
SONICAKT
- Interactive Music Listening Interfaces on the Web -

Master’s Thesis

Karl Chueiri Heding

Aalborg University

Sound and Music Computing

Contents

Preface v

1 Introduction 1

1.1 Related Work . 1

1.1.1 Active Listening . 1

1.1.2 Interactive Sound and Music in the Mobile platform 5

1.1.3 Audience as active participants in the musical experience . . . 9

2 Design Strategies 17

2.1 Digital Musical Instrument Model . 18

2.1.1 Mapping Strategies . 19

2.1.2 Interface Design Guidelines . 19

2.1.3 Interactive Music Systems . 21

3 Implementation 23

3.1 SNCKT EFFECTS . 26

3.1.1 Digital Audio E�ects . 26

3.2 SNCKT MOVE . 34

3.2.1 Granular Synthesis . 34

3.3 SNCKT COLLAB . 39

4 Evaluation 43

4.1 Naturalistic Observation-based Experiment 43

iii

iv Contents

4.2 Survey based experiment . 46

5 Conclusion 51

Bibliography 53

A Appendix A 57

A.1 Survey Evaluation . 57

B Appendix B 63

B.1 SNCKT EFFECTS CODE . 63

B.2 SNCKT MOVE CODE . 71

B.3 SNCKT COLLAB CODE . 76

Preface

The improvements of network technologies, social services and interactive mobile ap-

plications for sound and music are influencing the consumer?s musical experience.

The experience is becoming increasingly more creative and collaborative. Users have

access to a very large number of recorded music, they can assemble their own playlist,

share it with others online and discover music based on their listening habits. Be-

sides the various interactive possibilities provided for the experience of recorded music

material, there are many music making applications for mobile devices. Algorithms

which creatively make use of the device?s various sensors and processing power to

create novel ways of manipulating digital and musical sound. Many of these applica-

tions besides potentially inspiring professional musicians for discovering mobile ways

of producing and performing music, are also very non-musician friendly. This means

that users with little to no experience in music are able to easily create their own

music by performing simple gestures on their device. Recently the Sound and Mu-

sic Computing community has seen a growing number of improvements in network

technology based applications, facilitating the synchronisation and data exchange be-

tween a group of musicians and di�erent applications. The combination of e�cient

devices for non expert user-friendly applications for multimodal control together with

network technologies, give rise to novel possibilities for real-time interaction between

musician-musician, audience-audience, audience-musician in live performance situa-

tions. The concept of audience participation enables audience members to be active

participants with direct influence over visual and musical aspects of the experience.

v

vi Preface

It has the potential of shaping new formats of live concerts and performances to the

extent it challenges the meanings and the conventional approaches, and becomes an

entire experience of it’s own.

The aim of this thesis is to shed light on some of the issues that concerns the topic

of audience participation. To investigate and reflect the musician’s point of view on

the issues and possibilities to what audience participation proposes to music perfor-

mances

This research shows the development of interfaces that would allow musicians to

have an audience actively engaged and participating in the musical experience of

their works outside of concert spaces. The work presented by this paper investigates

the possibility of an Interactive Music Listening platform, where musicians can share

works that the audience can interact with.

Aalborg University, June 2, 2017

Karl Chueiri Heding

<khedin11@student.aau.dk>

Project Supervisor

Daniel Overholt

Chapter 1

Introduction

1.1 Related Work

Sound and Music Computing is a study that encompasses a large variety of research

topics and practices. The first part of the thesis starts by presenting some background

work. The first chapter introduces the reader to the various topics of research that

influence the work of the thesis. In short the work presented by this paper is con-

cerned with providing users the opportunity for real-time interaction with sound,

which in general could mean a variety of things. This chapter will contextualise the

topic of the thesis.

1.1.1 Active Listening

A good amount of work and research has been done in the investigation of active

listening, term often used in di�erent contexts. In the social and behavioural sci-

ences, it refers to the listener’s involvement in hearing for intellectual and emotional

messages from what is presented by the speaker. In human-computer interaction and

more specifically sound and music computing, active listening and active experience

are concerned with enabling listeners to interactively operate on musical content

modifying and shaping it in real time while listening.

To better understand this concept, if we consider the time before the widespread

1

2 Chapter 1. Introduction

of recording and reproduction technologies, music was an embodied, interactive and

social activity. Music was experienced either in concert halls where musicians would

perform live or by learning and playing an instrument. Nowadays, music could easily

be considered as a passive, non-interactive and non-context-sensitive experience. It

is speculated that the greater availability of music enabled by technology lead toward

a passive and detached attitude to music listening [North et al., 2004]. However, in

contrast to this previous speculation, studies suggest [Krause et al., 2015] that the

device people use is related to their degree of engagement. Where more positive re-

sponses were associated with digital devices, which in their study is linked to a high

degree of choice and user control. With the current state of electronic technologies

and all it’s potential the need to promote a rediscovery of the interactive essence of

music listening is emerging.

Works [Gualtiero and Camurri, 2011] suggest that an e�ective active experience

of music is achieved through the combination of two di�erent design perspectives:

content-centric and user-centric.

Content-centric perspectives in the case of music, concerns the characterisation of a

song to be modelled as more than it’s stereo audio file such as .mp3, .wav or other

coding, or any other simple metadata. It considers enabling a number of further

data:

(1) real-time or o�ine features obtained by means of post production signal pro-

cessing techniques (these could be, for instance: source separation to extract single

musical instruments or song sections; spatial rendering to allow the control of 3D

audio localisation of music instruments);

(2) data available from the music production process, such as the multi-channel ver-

sion of the song, including the individual tracks (guitar, bass, drums, vocals);

(3) more metadata regarding semantic, context and usage (basic examples are ’mood’

of the song, music genre, "where is best to play this song: ’party’ or ’home’") [Wang

1.1. Related Work 3

et al., 2008b].

With the availability of such data the real time processing and customisation of mu-

sic content enables the possibilities for a more personalised listening experience.

User-centric perspectives focus on the involvement of the users in the experience.

The active listening experience is shaped by the individual and social behaviour of

the users involved. Therefore real time techniques for the analysis of expressive,

emotional and social processes are useful to understand user behaviour. With this

information expressive and joint music listening experiences are made possible.

The research work of Goto [Goto, 2007] uses advanced signal processing techniques

on CD recordings. Through di�erent active listening interfaces they investigate a few

active listening scenarios: ’Music Playback’, ’Music touch-up’ and ’Music retrieval

and browsing’.

’Music playback’ scenarios are exemplified with interfaces that allow the user to:

(1) skip, select sections, and navigate di�erent parts of the song; (2) operate on

visuals; select a dance sequence of virtual dancers during music playback; (3) read

displayed lyrics that are synchronised according to playback (similar to a karaoke

machine). The previously mentioned interfaces allows for active listening experiences

in which the user does not necessarily operate on the sonic content of the music.

In the case of ’Music touch-up’ users would be able to interact with sonic features of

a song, for example: (1) An instrument equaliser, in which it would be possible to

change the volume of the individual tracks of a recording(guitar, vocals, drums); (2)

Manipulate and rearrange in real-time the pattern of the snare and bass drum of a

song.

’Music retrieval and browsing’ scenarios would allow users to actively discover new

music based on musical content similarity. In contrast to the available commercial

services where the retrieval of music is based on bibliographic metadata(artist, genre,

4 Chapter 1. Introduction

etc.) the users have to type or search for.

The above cases of active listening, can be considered as examples of standard GUI’s

on computers which perform signal processing on audio files. However, active listen-

ing scenarios aren’t limited to such applications. Many cases have been investigated

through installations where users must engage full body movements to activate and

manipulate sounds. The orchestra explorer was a virtual orchestra installed on the

stage of an auditorium. Visitors were allowed to navigate the physical stage and by

doing so, explore the music being played. The installation allowed two modes of in-

teraction. First, the visitors could play the role of the orchestra conductor. Through

body movements control the volume of sound from the left and right loudspeakers.

The second mode of interaction allowed the users to navigate the stage and explore

the individual audio channels (cello, flute, harp, violin, piano, etc.). The manner in

which users moved through the space controlled the amount of audio e�ects applied

to the sound. Abrupt movements made the audio e�ects more perceptible. The or-

chestra explorer had a few exhibits and di�erent versions of the setting were tested.

For instance in one version called Mappe per A�etti Erranti, the full orchestra would

only be heard if more participants were collaborating during the experience. Where

each participant controlled the expressiveness of the individual instruments in the

orchestra.

Active listening scenarios do not always have to be in regard to musical pieces. It can

also be experienced in sound art which promote di�erent modes of listening. There

are many artists that criticise and challenge the sonic behaviours of everyday life.

The authors of Recycled Soundscapes for example, investigated sonic behaviours in

urban spaces. Their piece is a good example of an artwork that, promotes active

listening experiences of sonic contents which are not necessarily musical. The in-

stallation consisted of a set of objects that allowed users to record the surrounding

environmental sounds. The sound was played back through speakers. While users

1.1. Related Work 5

could interact with the objects to a�ect the resulting sound, shaping and moulding

their listening experience of what was heard in the public space.

Many of active listening works aim at allowing the possibility for non-expert users to

interact with sound. In many ways is about bringing back the interactive essence of

actually playing the music that is heard. A lot of interactive works in the Sound and

Music Computing and Artistic communities, are motivated by the idea of connecting

people through sonic interaction in everyday life. Establishing novel approaches of

making, listening and experiencing music and consequentially new forms and genres

of music. One of the challenges is then, to make these works more accessible to the

public.

1.1.2 Interactive Sound and Music in the Mobile platform

Recently researches and artists have been exploring the potential of mobile devices

to make music. Mobile devices include for example, cellular phones, smart phones,

tablets (e.g iPad), portable media players (e.g iPod Touch). Increasingly more popu-

lar and nearly indispensable to everyday life, the device’s ubiquity, processing power

and networking capabilities, are seen as an attractive solution for works involving

user interaction with sound in general.

History of sound and music in the mobile platform

Many researchers seem to indicate that, one of the earliest and most relevant exam-

ples of works incorporating mobile phones in music performance is Dialtones [Levin,

2001]. According to documentation, Dialtones was a large scale concert performance,

premiered at the 2001 Ars Electronica Festival in Austria. The musicians performed

their music on stage using mobile phones as instruments and throughout the per-

formance, carefully choreographed dialling and ringing were made to the audience’s

own mobile phones. This concert required the audience members to register their

phone numbers (prior to the event) and by doing so, they were given seat assignments

6 Chapter 1. Introduction

and ringtones to be downloaded to their devices. A concert with around 200-people

makes for a very rich spatialized sonic experience. In 2006, Pocket Gamelan was a

project that aimed at enabling non-expert performers to perform microtonal music,

as well as exploring the interactive possibilities enabled by Bluetooth network. The

phones were implemented to produce sound out of their own speakers. In addition,

the devices were placed inside a pouch made of semi transparent fabric attached to

a cord. In their presentations, performers swung the chords and as a by-product of

these movements audible artefacts such as chorusing and doppler shift were produced

[Schiemer and Havryliv, 2006]. Since then, mobile devices have become more e�cient.

The appearance of smart phones facilitated the development of mobile music appli-

cations. Smart phones o�er high computational speed, storage and I/O capabilities

which are comparable to that of computers. Researchers reference the Ocarina for

iPhone, as an example of mobile music application. It is one of the earliest mo-

bile instrument app that is a virtual realisation of exiting acoustic instruments. It

integrates the multiple sensing technologies available in smart phones such as, micro-

phone, multi-touch, accelerometer together with real-time synthesis and interactive

graphics. The app incorporates an interesting social dimension that allows users to

listen to other users around the world in real-time.[Wang, 2014]

More recently however, the amount of available commercial music making applica-

tions is overwhelming. Dominating commercial mobile music applications include but

are not limited to sophisticated DAW’s (digital audio workstation) and emulations

of other instruments (e.g analog synthesizers). With applications such as Garage-

Band by Apple which allows user to produce complete musical pieces with various

virtual instruments such as piano, guitars, drums and bass. Or the Korg iMS-20 that

emulates the company’s MS-20 synthesizer. Most of these commercial applications

however lack the social dimension, or as mentioned earlier the user-centric perspec-

tives. One must turn to the works of researchers in the Sound and Music computing

1.1. Related Work 7

Figure 1.1: Ocarina Design

community to find novel, experimental and interesting ways of interactive and or

collaborative music making with mobile devices. The Stanford Mobile Music Phone

Orchestra (MoPhO) founded in 2007 at the Centre for Computer Research in Music

and Acoustics (CCRMA), with it’s first concert in 2008 [Wang et al., 2008a]. Was

the first repertoire-based ensemble to use mobile phones as it’s primary instrument.

The project consisted of di�erent stages of preparation such as crafting the digital

instruments for the devices, as well as composing dedicated musical pieces for the en-

semble. There are variety of instruments and di�erent pieces that make a repertoire

that ranges from scored compositions, structured and free improvisations, to sonic

sculptures. One of their first publicly premiered pieces Drone In/Drone Out, explored

the mobility and sensor capabilities of phone devices.The phones generated sound

through real-time synthesis with the device’s accelerometer data mapped to some

parameters of the synthesis. Resulting in a user controlled interface. In their debut

concert, members of the ensemble were disguised as the audience, with the conductor

8 Chapter 1. Introduction

alone on stage. As they began playing, the disguised members revealed themselves

and surrounded the audience. Creating a specialised audible experience, with the

use of sound produced by 12 phones and their built-in speakers [Wang et al., 2008a].

Since the launch of MoPhO other mobile phone orchestras were founded in a number

of academic institutions, such as the Helsinki MoPhO and the Michigan MoPhO.

More recently the Smartphone Ensemble, explores mobile computer in collaborative

musical performance. With a slightly di�erent approach, it investigates the mobile

phones social mediation in the context of musical performances. The Smartphone

Ensemble created in 2015, works on ways to enhance links between musicians, and

musicians and their audience by leveraging the network and mobile capabilities of

smart phones. Searching for alternatives to standard musical performance spaces

instead of traditional concerts, as their project intend to be urban interventions as

the participating group of musicians embark in tours around urban spaces. Using

smartphones as instruments, the group designed GUI as instruments in a single app.

Which generates a variety of sound synthesis techniques together with audio pro-

cessing using the MobMuPlat. In their setup each member of the ensemble wears

a speaker attached to an arm band. Their debut performance was carried out in a

public park, with four performers following a specific trajectory while improvising

over di�erent musical ideas. Raising curiosity of nearby spectators which asked for

available apps in order to join the experience, indicated the possibility of the audi-

ence members as active participants in the experience [Arango and Giraldo, 2016].

With all these successful examples of applications it is important to note, that even

though many mobile devices provide networking, multi-sensor and processing capa-

bilities which are attractive solutions for the design of novel instruments and inter-

faces for musical expression, these devices very often present challenges. One of the

challenges is the size of the screen, which limits design and the interface capabilities

for controls of musical expressivity and virtuosity. Another challenge is the quality

of the built-in speakers of the devices which might not be the best option for musical

performances. It is often the case that researches use external speakers or even a

1.1. Related Work 9

separate sound generation source all together.

The research work of [Michon et al., 2017] addresses some of the issues with mo-

bile devices as performative interfaces, and propose some methodologies towards

augmenting mobile instruments, to enhance the capabilities of these devices towards

musically expressive instruments. Using 3D printed models designed in a open source

3D Computer Assisted Design (CAD) modeller Mobile3D, that are then attached to

the mobile phones. Examples range from attaching mouth pieces that allow for a

much cleaner sound to be sensed by the microphone, to resonators that act as pas-

sive amplifiers to enhance the sound of the device’s built-in speakers. Many other

examples can be found in [Michon et al., 2017].

Figure 1.2: Augumented Mobile Device

1.1.3 Audience as active participants in the musical experience

A lot of the works in active listening bring forward the possibility for audience mem-

bers to be active participants in the concert experience, mediated by the use of

technology. This blurs the distinction between musician and audience. If partici-

pants are able to influence and or participate in the musical performance, everybody

involved in the experience in a sense, becomes a performer.

The concept of audience participation is nothing new and has been practiced for

10 Chapter 1. Introduction

years. The moment during a concert in which the audience sings along to a chorus

or a verse, is a form of an audience being actively engaged in the musical experience.

However, many artists have explored the possibilities of the audience participating

in the musical experience as performers. One of the earliest examples are seen in

the works of Jose Maceda, a Philippine composer and concert pianist with a PhD

in ethnomusicology. His explorations began with the piece "Ugnayan (music piece

for 20 radio stations)", 1974. The piece is a 20 separate 51-minute original tracks

that are recordings of sounds produced by traditional Philippine instruments, each

broadcasted over 37 radio stations [Taylor, 2017]. The idea was that people around

Metro Manila would go out into the streets with their radio devices and tune in to

di�erent radio stations, so that each track is played simultaneously from di�erent

sources. This project investigated the possibilities of the performing space, using

the entire capital city of the Philippines, Manila as the stage. Maceda then went to

explore large scale participation in concerts with works such as Udlot-Udlot (Hesita-

tions, 1975), a music piece for an open-air ritual involving hundreds or thousands of

performers. The first performance got 800 players involved, and consists of variations

of rhythmic drones played in traditional instruments from the Philippines [Nicolas,

2015].

Research indicate that the aforementioned piece "Ugnayan (music piece for 20 radio

stations)" is one of the earliest examples of harnessing electronic devices for the dis-

tribution of sound agents across an audience. The rock band The Flaming Lips, in

1996 performed a couple of similar experiments. With the performances of Parking

Lot Experiments and Boom Box Experiments, where the singer distributed individ-

ual tapes across the audience so that they could play them back on their cars(Parking

Lot Experiments) or tape-players (Boom Box Experiments). While the tapes were

playing the singer would then conduct the audience to turn up and down the volume

of their devices accordingly [Taylor, 2017].

Researchers investigating Audience Participation point out that the aforementioned

Dialtones 2001 (A Telesymphony), was the first performance to involve the audi-

1.1. Related Work 11

ence and leverage mobile phone devices for musical performances. Since then mobile

phone devices have become more e�cient (release of iPhone in 2007), and novel

ways of involving the audience with their own personal devices have been explored

by artists and researchers. That brings the emergence of a new genre: Distributed

Music [Taylor, 2017].

Figure 1.3: Dialtones 2001

With the use of native mobile apps and networked web audio systems, artists

and researchers investigated the possibilities of audience participation in concerts.

Early notable examples in the academic community are found in the documentations

made by the MoPhO in 2010. Through a series of concerts they explored di�erent

social mobile computing techniques to get the audience to actively participate in

the musical experience, using iPhones and iPads as primary hardware interface. In

some of their experiments they used a technique of sampling the audience, which

means that the audience generate sounds that become part of the performance. In

Madder Libs (2010) [Oh and Wang, 2011], audience members are asked prior to the

performance to record video clips of themselves emulating di�erent instruments. The

videos are uploaded to a server which the performer then downloads the videos onto

an iPad device. During the concert the performer triggers the video snippets with

12 Chapter 1. Introduction

the use of the iPad touchscreen capabilities. Using the various videos to form a com-

plete musical piece. Converge 2.0 (2010), used the similar approach of pre-sampling.

Audience members were asked to record autobiographical moments, which are later

used to form a semi-coherent narrative. Using mobile phones through the mediums

of text, video and sound, the participants upload their recorded material to a server.

These videos are then scored into a complete audio-visual piece. In Orkestra (2010),

the sampling of material is done live during the concert. Audience members one by

one, perform vocalisation sounds which are recorded using a mobile phone and then

uploaded to a central computer. With a live-coding performance by the main per-

former, the sounds recorded are played back organised in rhythmic patterns through

a system of 8-channel surround speakers.

One of the first bands to use smartphones using native apps as collective musical

instruments in a large scale concert was the rock band OK GO. Together with Na-

tional Public Radio, the work Needing/Getting was performed at the event for the

radio show "This American Life" in 2012. The audience was asked to download an

app to their phones and bring them to concert. The app provided each audience

member a set of three buttons corresponding to di�erent notes. The audience was

segmented into four di�erent colours, the audience followed a scrolling score onscreen

which indicated which button in the app to touch. The band performed as a bell

choir. Those who didn’t possess the app or a smartphone, were instructed to perform

rhythmic stamping of feet and snapping of fingers according to the scrolling score

onscreen.

Back to the academic side, Echobo (2012) [Lee, 2012] is a mobile app which the au-

dience uses as an instrument to collaborate with an electronic musician and acoustic

musician performing on stage. With a graphical interface the electronic musician

is able (in real-time), to send the notes to audience’s mobile devices instructing

which notes to play. This allows live improvisation of notes, providing more direct

communication between musician and audience (contrary to the predefined score of

1.1. Related Work 13

Figure 1.4: OK/GO Needing/Getting 2012

the OK GO Needing/Getting performance). Additionally audience members could

send their own pattern of notes to fellow participants, establishing an audience-to-

audience communication. The sound produced by the audience’s devices serve as

background texture to the acoustic musician, in this case a clarinet player. The

author of Belzebuth 2014 has an interesting remark. This piece is a 13 minutes

performance that included the participation of the audience. The participants down-

load the app through the web, and in this case the audience produces sound through

gestures instead of a touch screen interface. The spectators are conducted by the

performer, who performs gestures which the audience then reproduce. The author of

Belzebuth notes how the active participation of the audience a�ects how they under-

stand musical composition. That by acting in the performance they would experience

sound as material, texture and their influence over the performance. Therefore indi-

cating that viewer’s get an insight into the compositional process [Taylor, 2017].

The introduction of the Web Audio API in 2014-2015, brought a number of dis-

tributed music performances that uses web-sites that the audience can access to

participate. The Web Audio API has made possible the implementation of complex

web-based interactive applications. It allows complex processing of sound with capa-

bilities similar to those found on modern desktop audio production applications, such

as mixing, processing and filtering. Furthermore, the Web Audio API is designed

with possibility to be used in conjunction with other elements on the web platform,

14 Chapter 1. Introduction

such as 3D graphics rendering API’s like WebGL.

IRCAM’s CoSiMa (Collaborative Situated Media) group, explores the smartphone’s

ubiquity, multimodal sensing, audio-visual processing capabilities and web standards,

to create collaborative performances. Beginning in 2014, the group created a series of

events titled Collective Sound Checks [Schnell et al., 2015a]. It began as workshops

where they develop a series of web applications [Schnell et al., 2015b], which allow

users to produce sound according to the smartphone’s motion. These gadgets can be

played individually or collaboratively with a group of players. They created a series

of di�erent smartphone applications exploring di�erent techniques, metaphors and

sonic material. A noteworthy example is WWRY:R (We Will Rock You: Reloaded).

In this application users can collaborate to perform their own versions of the famous

song by the rock band Queen. Participants can choose between, drums, vocals,

guitars and collaboratively perform gestures holding their smartphone devices that

trigger segments of the song. In this case the participants are performers as well as

listeners in the experience [Robaszkiewicz and Schnell, 2015]. The CoSiMa group also

worked in collaboration with artists to create concerts with audience participation.

For one of them the piece Chloé x IRCAM after opening a web page, participants

are asked to indicate their position on the map of the concert space. During the

concert using four tablets the performer moved sounds over the audience’s smart-

phones, while also letting appear dedicated sound interfaces with instructions for

performance on the device’s touchscreens.

The performance of the work Crowd in C[loud] [Deusany et al., 2016], has an

interesting approach to leveraging the audience’s smartphones and cloud service.

The participants access a web site, through their mobile devices or notebooks. The

performer on stage controls the performance, live coding the programs running in

the audience devices. It allows the performer to play tunes and control the chord

progression of the music. Another feature that they implement is that each audience

member creates a ’sonic profile’, and then go on to scrolling through other profiles

1.1. Related Work 15

Figure 1.5: WWRY:R

created during the performance with the option to like or dislike what they hear

(inspired by social dating apps such as Tinder).

Audience participation scenarios involves interaction design and compositional

decisions. In the case of sonic interactions, some of these decisions include but are

not limited to:

Considering whether the audience participates in musical decisions, or act as passive

receivers. If the former is the case, considerations on how their decisions a�ect the

music need to be made. If the sound they produce are the background texture to

a performer playing, or if the sounds they make are the main source of the musical

experience. If the audience contributes with sonic material to the piece before the

performance (e.g by uploading sounds to a dedicated server), or live during the per-

formance.

Which devices the audience use to produce sound, as we’ve seen the possibilities

are not limited to smartphones. How will the audience access these interfaces that

produce sound. In the case of a smartphone being is chosen, if the interfaced is

accessed through a native app or the web. What sort of gestures is required for

16 Chapter 1. Introduction

the audience to produce sound: touch (e.g via touchscreen) or hand gestures (e.g

shaking, tilting device).

There are a few layers of considerations to be taken when designing a concert, or

interfaces for audience participation. Some considerations will be described more in

detail in the design process documented in this paper.

Although many of the aforementioned pieces are successful examples of their appli-

cations, most of them if not all, are very context-specific. Which from the point of

view of this paper is a problem to investigate. For a lot of these works users had

to be present on the day of the event to experience it, and produce specific sound

events. If the interest is to bring back the essence of a more interactive approach to

the experience of music to our everyday lives, it is important to provide more works

that do so, in the context of everyday listening. Take advantage of the ubiquity of

these personal devices, their mobility with applications that allow users to experience

these forms of interaction anywhere and any time in their everyday lives, allowing

users to practice and become more sensitive to sonic and musical structures. The

motivation of the project presented by this paper is to bring such active, interactive

and collaborative music listening experiences to everyday life. To give users the pos-

sibility to discover new music and ways of listening as well as interacting with music

material that they enjoy.

Chapter 2

Design Strategies

This section describes the design methodologies that are used for the development
of three web applications. These web applications all have the same goal of provid-
ing users the possibility to interact with musical material in the context of a music
listening application. This would give users the possibility to actively control sonic
parameters that would influence their listening experience. These applications have
the goal of being used by both expert and non-expert musicians. Ultimately the goal
is to investigate the possibility of a music listening platform, where musicians would
share music that users (musically trained or not) could sonically interact with. How-
ever, the term sonic interaction is used under many di�erent contexts for instance,
the term may refer to [Wanderley, 2001]:

instrument manipulation, real-time sound synthesis control driven by performance. (performer-

instrument interaction).

device manipulation for score level control, could be an interaction where a user can control a

rhythmic pattern to previously defined computer generated sequence of sound events.

device manipulation for post production activities, for instance gestural control of digital audio e�ects.

interactions in multimedia installations, where one or many user’s actions are sensed and used

as input control for an audio/visual/haptic system.

This section attempts to clarify the sonic interactive aspects of this project, and through exam-

ples of methodologies found in literature, define the strategy chosen for the design and implementa-

17

18 Chapter 2. Design Strategies

tion of the interfaces presented by this paper.

2.1 Digital Musical Instrument Model

The application designed falls within the digital musical instrument model. A Digital musical instru-

ment (DMI for short) is a term referring to an instrument that contains two independent modules:

1)A gestural or performance controller. Also known as an input device or hardware interface. Is a

physical device (computer mouse, MIDI hardware interface with a keyboard, sliders, knobs, or mo-

bile devices), that relies on input gestures from user interaction to provide real-world information.

2)A sound unit generator (or sound engine). This engine contains controllable parameters (e.g sound

synthesis algorithm, a signal processing algorithm).

These independent modules are connected and related to each other through mapping. ’Mapping’

can have di�erent meanings depending on the context in which is used. In this paper ‘mapping’

refers to the act of taking real-world data as a result of real-time user interaction with an input

device, and using this information to control various parameters within a sound engine [Hunt and

Wanderley, 2002].

In [Hunt et al., 2000] an interesting discussion of the role of mapping in interactive systems is

pointed out, where two main points of view exist:

Mapping is a specific feature of a composition;

Mapping is an integral part of the instrument;

The applications designed for the project presented by this paper, mostly follows the second

point of view. Which means that mapping is part of the interactive system, and influences

the way a user makes use of it in di�erent contexts. It makes use of explicitly defined mapping

strategies to design the di�erent interfaces. Explicitly defined mapping strategies allows the

designer to be in control of each of the interface’s components by defining the input-to-output

relationships.

2.1. Digital Musical Instrument Model 19

2.1.1 Mapping Strategies

Three explicit mapping strategies for designing interfaces for musical expression have been

proposed by research found in literature [Hunt and Wanderley, 2002]:

one-to-one, one performance parameter controls one synthesis parameter.

one-to-many, one performance parameter influence several synthesis parameters at the same

time.

many-to-one, many performance parameters control one synthesis parameter.

many-to-many, a possible combination of the above strategies.

Figure 2.1: DMI Model

2.1.2 Interface Design Guidelines

As has been pointed out by [Miranda and Wanderley, 2006], in order to design a new digital

musical instrument or interface for musical expression one typically needs to:

a. decide on the gestures that will be used to control the system.

b. define gesture capture strategies that will translate these movements into electrical sig-

nals. This is usually done using a variety of sensors to measure real-world information from

the user (hand, arm, lip, or other body movement, velocity of movement, pressure or any

other variable of interest).

20 Chapter 2. Design Strategies

c. define sound synthesis algorithms that will create the sounds to be played; or, define

the music software to be used for control of prerecorded musical processes.

d. map the sensor outputs to the synthesis and music-control inputs. here one can fol-

low mapping strategies guidelines.

e. decide on the feedback modalities (besides sound) available: visual tactile and/or ki-

naesthetic.

Following these aforementioned guidelines the choices for design can be explained.

a. The interfaces would leverage the web audio API. The goals is for the interface to be

accessible to any user, and the Internet is truly ubiquitous as it can be accessed with com-

puters, smartphones etc. The interaction would di�er, depending on the device the user

chooses to open the web page containing the applications. However, for any case users would

use their hands to control the di�erent interfaces.

b. The gesture capture strategies in the case of mobile devices, will leverage the multi-

sensing capabilities of smartphones, such as touchscreen and accelerometer data to translate

the movements. The computer will rely on the device’s mouse and accelerometer data (de-

pending on the device and browser used to open the application).

c. The sound synthesis and signal processing will be handled by the web audio API, and

more specifically as will be seen later in this paper Tone.js. This API is chosen because it’s

seems to be the most e�cient and extensive library currently existing on the web.

d. As will be seen later the application will make use of a combination of one-to-one and

one-to-many mappings. Many-to-one are not voluntarily used in the applications, as they

are a form of mapping that is more relevant for the design of interfaces with instrument-like

behaviour. The goal of this project is not to create a musical instrument but rather a way

to interact with musical content.

e. Visual feedback will be provided, as users will interact with visual elements seen on

2.1. Digital Musical Instrument Model 21

the device’s screen.

2.1.3 Interactive Music Systems

How interactive music systems[Rowe, 1993] respond to user interaction can be distinguished

between Transformative, Generative or Sequenced methods.

1. Transformative techniques take an existent music signal and apply transformations to

produce variants. These variants can be distinguishable from the original signal or not. For

transformative algorithms the sound source is a complete musical input or a live input.

2. Generative methods use a set of rules to produce the musical output, for instance taking

pitch structures from patterns following pre-defined scales according to random distributions,

with a set of allowed duration values.

3. Sequenced methods use fragments of prerecorded music in response to some real-time

input. The aspects of these fragments may vary according to performance, such as rhythmic

variations, playback tempo of the sequence, playback speed of the fragments(a�ecting pitch),

etc.

These distinctions, are helpful for defining the context of the applications that will be de-

signed. The envisioned interfaces will be working with pre-recorded musical material as it’s

sound source. From the methods mentioned above, the Transformative and Sequenced meth-

ods can be applied to this project. As it is the case, the Transformative method defines the

SNCKT EFFECTS application. The Sequenced approach is useful for defining the SNCKT

MOVE interface. The last interface SNCKT COLLAB, it’s a little more complicated to

define using these aforementioned terms. Perhaps, one could say that it includes all of the

above methods. SNCKT COLLAB allows users to trigger fragments of prerecorded music

material, as exemplified with the Sequenced method. However, duration, timing patterns

and pitch are predefined based on a set of rules. Variations on pitch may occur according to

a random distribution, across a set of predefined pitch alterations. Sound events only occur

22 Chapter 2. Design Strategies

on specific time instances following a global tempo. These are traits found in the Generative

methods. The interface also allows users to apply transformations on the signal using digital

audio e�ects, which is a feature that relates to the Transformative technique. It’s important

to understand why the interfaces turned out to be as they are. These distinctions make

possible the investigation of di�erent ways in which users (musically trained or not) could

interact with prerecorded musical material during their listening experience. Moreover, a

chosen mapping strategy is one of the most important factors that will define how accessible

the interface is to users, in regards to interaction and musical expression.

Chapter 3

Implementation

To create a web interface we begin by creating a .html file. HTML (HyperText Markup

Language) documents contain the content that will be displayed on the webpage. It uses

“markup” or “tags”(referred to as HTML ’elements’) to annotate text, image or other content

that is to be displayed on the page. These HTML elements are not displayed on the page,

browsers use these “tags” to render the content of the page. These elements look something

like <head> <title> <body>, and it include many more di�erent elements. To create a

document, developers might use some type of text-editor specialised for web design such

as the open source Brackets. However, HTML documents can be written using basic text-

editors such as Notepad(PC) and TextEdit(Mac). The example at B.3 creates a blank page

with the title “SNCKT EFFECTS”, which is the name of one of the interfaces made for this

project.

1 <! DOCTYPE html >

2

3 <html >

4

5 <head >

6 <title >: SNCKT EFFECTS :</title >

7

8 </head >

9 <body >

10

11 </body >

23

24 Chapter 3. Implementation

12

13 </html >

Listing 3.1: Starting a HTML project

HTML tags are written in pairs. The first tag <html> begins and contains the element

’html’. The element ends with a tag holding the same name but with a backslash before the

tag name, in this case </html>. The content of each element is placed in between two tags.

Rendering of functionality is handled by other technologies such as JavaScript. It’s a

programming language environment supported by all modern browsers. The Web Audio

API which is used for the interfaces designed in this paper is developed with JavaScript.

API stands for ‘application programming interface’, is a set of routines, protocols and tools

used for building software applications. In short an API, specifies how software components

should interact. It is related to the software library. A library is an implementation of these

specifications. The next step is to specify between the <head></head> tags which libraries

the project is going to use. This project makes use of two main di�erent libraries that are

designed for sonic interaction purposes: Tone.js [Mann, 2014] and NexusUI.js [Taylor et al.,

2014].

Tone.js

Tone.js is a Web Audio framework that is designed to facilitate the creation of interactive

music applications in the browser. It was chosen for a number of reasons. First, is a state

of the art library based on the Web Audio API. The architecture of Tone.js is designed

to be familiar to musicians and audio engineers coming from Digital Audio Workstations.

Musicians would be familiar with terms and features such as send and receive buses, master

output channel, and global transport which allows di�erent sound modules and events to be

synchronised and coordinate along a shared timeline. Second, Tone.js can easily be used with

outside libraries and modules. Third, it provides an extensive API documentation, making

it even more beginner and musician friendly. For more information about all of Tone.js’

features check the document [Mann, 2014].

NexusUI.js

NexusUI is a state of the art set of web-native tools for developing a graphical user interface,

which allows for the interaction with time-based objects. It was chosen for this project

25

because it provides standard audio interaction modules such as buttons, dials, sliders, audio

waveform visualisers, graphical keyboard. It also designed to be easy for musicians and

designers to implement their own GUI’s on the browser with mobile functionality, taking

advantage of touchscreen and other sensing data such as accelerometers. Allowing user’s

not only the ability to send OSC to audio programming environments such as Max, Pd

and SuperCollider. But also, combining them with other web libraries that are used for

generating sound such as Tone.js.

1 <! DOCTYPE html >

2 <html >

3 <head >

4 <title >: SNCKT EFFECTS :</title >

5 <script src=" nexusUI .js"></ script >

6 <script src="Tone.js"></ script >

7 <script src=" StartAudioContext .js"></ script >

8 </head >

9

10 <body >

11 <script >

12

13 </ script >

14 </body >

15 </html >

Listing 3.2: Adding .js JavaScript libraries to the project

Additionally, in 3.15 we add StartAudioContext.js, a short file that runs a script that is

used for unlocking sound on iOS devices, which by default is blocked[REEEEF]. These extra

lines of code are used for referring to the libraries that are to be used in the project. These

libraries are .js files that are usually inside the same folder as the .html file. The line <script

src=“. . . ”> is indicating where those .js files are found. In the case of this project they are

located inside the same folder. All the elements which will appear in the web page will be

included inside <body></body> tags. Additionally, any line of code that uses JavaScript

functionality has to be included within the <script></script> tags.

With the .html document started and with the specification of the libraries used. We can

26 Chapter 3. Implementation

now start building the interfaces.

3.1 SNCKT EFFECTS

The first interface titled SNCKT EFFECTS is a relatively simple interactive music system.

The motivation behind this interface is to allow listeners the possibility to add audio e�ects,

and change the playback speed of the song they’re listening to. This will allow for real-time

customisation of the user’s listening experience. Standard music listening applications (e.g

iTunes, Spotify, etc. . .), currently don’t support such interactions that operate directly on

the sonic content that users listen to. Direct customisation of sonic content found in some

modern music listening applications, is often limited to some simple equalisers that enhance

or diminish some specified audible frequency content of the sound. Applying sound e�ects

to audio or music signals is a very common practice for musicians and sound engineers (e.g

guitar players use e�ect pedals, sound engineers use analog e�ect racks, or audio e�ects

found in DAW’s, or DJ’s with modern turntables). The practice of applying audio e�ects

to music signals is almost indispensable to modern music performance. The interaction

with such audio e�ects units is relatively simple. For instance activating the e�ect on/o�

with a switch button, or turning some knobs (e.g potentiometers) that change the values

of some of the e�ect’s parameters. The implementation of such features would allow for

simple user interaction, with perceptible influence over sonic content allowing a customised

listening experience. The sound and musical production would not entirely depend on the

user, possibly making it a friendly non-expert user interface.

3.1.1 Digital Audio E�ects

In this project we make use of digital audio e�ects. E�ects are implemented using digital

signal processors. E�ects can be separate modules or built into a keyboard hardware. The

processor takes the analog input (referred to as “dry” input), which may be produced by an

instrument such as a guitar, keyboard or a previously recorded signal from some medium. The

processor samples the signal at an appropriate audio rate 44.1kHz, meaning that it converts

a real analog signal into something that can be computed digitally. The audio sampled is

3.1. SNCKT EFFECTS 27

subjected to a digital signal processing (DSP) algorithm, and the result is reconstructed into

analog form to be sent on to the next unit, such as a speaker system, a mixer, or even another

e�ects processor. Multiple e�ects can be applied in any di�erent order and a chain of e�ects

can have a drastic impact in the output audio.

Figure 3.1: Digital Audio E�ects Processing [Orfanidis, 2010]

Filtering E�ect

First e�ect implemented for this particular interface is that of filtering. A signal can be

seen as a set of partials with di�erent frequency and amplitudes. Filters remove/attenuate

audio from the spectrum above or bellow some cut-o� frequency. There are many types of

filters, a Lowpass filter for instance, selects frequencies up to a specified cut-o� frequency

fc and attenuates frequencies that are higher than the specified fc. A Highpass filter selects

frequencies higher than fc and attenuates all the frequencies below fc. For more detailed

information one can find it at [Orfanidis, 2010][Zolzer, 2002].

Using Tone.js we instantiate a high pass filter, using JavaScript as:

1 var filter = new Tone. Filter ({"type":" highpass "," frequency ":20}).

receive (" filter "). toMaster ();

Listing 3.3: Highpass FIlter

In 3.3 we define the type of filter we use in our project and specify starting cut-o�

frequency. So in this case anything below 20Hz is attenuated. The .toMaster(); means

that we send the output to the master output (e.g what will be heard through speakers,

headphones).

28 Chapter 3. Implementation

Delay E�ect

One of most basic and perhaps the most used of all e�ects is that of time delay. Also known

as an echo filter, is the building block of more complex e�ects such as reverb. In the listening

space, what we hear consists of a direct sound from the sound source as well as the sound

waves reflected o� the walls and objects in the room. It arrives at our ears with various

amount of time delay and di�erent attenuation. The reverberation characteristics of the

listening space that we associate with a room, hall, cathedral, are a result of these multiple

reflections.

The filter that simulates a single delay line is also called an FIR comb filter, which adds

to the input signal x(n) an delayed and attenuated copy of itself ax(n ≠ D).

y(n) = x(n) + ax(n ≠ D)

A filter that adds infinite number of successive echoes that simulates endless reflections

and reverberating nature of a room is called an IIR comb filter.

y(n) = ay(n ≠ D) + x(n)

Using Tone.js we create a delay e�ect, using JavaScript with one line of code:

1 var delay = new Tone. PingPongDelay ({" feedback ":0.4 ,"wet":1}). receive ("

delay"). toMaster ();

Listing 3.4: Delay E�ect

The code at 3.4 creates a PingPong feedback delay e�ect, which means that an echo will

be played in one channel and the next on the opposite channel(right and left channels of

a stereo system). We specify the amount of feedback and define that the output will be a

complete “wet” signal, meaning that the output will be entirely the e�ected signal.

Chorus E�ect

Many other e�ects are made out of the time delays when combined with some modulation.

Chorusing is an imitation of a group of musicians playing the same piece simultaneously,

which are more or less synchronised but with small variations on timing and strength. In the

Chorus e�ect a simulation of this e�ect is accomplished by varying multiple copies of time

delays and amplitudes slowly and randomly.

3.1. SNCKT EFFECTS 29

Figure 3.2: Variations on Delays

In the script we use Tone.js to add a Chorus e�ect with the following line of code:

1 var chorus = new Tone. Chorus ({" frequency ":4, " delayTime ":10,"wet":1,"

spread ":0}). receive (" chorus "). toMaster ();

Listing 3.5: Chorus E�ect

In 3.5 we create a Chorus e�ect. We define the frequency of the low-frequency oscillator

(LFO) that modulate the delay lines. We then specify the delay time to be set at 10ms.

Here we also want an entirely “wet” signal in the output. Spread means that the e�ect will

be played in mono.

The next e�ect implemented in this application is a reverb. Reverb simulates the rever-

beration of many reflections of a sound that happens in a room. It di�ers from a delay or

echo e�ect in that the later implies a distinct delayed version of the sound. A reverb on the

other hand, arrives at such a small period of time that the reflection is not perceived as a

copy of the original sound. The reflections are generally a little weaker, as it travels and the

sound energy gets absorbed by the walls and objects inside the room. However the e�ect of

these series of reflections are still audible.

1 var reverb = new Tone. Freeverb ({"wet":1}). receive (" reverb "). toMaster ()

;

Listing 3.6: Reverb E�ect

Sound Source

Next we define the sound source. For these applications we investigate user interaction with

musical content. Here a ’music player’ will be implemented that reads .mp3 files. The sound

source will be a selection of existing songs that users can choose from. Additionally, it will

30 Chapter 3. Implementation

allow users to choose any song or sonic material from .mp3 files that they can themselves

provide.

For the player, the imitation of e�ects provided by playback modes of analog tape

recorders is included. These e�ects are monitoring of playback speed. During a faster

playback speed the duration the audio file is shortened, but it also results on an audible

increase in pitch of the sound. While a slower playback speed increases the duration of the

audio file, the pitch of the sound is lowered. Additionally, in tape recorders users are have

the possibility to play the tape backwards, this feature is also included in this application.

Tone.js has an object that have all these features already implemented, called Tone.Player.

1 var player = new Tone. Player ({

2 "url" : " sounds2 / funtonpige .mp3",

3 "loop" : true ,

4 }). connect (filter);

Listing 3.7: Song Player

In 3.7 we specify the URL for the .mp3 file, which in this case located inside a folder

named ‘sounds’. We define that the song will loop once it’s over, this is accomplished by

setting “loop” to be “true”. In the end instead of sending the output directly to the ‘master

out’, the output of this player is connected to the ‘filter’ 3.3 e�ect that was implemented

earlier.

User Interaction

Users will interact with the application using the HTML elements provided by the NexusUI.js

library. In the web page users can use the computer’s mouse if the application is open with

a computer. If the application is open in a mobile phone, users can interact with the ele-

ments through the device’s touchscreen capabilities. For this interface users will have access

to toggle switches, buttons and dials, that will provide similar functionality found in guitar

e�ect pedals, and e�ect racks. Each of these NuxusUI elements will be mapped to di�erent

parameters of the various e�ects included on the application. This interface makes extensive

use of the one-to-one approach for mapping [?]. However, there is one instance that resets

all the parameters and that can be loosly considered a one-to-many mapping.

3.1. SNCKT EFFECTS 31

The block diagram shows the audio chain of the audio engine of this interface. As can

be seen, Tone.Player has it’s output connected to the Filter. The filter then e�ects the sound

and sends the result to all the remaining e�ects: Delay, Chorus and Reverb. The pink cir-

cular lines indicate the various sound e�ect parameters users can control.

Figure 3.3: Block Diagram of SNCKT EFFECTS Audio Chain

NexusUI objects are created as HTML elements. Providing specifications such as ‘nx’

(which NexusUI object to create), ’id’(the object’s id to be accessed in JavaScript functions),

the object’s dimensions with ‘width’ and ‘height’, and ‘label’ (name that will appear with

the object in the webpage). It is also possible to specify the object’s output value range with

‘min’ and ‘max’.

1 <canvas nx=" toggle " id=’delay ’ label=" delay" width="60" height ="50

"></ canvas >

2 <canvas nx="dial" id=" dial2" width ="60" height ="60" min="0.1" max=

"2"></ canvas >

3 <canvas nx=" button " id=’pitch ’ label=" pitch" width="60" height ="50

"></ canvas >

Listing 3.8: NexusUI Objects

32 Chapter 3. Implementation

Functions are assigned to these NexusUI objects with JavaScript. The code in 3.9 shows

how to use a widget’s output values to control the parameters of the sound processing mod-

ules. The example shows how the ‘dial2’ output is mapped to the ‘delay time’ (dTime)

parameter of the delay e�ect.

1 nx. onload = function (){

2

3 delay.on(’*’,function (data){

4 if(data.value ===1){ delaySend .gain.value =0} else{

delaySend .gain.value = -100}

5 });

6

7 dial2.on(’*’, function (data) {

8 dTime. setValueAtTime (data.value);

9 });

10

11 }

Listing 3.9: mapping to sound processing parameters

In 3.9 ’delay.on’ refers to the output values of the toggle widget. Here it is mapped to the

’gain’ amount of sound that is sent to the delay. The result of this mapping is perceived as

an ’on/o�’ e�ect that triggers the e�ect on and o�. In ’dial2.on’, the output value of ’dial2’

is mapped to the delay time (dTime) of the Delay e�ect created with Tone.js.

A similar mapping approach is implemented for the other user-controlled parameters, such

as chorus, reverb, filter, reverse and playback speed. Please refer to Appendix section for the

complete code.

In music players users have the possibility to select di�erent songs contained in some kind of

song list. Ultimately, the goal would be that users could interact with their favourite songs,

and choose songs from their own song lists. However, this project takes the approach of

“sonic sketching” [Erkut et al., 2015] and sketches such functionality.

Next in 3.10, a list which will contain the songs that users can choose from is created.

This is accomplished by specifying a HTML element called ‘selector’. Inside the <selector>

element we specify each option available in the list with the <option> tag. First specify the

3.1. SNCKT EFFECTS 33

‘value’ of the option is defined, in this case a string containing the URL to the .mp3 files.

Then, a name for each option is given.

1 <select id=" selector ">

2 <option value=" sounds2 / funtonpige .mp3">SkandiMann - Funtonpige </ option

>

3 <option value=" sounds2 / colors .mp3">Kasper Vegas - Colors </ option >

4 <option value=" sounds2 / jaruooj .mp3">Alternative Rock </ option >

5 ...

6 ...

7 ...

8 </ select >

Listing 3.10: Song Selector

A button will be used to trigger the function of actually changing the song. A HTML

<button> element is created, and to this button we assign to it a call to the function which

is handled by the JavaScript code. Using the object "onclick" we assign the name of the

JavaScript function, this will make that when the button is clicked the function will be

executed. The “style” is an object inside HTML that is used for defining custom changes in

the appearance of the element.

1 <button style="(custom styling ...)" onclick =" songSelector ()">Change </

button >

Listing 3.11: Song Selector Button

The JavaScript function executed on click is as follows 3.13:

1 function songSelector () {

2 var x = document . getElementById (’selector ’).value;

3

4 player .load(x); // player .load () refers to a function in Tone.

Player that loads a different audio file to the player .

5

6 }

Listing 3.12: Example of songSelector function to change song

The possibility for users to choose their own song to play is also motivated by the fact

pointed out in [Krause et al., 2015], that choosing music has a positive a�ect on the listener.

34 Chapter 3. Implementation

Further, their findings show that devices that allow for personal input are met with positive

consequences.

Even though users don’t access their own personal playlists, the interface allows users to

post a URL link to load a di�erent .mp3 file. This allows users to choose the sonic content

that they will listen to. Indeed, this functionality might not be as convenient for choosing

songs as other music players and streaming systems provide (e.g iTunes, Spotify, YouTube,

SoundCloud). So other solutions might have to be considered in the future.

1 function changeLink (){

2 var userInput = document . getElementById (’userInput ’).value;

3 var lnk = document . getElementById (’lnk ’);

4 lnk = userInput ;

5 player .load(lnk);

6 }

Listing 3.13: Example of songSelector function to change song

3.2 SNCKT MOVE

This app investigates the possibility of enabling a higher degree of control over sound gener-

ation for user interaction with music content. In this case users would have access to various

parameters that control sound synthesis. This particular application implements a granular

synth that users can play with.

3.2.1 Granular Synthesis

Granular Synthesis is based on a notion about the nature of sound. Quantum physics has

shown that sound can be atomically reduced into physical particles, as globules of sonic data

[Wiener, 1964]. The notion of the quantum of sound was proposed in 1947 by the physicist

Dennis Gabor [Gabor, 1946] where in his theory a granular representation could describe any

sound. This evolved into a sound synthesis method where these sound particles are referred

to as grains. Gabor’s first intent with this method was to reduce the amount of data to

convey audio human communication. Xenakis, [Xenakis, 1971] saw potential for this method

to be applied in music and in his early works with granular synthesis. He used to manually

3.2. SNCKT MOVE 35

Figure 3.4: SNCKT EFFECTS Interface displayed on a smartphone

slice magnetic tape into small segmented pieces, rearranging and taping these segments to-

gether and forming new sonic and musical structures. Curtis Roads, [Roads, 2001][Roads,

1988] started implementing this technique on computers back in 1978, from this Barry Truax

[Truax, 1990] started developing techniques to create granular synthesis that could perform

in real-time. First realised in 1986, it was then used extensively in his musical compositions.

From this point, as computers became more e�cient granular synthesis became more acces-

sible to an increasing number of musicians and sound artists.

A grain consists of a small portion of sonic data, in granular synthesis it’s duration usu-

ally varies from 1 to 100 ms, which approaches the minimum perceivable event for time

duration. Multiple grains may be layered on top of each other(this technique results into

what is often referred to as clouds), played back at di�erent speeds, phases, amplitude, fre-

quencies. For instance if we take a sampled signal we can take multiple portions of this signal

and play those back in di�erent orders and on top of each other.

36 Chapter 3. Implementation

When x(n) and y(n) are the input and output signals we have

gk(i) = x(i + ik)wk(i) (3.1)

Where gk(i) are the grains extracted from the input signal with the window function wk(i)

of length Lk from i = 0, ..., Lk≠1. Here the time instant ik indicates the point where the

segment (grain) is extracted, while Lk determines the amount of the signal extracted. The

window wk(i) waveform ensures fade-in and fade-outs and a�ects the frequency content of the

grains. In this case while long grains tend to maintain the timbre identity of the input signal,

short grains acquire a pulse-like quality getting more distinct from the input signal.[Zolzer,

2002]

A synthesis formula could be described as given by

y(n) =
ÿ

k

akgk(n ≠ nk) (3.2)

Where ak is an amplitude coe�cient while nk is the time instant the grain is placed in the

Output signal.

Tone.js’ API already includes a granular synth. With this synthesis technique implemented,

users are allowed to change speed and pitch independently from each other (in contrast to

the implementation in SNCKT EFFECTS). For this project, we create a Granular Synth,

that is wrapped inside an Amplitude Envelope that gets triggered by a Sequencer.

1 var player = new Tone. GrainPlayer ({

2 "url" : " sounds2 / fourhy .mp3",

3 "loop" : true ,

4 " grainSize ":0.01 ,

5 " overlap ":0.05

6 }). toMaster ();

7

8 var ampEnv = new Tone. AmplitudeEnvelope ({

9 " attack ": 0.5,

10 " decay": 0.2,

11 " sustain ": 0.2,

12 " release ": 0.5,

3.2. SNCKT MOVE 37

13 " attackCurve ":"sine",

14 " releaseCurve ":"sine"

15 }). toMaster ();

16

17 var loop = new Tone. Sequence (function (time , col){

18 var column = [col];

19 for (var i = 0; i < 1; i++){

20 if (column [i] === 1){

21 player . connect (ampEnv).start("+0.2",player . toSeconds

(Position));

22 ampEnv . triggerAttack ("+0.2");

23 }

24 }

25 }, [1], "4n");

Listing 3.14: Granular Synth

In 3.14 we create a GrainPlayer (granular synthesis engine) specifying the sample to use,

in this case an .mp3 file. Set “loop” to be true and specify starting “grainSize” and “overlap”

values. Then we create an Amplitude Envelope, providing values to attack, decay, sustain,

and release values. Further we specify the envelope to have a sine like shape. Last in the

sound synthesis, we create a Sequencer function, that will trigger and start the granular

synth wrapped inside an amplitude envelope.

User Interaction

This app levareges ’tilt motion’ of devices to control the synthesis parameters. This tilt

motion data is generated with device orientation using accelerometer data. It works on

mobile devices and it also works on laptop computers, while for the later such interaction

might not be so practical. The values provided by the accelerometer along the x axis go from

-x to x, this represents the front to back motion of the device (pitch). For the y axis, the

motion is given from -y and y and represents the left to right motion of the device (row).

The NexusUI library provides a widget in HTML element that allows access to tilt

motion. It is created using the following code:

1 <canvas nx="tilt" id=" tilt1" width="60" height ="60"></ canvas >

2 <canvas nx="tilt" id=" tilt2" width="60" height ="60"></ canvas >

38 Chapter 3. Implementation

3 <canvas nx="tilt" id=" tilt3" width ="60" height ="60"></ canvas >

4

5 </div >

Listing 3.15: Addig Tilt Objects

Each of these tilt objects are mapped to various parameters of the granular synth. Even

though these objects use the same data from the accelerometer, they also provide a function

to toggle them “active” or “inactive”. This becomes a customisable mapping where the user

can use accelerometer to control a desired combination of parameters to be a�ected. This

interface uses a one-to-one or one-to-many mapping according to user input.

Figure 3.5: SNCKT MOVE Interface displayed on a smartphone

3.3. SNCKT COLLAB 39

3.3 SNCKT COLLAB

The third application is called SNCKT COLLAB. This interface would allow for multiple

users to collaborate together to form their listening experience. In this version, users would

choose between individual tracks of a given song. In this case songs are provided as individual

tracks that compose the entire piece. A user can select one track at a time, while other

users can participate using other tracks, they can collaborate and play the individual tracks

together forming a unified musical experience. The approach taken here, follows that of sonic

sketching [Erkut et al., 2015]. Here we sketch such functionality. The goal is also to provide

a more performance and gestural oriented interaction leveraging the accelerometer data in

mobile devices. This application demands interaction for it to produce the musical content

that users will listen to. The idea is that for each individual track a user triggers di�erent

notes according to their motion holding the device. One other important factor considered

is that of synchronisation between users. So a global tempo is set where di�erent types of

motions trigger individual sounds at specified time instances.

First we create a NexusUI.js "motion" widget that will give us access to accelerometer

data from the user’s smartphone. This object provides x, y, z data ranging from -1 to 1.

1 <canvas nx=" motion " width="200" height ="200" label ="tap twice to make

sound"></ canvas >

Listing 3.16: Adding Motion Object

Then we create samplers that contain the individual sounds and notes for each track. In

this case we create a Drum set:

1 var kick = new Tone. Sampler (" sounds /kick.mp3"). toMaster ();

2 var hihat = new Tone. Sampler (" sounds /hihat .mp3"). toMaster ();

3 var snare = new Tone. Sampler (" sounds /snare .mp3"). toMaster ();

4 var shaker = new Tone. Sampler (" sounds / shaker .mp3"). toMaster

();

5 var rim = new Tone. Sampler (" sounds /rim.mp3"). toMaster ();

Listing 3.17: Drum Set

Then depending on the values of the sensor we set the individual notes that should be

triggered with fixed timed instances. Tone.js makes it simple to quantize events. So in the

following case, the kick drum is alligned to 4n (quarter note). With the individual notes set

40 Chapter 3. Implementation

as quantized events, this defines a specific structure that will allow multiple users synchronize

with each other.

1 motion1 .on(’*’,function (data){

2

3 if(data.x > 0.2){kick. triggerAttack (0,"@4n");

4 kick. player .set ({" playbackRate "

: chain.next ()});

5 chain. value = " beginning "};

6 if(data.z > 0.2){snare. triggerAttack (0,"@2n");

7 snare. player .set ({" playbackRate

": chain.next ()});

8 chain. value = " beginning "};

9 if(data.x < -0.3){hihat . triggerAttack (0,"@16n");

10 hihat. player .set ({"

playbackRate ":chain.next ()

});

11 chain. value = " beginning "};

12 if(data.y < -0.2){ shaker . triggerAttack (0,"@8n");

13 shaker . player .set ({"

playbackRate ":chain.next ()

});

14 chain. value = " beginning "};

15 if(data.y < -0.2){rim. triggerAttack (0,"@6n");

16 rim. player .set ({" playbackRate "

:chain.next ()});

17 chain. value = " beginning "};

18 });

Listing 3.18: Data mapped to trigger individual sounds

Please refer to the appendix section to see full code and how the mappings are accom-

plished from a technical point of view.

The web-page containing the interfaces can be acessed through the
following link: http://sonicakt.dk/

http://sonicakt.dk/

3.3. SNCKT COLLAB 41

Figure 3.6: SNCKT COLLAB Interface displayed on a smartphone

Chapter 4

Evaluation

To perform evaluation two approaches were taken. A qualitative evaluation
similar to Naturalistic Observations, and a second evaluation using a web-
based survey with a couple of subjective rating questions to evaluate user’s
experience quantitatively.

As been pointed out in previous literature [Juslin, 2011], there’s a point of
view in regards to testing and evaluating people’s experience and use of music
in everyday life. It proposes that evaluations should move away from the strict
lab based experiments and to study user behaviour “in the wild”. Indeed there
are many disadvantages to this kind of observation, such as defining exact cause
of a bahaviour and unpredictable outside variables.

4.1 Naturalistic Observation-based Experiment

In this project, sound and music has a major role in the application and in-
teraction between users. As this application attempts to influence the user’s

43

44 Chapter 4. Evaluation

musical experience. The observations include what the application enable users
to experience, how the interface reacts to users performance, how users react
to the interface and what is the influence on the environment. In other words,
what’s evaluated are the multiple a�ordances of the interface (social, musi-
cal, etc), a important term within interactive design evaluations[Tanaka et al.,
2012]. For that reason it’s important to observe the a�ordance of the inter-
face in experiments “staged” according to what the application proposes in the
musical and social context in regards to listening experiences in everyday life.
The approach was to make observations of the participant’s performance. In
this test I walked around the city centre of Aalborg and asked people to test
the application. If people were found in groups and accepted to participate
in the experiment, they were asked to immediately test the SNCKT COLLAB
interface. The idea was to make observations during their experience and if
they comply their interaction would be video recorded. Not many people were
willing to be video recorded, but three di�erent groups of participants agreed
to be video recorded. Luckily, those groups were of apparent distinct age dif-
ferences.

Observations included:

access to interaction, if participants intuitively understood how to start playing
or if they required some sort of explanation.

their reaction to sound, any indication of behaviour related to the sonic feed-
back.

attitude and interaction with other participants, any behaviour in relation to
interaction between participants.

4.1. Naturalistic Observation-based Experiment 45

Groups of people were approached by asking if they were willing to partici-
pate in a musical experiment to test a web-app. As the groups complied to
the experiments, they were advised to access the web page. This was done by
verbally providing the address (URL) to the web page. They were asked to try
the interfaces for themselves, in the case of them not seeming to understand
how to start playing they were given instructions on how to play.

Few participants understood rather intuitively how to produce sounds with
the interface. However there were also cases were the author had to explain
the functionality of the applications.

It was observed that many of the participants, demonstrated surprised expres-
sions on their first encounters with each sound. Sometimes it was observed that
it was a little disturbance towards some of the sonic elements. As participants
had to turn up the volumes of their devices to maximum (due to environmental
sounds) in order to hear anything. This seemed to give a distortion (and noisy)
characteristic to the sonic elements.

In a successful sonic interaction design, the social a�ordances in the music
would a�ord joint entrainment, here it refers to synchronisation between par-
ticipants to an external perceived rhythm, it allows to experience music with
others in an intimate way [Krueger, 2010]. It can be observed from the ex-
periments with the interface SNCKT COLLAB as can be seen in the recorded
process, that the interface provided this form of social a�ordance. Participants
from all three groups presented some sort of entrainment while interacting with
the interface. It can be seen that participants nodded their heads while play-
ing with the interface and a�rming to each other some sense of the rhythm

46 Chapter 4. Evaluation

captured. It was also observed that participants had some ‘a�rmation of en-
joyment’ as they smile to each other, also selecting di�erent instruments from
one and other, attempting to play and synchronise something together.

Figure 4.1: Naturalistic Observations of users with SNCKT

4.2 Survey based experiment

For a survey to gather quantitative data of participant’s subjective experience
with the interface, the idea was to get users to test the interfaces on ‘their own
environment’. The approach taken was also similar to that of a naturalistic ob-
servation, in that the environment in which test subjects participate is “their
own”. This approach is inspired by how [North et al., 2004] conduct their ex-
periments. They make an observation that very few studies have investigated

4.2. Survey based experiment 47

people’s musical experiences in everyday circumstances. The use and the de-
gree of which people engage with music, is dependent on the contexts in which
they hear it [North et al., 2004]. Their experiments involved participants who
owned mobile phones. Participants received one text message per day during a
course of 14 days, requiring them to complete a questionnaire regarding their
daily listening experiences. More recently, a similar experiment was conducted
in [Krause et al., 2015]. For the case of the interface presented by this paper,
this seemed as an attractive approach to evaluate how people would interact
with the interface in the context of everyday circumstances. Since the project
has the goal of providing sonic interactive possibilities with musical material
in the context of everyday listening experiences. From the point of view of this
paper, this also appeared to be a novel approach worth investigating for testing
interfaces for musical expression.

Three di�erent surveys were made to evaluate user experience for each in-
terface. A web-based survey was prepared using Google Forms. It contained
seven subjective rating questions using a 5 level Likert-Scale (ranging from 5-
Strongly Agree to 1-Strongly Disagree).

The procedure was relatively simple. An instruction was written in text and
then shared in social media. The instruction included asking people to test
each interface and rate them accordingly.

A total of 14 participants are included in this experiment (9 male, 7 female).
Half of the participants reported as being Amateur Musicians, while the rest
reported to have little to no experience with playing a musical instrument. The
ages were 5 (35-44), 7 (25-34), and 2 (18-24).

48 Chapter 4. Evaluation

Figure 4.2: Results of Likert-Scale questions for the Survey

Participants who identify themselves as amateur musicians, were the partic-
ipants that gave the highest rates for a musically satisfying experience. While
level of enjoyment was overall, rated high for both participants with none or
little experience playing an instrument and amateur musicians. Amateur musi-
cians also rated high on considering to use the application in the future. While
non-musically trained participants had a neutral or low rating on that regard.

From the data gathered an interesting observation can be made. That users
with no experience or little experience with playing an instrument generally
provided positive ratings to their enjoyment of the experience even though
their ratings on a ‘musically satisfying experience’ and ease of interaction were
neutral to low. That could be seen for both their experience during the ex-
periment and their future listening experiences. This is an interesting possible
indication (perhaps no surprise) that unexperienced users have a tendency to
enjoy interaction while listening to music, even though the interaction isn’t
necessarily easy or musically satisfying.

Please refer to Appendix section for full data visualisation.

One major downside to the evaluation performed is that since it was based in a

4.2. Survey based experiment 49

naturalistic observation approach, the experiment su�ered from uncontrollable
variables. Even though participants were instructed to respond the individual
questionnaires that rated each interface, participants either rated their overall
experience of the interfaces through only one of the three questionnaires. This
had a negative impact towards establishing a precise rating between each of the
three interfaces. However, it is possible to identify that users overall rated an
enjoyable experience with the interfaces. This indicates that there is apparent
interested from both musically trained and non musically trained participants
in regards to user interaction with musical content. With that said, more de-
gree of control has to be implemented in further experiments. For instance
if the approach to be taken were that of naturalistic observation, it would be
important to have participants formally sign up to the experiment as in [North
et al., 2004] and [Krause et al., 2015]. Furthermore, from the point of view
of this paper it would be very beneficial and practical to conduct controlled
lab experiments, to closely observe ease of interaction, as well as other aspects
of user interaction with the interface. Perhaps do so even before conducting
‘outdoors’ experiments.

Chapter 5

Conclusion

The SONICAKT interfaces were designed to investigate 3 di�erent approaches
defined by interactive music systems (Transformative, Sequenced, Generative),
to explore the possibility of a platform where musicians would share musical
content that their audience would interact with. It used research in mobile
music making and the web, together with concepts of active listening and au-
dience participation, to propose a novel approach of interactive music listening
on the web. This approach is novel in the context of everyday listening where
passive listening is much predominant.

There’s definite space for improvement, whole new research could be done for
the improvement of the systems proposed, to find ways to address the issue of
sonic interaction in the context of everyday music listening experiences. Indeed
the interfaces implemented and their evaluation during this research might have
resulted in works of a very content-centric nature, with few exceptions in the
attempts of evaluating musical and social a�ordances. There is much room for
improvement in both implementation and evaluation. This project provides or
opens up interdisciplinary challenges and problems to be addressed from the
perspectives and methodologies of the various related disciplines, for further

51

52 Chapter 5. Conclusion

development to form a successful interactive music listening platform. Such
platforms of musical interaction aimed at the audience have much potential for
engagement from both sides (musician and audience). Where musicians cre-
ate can entire interactive musical pieces or just allow for users to apply audio
e�ects to their songs. By doing so, it could bring high level of enjoyment for
their audience outside the concert space. Ultimately this research provides an
alternative to the current state of such active consumption of music, towards
an active and perhaps shared participation in musical experiences.

Bibliography

Arango, J. J. and Giraldo, D. M. (2016). The smartphone ensemble. exploring
mobile computer mediation in collaborative musical performance.

Deusany, A., Lee, S. W., and Essl, G. (2016). Understanding cloud service in
the audience participation music performance of crowd in c[loud].

Erkut, C., Serafin, S., Hoby, M., and Sarde, J. (2015). Product sound design:
From, function, and experience.

Gabor, D. (1946). Theory of communication.

Goto, M. (2007). Active music listening interfaces based on signal processing.

Gualtiero, V. and Camurri, A. (2011). A system for embodied social active
listening to sound and music content.

Hunt, A. and Wanderley, M. M. (2002). Mapping performer parameters to
synthesis engines.

Hunt, A., Wanderley, M. M., and Kirk, R. (2000). Towards a model for instru-
ment mapping in expert musical interaction.

Juslin, P. N. (2011). Music and emotion: Seven questions, seven answers.

Krause, A. E., North, A. C., and Hewitt, L. Y. (2015). Music-listening in
everyday life: Devices and choice.

53

54 Bibliography

Krueger, J. W. (2010). Doing things with music.

Lee, S. W. (2012). Audience participation using mobile phones as musical
instruments.

Levin, G. (2001). ?dialtones: A telesymphony? final report. http://www.

flong.com/projects/telesymphony/.

Mann, Y. (2014). Interactive music with tone.js.

Michon, R., Smith, J. O., Wright, M., Chafe, C., Granzow, J., and Wang, G.
(2017). Passively augmenting mobile devices towards hybrid musical instru-
ment design.

Miranda, E. R. and Wanderley, M. M. (2006). New Digital Musical Instruments:
Control And Interaction Beyond the Keyboard (Computer Music and Digital
Audio Series). A-R Editions, Inc.; 1st edition (July 2006).

Nicolas, A. (2015). From ugnayan to udlot-udlot : The music of jose maceda
musical ideas in new music in southeast asia.

North, A. C., Hargreaves, D. J., and Hargreaves, J. J. (2004). Uses of music in
everyday life.

Oh, J. and Wang, G. (2011). Audience-participation techniques based on social
mobile computing.

Orfanidis, S. J. (2010). INTRODUCTION TO Signal Processing. previously
published by Pearson Education, Inc. Prentice Hall, Inc.

Roads, C. (1988). Introduction to Granular Synthesis. Computer Music Jour-
nal. MIT Press 12(2):11-13.

Roads, C. (2001). Microsound. The MIT Press, 2001 Massachusetts Institute
of Technology.

http://www.flong.com/projects/telesymphony/
http://www.flong.com/projects/telesymphony/

Bibliography 55

Robaszkiewicz, S. and Schnell, N. (2015). Soundworks a playground for artists
and developers to create collaborative mobile web performances.

Rowe, R. (1993). Interactive music systems. https://wp.

nyu.edu/robert_rowe/text/interactive-music-systems-1993/

chapter-1-interactive-music-systems/.

Schiemer, G. and Havryliv, M. (2006). Pocket gamelan: tuneable trajectories
for ying sources in mandala 3 and mandala 4.

Schnell, N., Robaszkiewicz, S., Bevilacqua, F., and Schwarz, D. (2015a). Col-
lective sound checks exploring intertwined sonic and social a�ordances of
mobile web applications.

Schnell, N., Saiz, V., Barkati, K., and Goldszmidt, S. (2015b). Of time en-
gines and masters an api for scheduling and synchronizing the generation
and playback of event sequences and media streams for the web audio api.

Tanaka, A., Altavilla, A., and Spowage, N. (2012). Gestural musical a�or-
dances.

Taylor, B. (2017). A history of the audience as a speaker array.

Taylor, B., Allison, J., Conlin, W., Oh, Y., and Holmes, D. (2014). Simplified
expressive mobile development with nexusui, nexusup and nexusdrop.

Truax, B. (1990). Composing with real-time granular sound.

Wanderley, M. M. (2001). Gestural control of music.

Wang, G. (2014). Ocarina: Designing the iphone’s magic flute.

Wang, G., Essl, G., and Penttinen, H. (2008a). Do mobile phones dream of
electric orchestras?

https://wp.nyu.edu/robert_rowe/text/interactive-music-systems-1993/chapter-1-interactive-music-systems/
https://wp.nyu.edu/robert_rowe/text/interactive-music-systems-1993/chapter-1-interactive-music-systems/
https://wp.nyu.edu/robert_rowe/text/interactive-music-systems-1993/chapter-1-interactive-music-systems/

56 Bibliography

Wang, J., Deng, H., Yan, Q., and Wang, J. (2008b). A collaborative model of
low-level and high-level descriptors for semantics- based music information
retrieval.

Wiener, N. (1964). Spatio-temporal continuity, quantum theory and music.

Xenakis, I. (1971). Fromalized Music, Thought and Mathematics in Composi-
tion. Bloomington: Indiana University Press.

Zolzer, U. (2002). DAFX: Digital Audio E�ects. 2002 John Wiley and Sons,
Ltd.

Appendix A

Appendix A

A.1 Survey Evaluation

57

58 Appendix A. Appendix A

Figure A.1: Musical Training

A.1. Survey Evaluation 59

60 Appendix A. Appendix A

A.1. Survey Evaluation 61

62 Appendix A. Appendix A

Appendix B

Appendix B

B.1 SNCKT EFFECTS CODE

1 <! DOCTYPE html >

2

3 <html >

4

5 <head >

6 <title >: SNCKT EFFECTS :</title >

7 <meta name=" viewport " content =" width=device -width , initial -

scale =1, maximum -scale =2, user - scalable =yes">

8 <link href=" bootstrap .css" rel=" stylesheet "/>

9 <script src=" nexusUI .js"></ script >

10 <script src="Tone.js"></ script >

11 <script src=" StartAudioContext .js"></ script >

12 <script src=" jquery .min.js"></ script >

13 </head >

14 <body >

15 <script >

16 /////// TONE.JS

17 StartAudioContext (Tone. context);

18

19 var filter = new Tone. Filter ({"type":" highpass ","

63

64 Appendix B. Appendix B

frequency " :20}). receive (" filter "). toMaster ();

20

21 var reverb = new Tone. Freeverb ({" dampening ":6000 ,"wet":1}).

receive (" reverb "). toMaster ();

22

23 var chorus = new Tone. Chorus (4, 10, 0.5 ,{"wet":1," spread

":0}). receive (" chorus "). toMaster ();

24

25 var delay = new Tone. PingPongDelay ({" feedback ":0.4 ,"wet"

:1}). receive ("delay"). toMaster ();

26

27

28 var reverbSend = filter .send(" reverb ", -Infinity);

29

30 var chorusSend = filter .send(" chorus ", -Infinity);

31

32 var delaySend = filter .send("delay ",-Infinity);

33

34 var player = new Tone. Player ({

35 "url" : " sounds2 / funtonpige .mp3", //" https :// dl.

dropboxusercontent .com/s/ ks75d36nu5iqhrr /twohy .wav",

36 "loop" : true ,

37 }). connect (filter);

38

39 var frequency = new Tone. Signal (0.5);

40 var dTime = new Tone. Signal (0.5);

41 var rSize = new Tone. Signal (0.5);

42 // var dTime = Tone. ScaleExp (0.2 ,1);

43

44 var sFQ = new Tone. ScaleExp (20 ,4000);

45 frequency . chain(sFQ);

46 dTime. connect (delay . delayTime);

47 rSize. connect (chorus . frequency);

48 // rSize . connect (phaser . frequency);

49 // rSize. connect (reverb . roomSize);

50 sFQ. connect (filter . frequency);

B.1. SNCKT EFFECTS CODE 65

51

52 </ script >

53

54 <script >

55 nx. onload = function () {

56

57 Tone. Buffer .on(" progress ", function (){

58 start. erase ();

59 });

60 Tone. Buffer .on("load", function (){

61 start.init (); start .draw ();

62 });

63

64

65 nx. colorize (" accent ", "#00 FFC0");

66 filter . colors . accent ="red";

67 delay. colors . accent =" green";

68 chorus . colors . accent ="blue";

69 filter .set ({" value":0});

70 delay.set ({" value":0});

71 chorus .set ({" value":0});

72 dial1. colors . accent ="red";

73 dial1.set ({" value" :0.1}) ;

74 dial1.draw ();

75 dial2. colors . accent =" green";

76 dial2.set ({" value" :0.5}) ;

77 dial2.draw ();

78 dial3. colors . accent ="blue";

79 dial3.set ({" value" :0.5}) ;

80 dial3.draw ();

81 dial4.set ({" value":1});

82 dial4.draw ();

83

84 start.on(’*’, function (data){

85 if(data. value ===1){ player .start ("+0.2")}

86 else{ player .stop("+0.2")}

66 Appendix B. Appendix B

87 });

88

89 dial4.on(’*’, function (data){

90 player .set ({" playbackRate ":data. value });

91 });

92 pitch.on(’*’, function (data){

93 player .set ({" playbackRate ":1});

94 dial4.set ({"value":1});

95 });

96

97 filter .on(’*’, function (data){

98 frequency . setValueAtTime (0.1);

99 dial1.set ({"value" :0.1}) ;

100 });

101 dial1.on(’*’, function (data) {

102 frequency . setValueAtTime (data. value);

103 });

104

105 delay.on(’*’, function (data){

106 if(data. value ===1){ delaySend .gain. value =0} else{

delaySend .gain.value = -100}

107 });

108 dial2.on(’*’, function (data) {

109 dTime. setValueAtTime (data.value);

110 });

111

112 chorus .on(’*’, function (data){

113 if(data. value ===1){ chorusSend .gain.value =0} else{

chorusSend .gain.value = -100}

114 });

115 dial3.on(’*’, function (data) {

116 rSize. setValueAtTime (data.value);

117 });

118

119 reverb .on(’*’, function (data){

120 if(data. value ===1){ reverbSend .gain.value =-6} else{

B.1. SNCKT EFFECTS CODE 67

reverbSend .gain.value = -100}

121 });

122

123 reverse .on(’*’, function (data){

124 if(data. value ===1){ player .set ({" reverse ":true })}else{

player .set ({" reverse ": false })}

125 });

126

127 reset.on(’*’, function (data){

128 player .set ({" playbackRate ":1});

129 dial4.set ({" value":1});

130 frequency . setValueAtTime (0.1);

131 dial1.set ({" value" :0.1}) ;

132 dial1.draw ();

133 chorusSend .gain. value = -100;

134 delaySend .gain.value = -100;

135 filter .set ({" value":0});

136 delay.set ({" value":0});

137 chorus .set ({" value":0});

138 dTime. setValueAtTime (0.1);

139 dial2.set ({" value" :0.1}) ;

140 dial2.draw ();

141 dial3.set ({" value" :0.5}) ;

142 dial3.draw ();

143 rSize. setValueAtTime (0.5);

144 });

145

146 }

147 </ script >

148

149 <script >

150 //////////// LINK CHANGER /////////////////

151

152 function changeLink (){

153 var userInput = document . getElementById (’userInput ’).value;

154 var lnk = document . getElementById (’lnk ’);

68 Appendix B. Appendix B

155 lnk = userInput ;

156 // lnk. innerHTML = lnk.href;

157 start.set ({" value":0});

158 player .stop("+0.2");

159 player .load(lnk);

160 }

161

162 function songSelector () {

163 var x = document . getElementById (’selector ’).value;

164 start.set ({" value":0});

165 player .stop("+0.2");

166 player .load(x);

167 player .set ({" reverse ": false });

168 reverse .set ({" value":0});

169

170 }

171

172 </ script >

173

174 <div class=" container ">

175 <div id=" tester " style=" clear:both"></div >

176 <div class="row">

177 <div class="col -sm -4" style=" width :450 px;

background - color :#686769; padding :10 px; margin

:20 px ;text - align: center ">

178 Post a Link to an MP3 file of

your choice

179 <input type=’text ’ id=’userInput ’/>

180 <input type=’button ’ style ="border - radius :12 px; border :none; padding :3px

; background -color :# f9f9f9 ; border :1 px solid # ffffff ;" onclick =’

changeLink ()’ value =’ Change Song ’/>

181

182

183 <select id=" selector ">

184 <option value=" sounds2 / funtonpige .mp3">SkandiMann - Funtonpige </ option

>

B.1. SNCKT EFFECTS CODE 69

185 <option value=" sounds2 / colors .mp3">Kasper Vegas - Colors </ option >

186 <option value=" sounds2 / jaruooj .mp3">Alternative Rock </ option >

187 <option value=" sounds2 /onehy .mp3">song4 </ option >

188 <option value=" sounds2 / fourhy .mp3">song5 </ option >

189 </ select >

190

191 <button style="border - radius :5px; border :none; padding :3px;background -

color :# f0f0f0 ; border :1 px solid # ffffff ;" onclick =" songSelector ()">

Change </ button >

192 <div ><p> </p></div >

193 <div >

194 <canvas nx=" toggle " id=’start ’ width="180" height ="60"></ canvas >

195 </div >

196 <div ><p> </p></div >

197

198 <canvas nx="dial" id=" dial4" width="60" height ="60" min="0.1"

max="2"></ canvas >

199 <canvas nx="dial" id=" dial1" width="60" height ="60" min="0.1"

max="1"></ canvas >

200 <canvas nx="dial" id=" dial2" width="60" height ="60" min="0.01"

max="1"></ canvas >

201 <canvas nx="dial" id=" dial3" width="60" height ="60" min="0.5"

max="20"></ canvas >

202

203 <div >

204 <canvas nx=" button " id=’pitch ’ label="pitch"

width ="60" height ="50"></ canvas >

205 <canvas nx=" button " id=’filter ’ label="

filter " width ="60" height ="50"></ canvas >

206 <canvas nx=" toggle " id=’delay ’ label="delay"

width ="60" height ="50"></ canvas >

207 <canvas nx=" toggle " id=’chorus ’ label="

chorus " width ="60" height ="50"></ canvas >

208 </div >

209

210 <div >

70 Appendix B. Appendix B

211 <canvas nx=" toggle " id=’reverb ’ label="

reverb " width ="60" height ="50"></ canvas >

212 <canvas nx=" toggle " id=’reverse ’ label="

reverse " width ="60" height ="50"></ canvas >

213 </div >

214

215 <div >

216 <canvas nx=" button " id=’reset ’ label =" reset"

width="60" height ="50"></ canvas >

217 </div >

218

219 </div >

220 <div >

221 <div >SNCKT TILT </

a><p style ="font -size :10 px">Tilt Control </p></div >

222 <div >SNCKT

COLLAB <p style ="font -size :10 px">Motion Control (

works only on mobile devices)</p></div >

223 </div >

224

225 <div >

226 <a href=" https :// goo.gl/ forms/ atXsSRWTVJIyiOM93 " style

=" color:red">QUESTIONNAIRE <p style ="font -size

:10 px">Rate this app! Please support my project

with some feedback .</p>

227 </div >

228 <div >

229 Tone.js

<p style ="font -size :10 px">For those interested

in web - development this app was made with Tone.js

and NexusUI .js.</p>

230 <div > <a href="http :// www. nexusosc .com/" style =" color:

green">NexusUI .js<p style ="font -size :10 px"></p>

</div >

231 </div >

232 </div >

B.2. SNCKT MOVE CODE 71

233 </div >

234

235 </body >

236

237 </html >

Listing B.1: SNCKT EFFECTS FULL CODE

B.2 SNCKT MOVE CODE

1 <! DOCTYPE html >

2

3 <html >

4

5 <head >

6 <title >: SNCKT MOVE :</title >

7 <meta name=" viewport " content =" width=device -width , initial -

scale =1, maximum -scale =2, user - scalable =yes">

8 <link href=" bootstrap .css" rel=" stylesheet "/>

9 <script src=" nexusUI .js"></ script >

10 <script src="Tone.js"></ script >

11 <script src=" StartAudioContext .js"></ script >

12 </head >

13

14 <body >

15 <script >

16 /////// TONE.JS

17 StartAudioContext (Tone. context);

18

19 var ampEnv = new Tone. AmplitudeEnvelope ({

20 " attack ": 0.5,

21 " decay ": 0.2,

22 " sustain ": 0.2,

23 " release ": 0.5,

24 " attackCurve ":"sine",

25 " releaseCurve ":"sine"

72 Appendix B. Appendix B

26 }). toMaster ();

27

28 var player = new Tone. GrainPlayer ({

29 "url" : " sounds2 / fourhy .mp3", //"https :// dl.

dropboxusercontent .com/s/ ks75d36nu5iqhrr /twohy .wav",

30 "loop" : true ,

31 " grainSize ":0.01 ,

32 " overlap ":0.05

33 }). toMaster ();

34 // position on the player

35 var Position

36

37 var loop = new Tone. Sequence (function (time , col){

38 var column = [col];

39 for (var i = 0; i < 1; i++){

40 if (column [i] === 1){

41 player . connect (ampEnv).start("+0.2",player . toSeconds

(Position));

42 ampEnv . triggerAttack ("+0.2");

43 }

44 }

45 }, [1], "4n");

46

47 Tone. Transport .start("+0.1");

48 </ script >

49

50 <script >

51 nx. onload = function () {

52

53 tilt1. colors . accent =" green";

54 tilt2. colors . accent ="blue";

55 tilt3. colors . accent ="red";

56 tilt1.text="";

57 tilt2.text="";

58 tilt3.text="";

59

B.2. SNCKT MOVE CODE 73

60 start.on(’*’, function (data){

61 if(data. value ===1){loop.start("+0.2");var d= document .

getElementById (’tester ’);d. innerHTML ="Tilt your

device (sides /up/down) to affect the sound .(Mobile

or Google Chrome only !)"; start. label=" ";start.draw

();}

62 else{loop.stop (); player .stop ()}

63 });

64

65 tilt1.on(’*’, function (data) {

66 var scaledy = nx.scale (data.y , -1 ,1 ,0.01 ,0.5);

67 player .set ({" grainSize ": scaledy });

68 var scaledx = nx.scale (data.x,-1,1,0, player .

buffer . duration);

69 Position = scaledx ;

70 });

71

72 tilt2.on(’*’, function (data) {

73 var scaledy = nx.scale (data.y , -1 ,1 ,0.1 ,2);

74 var scaledx = nx.scale (data.x , -1 ,1 ,20 ,200);

75 var scaledxp = nx.prune(scaledx ,0);

76 Tone. Transport .bpm.value= scaledxp ;

77 player .set ({" playbackRate ": scaledy });

78 });

79

80 tilt3.on(’*’, function (data) {

81 var scaledy = nx.scale (data.y , -1 ,1 , -500 ,500);

82 player .set ({" detune ": scaledy });

83 var scaledx = nx.scale (data.x , -1 ,1 ,0.1 ,0.8);

84 player .set ({" overlap ": scaledx });

85 });

86

87 }

88 </ script >

89

90 <script >

74 Appendix B. Appendix B

91 //////////// LINK CHANGER /////////////////

92

93 function changeLink (){

94 var userInput = document . getElementById (’userInput ’).value;

95 var lnk = document . getElementById (’lnk ’);

96 lnk = userInput ;

97 // lnk. innerHTML = lnk.href;

98 player . buffer .load(lnk);

99 }

100

101 function songSelector () {

102 var x = document . getElementById (’selector ’).value;

103 player . buffer .load(x);

104 }

105

106 </ script >

107

108 <div class=" container ">

109 <div id=" tester " style=" clear:both"></div >

110 <div class="row">

111 <div class="col -sm -4" style=" width :450 px;

background - color :#686769; padding :10 px; margin

:20 px ;text - align: center ">

112 Post a Link to an MP3 file of

your choice

113 <input type=’text ’ id=’userInput ’/>

114 <input type=’button ’ style ="border - radius :12 px; border :none; padding :3px

; background -color :# f9f9f9 ; border :1 px solid # ffffff ;" onclick =’

changeLink ()’ value =’ Change Song ’/>

115

116

117 <select id=" selector ">

118 <option value=" sounds2 / fourhy .mp3">song1 </ option >

119 <option value=" sounds2 / funtonpige .mp3">SkandiMann - Funtonpige </ option

>

120 <option value=" sounds2 / jaruooj .mp3">Alternative Rock </ option >

B.2. SNCKT MOVE CODE 75

121 <option value=" sounds2 / colors .mp3">Kasper Vegas - Colors </

option >

122 <option value=" sounds2 /onehy .mp3">song5 </ option >

123 </ select >

124

125 <button style="border - radius :5px; border :none; padding :3px;background -

color :# f9f9f9 ; border :1 px solid # ffffff ;" onclick =" songSelector ()">

Change </ button >

126 <div ><p> </p></div >

127 <div >

128 <canvas nx=" toggle " id=’start ’ width="180" height ="60"></ canvas >

129 </div >

130 <div ><p> </p></div >

131 <canvas nx="tilt" id=" tilt1" width="60" height ="60"></ canvas >

132 <canvas nx="tilt" id=" tilt2" width="60" height ="60"></ canvas >

133 <canvas nx="tilt" id=" tilt3" width="60" height ="60"></ canvas >

134

135 </div >

136 <div >

137 <div >SNCKT

COLLAB <p style ="font -size :10 px">Motion Control (

works only on mobile devices).</p></div >

138 <div >SNCKT EFFECTS <p

style="font -size :10 px">Sound Effects on Sound </p></

div >

139 </div >

140

141 <div >

142 <a href=" https :// goo.gl/ forms/ gJZvPKZcsuXT3YPL2 " style

=" color:red">QUESTIONNAIRE <p style ="font -size

:10 px">Rate this app! Please support my project

with some feedback .</p>

143 </div >

144 <div >

145 Tone.js

<p style ="font -size :10 px">For those interested

76 Appendix B. Appendix B

in web - development this app was made with Tone.js

and NexusUI .js.</p>

146 <div > <a href="http :// www. nexusosc .com/" style =" color:

green">NexusUI .js<p style ="font -size :10 px"></p>

</div >

147 </div >

148 </div >

149 </div >

150

151 </body >

152

153 </html >

Listing B.2: SNCKT MOVE FULL CODE

B.3 SNCKT COLLAB CODE

1 <! doctype html >

2 <html >

3 <head >

4 <title >: SNCKT COLLAB DRUMS:</title >

5 <meta name=" viewport " content ="width=device -width , initial -

scale =1, maximum -scale =2, user - scalable =yes">

6 <link href=" bootstrap .css" rel=" stylesheet "/>

7 <script src=" nexusUI .js"></ script >

8 <script src="Tone.js"></ script >

9 <script src=" StartAudioContext .js"></ script >

10 </head >

11

12 <body >

13 <script >

14

15 StartAudioContext (Tone. context);

16

17 var kick = new Tone. Sampler (" sounds /kick.mp3"). toMaster ();

18 var hihat = new Tone. Sampler (" sounds / hihat.mp3"). toMaster ();

B.3. SNCKT COLLAB CODE 77

19 var snare = new Tone. Sampler (" sounds / snare.mp3"). toMaster ();

20 var shaker = new Tone. Sampler (" sounds / shaker .mp3"). toMaster

();

21 var rim = new Tone. Sampler (" sounds /rim.mp3"). toMaster ();

22

23 var ampEnv = new Tone. AmplitudeEnvelope ({

24 " attack ": 0.1,

25 " decay ": 0.2,

26 " sustain ": 1,

27 " release ": 0.1

28 }). toMaster ();

29

30

31 var chain = new Tone. CtrlMarkov ({

32 " beginning " : [{" value":"0.5"," probability " : 0.2} ,

33 {" value":"1.5"," probability " : 0.3} ,

34 {" value":"1"," probability " : 0.4} ,

35 {" value":"2"," probability " : 0.1} ,

36]

37 });

38 chain. value = " beginning ";

39

40 var kickSend = kick.send(" reverb ", -Infinity);

41 var hihatSend = hihat.send(" reverb ", -Infinity);

42 var snareSend = snare.send(" reverb ", -Infinity);

43 var shakerSend = shaker .send(" reverb ", -Infinity);

44 var rimSend = rim.send(" reverb ", -Infinity);

45

46 var reverb = new Tone. Freeverb ({" dampening ":6000 ,"wet":1}).

receive (" reverb "). toMaster ();

47

48 Tone. Transport .start ();

49

50 nx. onload = function () {

51

52 nx. colorize (" accent ", "#1ee");

78 Appendix B. Appendix B

53 nx. colorize (" border ", "#bbb");

54 nx. colorize ("fill", "#eee");

55

56 motion1 .on(’*’, function (data){

57

58 if(data.x > 0.2){kick. triggerAttack (0,"@4n");

59 kick. player .set ({" playbackRate "

: chain.next ()});

60 chain. value = " beginning "};

61 if(data.z > 0.2){snare . triggerAttack (0,"@2n");

62 snare. player .set ({" playbackRate

": chain.next ()});

63 chain. value = " beginning "};

64 if(data.x < -0.3){hihat. triggerAttack (0,"@16n");

65 hihat. player .set ({"

playbackRate ":chain.next ()

});

66 chain. value = " beginning "};

67 if(data.y < -0.2){ shaker . triggerAttack (0,"@8n");

68 shaker . player .set ({"

playbackRate ":chain.next ()

});

69 chain. value = " beginning "};

70 if(data.y < -0.2){rim. triggerAttack (0,"@6n");

71 rim. player .set ({" playbackRate "

:chain.next ()});

72 chain. value = " beginning "};

73 });

74

75 tilt1.on(’*’, function (data){

76 var scaledx = nx.scale(data.x,-1,1,0,1);

77 if(scaledx <0.1){kick. triggerRelease ();hihat.

triggerRelease ();snare. triggerRelease ();

78 shaker . triggerRelease ();rim.

triggerRelease ()};

79

B.3. SNCKT COLLAB CODE 79

80 var scaledy = nx.scale(data.y,-1 ,1,-30,0);

81 kickSend .gain. value = scaledy ;

82 hihatSend .gain. value = scaledy ;

83 snareSend .gain. value = scaledy ;

84 shakerSend .gain. value = scaledy ;

85 rimSend .gain.value= scaledy ;

86 });

87

88 }

89

90 </ script >

91

92 <div class=" container ">

93 <div id=" tester " style =" clear:both"></div >

94 MOBILE DEVICES ONLY! Shake your device . Try the different

instruments and play with other people .

95 <div class="row">

96 <div class="col -sm -4" style="width :450 px;

background -color :#686769; padding :10 px; margin

:20 px ;text - align: center ">

97 DRUMS

98 <div >

99 <canvas nx=" motion " width ="200" height ="200" label="tap twice to

make sound"></ canvas >

100 </div >

101 <div >

102 <canvas nx="tilt" width="20" height ="20"></ canvas >

103 </div >

104

105 <div >

SYNTH1 <p style ="font -size :10 px"></p></div >

106 <div >

SYNTH2 <p style ="font -size :10 px"></p></div >

107 <div >

BELLS <p style ="font -size :10 px"></p></div >

108 <div ><a href="http :// sonicakt .dk/bass.html" style=" color:white"

80 Appendix B. Appendix B

>BASS <p style ="font -size :10 px"></p></div >

109 <div ><a href="http :// sonicakt .dk/guit.html" style="color: white"

>GUITAR <p style ="font -size :10 px"></p></div >

110 <div ><a href="http :// sonicakt .dk/ motion2 .html" style=" color:

white">ORCHESTRA <p style ="font -size :10 px"></p></div >

111

112 <div >

113 <a href=" https :// goo.gl/ forms /4 ccxzJKgox5XEwV52 " style

=" color:red">QUESTIONNAIRE <p style ="font -size

:10 px">Please support my project with some feedback

.</p>

114 </div >

115

116 </div >

117 <div >

118 <div >SNCKT EFFECTS <p

style ="font -size :10 px">Sound Effects on Sound </p></

div >

119 <div >SNCKT MOVE </

a><p style ="font -size :10 px">Tilt control </p></div >

120 </div >

121 </div >

122 </div >

123 </body >

124

125 </html >

Listing B.3: SNCKT COLLAB FULL CODE

	Front page
	Contents
	Preface
	1 Introduction
	1.1 Related Work
	1.1.1 Active Listening
	1.1.2 Interactive Sound and Music in the Mobile platform
	1.1.3 Audience as active participants in the musical experience

	2 Design Strategies
	2.1 Digital Musical Instrument Model
	2.1.1 Mapping Strategies
	2.1.2 Interface Design Guidelines
	2.1.3 Interactive Music Systems

	3 Implementation
	3.1 SNCKT EFFECTS
	3.1.1 Digital Audio Effects

	3.2 SNCKT MOVE
	3.2.1 Granular Synthesis

	3.3 SNCKT COLLAB

	4 Evaluation
	4.1 Naturalistic Observation-based Experiment
	4.2 Survey based experiment

	5 Conclusion
	Bibliography
	A Appendix A
	A.1 Survey Evaluation

	B Appendix B
	B.1 SNCKT EFFECTS CODE
	B.2 SNCKT MOVE CODE
	B.3 SNCKT COLLAB CODE

