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Preface

This project is a continuation of a 9th semester project titled Prescriptive Analytics for
Spark by Freiberger et al. [1], supervised by Bent Thomsen and Torben Bach Pedersen.
The Motivation and Background sections of this project are based largely on the report
of the previous project.
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Summary

Prescriptive Analytics (PA) is an emerging phase of Business Analytics (BA), which has
traditionally consisted of Descriptive Analytics (DA) and Predictive Analytics (PR).
Whereas DA and PR are concerned with understanding the past and the future, PA is
concerned with providing direct support for decision making, by suggesting (prescribing)
optimal decisions to make for a given business problem. However, existing PA solutions
often consist of several specialized tools glued together in an improvised manner, which is
cumbersome and ineffective. There is a need for more integrated solutions that support
all the necessary steps for PA, including data management, prediction, and optimization
problem solving.
This project details the design and implementation of SolveDF, a tool that extends

Spark SQL with functionality that allows for declarative specification of constrained op-
timization problems through solve queries. SolveDF is heavily inspired by SolveDB, and
allows for data management and constrained optimization to be performed seamlessly in
a Big Data environment. SolveDF can leverage the distributed nature of Spark by split-
ting optimization problems into smaller independent subproblems that can be solved in
parallel on a cluster. Like Spark SQL, SolveDF is not limited to a single type of data
source, but can be used with many different types of data sources, including JSON-files,
HDFS and any DBMS that supports JDBC.
The report also includes a brief overview of Spark and constrained optimization prob-

lem solving, as well as related work in the area of data management systems with inte-
grated support for constrained optimization problem solving.
As a part of designing SolveDF, a small usability experiment of SolveDB is performed

to evaluate how intuitive SolveDB is. The results suggest that SolveDB can be learned
quickly with minimal guidance, and that the overall concept and structure of solve queries
make sense. The experiment also identified a number of small problems encountered
when using SolveDB, and some of these problems are addressed in SolveDF.
Performance experiments of SolveDF show that for certain types of problems, SolveDF

has similar performance to SolveDB when running on a single machine. The results also
show that when running SolveDF on a cluster, there appears to be a linear speedup
relative to the amount of nodes in the cluster for certain problems, as shown by SolveDF
being up to 6.85 times faster on a cluster of 8 nodes. In particular, optimization prob-
lems that are partitionable and have high complexity (e.g. Mixed integer programming
problems) are ideal problems for SolveDF to solve. The results also show that SolveDF
could still use more work, as SolveDF is relatively slow at constructing optimization
problems compared to SolveDB.
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Motivation

Traditionally, business analytics has consisted of two phases: Descriptive Analytics (DA)
and Predictive Analytics (PR). Recently however, a third phase known as Prescriptive
Analytics (PA) has started to emerge. Whereas DA answers the question of “what has
happened?” and PR answers the question of “what will happen in the future?”, PA
answers the question of “what should we do about it?”. As such, PA is concerned with
automatically identifying and suggesting (prescribing) optimal decisions to make in a
given business problem, usually through the use of mathematical optimization. It should
be noted that PA also encompasses the tasks of DA and PR, i.e. you cannot perform
PA effectively without DA and PR. This makes PA the hardest and most sophisticated
type of business analytics, but it is also able to bring the most value to a business[2].
As an example of a PA application, consider a smart grid that is tasked with balanc-

ing energy production and consumption. Energy output from many Renewable Energy
Sources (RESes) such as solar panels and wind turbines depends on weather conditions,
and as such varies significantly over time. This can make balancing the grid challeng-
ing, as peaks in energy consumption might not coincide with high output from RESes.
However, a lot of energy demand is flexible, meaning that it doesn’t require that energy
is consumed at one specific time[3]. For example, when using a dishwasher, one might
not care about when exactly it runs, as long as the dishes are clean before the next
morning. To make the most out of the RESes, we want to schedule the flexible demand
at times where energy output of RESes is high. In order to do this effectively, we need
some way to predict when the energy output of RESes is high, for example by using
weather forecasts. As such, this problem requires analysis of existing data, predictions
about the future (e.g. weather forecasts and forecasts about energy consumption), and
automatically making optimal decisions regarding when to schedule energy consumption
for flexible demand.
However, it is difficult to make effective PA solutions with current tools. Typically, you

end up with a mishmash of several specialized and non-integrated tools glued together
in an improvised manner (also known as the “hairball model”[4]). Such a solution
could for example include Hadoop or an RDBMS for data collection and consolidation,
MATLAB for predictions, and CPLEX for optimization. This is far from ideal, as using
these suites of non-integrated tools tends to be labor-intensive, inefficient, error-prone,
and requires expertise with several languages and technologies. Instead, it would make
sense if all the needed functionality for PA was integrated into a single tool. Database
systems with integrated support for optimization problem solving, such as SolveDB[5]
and Tiresias[6], are examples of tools that try to integrate functionality for some or all
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of the steps required for a PA workflow. For example, SolveDB allows users to specify
optimization problems in an SQL-like language, allowing for seamless data management
and optimization problem solving in a single tool.
At the same time, the volume, velocity and variety[7] of available data has seen an ex-

plosive growth. In fact, 90% of all the data we have today was produced over the course
of the last two years[2], and a significant part of this data is either semi-structured or
unstructured[8]. As a response to this, several Big Data technologies such as NoSQL
databases and MapReduce frameworks have emerged to tackle the new sizes and types of
data that traditional RDBMSes struggle with. However, the popular MapReduce frame-
works are not without issues and limitations, such as being too low-level, I/O bound,
and unsuitable for interactive analysis. In recent years, Apache Spark has appeared
as a promising alternative to MapReduce. Spark was made specifically to address ap-
plications that MapReduce frameworks handle poorly, such as iterative algorithms and
interactive data mining tools[9]. Not only does Spark boast orders of magnitude higher
performance than Hadoop MapReduce[10], it also uses a more general and higher-level
programming model based on Resilient Distributed Datasets (RDDs)[11].
The evolution of Big Data platforms is relevant to consider for PA, as some PA prob-

lems involve extremely large amounts of data. For example, if we wanted to adopt the
earlier mentioned smart grid in all of Denmark, we would need data from up to 2.5
million households[12]. If we assume that we receive energy meter readings every 15
minutes from each of these households, we would get a total of 96 readings per house-
hold per day. Even if only 5% of danish households were part of this smart grid, we
would still get 12 million readings every day from consumer data alone. In a more ambi-
tious setting, where data is collected from all member countries of the European Union
(220 million households [13]), 5% would correspond to over a billion readings per day,
making it infeasible to store and query in traditional relational databases. To address
these problems, there is a need for a solution capable of processing and querying such a
vast amount of data for PA.
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Problem Statement

The purpose of this project is to investigate the following hypothesis:

• Is it feasible to make a tool that allows for seamless integration of data management
and constrained optimization problem solving in a Big Data context?

This investigation includes the following:

• A usability evaluation of SolveDB.

• Design and implementation of SolveDF, a tool that extends Spark SQL with
SolveDB’s concept of solve queries.

• Performance experiments of SolveDF and a comparison to SolveDB.
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Part I.

Problem Analysis
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1
Background

Before presenting SolveDF and related work, we will briefly look at some subjects re-
lated to the making of SolveDF, namely Apache Spark and constrained optimization.
As this project is very focused on Spark, other cluster-computing frameworks are not
covered in this report. If the reader is interested in a more thorough survey of existing
cluster-computing frameworks, this can be found in the report of the previous project[1].
Likewise, if the reader is interested in more information regarding prescriptive analytics
(and business analytics in general), this is also covered in the previous project.

1.1 Apache Spark

Apache Spark is a general-purpose cluster-computing framework based on the Resilient
Distributed Dataset (RDD) data structure[11]. RDDs act as the primary abstraction in
Spark, facilitating a restricted form of distributed shared memory. To the programmer,
an RDD appears more or less like an ordinary collection of objects, but behind the
scenes, it facilitates partitioning, distribution and fault-tolerance. RDD’s are immutable,
but a new RDD can be generated by applying coarse-grained transformations to an
existing RDD. Examples of transformations could be the map, filter and join functions.
Transformations are lazy evaluated, meaning that the result of a transformation is first
computed when it is needed, which is when an action is applied to it. Examples of
actions could be the reduce, collect and foreach functions. A Spark program is written
by applying sequences of transformations and actions to RDDs, and although Spark
is written in Scala, there is support for writing Spark programs in either Scala, Java,
Python or R. Listing 1.1 shows a simple Spark program that loads the lines of a text file,
capitalizes all the letters, and prints only the lines that start with the word “WARNING”
and contain the word “ANALYTICS”.
In terms of performance, Spark claims orders of magnitude faster computation than

Hadoop MapReduce. This is primarily due to Spark’s wide usage of in-memory com-
putation compared to MapReduce, as RDDs can be stored in main memory (although
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1 lines = spark.textFile("someTextFile.txt")
2 lines.map(line => line.toUpperCase ())
3 .filter(line => line.startsWith("WARNING"))
4 .filter(line => line.contains("ANALYTICS"))
5 .foreach(line => println(line))

Listing 1.1: A simple Spark program written in Scala.

Figure 1.1.: Lineage graph of the RDDs used in Listing 1.1.

they might spill to disk if they are too large). Spark was designed specifically to deal
with tasks that MapReduce struggles with. In particular, MapReduce frameworks tend
to be very inefficient for applications that reuse intermediate results across nodes, which
for example includes many iterative machine learning and graph algorithms[14]. This
is because in most MapReduce frameworks, you have to write to external stable stor-
age to reuse data between MapReduce jobs, which is heavy on disk I/O and requires
replication.

Instead of using replication, RDDs support fault-tolerance by logging the lineage of
the dataset. The lineage is the sequence of transformations (e.g. map, filter, join) that
created the RDD. This means that if a partition of an RDD is lost, the RDD knows
how it was derived from other datasets, and can therefore recompute the lost partition.
Because of this, Spark can forgo the high cost of replicating RDDs. Figure 1.1 shows a
lineage graph for the program in Listing 1.1.

Despite the fact that RDDs are immutable and can only be manipulated by coarse-
grained transformations, they are actually quite expressive. In fact, not only does
Spark’s programming model generalize MapReduce, it can also efficiently express the
programming models of cluster-computing frameworks such as DryadLINQ, Pregel, and
HaLoop[11].
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1.1.1 Spark SQL

In addition to RDDs, Spark offers functionality for combining procedural programming
with declarative queries through the Spark SQL component[15]. Spark SQL provides
a DataFrame API, which is inspired by the data frame concept from the R language.
Conceptually, a DataFrame is more or less equivalent to a table in a database, and
can be constructed from many different types of data, including tables from external
data sources, JSON-files or existing RDDs. Like RDDs, DataFrames are immutable and
distributed collections. Unlike RDDs, DataFrames organize data into named columns,
which can be accessed by relational operations such as select, where, and groupBy. These
operations are also known as untyped[16] operations, in contrast to the strongly-typed
RDD operations. Furthermore, DataFrame queries are optimized by Spark SQL’s built-
in extensible optimizer called Catalyst. Listing 1.2 shows a simple Scala program that
computes the number of employees with a salary below 5000 in each department, us-
ing the DataFrame API of Spark SQL. Listing 1.3 shows a corresponding SQL query.
Alternatively, it is also possible to specify a query as an SQL-string in Spark SQL.

1 val poorEmps = employees
2 .where($"salary" < 5000)
3 .groupBy($"deptId")
4 .count ()

Listing 1.2: Spark SQL query that returns the
number of employees with a salary
below 5000 in each department.

1 SELECT deptId , count(deptId)
2 FROM employees
3 WHERE salary < 5000
4 GROUP BY deptId

Listing 1.3: SQL query corresponding to the Spark
SQL query in Listing 1.2 .

There are suprisingly many ways to refer to columns in a DataFrame query:

• Using the col function, i.e. by writing col(columnName).

• Using the “dollar-sign”-syntax, i.e. by writing $”columnName”. This is the syntax
used in Listing 1.2, and $ is simply an alias to the col() function.

• Using Scala symbols, i.e. by writing ’columnName.

An advantage of DataFrames over pure SQL is that they’re integrated with a full pro-
gramming language. This allows developers to break their code up into functions and
use control structures (i.e. ifs and loops), which according to Armbrust et al. [15] makes
it easier to structure and debug code compared to a purely SQL-based setting.

Catalyst

Catalyst is an extensible query optimizer based on functional programming constructs in
Scala. Catalyst differentiates itself from other extensible optimizers by allowing develop-
ers to extend the optimizer without needing to specify rules in a separate domain specific
language[15]. Instead, all rules can specified in Scala code, with Scala’s pattern-matching
feature being particularly effective at this.
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Figure 1.2.: Example of a simple tree representing the expression x+(1+2) in Catalyst. The example is taken
fromArmbrust et al. [15].

Figure 1.3.: The result of applying the rule in Listing 1.4 to the tree in Figure 1.2.

The foundation of Catalyst is two kinds of data types: trees and rules. A tree is simply
a node object with zero or more child nodes, and every node has a node type, which
must be a subclass of the TreeNode class. All nodes are immutable, but they can be
manipulated by applying rules to them. Figure 1.2 shows an example of a simple tree
representing the expression x+(1+2).
A rule is simply a function that maps a tree to another tree. Rules are used to trans-

form trees, and are usually specified by functions that use pattern-matching. Listing 1.4
shows an example of a simple rule in Catalyst that optimizes Add-expressions of literals
(e.g. by turning 1+2 into 3) by using the pattern-matching feature of Scala. The result
of applying this rule to the tree in Figure 1.2 can be seen in Figure 1.3.

1 tree.transform {
2 case Add(Literal(c1), Literal(c2)) => Literal(c1+c2)
3 }

Listing 1.4: Example of a simple rule that optimizes add-statements between literals in Catalyst. The example
is taken fromArmbrust et al. [15].

User Defined Functions

Support for UDFs (UserDefined Functions) is not something new in the database world.
However, UDFs in many database systems have to be specified in a separate programming
environment (for example, MySQL requires UDFs to be written in C/C++[17]). In Spark
SQL, there’s no complicated packaging or registration process required to use UDFs, and
they can be registered simply by providing a regular Scala function (or Java/Python
functions in their corresponding APIs)[15]. Listing 1.5 shows an example of defining and
using a simple UDF that computes the square of a number. UDFs are also important
for accessing values of UDTs (User Defined Types). However, UDTs do not appear to
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be fully developed yet, as the API for creating UDTs is currently (as of Spark version
2.1.1) private[18], although the API used to be public before Spark version 2.0[19].

1 val ss : SparkSession = ...
2
3 val squareUDF = udf( (x : Double) => x*x )
4 val table = ss.table("employees")
5
6 table.select('salary , squareUDF('salary))

Listing 1.5: Sample code for defining and using a UDF with Spark SQL. The result would show the salaries and
squared salaries of all employees.
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1.2 Constrained Optimization
Many real world problems such as energy trading or various kinds of scheduling or rout-
ing problems can be modelled as constrained optimization problems. Such problems are
about optimizing (i.e. minimizing or maximizing) a given objective function while satis-
fiying a number of constraints. In this project, we only consider a subset of constrained
optimization problem solving, namely Linear Programming (LP) and Mixed Integer
Programming (MIP) problems.

1.2.1 Linear Programming

A linear program (or linear optimization problem) is a constrained optimization problem
where both the objective function and the constraints are linear. Linear programs are
commonly written in canonical form, which looks like the following:

maximize cT x

subject to Ax ≤ b

and x ≥ 0

where c and b are vectors of known coefficients, A is a matrix of known coefficients,
and x is a vector of unknown variables (also referred to as decision variables). Canonical
form only allows for ≤ constraints and requires that all variables be non-negative, while
the objective function must be maximized. However, these restrictions do not cause any
loss of generality[20].

Activity Scheduling Example

As a simple example of a linear programming problem, imagine that we have a small
software company with n profit-making activities a1, ..., an and m resources r1, ..., rm.
Like most companies, it wants to maximize profits, which it does by scheduling the
aforementioned activities in an optimal way without consuming more resources than
what is available.
Let’s say the company has 5 employees, each working 8 hours per day, meaning the

company has a total of 40 man-hours to allocate to activities each day. Being that
the employees are software developers, they require a certain amount of coffee to work
effectively, so the company has a daily supply of 20 cups of coffee. As such, we can define
the types of resources with the vector r = [Hours, Coffee] T , and we let b = [40, 20]T
denote the supply of resources, such that bi is the daily supply of resource ri.
In order to make money, the company does a combination of the following three

activities:

• Produce new software

• Maintain legacy software

• Do consultancy work
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These activities are represented by the vector a = [Produce, Maintain, Consult]T . The
company has data suggesting that on average, producing new software earns $100 per
hour, maintaining legacy software earns $125 per hour, and consultancy work earns $90
per hour. We represent this information with the vector c = [100, 125, 90] T , such that
cj denotes the hourly profit of performing activity aj .

Consultancy work does not require any coffee, whereas producing new software on
average requires 1 cup of coffee per hour of work. Maintaining legacy software in the
company involves working with ancient COBOL code, which is obviously very stressful,
requiring 3 cups of coffee per hour of work. We represent this information with the
matrix A, such that Aij denotes the hourly amount of resource ri used when operating
activity aj :

A =
[

1 1 1
0 1 3

]

Note that the first row of the matrix A denotes how many man-hours are used per hour
of work of each activity (which is obviously 1 regardless of the activity), which is why
the row is filled with 1s.
Now, let xi denote the intensity (in hours) of which we want to perform activity ai,

where x = [x1, x2, x3]T . The problem is now to find suitable values for x such that
the profit is maximized, which we can represent as a linear programming problem in
canonical form:

maximize
[

100 125 90
]  x1

x2
x3


subject to

[
1 1 1
0 1 3

]  x1
x2
x3

 ≤ [
40
20

]

and

 x1
x2
x3

 ≥ 0

Using a linear programming solver on this problem, we get the following solution: x =
[0.0, 6.67, 33.33]. According to this solution, it is never worth developing new software,
and every day the company should instead spend 6.67 hours on maintaining software,
and the rest of the time (33.33 hours) should be spent on consulting.

Energy Balancing Example

As a concrete example of an optimization problem related to prescriptive analytics,
we consider a problem of balancing energy production and demand. In the area of
smart grids, the flexibility of different types of energy producers (e.g. windturbines) and
consumers (e.g. dishwashers) plays an important role in maximizing the effectiveness of
renewable energy sources. A way to represent the flexibility in energy production and
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demand is with so-called flex-objects, where a flex-object describes how much energy
is needed, when it is needed, and how much flexibility is tolerated regarding time and
amount. [21]. For this example, we use a simplified version of flex-objects that do not
consider time-flexibility, such that a flex-object f consists of a sequence of m 2-tuples
f = {n1, n2, ..., nm}, where each tuple ni = (emin,i, emax,i) represents the minimum and
maximum energy values that the flex-object can produce/consume at a specific time,
and m is the amount of time intervals covered by the flex-object. For a more detailed
explanation of flex-objects and their relation to smart grids, see the report of the previous
project[1].

Assume we have n flex-objects f1, ..., fn representing the flexible demand and supply
of energy producers/consumers, where each flex-object has m time intervals t1, ..., tm.
We let e_mini,j and e_maxi,j denote the minimum and maximum energy amount of
a flex-object fi in time interval tj . We would like to schedule these flex-objects such
that we balance the supply and demand optimally, i.e. minimize the difference between
production and consumption at each time interval. We let ei,j denote the scheduled
amount of energy to be produced/consumed (we say that energy is produced if ei,j < 0,
and consumed if ei,j ≥ 0) by flex-object fi at time interval tj.
To obtain the optimal balancing, we want the sum of ei,j for all production and

consumption flex-objects to be as close to 0 as possible in each time interval, without
scheduling anything outside the min/max bounds of any flex-object. This is equivalent
to assigning values to all ei,j , such that the total energy production and consumption
are as close to each other as possible in each time interval. We can rephrase this as the
following constrained optimization problem: (example taken from Šikšnys and Pedersen
[5]):

minimize
∑

j=1...m

|
∑

i=1...n

ei,j |

subject to e_mini,j ≤ ei,j ≤ e_maxi,j , i = 1, ..., n, j = 1, ..., m

However, the objective function in this example makes use of absolute values, which
makes it non-linear. Fortunately, by introducing additional variables and constraints, we
can rewrite the problem into an equivalent problem that does not use absolute values[22].
An equivalent problem without absolute values could look like the following:

minimize
∑

j=1...m

tj

subject to e_mini,j ≤ ei,j ≤ e_maxi,j , i = 1, ..., n, j = 1, ..., m∑
i=1...n

ei,j ≤ tj , j = 1, ..., m∑
i=1...n

ei,j ≥ −tj , j = 1, ..., m

As the objective function and all the constraints are now linear, the problem can
be solved as a linear programming problem. We will revisit this example later in the
experiments section.
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Decomposition of Linear Programs

Many optimization problems exhibit special structure[23] that allows for “shortcuts”
in solving the problem. In particular, some optimization problems can be seen as a
combination of independent subsystems, meaning that the constraints of the problem can
be divided into partitions, where the constraints in each partition only involve a subset
of decision variables that is disjoint from every other partition’s subset of variables.
These partitions can be formulated into separate optimization problems that can be
solved independently, and as the complexity of linear optimization problems generally
grows polynomially with the size of the problem, this can provide significant performance
benefits. Also, as the subproblems are completely independent, they can be solved in
parallel. Section 4.4 shows how this decomposition method can be implemented.

1.2.2 Mixed-Integer Linear Programming

In LP problems, the solutions we assign to the decision variables are allowed to be con-
tinuous. However, if we restrict 1 or more variables in an LP problem to be integers,
the problem is called a Mixed-Integer Programming (MIP) problem instead. Inter-
estingly, imposing such restrictions makes the problem significantly harder to solve, as
MIP problems are NP-hard in the general case[24], whereas LP problems can be solved
in polynomial time[25]. If we again consider the example of scheduling activities in a
software company (Section 1.2.1), but where the decision variables (i.e. how many hours
to assign to each activity) are constrained to have integer values, the solution to the
problem changes from x = [0.0, 6.67, 33.33] to x = [2, 6, 32].
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2
Related Work

In this chapter, we will briefly look at some related work in the area of DBMSes with
integrated support for constrained optimization.

2.1 SolveDB

Many PA applications require the solving of optimization problems based on data in
relational databases, so it would be convenient if optimization problems could be defined
and solved directly in SQL. Šikšnys and Pedersen [5] tackle this problem by proposing
SolveDB, which is an RDBMS with integrated support for constrained optimization
problems. SolveDB allows users to specify and solve optimization problems through
so-called solve queries, which are written in an SQL-like language. As of the publication
of the SolveDB article in 2016, only a PostgresSQL implementation exists.

An example of a solve query for solving the knapsack problem with a maximum allowed
weight of 15 based on data in the items table can be seen in Listing 2.1. The rows of the
items table can be seen in Table 2.1, and the result of running the query in Listing 2.1
can be seen in Table 2.2.

1 SOLVESELECT quantity IN (SELECT * FROM knapsack_items) AS
r_in

2 MAXIMIZE (SELECT sum(quantity*profit) FROM r_in)
3 SUBJECTTO (SELECT sum(quantity*weight) <= 15 FROM r_in),
4 (SELECT quantity >= 0 FROM r_in)
5 USING solverlp ();

Listing 2.1: SolveDB solve query for the knapsack problem with a maximum allowed weight of 15. The example
is taken from a presentation by Laurynas Siksnys.

The query in Listing 2.1 can be divided into four parts, where each part is preceeded
by a specific keyword:
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item_name weight profit quantity
’item 1’ 6.0 10.0 NULL
’item 2’ 4.0 7.0 NULL
’item 3’ 4.5 8.0 NULL
’item 4’ 8.0 13.0 NULL

Table 2.1.: Rows of the items table before running the solve query in Listing 2.1.
item_name weight profit quantity

’item 1’ 6.0 10.0 1
’item 2’ 4.0 7.0 0
’item 3’ 4.5 8.0 2
’item 4’ 8.0 13.0 0

Table 2.2.: Rows returned by the solve query in Listing 2.1.

1. SOLVESELECT - Defines the beginning of the solve query, and specifies which columns
hold decision variables (the quantity column) of the problem as well as the input
relation (SELECT * FROM items).

2. MAXIMIZE (can also be MINIMIZE) - Defines the objective function of the opti-
mization problem (maximize the sum of quantity ∗ profit in the items table).

3. SUBJECTTO - Defines the constraints of the optimization problem (the total weight
must be smaller than or equal to 15, and quantity must be greater than or equal
to 0).

4. USING - Defines what kind of solver is used to solve the optimization problem
(solverlp refers to a linear programming solver). SolveDB comes bundled with a
set of default solvers, but it is also possible to extend SolveDB with user-defined
solvers.

SolveDB will automatically assign values to the columns that hold decision variables
(these will be referred to as decision columns in the rest of the report) in the query,
while conforming to the defined constraints and objective function. Furthermore, since
the data type of the quantity column in Listing 2.1 is integer, SolveDB will only attempt
to assign integer values to the quantity column, meaning that SolveDB will treat this as
a MIP problem. If quantity was defined as a float instead, SolveDB would treat this as
an ordinary LP problem.

2.1.1 Problem Partitioning

As not all solvers support partitioning of optimization problems, SolveDB employs built-
in partitioning at the relational level, splitting a problem into a number of smaller sub-
problems that can be solved independently. This partitioning method is the same method
that is explained in Section 1.2.1, which partitions constraints based on disjoint sets of
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variables. Although SolveDB does not solve these partitions in parallel, partitioning still
provides very significant performance gains.

2.2 Tiresias

Tiresias[6] is a system that integrates support for constrained optimization into a DBMS
through so-called how-to queries. These queries are also referred to as a type of reverse
data management problem, since a how-to query specifies certain rules for the output
of the query, and then the DBMS has to find new values for some of the data such
that the rules are upheld. Conceptually, how-to queries are similar to SolveDB’s solve
queries, but whereas SolveDB uses an SQL-like syntax, how-to queries in Tiresias are
written in a language called TiQL (Tiresias Query Language), which is an extension
of the Datalog language. However, whereas SolveDB’s solve queries can be used easily
alongside ordinary SQL-queries, it appears that you need to use both SQL and TiQL if
you want to do how-to queries and ordinary queries (i.e. data management queries) in
Tiresias[5].
A TiQL query is written as a set of rules, which define hypothetical tables. Together,

these hypothetical tables form a hypothetical database. A hypothetical table has non-
deterministic semantics, such that there are a number of “possible worlds” for the table
defined by the constraints, where Tiresias chooses the possible world (i.e. possible con-
figuration of data in the hypothetical table) that results in a specified objective function
being maximized or minimized.
Attributes in a hypothetical table can be either known or unknown in Tiresias, with at-

tributes being labelled as unknown by appending a ’?’ to the attribute name. Known at-
tributes have values from the database, whereas unknown variables are non-deterministically
assigned values (i.e. they are assigned values by the underlying MIP solver). Listing 2.2
shows an example of what a TiQL query looks like.

1 HTABLES:
2 HLineItem(ok,pk,sk,q?) KEY:(ok,pk,sk)
3 HS(ok ,pk ,sk ,qnt ,q?) KEY:(ok ,pk ,sk)
4 HOrderSum(ok,sk,c?) KEY:(ok,sk)
5 RULES:
6 HLineItem(ok,pk,sk,q?) :- LineItem(ok,pk,sk,qnt)
7 HS(ok ,pk ,sk ,qnt ,q?) :- HLineItem(ok ,pk ,sk ,q?)
8 & LineItem(ok,pk,sk,qnt)
9 [q? <= qnt] <- HLineItem(ok,pk,sk,q?)

10 & LineItem(ok,pk,sk,qnt)
11 HOrderSum(ok,sk,sum(q?)) :- HLineItem(ok,pk,sk,q?)
12 [c? <= 50] <- HOrderSum(ok,sk, c?)
13 MINIMIZE(sum(qnt -q?)) :- HS(ok,pk,sk,qnt ,q?)

Listing 2.2: TiQL query that decreases quantities of line items for a shipping company in order to achieve a
desired KPI (Key Performance Indicator). The example is taken directly from the Tiresias article[6].
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A how-to query is translated into a MIP problem, which Tiresias can partition into
smaller independent subproblems, where each subproblem is stored as a file. Since each
subproblem is stored as a separate file, the system can become I/O bound for problems
with a large amount of small partitions. Because of this, Tiresias utilizes partition
grouping, resulting in some partitions consisting of more than 1 MIP problem. Tiresias
also features other optimizations, such as variable elimination, where redundant variables
are removed from the underlying optimization problem.
The first version of Tiresias is implemented in Java, and uses PostgreSQL as the

RDBMS and GLPK (GNU Linear Programming Kit) as the MIP solver. The authors
of Tiresias claim that most parts of Tiresias are parallelizable, but the current imple-
mentation does not make use of this.

2.3 Searchlight

The authors of Searchlight[26] claim that existing tools for interactive search, exploration
and mining of large datasets are insufficient, as traditional DBMSes lack support for op-
timization constructs and interactivity. This usually means that users have to “roll their
own solutions” by gluing together several specialized libraries, scripts and databases in
an ad-hoc manner, resulting in solutions that are difficult to scale and maintain. To
rememdy this, the authors propose Searchlight, a system that combines the capabilities
of array DBMSes with Constraint Programming (CP). Constraint programming is sim-
ilar to constrained optimization, except there isn’t necessarily an objective function to
maximize/minimize, meaning that constraint programming looks for feasible solutions
rather than optimal solutions[27]. Constraint programming problems are also known as
constraint satisfaction problems.
Searchlight is implemented with SciDB as the underlying DBMS, and uses Google Or-

Tools for CP solving. Searchlight allows CP solving to run efficiently inside the DBMS
with so-called search queries, which consist of constraint programs that reference DBMS
data.

2.3.1 Speculative Solving

Whereas many existing CP solvers make the assumption that all data is main-memory
resident, Searchlight uses a novel method called Speculative Solving to operate on syn-
opses that fit in main-memory instead of operating on the whole dataset. These Synopses
are a type of lossy compression that allows for approximate answers known as candi-
date solutions to Searchlight API calls. These candidate solutions are guaranteed to
include all correct solutions (meaning there are no false negatives), but there can be
false positives which have to be filtered out later.

2.3.2 Distributed Execution

The search process of Searchlight can be executed in parallel on a cluster by using the
built-in distribution capabilities of SciDB. The search process consists of 2 concurrent
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phases: solving and validation. The solving phase performs speculative solving to find
candidate solutions, while the validation phase filters out false positives in the candidate
solutions by checking the solutions up against the real data. These phases are not
required to be performed on the same nodes in the cluster, meaning that solvers can be
put on CPU-optimized machines, while validators can be put on machines closer to the
data.
To allow for distributed execution, Searchlight partitions the search space by viewing

it as a hyper-rectangle, which can be sliced along one of its dimensions to produce evenly
sized pieces, which can then be distributed to the solvers of the cluster.
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Part II.

Technical Contribution
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3
Design

This chapter details the design of SolveDF. The idea behind SolveDF is to extend Spark
with functionality that allows for seamless integration of constrained optimization prob-
lem solving with data management. To attain this, Spark SQL is extended to support
SolveDB’s concept of solve queries. The primary advantages of implementing solve
queries with Spark SQL are:

• Scalability - Some optimization problems can be decomposed into independent
subproblems that can be solved in parallel, and Spark makes it easy to solve these
subproblems in parallel on a cluster.

• Integration with a powerful analytics engine -You get to use solve queries in
the same environment as many other analytics tasks. Spark is a powerful analytics
tool, having libraries for tasks such as machine learning, stream processing and
graph processing.

• Data source independence - Spark SQL supports several different types of
data sources, including any JDBC compliant database, JSON files or HDFS (e.g.
through Apache Hive).

3.1 Requirements

This section specifies the requirements for SolveDF.

3.1.1 Declarative Specification

It should be possible for users to define and solve optimization problems with declarative
queries (referred to as solve queries), using syntax that is similar to ordinary Spark
SQL queries. Specifically, the user should be able to specify constraints and objective
functions as DataFrame queries. A solve query should consist of the following parts:
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• An input DataFrame (known as an input relation in SolveDB)

• A set of decision columns (i.e. columns whose values represent unknown variables)
in the input DataFrame

• 0 or 1 objective queries

• A number of constraint queries

The result of evaluating (i.e. solving) a solve query should be the original input DataFrame,
but where the values of the decision columns have been replaced by values that satisfy
the constraints (specified by the constraint queries) and where the value of the objective
(specified by the objective query) is optimal (i.e. minimal or maximal).

3.1.2 Solver Independence

SolveDF should be able to solve general LP and MIP problems. Although Spark has
some built-in optimization functionality ([1] goes into more detail with this) from MLlib,
this is mostly tailored to machine learning. Instead, we will be relying on external solvers
for optimization problem solving, but the implementation should not be tied to a single
solver. As Spark is written in Scala, we can use solvers that are written in Scala or
Java, or solvers that have Java/Scala bindings. However, if we use a solver written in
a non-JVM langauge (e.g. C or C++) with Java/Scala-bindings, we need to make sure
the native libraries are available on all nodes in the Spark cluster.

We treat the external solvers as black-boxes, and we want the system to be independent
of specific solvers, such that it is easy to integrate multiple solvers if desired. This way,
the system can also more easily be extended to support other classes of optimization
problems than LP and MIP problems (e.g. quadratic programming problems) in the
future. Therefore, the solution should offer an interface for integrating solvers.
Ideally, the system should be able to automatically choose a suitable solver to use

when given an optimization problem, but it is deemed sufficient that this can be specified
manually by the user.

3.1.3 Decomposition of Problems

As shown by both Tiresias and SolveDB, decomposition of LP/MIP problems into
smaller subproblems can improve performance significantly, even when the subproblems
are solved serially. Moreover, as the subproblems can be solved independently from each
other, we can easily parallelize the solving with Spark. Therefore, the system should
be able to decompose optimization problems, solve the subproblems in parallel, and
combine the solutions to the subproblems into a solution to the original problem. This
neccesitates that the external solvers are able to solve separate optimization problem
instances in parallel (though they do not need to be able to parallelize the solving of a
single problem instance), so that one machine in the Spark cluster can solve multiple
subproblems at the same time.

27



3.1.4 No Modification of Spark

Spark is a very actively developed project, so it is important that the implementation
of SolveDF doesn’t change the source code of Spark, but rather builds on top of Spark.
Not only would it be very inconvenient if users had to install a seperate version of Spark
to use SolveDF, but it would be very hard to keep SolveDF updated as new features are
added to Spark.
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3.2 SolveDB Usability Evaluation

As SolveDB is the main inspiration for SolveDF, it makes sense to gain insight into
whether SolveDB is intuitive to use, and to identify ideas and concepts of SolveDB
that would make sense to use in the design of SolveDF, as well as what parts could be
improved on. For this reason, a usability experiment of SolveDB is conducted. This
experiment is not supposed to be an extensive or thorough study of SolveDB, but rather
a quick way to get an idea of whether SolveDB is intuitive.

3.2.1 Method

The experiment is based on the Discount Method for Evaluating Programming Languages[28]
(referred to as DMEPL in the rest of the report). This is a work in progress method
inspired by the Discount Usability Evaluation (DUE) method[29] and Instant Data Anal-
ysis (IDA) method[30]. According to the authors, DUE is best applied when evaluating
a full language with a corresponding IDE and compiler, but less effective for evaluating
languages in the early design phases. This is primarily because it is hard to separate
feedback on the IDE and the language itself. On the other hand, DMEPL is intended to
be method that doesn’t require the tested language to be fully designed or implemented,
making the method applicable in the early stages of programming language design. Like
DUE, DMEPL recommends no more than five participants for the test, making it a
low-cost, lightweight method. The specific setup of the experiment is reletively flexible,
and can vary from pen and paper to a full-blown usability lab.

The procedure of DMEPL can roughly be summarized as the following:

1. Create tasks specific to the language being tested. These are the tasks that the
participants of the experiment should solve.

2. Create a short sample sheet of code examples in the language being tested, which
the participants can use as a guideline for solving the tasks.

3. Perform the test on each participant, i.e. make them solve the tasks defined in
step 1.

4. Interview each participant briefly after the test, where the language and the tasks
can be discussed.

5. Analyze the resulting data to produce a list of problems.

During the test, it is important that it is made clear to the participants that it is the
language that is being tested, and not the participants themselves. The participants
should also be encouraged to think-aloud while trying to solve the tasks. The faciliator
of the experiment is allowed to answer any questions related to the language, and he is
also allowed to discuss the solutions with the participants, as it is not the partcipants’
ability to formulate solutions we are testing.
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3.2.2 Setup

As prescribed by the DMEPL method, a task sheet and sample sheet was provided to the
participants. The sheets can be seen in Appendix A.1 and Appendix A.2, respectively.
A discrepancy from the original method is that the sample sheet in this experiment
had more than just code examples. Specifically, the sample sheet included a very brief
introduction (~3 lines of text) to SolveDB and a simplified syntax description of SolveDB.
There was also included a short description (~5 lines of text) of what a constrained
optimization problem is, and a very small example of a linear programming problem.
This was to give the participants an intuition of what tasks they were to solve, as the
participants were not expected to be familiar with constrained optimization problems
prior to the experiment.
The participants were asked to solve 3 different tasks, which were estimated to take

approximately an hour to solve in total. The tasks were designed to be rather simple
(e.g. none of them required the involvement of joins in the solution), as the test was
aimed at users that were familiar with SQL, but unfamiliar with constrained optimization
problems.

3.2.3 Results

The experiment was conducted on three different participants, each having to solve the
same tasks. The experiment is divided into 3 test cases, where each test case consists
of one participant solving the tasks. All of the participants were familiar with SQL,
and none of them had any prior experience with SolveDB. None of the participants were
familiar with linear programming or constrained optimization problem solving, although
the participant in test case 1 remarked that he had “tried putting a sequence of linear
equations into a solver once”. The participants in test cases 2 and 3 were both 10th
semester computer science students, while the participant in test case 1 was a computer
science Phd-student. In the following, a summary of each test case is given, and then a
categorization of the problems encountered is presented.

Test Case 1

It should be noted that this test case functioned as a “pilot” for the experiment, meaning
that the task sheet and sample sheet for this case were slightly different from the ones
listed in the Appendix. These were primarily minor changes to make the exercises a
little more clear for test cases 1 and 2.

Task 1 The participant mostly grasped the basic syntax within a few minutes by
looking at the first example query on the sample sheet. However, while formulating
a solution to the first task, the meaning of the first part of the query (the part that
specifies decision columns and the input relation) was unclear, resulting in the test
person mixing up decision columns and input columns.
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Task 2 Most parts of the second task were solved without issues, but formulating the
objective query proved challenging, and was easily the most time-consuming part of
solving the task. Eventually, the participant figured out how to formulate the query by
looking at some other examples in the sample sheet. There also occurred a number of
confusing error messages from the compiler during this task. It was also not initially clear
that the objective query must always return only 1 row, but this quickly became clear
to the test person. The participant also hadn’t considered that he could use constants
in the objective query.

Task 3 For the third task, there were a significant amount of confusing error mes-
sages from the compiler, mostly because many of the error messages referred to internal
SolveDB types (e.g. lp_ctr and lp_functional). The participant remarked that the
error messages seemed directed more towards the person who made the compiler than
the user. Other than that, there weren’t any significant issues in formulating the query.

Follow-up interview During the follow-up interview, the participant said that the syn-
tax was generally understandable, and that the structure of the query made sense, as it
was clear how the syntactical constructs corresponded to the mathematical definition of
a constrained optimization problem. The participant also felt that the language could
use some more syntactical sugar, as a lot of the syntax seemed superfluous for the tasks
in the experiment. In particular, each constraint query and objective query in all cases
used data from only a single table, so having to write “FROM r_in” after every con-
straint seemed unnecessary. Likewise, the SELECT keyword could perhaps be omitted
as well, as it seemed to make the language unnecessarily verbose, and thereby harder to
read. The participant acknowledged that having all these keywords would make sense
in bigger queries that involve more than a single table, but for queries that only make
use of 1 table, the extra syntax seemed superfluous.

The participant also remarked that the SOLVESELECT keyword was confusing. The
participant expected that the definition of columns in the input relation should immedi-
ately follow the keyword, due to “SELECT” being part of the keyword. The participant
said that it might be more clear if it was just called SOLVE instead.

Test Case 2

In general, the participant didn’t seem to properly understand what the point of the
SELECT statement after the IN keyword was. This was an issue for all three tasks.

Task 1 For the first task, the participant had some issues formulating the objective
query, as it was not clear that the objective query had to return only a single row (e.g.
by using an aggregate function). Initially, the participant mistook the SOLVESELECT
keyword for a SELECT keyword. When solving Task 1b, it was immediately clear to the
participant that he just had to insert a simple WHERE statement in the previous query.
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Task 2 In the second task, the primary issue was formulating the objective query, which
took a lot of time to get right.

Task 3 The participant didn’t run into any issues when solving the third task, other
than having to rethink some of his constraint/objective function defintions, but in most
cases he could quickly figure out what was wrong on his own.

Follow-up interview In the follow-up interview, the participant thought that having
to write “FROM <table>“ after every constraint and objective query seemed annoying
and unnecessary. Likewise, many of the SELECTs and the “WITH <solver()>” seemed
unnecessary. The SOLVESELECT keyword was also slightly confusing, as the participant
first thought it was just an ordinary SELECT-statement.

It was not intuitive that AND/OR could not be used in constraints (e.g. “quantity =
0 OR quantity = 1” is not valid syntax for defining constraints). The participant also
acknowledged that some of the things that seemed unintuitive to him may be caused by
his inexperience with constrained optimization problems.

Test Case 3

Task 1 The participant had some issues understanding the task. It took some time to
understand that he only had to define a solve query to solve the task, and didn’t need
to do any INSERT statements or JOINS to obtain the desired result. It also wasn’t
initially clear why the objective function should return a single row.

Task 2 In the second task, there were no issues specifying the constraints. However,
specifying the objective function took a very long time, with one of the big reasons for
this being that he hadn’t considered the ABS-function. As the solving of this task was
dragging on for a long time, it was decided to skip the rest of task 2 (The only thing
missing from his solution was inserting an ABS-function).
It should also be noted that there were some techincal difficulties towards the end

of task 2 with the virtual machine running SolveDB, so the rest of the experiment
was conducted using Notepad++ instead of pgadmin. This did not seem to have any
significant impact on solving the rest of the tasks.

Task 3 In contrast to the previous two tasks, the participant solved the third task
very easily and quickly. The participant only used about 5 minutes in total (out of the
approximately 60 minutes that the experiment took in total) for task 3a, and his first
attempt to write the solve query was almost 100% correct, having only a single error
(there was a missing SUM in one of the constraint queries), but he figured this out in less
than a minute. In task 3b, the participant tried to use OR incorrectly in a constraint
query (“SELECT quantity = 0 OR quantity = 1”), but otherwise he had no issues.
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Follow-up interview The participant expressed that the concepts and different parts
of a solve query were confusing at first, but once he had tried them and had “gotten the
hang of it”, they made a lot of sense to him, and he said that if he was given another
similar task, he could probably solve it relatively easily (which was exemplified by how
easily he solved the third task compared to the first two tasks). Because of this, he also
explicitly said that he thinks SolveDB has a minimal learning curve.

The participant remarked that he was overthinking the solutions to the first two
tasks, and said that he was thinking too much in a procedural manner rather than
declarative when solving task 2 (He specifically mentioned how he wanted to insert an
if-statement at one point). In regards to the syntax, he didn’t think that the name of
the SOLVESELECT keyword made sense. Either “SOLVE” or “SOLVE FOR” seemed more
appropriate. He didn’t have any other issues with the syntax, and he mentioned that it
was nice how the syntax “looks like SQL”.
Another small thing was that the syntax-description of a solve query (from the sample

sheet) showed that defining an alias for the input relation was optional, when it is in
fact required.

Summary of Test Cases

Table 3.1 shows a table of problems encountered in the test cases, categorized according
to their severity. For this categorization, the following definitions of Cosmetic, Serious
and Critical problems are used:

Cosmetic problems Problems such as typos and small character deviations, i.e. prob-
lems that can be easily fixed by replacing a single wrong part.

Serious problems Problems that can be fixed with a few changes, such as minor struc-
tural errors or misunderstandings of a single language construct.

Critical problems Problems that require a revision of the code, e.g. large structural
errors or fundamental misunderstandings of how to structure code in the language.

3.2.4 Discussion

While there are a number of problems categorized as serious, some of these problems are
arguably caused more by the participants’ inexperience with constrained optimization
concepts (e.g. decision variables, constraints, objective function) than the language
itself, such as problems B1 and B5. Furthermore, for the most part, these problems only
happened once or twice (problem B2 being a notable exception, as this was a particularly
consistent problem in test case 2), which could indicate that learning to avoid these errors
doesn’t require a lot of effort. This is especially supported by the dramatic improvement
shown by the participant in test case 3 when solving task 3. Likewise, all participants
remarked that they generally thought the structure and logic of solve queries made sense
after they made it through all the tasks.
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Critical Serious Cosmetic
B1: Not understanding what

columns to write directly after a
SOLVESELECT keyword.

C1: Mistaking the SOLVESELECT
keyword for a SELECT keyword

B2: Not understanding what
columns to select from the input

relation.

C2: Forgetting to write SELECT at
the beginning of a constraint, or
FROM <table> at the end of a

constraint
B3: Not aggregating an expression
with SUM in constraint queries or

objective queries
B4: Trying to use AND or OR
keywords in constraint queries
B5: Writing an objective query
that returns more than 1 row
B6: Not realizing that the ABS
function can be used in an

objective query
B7: Not considering that constants
could be used in an objective query

Table 3.1.: Categorization of problems encountered from the SolveDB test cases. Problems related to error
messages given by the compiler are not considered here, as these are problems that are related to
the implementation rather than the language itself.
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Although problem C2 might seem like only a minor annoyance, as it is easy to recognize
and correct, the participants in test cases 1 and 2 both mentioned this problem in the
follow-up interview and during the tasks. They had to remind themselves several times
to write SELECT and FROM between constraints, indicating that the language could be
more intuitive if it wasn’t required to always write SELECT and FROM between constraints.
It is important to keep in mind that the tasks in this experiment only required the

writing of small queries that use data from a single table. Realistically, solve queries
can be much larger and involve more complicated objectives and constraints (constraint
queries can be significantly more complex if they for example involve multiple joins and
subqueries). However, even though the tasks are examples of easy problems to solve
with SolveDB, the results still look promising for SolveDB, as the participants did not
have prior experience with constrained optimization or SolveDB, yet could still figure
out how to solve these problems with minimal guidance.
Finally, it should be mentioned that although all the participants spent a significant

amount of time specifying the objective function in task 2, this was not unexpected, as
that task was intentionally made to test if the partcipants could formulate more complex
objective functions in SolveDB. In hindsight, this task should arguably have been made
more clear in its definition of the objective, as figuring out how to express the objective
mathematically seemed to require more effort than writing the query itself. As soon
as the participants realized that they needed to use a sum of absolute values in the
objective, the task was solved quickly.

3.2.5 Conclusion

It appears that the basics of SolveDB can be learned relatively easily with minimal
guidance, and that the overall concept of solve queries makes sense. As a result of
this, it is decided that SolveDF will use similar syntax and the same query-structure as
SolveDB. However, unlike SolveDB, I will address problem C2 by making it optional to
write the ’SELECT’ and ’FROM’ part of a constraint/objective query whenever the input
relation is selected from directly (i.e. without a WHERE-statement or join), as this problem
came up a lot and seems relatively easy to address. Likewise, I will attempt to find a
more intuitive name for the SOLVESELECT keyword.
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3.3 Architecture
Figure 3.1 shows an overview of the primary components of SolveDF. In this design,
most of the logic is located on the Spark driver program, which is responsible for trans-
lating solve queries into optimization problems, partitioning the generated optimization
problems into smaller subproblems, and combining the solutions to the subproblems into
a final result. The nodes in the cluster only have one responsibility, which is to solve
subproblems sent to them by the driver. The responsibilities of the primary components
are explained in the following.

3.3.1 Query Processor

This component is responsible for reading a given solve query as input, and formulate
the given query into a constrained optimization problem by using data extracted with
Spark SQL.

3.3.2 Decomposer

This component partitions a given optimization problem into smaller, independent sub-
problems that can be solved in parallel. These partitions are distributed across the
cluster for parallel solving. The decomposition process runs in the Spark driver pro-
gram, meaning that all the data (i.e. constraints and objective) has to be collected on a
single node (the Driver node) before it can be partitioned.

3.3.3 Solver Adapter

The Solver Adapter is responsible for providing a uniform interface to the external
solvers. For this to work, it is required that the external solvers are installed on all
nodes in the cluster.

3.3.4 Solution Combiner

When solutions have been found for the subproblems, the Solution Combiner collects
these solutions. Afterwards, the solutions are inserted into the decision columns of the
input DataFrame from the original solve query, yielding the final result.
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Figure 3.1.: Architecture diagram of SolveDF. 37



4
Implementation

This chapter documents the result of implementing a prototype of SolveDF as specified
by the design in Chapter 3. The general structure of solve queries in SolveDF is pre-
sented, and examples of solve queries are shown and compared to equivalent queries in
SolveDB. Solutions to some of the major challenges encountered during the implemen-
tation will also be presented.

4.1 Structure of a SolveDF Query
The structure of a solve query in SolveDF is modelled closely to SolveDB’s structure,
but adapted to fit the syntax of Spark’s DataFrame API. Listing 4.1 shows an example
of a simple solve query.

1 val inputDF = spark.table("someTable") // Input DataFrame
2
3 inputDF.solveFor('x, 'y) // The decision columns
4 .maximize(in => in.select(sum('x)) ) // The objective
5 .subjectTo( // The constraints:
6 in => in.select(sum('y) >= sum('x)),
7 in => in.select('x + 'y <= 10,
8 'x >= 0,
9 'y >= 0))

Listing 4.1: An example of a solve query in SolveDF.

Objectives and constraints are specified by queries on instances of the SolveDataFrame
class. A SolveDataFrame just represents a DataFrame where some of the columns are
decision columns (i.e. they contain decision variables), and it supports most of the same
operations (e.g. select, where, join) as a normal DataFrame, so for the most part it is
indistinguishable from a DataFrame. The exact details of why this class is used instead
of regular DataFrames is explained in Section 4.3.
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A solve query is initialized by calling the solveFor method on an existing DataFrame,
which returns an instance of the SolveQuery class. The objective and the constraints
of the SolveQuery can then be defined with a builder-like pattern, using the minimize,
maximize and subjectTo methods. Similar to SolveDB’s equivalent keywords, the
subjectTo, maximize and minimize methods take queries (i.e. SELECT-statements) as
input. In SolveDF, such a query is defined by a lambda of type (SolveDataFrame) =>
SolveDataFrame, where the parameter of the lambda represents the input DataFrame of
the solve query, and the body of the lambda is a query on the input DataFrame. The point
of this lambda is to hide that the input DataFrame is wrapped into a SolveDataFrame,
and to provide a way to reference this SolveDataFrame without storing it in a variable
outside the query.
Although the general query structure of SolveDF is very similar to SolveDB, there are

some notable discrepancies from SolveDB’s syntax:

1. SolveDF’s equivalent of SolveDB’s SOLVESELECT keyword is called solveFor in-
stead.

2. In SolveDB, the objective must be specified before the constraints. In SolveDF,
the constraints and objectives can be specified in any order (you can even specify
constraints first, then the objective, and then more constraints after that).

3. Constraint- and objective queries can be expressed purely as column expressions,
i.e. without specifying a source table or SELECT-statement. In this case, the
expressions are implicitly selected from the input DataFrame of the solve query.
For example, the following constraint query:
.subjectTo(input => input.select(sum(’salary) <= 1000))
can be written with the following shorthand notation instead:
.subjectTo(sum(’salary) <= 1000)
This shorthand notation was made as a direct consequence of the feedback from
the SolveDB usability evaluation in Section 3.2. Listing 4.2 shows an equivalent
query to the one in Listing 4.1, but where the objective query and all the constraint
queries make use of this shorthand notation instead.

1 val inputDF = spark.table("someTable") // Input DataFrame
2
3 inputDF.solveFor('x, 'y) // The decision columns
4 .maximize( sum('x) ) // The objective
5 .subjectTo( // The constraints:
6 sum('y) >= sum('x),
7 'x + 'y <= 10,
8 'x >= 0,
9 'y >= 0)

Listing 4.2: An alternative version of the query in Listing 4.1 that uses shorthand notation for constraint- and
objective queries.
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4.1.1 Alternative Solve Query Formulation

Instead of using the solveFor method on an existing DataFrame to create a SolveQuery,
you can explicitly invoke the constructor of the SolveQuery class as shown in Line 4
of Listing 4.3. The SolveQuery constructor takes a SolveDataFrame (representing the
input DataFrame of the SolveQuery) as an argument, meaning that you also have to
explicitly create a SolveDataFrame by calling the withDecisionColumns method on a
DataFrame, as seen on Line 2 of Listing 4.3.

1 val inputDF = spark.table("someTable")
2 val solveDF = inputDF.withDecisionColumns('x, 'y)
3
4 SolveQuery(solveDF)
5 .maximize( solveDF.select(sum('x + 'y)) )
6 .subjectTo(
7 solveDF.select('x + 'y >= 0),
8 solveDF.select('x + 'y <= 10))

Listing 4.3: A Scala program that explicitly creates a SolveDataFrame outside of the solve query.

As you explicitly create a SolveDataFrame from the input DataFrame with this ap-
proach, you can store that SolveDataFrame in a variable, which allows you to reference
it directly in a constraint- or objective query (i.e. you do not need to provide a lambda
as parameter) as shown in Lines 5-8 of Listing 4.3.

4.1.2 Using Multiple Tables in a Solve Query

In SolveDB, you can include additional tables that have decision columns in a solve query
by using CTEs (WITH-statements). In SolveDF, you can accomplish the same thing by
creating SolveDataFrames for any additional DataFrames (using the withDecisionColumns
method), and simply reference them in the constraints/objective. Listing 4.4 shows an
example of this, where an additional SolveDataFrame is used in a join in the solve query.
This is also used in the flex-object scheduling query presented in Section 4.2.

1 val inputDF = spark.table("someTable")
2 val extraSolveDF =

spark.table("someOtherTable").withDecisionColumns('a)
3
4 inputDF.solveFor('x, 'y)
5 .maximize( sum('x) )
6 .subjectTo(
7 in => in.join(extraSolveDF , in("someColumn") ===

extraSolveDF("someOtherColumn"))
8 .select('x <= 'a))

Listing 4.4: Example showcasing the use of additional DataFrames with decision columns in a solve query.
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4.1.3 Retrieving the Solution to a Solve Query

To solve a SolveQuery, you can explicitly invoke the solve method of the SolveQuery,
which will return a DataFrame with the result. The result is the original input DataFrame,
but where the columns designated as decision columns have been assigned new values
that satisfy the specified constraints and maximize/minimize the objective function.
SolveQuery also supports implicit conversion to a DataFrame (using Scala’s concept

of implicit classes[31]), meaning that you don’t even need to call the solve method to
get the result. To define which solver is used for solving the query, the withSolver
method can be called, as illustrated on Line 8 of Listing 4.5. If no solver is explicitly
defined for the query, it will use the default solver (Currently, this is GlpkSolver).

1 val inputDF = spark.table("someTable")
2
3 inputDF.solveFor('x, 'y)
4 .maximize( sum('x) )
5 .subjectTo(
6 'x + 'y >= 0,
7 'x + 'y <= 10)
8 .withSolver(ClpSolver)
9 .solve () // The solve () call is optional

Listing 4.5: Example of a solve query where the external solver is specified explicitly.

4.1.4 Discrete and Continuous Variables

The decision columns of a SolveDataFrame can either be discrete (i.e. the values of the
column must be assigned integer values) or continuous. To determine whether a decision
column is discrete or continuous, SolveDF looks in the schema of the orginal DataFrame.
If the original data type of a decision column is Integer or Long, SolveDF will treat the
underlying optimization problem as a MIP problem, and will only assign discrete values
to the decision variables in the column. This is the same approach that SolveDB uses,
although SolveDB also supports binary decision columns when the original data type of
a decision column is boolean.

4.2 Example Queries
A series of different optimization problems will now be presented, along with solve queries
for solving each problem with both SolveDB and SolveDF.

4.2.1 Knapsack Problem

The well known knapsack problem[32] can be formulated as a MIP problem, and we
have already shown a SolveDB query that solves this in 2.1, which is also shown here in
Listing 4.6. The queries use data from a table with the following relational schema:
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knapsack_items (item_name, weight, profit, quantity)
2.1 shows a SolveDF query for solving the same problem, and 4.6 shows an equivalent,
but more compact query using the shorthand notation for constraints and objectives
described in Section 4.1.

1 SOLVESELECT quantity IN (SELECT * FROM knapsack_items) AS
r_in

2 MAXIMIZE (SELECT sum(quantity*profit) FROM r_in)
3 SUBJECTTO (SELECT sum(quantity*weight) <= 15 FROM r_in),
4 (SELECT quantity >= 0 FROM r_in)
5 USING solverlp ();

Listing 4.6: SolveDB solve query for the knapsack problem with a maximum allowed weight of 15.

1 knapsack_items.solveFor('quantity)
2 .maximize(r_in => r_in.select(sum('profit * 'quantity)))
3 .subjectTo(
4 r_in => r_in.select(sum('weight * 'quantity) <= 15),
5 r_in => r_in.select('quantity >= 0))

Listing 4.7: SolveDF solve query for the knapsack problem with a maximum allowed weight of 15.

1 knapsack_items.solveFor('quantity)
2 .maximize(sum('profit * 'quantity))
3 .subjectTo(
4 sum('weight * 'quantity) <= 15,
5 'quantity >= 0)

Listing 4.8: An alternative SolveDF solve query for solving the knapsack problem with a maximum allowed
weight of 15, using more compact syntax.

4.2.2 Flex-object Scheduling

Section 1.2.1 introduced an energy balancing problem where we have to schedule flex-
objects. We can formulate this problem as a solve query, where we store the flex-objects
as rows with the following relational schema:
flexobjects (f_id, timeindex, e_min, e_max)

where each row represents the energy bounds in one time interval (denoted by timeindex)
of a flex-object (denoted by f_id). Listing 4.9 shows a SolveDB query for solving the
problem, and Listing 4.10 shows an equivalent SolveDF query. It is worth pointing
out that the SolveDB query has to define the column e (which represents the scheduled
amount of energy for a given interval in a flex-object) explicitly inside the input relation,
whereas this column is implicitly created in the SolveDF query by the solveFor(’e)-
call. For a detailed explanation of the optimization problem, see Section 1.2.1.

1
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2 SOLVESELECT e IN ( SELECT f_id , timeindex , e_min , e_max ,
NULL :: float8 AS e

3 FROM flexobjects) AS r_in
4 WITH t IN (SELECT DISTINCT timeindex AS ttid , NULL ::

int AS t FROM flexobjects) as temp
5 MINIMIZE (SELECT sum(t) FROM temp)
6 SUBJECTTO (SELECT e_min <= e <= e_max FROM r_in),
7 (SELECT -1 * t <= e_sum , e_sum <= t
8 FROM (SELECT sum(e) as e_sum , timeindex FROM r_in

GROUP BY timeindex) as a
9 JOIN temp ON temp.ttid = a.timeindex)

10 USING solverlp);

Listing 4.9: SolveDB solve query for flexobject scheduling.

1 val temp = flexobjects
2 .select('timeindex.as("ttid"))
3 .distinct ()
4 .withDecisionColumns('t)
5 temp.cache()
6 df.solveFor('e)
7 .minimize(in => temp.select(sum('t)))
8 .subjectTo('e >= 'e_min , 'e <= 'e_max)
9 .subjectTo(in => in.groupBy('timeindex)

10 .agg(sum('e) as 'e_sum , 'timeindex)
11 .join(temp , 'ttid === 'timeindex)
12 .select('e_sum <= 't, 'e_sum >= 't * -1.0))

Listing 4.10: SolveDF solve query for flexobject scheduling.

4.3 Extending the DataFrame API
A significant part of SolveDF’s functionality is implemented through the use of UDTs
(User Defined Types) in Spark SQL. Specifically, there is a need for UDTs that represent
linear expressions (e.g. 2x1 + x2 − 3x3 or x1 − 2x2 + x3) and linear constraints (e.g.
x2+2x4 ≥ 7 or 2x1−x3 = 0). These are implemented with the classes LinearExpression
and LinearConstraint. The LinearExpression class has definitions for many algebraic
operators (e.g. +,−, ∗, /,≥,≤) on numeric types and other LinearExpressions, which
is fairly easy to implement in Scala. However, it is a bit more difficult to make Spark
SQL use these operators. For example, consider the following DataFrame in Listing 4.11:

1 // the salary column is of type LinearExpression
2 employees.select('salary + 100) // Type mismatch error!

Listing 4.11: A simple DataFrame query.
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Figure 4.1.: Simplified representation of an expression tree created from the query in Listing 4.11.

The DataFrame in Listing 4.11 will cause a type mismatch error, as the + operator in
Spark SQL Spark always creates a tree node (Spark SQL query plans are represented as
trees) that only accepts children of numeric types. The same problem happens for the
other operators as well.

A simple solution to this problem would be to define UDFs (User Defined Functions)
for all the operators, but this results in ugly and needlessly verbose syntax (I would argue
that ”’salary + 100“ looks much cleaner than ”plus(’salary, 100)”, and even more
so for more complex expressions). Furthermore, UDFs are generally slow, as they require
serialization and deserialization for each row, and are harder to optimize in the Spark
SQL execution plan[33]. Instead, I decided to make a wrapper class for DataFrame
called SolveDataFrame, which supports most of the same operations as a DataFrame,
e.g. select, where and groupBy. However, the SolveDataFrame versions of these
operations make a substitution in the parameters before applying the operation to the
underlying DataFrame. For example, the expression used in the query from Listing 4.11
would create an expression tree with an Add node, which would look like somewhat like
what is shown in Figure 4.1.
SolveDF will substitute the Add node of this tree with a node of type CustomAdd, which

is a node type I implemented that supports addition between LinearExpressions and
numeric types. The substitution is very straightforward to perform, as Spark SQL offers
a transform method that makes it easy to recursively manipulate trees through pattern
matching. Specifically, the substitution is carried out by calling the transform method
of the expression with the partial function defined in Listing 4.12 as parameter.

1 def transformExprs = {
2 case Add(l,r) => CustomAdd(l, r)
3 case Subtract(l,r) => CustomSubtract(l, r)
4 case Multiply(l,r) => CustomMultiply(l, r)
5 case GreaterThanOrEqual(l,r) =>

CustomGreaterThanOrEqual(l,r)
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6 case LessThanOrEqual(l,r) => CustomLessThanOrEqual(l,r)
7 case AggregateExpression(aggFunc ,a,b,c) =>
8 aggFunc match {
9 case Sum(x) => ScalaUDF(sumLinearExpressions ,

LinearExpression.sparkSqlType ,
Seq(AggregateExpression(CollectList(x),a,b,c)),
Seq(ArrayType(LinearExpression.sparkSqlType)))

10 case default => AggregateExpression(default ,a,b,c)
11 }
12 case default => default
13 } : PartialFunction[Expression , Expression]

Listing 4.12: Partial function used for replacing nodes in Spark SQL with custom nodes that support
LinearExpressions.

4.4 Decomposition of Optimization Problems

To obtain better performance and make use of the parallelization provided by Spark,
SolveDF can decompose optimizaton problems into smaller subproblems. Specifically,
SolveDF can decompose problems with the special structure known as independent sub-
systems, which is mentioned in Section 1.2.1. It should be noted that the current imple-
mentation of the decomposition algorithm requires that the objective and all constraints
of the optimization problem is collected on a single machine.
The decomposition algorithm is implemented by using a union-find[34] data structure

(also known as a disjoint-set data structure), which is a data structure that allows for
efficient partitioning of elements into disjoint subsets. The union-find structure consists
of a forest, where each tree in the forest represents a subset (i.e. partition). The union-
find structure supports two fundamental operations:

• Find(x): Returns the subset x belongs to. Specifically, a representative element
(i.e. the root of the set’s tree) of the set is returned by this function.

• Union(x,y): Merges the subsets that x and y belong to into a single subset.

Listing 4.13 shows SolveDF’s implementation of the union-find structure. Optimization
problems are partitioned in SolveDF by first extracting the sets of decision variables
used by each constraint. These sets are then combined into disjoint subsets with the
following code:
varSets.foreach(vars => vars.reduce((l, r) => unionFind.union(l, r)))

After this call, the partition that a variable belongs to can be found simply by calling
the find function of the union-find structure.

1 class UnionFind(values : Seq[Long]) {
2 private case class Node(var parent: Option[Long], var

rank: Int = 0)
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3 private val nodes = values.map(i => (i, new
Node(None))).toMap

4
5 def union(x: Long , y: Long): Long = {
6 if (x == y) return x
7
8 val xRoot = find(x)
9 val yRoot = find(y)

10 if (xRoot == yRoot) return xRoot
11
12 val xRootNode = nodes(xRoot)
13 val yRootNode = nodes(yRoot)
14 if (xRootNode.rank < yRootNode.rank) {
15 xRootNode.parent = Some(yRoot)
16 return yRoot
17 }
18 else if (xRootNode.rank > yRootNode.rank) {
19 yRootNode.parent = Some(xRoot)
20 return xRoot
21 }
22 else {
23 yRootNode.parent = Some(xRoot)
24 xRootNode.rank += 1
25 return xRoot
26 }
27 }
28
29 @tailrec
30 final def find(t: Long): Long = nodes(t).parent match {
31 case None => t
32 case Some(p) => find(p)
33 }
34 }

Listing 4.13: SolveDF implementation of a union-find data structure. Note that Long is used instead of Int, as
decision variables use a Long identifier in SolveDF.

4.5 Supported Solvers

For the most part, integrating new solvers into SolveDF is relatively easy. Each external
solver simply needs a class that implements the Solver trait (Scala traits are similar
to Java’s interfaces) which has one method that needs to be overwritten. However, if
the solver requires native libraries (e.g. if it is a solver written in C/C++), things can
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get more tricky, as you need to use a Java binding to the solver and make sure the
native libraries are installed and accesible on all nodes in the cluster. SolveDF currently
supports 2 external solvers: Clp and GLPK.

4.5.1 Clp

Clp (Coin-or linear programming)[35] is an open-source linear programming library
written in C++ as part of COIN-OR (The Computational Infrastructure for Operations
Research)[36]. Clp does not support integer variables (i.e. it is not a MIP-solver).
As the solver is written in C++, it cannot be called directly from Scala, but there
fortunately exists an open source Java interface for Clp called clp-java[37]. clp-java is
not just a simple interface to the native code, but actually provides rather high-level
abstraction to the native library. Furthermore, installation is very straightforward, as
you can download an “all-in-one jar file” that contains the native libraries for the most
common systems.

4.5.2 GLPK

GLPK (GNU Linear Programming Kit)[38] is an open-source LP and MIP solving
library written in C. Like Clp, it cannot be called directly from Scala, so a Java binding
called GLPK for Java[39] is used. This binding gives a more or less direct interface to
the C-functions, meaning that you have to create and manipulate C-arrays (and clean
up after them) in Java. GLPK for Java does not include binaries for the native libraries,
so they have to be installed separately.

4.6 Known Issues and Limitations

As SolveDF is not fully developed yet, there are a number of bugs and unimplemented
features. The following list shows some of the known issues and limitations of the current
implementation:

• The code generated for the >= and <= operators is wrong if the first operand isn’t
a LinearExpression.

• Unary minus is not supported.

• Optimization problems without an objective function (i.e. constraint satisfaction
problems) are not properly supported yet.

• The schema of the output DataFrame from solving a SolveQuery does not conform
properly to the original schema of the input DataFrame, as the decision columns
are always converted to Double.

• Spark SQL’s between operator is not supported yet, although the same logic can
be expressed with the >= and <= operators.
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• SolveDataFrame does not yet support all operations that a normal DataFrame
has. SolveDataFrame currently supports the following methods from DataFrame:
select, apply, cache, withColumn, join, crossJoin, where, groupBy, limit.

• The only currently supported aggregate function for LinearExpressions is sum.
In particular, abs could be a very useful aggregate function to support as well.
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5
Experiments

To evaluate the performance of SolveDF and compare it to SolveDB, a number of bench-
marks of SolveDF and SolveDB are performed. The scalability of SolveDF will also be
evaluated by running these benchmarks on clusters of different sizes.

5.1 Hardware and Software

The experiments were run on Amazon Web Services EC2[40] r3.xlarge machines (4 vir-
tual CPU cores, 30.5 GiB memory, 80 GB SSD storage). Table 5.1 shows an overview
of the software versions used in the experiments.

Software Version
Ubuntu 16.04.2

PostgreSQL 9.6
SolveDB 9.6
Spark 2.1.1
Scala 2.11.8
SBT 0.13.15

Java (OpenJDK) 1.8.0_131
GLPK 4.61

GLPK for Java 1.8.0
Clp 1.16.10

Clp-java 1.16.10

Table 5.1.: Versions of software used for the experiments.
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5.1.1 Spark settings

Spark is run with the following settings in the spark-defaults.conf file:
spark.executor.memory 10g
spark.driver.memory 12g
spark.driver.maxResultSize 0
spark.sql.retainGroupColumns false

5.2 Measurements

5.2.1 SolveDB

For SolveDB, the following time values are measured in each experiment:

• Partitioning time: The time spent partitioning the optimization problem into
indepenedent subproblems.

• Solving time: The time spent solving problem.

• Total solving time: The total time of the solving procedure, including I/O time
and partitioning.

• Total query time: The total time it takes to execute the solve query.

The partitioning time, solving time, and total solving time are all printed out by SolveDB
automatically when solving a solve query. The total query time is measured by run-
ning the query with the bash command time, i.e. ’time psql -d databaseName -f
"fileName.sql”’. Also, as the psql command prints the output rows of the given
queries, all solve queries are wrapped in a “SELECT WHERE EXISTS (solveQuery)” state-
ment to avoid printing the result rows of a solve query, as this can take up extra time
(and clog the result files).

5.2.2 SolveDF

For SolveDF, the following time values are measured in each experiment:

• Building query time: The time it takes to initialize a solve query. This includes
everything up untill the solve method is called on the SolveQuery object.

• Materializing query time: The time it takes to generate the objective and
constraints of a solve query, and move it to the Driver node. This includes the
time spent extracting data from the input DataFrame and running Spark SQL
operations on UDTs.

• Partitioning time: The time it takes to partition the optimization problem into
independent subproblems.
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• Solving time: The time it takes to solve all of the subproblems. This includes
time spent distributing the partitions to the cluster.

• Total query time: The total time it takes to build and execute the solve query,
i.e. the time it takes to produce the output DataFrame.

5.3 Single Machine Experiments
First, we compare the performance of SolveDF with SolveDB when run on a single
machine. SolveDF will be running with Spark in local mode, and each test case is run
in a separate JVM-process. To get insight into how much performance is gained by
parallelizing the solving process on a single machine (the machine has 4 cores), each
test case will be run twice for SolveDF; once with Spark using all of its cores, and once
with Spark being limited to using only 1 core (this is done by setting the master of the
SparkSession to “local[n]”, where n is the amount of cores).

5.3.1 Flex-object Scheduling Experiment

In this experiment, we solve the energy balancing problem introduced in 1.2.1, where
flex-objects have to be scheduled.

Setup

The data used for this experiment is generated by a script shown in Appendix B.1.1.
The data is stored in a PostgreSQL database prior to running the experiments, and we
use the same schema that was used in Section 4.2.2 for representing the flex-objects:
flexobjects (f_id, timeindex, e_min, e_max)

Each row represents the energy bounds in one time interval (denoted by timeindex)
of a flex-object (denoted by f_id). The amount of flex-objects and time intervals per
flex-object will be varied throughout the test cases, as shown in Table 5.2. Note that
this optimization problem can be partitioned across the time intervals into independent
subproblems, meaning that an instance of the flex-object scheduling problem with n time
intervals per flex-object can be partitioned into n subproblems. Because of this, it is easy
to tweak how partitionable the problem is by varying the amount of time intervals per
flex-object. For SolveDF, each test case will be run twice to test both solvers supported
by SolveDF (GLPK and Clp).

Queries

The same queries that were presented in Section 4.2.2 are used for this experiment.
Listing 5.1 Shows the SolveDB query for solving the problem, and Listing 5.2 shows the
SolveDF query for solving the problem.
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Table 5.2.: Test cases for the flex-object scheduling experiment.

Test case Flex-objects Time intervals per flex-object Total rows
1 1000 3 3000
2 1000 5 5000
3 1000 10 10000
4 1000 20 20000
5 5000 3 15000
6 5000 5 25000
7 5000 10 50000
8 5000 20 100000
9 10000 3 30000
10 10000 5 50000
11 10000 10 100000
12 10000 20 200000
13 25000 3 75000
14 25000 5 125000
15 25000 10 250000
16 25000 20 500000
17 50000 3 150000
18 50000 5 250000
19 50000 10 500000
20 50000 20 1000000
21 100000 3 300000
22 100000 5 500000
23 100000 10 1000000
24 100000 20 2000000
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1
2 SOLVESELECT e IN ( SELECT f_id , timeindex , e_min , e_max ,

NULL :: float8 AS e
3 FROM flexobjects) AS r_in
4 WITH t IN (SELECT DISTINCT timeindex AS ttid , NULL ::

float8 AS t FROM flexobjects) as temp
5 MINIMIZE (SELECT sum(t) FROM temp)
6 SUBJECTTO (SELECT e_min <= e <= e_max FROM r_in),
7 (SELECT -1 * t <= e_sum , e_sum <= t
8 FROM (SELECT sum(e) as e_sum , timeindex FROM r_in

GROUP BY timeindex) as a
9 JOIN temp ON temp.ttid = a.timeindex)

10 USING solverlp);

Listing 5.1: SolveDB solve query for flexobject scheduling.

1 val temp = flexobjects
2 .select('timeindex.as("ttid"))
3 .distinct ()
4 .withDecisionColumns('t)
5 temp.cache()
6 df.solveFor('e)
7 .minimize(in => temp.select(sum('t)))
8 .subjectTo('e >= 'e_min , 'e <= 'e_max)
9 .subjectTo(in => in.groupBy('timeindex)

10 .agg(sum('e) as 'e_sum , 'timeindex)
11 .join(temp , 'ttid === 'timeindex)
12 .select('e_sum <= 't, 'e_sum >= 't * -1.0))

Listing 5.2: SolveDF solve query for flexobject scheduling.
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Results

Tables with the complete results can be found in Appendix B.
It appears that the difference between using 1 or 4 cores on a single machine for

SolveDF is not as big as one might expect. Although SolveDF in this case can solve
4 subproblems in parallel, it solves each subproblem significantly slower than if it was
solving 1 at a time. Figure 5.1 shows the relative speedups in solving time when going
from 1 to 4 cores for SolveDF when solving the flex-object scheduling problem.
When looking at the time it takes to solve the partitions, the speedup gained by going

from 1 core to 4 cores appears to vary significantly between test cases, although there’s
a general trend for the speedup to be higher for larger problem sizes. When using GLPK
as the solver, the speedup in solving time is higher, peaking at a relative speedup of 2.09
in test case 24, whereas CLP peaks at a relative speedup of 1.31. However, as solving
the partitions is only a part of executing a solve query, the total speedup in terms of
total query time is smaller than what is indicated by Figure 5.1. Figure 5.2 shows the
relative speedup of the total query times. It is also worth pointing out that there are a
few outliers where the speedup is actually slightly lower than 1 (meaning the solving is
slower with 4 cores).

Figure 5.1.: Graph showing the speedup in solving time when going from 1 to 4 cores for SolveDF when solving
the flex-object scheduling problem across all test cases. Note that this speedup is for the solving
time, not the total query time.

For all test cases, SolveDB is faster than SolveDF. Figure 5.3 shows a comparison
between the total query times of SolveDB and SolveDF across all test cases. The results
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Figure 5.2.: Graph showing the speedup in total query time when going from 1 to 4 cores for SolveDF when
solving the flex-object scheduling problem across all test cases.

show that for SolveDF, using Clp as the solver is significantly faster than GLPK, as Clp
becomes several times faster than GLPK as the problem size grows (e.g. in test case 24,
Clp has a 5.95 times faster solving time than GLPK). However, even though Clp has a
significantly faster solving time than GLPK, the time it takes to materialize constraints
and partition the problem ends up dominating the solving time. This is even more of
a problem for smaller problem sizes, where the solving time is only a small fraction of
the total query time for SolveDF, as shown in Figure 5.4. This appears to be a much
smaller problem for SolveDB, as it can solve test cases 1-6 in less than a second, whereas
SolveDF requires 7-10 seconds for these cases. However, although there is more than
an order of magnitude difference in total query time between SolveDB and SolveDF
for some of the smaller test cases (i.e. test cases 1-7), the difference becomes smaller
as the problem size grows. In fact, for test case 24, SolveDB is only 2.38 times faster
than SolveDF when using Clp and 6.69 times faster than SolveDF when using GLPK,
as shown in Figure 5.3.
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Figure 5.3.: Comparison of total query times between SolveDB and SolveDF for flex-object scheduling. The
results for SolveDF are with 4 cores used.

Figure 5.4.: Graph showing how much time of a solve query is spent on solving partitions relative to the total
query time across all 24 test cases for SolveDF using 4 cores in the flex-object experiment.
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5.3.2 Knapsack Experiment

In this experiment, we look to solve a problem that is both computationally complex
and partitionable by SolveDB and SolveDF. For this, we use a variation of the 0-1 knap-
sack problem that is partitionable, which will be referred to as the categorized knapsack
problem. The problem is defined as follows:

We are given a set of n items, where each item belongs to one of m categories (each cat-
egory is denoted by a number). We are also given m knapsacks (one for each category)
to fill with items, and each knapsack has the same weight limit denoted by w. Each item
has a value and a weight, and we need to find quantity values for each item, such that
the total value of all items put into the knapsacks is maximized, while not putting items
with a total weight exceeding w into any knapsack. Essentially, solving this problem is
equivalent to solving m ordinary 0-1 knapsack problems separately. Like the flex-object
scheduling experiment, it is easy to control how partitionable this optimization problem
is by tweaking the value of m (the amount of possible partitions is equal to m).

Setup

All data used for the experiment is generated by a script shown in Appendix B.1.2.
The data is stored in a PostgreSQL database prior to running the experiments with the
following schema:
knapsack_items (item_name, weight, profit, category, quantity)

Each row represents an item that can be put into a knapsack. Note that the data type
of quantity is defined as integer, meaning that SolveDB and SolveDF will treat this as a
MIP problem. The amount of items in each category and the amount of categories will
be varied across the test cases, as shown in Table 5.3.

Queries

The queries for solving this problem are very similar to the queries for solving an ordinary
knapsack problem as shown in Section 4.2. Listing 5.3 Shows the SolveDB query used
in the experiment, and Listing 5.4 shows the SolveDF query used. Both SolveDB and
SolveDF use GLPK for the solving of the problem. We do not run SolveDF with Clp as
the solver, as Clp doesn’t support integer variables.
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Table 5.3.: Test cases for the knapsack experiment.

Test case Items per category Amount of categories Max weight Total rows
1 1000 1 1000 1000
2 1000 5 1000 5000
3 1000 10 1000 10000
4 1000 20 1000 20000
5 10000 1 10000 10000
6 10000 5 10000 50000
7 10000 10 10000 100000
8 10000 20 10000 200000
9 20000 1 20000 20000
10 20000 5 20000 100000
11 20000 10 20000 200000
12 20000 20 20000 400000
13 30000 1 30000 30000
14 30000 5 30000 150000
15 30000 10 30000 300000
16 30000 20 30000 600000
17 40000 1 40000 40000
18 40000 5 40000 200000
19 40000 10 40000 400000
20 40000 20 40000 800000
21 50000 1 50000 50000
22 50000 5 50000 250000
23 50000 10 50000 500000
24 50000 20 50000 1000000

1 SOLVESELECT quantity IN (SELECT * knapsack_items) as u
2 MAXIMIZE (SELECT SUM(quantity * profit) FROM u)
3 SUBJECTTO (SELECT SUM(quantity * weight) <= MAX_WEIGHT
4 FROM u GROUP BY category),
5 (SELECT 0 <= quantity <= 1 FROM u)
6 USING solverlp;

Listing 5.3: SolveDB solve query for the knapsack experiment. The maximum allowed weight per knapsack is
denoted by MAX_WEIGHT.
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1 knapsack_items.solveFor('quantity)
2 .maximize(sum('profit * 'quantity))
3 .subjectTo(in => in.groupBy('category)
4 .agg(sum('weight * 'quantity) <= maxWeight))
5 .subjectTo('quantity >= 0.0, 'quantity <= 1.0)
6 .withSolver(GlpkSolver)

Listing 5.4: SolveDF solve query for the knapsack experiment. The maximum allowed weight per knapsack is
denoted by maxWeight.

Results

Tables with the complete results can found in Appendix B.
Like in the flex-object experiment, going from 1 to 4 cores allows SolveDF to solve

4 subproblems at the same time in parallel, but each subproblem is solved more slowly
than when using 1 core. The resulting speedups in solving time and total query time are
shown in Figure 5.5 and Figure 5.6. Overall, the problem is solved faster with 4 cores, but
it varies significantly between test cases. For all test cases with only 1 partition (cases
1, 5, 9, 13, 17 and 21) the speedup is very close to 1 (i.e. there’s basically no change),
which makes sense as there’s only 1 subproblem that can be solved. The highest speedup
is achieved in Test case 8, which has a speedup of 2.71 for the solving time (which results
in a 2.50 speedup in total query time). In general, it appears that test cases with higher
amounts of categories (and thereby partitions) experience a higher speedup, while test
cases with higher amounts of items seem to have a lower speedup.
For test cases 1-5, SolveDB is significantly (2 to 50 times) faster than SolveDF, as

SolveDF spends several seconds building the query and optimization problem, wheras
actually solving the optimization problem only takes up a fraction of the time, as shown
in Figure 5.9. However, from test case 6 and onwards, SolveDF and SolveDB are gen-
erally close to each other in performance, with SolveDF performing better in all but 4
test cases. The total query times for SolveDB and SolveDF can be seen in Figure 5.7
and Figure 5.8. There also appears to be a tendency for SolveDF to perform better in
test cases with more than 1 partition (i.e. test cases with more than 1 category).
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Figure 5.5.: Graph showing the speedup in solving time when going from 1 to 4 cores for SolveDF in the knapsack
experiment across all test cases. Note that this speedup is for the solving time, not the total query
time.
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Figure 5.6.: Graph showing the speedup in total query time when going from 1 to 4 cores for SolveDF in the
knapsack experiment across all test cases.

Figure 5.7.: Comparison of total query times between SolveDB and SolveDF for the knapsack experiment in
test cases 1-9. The results for SolveDF are with 4 cores used.
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Figure 5.8.: Comparison of total query times between SolveDB and SolveDF for the knapsack experiment in
test cases 10-24. The results for SolveDF are with 4 cores used.

Figure 5.9.: Graph showing how much time of a solve query is spent on solving partitions relative to the total
query time across all 24 test cases for SolveDF using 4 cores in the knapsack experiment.
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5.4 Cluster Experiments

Now that we have an idea of how SolveDF performs in comparison to SolveDB on a
single machine, we will test the scalability of SolveDF by running the test cases of the
previous experiments on Spark clusters of varying sizes. Specifically, we will be running
SolveDF on clusters of sizes 2,4 and 8. All machines in the cluster are of the same
type (EC2 r3.xlarge) as the previous experiment. Spark is run using Spark Standalone
mode, and each test case is run as a separate application in client mode on the master
node. The program submitted to the cluster is a “fat JAR”, i.e. a JAR-file containing
the SolveDF code along with all of its external dependencies (except Spark, as this is
provided automatically by the cluster). The master node will have both a master- and
worker process running, meaning that the master node also participates in the solving
of submitted queries.

5.4.1 Results

Tables with the complete results can be found in Appendix B.
For the knapsack experiment, there is no speedup gained when solving test cases with

only 1 partition (i.e. cases 1, 5, 9, 13, 17, 21), which is to be expected. For the smaller
test cases (cases 1-4), there is in fact an increase in total query time, as it apparantly
takes longer to build the query when running on a cluster. However, things quickly
change in later test cases with more than 1 partition, as shown in Figure 5.10. On a
cluster of 2 nodes, most test cases with more than 1 partition show a speedup between
1.5 to 2, with test case 18 actually having a speedup of 2.23. For a cluster of size 4, the
maximum speedup in total query time achieved is 3.66 in test case 18, and for clusters
of size 8 the maximum speedup is 6.85 achieved in test case 20. In general, for clusters
of sizes 4 and 8, test cases with more partitions tend to experience a greater speedup.
For the most part, the speedups in solving time are only slighty higher than the

speedups in total query time (e.g. for a cluster size of 8, test case 20 has a speedup in
solving time of 7.63 compared to 6.85 in total query time), which makes sense as the
solving time is by far the most time consuming part of the solve query in the knapsack
experiment as shown earlier in Figure 5.9. Figure 5.11 shows the relative speedups in
solving time.
For the flex-object experiment, the speedups are significantly smaller, especially when

using Clp as the solver. This is not surprising, as the solving time is only a fraction
of the total query time when using Clp. The highest speedup in solving time with Clp
on a cluster of size 8 is in test case 23, where the speedup is 1.7, but the speedup in
total query time is only 1.05. In fact, most test cases with Clp take slightly longer when
you increase the cluster size, as the partitions are so quickly solved that the speedup
in solving time is overshadowed by the increased time in constructing the optimization
problem. Like in the knapsack experiment, the time it takes to build the query is higher
by a few seconds when running on a cluster. Graphs over the speedups in total query
time and solving time for Clp can be found in Figure 5.12 and Figure 5.13.
When using GLPK as the solver in the flex-object experiment, the speedup is higher,
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Figure 5.10.: Graph showing the relative speedups in total query time for SolveDF with different cluster sizes.

Figure 5.11.: Graph showing the relative speedups in solving time for SolveDF with different cluster sizes.
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Figure 5.12.: Graph showing the relative speedups in total query time for SolveDF with different cluster sizes
for the flex-object experiment with SolveDF using Clp.

Figure 5.13.: Graph showing the relative speedups in solving time for SolveDF with different cluster sizes for
the flex-object experiment with SolveDF using Clp.
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but still very low compared to the knapsack experiment. The highest speedup on a
cluster of size 8 with GLPK is achieved in test case 24, where the speedup in solving
time is 3.79, resulting in a speedup of 2.15 in total query time. In general, the speedup is
higher for larger problem sizes, with most of the lower-half of the test cases being slower
when run on a cluster. Graphs over the speedups in total query time and solving time
for GLPK can be found in Figure 5.14 and Figure 5.15.

Figure 5.14.: Graph showing the relative speedups in total query time for SolveDF with different cluster sizes
for the flex-object experiment with SolveDF using GLPK.
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Figure 5.15.: Graph showing the relative speedups in solving time for SolveDF with different cluster sizes for
the flex-object experiment with SolveDF using GLPK.

5.5 Discussion

As shown by the results, SolveDF appears to spend a lot of time on constructing opti-
mization problems compared to SolveDB. However, this appears to become less of an
issue as the size and especially the complexity of the problem grows, as exemplified by
the knapsack experiment, where the solving time ends up dominating all other parts
of executing the solve query. This type of problem has two important characteristics
that seem to make it ideal for SolveDF: It is partitionable (and thereby parallelizable)
and has high complexity. This means that time spent partitioning, moving data around
between nodes, and constructing optimization problems becomes negligible compared to
the solving time. Even when using only 1 machine, SolveDF has very similar perfor-
mance to SolveDB in the knapsack experiment, and with the exception of some of the
smallest test cases, SolveDF actually performs better in most test cases of the knapsack
experiment. When SolveDF runs the knapsack experiment on a cluster, the solving time
seems to grow approximately linearly with the number of nodes in the cluster, exempi-
fied by SolveDF in one case having a 7.63 times faster solving time (and thereby 6.85
times faster total query time) on a cluster with 8 machines compared to 1 machine. This
suggests that at least for complex problems with enough partitions, it is easy to scale
up SolveDF’s performance by using more machines.
On the other hand, the flex-object scheduling problem is a far less ideal problem for

SolveDF. Even for cases with large amounts of data, SolveDF was slower than SolveDB
in all cases, and adding more machines to the cluster had little effect when using Clp
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as the solver (in fact, it is faster with only 1 machine in many cases). Although the
flex-object scheduling problem is partitionable, it appears that it is not very complex,
meaning that solving the actual optimization problem is very quick. Even for the largest
test case, SolveDF ends up spending only 37% of its time solving partitions when using
Clp.
Interestingly, solving the flex-object scheduling problem with SolveDF using GLPK

was surprisingly slow compared to SolveDB. This is interesting, as SolveDB also uses
GLPK as the underlying solver, so one could except the solving times to be similar,
especially since the solving times are similar in the knapsack experiment. However,
although SolveDF and SolveDB use the same solver, there are some possible explanations
for why the performance differs so much here. It could be caused by the fact that SolveDF
and SolveDF use different version of GLPK (SolveDF uses version 4.61, whereas SolveDB
uses version 4.47), but it seems weird that a newer version of GLPK would perform
far slower than an older version. I think a more likely explanation is that either the
optimization problem is formulated differently in SolveDB, e.g. SolveDB might perform
some presolving before handing the problem to GLPK, or perhaps SolveDB uses different
configurations for GLPK.
Although using 4 cores to solve partitions in parallel on a single machine compared to

only using 1 core provides some speedup, it seems to vary a lot, and it tends to become
smaller as the problem size grows. Even in the knapsack experiment, where adding more
nodes to the cluster seems to provide a linear speedup in solving time, using more cores
on a single machine did not have much effect on the larger test cases. SolveDF is able
to solve 4 problems in parallel with 4 cores, but each problem is solved more slowly this
way. This could suggest that these problems become memory-bound as we add more
cores.
Another interesting result is how the “building query time” for SolveDF is very high for

small problem sizes, but doesn’t change much as the problem size grows. For example,
when running on 1 machine in the knapsack experiment, SolveDF uses 1.83 seconds to
build the query in test case 1, which involves only 1000 rows, whereas test case 24 only
takes 2.35 seconds to build the query despite involving 1000 times as many rows as test
case 1. I have reason to believe that the high building time in test case 1 is caused by
Spark having to “warm up”, as this only seems to happen when every test case is run
as separate JVM processes. If I instead run the test cases one by one in the same JVM
process, the first case that is run takes approximately 1.8-2.4 seconds to build the query,
while all the other test cases take less than a second (in particular, test case 1 only takes
0.1 seconds). In fact, whereas the total query time for test case 1 is 4.10 seconds in the
results, the total query time for test case 1 is only 0.9 seconds if it is run after any other
solve query. This could partially explain why the results show SolveDF as being very
slow for smaller test cases.
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6
Conclusion and Future Work
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6.1 Conclusion
In this project, I set out to test the following hypothesis:

• Is it feasible to make a tool that allows for seamless integration of data management
and constrained optimization problem solving in a Big Data context?

I conclude that i have proven this hypothesis through the design and implementation
of SolveDF. SolveDF is a tool that extends Spark SQL with SolveDB’s concept of solve
queries. These solve queries allow users to delcaratively specify and solve constrained
optimization problems through a familiar SQL-like interface, allowing for data manage-
ment and constrained optimization to be performed seamlessly in the same environment.
The syntax and structure of SolveDF is heavily inspired by SolveDB, and i have evalu-
ated the usability of SolveDB through the Discount Method for Evaluating Programming
Languages. This evaluation suggests that SolveDB has an intuitive syntax that can be
learned in a short time by people who are familar with SQL, and that the overall concept
and structure of solve queries is intuitive.

In Chapter 3, four requirements were specified for the design of SolveDF:

1. Declarative specification

2. Solver independence

3. Decomposition of problems

4. No modification of Spark

I conclude that all of these requirements are fulfilled. Requirement 1 is fulfilled because
SolveDF allows for optimization problems to be specified declaratively as DataFrame
queries in Spark SQL. Requirement 2 is fulfilled, as support for additional external
solvers can be implemented simply by writing a simple class with 1 method, and SolveDF
already supports 2 different external solvers. Requirement 3 is fulfilled through the
implementation of a decomposition algorithm using a union-find data structure, and
SolveDF is able to solve the resulting partitions in parallel on a cluster. Requirement 4
is also fulfilled, as SolveDF does not modify the source code of Spark, but rather builds
on top of Spark SQL by using user-defined types and custom tree-node types.
Finally, i have evaluated the performance of SolveDF and compared it to SolveDB in a

number of performance experiments. The results show that even when running on only
a single machine, SolveDF has similar performance to SolveDB for certain problems, and
in some cases outperforms SolveDB. The results also suggest that for problems of high
complexity that are partitionable, the performance of SolveDF scales well when running
on a cluster, exemplified by SolveDF being up to 6.85 times faster when run on a cluster
of 8 machines. However, the results also indicate that SolveDF is generally significantly
slower than SolveDB when constructing optimization problems, which results in poorer
performance for some problems, especially smaller and less complex problems.
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6.2 Future Work

Although the current implementation of SolveDF may look promising, there are still
many areas that could be improved on.

6.2.1 Performance Optimizations

As shown by the experiments, SolveDF is slow at constructing optimization problems,
and it would be worth looking into ways to improve this. One way to do this could be to
optimize the code generation of SolveDF’s custom TreeNode types (e.g. the TreeNodes
representing operators such as ≥,≤, +,−, ∗), as the generated code currently performs
some needless conversions between Spark SQL internal types and UDTs for every oper-
ation. Likewise, the TreeNode for the sum-aggregate function could probably be imple-
mented in a more effective way, as it is currently implemented with a CollectList node
followed by a call to a UDF.
It might also be worth implementing presolving functionality to SolveDF, e.g. by

making SolveDF able to identify and remove redundant constraints in an optimization
problem before forwarding it to an external solver.

6.2.2 Support for DataSets

Currently, SolveDF is designed to work with Spark SQL’s DataFrames. However, Spark
SQL also provides a very similar data structure called DataSet, which is basically a
strongly-typed DataFrame. In fact, the DataFrame type is actually just an alias for the
type DataSet[Row] in newer Spark versions. It might be worth making SolveDF work
on DataSets instead of DataFrames, as DataSet is a more general type than DataFrame.

6.2.3 Spark SQL Strings in Solve Queries

Currently, SolveDF allows solve queries to be defined with the syntax of Spark SQL’s
DataFrame API. However, Spark SQL queries can also specified with regular SQL-
strings, and it might be an interesting addition to allow constraint- and objective queries
to be specified with SQL-strings as well, as this might be more natural to write in some
cases, especially since the DataFrame API currently seems to have poor support for
subqueries.

6.2.4 Follow-up Usability Test

The usability evaluation of SolveDB suggests that it is generally intuitive and easy
to learn, and although SolveDF is heaviliy inspired by SolveDB, SolveDF’s usability
hasn’t been evaluated experimentally. In particular, it might be interesting to test the
usability of SolveDF on the same participants that the SolveDB usability evaluation was
performed on, to see if the reaction to SolveDF would be similar.
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6.2.5 Alternative Methods for Parallelization

Currently, SolveDF leverages the parallel capabilities of Spark through decomposition
of optimization problems. However, the current decomposition algorithm can only find
partitions for optimization problems with a specific type of structure (independent sub-
systems), but there exists other types of special structure[23] in optimization problems
that can be exploited. In particular, it could be worth looking into Dantzig-Wolfe de-
composition for SolveDF, as existing work[41] already exists on using Dantzig-Wolfe
decomposition for distributed computation of optimization problems.
Furthermore, the current implementation of the decomposition algorithm requires that

all data is collected on a single node. It would be worth looking into ways to perform
the decomposition efficiently without having to gather all data on a single node.

6.2.6 Solver Configurations

Currently, the user can define what solver to use for a solve query in SolveDF, but
the user doesn’t have control over any of the configurations/parameters of the solvers.
It would be a nice addition if solver-specific parameters could be specified directly as a
part of the solve query. Specifically, it could be very useful if users could specify whether
an exact solution is needed, or whether an approximate solution with certain tolerance
values would be sufficient.
Perhaps there could even be a configuration for running a solve query in “interactive

mode”, where the solver outputs feasible solutions while searching for an optimal solu-
tion. In this case, the user can stop the solving process early if the solver finds a solution
that the user deems to be good enough.
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Appendix A
SolveDB Usability Experiment

A.1 Task Sheet

Task 1: Inserting Money

You are given a table of bank accounts with the following schema:

account (id, interest, min_balance, balance)

Currently, all these accounts have a balance of 0. Your task is to determine how
much money should be put into the accounts. Each account has minimum balance
requirement which must be fulfilled, i.e. balance must be greater than or equal to
min_balance. If the min_balance of an account is less than $80, there must be at least
$80 on the account instead.

At the same time, we want to minimize the total amount of money inserted into all
accounts. We can formulate this as a constrained optimization problem:

Unknown variables: The balance column
Objective function: Minimize the sum of the balance values
Constraints: balance >= min_balance and balance >= 80

a)
Solve this problem with a SolveDB query using data from the account table.

b)
Management has decided that accounts with an interest value greater than 0.05 should
always have a balance of exactly $300. Change your query to reflect this new constraint.
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Task 2: Bucket Filling

You are given a table of buckets with the following schema:

bucket (id, min_amount, max_amount, amount)

As an employee in a bucket-filling agency, your task is to fill all these buckets with
an amount of water that is within the allowed bounds of the bucket. In other words,
find values for the amount column, such that min_amount <= amount <= max_amount
for each bucket.

At the same time, management has decided that 3 liters is the ideal amount of wa-
ter to have in a bucket, so each bucket should be filled with an amount that is as close
to 3 liters as possible.

Solve this problem with a SolveDB query using data from the bucket table. (Hint:
Try to identify the unknown variables, the objective function, and the constraints of the
problem first)

Task 3: The Knapsack Problem

Given a set of items, each with a weight and profit value, determine the number of each
item to include in a collection, such that the total weight is less than or equal to a given
limit, and the total profit is as large as possible.

a)
Solve the knapsack problem with a SolveDB query using data from the knapsack table
(shown below) with a maximum allowed weight of 15. In other words, replace the 0’s
in the quantity column with values such that the total profit is maximized, without the
total weight exceeding 15. Note that the assigned quantity values are not allowed to be
negative.

knapsack (item_name, weight, profit, quantity)
item_name weight profit quantity

item 1 6.0 10.0 0
item 2 4.0 7.0 0
item 3 4.5 8.0 0
item 4 8.0 13.0 0

b)
Change your solution to solve the 0-1 knapsack problem instead. This imposes the
restriction that the assigned quantity values must be either 0 or 1.
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A.2 Sample Sheet
The following is the sample sheet used for the experiment. Note that the syntax descrip-
tion of SolveDB shown is a simplified version, and the constrained optimization problem
example as well as the solution query were taken from the Daisy page on SolveDB[42].
The flex-object scheduling query is based on the flex-object query shown in the SolveDB
article[5].
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SolveDB Cheat Sheet
SolveDB integrates constrained optimization problem solving directly into SQL-queries.
SolveDB allows for so-called solve queries by introducing the SOLVESELECT clause. A
solve query has the following syntax:

SOLVESELECT col_name [, ...] IN ( select_stmt ) [AS alias]
[ MINIMIZE ( select_stmt ) | MAXIMIZE ( select_stmt ) ]
[ SUBJECTTO ( select_stmt ) [, ...] ]
WITH solver_name()

A constrained optimization problem consists of an objective function and a number
of constraints. The goal is to find values for a set of unknown variables such that the
objective function is either minimized or maximized, where the values of the unknown
variables uphold the constraints. Below is a simple example of an optimization problem
with two unknown variables and two constraints:

Maximize: 0.6x1 + 0.5x2
Subject to:

x1 + 2x2 ≤ 1
3x1 + x2 ≤ 2

This optimization problem can be solved by the following query in SolveDB:

1 SOLVESELECT x1, x2 IN (SELECT x1, x2 FROM data) AS u
2 MAXIMIZE (SELECT 0.6*x1 + 0.5*x2 FROM u)
3 SUBJECTTO (SELECT x1+2*x2 <=1 FROM u),
4 (SELECT 3*x1+x2 <= 2 FROM u)
5 WITH solverlp ();

The solution in this case is x1 = 1, x2 = −1
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Other examples of solve queries

Giving raises to employees:

1 SOLVESELECT new_salary IN
2 (SELECT id, name , age , current_salary , new_salary
3 FROM employee) as r_in
4 MINIMIZE (SELECT sum(new_salary - current_salary) FROM r_in)
5 SUBJECTTO
6 (SELECT new_salary >= 1.10 * current_salary
7 FROM r_in
8 WHERE age > 40),
9 (SELECT new_salary >= (SELECT avg(currrent_salary) FROM

r_in)
10 FROM r_in)
11 WITH solverlp ();

Flex-object scheduling query:

1 SOLVESELECT e IN
2 (SELECT fid , tid , e_l , e_h , e FROM f_in) AS r_in
3 MINIMIZE (SELECT sum(abs(t))
4 FROM (SELECT sum(e) AS t
5 FROM r_in GROUP BY tid) AS s)
6 SUBJECTTO
7 (SELECT e_l <= e <= e_h FROM r_in)
8 WITH solverlp ();

Activity scheduling query:

1 SOLVESELECT hours IN
2 (SELECT a_id , a_name , a_profit , NULL:: FLOAT4 AS hours
3 FROM activities) AS t
4 MAXIMIZE
5 (SELECT sum(hours * a_profit) FROM t)
6 SUBJECTTO
7 (SELECT hours >= 0 FROM t),
8 (SELECT sum(hours * a.r_cost) <=
9 (SELECT r.r_amount FROM resources r WHERE r.r_id =

a.r_id)
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10 FROM t INNER JOIN act_res a ON t.a_id = a.a_id
11 GROUP BY a.r_id)
12 WITH solverlp ();

83



Appendix B
Performance Experiments

B.1 Data Generation Scripts

The following Scala scripts were used to generate the test data used for the experiments.

B.1.1 Flexobject Experiment

1 def generateFlexObjects(amount: Int , sliceAmount: Int , seed
: Int = 0): List[(Int , Int , Double , Double)] = {

2 var r = new scala.util.Random
3 if (seed != 0)
4 r = new scala.util.Random(seed)
5 val result = (0 to amount - 1).flatMap(i => (0 to

sliceAmount - 1)
6 .map(j => {
7 val min = r.nextInt (10).toDouble
8 val max = min + r.nextInt (10).toDouble
9 if (i % 2 == 0)

10 (i, j, min , max)
11 else
12 (i, j, -max , -min)
13 }))
14 result.toList
15 }

B.1.2 Knapsack Experiment
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1 def generateKnapsackProblem(items: Int , categories: Int =
1): Seq[(String , Double , Double , Int , Int)] = {

2 val r = new scala.util.Random (8)
3 var i = 0
4 (1 to categories).flatMap(category =>
5 {
6 (1 to items).map(item => {
7 val weight = 1 + r.nextInt (7).toDouble
8 val profit = 1 + r.nextInt (11).toDouble
9 (s"item ${category}_$item", weight , profit , category ,

0)
10 })
11 })
12 }

B.2 Performance Results

Table B.1.: SolveDB results for the knapsack experiment.
Test case Items per category Categories Partitioning (s) Solving (s) Total solving time (s) Total query time (s)

1 1000 1 0.000197 0.034735 0.036413 0.076
2 1000 5 0.002833 0.239689 0.247060 0.332
3 1000 10 0.006027 0.573048 0.587914 0.733
4 1000 20 0.011793 1.250665 1.280465 1.546
5 10000 1 0.001892 8.700339 8.718208 8.860
6 10000 5 0.028448 38.173300 38.258963 38.914
7 10000 10 0.063910 72.333700 72.504322 73.794
8 10000 20 0.127880 146.410104 146.743293 149.346
9 20000 1 0.003837 21.782770 21.823697 22.088
10 20000 5 0.051334 197.054578 197.267551 198.549
11 20000 10 0.103605 354.313020 354.776651 357.385
12 20000 20 0.209928 823.228627 824.117938 849.263
13 30000 1 0.006166 109.493241 109.570802 109.960
14 30000 5 0.079939 614.011008 614.395631 616.359
15 30000 10 0.149665 959.354045 959.993860 963.846
16 30000 20 0.306307 2176.636156 2177.938338 2185.625
17 40000 1 0.008125 243.863668 243.969899 244.479
18 40000 5 0.103911 1247.217043 1247.747884 1250.359
19 40000 10 0.202089 2273.935586 2274.934365 2280.089
20 40000 20 0.420395 4434.017902 4436.034668 4446.413
21 50000 1 0.011307 418.45404 418.596917 419.244
22 50000 5 0.126202 1605.964286 1606.622000 1609.87
23 50000 10 0.262116 2909.682967 2910.998416 2917.506
24 50000 20 0.519682 5463.076890 5465.730893 5478.660
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Table B.2.: SolveDFresults for the knapsack experiment on 1 machine using all of its cores.
Test case Items per category Categories Building query (s) Materializing query (s) Partitioning (s) Solving (s) Total query time (s)

1 1000 1 1.83184 1.29559 0.05271 0.26817 3.44833
2 1000 5 1.86116 1.76385 0.14258 0.86678 4.63436
3 1000 10 2.11940 2.36188 0.21658 1.19112 5.88900
4 1000 20 1.93256 3.11462 0.52519 1.85922 7.43162
5 10000 1 192548 2.43359 0.19702 14.5769 19.1330
6 10000 5 1.94600 3.92162 0.65603 32.3350 38.8587
7 10000 10 1.86531 5.76653 1.09641 54.7168 63.4451
8 10000 20 1.98431 8.09862 2.1977 95.0986 107.379
9 20000 1 2.08725 3.08441 0.51295 57.2786 62.9632
10 20000 5 2.00972 5.63132 1.14672 142.416 151.204
11 20000 10 2.03759 8.16278 2.22239 238.081 250.504
12 20000 20 2.05396 12.9353 4.28366 429.670 448.943
13 30000 1 1.91782 3.66648 0.43618 104.853 110.87
14 30000 5 2.02903 7.01539 1.95913 365.046 376.049
15 30000 10 1.99359 10.6430 3.40936 686.182 702.228
16 30000 20 2.23586 18.0513 6.58685 1351.28 1378.1
17 40000 1 1.89297 3.76199 0.55130 214.012 220.21
18 40000 5 1.99651 8.22364 2.35332 907.120 919.693
19 40000 10 2.18670 12.7011 4.39288 1673.62 1692.90
20 40000 20 2.17868 21.0728 9.05302 3228.45 3260.75
21 50000 1 1.88023 4.10221 0.60487 333.526 340.113
22 50000 5 1.97917 10.1649 2.93841 1430.90 1445.98
23 50000 10 2.12284 14.9473 5.37411 2830.12 2852.56
24 50000 20 2.35437 26.0828 12.2698 5573.82 5614.53

Table B.3.: SolveDFresults for the knapsack experiment with Spark restricted to using only 1 core.
Test case Items per category Categories Building query (s) Materializing query (s) Partitioning (s) Solving (s) Total query time (s)

1 1000 1 1.793498846 1.250139958 0.051235641 0.277747127 4.083263766
2 1000 5 1.799558411 1.778027242 0.134435546 1.044416174 5.437982698
3 1000 10 1.850839782 2.225807003 0.192987242 1.613107622 6.561690906
4 1000 20 1.94895647 2.876518753 0.392780099 2.662646771 8.580235544
5 10000 1 1.930837787 2.293077063 0.297847001 14.59459103 19.8952817
6 10000 5 1.974886774 4.089188493 0.602030537 67.51023515 74.81306558
7 10000 10 1.888689801 5.3922989 1.023364521 133.147552 142.1129383
8 10000 20 2.091030665 7.588350771 2.100117751 257.7392485 270.2097576
9 20000 1 2.010657365 2.938488562 0.340084014 56.93010978 62.88215143
10 20000 5 2.167876597 5.58994391 1.111524768 266.1590879 275.7231679
11 20000 10 2.071365979 8.019183362 2.177545502 536.4883105 549.4231064
12 20000 20 2.355353693 12.57294421 4.746734164 1043.655041 1064.040165
13 30000 1 2.132300799 3.524584682 0.485307946 104.4773153 111.3123371
14 30000 5 2.231152747 6.904874316 1.7066054 549.7409991 561.3161027
15 30000 10 2.337665632 10.5182359 3.788324157 1089.968553 1107.296471
16 30000 20 2.079559384 16.86295164 6.291272097 2217.689149 2243.619042
17 40000 1 2.063112384 3.839996365 0.501930267 213.8917506 221.0295439
18 40000 5 1.964249964 7.955149138 2.204489327 1026.120961 1038.929484
19 40000 10 2.285773784 12.43086838 4.488843595 2083.630669 2103.555141
20 40000 20 2.449216013 21.18401089 8.632441544 4034.306377 4067.321747
21 50000 1 1.876340225 4.524157865 0.576021278 334.5849277 342.2244753
22 50000 5 1.941504593 9.650400829 2.749478309 1574.33116 1589.358402
23 50000 10 2.039450548 15.44316421 5.707534055 3186.931566 3210.782198
24 50000 20 2.506555368 26.26091845 11.44948562 6189.382674 6230.278378
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Table B.4.: SolveDFresults for the knapsack experiment on a cluster of 2 machines.
Test case Items per category Categories Building query (s) Materializing query (s) Partitioning (s) Solving (s) Total query time (s)

1 1000 1 2.764339488 4.771588434 0.081968338 0.375327064 8.641844732
2 1000 5 2.871038768 3.76269752 0.174927737 1.307756542 8.766361123
3 1000 10 2.773950761 5.602444497 0.245999538 1.047785298 10.26409562
4 1000 20 2.847766816 5.220783749 0.406023705 1.825142693 10.92442936
5 10000 1 2.836184411 4.769586325 0.287827539 15.28709561 23.78031148
6 10000 5 3.197393999 6.14899562 0.737019219 19.1897906 29.94857432
7 10000 10 2.894779908 8.354186499 1.057790239 32.65404294 45.573425
8 10000 20 2.892990037 9.30380729 1.883148509 51.53256364 66.25141762
9 20000 1 2.889164243 4.709130705 0.303312072 57.19843582 65.71643895
10 20000 5 3.112960489 7.318389619 1.11182142 71.59487843 83.76035765
11 20000 10 2.979818519 10.17183911 1.963657713 143.3576421 159.1383857
12 20000 20 3.072507402 12.23222937 3.591353487 227.2984866 246.8455612
13 30000 1 2.799432165 5.339118437 0.471241161 105.5718451 114.7693868
14 30000 5 3.076652322 8.061555263 1.496613471 194.7856819 207.9884111
15 30000 10 2.967161938 12.13550914 2.964676221 338.2599553 356.9709105
16 30000 20 3.283090259 17.26184047 7.850018315 646.4595441 675.4919997
17 40000 1 3.038122302 5.877708351 0.589654214 212.78973 222.9235351
18 40000 5 3.247127476 8.994943387 1.978889371 396.4897146 411.3314238
19 40000 10 3.175018353 14.86062545 3.590537882 982.8180678 1005.012841
20 40000 20 3.410436014 22.37394836 10.23963136 1679.856545 1716.522146
21 50000 1 2.936940888 7.343996257 0.650524947 333.1711 344.7651346
22 50000 5 3.247736593 10.99294459 2.392510289 712.314732 729.6243217
23 50000 10 3.102317498 15.19922216 7.02133726 1504.418633 1530.390983
24 50000 20 3.740208426 28.03165873 12.07708726 2897.333715 2941.823681

Table B.5.: SolveDFresults for the knapsack experiment on a cluster of 4 machines.
Test case Items per category Categories Building query (s) Materializing query (s) Partitioning (s) Solving (s) Total query time (s)

1 1000 1 2.838999249 4.412304036 0.066916954 0.520340465 8.489570581
2 1000 5 2.765757625 3.845728559 0.1630185 1.164778165 8.549093765
3 1000 10 2.863642142 4.583384482 0.294900645 1.371798541 9.736133879
4 1000 20 2.781010731 6.010089316 0.299668671 1.945240536 11.68589503
5 10000 1 2.754613938 5.420561626 0.25057849 14.74438148 23.77861714
6 10000 5 2.815271789 7.092681763 0.647143863 16.84967238 28.01574344
7 10000 10 2.898667062 8.173279317 0.9830232 19.84691063 32.52882345
8 10000 20 2.838440671 10.42895634 1.887138085 39.13578429 54.93929687
9 20000 1 3.111199425 5.873218848 0.374306033 57.54446336 67.48259843
10 20000 5 3.097333304 8.385186627 1.030289156 62.11686824 75.23996127
11 20000 10 2.920909502 9.996125372 1.987706705 76.5737519 92.06293006
12 20000 20 3.223418329 13.63421668 3.576430577 134.6781355 155.7936153
13 30000 1 2.785606257 5.328151692 0.39057471 105.1867433 114.3052086
14 30000 5 2.8528272 7.955078857 1.455093959 136.1846604 149.0514157
15 30000 10 2.97982841 11.61733639 2.823439377 187.5533837 205.5534513
16 30000 20 3.101231064 16.54613205 5.781741809 355.5010005 381.5512192
17 40000 1 2.794023934 6.711555863 0.579736912 212.4930087 223.2077164
18 40000 5 2.928819683 10.03748977 1.906173987 235.5910484 251.0644871
19 40000 10 3.153958137 13.20724627 3.734998191 543.3096641 564.0989089
20 40000 20 3.010855712 20.2632161 10.74909594 932.825782 967.5037793
21 50000 1 3.090208978 6.770206623 0.701727409 333.5298709 344.7339695
22 50000 5 2.925490487 10.10903176 2.582429107 466.1665337 482.3754069
23 50000 10 2.995998071 15.79063765 7.000011675 845.1977447 871.6090325
24 50000 20 3.198091622 27.15355079 12.24896427 1643.837991 1687.016664
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Table B.6.: SolveDFresults for the knapsack experiment on a cluster of 8 machines.
Test case Items per category Categories Building query (s) Materializing query (s) Partitioning (s) Solving (s) Total query time (s)

1 1000 1 2.874069013 4.426668459 0.070535354 1.055755285 9.060928016
2 1000 5 3.003195765 5.085196277 0.170157539 1.130065725 10.00408268
3 1000 10 3.023588893 5.364895739 0.265774827 1.537895137 10.82621149
4 1000 20 2.908353715 6.690695344 0.406051279 1.583302577 12.22543613
5 10000 1 2.826714087 5.43440468 0.246315977 15.32900998 24.46193862
6 10000 5 2.960945791 7.095356644 0.78233076 17.53582622 29.00079321
7 10000 10 3.034848168 7.953822094 1.200235989 21.93370448 34.76165879
8 10000 20 3.008675625 9.889928006 2.262767737 21.78187152 37.60379976
9 20000 1 3.073919315 4.747206469 0.349375074 57.10141068 65.95509714
10 20000 5 2.909576283 8.081846719 1.318598805 61.07302895 73.98677347
11 20000 10 2.991686698 10.48257819 2.50789215 77.73540139 94.35236068
12 20000 20 3.19359983 14.11712138 4.42453006 85.50712612 107.9587289
13 30000 1 3.000314978 6.598046889 0.600706886 105.3156456 116.1494012
14 30000 5 3.306062391 9.385600932 1.811564364 130.6737435 145.791299
15 30000 10 3.239641175 11.86719104 3.729235973 131.8564802 151.4050981
16 30000 20 3.526857327 19.07979276 9.379746699 176.9261245 209.7366833
17 40000 1 3.003887931 6.634905338 0.601430827 212.4532739 223.3017958
18 40000 5 3.068239953 10.21979892 2.386177098 225.2814512 241.5817053
19 40000 10 3.382379784 13.6546512 4.787167408 254.6300229 277.0964946
20 40000 20 3.439122757 22.31475462 9.395504629 439.8222098 475.6697813
21 50000 1 2.950313166 6.312396938 0.784250386 327.2279772 337.8992983
22 50000 5 3.008347259 10.35446111 3.314834784 355.6892529 373.017167
23 50000 10 3.45021714 15.69958711 8.031117147 490.8219508 518.6340589
24 50000 20 3.603727643 29.54087618 15.62783056 901.621019 951.0659186

Table B.7.: SolveDB results for the flexobject experiment.
Test case Flex-objects Time intervals Partitioning (s) Solving (s) Total solving time (s) Total query time (s)

1 1000 3 0.001231 0.003705 0.00788 0.09
2 1000 5 0.002045 0.005811 0.012774 0.126
3 1000 10 0.004129 0.011384 0.026169 0.221
4 1000 20 0.008702 0.022573 0.053362 0.418
5 5000 3 0.006294 0.020504 0.04432 0.33
6 5000 5 0.011177 0.032004 0.07435 0.524
7 5000 10 0.022026 0.064732 0.152853 1.053
8 5000 20 0.044735 0.128235 0.313489 2.089
9 10000 3 0.012704 0.04056 0.090762 0.632
10 10000 5 0.022727 0.069515 0.162805 1.058
11 10000 10 0.044492 0.137368 0.335974 2.113
12 10000 20 0.100414 0.275763 0.690089 4.219
13 25000 3 0.033443 0.131321 0.296953 1.623
14 25000 5 0.059538 0.228984 0.541585 2.767
15 25000 10 0.118708 0.436807 1.076982 5.468
16 25000 20 0.252738 0.820591 2.089813 10.821
17 50000 3 0.067891 0.287114 0.686903 3.331
18 50000 5 0.118507 0.510516 1.214833 5.587
19 50000 10 0.221757 0.98178 2.400821 11.19
20 50000 20 0.467269 1.973622 4.895806 22.334
21 100000 3 0.132937 0.729039 1.552951 6.774
22 100000 5 0.223669 1.193978 2.61712 11.313
23 100000 10 0.495333 2.21673 5.238106 22.507
24 100000 20 1.08152 4.43679 10.68769 45.849
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Table B.8.: SolveDF results for the flex-object experiment with GLPK as the solver, and using all 4 cores of a
single machine.

Test case Flex-objects Time intervals Building query (s) Materializing query (s) Partitioning (s) Solving (s) Total query time (s)
1 1000 3 3.94987 2.04626 0.15040 0.26940 6.41595
2 1000 5 3.99333 2.44113 0.17526 0.42411 7.03384
3 1000 10 4.07134 2.77392 0.19203 0.48254 7.51984
4 1000 20 4.27337 3.56261 0.47647 0.78680 9.09926
5 5000 3 4.06819 2.96537 0.35771 0.68650 8.07780
6 5000 5 4.06538 3.40278 0.51854 1.03805 9.02476
7 5000 10 3.91706 4.08980 0.83019 1.45270 10.2897
8 5000 20 4.38159 5.35966 1.27815 2.38501 13.4044
9 10000 3 4.16735 3.44724 0.47523 1.08955 9.17939
10 10000 5 4.28507 4.12981 0.83059 2.12295 11.3684
11 10000 10 4.14873 5.13349 1.22751 3.13503 13.6447
12 10000 20 4.51582 7.32894 2.13152 5.58295 19.5592
13 25000 3 4.20815 4.70281 0.92078 4.00481 13.8365
14 25000 5 4.41676 6.40381 1.30708 7.42151 19.5491
15 25000 10 4.56460 8.49336 2.77904 12.2009 28.0379
16 25000 20 4.95646 12.5487 5.73010 21.1301 44.3654
17 50000 3 4.26414 6.58752 1.65829 11.2182 23.7282
18 50000 5 4.28234 8.28066 3.35441 20.9277 36.8451
19 50000 10 4.68807 13.1229 5.60599 35.4323 58.8494
20 50000 20 4.96907 20.4072 11.2996 68.7613 105.437
21 100000 3 4.31637 9.81192 3.04043 40.3814 57.5501
22 100000 5 4.69077 13.6899 5.56684 72.9560 96.9036
23 100000 10 5.37417 20.9774 11.8531 120.582 158.786
24 100000 20 6.00104 36.5736 23.7124 239.921 306.208

Table B.9.: SolveDF results for the flex-object experiment with GLPK as the solver, and using 1 core of a single
machine.

Test case Flex-objects Time intervals Building query (s) Materializing query (s) Partitioning (s) Solving (s) Total query time (s)
1 1000 3 4.817232668 2.309073143 0.123155606 0.328936853 8.226830501
2 1000 5 4.717116501 3.130696524 0.17642493 0.351351223 9.153361177
3 1000 10 4.75294075 3.466620729 0.300656776 0.538067845 9.81905606
4 1000 20 4.528786152 3.522587969 0.615825875 0.894846464 10.23319844
5 5000 3 4.705518038 3.624601301 0.398544371 0.791612851 10.11980007
6 5000 5 4.681147671 4.330284653 0.838694687 1.556401279 12.2165098
7 5000 10 4.349730163 4.424989458 0.837479 1.890359036 12.12945811
8 5000 20 4.572540975 5.254539802 1.045741426 3.244259333 14.73907363
9 10000 3 4.1321 3.798200279 0.498826077 1.513597838 10.50666978
10 10000 5 4.145588615 4.687526811 0.674349397 2.278000293 12.45482584
11 10000 10 4.545181926 5.668633811 1.291146106 4.453656562 16.55130247
12 10000 20 4.644543347 7.284544897 1.954099059 8.481697364 22.94139645
13 25000 3 4.377350127 5.145805725 1.190894058 6.288862433 17.63719577
14 25000 5 4.60137368 6.208023939 1.478429163 10.29780526 23.16895133
15 25000 10 4.44343616 8.689926519 2.783917757 19.21350612 35.77179456
16 25000 20 4.758315556 12.37393956 5.143910029 38.14904527 60.97851067
17 50000 3 4.600230882 6.713481303 1.729451092 20.81827359 34.43676095
18 50000 5 4.522812351 8.464311777 2.921838604 33.30909842 49.80556231
19 50000 10 5.055347285 12.89472939 5.582149002 69.1068617 93.23979928
20 50000 20 5.317862665 20.95940897 11.48358289 137.5091618 175.8826795
21 100000 3 4.328394778 9.283836931 3.214689721 75.58934858 93.05298381
22 100000 5 4.788981045 13.01848247 5.411326806 127.7300951 151.5263232
23 100000 10 5.307487562 21.30798645 12.28347661 243.8709104 283.3840832
24 100000 20 6.471663508 38.96461923 24.01788428 501.8251207 571.9040741
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Table B.10.: SolveDF results for the flex-object experiment with GLPK as the solver run on a cluster of 2 nodes.
Test case Flex-objects Time intervals Building query (s) Materializing query (s) Partitioning (s) Solving (s) Total query time (s)

1 1000 3 6.453303728 4.00839088 0.121796718 0.394149175 11.55084025
2 1000 5 6.447078435 5.065114693 0.13528432 0.407883228 12.65189908
3 1000 10 5.67104583 5.599641507 0.278105229 0.511170353 12.66747799
4 1000 20 6.352442445 5.222795804 0.307219918 0.609649798 13.0505222
5 5000 3 5.913792637 5.391691319 0.357735693 0.651898038 12.848441
6 5000 5 6.072631769 5.493235509 0.441010795 1.22070149 13.85456837
7 5000 10 6.830928783 6.386600677 0.669366703 1.433451877 15.91266976
8 5000 20 6.287127549 7.043055178 1.083399658 1.825249433 16.76874836
9 10000 3 6.141600415 5.289288133 0.434121668 1.320967155 13.7649127
10 10000 5 6.43608313 5.946749792 0.539594265 1.576397453 15.00968525
11 10000 10 6.063174235 7.192175378 1.2245532 2.487201035 17.52837937
12 10000 20 6.093702789 8.760613439 1.869688278 3.503729975 20.77496197
13 25000 3 6.245657718 7.018896372 0.888188055 3.112506979 17.7997278
14 25000 5 6.471199227 7.630233875 1.348604711 4.533375984 20.50048662
15 25000 10 6.884265833 8.531021412 2.530868484 7.708151469 26.18292368
16 25000 20 6.609198304 12.22256547 4.595048258 13.64586003 37.60346429
17 50000 3 6.576530885 8.029532839 1.511142213 8.435688314 25.15317553
18 50000 5 6.333111837 9.146232339 2.367489087 12.06217165 30.46617271
19 50000 10 6.900364511 12.33266587 7.054871743 23.02219366 49.8250082
20 50000 20 7.080472141 20.3744154 12.2688272 35.72897436 75.96424275
21 100000 3 6.544129007 10.09037177 2.953818727 30.00240641 50.09605065
22 100000 5 6.849442171 11.9311027 4.651002873 42.21875478 66.16434353
23 100000 10 7.816714286 20.32100532 12.37172131 76.78296127 117.8098343
24 100000 20 7.841586733 35.50093174 32.4078332 133.3217755 209.5937009

Table B.11.: SolveDF results for the flex-object experiment with GLPK as the solver run on a cluster of 4 nodes.
Test case Flex-objects Time intervals Building query (s) Materializing query (s) Partitioning (s) Solving (s) Total query time (s)

1 1000 3 5.546171408 4.722149548 0.13663527 0.339811839 11.31158749
2 1000 5 5.965503418 4.142039496 0.153768971 0.380794993 11.19779977
3 1000 10 5.737588801 5.373278774 0.271661527 0.508445244 12.46867924
4 1000 20 5.696388358 5.227567531 0.330440763 0.647950186 12.45350817
5 5000 3 6.013503038 4.64884821 0.2733321 0.786807628 12.27201017
6 5000 5 5.751431144 5.741788177 0.37334366 0.756302014 13.1734532
7 5000 10 6.114203389 6.009090247 0.684741087 1.203871916 14.5629923
8 5000 20 5.937887005 7.32077137 1.066136496 1.656669397 16.48164973
9 10000 3 5.808269265 5.374174635 0.345936968 1.243246098 13.28933978
10 10000 5 6.156053395 5.649036261 0.658032349 1.497440594 14.48293595
11 10000 10 6.284268235 6.93665874 1.035332365 2.10979931 16.91225416
12 10000 20 6.389650921 8.433352166 1.936256661 3.252517412 20.56324994
13 25000 3 6.254349887 6.51503598 0.817644069 2.939309173 17.05378497
14 25000 5 6.146268028 7.497301229 1.190047778 4.546754388 19.89802946
15 25000 10 6.352114322 9.007038688 2.447574751 5.182989252 23.49957781
16 25000 20 6.680012347 12.21393778 6.300598012 10.34534349 36.07726139
17 50000 3 6.116718467 7.601453167 1.390377518 8.146809065 23.77808563
18 50000 5 6.37607979 9.191602081 2.341936169 13.46726097 31.86710585
19 50000 10 6.555654789 12.14818201 7.043636602 15.18158509 41.43775258
20 50000 20 7.350417763 20.81183462 11.81278074 30.49110156 70.98927485
21 100000 3 6.097458408 10.50331058 3.175033538 28.23357154 48.54715376
22 100000 5 7.063002621 12.03820739 7.633271827 29.55128284 56.83374
23 100000 10 7.278147699 20.33067721 12.06143765 47.3688362 87.59206486
24 100000 20 8.126481221 37.43357423 25.4870456 105.8351997 177.3924994
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Table B.12.: SolveDF results for the flex-object experiment with GLPK as the solver run on a cluster of 8 nodes.
Test case Flex-objects Time intervals Building query (s) Materializing query (s) Partitioning (s) Solving (s) Total query time (s)

1 1000 3 5.83348273 4.150612258 0.080024089 0.349277879 10.95621981
2 1000 5 6.265806093 5.134791739 0.151867767 0.410334178 12.51280567
3 1000 10 6.141867647 5.039088422 0.248156765 0.564669149 12.559532
4 1000 20 6.399305851 5.281617198 0.305968513 0.707853449 13.28966681
5 5000 3 6.049483635 5.167443085 0.31065149 0.678378703 12.75531965
6 5000 5 5.974236956 6.027909467 0.370678348 0.809294341 13.74025681
7 5000 10 6.575157726 6.443109564 0.626989035 1.271845591 15.52397524
8 5000 20 6.295315788 8.119715501 1.208966722 1.64759276 17.82196691
9 10000 3 6.515882854 6.10308791 0.513564892 1.219729621 14.89649622
10 10000 5 6.566801265 6.843259712 0.769625415 1.281324249 16.01001241
11 10000 10 6.187748528 7.067037484 1.175919186 2.123119721 17.09210962
12 10000 20 6.589483268 8.933172363 2.106016085 3.066489536 21.24922621
13 25000 3 6.270187706 6.941894155 1.063270751 3.022650132 17.82242921
14 25000 5 6.398151676 7.560767646 1.482466777 3.582342324 19.5717873
15 25000 10 6.431074797 9.429627819 2.825307094 4.580742022 23.80014749
16 25000 20 7.05748922 13.12468955 5.883562373 7.770915538 34.40069793
17 50000 3 6.859632756 8.109833773 1.785486132 8.22393208 25.52520835
18 50000 5 6.836176806 9.402221203 2.861798518 9.069556544 28.7132155
19 50000 10 6.681548137 13.06815866 7.411750032 11.56181678 39.2745656
20 50000 20 7.705499602 20.37311441 14.28846745 18.59889615 61.54106053
21 100000 3 6.686644917 11.00264528 3.277468353 28.91122991 50.42782635
22 100000 5 6.932051124 12.93758022 8.231327304 29.69271387 58.36237429
23 100000 10 7.282432692 20.49521935 14.62568778 50.29102173 93.21275902
24 100000 20 8.778870641 39.8160996 30.23659855 63.21719314 142.5841847

Table B.13.: SolveDF results for the flex-object experiment with Clp as the solver, and using all 4 cores of a
single machine.

Test case Flex-objects Time intervals Building query (s) Materializing query (s) Partitioning (s) Solving (s) Total query time (s)
1 1000 3 4.218749599 2.046354612 0.113988322 0.457015919 7.670234729
2 1000 5 3.7159783 2.522961355 0.14837371 0.448021697 7.542632232
3 1000 10 3.935315007 2.623947648 0.272035275 0.66166631 8.293492324
4 1000 20 4.06463029 3.401639142 0.411489842 0.874923691 9.489278459
5 5000 3 4.020081303 3.153398137 0.271388776 0.852481199 9.017388181
6 5000 5 4.100298025 3.611402959 0.555767312 1.044950189 9.927863821
7 5000 10 3.924683239 4.275600808 0.840809283 1.198503904 10.91171128
8 5000 20 4.135499237 5.041851675 1.059163289 1.870595715 12.70447361
9 10000 3 3.910231719 3.739442315 0.529568902 1.039087412 9.910131864
10 10000 5 3.955017538 4.256968754 0.749761467 1.336194208 10.94669462
11 10000 10 4.123914047 4.885228416 1.393314009 2.031302821 12.99304472
12 10000 20 4.356060352 7.27160188 2.201318526 4.042236047 18.49911703
13 25000 3 3.941157112 4.959715956 0.959298736 2.032349446 12.55783772
14 25000 5 4.096794333 6.07887508 1.37413412 3.165969637 15.37159343
15 25000 10 4.365169462 8.064454848 2.720268689 5.147888792 20.92700186
16 25000 20 4.601615739 12.21145473 5.432781525 8.452961766 31.28906311
17 50000 3 4.169804665 6.30618098 1.588417813 4.047989864 16.81310423
18 50000 5 4.665819925 8.144492921 2.841169674 5.877075082 22.1271264
19 50000 10 4.579371977 12.57665757 5.184744766 10.06398997 33.00368918
20 50000 20 4.998459152 19.63356755 10.60175452 18.24598055 54.20319446
21 100000 3 4.308125278 10.02140472 2.950973729 6.867496998 24.75661447
22 100000 5 4.379349368 12.99109121 5.367281612 11.4644678 34.81869465
23 100000 10 5.127819584 20.66229721 11.33564949 20.54840622 58.28496551
24 100000 20 6.21382865 37.21307473 24.5065139 40.31718603 108.8795686
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Table B.14.: SolveDF results for the flex-object experiment with Clp as the solver, and using 1 core of a single
machine.

Test case Flex-objects Time intervals Building query (s) Materializing query (s) Partitioning (s) Solving (s) Total query time (s)
1 1000 3 4.346369811 2.362143245 0.103449422 0.47018477 7.950218542
2 1000 5 4.154960543 2.762048169 0.160045791 0.54851488 8.382141049
3 1000 10 4.187238244 3.043544443 0.354082385 0.812174554 9.030774978
4 1000 20 4.427314273 3.46461886 0.565219202 0.926101119 9.991014387
5 5000 3 4.205262617 3.221478575 0.390319778 0.872520916 9.433640714
6 5000 5 4.225415898 3.706753555 0.786202972 1.04860907 10.36579777
7 5000 10 4.681418497 4.512315677 0.830147389 1.481767076 12.0867529
8 5000 20 4.463432616 5.475447202 1.074823456 2.381685825 13.99775993
9 10000 3 4.312376691 3.891367077 0.516466365 0.992394685 10.29415053
10 10000 5 4.322240947 4.572951456 0.801733465 1.473316431 11.76213726
11 10000 10 4.259194644 5.391118879 1.064041437 2.35744822 13.66577825
12 10000 20 4.769547044 7.037571964 2.192532715 5.091260174 19.67262693
13 25000 3 4.366717715 4.933262125 0.820569003 2.627321109 13.4340932
14 25000 5 4.351874081 6.182718173 1.210328979 3.030108537 15.41311905
15 25000 10 4.777510688 8.375433558 2.882923001 5.412478512 22.02796945
16 25000 20 4.68925268 11.57572767 5.079956944 10.61962426 32.54228574
17 50000 3 4.35298662 6.826424922 1.76964016 3.947459315 17.49640104
18 50000 5 4.395984225 8.389983191 2.893280652 6.250144554 22.50355019
19 50000 10 4.883840621 12.97434143 5.372112371 12.36189656 36.19992114
20 50000 20 5.373296472 21.46599044 11.15774187 22.66512172 61.24941486
21 100000 3 4.683472077 9.550431702 3.283027309 8.891371667 27.0704511
22 100000 5 5.123161603 12.68066432 5.517543738 13.39355278 37.40008868
23 100000 10 5.110031364 20.93859091 11.22855669 25.33461971 63.22039113
24 100000 20 6.337139541 37.41275763 23.79748977 53.00493463 121.1544888

Table B.15.: SolveDF results for the flex-object experiment with Clp as the solver run on a cluster of 2 nodes.
Test case Flex-objects Time intervals Building query (s) Materializing query (s) Partitioning (s) Solving (s) Total query time (s)

1 1000 3 5.791399079 4.697865776 0.202918451 0.585866826 11.89657502
2 1000 5 5.966473784 4.4691293 0.151356455 0.550861121 11.70159481
3 1000 10 6.257310094 4.858967467 0.158698265 0.802799726 12.73519205
4 1000 20 6.495183982 5.071143246 0.31891948 0.800114934 13.3283744
5 5000 3 6.079051803 5.288251671 0.333471264 0.788764371 13.02487481
6 5000 5 5.936646144 5.803632327 0.463344923 0.954747609 13.69142503
7 5000 10 6.000688734 6.333900978 0.56684582 1.396967799 14.90304615
8 5000 20 6.335499907 7.079570131 1.086168505 1.774097471 16.82726445
9 10000 3 6.192025032 6.047314782 0.670880615 1.179292676 14.69642126
10 10000 5 6.293681687 6.344041483 0.625346837 1.275781182 15.07612894
11 10000 10 6.149658739 7.507011258 1.109987527 1.987314573 17.26012543
12 10000 20 6.502218682 8.43418409 1.891511236 2.92019947 20.23710198
13 25000 3 6.322961011 7.363699727 1.031621473 1.912438196 17.1689535
14 25000 5 6.290048182 7.707402847 1.380439032 2.638300228 18.54811792
15 25000 10 6.280015138 8.852576926 2.520235261 3.762275339 21.98709584
16 25000 20 6.689714439 11.82848609 7.51290479 6.202835395 32.76884856
17 50000 3 6.199599391 7.367401532 1.414639295 2.899983976 18.41678837
18 50000 5 6.265146713 9.098076672 2.517527831 4.059177548 22.50738539
19 50000 10 7.190867438 12.00491886 7.163333701 7.399278129 34.27888367
20 50000 20 7.150304305 19.47853763 11.97021324 11.59919412 50.71634844
21 100000 3 6.419295109 10.05759542 2.637567529 4.921342626 24.56665442
22 100000 5 6.718431923 13.20385361 6.924036755 8.006104205 35.37649708
23 100000 10 7.312484439 20.40039634 12.3493691 13.94065956 54.5208473
24 100000 20 8.359743102 37.77676788 25.10042909 25.62728817 97.4054009
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Table B.16.: SolveDF results for the flex-object experiment with Clp as the solver run on a cluster of 4 nodes.
Test case Flex-objects Time intervals Building query (s) Materializing query (s) Partitioning (s) Solving (s) Total query time (s)

1 1000 3 5.782649802 3.981911522 0.113992858 0.560282139 10.9774878
2 1000 5 5.788385948 4.153292895 0.135354053 0.604443303 11.23011219
3 1000 10 5.86991936 5.037291326 0.277217272 0.765849775 12.49222849
4 1000 20 6.006103957 5.115711043 0.369063369 0.86727789 12.89605512
5 5000 3 6.039514027 4.551202627 0.214097507 0.914601404 12.2509649
6 5000 5 6.16536435 5.659362112 0.305567992 0.991031206 13.66438315
7 5000 10 5.970822701 6.940839425 0.705473189 1.236761527 15.41001939
8 5000 20 6.334289039 7.527741796 0.993875074 1.751286439 17.15042497
9 10000 3 5.930124448 5.607948003 0.46138865 1.261663389 13.77967721
10 10000 5 6.364867013 6.152099668 0.630398179 1.592847201 15.24226121
11 10000 10 6.361398543 6.879514844 1.009263216 1.984537782 16.79940324
12 10000 20 6.40604746 8.777515784 1.854331497 2.816752613 20.36153615
13 25000 3 6.241262213 6.702314233 1.041761934 1.798736386 16.29778098
14 25000 5 6.21821355 7.653273005 1.178331149 2.241427428 17.86604878
15 25000 10 6.575321767 8.709399367 2.508396569 3.329819714 21.65466509
16 25000 20 6.746773767 12.01905721 7.075880064 5.740826966 32.1193429
17 50000 3 6.129108979 8.150964518 1.487498403 2.848703748 19.12060874
18 50000 5 6.394166668 9.543491048 2.658536092 3.693721558 22.80208416
19 50000 10 6.841492172 12.23987057 7.08838202 6.412791446 33.10530372
20 50000 20 7.250810183 20.52974035 12.49660384 10.6579386 51.47654093
21 100000 3 6.30293684 9.577774943 2.637534657 4.676377451 23.71980305
22 100000 5 7.131378053 12.34785185 6.833885108 6.729274551 33.55358965
23 100000 10 6.953394391 19.96738377 12.47287964 12.03291509 51.95301815
24 100000 20 8.038535534 39.2897232 25.50308614 22.70250288 96.05924978

Table B.17.: SolveDF results for the flex-object experiment with Clp as the solver run on a cluster of 8 nodes.
Test case Flex-objects Time intervals Building query (s) Materializing query (s) Partitioning (s) Solving (s) Total query time (s)

1 1000 3 6.431379084 4.83651274 0.103902439 0.708218654 12.63152038
2 1000 5 6.342835868 4.485847277 0.106604961 0.634233309 12.13832173
3 1000 10 5.989553073 5.528559072 0.154004753 0.783841284 13.01645872
4 1000 20 6.634165887 5.874510588 0.372269964 0.955503105 14.38253275
5 5000 3 6.333649359 5.343029556 0.331103371 0.888873877 13.4306974
6 5000 5 6.07185071 5.862091427 0.366089503 0.93308883 13.80207156
7 5000 10 6.552790504 6.895117486 0.665999996 1.222712704 15.87995131
8 5000 20 6.165038913 7.515596397 1.148494605 1.850238399 17.33030791
9 10000 3 6.306902427 5.724400396 0.467672509 1.15324503 14.17382848
10 10000 5 6.009163172 6.788745696 0.638874462 1.58186715 15.5770122
11 10000 10 6.354139417 6.971342438 1.085205199 1.720694941 16.74516804
12 10000 20 6.372147405 8.977667977 2.129424387 2.800654158 20.8284848
13 25000 3 6.130232486 7.710328448 1.025689732 1.793249888 17.1862095
14 25000 5 6.325440704 7.635684525 1.39290629 2.488514595 18.37148199
15 25000 10 6.432112097 9.183667696 2.66048417 3.547411524 22.35096363
16 25000 20 6.999253163 12.41625997 8.219883461 5.865980466 34.0298038
17 50000 3 6.86331442 8.550502055 1.723721065 2.748166647 20.41979706
18 50000 5 6.760818541 10.15590598 2.89640364 3.937177648 24.27544201
19 50000 10 6.949898711 12.61525792 8.382417544 6.113214617 34.63520411
20 50000 20 7.578448237 20.02720328 15.00357516 10.91797262 54.12005117
21 100000 3 6.602777692 10.729836 3.66801406 6.23158387 27.76859073
22 100000 5 6.625922496 12.47996972 8.46375701 7.259109783 35.38506878
23 100000 10 7.682328134 20.43134294 14.57380097 12.07744774 55.34502637
24 100000 20 8.834290883 38.69092866 28.57348968 23.71369457 100.3613654
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