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Texting while walking decreases local dynamic 

stability and variability. 

Crowley, P 

 

Sports Technology, Department of Health Science and Technology, Aalborg University, 

17gr10207 

 

Abstract  

The aim of this study was to investigate the effects of smartphone use on the local dynamic 

stability while walking in young and healthy adults. To this end, 10 participants underwent 

repeated walking trials consisting of three conditions; 1) walking, 2) walking while texting, 3) 

walking while talking on a smartphone. In addition, to investigate the influence of walking 

speed, participants were instructed to undergo each condition at both a self-selected normal 

and self-selected fast walking speed. Data was gathered using a tri-axial accelerometer fixed at 

the lumbar level L4-L5. Local dynamic stability (LDS), defined by a maximum Lyapunov 

exponent (maxLyE), and gait variability, defined by standard deviation (SD) and coefficient of 

variation (CV) of stride time, and root mean square ratio (RMSratio), were assessed. The 

maxLyE increased significantly along the mediolateral axis, suggesting decreased stability in 

this direction when walking while texting compared to walking alone (p<0.05). Furthermore, 

the mean stride time decreased from self-selected normal speed to fast speed walking (p<0.05) 

and the variability in accelerations, as quantified by RMSratio along the mediolateral axis 

decreased significantly from walking while talking to walking alone (p<0.05). Similarly, 

significant decreases were observed for RMSratio of walking and texting at a fast speed to 

walking at a fast speed alone (p<0.05). These findings suggest that texting while walking 

decreases LDS and variability in the mediolateral direction in young, healthy, adults.  

Keywords: Gait, Smartphone, Lyapunov, Accelerometer, Dual-task, Nonlinear. 
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Introduction 

In recent years, the influence of smartphone use while walking has received considerable 

attention. 1–9 Recent reviews on the topic indicate that texting while walking produces 

alterations to critical gait parameters, such as; decreased walking speed, decreased step length, 

and increased double support time. 10 These alterations are suggestive of compromised balance 

and may serve as indicators of increased fall risk, although, due to varying methodologies, a 

consensus on the matter is difficult to achieve. 10,11 Methodological variations included walking 

conditions (over-ground or treadmill), varying measurement equipment, and varying secondary 

tasks. However, in the midst of this methodological variation some consistency has been 

present in the form of the dual-task paradigm, which has been central to these investigations. 

The paradigm allows for the assessment and comparison of the performance of a target task, 

or in other words, it compares the performance of a one task alone to that of two tasks at once; 

for example, comparing the performance of walking normally to walking while texting on a 

smartphone.12,13  

  As well as a standardisation of methodologies, new approaches to walking analysis can 

help in providing a full picture of the effects of smartphone use on walking. Nonlinear methods 

of analysis are one such relatively new technique to the field of biological science and gait 

analysis. Moreover, nonlinear analysis has been shown to be capable of distinguishing between 

young and elderly populations, as well as those with a history of falling and their non-falling 

counterparts.14–17 Despite this, relatively few studies have used nonlinear techniques to 

investigate the effects of a dual-task scenario on the LDS of walking, and even fewer have done 

so with over-ground protocols.  

LDS can be quantified using the maximum Lyapunov exponent (maxLyE), a frequently 

reported nonlinear measure in the investigation of walking stability (Table 1). The maxLyE 

provides the average rate of convergence or divergence of the local trajectories in the evolution 

of a time series. 18 It indicates the reaction of a dynamic system to small perturbations to the 

system providing information on the underlying dynamics of the system.15,19 Theoretically, 

maxLyE requires data sets of considerable length to provide precise results, although this can 

be difficult to achieve in a laboratory environment without the use of a treadmill.20,21 Issues 

therefore arise regarding the ecological validity as treadmill walking is thought to mask some 

of the underlying dynamics of gait.22–24 Although promising, experimental studies using 

maxLyE consistently report that further research is required to fully understand the 

implications both from a conceptual perspective and in relation to functional walking.18,25,26 

 For a complete analysis of human gait the role of human motor control variability must 

also be considered. Movement variability may be an indication of a decrease in system 

performance or, contrarily, of a readily adaptable, functional, system - depending on the task 

under analysis. For example, when analysing repetitive movements, the presence of a more 

variable motor strategy can indicate a functional movement protecting from repetitive strain or 

injury.27,28 However, many physiological systems show increased variability with aging that 

are indicative of decreased performance. 29,30 Therefore, to fully understand the effects of dual-

task activities on gait, the integral dynamics and intrinsic variability of the system must be 

investigated. 
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Thus, the aim of this study was to analysis the effects of smartphone use while walking on the 

gait dynamics of young adults, using an over-ground-walking protocol. I hypothesized that 

increasing walking speed will increase stability in the anteroposterior direction, thereby 

decreasing maxLyE values, while decreasing stability in the mediolateral direction, thereby 

increasing maxLyE values, in line with the findings of previous research (Table 1). Moreover, 

I hypothesized that decreased LDS will be observed in the dual-task condition only when 

compared to walking without using a smartphone.  Similarly, concerning variability, I 

hypothesized a decrease during a dual-task like walking while using a smartphone. 

Materials & Methods 

Participants 

Twenty-two participants underwent gait analysis conducted at the AGIM laboratory, Grenoble, 

France. Of the 22 participants analysed, 12 were discarded due to a) incomplete data sets (due 

to organisational issues); b) unsuitable pathologies for the required analysis (e.g. rheumatoid 

arthritis, a history of spinal injury, and unequal limb length). The remaining 10 participants 

were healthy, young adults (7 males, 3 females; age = 24.7 ± 4.4 yrs.; height = 176 ± 5.4 cm; 

mass = 71.9 ± 12.2 kg), reported regular smartphone use, and possession of their current 

smartphone for longer than one month. None of the included participants had any neurological 

or physical disability that may interfered with gait. Finally, all participants provided informed 

consent prior to testing and ethical approval was attained from the University Grenoble Alpes. 

Experimental protocol  

Over the course of 12 walking trials, each participant completed two trials of the following 

conditions; 1) Normal walking, 2) Fast walking, 3) Normal walking while talking on a 

smartphone, 4) Fast walking while talking on a smartphone, 5) Normal walking while texting 

on a smartphone, 6) Fast walking while texting on a smartphone. The order of trials was 

pseudo-randomized and for each normal or fast walking trial, walking speed was self-selected. 

Pelvis accelerations were recorded using a tri-axial accelerometer (Physiolog 10D system, 

GaitUp, Lausanne, Switzerland; sampling rate 200Hz) tightly attached using strips of adhesive 

tape, at the level of L4-L5 spinous process. The inertial measurement unit measured 

accelerations along three axes; cranial-caudal (CC), antero-posterior (AP), and medio-lateral 

(ML). Participants were instructed to walk straight-ahead, along an 80-meter indoor corridor, 

at the speed designated (i.e. normal or fast). No smartphone holding instructions were provided 

before the talking or texting tasks, instead participants were simply instructed to begin with the 

smartphone in their hand and to respond to the smartphone notification if required. The auto-

correct and predictive functions of the smartphone was disabled on all devices prior to testing. 

For this reason, participants completed three texting-familiarisation trials consisting of typing 

a standardised pangram before and in-between repeated trials. All texting questions were 

standardized between participants. Subsequent data analysis was conducted with Matlab 

R2015a (MathWorks, Natick, MA). 
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Table 1 - Participant demographic, healthy status, and summary findings related to maximum Lyapunov exponents of studies investigating gait using the Lyapunov method 

among their outcome measures. λS refers to the short-term Lyapunov exponent; λL refers to the long-term Lyapunov exponent. LDS refers to local dynamic stability; OG 

refers to over-ground walking; TM refers to treadmill walking; UG refers to uneven ground walking; WOF refers to walking without visual feedback; WF refers to walking 

with visual feedback; PWSEC refers to preferred walking speed with eyes closed; SDD refers to standard deviation of the difference; SEM refers to standard error of the mean; 

and finally, ICC refers to intra-class correlations. 

 
Sample size Health status Age 

profile 

Gender  Age(years) Findings 

   
Y-young, 

O-older 

M-male, 

F-female 

 
 

 

Bruijn et 

al. 200931 

15 Healthy Y 4M:11F 23.6 ± 2.9 Walking speed had effects on λS and λL maxLyE. In the AP direction λS 

decreased as speed increased, while λL increased for speeds up to 1.5m/s. 

For the ML, λS showed an inverted U-shape pattern, while λL decreased 

with increasing speed. Both increased markedly in the vertical direction 

with increasing speed. Additionally, higher λS values corresponded with 

higher variability.  

Bruijn et 

al. 200920 

9 Healthy Y 9M:0F 25.5 ± 3.6 The ideal number of strides for investigating a complete Lyapunov series is 

greater than 150 strides but this is dictated by what specific aspect of gait is 

being investigated. Walking speed appeared to have a significant effect on 

stability even using short data sets. A fixed number of strides should be 

used. 

Bruijn et 

al. 201032 

9 Healthy Not 

reported 

9M:0F Not reported Λs and λL values can be reliably measured by inertial motion units. Further 

studies are required to investigated LDS in real-life situations. Additionally, 

walking speed had a significant main effect on λS and λL, producing 

decreased λS and increased λL values with increasing walking speed. 

Correlation coefficients of 0.87 and 0.98 for were observed for λS and λl 

respectively. 

Bruijn et 

al. 201033 

11 Healthy Y 11M:0F 27.3 ± 3.3 Lower values were observed for λS with increasing walking speed. On the 

other hand, λL showed higher values with higher walking speeds.  

Buzzi et 

al. 200314 

20 Healthy O & Y 0M:20F YA: 25.1 ± 

5.3; OA: 

74.6 ± 2.55 

Portrayed by higher maxLyE, the fluctuation in the measured parameters 

are deterministic rather than random indicating degradation in LDS with 

age. Future studies need to investigate the sensitivity and specificity of 

nonlinear measures. 

Cignetti, 

Decker & 

Stergiou 

201234 

14 Healthy O & Y 9M:5F YA: 25 ± 

4.86; OA: 

70.28 ± 5.08 

MaxLyE was closer to the expected value when the attractor is unfolded and 

when a larger number of data points are considered. Wolf’s algorithm and 

Rosenstein’s algorithm overestimated and underestimated the maxLyE 

respectively. However, the Wolf algorithm was more sensitive to the 

differences in LDS between groups from small gait data sets. 
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Dingwell 

et al. 

200122 

10 Healthy Y 5M:5F 27.1 ± 3.25 Mean standard deviation of anteroposterior accelerations of the trunk were 

significantly greater for OG than TM. Standard deviations were 

significantly greater for OG in lower limbs, thus TM walking significantly 

reduced kinematic variability. Trajectory divergence was significantly 

reduced for TM with significant reductions for λS and λL, thus more locally 

stable movements.  

 

England 

& Granata 

200735 

19 Healthy Y 6M:13F 22.5 ± 2.8 Based on maxLyE, stability increases linearly with speed. The mean value 

for maxLyE was 1.08 ± 0.35 mm/s at the ankle, 1.40 ± 0.37 mm/s at the 

knee and 1.27 ± 0.34 mm/s at the hip. The maxLyE was significantly less at 

the ankle than the knee, or hip. The value at the hip was also significantly 

less than at the knee. Dynamic stability of walking is influenced by walking 

velocity with different contributions from ankle, knee, and hip joints. 

Federolf, 

Tecante & 

Nigg 

201236 

20 Healthy Y 14M:6F 24 ± 2 
There was significant difference maxLyE between walking in normal shoe 

and unstable shoe. The combination of PCA and Lyapunov exponents could 

distinguish between stable and unstable walking 

Hamacher 

Hamacher 

& Schega 

201537 

10 Clinical- 

abnormal 

gait due to 

joint pain 

O 0M:10F 61 ± 4 A decrease in the maxLyE of pelvis; 1.47 ± 0.21 WOF to 1.88 ± 0.12 WF, 

and trunk 1.43 ± 0.18 WOF and 1.64 ± 0.12 WF velocity trajectories while 

subjects were walking with visual augmented feedback. Further 

investigation walking skills in challenging, controlled walking 

environments. 

Hoogkam

er et al. 

201538 

32 Clinical – 

cerebellar 

patients & 

healthy 

Y 8M:24F H: 24.4 ± 

7.3; C:24.4 

± 3.5 

MaxLyE was higher in the patient group 1.72 ± 0.16 compared to 1.58 ± 

0.14 healthy, as was step width (m) 0.21 ± 0.03 patient to 0.19 ± 0.02 

healthy. MaxLyE values may be more sensitive to gait deficits than 

variability. 

Howcroft 

et al. 

201539 

11 Clinical – 

transtibial 

amputees  

O Not reported 61.78 ± 

16.11 

7 of the 26 measured parameters showed significant differences from LG to 

UG. Accelerations (m/sec^2): Vertical max decreased from LG 4.75 ± 1.56 

to UG 1.88 ± 4.87; vertical range reflected this with a decrease from LG 

7.82 ± 1.89 to UG 6.49 ± 1.77. Pelvis acceleration-derived parameters can 

differentiate between LG and UG walking. Future studies should expand 

research in relation to pelvis accelerometer derived output and fall risk. 

Ihlen et al. 

201219 

10 Healthy Y 6M:4F 25 ± 4.7 Intra-stride transitions in LDS between single and double support might be 

important for the prognosis of gait function in older persons and clinical 

groups at risk of developing gait impairments. 

Lockhart 

et al. 

200815 

13 Healthy & 

fall-prone 

O & Y Not reported HY:26.4 ± 

2.3; 

HO:71.3 ± 

MaxLyE for FE; HE and HY; 2.39 ± 0.32, 1.99 ± 0.08, 1.83 ± 0.19. Stability 

measures derived from nonlinear dynamics can be used to quantify the risk 

of falling. Further investigation into the use LDS as fall risk indicator. 
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6.5; FO: 

71.0 ± 3.0 

Miller et 

al. 200640 

6 Healthy Y Not reported 29 ± 7.4 Significant differences were found for maxLyE between the original and 

surrogate time series for both the Theiler algorithm a pseudo periodic 

surrogate algorithm. 

Reynard 

& Terrier 

201421 

100 Healthy O & Y 50M:50F 44 ± 14 A substantial difference exists between estimates from 35 and 70 strides, 

differences amounted to +40%, +6%, and +8%; for long-term, stride and 

step maxLyE. Finally, the ML direction tends to exhibit lower SEM and 

SDD. 

Reynard 

et al. 

201417 

123 Clinical – 

central 

nervous 

disorder & 

healthy  

Y 88M:55F H: 44 ± 14; 

C: 40 ± 9 LDS can differentiate between healthy and non-healthy walkers, and 

potential correlation between LDS and cadence. ML gait stability was 

reduced by 33% in the patient group compared to the control group.  

Russel & 

Haworth 

201441 

10 Healthy Y 6M:4F 21.1 ± 2.3  
LDS was most stable at the preferred stride frequency of walking and 

decreased with faster and slower frequencies. 

Son et al. 

200942 

40 Healthy Y 20M:20F M 24.1 ± 

3.1; F 22.5 ± 

3.2 

Significant differences were found in maxLyE values of the ankle. The 

results of this study were intended to act as normative values. 

Terrier, 

Luthi, & 

Dériaz 

201343 

25 Clinical – 

chronic foot 

and ankle 

injuries 

O 20M:5F 48 ± 16 
Most substantial improvement in LDS was along the ML direction. Foot 

orthotics had a significant effect of reducing pain and increasing LDS. 

Future studies should work towards making LDS a practical diagnostic tool. 

Terrier & 

Reynard 

201544 

100 Healthy O & Y 50M:50F 44.2 ± 14.1 LDS in the ML direction was significantly different between groups, 15% 

of the variance in ML was due to age.  Future longitudinal studies following 

individuals over many years should be conducted to confirm whether LDS 

is a valid method for early identification of falling. 

van 

Schooten 

et al. 

201345 

20 Healthy Y Not reported 28.5 ± 3.3 The within session reliability of λS are good (ICC >0.7). On an individual 

level, only substantial changes may be indicative of meaningful effects on 

LDS. Fixed delays and embedding dimensions for state space 

reconstruction yielded the best within- and between session test-retest 

reliability, as well as smallest SDD. 

Kang & 

Dingwell 

200616 

20 Healthy Not 

reported 

Not reported Not reported All divergence curves parameters were significantly greater during walking. 

None of the correlations between walking and standing mean divergence 

parameters were statistically significant, therefore LDS of standing did not 

predict that of walking. 



 
 

7 

 

Kang & 

Dingwell 

200946 

35 Healthy O & Y 24M:11F YA: 23.3 ± 

2.6 OA: 

72.1 ± 6.0 

Both λS and λL increased with speed, furthermore, higher values were 

observed for elderly subjects. Future research should investigate the role of 

neural noise in the brain and motor function of older adults. 

Nessler et 

al. 200947 

14 Healthy Y 9M:5F 23.33 ± 5.06 Significant differences were found for λL (4-10) exponents between solo 

and forced condition, no significant difference was found for the λS in either 

condition. 

Reynard 

& Terrier 

201548 

100 Healthy O & Y 50M:50F 44 ± 14 Participants did not exhibit any significant changes in trunk acceleration 

variability. Interestingly, PWSEC brought about higher divergence for λS 

but lower divergence components for λS.  
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Figure 1 - Overall progression of the experimental protocol. Single task refers to walking only with no smartphone use. The 

order of the tasks was pseudo-randomized for ‘Trial 1’, and subsequently repeated in ‘Trial 2’. 

 

Pre-processing of data  

To remove the effects of gait initiation and termination as well as to account for varying 

recording lengths, data were cut to 40 seconds per trial. To further ensure comparable trials, a 

uniform number of strides (N = 35), located in the midsection of the 40 seconds of the selected 

data, were selected for analysis. A single stride was defined as the time between subsequent 

heel strikes of the same limb, meaning every third CC acceleration peak denoted a single stride. 

Small measurement errors may exist in measured acceleration data as the measurement axes 

may not align with the horizontal-vertical coordinate system. By decomposing the acceleration 

signal into its static gravity and dynamic velocity component, it is possible to remove the 

confounding effects of both the gravity measurement and accelerometer orientation using 

simple trigonometric computations49, so, to account for placement of the sensor, data was 

converted accordingly. 

Local dynamic stability  

The study of LDS assesses the capabilities of a system to adapt to small perturbations, 

indicating the stability of the system. The use of Lyapunov method offers quantification of this 

stability/instability by means of a maximum Lyapunov exponent (maxLyE). Higher maxLyE 

values representing lower stability. Continuous gait analysis produces time-series data, 

describing the dynamics of the system over time. To fully investigate a given time series, it 

must first be fully unfolded or represented in the highest appropriate dimension, reflecting the 

full dynamics of the system in state-space. Reconstruction of this state space involves 

calculating the appropriate embedding dimension and time lag. Taken’s theorem proposes that 

a dynamic system can be portrayed by analysing a number of time ‘lagged’ copies of a single 

variable50. The appropriate number of dimensions for embedding was obtained by identifying 

false nearest neighbours, using global false nearest neighbour (GFNN) analysis, while the 

Excluded (n=12)
-incomplete data 

or pathologies

Participants 
assessed (n=22)

Included 
participants 

(n=10)

Trial 1

Single task

-normal

-fast

Texting

-normal

-fast

Talking

-normal

-fast

Trial 2

Single task

-normal

-fast

Texting

-normal

-fast

Talking

-normal

-fast
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appropriate time delay was established using the average mutual information (AMI) analysis. 

Based on the findings of van Schooten et al. (2013), a fixed time delay (average across all 

trials) and a fixed embedding dimension (average across all trials) were used to assess the 

maxLyE along each axis to enable within subjects and trials comparisons45. To assess whether 

nonlinear analysis techniques were appropriate for the measured data, a number of surrogate 

data sets were generated. For each trial 19 surrogate data sets, of identical mean and standard 

deviation as the original data set, were created and the maximum Lyapunov component for 

each calculated. The embedding dimension for each surrogate data set was chosen as the 

average embedding dimension of the corresponding measurement axis of the original data set. 

Subsequently, a rank-order-test was conducted to assess the null hypothesis. In this case, the 

null hypothesis was that the dynamics of the times series were the result of a linear, stochastic 

process. 

Gait variability   

Mean, standard deviation, and coefficient of variation of stride time were calculated for each 

trial. Stride time was defined as the time between subsequent heel strikes of the same limb. 

Additionally, the root-mean-square ratio (RMSratio) of the ML pelvic accelerations were 

calculated. Given the variation in walking speed required for the current study, a normalization 

method recently introduced was employed.51 

For each sample n, the 3D acceleration (x, y, z) vector norm was computed (Vecn) 

𝑉𝑒𝑐𝑛 = √𝑥𝑛2 + 𝑦𝑛2 + 𝑧𝑛2 

and then the RMS of the norm: 

𝑇𝑅𝑀𝑆 = √1 𝑁⁄ ∑(𝑉𝑒𝑐𝑛)2
𝑁

𝑛=1

 

Where TRMS is the RMS of the vector norm and Vecn the vector norm for each 3D acceleration. 

Once the procedure is repeated for the ML axis giving MLRMS, the RMSratio can be computed 

as MLRMS/TRMS, therefore as a proportion of the total acceleration variability. 

Statistical analysis  

A Kolmogorov-Smirnov test for normality was conducted on the analysed data. Non-normal 

distributions underwent log transformation and were subsequently assessed. The influences of 

walking speed (self-selected normal or fast speed), trial number, and task (single task, texting, 

or talking) on the LDS were assessed by means of a three-way analysis of variance (ANOVA). 

As such, the dependent variables were maxLyE in the corrected CC, ML, and AP directions. 

To assess the measures of variability, both RMSratio and stride time, paired t-tests were used 

comparing the average participant values under each condition. The Bonferroni method for 

post-hoc comparisons were applied to assess the effects of task using a significance level of p 

< 0.05. 

 



 
 

10 

 

Results 

Table 2 – The effects of smartphone use while walking; mean ± standard deviation of maximum Lyapunov exponents 

(maxLyE). Pelvic accelerations were measured along the cranial-caudal (CC), mediolateral (ML), and anteroposterior (AP) 

during each trial at a self-selected normal walking speed (SSW) and a self-selected fast walking speed (FWS). Walking 

variability was assessed by computing the RMSratio (Rr), the variability of stride time (ST), and coefficient of variation of 

stride time (CV). 

 
Walking only Walking & Texting Walking & Talking  

 
SSW FWS SSW FWS SSW FWS 

maxLyE

CC 

1.47 ± 0.51 1.31 ± 0.38 1.60 ± 0.61 1.41 ± 0.41 1.33 ± 0.22 1.28 ± 0.30 

maxLyE

ML 

1.72 ± 0.42 1.68 ± 0.42 1.99 ± 0.26* 1.94 ± 0.46* 1.87 ± 0.29 1.68 ± 0.29 

maxLyE

AP 

1.95 ± 0.52 2.07 ± 0.37 1.95 ± 0.37 2.09 ± 0.52 1.85 ± 0.39 2.00 ± 0.72 

Rr 0.11 ± 0.04 0.12 ± 0.04 0.11 ± 0.07 0.11 ± 0.04* 0.10 ± 0.04* 0.15 ± 0.10 

ST 1.02 ± 0.14 0.92 ± 0.06 1.02 ± 0.11 0.96 ± 0.09 1.00 ± 0.08 0.93 ± 0.07 

CV 0.13 ± 0.12 0.07 ± 0.05 0.11 ± 0.07 0.09 ± 0.07 0.08 ± 0.06 0.08 ± 0.06 

*significantly different to the corresponding ‘walking only’ condition 

 

Significant increases in maximum Lyapunov values were found in the ML direction (p<0.05), 

following post-hoc comparison, from the single task condition of walking to walking while 

texting on a smartphone. Furthermore, mean stride time significantly decreased with a change 

of speed from self-selected normal speed to self-selected fast speed (p<0.05). In addition, 

RMSratio decreased significantly from the single task condition to the walking while texting 

condition but only in the self-selected fast speed trials. A further significant decrease in 

RMSratio was observed from single task condition and self-selected normal walking speed 

while talking (p<0.05). 

Discussion 

The aim of this study was to investigate the effects of smartphone use during walking. In line 

with the hypotheses, decreased LDS in ML direction was seen, but only for a texting task and 

not a talking task. Regarding variability of walking, defined by root mean square ratio, standard 

deviation, and coefficient of variance of stride time, task had a significant effect on RMSratio 

for talking while walking at a normal speed, and texting while walking at a fast speed. Thus, 

in partial agreement with my hypotheses. In contradiction to the hypothesis, walking speed 

alone did not significantly affect LDS or variability. However, mean stride time did decrease 

significantly with increased walking speed. 

Local dynamic stability during texting and walking   

Lyapunov exponents provide the rate of convergence or divergence of neighbouring 

trajectories resulting from small perturbations.18 An increase in a positive maxLyE value 

indicates an increasing rate of convergence and thereby an inability of the system to cope with 

small perturbations, i.e. decreased stability.52 Interestingly, significant increases were only 

found when the participants were asked to walk while texting delineating that a dual-task like 

texting and walking alters the control of one of the most common activity of daily living. Aside 

from the recognized reductions in awareness for ones’ surroundings and failure to properly 
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address normal road safety conventions (i.e. assessing the risk of road-crossings), 2,4,5,53 texting 

while walking may also incur significant increases in the risk of falling by failing to interact 

with a changing environment.7 This was shown to be the case with young adults, for whom the 

consequences of falling may be a minor problem, however, the consequences augment with 

pathology and age.54  

  Moreover, in agreement with previous research, we observed increased instability along 

the ML axis when investigating LDS.17,21,31 In fact, previously when maxLyE were analysed 

across a wide range of age groups (20-69 years), only instability in the ML direction was 

reported to differ between groups and with increasing age.44 Furthermore, when comparing 

healthy and fall-prone elderly participants, ML gait stability (given by maxLyE) was reduced 

by 33% in the fall-prone group.17 These findings support particular attention to the 

investigation of LDS along the ML axis as an indicator of instability. 

 

Contrary to previous findings, we did not report significant change in maxLyE values with 

increasing speed.31,33 Reasons for this may lie in the methodological differences. In the current 

study, we opted for an ecologically valid environment. Participants were asked to perform over-

ground-walking as opposed to treadmill walking. While still a topic for debate, it has been 

proposed that treadmill walking may mask some of the intrinsic characteristics of gait.22-24 On 

the other hand, using a treadmill means that a much longer walking distance can be covered 

relatively easily, ensuring greater agreement with the theoretical basis of the implemented 

algorithm; another methodological difference between the studies. Furthermore, the speed of 

walking was largely chosen by the participants and so there were variations between 

participants (e.g. from 1.26m/s to 1.60m/s), in fact, the speed of walking depended not only on 

the participant’s physical characteristics but also on their interpretation of ‘walk at a 

fast/normal pace’. Finally, a large majority of the gait analysis using maxLyE have computed 

results using the Rosenstein algorithm.55 In the present study, the Wolf algorithm was used as 

it has been shown to have fewer constraints when dealing with shorter data lengths.34,50  

 

A few noteworthy aspects of the current protocol should be considered when interpreting the 

findings. For example, a minimum data length for gait analysis using the maxLyE of 150 strides 

has been proposed, whereas we use data of 35 strides length.20 However, as portrayed by the 

wide variation in data lengths present in the literature (from 30 seconds to 60 minutes), this 

minimum length may not be representative (See ‘Worksheet’ table2(a)). Furthermore, while 

the method of generating surrogates used in the current study maintained the mean and variance 

of the original signal, the inter-cycle dynamics of a pseudo-periodic system such as walking 

may not have been fully preserved. Future studies should attempt the pseudo-periodic surrogate 

generation method used by Small et al. (2001).51   

  Strengths and limitations exist in every experimental design as the design of the 

research protocol is dictated by the research question, in this case, the effects of smartphone 

use on walking. As such, the implemented protocol was designed to mimic the daily activity 

of smartphone use as closely as possible by giving a small amount of instructions to the 

participant, using over-ground walking in place of treadmill walking, and covering a distance 
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that was long enough to capture meaningful data but also of an appropriate length to remain 

ecologically valid (i.e. not too long as text messages are generally short). Furthermore, few 

studies had investigated the effects of smartphone use on the local dynamic stability of walking 

using Lyapunov exponents. 

Variability of gait during texting and walking  

A growing amount of experimental evidence points toward variability of gait providing critical 

insight into fall prediction, prevention, and gait stability.26 In fact, recent review findings 

suggest stride-to-stride variations may provide a key insight into motor control and play a role 

in distinguishing between young and old test participants,57,58 although this conclusion is not 

universal across experimental studies.22 In the current study, variability was defined as the root 

mean square ratio along the mediolateral axis, as well as the standard deviation and coefficients 

of variation of stride time. Significant decreases in mean stride time were observed when 

walking speed was increased from normal walking to fast walking. Interestingly, no significant 

effect task was observed or any significant difference in standard deviation or coefficients of 

variation of stride time.  

  Root mean square of acceleration signal has been used previously to gauge the 

dispersion of acceleration signal relative to zero, in place of standard deviation.59–62 However, 

this approach can be confounded by varying walking speeds, so recently a new method of 

comparing the ratio of RMS along an axis of interest to that of the total acceleration was 

introduced to solve this problem,51 which has subsequently been implemented in more recent 

research.44,48 In this study, significant decreases were found in RMSratio from walking while 

talking on a mobile to walking alone and in the fast walking speed condition, from walking 

while texting to walking alone. Since RMSratio may provide quantitative indices of gait 

abnormality when the ratio differs from that of a self-selected walking speed,34 changes in 

RMSratio may suggest an influence of a texting task in combination with increasing walking 

speed on the gait pattern. Although, this conclusion is difficult to definitively assert as the 

results were not significant across all trials. 

Technical perspectives  

Further research is required to validate the use and implications of maxLyE as an indicator of 

gait stability, although already it has shown some potential in distinguishing between healthy 

and patient groups, as well as, fallers and non-fallers.14,15,17,52,53 Recent developments in the 

field of concussion identification among athletes have led to interesting innovations, in 

particular those using a smartphone’s inbuilt accelerometer to quantify stability by means of 

postural control.54 Intra-class correlation coefficients indicated moderate to good reliability 

(0.21-0.57) of this method in comparison to the ‘gold standard’ of a stationary force plate. 

Given slightly improved accuracy, it is conceivable that this technique could be applied using 

a local dynamic stability threshold (given by a maxLyE), applicable to fall prediction, as part 

of rehabilitation protocols, or even as an indication of potentially hazardous smartphone use 

like texting while walking. An application using the built-in inertial measurement units of 

smartphone could provide feedback when instability is detected, perhaps alerting the user of 

their fall risk, their progress in rehabilitation, or the risks involved with their current activity. 



   

13 
 

Conclusions 

In summary, the findings suggest that texting while walking reduced local dynamic stability 

and variability in the ML direction in young, healthy adults. Further research is required to 

establish reliable threshold values or ranges that can be used and applied in clinical, sporting, 

and everyday settings. The development of LDS as a valid tool for gait assessment should be 

attempted across all age ranges to further our understanding of the underlying dynamics of gait. 

References 

1.  Hamacher D, Hamacher D, Törpel A, Krowicki M, Herold F, Schega L. The reliability 

of local dynamic stability in walking while texting and performing an arithmetical 

problem. Gait Posture. 2016;44:200-203.  

2.  Banducci SE, Ward N, Gaspar JG, et al. The Effects of cell phone and text message 

conversations on simulated street crossing. Hum Factors. 2016;58(1):150-162.  

3.  Agostini V, Lo Fermo F, Massazza G, Knaflitz M. Does texting while walking really 

affect gait in young adults? J Neuroeng Rehabil. 2015;12(1):86. 

 4.  Lim J, Amado A, Sheehan L, Van Emmerik REA. Dual task interference during 

walking: The effects of texting on situational awareness and gait stability. Gait 

Posture. 2015;42(4):466-471. 

5.  Licence S, Smith R, McGuigan MP, Earnest CP. Gait pattern alterations during 

walking, texting and walking and texting during cognitively distractive tasks while 

negotiating common pedestrian obstacles. PLoS One. 2015;10(7):1-11.  

6.  Plummer P, Grewal G, Najafi B, Ballard A. Instructions and skill level influence 

reliability of dual-task performance in young adults. Gait Posture. 2015;41(4):964-967.  

7.  Plummer P, Apple S, Dowd C, Keith E. Texting and walking: Effect of environmental 

setting and task prioritization on dual-task interference in healthy young adults. Gait 

Posture. 2015;41(1):46-51. 

8.  Parr ND, Hass CJ, Tillman, MD. Cellular phone texting impairs gait in able-bodied 

young adults. Journal of Applied Biomechanics. 2014;20:685-688. 

9.  Lamberg EM, Muratori LM. Cell phones change the way we walk. Gait Posture. 

2012;35(4):688-690.  

10.  Crowley P, Madeleine PM, Vuillerme N. Effects of mobile phone use during walking: 

A review. Crit Rev Phys Rehabil Med. 2016;28(1-2):101-119. 

11.  Krasovsky T, Weiss PL, Kizony R. A narrative review of texting as a visually-

dependent cognitive-motor secondary task during locomotion. Gait Posture. 

2017;52:354-362.  

12.  Brown SW. Attentional resources in timing: Interference effects in concurrent 

temporal and nontemporal working memory tasks. Percept Psychophys. 

1997;59(7):1118-1140.  

13.  Brown ID, Tickner AH, Simmonds DC. Interference between concurrent tasks of 



   

14 
 

driving and telephoning. J Appl Psychol. 1969;53(5):419-424. 

14.  Buzzi UH, Stergiou N, Kurz MJ, Hageman PA, Heidel J. Nonlinear dynamics 

indicates aging affects variability during gait. Clin Biomech. 2003;18(5):435-443. 

15.  Lockhart TE, Liu J. Differentiating fall-prone and healthy adults using local dynamic 

stability. Ergonomics. 2008;51(12):1860-1872. 

16.  Hyun GK, Dingwell JB. A direct comparison of local dynamic stability during 

unperturbed standing and walking. Exp Brain Res. 2006;172(1):35-48.  

17.  Reynard F, Vuadens P, Deriaz O, Terrier P. Could local dynamic stability serve as an 

early predictor of falls in patients with moderate neurological gait disorders? A 

reliability and comparison study in healthy individuals and in patients with paresis of 

the lower extremities. PLoS One. 2014;9(6): e100550 

18.  Stergiou N, Decker LM. Human movement variability, nonlinear dynamics, and 

pathology: Is there a connection? Hum Mov Sci. 2011;30(5):869-888. 

19.  Ihlen EAF, Goihl T, Wik PB, Sletvold O, Helbostad J, Vereijken B. Phase-dependent 

changes in local dynamic stability of human gait. J Biomech. 2012;45(13):2208-2214.  

20.  Bruijn SM, van Dieën JH, Meijer OG, Beek PJ. Statistical precision and sensitivity of 

measures of dynamic gait stability. J Neurosci Methods. 2009;178(2):327-333.  

21.  Reynard F, Terrier P. Local dynamic stability of treadmill walking: Intrasession and 

week-to-week repeatability. J Biomech. 2014;47(1):74-80.  

22.  Dingwell JB, Cusumano JP, Cavanagh PR, Sternad D. Local dynamic stability versus 

kinematic variability of continuous overground and treadmill walking. J Biomech Eng. 

2001;123(1):27. 

23.  Batlkham B, Oyunaa C, Odongua N. A kinematic comparison of overground and 

treadmill walking. Value Heal. 2014;17(7):A774.  

24.  Watt JR, Franz JR, Jackson K, Dicharry J, Riley PO, Kerrigan DC. A three-

dimensional kinematic and kinetic comparison of overground and treadmill walking in 

healthy elderly subjects. Clin Biomech. 2010;25(5):444-449.  

25.  van Emmerik REA, van Wegen EEH. On the functional aspects of variability in 

postural control. Exerc Sport Sci Rev. 2002;30(4):177-183. 

26.  Bruijn SM, Meijer OG, Beek PJ, van Dieen JH. Assessing the stability of human 

locomotion: a review of current measures. J R Soc Interface. 2013;10(83):20120999-

23 

27.  Madeleine P, Mathiassen SE, Arendt-Nielsen L. Changes in the degree of motor 

variability associated with experimental and chronic neck-shoulder pain during a 

standardised repetitive arm movement. Exp Brain Res. 2008;185(4):689-698. 

28.  Madeleine P, Voigt M, Mathiassen SE. The size of cycle-to-cycle variability in 

biomechanical exposure among butchers performing a standardised cutting task. 

Ergonomics. 2008;51(7):1078-1095. 



   

15 
 

29.  Lipsitz L a. Dynamics of stability: the physiologic basis of functional health and 

frailty. J Gerontol A Biol Sci Med Sci. 2002;57(3):B115-B125.  

30.  Vaillancourt DE, Newell KM. Aging and the time and frequency structure of force 

output variability. J Appl Physiol. 2003;94(3):903-912.  

31.  Bruijn SM, van Dieën JH, Meijer OG, Beek PJ. Is slow walking more stable? J 

Biomech. 2009;42(10):1506-1512.  

32.  Bruijn SM, Kate WRT Ten, Faber GS, Meijer OG, Beek PJ, Dieën JH Van. Estimating 

dynamic gait stability using data from non-aligned inertial sensors. Ann Biomed Eng. 

2010;38(8):2588-2593. 

33.  Bruijn SM, Meijer OG, Beek PJ, van Dieen JH. The effects of arm swing on human 

gait stability. J Exp Biol. 2010;213(23):3945-3952. 

34.  Cignetti F, Decker LM, Stergiou N. Sensitivity of the wolf’s and rosenstein’s 

algorithms to evaluate local dynamic stability from small gait data sets. Ann Biomed 

Eng. 2012;40(5):1122-1130.  

35.  England SA, Granata KP. The influence of gait speed on local dynamic stability of 

walking. Gait Posture. 2007;25(2):172-178. 

36.  Federolf P, Tecante K, Nigg B. A holistic approach to study the temporal variability in 

gait. J Biomech. 2012;45(7):1127-1132.  

37.  Hamacher D, Hamacher D, Schega L. Does visual augmented feedback reduce local 

dynamic stability while walking? Gait Posture. 2015;42(4):415-418.  

38.  Hoogkamer W, Bruijn SM, Sunaert S, Swinnen SP, Van Calenbergh F, Duysens J. 

Toward new sensitive measures to evaluate gait stability in focal cerebellar lesion 

patients. Gait Posture. 2015;41(2):592-596.  

39.  Howcroft J, Lemaire ED, Kofman J, Kendell C. Understanding dynamic stability from 

pelvis accelerometer data and the relationship to balance and mobility in transtibial 

amputees. Gait Posture. 2015;41(3):808-812.  

40.  Miller DJ, Stergiou N, Kurz MJ. An improved surrogate method for detecting the 

presence of chaos in gait. J Biomech. 2006;39(15):2873-2876.  

41.  Russell DM, Haworth JL. Walking at the preferred stride frequency maximizes local 

dynamic stability of knee motion. J Biomech. 2014;47(1):102-108.  

42.  Son K, Park J, Park S. Variability analysis of lower extremity joint kinematics during 

walking in healthy young adults. Med Eng Phys. 2009;31(7):784-792.  

43.  Terrier P, Luthi F, Dériaz O. Do orthopaedic shoes improve local dynamic stability of 

gait? An observational study in patients with chronic foot and ankle injuries. BMC 

Musculoskelet Disord. 2013;14(1):94. 

44.  Terrier P, Reynard F. Effect of age on the variability and stability of gait: A cross-

sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait 

Posture. 2015;41(2015):170-174. 



   

16 
 

45.  van Schooten KS, Rispens SM, Pijnappels M, Daffertshofer A, van Dieen JH. 

Assessing gait stability: The influence of state space reconstruction on inter- and intra-

day reliability of local dynamic stability during over-ground walking. J Biomech. 

2013;46(1):137-141.  

46.  Kang HG, Dingwell JB. Dynamics and stability of muscle activations during walking 

in healthy young and older adults. J Biomech. 2009;42(14):2231-2237.  

47.  Nessler JA, De Leone CJ, Gilliland S. Nonlinear time series analysis of knee and ankle 

kinematics during side by side treadmill walking. Chaos. 2009;19(2).  

48.  Reynard F, Terrier P. Role of visual input in the control of dynamic balance: 

variability and instability of gait in treadmill walking while blindfolded. Exp Brain 

Res. 2015;233(4):1031-1040.  

49.  Moe-Nielssen R, Moe-Nilssen R, Moe-Nielssen R. A new method for evaluating 

motor control in gait under real-life environmental conditions. Part 1: Gait analysis. 

Clin Biomech (Bristol, Avon). 1998;13(4-5):320-327  

50.  Takens F. Detecting strange attractors in turbulence. Rand D., Young LS (eds) 

Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics, 

vol 898. Springer, Berlin, Heidelberg. 

51.  Sekine M, Tamura T, Yoshida M, et al. A gait abnormality measure based on root 

mean square of trunk acceleration. J Neuroeng Rehabil. 2013;10(1):118.  

52.  Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a 

time series. Phys D Nonlinear Phenom. 1985;16(3):285-317.  

53.  Schwebel DC, Stavrinos D, Byington KW, Davis T, O'Neal EE, De Jong D. 

Distraction and pedestrian safety: How talking on the phone, texting, and listening to 

music impact crossing the street. Accid Anal Prev. 2012;45:266-271. 

54.  Voermans NC, Snijders  a H, Schoon Y, Bloem BR. Why old people fall (and how to 

stop them). Pract Neurol. 2007;7(3):158-171.  

55.  Rosenstein MT, Collins JJ, De Luca CJ. A practical method for calculating largest 

Lyapunov exponents from small data sets. Phys D. 1993;65:117-134.  

56.  Small M, Yu D, Harrison RG. Surrogate test for pseudoperiodic time series data. Phys 

Rev Lett. 2001;87(18):1881011-4 

57.  Hamacher D, Singh NB, Van Dieen JH, Heller MO, Taylor WR. Kinematic measures 

for assessing gait stability in elderly individuals: a systematic review. J R Soc 

Interface. 2011;8(65):1682-1698.  

58.  Earhart GM. Dynamic control of posture across locomotor tasks. Mov Disord. 

2013;28(11):1501-1508.  

59.  Henriksen M, Lund H, Moe-Nilssen R, Bliddal H, Danneskiod-Samsøe B. Test-retest 

reliability of trunk accelerometric gait analysis. Gait Posture. 2004;19(3):288-297.  

60.  Latt MD, Menz HB, Fung VS, Lord SR. Walking speed, cadence and step length are 

selected to optimize the stability of head and pelvis accelerations. Exp Brain Res. 



   

17 
 

2008;184(2):201-209.  

61.  Menz HB, Lord SR, Fitzpatrick RC. Acceleration patterns of the head and pelvis when 

walking on level and irregular surfaces. Gait Posture. 2003;18(1):35-46.  

62.  Senden R, Savelberg HHCM, Grimm B, Heyligers IC, Meijer K. Accelerometry-based 

gait analysis, an additional objective approach to screen subjects at risk for falling. 

Gait Posture. 2012;36(2):296-300.  

63.  Burghart M, Craig J, Radel J, Huisinga J. Reliability and validity of a mobile device 

application for use in sports-related concussion balance assessment. Curr Res 

Concussion. 2017;4(212):1-6.  

 

  



   

18 
 

Supplementary Worksheet: Theory & 

Workflow 

 

 

 

 

 

The purpose of this worksheet is to supplement the manuscript ‘Texting while walking 

decreases local dynamic stability and variability’. In the first chapter, some of the key concepts 

underlying nonlinear analysis and their application to human gait analysis will be introduced. 

The second chapter will contain a review of the current literature conducted with the aim of 

establishing the current ‘best-practice’ in the application of nonlinear analysis to human gait. 

It contains the operational definitions of the most frequently encountered nonlinear analysis 

techniques used in the reviewed papers, the findings of the reviewing process, and a brief 

discussion on those findings. 
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Chapter 1 – Core concepts of nonlinear analysis 

In the following chapter the principal concepts underlying dynamic systems, time series 

reconstruction, and time series analysis. 

1.1 Dynamic systems and chaos  

Linear analysis is conventionally used to understand the stability of a system to small 

perturbations, assuming constant equilibrium and interpreting the ‘mean’ as the desired 

behaviour.1 Conversely, dynamical analysis is used to describe ‘systems of elements’ that alter 

with time, aiming to understand the complexity of their inherent variability. These analysis 

methods analyse the patterns present in data over time.2 These dynamic systems may be 

deterministic or stochastic. Deterministic systems are those which can only have one possible 

outcome, provided the current conditions are understood, whereas a stochastic system has 

outcomes that will vary according to probabilistic processes.1 A sub-category of dynamical 

systems contains nonlinear systems, and yet a further sub-category of nonlinear systems 

contains chaotic systems. There are three fundamental criteria for a chaotic system. Firstly, 

small changes in the initial conditions of the system will have a large effect on the outcome of 

that system. Secondly, the same state is never repeated within the system and, thirdly, the 

system must be clearly bounded.3 Chaotic systems are an important consideration for nonlinear 

analysis as while all dynamic systems are not necessarily chaotic, all chaotic systems are 

nonlinear, 4 therefore the analysis of a chaotic system will require nonlinear analysis methods. 

1.2 Self-organisation  

When conducting nonlinear analysis, particularly when the analysis concerns biological 

systems, self-organization is another important concept. It provides an answer to the 

progression of a nonlinear system from one state of complexity to another, thereby allowing 

better understanding of these systems as they become increasingly complex. Another approach 

to viewing self-organization is as ‘the organisation of complexity from simplicity’,1 where the 

behaviour of two elements of a system depend on the behaviour of a third element. The 

relevance of self-organisation lies in that it appears to rely on the nonlinear interactions 

between the elements of the system and can provide important understanding of a complex 

system’s behaviour over time.1 

1.3 Time series analysis  

Once the system is understood, it can begin to be described. To fully describe a systems 

behaviour over time, an appropriate time series analysis is necessary. Simply put, a time series 

is a sequential list of numbers that measures a process over time.5 Nonlinear time series analysis 

differs from linear analysis in that it assumes that observations are dependent on the history of 

the system, meaning that the value of the current point will depend strongly on the values of 

the previous points.1  

  Several considerations must be made in conducting the analysis of a times series, from 

length of data to the processing techniques. A ‘rule-of-thumb’ for assessing the length of the 

time series required for the analysis is that the length must be ten to the power of the number 

of dimensions of the system. However, while this may be optimal from a mathematical 

perspective, data sets of such length may not have high ecological validity, as is the case for an 

investigation into the effects of everyday smartphone use.1,6 
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A further consideration for time-series analysis is the sampling frequency used during data 

collection as this will have a large impact on the quality of the analysed data. While following 

the recommendations of the Nyquist Theory will provide a valid signal, a further rule-of-thumb 

for the nonlinear analysis of gait, is a sampling frequency of approximately five times the 

highest frequency of the signal.1 Yet another consideration is filtering of the raw data. Selecting 

and applying the appropriate filter is standard procedure for conducting linear analysis, but 

when conducting nonlinear analysis, filtering may in fact remove some of the integral dynamics 

of the system as well as noise frequencies.7,8 However, this should be judged on a case by case 

basis as the presence of intrinsic and extrinsic influencing factors may be higher for some data 

sets than others. Subsequently, once these factors have been accounted for, the construction of 

a state space presents the next challenge. 

1.4 State space reconstruction  

To thoroughly analyse a time series, its complete structure must be considered. This can be 

achieved through state space reconstruction. State space reconstruction allows us to view the 

true dimensionality of the time series in a higher dimensional space. To transform the simple 

time series into a higher dimension it must be embedded into the state space. Embedding refers 

to the process of fitting the time series into the state space. The embedding dimension is the 

exact number of dimensions required to achieve full representation of the time series data.1 

  Finding the correct embedding dimension is achieved through the identification of false 

nearest neighbours. A false nearest neighbour is a data point that appears to fit in one position 

when viewed in a lower dimension but, upon analysis in a higher dimension, this proves not to 

be the case. In other words, in a lower dimension this data point may appear to lie on a line 

with surrounding data points, but once analysed more thoroughly, it does not lie in line. These 

points are often called ‘false neighbours’ and can be identified by measurement of the straight-

line distances between data points, ensuring that this distance is below a predefined ratio 

threshold.9 An iterative process of identifying false nearest neighbours continues while moving 

to higher dimensions until the percentage of false nearest neighbours drops to zero. The 

dimension at which this occurs can be considered as the embedding dimension. 

 

Reconstruction of a state space also requires the correct selection of a time lag. A time lag or 

delay ensures that an attractor is fully unfolded. An attractor is a set of points which are 

invariant under dynamics, and towards which neighbouring states asymptotically approach 

over the course of the movement.1 Too small a time lag and the attractor is not fully unfolded 

and the structure is not correctly represented. Too large a time lag, and the state points will be 

spread throughout the state space. To ensure the choice of the correct time lag, the average 

mutual information technique can be used. This technique calculates the dependency or 

correlation among each data point and takes the average over the time series. This process is 

repeated for increasing time lags. The values of at each time lag are plotted against the mutual 

information, and the time lag at the first minimum point is selected as the appropriate time lag 

for reconstruction. The sequence and importance of these processes is reflected in the review 

below. 
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In summary, the application of nonlinear analysis method to a biological time series requires 

the observation of several critical processes to ensure that the time series data is accurately 

prepared before the analysis takes place. It requires an understanding of chaotic systems and 

the concept of self-organisation but perhaps most importantly, the correct selection of time 

delay, embedding dimension, and nonlinear analysis method in accordance to the core research 

question, must be ensured. Choosing the embedding dimension can be done using the ‘Global 

False Nearest Neighbour tool and likewise, the time lag can be selected using the ‘First 

Minimum of the Average of Mutual Information tool.  

Chapter 2: Gait analysis using nonlinear techniques 

In this chapter, the findings and subsequent discussion on the literature review are presented. 

The key words of variability OR gait OR walking AND nonlinear dynamics were used to 

compile a list of the relevant literature, which were subsequently filtered and analysed. First, 

the definitions of nonlinear techniques encountered over the course of the review are detailed 

– beginning with the most frequently encountered and moving to the least frequently 

encountered. In the second section of this chapter, are the review findings and discussion. 

 

2.1 Definitions of nonlinear methods  

Beginning with local dynamic stability, measured as the short-term (0 to 1 stride or 0 to 0.5 of 

a stride), and long-term (4 to 10 strides) maximum Lyapunov exponent (maxLyE) was reported 

in 32 of the 37 studies identified (Table 2a). Overall it was defined consistently throughout, 

with small wording variations between studies in the extent of the definition. In summary, LyE 

can be defined as measures of the rate at which nearby trajectories from a time series in state 

space diverge over time.10 The use of LyE is applicable to pseudo-periodic systems. 11–13In a 

broader sense, local dynamic stability was defined as the sensitivity of a dynamic system to 

infinitesimally small perturbations,14,15 or more recently defined as how the neuromuscular 

system instantaneously responds to small perturbations.16  

Orbital stability, defined as the maximum Floquet multiplier (FM), was reported in five 

experimental studies (Table 3). Several assumptions were emphasized concerning Floquet 

theory. Firstly, Floquet theory assumes strict system periodicity with limit cycle behaviour, 

thereby assuming that the motor dynamics of gait are controlled by a central pattern generator, 

functioning as a limit cycle.13,17,18 FM portray the rate of expansion or reduction of 

perturbations to gait over subsequent cycle, or in other words, to what extent small 

perturbations grow or diminish over consecutive gait cycles.13,18–20 

Three studies reported entropy outcome measures, approximate,21 multiscale,12,22 and Shannon 

entropy.22 Approximate entropy provides an indication of the predictability throughout a data 

set.12 It computes the probability that two sequences similar form observations will remain 

close on the next incremental comparison m+1.21,23 Multi-scale entropy, performs a similar 

task but along multiple scales, six or more time-series, to identify irregularity in a time 

series.12,22  
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Two studies analysed the ratio of odd to even harmonics, as the portion of the acceleration 

signal that is in phase with the participants stride frequency24 and provides an indication of how 

smoothly the trunk is controlled during walking, therefore, an indication of balance and 

coordination.12 

Long range correlations were reported in just one study.25 Specifically, the fluctuations in stride 

interval were investigated. Long range correlations assess gait under the assumption that 

variations are not random, and the subsequent variations depend on those that come before.20 

These correlations over a longer range can be identified by means of detrended fluctuation 

analysis, which quantifies their presence over a given time series.10,20  

Finally, kernel based principal component analysis was implemented in one experimental 

study. Kernel principal component analysis is an attempt to maximally decorrelate data by 

dividing a data space into a linear combination of small bases consisting of orthogonal axes, 

with the aim of uncovering the nonlinear structure of the data.26 

On inspection of the reviewed  gait literature, it is evident that some nonlinear analysis 

techniques have gained larger popularity. Predominantly, maximum Lyapunov exponents are 

used, either solely or in parallel with other nonlinear analysis techniques. 

2.2 Review of the current literature  

The aim of the following review is to identify the current ‘best practice’ in nonlinear gait 

analysis. The review will identify the most frequently reported techniques, methodological 

variations, and findings. 

A web search was conducted using the PubMed Database. The key words variability OR gait 

OR walking AND nonlinear dynamics, yielded 2032 results. Following an additional filtering 

to include only human studies, the search produced 1389 results. Following a manual filtering 

based on titles, and subsequently abstracts, 51 papers were selected. All studies involved 

walking stability or postural control, analysed using nonlinear analysis methods or a 

combination of linear and nonlinear. Thirty-six experimental or observational studies and 8 

reviews were identified. 
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Figure 1 - Literature search and selection process.. 

 

 

2.3 Experimental and observational studies 

Thirty-six studies fell under this category, two of which were described as observational 

studies11,25 Ten studies compared older adults to young adults,15,19,26–33 and a further four 

studies examined older adults only.11,22,24,34 Seven studies involved non-healthy or clinical 

populations11,15,24,35–38 and sample sizes across all 36 studies ranged from 6 to 100. 

Interestingly, all reviewed studies were published between 2001 and 2017. (Table 1). 

Tables 2a and 2b contain the methodological specifics of each study. As is evident from review 

of the tables, methodologies varied considerably, the number of trials per study varied from 1 

to 10, as did the trial lengths (7.32 to 500m) and trial durations (30sec to 20mins). Furthermore, 

the number of strides analysed ranged from 20 to 300 strides, with 11 studies reporting stride 

numbers of greater than 100 strides (100-300 strides) and 11 studies reporting stride numbers 

less than 100 strides (20-75 strides). Twenty-four of the 36 studies used a treadmill protocol, 
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while the remainder used over-ground protocols. Variations were also present in sensor 

placement, with 16 studies collecting at the trunk or pelvis, 12 collecting at the lower limb only 

(greater trochanter and down), 5 had a combination of lower-limb and pelvis or trunk, and 4 

collected whole-body kinematic data (Table 2b). Trunk sensor locations were at the levels of 

thoracic vertebrae T6 to T8 or in some cases, at the base of the sternum29,39 or 5cm below the 

sternal notch.31,33 The majority of pelvic sensors were placed at the level of lumbar vertebrae 

L3-L5 (Table 2b), with one study reporting placement at the level of the sacrum,24 and yet 

another study locating the sensor near the anterior superior iliac spine.15 Additionally, one study 

reported placement of sensors on the shanks, 15 centimetres above the malleoli.22 

Several data collection methods were used, the most frequent being inertial based sensors and 

optic camera systems, 14 studies using either method respectively (Table 2b). Other techniques 

involved light emitting diode active marker systems, foot switches, electro-goniometer, 

pressure sensitive walking path, and pressure insoles (Table 2b). Of note, pressure insoles were 

used in combination with inertial sensors.34 

There exist several similarities and variations in the methods implemented in the reconstruction 

of the state space. Despite using similar methods to determine embedding dimensions and time 

delays, global false nearest neighbour and average of mutual information, embedding 

dimensions varied from 5 to 3014,40 and time delays ranged from 10 to 25 samples.41,42 

Predominantly, Rosenstein’s algorithm was used to estimate Lyapunov exponents, however, 

two studies used Wolf’s algorithm43 instead.21,27 A recent study investigated the merits of both 

algorithms when investigating small data sets and found that both algorithms either 

overestimated (Wolf algorithm) or underestimated (Rosenstein)44 the maximum Lyapunov 

value.28 Despite this, and contrary to the trend of previous and current experimental work, the 

Wolf algorithm was recommended over the Rosenstein algorithm, when considering smaller 

data sets.28 The correct procedure of data treatment was also unclear from review of the current 

literature, with 12 studies reporting data filtering, 6 studies not reporting the filtering process 

and 11 reporting using unfiltered data (Table 2a)  

One study, aiming to assess the influence of state space reconstruction on the inter- and intra-

day reliability of local dynamic stability, concluded that fixed embedding dimensions and fixed 

time delays provide the best within- and between-session test-retest reliability as well as the 

lowest smallest detectable difference.16 In this case, best results were achieved using; a seven-

dimension state space with a fixed time delay of six samples, or a nine-dimensional state space 

(analysing all three directions) with a fixed time delay of 24 samples.16 

2.4 Effect of age  

Investigations into local dynamic stability arise from the societal and individual effects of 

falling related injuries, particularly with a global population that is soon predicted to have a 

greater number of elderly than young individuals.45 An understanding of fall risk and an ability 

to identify an individual with a high risk of falling are beneficial tools for clinicians, in a field 

where prevention is surely the best medicine. The findings of research on local dynamic 

stability suggest that nonlinear analysis of posture and gait may be promising as indicators of 

fall risk, although a strong correlation is yet to be established (See table 3). 
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 Of the reviewed studies, 14 involved older participants (60 years or older), either exclusively 

or in comparison with younger participants. Among the findings of these investigations there 

are a few indicators of changes to gait dynamics because of age. For example, when compared 

to healthy, young controls, older adults were shown to have greater LyE values, and 

significantly greater coefficient of variation (CV) and standard deviations (SD) at the knee and 

ankle joints. 27Subsequent studies have reported similar findings, when young and old, healthy 

adults were compared with a group of older participants who have a history of falling.15 In this 

case, the fall-prone group also exhibited greater LyE values, indicating rapidly diverging 

dynamics, and therefore greater instability.15 Furthermore, LyE were capable of distinguishing 

between fallers and non-fallers, although in a small sample.  

So, what accounts for these changes in gait dynamics? Well, when the muscle activation (EMG 

amplitudes) of older adults were compared to those of younger adults, the older group displayed 

significantly greater EMG amplitudes. Findings that were in parallel with increased LyE short-

term and long-term components.19 This suggests that with aging, there is a decrease in the ease 

with which muscle activation patterns can respond to small perturbations from one stride to the 

next. Nonlinear analysis provides an indication of this continuous muscle activation, indicative 

of dynamic stability, that linear analysis cannot.19 Additionally, larger cross-sectional studies 

have found nonlinear measures such as, mediolateral dynamic stability, portray differences 

between younger and older adults whereas, linear measures did not show change with age.31 

Of note, are the similar findings of increased LyE values among clinical participants, who’s 

pathologies have been identified to specifically inhibit gait such as cerebellar lesions, or lower 

limb paresis.36,37 It suggests that not only can nonlinear analysis distinguish between clinical 

or older populations and their younger counterparts but that LyE may be a reliable indicator of 

instability that, based on further research, can lead to fall prevention. 

 

2.5 Effect of speed and task  

Just as age seems to be distinguishable through nonlinear analysis, walking conditions can also 

be identified. The effect of increasing or decreasing walking speed on local dynamic stability 

has been reported in several studies covered in the current review.17,19,33,40–42,46–48 The finding 

of linear increases in LyE with walking speed would suggest that stability increases linearly 

with walking speed,41,49 however, more recent studies have found contrary findings.17,42 In this 

case, it appears that LyE short-term and long-term are differently affected by walking speed, 

short-term decreases with speed while long-term increases with speed.17 A possible reason 

provided by the authors was the difference between the use of an equal number of strides at 

each speed, compared to an equal length of time at each speed.17 Overall, the relationship 

between LyE and speed may not be so straightforward, and can strongly depend on the 

directional axis of choice. For example, along the anteroposterior axis, short-term LyE 

decreased with increasing speed, while long-term LyE increased.46 While along the 

mediolateral axis LyE short-term has an inverted ‘U’ shape relationship with increasing speed, 

while long-term LyE decreases. Finally, along the vertical axis, both LyE components increase 

with speed.46 
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Aside for varying walking speed conditions, directional, sensory, rhythmical, and cognitive 

conditions were also investigated in the reviewed studies.21,33,34,47,50 Compared to forward 

walking, backwards walking significantly increased maximum LyE values of the trunk in the 

anteroposterior and vertical directions.47 Blindfolded walking was also investigated, however 

no destabilizing effects on gait were reported.33 Of note in this case, the participants walked on 

a treadmill and in a controlled environment. Treadmill walking has been shown to produce 

significant decreases in short-term and long-term LyE compared to over-ground walking, 

indicating treadmill walking may be more stable. Therefore, visual occlusion may have a 

different influence in over-ground walking.39 By designing methodologies using an over-

ground walking protocol, the ecological validity of the results are improved. For example, if 

investigating the effects of smartphone use on the daily activity of walking, it would make 

sense to observe the behaviour in as natural an environment as possible to maximize the 

applicability of the findings. 

With regards to variation of walking parameters such as stride time or frequency, enforced 

walking rhythm by means of metronomic beats did not influence the variation of stride 

frequency21 but when conducted on a treadmill, walking alongside a partner treadmill (no 

metronome) significant increases in variability were observed for step length, knee, and ankle 

angles.50 Only one study implemented a cognitive task, reporting centre of force path among 

their outcome measures.34 A verbal fluency task – saying words beginning with specific 

prescribed letters A, F and S – reduced cadence, mean, minimum and maximum centre of force 

path, in combination with increasing stride time and stance time.34 The addition of cognitive 

or physical tasks while walking has strong links to detrimental changes in spatiotemporal gait 

parameters, which may be further examined through nonlinear analysis methods.51  

2.6 Discussion 

The most commonly implemented nonlinear analysis measures encountered in the current 

review were Lyapunov exponents (LyE), outcome measure variability, and orbital stability 

based on Floquet theory. Their use is supported by some recent and less recent, reviews on the 

topic. When assessed from a validity perspective, both the short-term Lyapunov (LyE ST) 

exponents and measures of variability were determined to have the strongest support when 

investigating between group differences, followed by long-term Lyapunov exponents (LyE 

LT) and Floquet multipliers (FM).20 While both LyE LT and FM have good construct validity, 

predictive validity remains weakly supported.20 When looking at the ability to distinguish 

between groups, variability – in the form of SD of step width, stride time and CV of stride time 

– have been shown to be capable of distinguishing between older adults and younger adults.52 

The same has been demonstrated for LyE and FM, however with less consistency for the 

latter.13,53 Variability as a functional aspect of gait has been acknowledged in the literature, 

with ‘optimal’ variability proposed to be a hallmark of healthy, functional gait.10,54 The best 

clinical approach to analysing gait stability may be through combining variability analysis with 

that of nonlinear analysis, using both LyE ST and FM, covering both the aspects of periodicity 

and non-periodicity present in human gait. 55 

With regards to designing a methodology, it seems that over-ground walking yields more 

results more reflective of natural walking compared to walking on a treadmill, as the latter may 
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significantly reduce the kinematic variability and potentially ‘mask’ the actual effect of task on 

locomotor control.39 Additionally, a fixed number of strides should be analysed, particularly 

when manipulations of gait are in question, with the appropriate number of strides for accurate 

analysis thought to be in the region of 150 to 300.40 Furthermore, to reduce Type II error 

repeated trials should be attempted.40 However, the goal of the investigation plays a large role 

in the number of strides chosen and, while a stride number above a certain threshold may fulfil 

the mathematical models, it may not characterise an ecologically valid execution of the task. 

  Concerning state space reconstruction, a fixed time delay and embedding dimension 

are recommended.54 The choice of the Rosenstein or Wolf algorithm depends on the length of 

the data set being analysed. A study conducted on the applicability of both algorithms 

concluded that for longer data sets, Rosenstein’s algorithm, is more appropriate whereas for 

shorter data sets, Wolf’s algorithm is recommended.28 

In summary, walking speed may influence local dynamic stability but the effects of secondary 

tasks while walking remain unclear. Variability, as defined by standard deviation or 

coefficients of variation of stride time or stride width, of walking and perhaps some of the 

inherent characteristics of walking are reduced or masked by walking on a treadmill, so over-

ground protocols are required if it improves the ecological validity. Variability of walking in 

the elderly may be a tool to distinguish the likelihood of falling, when used in combination 

with nonlinear analysis techniques such as the maximum Lyapunov exponent. The most recent 

literature calls for further investigation examining the potential of LDS as a tool for fall risk 

prediction,11,15,31 for the expansion of research from treadmill walking into over-ground 

walking using inertial motion units.24,34,47 Finally, there is a need for further examination of the 

effects on local dynamic stability when walking while performing multiple tasks at once. 
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Table 2 - Participant demographics, sample size, and healthy status from the reviewed literature investigating gait using nonlinear methodologies. YA = Young adults; OA = 

Older adults; M = Male; F = Female 

 
Number of 

participants 

Health status Age profile Gender  Age (years) Body mass (kg) Body height (m) 

  
(Healthy, clinical, 

fallers) 

(Young, older, 

young & older) 

(Female / 

male) 

Mean (SD) Mean (SD) Mean (SD) 

Bruijn et al. 200946 15 Healthy Young 4M:11F 23.6 ± 2.9 66.7 ± 9.0 1.74 ± 0.08 

Bruijn et al. 200940 9 Healthy Young 9M:0F 25.5 ± 3.6 77.9 ± 7.7 1.85 ± 0.08 

Bruijn et al. 201017 9 Healthy Not reported 9M:0F Not reported Not reported Not reported 

Bruijn et al. 201042 11 Healthy Young 11M:0F 27.3 ± 3.3 75.5 ± 9.0 1.8 ± 0.06 

Buzzi et al. 200327 20 Healthy Older & young 0M:20F YA: 25.1 ± 5.3; OA: 

74.6 ± 2.55 

YA 63.9 ± 6.5; OA: 

64.1 ± 9.69 

YA: 1.70 ± 0.05; OA: 

1.59 ± 0.05 

Cignetti, Decker & 

Stergiou 201228 

14 Healthy Older & young 9M:5F YA: 25 ± 4.86; OA: 

70.28 ± 5.08 

YA: 69.9 ± 11.5; OA: 

85.6 ± 13.5 

YA: 1.76 ± 0.07; OA: 

1.73 ± 0.08 

Dingwell et al. 

200139 

10 Healthy Young 5M:5F 27.10 ± 3.25 64.9 ± 12.5 1.71 ± 0.09 

England & Granata 

200741 

19 Healthy Young 6M:13F 22.5 ± 2.8 65.7 ± 12.7 1.7 ± 0.1 

Federolf, Tecante 

& Nigg 201256 

20 Healthy Young 14M:6F 24 ± 2 71 ± 11  1.77 ± 0.04 

Hamacher, 

Hamacher & 

Schega 201535 

10 Clinical- abnormal 

gait due to joint pain 

Older 0M:10F 61 ± 4 Not reported Not reported 

Hoogkamer et al. 

201536 

32 Clinical – cerebellar 

patients & healthy 

Young 8M:24F H: 24.4 ± 7.3; C: 24.4 

± 3.5 

Not reported Not reported 

Howcroft et al. 

201434 

11 Healthy Older Not 

reported 

76.2 ± 6.5 71.3 ± 13.7 1.67 ± 0.09 

Howcroft et al. 

201524 

11 Clinical – transtibial 

amputees  

Older Not 

reported 

61.8 ± 16.1 85.8 ± 14.4 Not reported 

Ihlen et al. 201214 10 Healthy Young 6M:4F 25 ± 4.7 74.5 ± 9.5 1.77 ± 0.08 

Lockhart et al. 

200815 

13 Healthy & 4 fall-

prone 

Older & young Not 

reported 

HY 26.4 ± 2.3; HO 

71.3 ± 6.5; FO 71.0 ± 

3.0 

HY 71 ± 13.6; HO 

71.2 ± 7.3; FO 88.6 ± 

10.4 

HY 1.77 ± 0.07; HO 

1.65 ± 0.09; FO 1.72 ± 

0.01 

Miller et al. 20065 6 Healthy Young Not 

reported 

29 ± 7.4 67.7 ± 6.3 1.7 ± 0.05 
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Reynard & Terrier 

201429 

100 Healthy Older & young 50M:50F 44 ±14 70 ± 14 

 

1.72 ± 0.07 

Reynard et al. 

201437 

123 Clinical – central 

nervous disorder & 

healthy  

Young 88M:55F 44 ± 14; 40 ± 9 H: 71 ± 15; C: 69 ± 13 H: 1.70 ± 0.09; C:1.72 ± 

0.08 

Riva et al. 2014 51 Healthy Young Not 

reported 

23 ± 3 Not reported 1.72 ± 0.01 

Russel & Haworth 

201421 

10 Healthy Young 6M:4F 21.1 ± 2.3  75.8 ± 14.3 1.75 ±0.09 

Segal et al. 200830 19 Healthy Older & young 14M:5F 44 ± 14 80 ± 17 1.70 ± 0.1 

Son et al. 200957 40 Healthy Young 20M:20F M 24.1 ± 3.1; F 22.5 ± 

3.2 

M 73.2 ± 9; F 52.7 ± 

4.7 

M 1.76 ± 0.05 F 1.61 ± 

0.05 

Terrier et al. 201311 25 Clinical – chronic foot 

and ankle injuries 

Older 20M:5F 48 ± 16 82 ± 15 1.73 ± 0.07 

Terrier & Reynard 

201531 

100 Healthy Older & young 50M:50F 44.2 ± 14.1 70.2 ± 14.6 1.72 ± 0.07 

van Schooten et al. 

201316 

20 Healthy Young Not 

reported 

28.5 ± 3.3 Not reported Not reported 

Wu et al. 201547 17 Healthy Young 17M:0F 24.9 ± 1.43 61.4 ± 6.1 1.70 ± 0.04 

Beauchet et al. 

200948 

29 Healthy Young 15M:14F 28.3 ± 6.2 Not reported Not reported 

Hausdorff et al. 

200125 

10 Healthy Not reported Not 

reported 

Not reported Not reported Not reported 

Kang & Dingwell 

200638 

20 Healthy Not reported Not 

reported 

Not reported Not reported Not reported 

Kang & Dingwell 

200919 

35 Healthy Older & young 24M:11F YA: 23.3 ± 2.6 OA: 

72.1 ± 6.0 

YA: 71.1 ± 9.86 

OA:73.2 ± 12.3 

YA: 1.73 ± 0.09 OA: 

1.70 ± 0.1 

Kurz & Stergiou 

200758 

19 Healthy Young 5M:14F 25.9 ± 5 67.87 ± 8.13 1.68 ± 0.06 

Nessler et al. 

200950 

14 Healthy Young 9M:5F 23.3 ± 5.06 73.7 ± 19.76 1.74 ± 0.19 

Bizovaka et 

al.201722 

139 Healthy Older Not 

reported 

F:70.9 NF: 70.5 F:73.08 NF:73.99 F:1.60 NF:1.63 

Stout et al. 201632 20 Healthy Older & young YA: 

2M:8F; 

OA4M;6F 

YA:25.2 ± 1.5, OA 

59.6 ± 10.7 

Not reported Not reported 
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Reynard & Terrier 

201533 

100 Healthy Older & young 50M:50F 44 ± 14   70.2 ± 14.6 1.72 ± 0.07 

Wu et al. 200726 48 Healthy Older & young Not 

reported 

YA;25.1 ± 5.3 OA; 

74.6 ± 2.55   

Not reported YA:1.73 ± 0.01 OA: 

1.69 ± 0.09 

Dingwell & Marin 

200649 

11 Healthy Young Not 

reported 

6M:6F M: 29 ± 5.06; F: 24.4 

± 4.28 

M: 81.14 ± 13.3; 

F:63.96 ± 12.15 
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Table 3(a) - Methodological variation including walking conditions, trial conditions, whether filtering was applied to raw data, and whether the studies involved Lyapunov 

exponents among the reviewed studies implementing nonlinear methods 

 
Treadmill use 

(Yes/No) 

Number of trials Trial length in meters Duration in minutes  Filtered/Unfiltered data Lyapunov method used (Yes/No) 

Bruijn et al. 200946 Y  5 Not applicable 3min  Unfiltered Y  

Bruijn et al. 200940 Y  3 Not applicable 30min Unfiltered Y  

Bruijn et al. 201017 Y  3 Not applicable 5min  Unfiltered Y  

Bruijn et al. 201042 Y  6 Not applicable 5min Not reported Y  

Buzzi et al. 200327 Y 1 Not applicable 30 (gait cycles) Unfiltered Y  

Cignetti, Decker & 

Stergiou 201228 

Y  1 Not applicable 1-3min 
Unfiltered Y  

Dingwell et al. 

200139 

Y  2 200  10min 
Not reported Y 

England & Granata 

200741 

Y 4 Not applicable 30 (strides) 
Filtered  Y 

Federolf, Tecante & 

Nigg 201256 

Y 2 Not applicable 1min 40 
Unfiltered Y  

Hamacher, 

Hamacher & 

Schega 201535 

N 1 20 5min 

Not reported Y  

Hoogkamer et al. 

201536 

Y 1 6 3min 
Not reported Y 

Howcroft et al. 

201434 

N 2 7.62 Not applicable 
Filtered  Y 

Howcroft et al. 

201524 

N 10 10 & 8 Not reported 
Filtered Y  

Ihlen et al. 201214 Y 3 Not applicable 10min Filtered  Y 

Lockhart et al. 

200815 

Y 1 Not applicable 1min 
Filtered  Y  

Miller et al. 20065 Y  1 Not applicable 2min Unfiltered Y 

Reynard & Terrier 

201429 

Y 1 Not applicable 5min 
Filtered  Y 

Reynard et al. 

201437 

N 2 70 0min 30 
Filtered  Y  

Riva et al. 2014 N 1 30 6min Unfiltered Y  
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Russel & Haworth 

201421 

N 3 45.3 Not applicable 
Unfiltered Y  

Segal et al. 200830 Y 3 Not applicable 2-5min Unfiltered Y 

Son et al. 200957 Y 1 Not applicable 1min 30 Unfiltered Y 

Terrier et al. 201311 N 4 70 0min 30 Unfiltered Y  

Terrier & Reynard 

201531 

Y 1 Not applicable 5min 
Filtered  Y  

van Schooten et al. 

201316 

N 4 500 Not reported 
Not reported Y  

Wu et al. 201547 Y 3 Not applicable 3min Not reported Y  

Beauchet et al. 

200948 

N 24 7.32 Not reported 
Unfiltered N 

Hausdorff et al. 

200125 

N 2 130 9mins & 60min 
Not reported N 

Kang & Dingwell 

200638 

Y 6 Not applicable 5min 
Unfiltered Y  

Kang & Dingwell 

200919 

Y 5 Not applicable 5min 
Filtered Y 

Kurz & Stergiou 

200758 

Y 1 Not applicable 2min 
Unfiltered Y 

Nessler et al. 200950 Y 3 Not applicable 2min 30 to 5min Filtered  Y 

Bizovaka et 

al.201722 

N 1 25 5min 
Unfiltered N 

Stout et al. 201632 Y 3 Not applicable 15min Not reported N 

Reynard & Terrier 

201533 

Y 3 Not applicable 6min 
Filtered Y 

Wu et al. 200726 N 3 10 Not reported Filtered  N 

Dingwell & Marin 

200649 

Y 15 Not applicable 0min 30sec 
Filtered  Y  

Y = Yes; N = No 
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Table 2(b) - Methodological variations regarding the experimental constraints placed on participants, the testing apparatus used, and the placement of worn sensors or 

markers. 

 
Sensor 

position 

Walking condition Testing device(s) used 

Bruijn et 

al. 200946 

Trunk Participants walked at different speeds (from 0.62 to 1.72 m/s; at increments of 

0.22m/s) on a treadmill 

Active LED system (Optotrak Northern Digitial Inc, 

Waterloo, Ontario) 

Bruijn et 

al. 200940 

Trunk Participants walked on a treadmill under three different conditions (0.83, 1.38 

m/s) and walking at 1.38m/s while attempting the Stroop test 

Active LED system (Optotrak Northern Digital Inc, 

Waterloo, Ontario) 

Bruijn et 

al. 201017 

Trunk Participants walked on a treadmill at 3 different speeds (0.56, 1.12, and 1.68 

m/s) 

Infrared LED system (Optotrak Northern Digital Inc, 

Waterloo, Ontario); IMU (PI-node, Philips, The 

Netherlands) 

Bruijn et 

al. 201042 

Trunk  Participants walked at three different speeds (0.56, 1.12 and 1.68 m/s) both with 

normal arm swing and arm swing restricted 

Active LED system (Optotrak Northern Digitial Inc, 

Waterloo, Ontario) 2x3 camera array 

Buzzi et al. 

200327 

Lower 

limb 

Participants walked on a treadmill at a self-selected pace, which was determined 

over a warm up of 8mins 

Peak Performance Technologies Motus 4.0 system (Peak 

performance technologies inc, Englewood, CO, USA). 

Reflective markers, video taping 

Cignetti, 

Decker & 

Stergiou 

201228 

Lower 

limb 

Participants walked on a treadmill with a safety harness (LiteGait, Mobility 

Research, LLC, Tempe, AZ), at their preferred walking speed. 

EVART (Motion Analysis Corp, Santa Rosa CA) 

Dingwell et 

al. 200139 

Trunk & 

lower 

limb 

Participants wore standardized walking shoes, completed a 10-minute walking 

acclimatization on the treadmill. Overground walking trials were performed first, 

each participant walked along a 200m indoor walking track 

DataLogger (Onset Computer, Inc, Pocasset, MA); Electro 

goniometers (Penny & Giles, Inc, Santa Monica, CA); 3D 

accelerometer (Kistler Instrument Corp., Amherst, NY) 

England & 

Granata 

200741 

Lower 

limb 

Participants walked barefoot on a treadmill at 20%, 40%, 60%, and 80% of their 

PWS Froude velocity. 

6 Camera (Vicon, Oxford Metrics) 240 HZ 

Federolf, 

Tecante & 

Nigg 

201256 

Whole 

body 

Participants walked on a treadmill at a self-selected speed, on one occasion 

wearing a control sports type shoe (Ekiden 100, Kalenji, Decathlon SA., France) 

and in the other wearing an unstable shoe (Mwalk, Masai Barefoot Technology 

MBT, Switzerland) 

8 Camer motion capture (Motion Analysis Corporation, 

Santa Rosa CA, USA); Eva Real-Time Software (EvaRT, 

Motion Analysis Corporation, Santa Rosa CA, USA) 

Hamacher, 

Hamacher 

& Schega 

201535 

Trunk & 

pelvis 

Participants walked at their PWS for five minutes up and down a level hallway 

of (20m), of which 16(m) of walking were analysed.  

MVN (Xsens); Head mounted display, Nikon Media Port 

UP300x); MovenStudio (v2.6, Xsens). 

Hoogkamer 

et al. 

201536 

Pelvis Participants walked over ground at PWS over a distance of 6m followed by 3min 

of treadmill walking at 1.0m/s 

Vicon Nexus, Oxford Metrics, Oxford, UK)100s/sec; 

Custom built instrumented treadmill, Forcelink, Culemborg, 

the Netherlands. 
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Howcroft 

et al. 

201434 

Pelvis & 

lower 

limb 

Participants completed a 7.62m walk with and without cognitive load. The 

cognitive load was a verbal fluency task requiring the participants to say words 

starting with A, F, or S in a randomized order 

Pressure insoles (F-scan 3000E, Tekscan); 3D accelerometer 

(Gulf Coast X16-1C)120Hz 

Howcroft 

et al. 

201524 

Pelvis Participants performed two walking scenarios; level-ground walking on a 10m 

walkway and simulated uneven ground walking on an 8m walkway covered by 

foam mats 

Xsens accelerometer 100Hz; Xbus wireless unit (used to 

minimize skin movement) 

Ihlen et al. 

201214 

Lower 

limb 

Participants performed three trials, following a familiarisation, at their preferred 

walking speed, -20%, and +20% of that preferred walking speed. 

6 MX13 cameras 100Hz (Vicon Motion Systems, 

Oxford,UK) 

Lockhart et 

al. 200815 

Pelvis & 

lower 

limb 

Participants walked on a treadmill at PWS. Dual axial accelerometer (ADXL 203; Analog Devices, 

Norwood, MA, USA) 125Hz; 6 camera Proflex system 

(Qualysis Medical AB, Gothenburg, Sweden; 120Hz) 

Miller et al. 

20065 

Lower 

limb 

Participants walked at PWS for 2mins on a treadmill Peak Motus optical capture system (Peak Performance, 

Centennial, CO) 

Reynard & 

Terrier 

201429 

Trunk Participants walked (barefoot) on a level treadmill, at their PWS. This procedure 

was repeated between 10 and 14 days later. 

3D accelerometer (Physiolog System, BioAGM, 

Switzerland) 200Hz 

Reynard et 

al. 201437 

Pelvis Participants walked, barefoot, at a PWS down a 70m long hallway for a period 

of at least 30 secs 

Physiolog system (GaitUp, Lausanne, Switzerland) 200Hz 

Riva et al. 

2014 

Trunk Participants walked back and forth for 6mins along a 30m straight pathway, 

turning by 180 degrees at the end of each pathway 

IMU FreeSense, Sensorize, s.r.l 200Hz and 100Hz 

Russel & 

Haworth 

201421 

Lower 

limb 

Participants walked along a straight walkway, collecting sagittal plane knee 

motion, between two timing gaits. Participants walked at a prescribed frequency, 

dictated by a metronome attached at their waist. 

Electrogoniometers (SG 150, Biometric Ltd, Cwmfelinfach, 

United Kingdom) 100 Hz; Brower Timing Systems, Draper, 

UT, Model Speed Trap II); Metronome (DM505, Seiko 

Sports Life Co., Tokyo, Japan) 

Segal et al. 

200830 

Whole 

body 

Participants walked around a 1m radius circle at a constant walking speed, they 

then walked on a treadmill at PWS and at the same speed as the circle walking 

12 camera Vicon 612 motion capture system (Lake Forest, 

CA) 250Hz; Vicon Plug-In-Gait model 

Son et al. 

200957 

Whole 

body 

Participants walked at a PWS on a treadmill for 90s 8 camera motion capture (DCR-VX2100, Sony, Japan) 

Terrier et 

al. 201311 

Trunk Participants walked at PWS along a 70m corridor in both their own normal 

shoes, and orthopaedic shoes 

3D accelerometer (Physiolog System, BioAGM, 

Switzerland) 200Hz; VAS visual analog scale 

Terrier & 

Reynard 

201531 

Trunk Participants walked barefoot on a treadmill at 20%, 40%, 60%, and 80% of their 

Froude velocity. 

3D accelerometer (Physiolog System, BioAGM, 

Switzerkand) 200Hz 

van 

Schooten et 

al. 201316 

Pelvis Participants walked back and forth over a straight outdoors footpath at PWS 

Measurements were done on two non-consecutive days, 2-30 weeks apart, 

resulting in two sessions of two walking trials 

3D accelerometer (DynaPort MiniMod, McRobertsm Den 

Haag, The Netherlands) 100Hz 
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Wu et al. 

201547 

Trunk & 

lower 

limb 

Participants walked backward at PWS, forward walking at the same speed as 

BW, and FW at PWS 

10 camera Vicon T40 3D Motion Capture (100Hz) 

Beauchet et 

al. 200948 

Lower 

limb 

Participants walked across a pressure sensitive electronic surface of 7.32*0.61m, 

at 80,70,60,50,40,30,20, and 10 percent of PWS. Verbal instruction was given to 

reduce speed by 10% before each trial. Participants had a 2m walk-up to the 

walkway 

GAITRite Gold, CIR systems, PA, USA (80Hz) 

Hausdorff 

et al. 

200125 

Lower 

limb 

Participants walked along a running track for 9 mins, and for 1 hour. In the latter 

case, participants walked at their usual slow and fast pace. 

Ultra-thin force sensitive switches (not reported) 

Kang & 

Dingwell 

200638 

Trunk Participants stood on a force plate or walked on a treadmill. Visual input was 

controlled by means of a blue screen placed in front of the participants. A 

harness was used to prevent falls 

6 Camera (Vicon, Oxford Metrics) 60Hz 

Kang & 

Dingwell 

200919 

Trunk Participants walked on a treadmill at PWS and increments of PWS (0.8-1.2 x 

PWS) 

8 camera Vicon 612 (Oxford Metrics, UK) 

Kurz & 

Stergiou 

200758 

Lower 

limb 

A horizontal actuator applied a forward horizontal force to the participant’s 

centre of mass via a cable spring system. Participants walked on the treadmill at 

a self-selected pace (1.01 (0.2) m/s), while a force was applied equal to 0%, 

3%,6% and 9% of the participant's bodyweight. 

4 Camera (Motion Analysis, Santa Rosa, California); 

Piezoelectric load cell (PCB Piezoelectronics Inc, Depew, 

New York) 

Nessler et 

al. 200950 

Lower 

limb 

Participants walked on a treadmill at (4.02km/h) under three conditions. Firstly, 

they walked by themselves at PWS. Secondly, they walked side-by-side with 

another participant on an adjacent treadmill. Finally, participants were instructed 

to purposely synchronize their walking 

6 Camera (Vicon MX3+) 120Hz 

Bizovaka 

et al.201722 

Trunk & 

Lower 

limb 

Participants were divided into fallers and non-fallers by means of a self-

reporting fall incidence. They then completed a Tinetti balance assessment, and 

walked over an indoor walkway.  

3D accelerometers (Trigno wireless system, Delsys Inc, 

Natick MA USA) 296.3Hz 

Stout et al. 

201632 

Lower 

limb 

Participants walked on a treadmill for each condition. During the free walking 

trial, PWS was determined and used for subsequent trials 

8 Camera Qualysis motion capture (Gothenburg, Sweden) 

200Hz; Visual 3D (C-Motion, Germantown, MD) 

Reynard & 

Terrier 

201533 

Trunk Participants walked barefoot on a level treadmill wearing a safety harness. Three 

conditions, 1) walking at PWS eyes open, 2) PWS eyes closed, and 3) walking 

with eyes open at the walking speed selected for EC walking 

Physiolog system (GaitUp, Lausanne, Switzerland) 200Hz 

Wu et al. 

200726 

Whole 

body  

Participants walked, barefoot, along a 10m laboratory floor at PWS Optotrak 3020 Motion analysis (Northern Digital Inc, 

Waterloo, Canada) 

Dingwell 

& Marin 

200649 

Trunk Participants then walked a 60,80,100,120 & 140% of PWS 6 camera Vicon 612 infrared motion analysis system 

(Oxford Metrics, Oxford, UK) 

 PWS = Preferred walking speed; BW = Backward walking; FW = Forward walking 
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Table 4 -The findings of the reviewed research investigating gait using nonlinear methods among their outcome measures. λS refers to the short-term Lyapunov exponent; λL refers 

to the long-term Lyapunov exponent. LDS refers to local dynamic stability; OG refers to over-ground walking; TM refers to treadmill walking; UG refers to uneven ground; 

SDD refers to standard deviation of the difference; SEM refers to standard error of the mean; ICC refers to intra-class correlations. 

 Findings 

 
Bruijn et al. 

200946 
Slow walking speed is not necessarily more stable than fast walking speed. Walking speed had effects on short-term (λS) and 

long-term (λL) Lyapunov exponents. In the anteroposterior (AP) direction λS decreased as speed increased, while λL increased 

for speeds up to 1.5m/s. For the ML, λS showed an inverted U-shape pattern, while λL decreased with increasing speed. Both 

increased markedly in the vertical direction with increasing speed. Additionally, higher λS values corresponded with higher 

variability. Therefore, walking dynamics are more accurately represented when analysed along each plane. 
Bruijn et al. 

200940 
The ideal number of strides for investigating a complete Lyapunov series is greater than 150 strides but this is dictated by what 

specific aspect of gait is being investigated. Walking speed appeared to have a significant effect on stability even using short 

data sets. A fixed number of strides should be used. 
Bruijn et al. 

201017 
Short-term (λS), long-term (λL) Lyapunov values, and maximum Floquet multiplier (Fmax) can be reliably measured by inertial 

motion units. Further studies are required to investigated local dynamic stability (LDS) in real-life situations. Additionally, 

walking speed had a significant main effect on λS and λL, producing decreased λS and increased λL values with increasing 

walking speed. Correlation coefficients of 0.87,0.98 & 0.66 for were observed for λS, λL &Fmax respectively. 
Bruijn et al. 

201042 
Lower values were observed for short-term (λS) with increasing walking speed. On the other hand, long-term (λL) showed 

higher values with higher walking speeds. Stride time (secs) decreased from ~ 1.8 to 1.2 and 1.0 at increasing speeds from 

0.56, 1.12 & 1.68 m/s respectively. There were also significant reductions in stride-time variability (s) decreasing from 0.08 to 

0.02 and 0.01 with increasing speed 0.56,1.12 and 1.68 respectively. Arm swing has no effect on local dynamic stability (LDS) 

in steady state gait but may be more appropriate for reacting to falls or large perturbations. Therefore, further investigations 

are required to investigate the effects perturbations in multiple directions as well as the effects of arm swing on recovery. 
Buzzi et al. 

200327 
Significantly smaller coefficients of variation (CV) and standard deviations (SD) were found between young and old for all 

parameters except for hip vertical displacement. Portrayed by higher Lyapunov values, the fluctuation in the measured 

parameters are deterministic rather than random indicating degradation in LDS with age. Elderly subjects showed decreased 

ability to adapt to stride to stride variations. Future studies need to investigate the sensitivity and specificity of nonlinear 

measures. 
Cignetti, 

Decker & 

Stergiou 

201228 

Maximum Lyapunov was closer to the expected value when the attractor is unfolded and when a larger number of data points 

are considered. Wolf’s algorithm and Rosenstein’s algorithm overestimated and underestimated the maximum Lyapunov 

respectively. However, the Wolf algorithm was more sensitive to the differences in local dynamic stability (LDS) between 

groups from small gait data sets. For small data sets use Wolf’s algorithm, for larger set consider Rosenstein’s 
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Dingwell et 

al. 200139 
Mean standard deviation of anteroposterior accelerations of the trunk were significantly greater for over-ground walking (OG) 

than treadmill walking (TM). Standard deviations were significantly greater for OG in lower limbs, thus TM walking 

significantly reduced kinematic variability. Trajectory divergence was significantly reduced for TM with significant reductions 

for λS and λL Lyapunov, thus more locally stable movements. Measures of stride-to-stride variability were poor indicators of 

local dynamic stability (LDS). In cases where differences in locomotor control are of interest, TM walking may mask some of 

the actual effects. 

 
England & 

Granata 

200741 

Variability in stride duration was observed despite walking at a constant velocity. Based on Lyapunov exponents, stability 

appears to increase linearly with speed. Stride time was significantly longer at 20% Froude velocity (1.57 ± 0.06) than 40% 

(1.12 ± 0.02), 60% (0.94 ± 0.01) and 80% (0.79 ± 0.02). The mean value for maximum Lyapunov exponents was 1.08 ± 0.35 

mm/s at the ankle, 1.40 ± 0.37 mm/s at the knee and 1.27 ± 0.34 mm/s at the hip. The maximum Lyapunov exponent was 

significantly less at the ankle than the knee, or hip. The value at the hip was also significantly less than at the knee. Dynamic 

stability of walking is influenced by walking velocity with different contributions from ankle, knee, and hip joints. For future 

studies, a full set of Lyapunov exponents should be investigated, analysing multi-joint interactions to characterize dynamic 

stability of locomotion. 
Federolf, 

Tecante & 

Nigg 201256 

For all subjects, principal components represented the same type of movement in both test shoe conditions. There was 

significant difference between walking in normal shoe and unstable shoe, therefore, the combination of principal component 

analysis (PCA) decomposition and nonlinear analysis could identify differences in temporal variability characteristics between 

the two conditions. The combination of PCA and Lyapunov exponents could distinguish between stable and unstable walking 
Hamacher, 

Hamacher & 

Schega 201535 

A decrease in the maximum Lyapunov value of pelvis; (1.47 ± 0.21) without visual feedback (WOF) to (1.88 ± 0.12) with visual 

feedback (WF), and trunk (1.43 ± 0.18) WOF and (1.64 ± 0.12) WF velocity trajectories while subjects were walking with visual 

augmented feedback. Investigation walking skills in challenging, controlled walking environments and further investigation 

into the extent of increased fall risk provoked by visual feedback exceeds a possible increase in fall risk induced by a 

conventional gait-retraining intervention. 
Hoogkamer 

et al. 201536 
Maximum Lyapunov was higher in the patient group (1.72 ± 0.16) compared to (1.58 ± 0.14) healthy, as was step width(m) 

(0.21 ± 0.03) patient to (0.19 ± 0.02) healthy. Lowest gait stability was correlated with patients with the largest vermal lesions, 

while mildly ataxic patients showed similar variability to healthy participants their gait stability was impaired. Maximum 

Lyapunov values may be more sensitive to gait deficits than variability, future studies should aim to gain more insight into the 

step widening and compensation characteristics of cerebellar patients. 
Howcroft et 

al. 201434 
Minimum, mean, and median centre of force (COF) stance velocity all significantly decreased during dual-task walking (DT). 

Minimum COF velocity decreased by 18.77%, mean COF stance velocity decreased 7.83% and median COF stance velocity 

decreased 5.89%. Cadence significantly decreased (4.93%), while stride time (4.85%), stance time (6.78%), and swing time 



   

39 
 

(2.27%) all increased during DT.  The implemented devices could identify differences in gait between ST and DT walking in 

older adults. Further investigation of DT interference using IMU to assess fall risk. 
Howcroft et 

al. 201524 
7 of the 26 measured parameters showed significant differences from level ground walking (LG) to uneven ground walking 

(UG). Accelerations (m/sec^2): Vertical max decreased from LG (4.75 ± 1.56) to UG (1.88 ± 4.88); vertical range reflected this 

with a decrease from LG (7.82 ± 1.89) to UG (6.48 ± 1.77). Temporal parameters of stride time (ST) and cadence (CAD) 

increased and decreased respectively (ST (s): 1.17 ± 0.065) LG to (1.37 ± 0.14) UG; CAD (steps/min) (1.42 ± 0.35) LG to (1.31 

± 0.22) UG. FFT (%) AP increased from LG (37.61 ± 9.56) to UG (56.16 ± 8.01) as did vertical LG (26.39 ± 6.52) to UG (42.17 

± 9.77). Finally, Harmonic Ratio increased for mediolateral (ML) from LG (0.29 ± 0.07) to UG (0.75 ± 0.14) Pelvis acceleration-

derived parameters can differentiate between LG and UG walking in TTA with temporal, vertical acceleration and fast Fourier 

transform (FFT) first quartiles having the greatest distinguishability. Expand research in relation to pelvis accelerometer 

derived output and fall risk. 
Ihlen et al. 

201214 
Intra-stride transitions between convergence and divergence of state space trajectories were related to shifts between single and 

double support - these provide a time dependent Lyapunov exponent, giving the instantaneous state space divergences within 

a stride cycle. Intra-stride transitions in local dynamic stability (LDS) between single and double support might be important 

for the prognosis of gait function in older persons and clinical groups at risk of developing gait impairments. 
Lockhart et 

al. 200815 
Average divergence of the fall-prone elderly group (FO) during initial step occurred much faster than that of healthy young 

adults (HY) and healthy older adults (HO). Group significantly influenced lye, 20% and 31% higher in the FO group than HO 

and HY groups respectively. Higher maximum Lyapunov values indicate more rapidly diverging dynamics and therefore, less 

stability. Furthermore, FO had a significantly shorter SL (45% to 52% shorter for HO and HY respectively. Also, significantly 

slower walking speed.  Maximum Lyapunov exponents for FO; Ho and HY; 2.39 (0.32), 1.99 (0.08), 1.83 (0.19). Stability 

measures derived from nonlinear dynamics can be used to quantify the risk of falling.  Further investigation into the use of 

local dynamic stability (LDS) as a fall investigator 
Miller et al. 

20065 
Significant differences were found for both maximum Lyapunov and approximate entropy (ApEn) values between the original 

and surrogate time series for both the Theiler algorithm a pseudo periodic surrogate algorithm. 
Reynard & 

Terrier 

201429 

A substantial difference exists between estimates from 35 and 70 strides, differences amounted to +40%, +6%, and +8%; for 

long-term, stride and step Lyapunov exponents. For 35 strides, significant difference between long-term and short-term local 

dynamic stability (ICC0.17-0.20; ICC0.71-0.82) for λL and λS respectively. Finally, the mediolateral direction tends to exhibit 

lower standard error of the mean and standard difference of the deviations 
Reynard et 

al. 201437 
Local dynamic stability (LDS) can differentiate between healthy and non-healthy walkers, and potential correlation between 

LDS and cadence. LDS over one step is more reliable than one stride (ICC, 0.86 vs 0.82; SEM, 20% vs 27%). Larger variability 

was observed in the patient group, as was a slower cadence (-13%; CV 11%) compared to controls (CV 6%). Mediolateral gait 

stability was reduced by 33% in the patient group compared to the control group. There also appears to be a positive association 
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between cadence and LDS in healthy controls that may be lacking in the patient group. The reliability of LDS seems sufficient 

to assess small differences between groups however longer walking tests are required to assess changes on an individual level.  
Riva et al. 

2014 
Harmonic ratio decreased along anteroposterior and vertical directions with directional change. None of the other measures 

were affected by sampling frequency or directional change. 
Russel & 

Haworth 

201421 

The coefficient of variation (CV) for stride frequency did not differ between conditions, however peak knee flexion CV was 

significantly influenced by change in frequency.  LDS was most stable at the preferred stride frequency of walking and 

decreased with faster and slower frequencies. 
Segal et al. 

200830 
Hip, right knee, and ankle maximum Lyapunov exponent values all varied significantly from straight line walking to turning, 

indicating increased instability at these locations while turning. Down-sampling by 1%,5% and 10% had no effect on outcome 

measures.  The results demonstrate higher rates of kinematic separation during turning compared to straight-line walking, for 

the hip, right knee, and ankle joint trajectories, suggestive of decreased LDS for turning. 
Son et al. 

200957 
No statistically different differences between males and females for left hip and right knee. Significant differences were found 

in LyE values of the ankle.  The results of this study were intended to act as normative values. 
Terrier et al. 

201311 
Most patients exhibited higher stability (i.e. lower maximum Lyapunov value) with orthopaedic shoes (19 for mediolateral 

(ML), 18 for vertical (V), and 17 for anteroposterior (AP). LDS was significantly improved by orthopaedic shoes along three 

axes, ranging from 7%AP; 10%ML. Step frequency did no differ between conditions.  Significant reductions in visual analogue 

scale scores were evident with the orthopaedic shoes decreasing (29%).  Most substantial improvement in LDS was along the 

ML direction. Foot orthotics had a significant effect of reducing pain and increasing LDS. Future studies should work towards 

making LDS a practical diagnostic tool. 
Terrier & 

Reynard 

201531 

No significant effect of age was found for anthropometrics or spatiotemporal characteristics. Dynamic stability measures were 

equal among age categories for AP and V, LDS in the ML direction was significantly different between groups, 15% of the 

variance in ML was due to age.  Future longitudinal studies following individuals over many years should be conducted to 

confirm whether LDS is a valid method for early identification of falling. 
van Schooten 

et al. 201316 
No significant differences were found in LDS between sessions and trials. Mean short-term LyE values ranged from 0.64 to 

1.55. Within sessions ICCs ranged from 0.74 to 0.92, between sessions ICC ranged from 0.38 to 0.63. The standard deviation 

of the distance (SDD) of the mean LyE was 8% to 46%. Best SDD were obtained for the full 9D state space (12% within; 20% 

between) and method 3) (9.5% within; 20% between). The within session reliability of short term LyE are good (ICC >0.7) 

However between session reliability is lower, indicating that LDS is dependent on the state space reconstruction, but is reliable 

enough for between group differences. On an individual level, only substantial changes may be indicative of meaningful effects 

on LDS as the SDD range was between 17-46%. To overcome this problem, an average over multiple days of testing would be 

required. Fixed delays and embedding dimensions for state space reconstruction yielded the best within- and between session 

test-retest reliability, as well as smallest SDD 
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Wu et al. 

201547 
Backwards walking (BW) had a significantly slower walking speed (0.476 (0.048) m/s) compared to forward walking (FW) 

(0.72 ± 0.14 m/s); Vertical acceleration in BW showed significantly higher values (1.77 ± 0.07) vs (1.55 ± 0.07 for neck; (1.75 

± 0.06) vs (1.52 ± 0.07) for torso; 1.92 ± 0.04 vs 1.72 ± 0.08 for pelvis; for BW and FW respectively. Torso also showed 

significant difference in anteroposterior (AP) 2.44 ± 0.07 vs 2.19 ± 0.13 BW and FW respectively. Hip and knee rotation LDS 

values also differed sig from BW to FW; Hip 1.90 ± 0.05 vs 1.69 ± 0.12; knee 1.87 ± 0.07 vs 1.64 ± 0.08 BW and FW 

respectively. Finally, AB/AD differed significantly for knee and ankle; knee, 1.94 ± 0.07 vs 1.69 ± 0.09; and ankle 2.01 ± 0.09 

vs 1.75 ± 0.13.  Significantly poorer stability of the trunk in the vertical direction was found for BW compared to FW.  Further 

investigations into the validation of the results OG and during daily life. 
Beauchet et 

al. 200948 
No significant differences were found between participant trials. Stride velocity decreased significantly from 88 to 39%. 121.4 

±15.4 to 53.2 ± 21.6 cm/s. Decreased stride velocity accounted for increase in mean standard deviation (SD) and coefficient of 

variation (COV); SD 30.9 ± 12.0 m/s to 129.0 ± 151.6 m/s; COV 2.7 ± 1.0 % to 5.0 ± 2.8 %. Estimated trial reliability amounted 

to 96.3% for mean, 89.9% for CV and 93.1% for SD. Stride time variability increased while walking speed decreased even 

when considering adjustment for the participant's effect, repetition of trials and right, left asymmetry. 
Hausdorff et 

al. 200125 
Long-range scaling exponents of α = 0.76 ± 0.11 were found for the original stride interval time series, whereas an α = 0.5 ± 

0.03 after random shuffling. These both indicate the presence of long-range fluctuations. Furthermore, long-range correlations 

at all three walking rates were present.  Stride interval correlations depend on some aspect of the neuro-muscular control system 

that is not directly related to walking velocity or gait unsteadiness. 
Kang & 

Dingwell 

200638 

All divergence curves parameters were significantly greater during walking. None of the correlations between walking and 

standing mean divergence parameters were statistically significant, therefore LDS of standing did not predict that of walking. 

Measurement noise may have affected velocity calculations, this could have influenced short-term divergence behaviour. 

Additionally, walking on a treadmill incurred a constant walking speed, and may have artificially enhanced walking LDS 
Kang & 

Dingwell 

200919 
Peak EMG amplitude increased with speed for all muscles measured. Older adults (OA) displayed greater amplitudes in vastus 

lateralis, biceps femoris and gastrocnemius. Both λS and λL increased with speed, furthermore, higher values were observed 

for elderly subjects. Fmax for older adults was larger but did not have a significant interaction with speed.  OA showed greater 

inter-stride variability of muscle activation patterns during gait, however EMG fail to account for muscle activation dynamics 

over multiple consecutive strides or synergy. LDS of multivariate dynamics and EMD were strongly correlated even when age 

and speed were accounted for. Future research should investigate the role of neural noise in the brain and motor function of 

older adults. 
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Kurz & 

Stergiou 

200758 

The simulation results showed increased Lyapunov values with increased toe-off impulse (e.g. if the toe-off was used to assist 

forward progression of the centre of mass). The model, therefore, predicts that an increase in propulsive forces that govern 

forward translation of the centre of mass during stance phase will result in a linear increase in the magnitude of the largest 

Lyapunov exponent. Experimental results indicate that the nonlinear structure of the ankle and hip joints movement patterns 

altered as horizontal assistance was increased. Horizontal propulsive forces that are applied during the stance phase influence 

the nonlinear structure of human locomotion. The experimental results infer that changes in the nonlinear structure may be 

related to the proper utilization of the hip and ankle joint musculature to control the forward progression of the COM 
Nessler et al. 

200950 
Significant differences were found for λL (4-10) exponents between solo and forced condition, no significant difference was 

found for the λS condition 
Bizovaka et 

al.201722 
Significant differences were found between fallers and non-fallers in Tinetti balance assessment tool (TBAT) scores, Shannon 

entropy (ShE) of the anteroposterior trunk (AP), ShE of the mediolateral shank (ML). Significant differences were found only 

for the ShE, sample entropies and the index of complexity were not able to distinguish between groups. Highly functioning 

elderly fallers could not be identified by variables derived from multiscale entropy approach.  Further investigation into the 

applicability of the Shannon Entropy method is required. 
Stout et al. 

201632 
Detrended fluctuation analysis revealed no significant effect of using a safety harness while walking on a treadmill. 

Additionally, no significant effect was observed for age group indicating that the findings hold for both young and elderly age 

groups. 
Reynard & 

Terrier 

201533 

Participants walked at a lower speed while blindfolded (decrease of -00.19m/s) compared to the eyes open condition. Walking 

with eyes closed reduced step length and cadence resulting in a significantly lower walk ratio from 0.31 ± 0.04 to 0.28 ± 0.05 

m/s. This was further decreased from the preferred walking speed with eyes closed (PWSEC) 0.30 ± 0.06 m/s. Participants did 

not exhibit any significant changes in trunk acceleration variability. Interestingly, PWSEC brought about higher divergence 

components for short-term stability but lower divergence components for long-term stability. Therefore, the changes were speed 

driven as opposed to deprivation driven. 
Wu et al. 

200726 
Kernel based principal component analysis can extract the nonlinear features of walking, distinguishing between young adults 

and elderly. Future research should aim to use the KCPA technique to analysis a variety of gait parameters, working towards 

making the techniques clinically applicable.  
Dingwell & 

Marin 200649 
Kinematic output variability increased significantly with increased perturbation, as did λS. However, λL did not change. No 

significant differences were seen in orbital stability.  Since the model's global basin remained consistent throughout all 

simulations, the amplitude of the perturbations was directly related to the model's risk of falling. Despite considerable local 

instability (λS and Mean standard deviation), global and orbital stability remained intact.  Further development of models that 

more closely replicate human walking. 
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