculate the following properties of the layers in
equation 2.5 and 2.6. This means 48 × 12 columns (width × height) in the first layer and 12 × 3
(width × height) in the second layer.

96/8 = 12‖12/4 = 3 (2.5)

384/8 = 48‖48/4 = 12 (2.6)

Capacity of learning

The capacity of a layer defines how many underlying patterns can be stored. Essentially this is the
configuration of the SDR. The equation for the capacity in a layer is given in equation 2.7. n is
number of columns where k is number of active columns. By selecting a rounded 2% suggested in
Hawkins et al. [2011] the number of columns for layer one is 48 × 12 = 576, the number of active
columns is 12 and the capacity is 2.4810e + 24. In the second layer the number of columns for layer
one is 12× 3 = 36, active columns is only 1 and the capacity is 1.2517e + 09.

n!
k!(n− k)! =

(
n

k

)
(2.7)

Selecting number of cells

The number of temporary contexts that can be represented is given in 2.8 and limited by c number
of active columns and n cells in each of the columns. Examples are given for a layer of 4 cells in
each columns in Hawkins et al. [2011]. This number allows for a big temporal memory and it is
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argued in that literature that a layer of above the 4 is usually not needed. The temporal patterns
(context) that can be learned in this implementation is therefore 16.777.216 and 4 in the first and
second layer respectively. This guideline is also followed in Casarella M [2012].

nc (2.8)

Classifier and performance measures

The top layer (classification algorithm) was chosen to be Naive Bayes Classifier (NBA) since it was
also used in Casarella M [2012] and a class was defined for each subject. This classifier was set to
output classes and a samples corresponding probability to belong to a class. The three most likely
classes and corresponding probability for each of those classes were used in further analysis. The
further away from the most likely class a prediction is, the less likely it is for the system to be able
to classify such a sample and an arbitrary cut-off of three classes was therefore chosen.

2.2.5 Experiments
Experiments were conducted with different amount of iterations in this present study as of Casarella
M [2012]. The span of iterations were set to be between 9.000 to 60.000 times in the study by
Casarella M [2012] and was only done on the spatial pooler. No improvement in classification was
seen for over 21.000 iterations. Essentially it was theorised that the more times an image is exposed
to the spatial pooler the better the underlying patterns can be detected. For this application
the ideal amount of iterations needed were not known and multiple experiments were therefore
conducted with an arbitrary number of 1, 100 and 1.000 iterations respectively for the control
dataset. The trial with 1 and 100 iterations were then run again but with the optimisation dataset
and an experiment with only 1 iteration but with a combined dataset of the control and optimisation
dataset was also run. This last experiment was conducted to investigate the influence of the size of
the dataset on accuracy of classification.
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The results are represented in table 3.1 for the different number of iterations 1, 1.000 and 10.000
and the different optimisation and control datasets.

Table 3.1: The results of using HTM with the different datasets are given in this table. The accuracy of the
systems ability to correctly classify a sample as the most likely or within the top three most likely is given

Iterations Dataset Accuracy (1) Accuracy (3)
1 Optimisation 0.07 % 0.24 %
100 Optimisation 0.07 % 0.24 %
1000 Optimisation 0.07 % 0.24 %
1 Control 0.09 % 0.27 %
100 Control 0.09 % 0.27 %
1 Optimisation and Control 0.04 % 0.014 %

The results did not improve with the number of iterations. By creating a dataset consisting
of both of the subsets a drop in accuracy dropped to half of the accuracy of each of the groups
individually. Since the number of subjects influenced the results a lower number of subjects were
investigated to further enlighten the limitation of the implemented configuration of HTM. Different
number of iterations were also investigated as of the original methods. The results are presented in
table 3.2.

Table 3.2: The results of using HTM with the different number of subjects are given in this table. The
accuracy of the systems ability to correctly classify a sample as the most likely or within the top three most
likely is given

Iterations Num subjects Accuracy (1) Accuracy (3)
1 10 8.89 % 31.3 %
10 10 8.89 % 31.3 %
100 10 8.89 % 31.3 %
100 100 4.47 % 18.5 %

The results of these showed an improvement compared to the former results of this study with
the number of subject influenced the accuracy of the system. The number of iterations did not
change the accuracy. These findings aligns with what was already found earlier in this study. Two
classifications made by the classifier has been included in figure 3.1 and 3.2 respectively. Figure 3.1
is a correct match were figure 3.2 is not. These figures illustrates how similar both the correctly
and wrongly classified images look with their matches.
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Figure 3.1: Correct match from random subject’s encoded heartbeat. The shared pixels are marked with
green, the non-shared are marked with red and blue where each of these colours represents two different beats

Figure 3.2: Wrong match from random subject’s encoded heartbeat. The shared pixels are marked with
green, the non-shared are marked with red and blue where each of these colours represents two different beats

Page 30 of 43



Chapter 4
Discussion

A literature review was conducted and it was found that there are still an extensive amount of
work that can be done within the field of ECG machine learning research. Pitfalls were identified
of machine learning such as its ability to learn depends on the quality of the ECG recording where
this quality shown to be problematic. Furthermore it was identified that even though that research
has been made within the same applications such as diagnosis of a specific heart disease, the same
features are not used in these and there seem to be a lack of a gold standard for the meaning and
limitations of the underlying grammar of ECG. HTM showed promising results and was said by
Casarella M [2012] to be robust to some of the problems that can be caused by the aforementioned
problems with ECG quality as it was used on unfiltered ECG.

In order to test if the underlying grammar of ECG could be found with HTM, another application
than the originally tested in Casarella M [2012] was chosen. This application was identification of
a patient based on the heartbeats derived from the ECG.

In Matlab Pan Tompkins were used to segment heartbeats and from those heartbeats images
were generated. These images were used in a implementation of Numenta’s Nupic HTM. ECG of a
total 50.000 session each 10 seconds long was used where data from 2.500 subjects were subsampled
from the entire dataset. Multiple experiments were run to control the effect of the subset, number
of subjects and iterations.

In the present study it was found that the accuracy of the system to classify the a heartbeat
derived from the ECG were up to 31.3 &. When the number of subjects increased the accuracy
of the system decreased and eventually dropped below 1 %. These results persisted with different
subsets and amount of iterations.

Results
The results found in this study were less accurate than what was found by Agrafioti [2011], Gregg
et al. [2016] and Casarella M [2012]. In Casarella M [2012] the application were not biometric
but HTM was also used and an almost 100 % accuracy were found. This study did however
only differentiate between four classes and in this study it was found that increasing the number
of classes lowed accuracy of the system. Furthermore these results were achieved using 60.000
iterations. When only 3.000 iterations were used the results were 70 %. These number of iterations
is higher than what used in the current study that was chosen due to the limited processing time.

In the biometric application in Agrafioti [2011], mimiced in the current study, the lowest equal
error rate were 10 %. This was however only on a database with up to 52 subjects where this current
study used up to 2500 subjects. More data were used for classification in Agrafioti [2011] as five
seconds ECG recordings was used for classification providing more data for the classifier to make
its decision than in the current study where single heartbeats were used. Using more data should
improve the accuracy of the system [Numenta, 2017, Holzinger, 2016, Daume, 2012]. Furthermore
filtered ECG were used in Agrafioti [2011] as of also recomended in literature Sufi et al. [2009],
Rahhal et al. [2016], Chandrakar and Sharma [2015] but not done in the current study. Noises
might therefore be so strong that they suppress the information about the identify of the subject
in this current study.

The study Gregg et al. [2016] reported, just as the findings in the current study, that sensitivity
decreased with an increasing amount of subjects. Training was made in this study on 294 subjects
but included more data in form of 15 leads instead of one lead usd in the current study. Gregg
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et al. [2016] reported an sensitivity of 37 % but also included 8369 subjects for test that were not
trained on. Since Gregg et al. [2016] tested the system be matching a trained subjects ECG with
and untrained subjects ECG no match should be found thereby increasing the sensitivity of the
system without increasing the actual accuracy. In Gregg et al. [2016] the entire ECG were used to
determine if a match were found of a subject where only single heartbeats were used in this current
study. By using the entire ECG instead of a single heartbeat the subject who have been suggested
most frequently for any of the heartbeats could be selected as the subject the ECG belonged to and
therefore improve the results.

Application
The current study mimiced the application described in Agrafioti [2011] but did have some differ-
ences. In Agrafioti [2011] the application was biometric identification of subjects on ECG signals.
In the current study only single beats where used instead of five seconds of ECG. Chaining the
application in the current study to also contain a consecutive five seconds of ECG would allow
HTM to learn more of the underlying patterns as the number of columns to handle the input data
would increase. By introducing an overlap in the images it would also be possible to strengthen the
temporal information in the images in HTM and thereby potentially increase the accuracy of the
system. In this current study only 10 seconds ECG were available and a five seconds dataset would
therefore result in a very limited size of a training and test set for each subject. This issue could
have been overcome by having multiple either increased length of sessions or more sessions for each
subject.

The application in the current study were adapted to also fit Casarella M [2012] who used
unfiltered ECG. In a real world application there might still be some kind of filtering because of the
issues with ECG quality as described by Khunti [2013], Kalkstein et al. [2011]. Good results using
unfiltered ECG does however show a more robust solution.

Software
It was not possible to use the same software version as used in the Casarella M [2012] even though
attempts were made to contact the author. Changes in software can influence both function and
stability of the software [Numenta, 2017] and therefore it might have affected the outcome of this
study. This did limit the possibilities of using and replicate the experience gained by Casarella M
[2012].

Dataset
One lead was used in this study with two sessions were each session was 10 seconds long. In the
cases of Casarella M [2012], Agrafioti [2011] they both used ECG recordings with a length more
than a 100 times greater than that of the recordings used in study.

Since Casarella M [2012] showed that an increase amount of data showed higher accuracy it
might be worth investigating the effect of an increased data size for outcome.

Some of the ways to increase the data size could be to introduce more sessions since the data size
for each session in this study is limited to 10 seconds. This will also give the possibility of gaining
more complex temporal information from the ECG since only two sessions are available. Weather
or not this would be feasible with more sessions can be discussed since it would require resources
from healthcare professionals and patients to collect the extra amount of data.

Different leads might provide information different from each other about the heart Bayés Bayes
de Luna [2012], Silbernagl and Despopoulos [2009]. In HTM no additional knowledge about what
the input represents (such as its diagnostical value) is required according to Casarella M [2012],
meaning that even thought the exact value of these leads is not fully understood in a biometric
application it would indeed be possible to use multiple leads to increase the dataset.

The dataset contained a broader spektrum of patients than both Agrafioti [2011] and Casarella
M [2012] since both unhealthy and health subjects were included in this current study. In Agrafioti
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[2011] it was shown that the ability to perform the biometric application was affected by emotions.
Weather or not accuracy of the system could also be affected in the same way but for health status
of the subject is not known but could be controlled for by using either only healthy subjects or for
subjects of a specific disease.

Subsampling of the dataset

The subsets from the entire dataset were subtracted in a random manner. This does however also
mean that a balance between male/female, age and different diagnosis were not known for these
subsets. Introducing a pesudo randomisation could ensure an equal distribution of these. It is
however not known how these demographics actually influence the accuracy of classification. The
size of the subset did however have an influence of the accuracy of the system as an increased
number of subjects decreased the accuracy of the system. Databases can however require even lager
group sizes than used in this current study if comparisons would to be made for the entire database.

Segmentation of heartbeats

Pan Tompkins were used to segment heartbeats. This method has proven to be accurate and robust
Pan and Tompkins [1985]. A specific width of a heartbeat were selected. This is even though that
some variations in a heartbeat length will be present due to factors such as the heart rate Casarella
M [2012] and thereby an overlap between heartbeats might occur. The purpose of segmenting
heartbeats might therefore be lost and a fixed length of time could therefore be used instead.

Encoding images

The height of the image where chosen to follow Casarella M [2012]. Even though it matched with
that literature increasing the amount of pixels would however allow for more columns in the HTM
layers and thereby increase the the capacity of learning for the layers.

Training and test groups

Recommendations from Numenta [2017], Casarella M [2012] were not directly followed as the study
Casarella M [2012] had more data available and the training data was maximised. In order to avoid
over-fitting of the entire dataset and investigating the effect of different subsets an optimisation
and control dataset was included. This was done according to what is described by Holzinger
[2016], Daume [2012]. They argue that this is a robust method to overcome over-fitting issues when
optimisation of algorithm has to be done.

The amount of beats for testing were however very limited for each subjects as only 2-3 beats were
available. Since temporal information is stored as consecutive beats and only a few are available the
change from one subject to another might disrupt the ability to classify. Using one session as training
and another one as test would increase the amount of data available for temporal information.

Configuration of algorithm
Only Casarella M [2012] were found to use HTM on ECG from the literature review. There were
not done any further investigations of literature to find out how to optimise this HTM model other
than reading through the software documentation of HTM. Important knowledge could therefore
have been lost that could help optimise the HTM configuration.

Numenta [2017] has created a new tool since the publication of Casarella M [2012] to help optimise
the model, called swarming. This tool was however not used since it would move the methodology of
this study further away from Casarella M [2012] but could potentially improve the results according
to Numenta [2017]. Casarella M [2012] did also notice that a correct configuration of the algorithm
to the problem domain would significantly improve the results and a correct configuration was not
necessarily found in this study even though attempts were made. It is also worth noticing that the
HTM algorithm is not completely implemented in the software tool [Numenta, 2017] used in this
project.
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Amount of layers

The amount of layers did follow the guidelines by Numenta [2017] and Casarella M [2012]. It is
therefore not likely that another amount would change the outcome of this current study.

Configuration of layers

Each of the layers were configured to follow what was found in Casarella M [2012]. These rec-
ommendations were however made where more temporal information were available. Increase the
amount of columns while still maintaing the pyramidal form, would increase the amount of spatial
information that could be deducted from the images available.

Capacity of learning

It was selected that 2 % of columns should be active. This did follow all recommendation set
forward by Casarella M [2012] and Numenta [2017]. Due to the limited amount of columns this
value however did increase the amount of temporal information that could be derived from the
already limited amount of temporal information due to the few beats. Increase this number might
therefore in this case prove to be beneficial for the accuracy of the system. This could be tested
with the new swarming methods by Numenta [2017].

Selecting number of cells

The number of cells did not have big effect of the amount of temporal information that could
be stored due to the limited amount of active columns selected. This number should therefore
potentially be much higher as examples given by Numenta [2017] normally include thousands of
temporal patterns.

Classifier and performance measure

Other classifier types used than the one in software for this project have shown better results on other
datasets [Caruana and Niculescu-Mizil, 2006] and this might therefore limit results. Furthermore the
amount of classes (subjects) to differentiate between in this study was up to more than a 100 times
higher than in studies compared under results. The amount of information about the underlying
ECG grammar from the layers before the classifier might not be sufficient to differentiate between
that amount of subjects. It was found that increasing the amount of subjects decrease the accuracy
of the classifier.

The actual value of the probabilities of a sample belonging to a subject were not further investi-
gated in the current study. With a high accuracy of the system these might carry more information
beneficial for the understanding of underlying grammar of the ECG but were not used here due to
the low accuracy when the higher number of classes were used.

Experiments

The amount of iterations chosen were much lower and below the amount of iterations tested in
Casarella M [2012]. They show a somewhat sigmoid form of the relationship between number of
iterations and classification accuracy thereby using just a 1.000 iterations in the current study would
might have resulted in the same accuracy for Casarella M [2012]. In other words the amount of
iterations used in this current study might have been insufficient, but were however limited due
to the time frame of the current study. Furthermore the amount of iterations and subsets were
not great enough to actually perform any statistics and thereby prove the effect of the subset size
and number of iterations. This would require a greater amount of iterations of more subsets with
different sizes.
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Technical issues
In this project a MongoDB server had to be created to distribute the memory load as the software
had problems crashing midway throughout the calculations. This was due to the very large dataset
above 30 GB. Further more it took roughly a full week for the computer to calculate results of just
100 iterations above for the respective dataset. This massive requirement of hardware resources
might limit the real life feasibility for usage of HTM especially in the initial training phase. After
the training phase less than a minute was required to perform the actual classifications.

One solution could therefore be to apply online learning or train on just a specific subject with
abnornamlity detection enabled Numenta [2017]. Only training on a specific person and then detect
similiar ECGs from that persons was done by Gregg et al. [2016]. Here time of training could be
reduced since the amount of training data would be limited and only two classes would be needed:
the specific subject and others (abnormal).

Another solution could be to create multiple HTM instances. Calculations could then be dis-
tributed and each HTM instance could in parallel detect and classify different underlying parts of
the ECG that then can be used in a HTM instance that combine these results to classify the subject.

Future perspective
Finding the underlying ECG grammar and especially in an automated manner with machine learning
can be proven to be an essential tool in both biometrics but also in diagnosis. For example could a
specific part of the grammar of the ECG help diagnose a specific disease. Casarella M [2012] points
out that one of the benefits of HTM is that no prior knowledge is required about the underlying
parameters of ECG and their origin in the leads. This means more leads could be included as
dataset for HTM even though their representation of the ECG grammar is not yet known and that
representation could be automatically investigated. Indeed this current study show that even though
no prior knowledge is known about the grammar representing biometric information from ECG lead
II some matches could still be found. Finding the underlying grammar would also help illuminate the
limitation of ECG due to for example inter- and intra-subject variability within the grammar. This
current study’s findings show that increasing that increasing the number of subjects and thereby
introducing more variability challenges the classifier as the accuracy drops. The study did however
also find that new configurations and methods as been introduced to counter some of these issues
as numenta introduced a tool called swarming for HTM. Finding the right configuration for HTM
rather than completely discarding it as a tool due to the initial low accuracy might therefore be
more feasible for the research of underlying grammar of ECG.

Page 35 of 43





Chapter 5
Conclusion

In order to test if the underlying grammar of ECG could be found with HTM, another application
than the originally tested in Casarella M [2012] was chosen. This application was identification of
a patient based on the heartbeats derived from the ECG.

It was possible to use underlying biometric grammar of the ECG to classify heartbeats with an
accuracy up to 31.3 &. When the number of subjects increased the accuracy of the system decreased
and eventually dropped below 1 %. These results persisted with different amount of iterations.

The results of this study are somewhat novel because of the limited dataset available for each
of the subjects compared to other studies of ECG in a biometric application, and the high amount
of subjects compared to amount of data for the individual subject. Whether or not the results are
due to the limitations of HTM or the inter-subject variability of ECG, would require a more similar
dataset with other biometric applications.

Furthermore, the application of ECG in HTM for a biometric application is also novel so the right
configuration for a biometric application of HTM is therefore not necessarily used in this project. It
is worth investigating how a different configuration of HTM influences the results where Numenta’s
newly developed Swarming tool might help.
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