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Chapter 1

Introduction

Speech and music are the most popular auditory information in acoustic research.
Speech has been extensively studied in, for example, the fields of automatic speech
recognition [45; 49], and speech generation [18]. In the same way, research in music
is also vast. The topics in music research include, among others, music transcription
[30], genre classification [58] and beat tracking [23]. Nevertheless, speech and music
are just two of the many types of sound sources that can be heard.

The other types of sounds, such as sounds originated from traffic, machinery,
walking, or impacts, can be included in the category of environmental or everyday
sounds [56]. This category of sounds carries important information which humans
use to be aware and also to interact with their surroundings.

As with speech and music, there has also been research addressing the problem
of identifying automatically environmental sounds scenes or the sources, or events,
that compose it. This research field can be considered under the umbrella of Compu-
tational Auditory Scene Analysis [9]. This field has got significant interest recently,
but it is still an open problem and, for this reason, the purpose of this thesis is to
tackle it with recent approaches.

As reviewed in Chapter 3, the recent approaches are based on Neural Networks,
or Deep Learning. Neural Networks (NNs) and, more especially, Convolutional Neu-
ral Networks (CNNs) have been applied successfully to a different range of problems
in image processing, such as object recognition [32], object detection [47] and im-
age generation [60]. Deep Learning has also been applied to fields such as natural
language processing [15]. And it has also been applied to the audio domain, in, for
example, speech generation [18], music tagging [17] or source separation [26].

Although Deep Learning has already been used in the field of everyday listening,
the approach taken in this thesis explores a less common approach in which the
audio signal is directly input to the Deep Learning system, instead of being first
transformed into a feature representation. This approach is usually referred as end-
to-end learning.

The motivation for this thesis arises from the increasing exposure to different
environments of devices with the ability to listen.
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Applications

An automatic system for acoustic scene or events classification could have many po-
tential usages. It could be applied to robot navigation systems [59; 13], to surveillance
systems, or noise monitoring systems [53]. Wearable devices could adjust themselves
according to the context, hearing aids, for example, could change the equalization
settings automatically. In the same way, it could be used to detect and classify
speech [7], bird-song [8], musical sounds [21], pornographic sounds [28] or dangerous
events [39]. This could be applied to improve the accessibility of audio archives [46]
and information retrieval. And it could be used by smart home systems that log the
events and notify the users when an event happens. Finally, a system that is aware
of its context and understands it could also be used to predict patterns of new events
[59].

1.1 Scope of this work

Overview

The thesis is an exploration of neural networks using and end-to-end learning ap-
proach in audio. It first evaluates several approaches to audio event classification,
and presents a prototype system based on this evaluation. The work gives a general
overview of everyday listening and, also, Deep Learning. Special focus is put on
exploring how the network architecture represents the audio signal.

The thesis attempts to answer how deep learning architectures are capable of
processing audio signals directly.

Structure

The thesis is organized as follows: Chapter 2 deals with the topic of Deep Learning, it
introduces the necessary concepts later used in, first, Chapter 3 which gives a general
overview of the everyday listening field, explaining the common approaches and the
data sets that stimulate its research. And, second, Chapter 4 which reports the
exploration of different deep learning architectures and gives a detailed description
of the final architecture. Chapter 5 presents the results of the final architecture in
classifying audio events. It compares is to different state of the art approaches, as
well. Finally, Chapter 6 concludes the thesis with suggestions for future work and a
summary of the contributions made by this thesis.



Chapter 2

Deep Learning

This chapter gives an brief overview on the field of Deep Learning. The focus will
be on explaining the concepts that will be later used in the development of the
proposed system. For a comprehensive description of the field, the reader is referred
to Goodfellow et. al. [22]. This chapter follows closely this reference as well as the
Stanford CS class CS231n!.

It is worth mentioning the meaning of the term Deep Learning. The purpose
of the earliest artificial intelligence algorithms was to model how learning happened
in the brain, thus these algorithms were called artificial neural networks (ANNS).
Deep Learning is the term applied to the algorithms not necessarily inspired by
the biological neural networks [22] and contain many more processing layers than a
traditional neural network.

2.1 Overview

Most definitions of Deep Learning highlight the use of models with multiple layers
of nonlinear processing units that process and transform the input data. These
sequential transformations create a feature representation hierarchy, which can be
supervised or unsupervised [16].

These models can be seen as an infinitely flexible function, which can, for example,
translate a language to another or recognize cats in pictures. To allow this function
to undertake its task, fitting its parameters is required, which is achieved by the
technique called backpropagation.

Finally, and the reason why deep learning is so popular today is the recent avail-
ability of, first, devices that allow to fit these parameters quickly, Graphical Process-
ing Units (GPUs), and, second, large data bases that allow to scale the algorithms.

The following sections give an general overview on the building blocks of Deep
Learning.

! Convolutional Neural Networks for Visual Recognition: https://cs231n.github.io/
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2.2 Multilayer Perceptron

The multilayer perceptron (MLP), also called Feed Forward Network, is the most
typical neural network model. Its goal is to approximate some function f*. Given,
for example, a classifier y = f*(x) that maps an input = to an output class y, the
MLP find the best approximation to that classifier by defining a mapping, y = f(x;60)
and learning the best parameters, 6, for it.

The MLP networks are composed of many functions that are, for instance,
chained together. A network with three functions or layers would form f(z) =
FEFE D ())).

Each of these layers are composed of units that perform an affine transformation
of a linear sum of inputs. Each layer is represented as y = f(Wx! + b). Where f
is the activation function (covered below), W is the set of parameter, or weights, in
the layer, x is the input vector, which can also be the output of the previous layer,
and b is the bias vector.

The layers of a MLP consists of several fully connected layers because each unit
in a layer is connected to all the units in the previous layer. In a fully connnected
layer, the parameters of each unit are independent from the rest of units in the layer,
that means each unit possess a unique set of weights.

Figure 2.1 shows a diagram of a multilayer perceptron network of three layers:
the input layer with five units, a hidden layer with six units and an output layer. It
has three inputs and outputs.

Figure 2.1: Multilayer perceptron
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In a supervised classifier system, each input vector is associated to a label, or
ground truth, defining its class. The output of the network gives a class score, or
prediction, for each input. To measure the performance of the classifier, the loss
function is defined. The loss will be high if the predicted class does not correspond
to the true class, it will be low otherwise.

In order to train the network, an optimization procedure is required. This pro-
cedure will find the values for the set of weights, W that minimize the loss function.
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Figure 2.2: Activation functions
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A popular strategy is to initialize the weights to random values and refine them it-
eratively to get lower loss. This refinement is achieved by moving on the direction
defined by the gradient of the loss function. And it is important to set a learning
rate defining the amount in which the algorithm is moving in every iteration.

The gradient of the weights is computed efficiently using backpropagation, which
computes gradients through recursive application of chain rule.

2.2.1 Activation functions

Non-linear activation functions describe the input-output relations in a non-linear
way. Thus gives the model power to be more flexible in describing arbitrary relations.
Here, two of the most popular activation functions are described.

Sigmoid function
The sigmoid function takes the form:

B 1
C l4e®

o(z)

It takes a real number, x, as input and returns a value between 0 and 1, which
is a particular case of the logistic function and can be interpreted as a probability
value. Its shape is shown in figure 2.2

An output layer composed of sigmoid units is usually used for problems in which
an input vector can belong simultaneously to several classes.

Rectified Linear Unit (ReLU)

The Rectified Linear Unit is the most popular activation function at the moment
and it computes the function f(z) = maz(0,x), as shown in figure 2.2.
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Softmax activation

The softmax function is the generalization of the logistic function to multiple classes.
Therefore, its output can represent a categorical distribution over multiple classes.
The softmax is given by the formula

e%i
Y e

for j=1,..., K. Where K is the number of classes.

o(z);

2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) [33] are networks that use a mathematical
operation called convolution instead of a matrix multiplication in at least one of their
layers. This kind of networks was inspired by the visual cortex and have been very
successful in practical applications, usually in image recognition.

The CNN architectures are usually built with three main types of layers: Convo-
lutional layer, Pooling layer and Fully Connected layer. In this section the first two
are explained.

2.3.1 Convolutional layer

The convolution is an operation between two functions or signals. It is denoted with
an asterisk and its one-dimensional version is written as:

o0
s(t) = (xxw)(t) = Z z(a)w(t — a)
a=—0o0

The first signal, x, is called the input and the second signal, w, is the filter. In
this one-dimensional case, the term ¢ is the time index and a is a time shift value.
In the convolutional layers, the output of the convolution is referred as the feature
map.

For images, it is more common to use a two-dimensional convolution that accepts
as input a three dimensional matrix (width, height and colour channels) and outputs
a three dimensional matrix as well.

The parameters of the convolutional layer are composed of a set of learnable
filters. Each of those filters will be convolved across the width and height of the
input. This will produce a two dimensional feature map. The network will learn
filters that are activated when a certain feature is detected. In the case of images,
this feature can be an edge and, in the case of sound, can be a frequency component.

Fach filter in the layer will produce a separate feature map. Stacking these
maps will produce the output tensor with dimensions (output width, output height,
number of filters).
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As said before, each unit in a fully connected layer (FC) is connected to all the
previous units. One difference between FCs and CNNs is that each filter of a convo-
lutional layer is connected to a limited number of input values. This property of the
convolutional layers is also referred as sparse interaction and the hyperparameter
controlling it is the filter size. Secondly, each set of parameters in a FC unit is inde-
pendent from the rest. In CNNs, each filter applies the same weights at each local
region of the input signal. This property is called parameter sharing and it causes
each filter to find the same feature across the input. Each output feature map will
describe a different detected feature. The third property of CNNs is equivariance.
In short, it means that the changes in the input result in the same changes in the
output. (Goodfellow et.al (2016) [22]: Section 9.1, p. 331)

These properties, in particular parameter sharing, allow the networks to be suit-
able to analyze signals while reducing the number of parameters.

2.3.2 Pooling layer

After the convolutional stage, a typical CNN will use an activation function to pro-
duce a non-linear representation. To modify this output further, a pooling layer is
used.

The goal of the pooling layer is to reduce the spatial size of the representation
to reduce the number of parameters and, thus, computation in the network. To do
that, the output of the network at a certain position is replaced with a statistical
opeartion on the neighborhood values.

A Pooling layer can apply several operations to the neighborhood of a location,
such as the mazimum, the average, the weighted average, and the L? norm. MAX
Pooling is currently the most popular operation in practical applications and it re-
turns the maximum value within a neighborhood of values. Figure 2.3 shows an
example of max pooling, one can see this action reduces the dimension of the input.

Figure 2.3: Max Pooling
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Apart from reducing the computational cost of training the network, pooling
layers help to make the network invariant to translations. That is, if the input is
translated by a small amount, the pooling will result in the same values. This is
an interesting property when it is more important to detect if the feature is present
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rather than detecting its location.

2.4 Regularization

A successful machine learning system needs to achieve a low training error while
minimizing the difference between training and test error. Training error is the error
measure defined over the data that the system used for training, in the same way,
test error is defined over unseen data. The performance of the system is measured
using the test error.

The situation when the training error is low while the test error is high can occur
when the model is too complex for its task. Overfitting is the term used to define
this situation.

In order to avoid overfitting, a deep learning system can be modified to include
some reqularization techniques. In this section, some of them are briefly described.

2.4.1 Dropout

Dropout is one simple technique to avoid overfitting. It consists in dropping units
from the network during training [54]. Dropping a unit means to temporarily remove
it with all its connections, both input and output, with a given probability.

This technique addresses two regularization methods: the first one is model com-
bination, also referred to as bagging, which involves training a model with all possible
setting of its parameters; the second method is related to the fact that deep learning
methods require large amounts of data.

Dropout requires a hyperparameter which sets a value for the probability that a
unit will be disconnected.

2.4.2 Batch Normalization

During training a network, the input distribution of a layer changes as the param-
eters of the preceding layer change. In deep networks, this is a problem known as
covariance shift because the layer needs to adapt to this change continuously. Co-
variance shift causes the training to be slower and requires a careful initialization of
the parameters.

Batch Normalization [27] is an optimization technique to overcome covariance
shift by normalizing each input batch with its mean and variance.

The usage of a batch normalization layer is placed after the convolution or the
fully connected layer, but before the activation layer. It allows to use higher learning
rates and be less careful about initialization while requiring fewer training steps.

2.4.3 Data augmentation

Another way to make a machine learning system avoid overfitting is to use more data
to train it. Since the amount of data is limited, it is also possible to create new fake
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data by modifying the training data. This procedure is known as data augmentation
and it is domain-specific.

In object recognition, techniques of data augmentation include, among others,
rotating the images, translating them or perturbating the color.

In the audio domain, data augmentation techniques include pitch shifting, time
stretching or dynamic range compression.

2.4.4 Early Stopping

Early Stopping is a fruitful but simple strategy consisting in stopping the training
of the model when a monitored measure, for example the validation error, has not
improved for some amount of time.

The parameters of Early Stopping are: (1) the quantity to be monitored, (2) the
number of epochs with no improvement after which training will be stopped, called
patience and (3) the minimum change in the monitored quantity to qualified as an
improvement, called minimum delta.



Chapter 3

State of the art: Everyday
listening

The main topics of machine listening research have been speech and music. Even
though these are just two of the many sound sources that can be heard in most
environments, the analysis of environmental sounds has been limited until recently.
The lack of, first, public annotated data and, second, a common vocabulary for it
have been causes for the scarce research in this field [53].

In this chapter, the field of everyday listening is given an overview which cover
its terminology, some data sets that stimulate its research and the common methods
that tackle it.

3.1 Overview

As said in the introduction, the Everyday listening field can be considered under the
umbrella of Computational Auditory Scene Analysis (CASA). The two challenges
of CASA are, first, to classify the acoustic environment, or scene, and, second, to
recognize the distinct sound events in the scene.

Acoustic scene classification (ASC) is the first challenge of CASA and its goal is
to recognize the environment in which an audio signal was recorded [41; 55]. This
environment can be defined based on a physical or a social context (park, office,
meeting, ...) [35]. It is a single-label classification problem similar to music genre
recognition or speaker recognition.

The analysis of the events can be separated in two problems: the detection or
the recognition. Sound Event Detection (SED) aims to identify the start and the
end time stamps of each event in an audio signal. And it can be further divided into
monophonic or polyphonic detection. The output in the first approach will be the
most dominant sound at each time instance. In polyphonic detection, it is required
to detect all the overlapping events. Sound Event Recognition (SER) aims to classify
each event into different classes and the location of the event is considered a different
problem.

10
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This thesis is focused in exploring the second approach to sound event analysis:
Sound Event Recognition.

3.2 Common approaches

Historically, many works on Sound Event Detection (SED) or Environmental Sound
Classification (ESC) have relied on speech recognition techniques. Thus, the most
common features used were the Mel Frequency Ceptrum Coefficients (MFCCs) [1],
VQT Spectrograms [61; 31] the Mel-spectrogram [53], or the mel-band energy fea-
tures [11]. These were used in combination with classifiers such as Gaussian Mixture
Models [14], Hidden Markov Models [1], Non Negative Matrix Factorization [20],
Support Vector Machines [57; 64; 43] or Random Forest Classifier [53; 43]. Recent
approaches use feature learning with, for example, the scattering transoform [50]
or the log-mel-spectrogram [51]. Finally, the state of the art is based on of Deep
Neural Networks (DNNs). These state of the art approaches include Feed Forward
Neural Networks [11; 10], Deep Convolutional Neural Networks (DCNN) [42; 52], or
Recurrent Neural Networks (RNN) [24; 3; 65].

As this master thesis is focused in Deep Convolutional Neural Networks applied
to the sound event classification task, it is interesting to go more into detail in similar
approaches.

In [42], Piczak used a DCNN to classify the sound events in the UrbanSound8K
dataset. As the input features, the the Log-scaled Mel-spectrograms were used.
The DCNN architecture consisted in 2 convolutional layers followed by 3 fully con-
nected (dense) layers. A MaxPooling layer followed the first convolutional layer and
a Dropout layer followed the first dense layer. With this architecture, the reported
categorical accuracy was 73%.

Using the same dataset and input features, the work of Salamon and Bello [52]
addressed the problem with a different architecture and a data augmentation pro-
cedure. The DCNN architecture consisted in 3 convolutional layers, the first two
interleaved with max pooling operations, followed by 2 dense layers. As activation
functions they used Rectified Linear Units (ReLUs) for all the layers except for the
output layer which used Softmax. The data augmentation stage included the follow-
ing deformations: time stretching, pitch shifting, dynamic range compression and
background noise. This method reported 79% categorical accuracy.

In [10], the purpose is Sound Event Detection (SED), which involves to determine
the onset and offset time of each event as well as to identify its class. To address
it, a combination of convolutional and recurrent networks (CRNN) is used. The
architecture is chosen due the capability of the convolutional networks to learn local
translation invariant filters and the capability of the recurrent networks to model
temporal dependencies. In particular, the architecture consists of four parts: a con-
volutional block which takes as input the log mel band energies, a recurrent block
on top of it, a single dense layer which estimates event activity probabilities for
each frame which are binarized into predictions in the final part. Their proposed
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method is compared across several data sets to two previous approaches, a Feedfor-
ward Neural Network model and a Gaussian Mixture Model. The CRNN shows a
clear improvement over them, however, it is dependent on large amounts of data.

3.3 Raw audio

As said before, these approaches have relied on using hand-crafted features designed
to be practical for the classification task. Using these features requires significant
prior knowledge in the task [17], and it is possible these features are not the best
representation of the data to be used by the classification method [48].

In computer vision, feature learning methods which do not require any pre-
processing of the images represent the state of the art. In the audio domain, this is
a recently opened trend and it uses the raw waveform as the direct input to a deep
learning system [17; 48; 6; 40; 18; 5; 62; 4].

The work of Dieleman and Schrauwen in [17] is the first attempt of an end-to-
end learning approach to automatic music tagging. End-to-end learning is referred
to processing architectures where the stack that connects the input to the desired
output is learned from data. Thus, the construction of features and the classification
task are not two separate problems, but one.

The deep learning architecture presented in [17] expects as input 3 seconds of
audio and it consists of a one-dimensional strided convolution layer, two filter stages
and a classification stage. The filter stages are composed of a one-dimensional con-
volution followed by a max pooling layer and a RELU activation. The classification
stage contains two dense layers.

Even though, the task they faced was performed better by an approach based
on the spectrogram, they prove that networks are capable of discovering frequency
decompositions and, when incorporating a feature pooling layer, phase translation-
invariant features.

After the work of Dieleman and Schrauwen, a similar approach has been used
in speech recognition. Either with a similar convolutional architecture [40] or with
adding Recurrent layers, such as long short term memory (LSTM), after a convolution
stage [48]. The analysis of the proposed neural networks agree with [17], since, first,
[40] reports that the first convolution layer learns matching filters which are combined
linearly after the max pooling operation. And, second, in [48] the network learns
auditory-like filterbanks of bandpass filters.

In the same way, the end-to-end approach has been applied to audio generation
[18; 4; 5]. Wavenet!, released by Google’s DeepMind in September 2016, is the most
significant example of it. Wavenet addresses the problem of Text-to-Speech synthesis
by modelling waveforms sample by sample. Its architecture is based on dilated causal
convolutions. These special kind of convolutions allow the network to increase its
receptive field, i.e. the number of input samples, and to model each sample given
the previous samples only.

https://deepmind. com/blog/wavenet-generative-model-raw-audio/


https://deepmind.com/blog/wavenet-generative-model-raw-audio/

3.4. Datasets 13

Finally, this strategy has also been applied to the problem of this thesis, environ-
mental sounds analysis. According to the author’s knowledge, only two publications
address this problem with this strategy, these are [6] and [62]. However, it is not the
focus of the second publication, which is the reason why only the first publication,
SoundNet, is reviewed here.

3.3.1 SoundNet

Soundnet [6] is an inspiration for this thesis because, as said before, is a deep con-
volutional network that inputs raw audio waveforms as directly and it is applied to
the tasks of audio scene and event recognition.

The available data sets for environmental sound are more much smaller than the
data sets available in computer vision. These small data sets are not suitable to train
deep neural networks. Aytar et. al. overcome this obstacle by using a data set of
2 million videos and training the audio network by transfer learning with a vision
network as its supervision.

In particular, state of the art vision neural networks, ImageNet CNN [32] and
Places CNN [63], are used to teach SoundNet to recognize scenes and objects. This
training is based on minimizing the KL-divergence between the predictions of the
teacher vision network, given the video, and the output distribution of SoundNet,
given sound.

Two architectures are presented in SoundNet’s publication. The first architec-
ture has 8 layers and the second 5 layers and both are composed of 1-dimensional
convolution layers, max pooling layers and RELU activation functions.

Once SoundNet is trained, its performance is compared to several state-of-the-
art methods in different audio scene and events classification data sets. SoundNet
reports an improvement over the other methods.

3.4 Datasets

As said before, the lack of public annotated data has been an obstacle for the field
of everyday listening. To overcome this obstacle and stimulate this research, the
datasets UrbanSound, UrbanSound8K [53] and Audio Set [19] have been released.
In the same way, the IEEE DCASE Challenge [36] addresses the same objective. A
comprehensive list of environmental sound data bases is maintained by Toni Heit-
tola?.

The focus of the UrbanSound and UrbanSound8K datasets?, released in 2014,
is the urban environmental sounds and it is build around the most frequent sound
sources in noise complaints filed in New York City. The 10 classes in the dataset are:
air conditioner, car horn, children playing, dog bark, drilling, engine idling, gun shot,

’https://www.cs.tut.fi/~heittolt/datasets
3https://serv.cusp.nyu.edu/projects/urbansounddataset/
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jackhammer, siren and street music. The source of the recordings is Freesound?.

On the one hand, UrbanSound contains 27 hours of audio with 18.5 hours of
manually labelled sound events. It can be used for sound event detection as it
contains the original 1302 recordings along with the annotations for the start and
end times of each event. On the other hand, UrbanSound8k is a subset of the previous
designed for sound event classification as it contains 8732 audio snippets of 4 seconds
across each event class aranged in 10 folds.

In 2017, Google released Audio Set [19], an ontology® of 632 audio event classes
and a collection of 2.1 million human-labelled 10-second sound clips drawn from
Youtube videos. In contrast to previous data sets, Audio Set is not limited to any con-
text, but considers all sound events. The six top level layers in the Audio Set hierar-
chy graph are: Human sounds, Sounds of things, Animal Sounds, Source-ambiguous
sounds, Natural sounds, Music and Channel, Environment and Background.

In the same way as the mentioned datasets, The Detection and classification of
acoustic scenes and events (DCASE) Challenge holds the same objective: to stimulate
the development of computational scene and event analysis. The challenge has been
held in 2013, 2016 and will be held in 2017 as well. It provides different data sets
depending on the task.

The development data set for the Sound event detection in real life audio task,
TUT Sound Events 2017 [36], consists of recording of street acoustic scenes, which
were selected as representing human activities and hazard situations. There are 24
audio recordings, 1.54 hours in total, and 6 classes: brakes squeaking, car children,
large vehicle, people speaking, people walking.

‘freesound. org
°It can be explored interactively in https://research.google.com/audioset/dataset/index.
html
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Chapter 4

End-to-End learning for audio
events

A system which trains its function directly from data and, thus, connects its input
to the desired output is known as an end-to-end learning system [38; 17]. The main
advantage of such systems is avoiding the need of using hand-crafted heuristics, which
rely in prior knowledge about the specific problem and require significant engineering
effort.

In addition, learning the features from the data can outperform hand-crafted
engineered features because the features are created for the particular task.

In the previously cited references, this approach was used for music audio tagging
and vehicle navigation. Both of these references used deep learning as it is well suited
for the end-to-end approach because the same objective function is used by several
layers of processing.

This chapter covers the exploration of deep learning architectures applied to the
task of sound event recognition in an end-to-end approach. In particular for audio,
the input is the waveform and not a hand-crafted feature such as the Mel Frequency
Cepstral Components (MFCCs).

For this purpose, first, the employed data set is described in detail, second, the
proposed system architecture is detailed as well as, third, the decision process that
lead to it.

4.1 UrbanSound8k data set

The UrbanSound8k data set has been briefly described in the previous chapter. As it
is employed for the development of the end-to-end architecture, the different classes
it contains are described here. This can help identify what the network should be
able to distinguish.

In [53], Salamon et. al. describe a taxonomy! for urban sounds and the data

1See Appendix A to see an image of the taxonomy
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set they release includes 10 low-level classes from that taxonomy, which are: air
conditioner, car horn, children playing, dog bark, drilling, engine idling, gun shot,
jackhammer, siren and street music. There are up to 1000 examples per class and
each of them has a maximum duration of 4 seconds. The data set is given divided
into 10 folds to allow cross validation.

The research Salamon et. al. addresses the sound pollution in cities, thus noise
complaints were used to identify the most common sound sources. Given this, 7 of
the classes in the data set are of mechanical sources. Three of them belong to the
road category within the motorized transport category, two belong to construction,
the other two are gun shot and air conditioner.

The goal of the European project CLOSED [56] is to provide a useful measure-
ment tool for sound designers. One of the steps to deliver that is to categorize every-
day sounds. They review and unify several everyday listening categories (See Figure
2.8 of part 2 the deliverable number 4.1 for the cited reference). These categories
group sound events given their acoustic similarity.

The three main categories in this taxonomy are related to the pitch of the sound,
its rhythm and its sequence. If the sound is pitched, this can be continuous or
changing. The timbre is analyzed with both its spectral and time properties. Finally,
the sound sequence can be composed of one or more elements.

Describing the diferent classes of the UrbanSound8K data set according to the
categories from [56] can be of help when designing the deep learning architecture
employed to distinguish them [44]. Thus, the following part of the section does this.

The air conditioner class belongs to the mechanical upper level category in
the urban sound taxonomy and in the ventilation sub category. In general, it is an
unpitched noisy class with most of the energy in the lower part of the frequency
spectrum. Its timbre is continuous over time and its sequence is also regular.

The children playing class, of the high level category human and sub category
voice, is composed of samples very different between them in sound sequence and also
timbre. The sound sequence has several components with a very irregular pattern.
The timbre is also very different depending in if the children are talking or screaming.
These segments have also an important component of background noise. However,
the voice of the children is significantly higher in pitch that the background.

The segments composing the dog bark class, of the nature high level category
and animals subcategory, can be recognized because of the short impulsive sounds.
The timbre is usually stable over time, but the pitch, although typically high, can
vary. In the same way, the sound sequence has one component which can be repeated.

The drilling class, of the high level category mechanical and sub category
construction, can be described as with a short sound sequence composed of several
noises with a regular pattern. Its pitch is stable in high frequencies and its timbre is
continuous in time and rich in spectral properties.

The engine idling class belongs to the road low-level category of the motorized
transport category in the mechanical high-level category. It is characterized for a
sound sequence composed of several noises with a regular pattern. There is no pitch



4.2. System Design 17

and the timbre is continuous with high energy in the low frequencies.

The gun shot class, of the mechanical high level category and social /signals sub
category, is characterized of short impulsive unpitched noises. Its sound sequence
consists of one element.

The jackhammer belongs to the construction sub category within the mechanical
high-level category. Its sound sequence consists of several noises presenting a pattern
which changes its speed. It is a high pitched class and its timbre is noisy and
continuous over time.

The car horn class is shared across all the leaves in the road low-level category
of the motorized transport category in the mechanical high-level category. It is
characterized for a sound sequence composed of unique component which can be
repeated. It is a high-pitched class and the timbre is continuous over time with an
important high frequency component.

The position in the urban taxonomy of the siren class is similar as the car horn.
Its sound sequence is composed of one element; its pitch is high but changing; its
timbre is continuous.

Although the categories of [56] do not describe music, if the street music class
is described in its terms, is generally rich in the

The street music cannot be thoroughly described with the categories in [56].
The sequences in this class are of a very varied nature as they contain different instru-
ments and different rhythms. In general, is the only class which presents harmonic
pitches.

One of the challenges of the system will be to distinguish the classes air conditioner,
drilling, jackhammer and engine idling as they are the most similar. Previous
work in this data set [53; 42] has shown these classes to be problematic. These ap-
proaches, however, relied in hand-crafted features. Therefore, it will be interesting
to see if an end-to-end learning approach can overcome this difficulties.

4.2 System Design

In the previous chapter, the SoundNet architecture is described in detail because
serves as an inspiration for this thesis. It is also an inspiration the architecture
presented in the work of Dieleman and Schrauwen [17] given that is the first attempt
of an end-to-end learning approach to music.

This section describes in detail the steps that lead to the proposed end-to-end
deep learning architecture, which is described in Chapter 5. These steps start by
modifying the architectures mentioned above. The first experiments are based on
the Dieleman’s architecture, which is next described along with the modifications.

The system is implemented using the Python programming language. Specifically,
the package Librosa [34] was used for the audio files handling, and the package
Keras [12] was used for the deep learning architecture building and training. As the
Keras backend, the package Tensorflow [2] was used to enable GPU acceleration with



18 Chapter 4. End-to-End learning for audio events

multiple devices. In particular, three NVIDIA TITAN X GPU devices were used for
the training.

The sampling rate of the audio is 44100Hz and, before feeding it to the networks,
it was normalized between -1 and 1.

The networks were trained using Adam optimizer [29] with fixed learning rate of
0.001; Early Stopping monitoring the validation categorical accuracy with patience
of 10 epochs, and minimum delta of 0.001; batch size of 256.

4.2.1 Dieleman2014

The architecture from [17], which will be called dieleman2014 in this thesis, it is
simply built up of two convolutional blocks and a MLP block.

The input to the network is 3 seconds of audio and it is first feed in to a strided
convolution which can be seen as a downsample operation. Each of the two sub-
sequent convolutional blocks consist of a convolution of 32 filters and filter size of
8 followed by a max pooling operation and a ReLLU activation function. The MLP
block consists of a fully connected layer of 100 units and ReLLU activation function
an output layer of 50 units and sigmoid activation function.

In order to work with the UrbanSound8k
Figure 4.1:  Architecture of diele- data set, the network is modified to allow an

man2014. The filter sizes and pooling sizes input of 4 seconds and the final sigmoid acti-
are indicated with <>, the number of filters

is indicated with # and s indicates stride. vation is replaced by a softmax function. See a

representation in figure 4.1.

( Output: class probabilities J Hereafter, further experimentation with the
4 network is described and the performance re-
[ 10: softmax ]

. sults are reported. The performance measured
9: dense # 10

: by validation accuracy in classifying correctly

[ 8: relu ) the different classes in the data set. The model
P 7: dense # 100 N is trained with 9 folds and the last fold is used
[ GBIC ) as validation. The reported value is the mean
5: max pooling < 4 accuracy over all validation folds. To verify

q 4: convolution # 32, < 8 | ) for significant results, first, the Shapiro-Wilk
([ 3: relu ]l normality test is performed given it is suitable
2: max ploolingH4 for small data sets. Second, an ANOVA test

\[ 1;convo|utilon#32, = L is performed to verify if the improvements are
{ 0: strided convolution # 32, < 8, s 256 } significant or not. In general, the data passed

[ Input:4seco|nds e ] the Shapiro-Wilk test, but only one set of the
results passed the ANOVA.

The experiments on the network modify its
building blocks: (1) strided convolution; (2) number of filters in the convolutional
blocks; (3) number of convolutional blocks. And also add regularization to the net-
work: (4) Dropout; (5) Batch normalization.

Training each modified network took at least 2 hours; time and resources limited
the number of models that could be trained.
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4.2.1.1 - Strided convolution

The first modification affects the strided convolution. In the original paper, the value
of its stride is set to match the spectrogram representation which serves as baseline.
It ranges from 256 to 1024, being 256 the value which achieves best performance in
their task.

The strided convolution summarizes the input signal, one can think this can
remove important characteristics of the signal. The opposite, however, can overload
the network with too much information. Therefore a balance between these options
must be found.

For the task in this thesis, several stride values have been evaluated and the
best performance has been achieved with a value of 128. However, the ANOVA
test does not report a significant improvement from a stride of 256 (f-value=2.43,
p-value=0.14). Figure 4.2 shows a box plot of the accuracy values reported by the
stride experiment.

Figure 4.2: Box plot of the accuracy values reported in the stride experiments. The value on top
of each box plot is the mean validation accuracy.
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4.2.1.2 - Filter size of strided convolution

In the original implementation of dieleman2014, the three convolutional layers have
the same number of filters and filter size. It is common to see architectures in which
each subsequent convolutional layer adds more filters and those are getting smaller,
see SoundNet [6] for an example.

For this reason, experiments in changing the filter size of the first strided convo-
lution have been performed. The original value for the filter size is 8 to which the
values 16, 32, 64, 128, 256 and 512 have been added. The accuracy, however, does
not change significantly.

Figure 4.3 shows the results of the experiment. As one can see, the best values are
achieved with two filter sizes: 32 and 128. The accuracy value reached is 53%. How-
ever, the significance test does not report difference (f-value=0.92, p-value=0.41).

The following experiments will be performed using filter size of 128 because a
bigger feature map will help visualize better what the network is learning.
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Figure 4.3: Box plot of the accuracy values reported in the filter size experiments. The value on
top of each box plot is the mean validation accuracy.
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4.2.1.3 - Number of convolutional blocks

In the same way as the filter size, SoundNet also includes several convolutional blocks.
Likewise, a third block has been added to the network. In this setup, the number of
filters is 64, 128,256 for each block and the corresponding filter sizes are 32, 16, 8.

The results show an improvement reaching accuracy values of 55%. But, again,
the ANOVA test does not report a significant difference between the results (f-
value=0.66, p-value=0.42).

4.2.1.4 - Regularization: Dropout

In the previous experiments, the training accuracy is not reported, but it is notably
higher than the validation accuracy, i.e. the models overfit the data. For the experi-
ment of different strides, the training accuracy is between 10 to 16 points higher than
the validation accuracy. For the experiment of the filter sizes, it is between 16 and
29 points higher. For this reason, it is crucial to add some kind of regularization.

A Dropout layer has been added before and after the hidden fully connected
layer with a probability of dropping a unit of 50%. The results improve significantly
and the accuracy value is 62%. The ANOVA test confirms this (f-value=6.64, p-
value=0.02).

Other values of dropout probability and different combinations in the two dropout
layers have been also analyzed, but the best results are when both dropout are at
50% rate.

4.2.1.5 - Regularization: Batch Normalization

A batch normalization layer has been added to each convolutional block just before
the activation layer. The accuracy achieved with this version of the model are actually
significantly lower than in other architectures. The value reached with it is 45%. This
regularization procedure is found across the state-of-the-art models and it is proven
to be an effective tool to avoid overfitting. A possible cause for the poor performance
in this task is the limited amount of training data.
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Experimental Results

The previous chapter described the process of building the end-to-end architecture.
In this chapter, the results on the data set attained with the final model are described.
Moreover the model filters are inspected in order to understand what the network
has learned.

5.1 Final system description

The only hyperparameter that affected significantly the performance of the network
in a positive way has been the dropout. Nevertheless, the final network architecture
includes also the modifications that improved slightly the mean accuracy. These
modifications are the stride of value 128, an additional convolutional block and the
dropout layers.

The final architecture can be visualized in fig-
Figure 5.1: Final system architecture. ure 5.1. As one can see, it is composed of three

The filter sizes and pooling sizes are in-  parts: (1) a summary stage; (2) a convolutional
dicated with <>, the number of filters is
stage and; (3) a dense stage:

indicated with # and s indicates stride.

( Output: class probabilities ] 1. The summary stage consists of a strided
A convolution of 32 filters of size 128 and
l 1 el ) stride 128.
11: dense # 10
[ 10: relu ] 2. The convolutional stage is composed of
[ 9: dropout (rate=0.5) ) three blocks each containing a convolutional
8. dense # 100 layer, followed by a max pooling layer and a

l rectified linear unit as the activation func-
N tion. The convolutional layers have 64, 128
and 256 filters respectively of size 32, 16
1 and 8. The max pooling is for the three
4: convolution # 256, < 8 J .
]\ block of size 8.

[ 7: dropout (rate=0.5)

6:relu

5: max pooling < 4

3:relu
I
2: max pooling < 4
( 1: convolution # 128, < 16 )
(1
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3. The dense stage consists of two fully connected layers with 100 and 10 units,
respectively. The first of them is preceded and followed by dropout layers with
50% probability of dropping. The activation function after the second dropout
is the Rectified Linear Unit. And a softmax function is used to compute the
output distribution.

Appendix B contains the representation of the model given by the summary func-
tion in Keras.

5.2 Analysis of the Results

As reported in the previous chapter, the proposed architecture, which is named
RawCNN, achieves 62% of accuracy in classifying the sounds of the UrbanSound8K
dataset in their respective classes. This value, however, is notably lower than the
previous published attempts at this data sets. Table 5.1 summarizes the results of
these attempts.

Table 5.1: Comparison between the accuracy reported by several systems on the UrbanSound8K.
SVM is support vector machine, SKM is Spherical K-means, Piczak CNN is a Convolutional Neural
Network, SB-CNN is different Convolutional Neural Network which uses Data augmentation.

System Features Accuracy
SVM (baseline) [53] MFCC 68.0%
SKM [51] Log Mel-Spectrogram  73.6%
PiczakCNN [42] Log Mel-Spectrogram  73.7%
SB-CNN [52] Log Mel-Spectrogram  79.0%
RawCNN Raw waveform 62.0%

As said before, one of the advantages of using an end-to-end approach is letting
the network create the features tailored to the problem. This would solve or diminish
the problem of confusing classes, as it is reported in the literature. In the cited
references, it is described how three pairs of classes are the most confused given its
timbre similarities: air conditioner with idling engines; jackhammers with drills and;
children playing with street music. As the confusion matrix in figure 5.2 presents,
this same issue is found with the RawCNN model. The mentioned pair of classes are
the most confused with RawCNN, and the confusion matrix is very similar to the
matrices presented in the literature. In addition, in this case, since the model is not
capable of find good patterns, there is more confusion among classes.

The reasons for this poor performance are not completely clear given that in [17]
a similar model is applied with good results to a problem of audio tagging. In the
same way as the experiments with batch normalization, it is possible that one of
these reasons is the limited amount of training data in the data set used to train
RawCNN.
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Figure 5.2: Confusion matrix for the proposed RawCNN model evaluated on the UrbanSound8K
data set.
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The requirement for a large amount of training data is a well known problem in
deep learning, given the high dimensionality of raw waveform data [50], this require-
ment might be more strict in end-to-end approaches to audio.

5.3 Visualization of the network

The two references which inspired this thesis [6; 17], the networks were able to
discover frequency decompositions from the raw waveforms. In contradistinction to
these models, RawCNN did not attain good results in classifying the sound events.
For this reason, the filters of this network do not present clear shapes as found in
the cited references. One of the reason for this important difference is the amount of
data used in each case, SoundNet, in particular, used a dataset of 2 million videos.

In fact, as one can see in figure 5.3, the filters are very noisy, which motivates
the study of different weight initialization, as opposite to random initialization. In
[48], gammatone impulse responses are used to initialize the weights, which leads to
better results for their task.
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Figure 5.3: Subset of filters of the strided convolutional layer. See Appendix C for the rest of the
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Chapter 6

Conclusion

The problem of Sound Event Classification has been studied with the aim of devel-
oping a deep learning architecture for it in an end-to-end approach. This approach
simplifies the problem by using the raw waveform directly, which avoids the need for
hand-crafted features and allows the network find the representation that best suits
the task.

An overview of the field of Deep Learning has been covered, describing typical ar-
chitectures such as the multi-layer perceptron and the convolutional neural networks.
Some regularization techniques have been detailed, as well.

The field of everyday listening has also been reviewd along with its tasks, common
approaches to them and the available data sets encouraging its research. The data
set UrbanSound8K has been described in detail as an attempt to find clues to build
a dedicated architecture for it.

To find a suitable architecture to classify the sound events of UrbanSound8K,
several neural network architectures have been evaluated. The starting point of the
architecture was the network presented in [17] because it is the simplest network
using raw waveform as input. From then, the hyperparameters evaluated were (1)
the stride size, (2) the size of the convolutional filters, (3) the number of convolutional
blocks, (4) regularization with dropout, (5) regularization with batch normalization.

After the evaluation of several blocks, an architecture was proposed, RawCNN,
which was based on a summary stage, a convolutional stage and a fully connected
stage. Unfortunately, RawCNN performed notably worse than the baseline method.
In spite of that, the confusion matrix obtained by the proposed model evaluated
on the UrbanSound8K data set shows a similar pattern as the previous approaches.
Finally, as opposite to networks relying on the raw waveform as input, RawCNN was
not able to discover frequency decompositions from the audio.

6.1 Future works

The results of the experiments in this thesis point to several directions and options
for further experimentation with the network architecture:

25
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Recurrent networks Several deep learning architectures relying in hand-crafted
features have also used Recurrent layers [37] after several convolutional blocks [48;
62; 10]. In the same way as these, it would be interesting to also add to the proposed
architecture layers such as Long Short Term Memory [25].

Gated activation units Very recent architectures [18; 60] present the so-called
Gated activation units which combine two different set of weights into two activation
functions to obtain complex interactions with the input. A further modification of
the network could replace the ReLLU activation with these.

Combine raw waveform with other features Given the failure of the proposed
end-to-end approach, using additional features to the waveform should be considered.
These features could rely in stereo information [62], which could be easily extracted
from the waveform and would not require significant expertise to compute, or in
spectral features [48].

Data augmentation In Chapter 2, data augmentation was described as a reg-
ularization method consisting in creating new data by modifying the existing data
with different procedures. In [52], data augmentation was applied to the Urban-
Sound8K data set by using the audio deformations Time Stretching, Pitch Shifting,
Dynamic Range compression and adding background noise. The reported results
show an improvement in accuracy from 73% with the standard data set to 79% with
the augmented data set.

In the case of the architecture presented in this thesis, the accuracy values
achieved with the standard data set were significantly lower than the accuracy values
reported in [52]. In order to compare machine learning algorithms, it is required that
the same data set is used by all compared algorithms ([22] Chapter 7, p 241). Thus,
before augmenting the data set, the architecture must be first enhanced. However,
it is still an interesting further option.
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Appendix A

UrbanSound8K taxonomy

This appendix contains the taxonomy presented by Salamon et. al. [53] which is
used to create the UrbanSound and UrbanSound8K datasets.
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UrbanSound taxonomy

Figure A.1
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Appendix B

Keras summary of RawCNN

Layer (type) Output Shape Param #
input_9 (InputLayer) (None, 180809, 1) 0
convid_9 (ConviD)  (Nome, 1412, 32) a128
block_1_conv (ConviD)  (Nome, 1412, 64) 65600
block_i_act (Activation)  (None, 1412, 64) o
block_1_pool (MaxPoolingiD) (Nome, 353, 64) o
block_2_conv (ConviD)  (Nome, 353, 128) 131200
block_2_act (Activation)  (Nome, 353, 128) o
block_2_pool (MaxPoolingiD) (Nome, 88, 128) o
block_3_conv (ConviD)  (Nome, 88, 256) 262400
block_3_act (Activation)  (Nome, 88, 256) o
block_3_pool (MaxPoolingiD) (Nome, 22, 256) o
flatten 9 (Flatten)  (Nome, 5632) o
dropout_17 (Dropout)  (Nome, 5632) o
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36 Appendix B. Keras summary of RawCNN

dense_17 (Dense) (None, 100) 563300

relu (Activation)  (Nome, 100) o
dropout_18 (Dropout) (Nome, 100) o
dense_18 (Demse)  (Nome, 10) 1010

Total params: 1,027,638
Trainable params: 1,027,638
Non-trainable params: O



Appendix C

Filters of the strided
convolutional layer
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Appendix C. Filters of the strided convolutional layer

Filters of the strided convolution layer
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