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Abstract

The sounds generated by the objects that surround us is intrinsic to our life. We
associate some specific sounds to the objects, its characteristics, and the actions that
generate them, and we expect to hear the corresponding sound when we see that
item. Similarly, one expect to see the corresponding object when we hear its sound.
For example, on the street, when we hear a characteristic sound of a motor, we know
that a car is approaching. There is, therefore, a particular relationship between the
objects and the sound that they produce.

In films, many of these sound effects are added in post-production, a method
called "Foley". In this project, these sound effects will be generated automatically
based mainly on one characteristic of the objects involved: their material. A system
based on an object detector, an impact detector and a sound modeler will be pre-
sented. A perceptual evaluation in which the subjects will watch some videos and
listen to the sounds predicted by the model will be performed. In this way, it will be
tested if the sounds proposed by the model are played in accordance of what they
expect to hear.
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Chapter 1

Introduction

1.1 Sound in films
From the beginning of cinema, numerous attempts have been made to merge sound
and visual content in order to offer a better experience to the audience. Initially
large orchestras were employed in the theaters to play music along with the movie.
In smaller venues, where they couldn’t afford big orchestras, a pianist accompanied
the silent film. Adding sound to the movies was, therefore, a big expense since they
had to hire musicians to play every time the movie was displayed. Thus, the focus
was put on getting pre recorded music to play with the film.

The first film which that included dialogues and music was “The Jazz Singer”,
released in 1927. This musical film was produced with the Vitaphone system [1]
and is commonly considered he first talkie film. It was very primitive, it consisted
of a disc and a projector, so timing errors occurred often. Synchronization between
sound and film was later guaranteed by recording the sound in the same strip of
film that contains the pictures. This became the standard until the advent of digital
revolution.

The audio of the video is usually recorded at the time the video is filmed but
other diegetic sounds (those whose source is visible or is implied to be present in the
film) are often added afterwards. While filming, most likely it won’t be possible to
capture all the sounds involved in the scene, won’t have the desired quality or they
won’t be very audible. In movies, the boom operator records the dialogue and avoids
to record other sounds, some of which are added in post production. By adding these
sounds effects after filming, the audio engineer has total control over their quality
and relative intensities.

These sound effects that are added to videos and movies in post-productions are
called Foley sounds. This technique, introduced by Jack Foley in the 1920s and that
uses a large variety of objects to imitate or create sounds, has been widely used up
until now. These kind of sounds are usually added to the original audio recordings
but in other cases, all the sounds of the film have to be generated afterwards, like
in animated movies. They add a deeper sense of realism and improve the auditory
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experience of the movie.
Many of these sounds are impact sounds, produced by the collision of objects

and characterized by their short duration, abrupt onset and quick decay. These
sounds give us information about the properties of the objects involved as well as
the action that has generated them. In real life, we can fairly predict the sounds
that will be produced when some actions are performed, and we expect to hear their
corresponding sounds when we see these actions. It is important, therefore, that in
audiovisual contents video and audio are strongly linked to reality unless another
perspective is desired, like, for example, in cartoons.

1.2 Motivation and goals
Foley sounds are usually performed by Foley artists in a Foley studio, with a wide
variety of objects and surfaces. They create the appropriate audio effects while
watching the footage they are going to add sound to.

A cheaper way to get these sounds is to use some pre-recorded audio effects,
without the need of paying any Foley artist to create them. At the present, there are
many libraries that offer a large variety of sounds ready to use in the videos. The
sound designer has the task of choosing a specific audio file and synchronizing the
action in the movie with the pre-recorded sound.

The timing has to be perfect; the sounds, which complement or substitute the
original ones recorded at the time of filming the video, must be synchronized with
the action that the audience is looking at. It can be a very time-consuming work,
and therefore some simple actions could be sonified automatically to make the job
of the sound designer easier and faster.

In this thesis a solution to this situation is presented. The algorithm proposed
synthesizes automatically the audio generated by a constant source of sound (for
example an engine) as well as the impact sound effects of rigid bodies. In addition,
it also locates the sound source and makes a stereo panning of it.

However, unlike traditional work on this problem [2; 3; 4] that focus on 3D models,
in this thesis the parameters needed to generate the sound are extracted afterwards
from the 2D video recording. This is possible thanks to the use of a convolutional
neural network which is able to detect the objects present in the video image. It labels
the objects of the scene and provides information about their relative position in the
image. Using these parameters, the sound is automatically synthesized afterwards
using physical modelling synthesis.

1.3 Structure
The next chapters of this thesis are organized as follows: in chapter 2 a review of dif-
ferent techniques for sound synthesis can be found and in chapter 3 some traditional
methods for object detection are presented, with an emphasis in convolutional neural
networks. The description of the application developed is included in the chapter



4, the chapter 5 contains the description of the conducted evaluation together with
the discussion of the results, and finally the conclusion of this thesis is contained in
chapter 6.



Chapter 2

Sound synthesis

2.1 Introduction
Sound synthesis is the process of generating sound without using any acoustic in-
strument. This synthesis can simulate musical instruments, natural sounds, or even
create new sounds.

Some concepts used in sound synthesis are explained as follows [5]. A digital
oscillator is a sound source that repeats a waveform with a specific amplitude and
fundamental frequency. The most common waveforms used are the sine wave, the
sawtooth, the triangle and the square waves. The source of the sound samples in
the oscillator may come from a mathematical formula or from a wavetable that is
built beforehand. Instead of generating sound samples by computing mathematical
operations, the source in this case is an array with N equally spaced points that
depicts one whole cycle of the oscillator. Each value in the table represents a signal
amplitude at a particular point in the cycle. The signals that are generated by the
sound source can be modified by a filter, that alters the magnitude of the frequencies
of the input by letting pass some frequencies and attenuating others. The filter may
change over time and controlled with an envelope. Some popular techniques that
make use of these modules are shown below.

2.2 Sound synthesis techniques

2.2.1 Additive synthesis

The additive synthesis, one of the first computer-music synthesis methods, generates
sound by adding different sine waves [6] .

It is based on the Fourier theory that states that any periodic signal is made
up of a sum of multiple sinusoids. Each sinusoidal component may have a different
amplitude and phase envelopes that change over time.
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Figure 2.1: Additive synthesis

2.2.2 Subtractive synthesis

This method does the opposite of the previous one. It attenuates unwanted elements
of a complex signal (usually with many frequencies) to generate the desired sound. It
uses digital filters to alter specific frequency components of the sound and adjust it to
the spectrum of the desired result. The sound sources used to excited the system can
range from impulses, periodic train of impulses to noise, and the filters used can be
from simple narrow filters to more sophisticated filters with time-variant coefficients.
[7].

2.2.3 Modulation methods

Modulation synthesis is the modification of the amplitude, frequency or phase of a
simple periodic signal (the carrier) by another signal (the modulator).

Amplitude modulation

In this technique, the amplitude of the carrier is modulated by another signal. It is
mathematically expressed as:

y(t) = cos(2πf1t)(cos(2πf2t) +K) (2.1)

Where f1 is the frequency of the sinusoidal carrier and f2 is the modulator fre-
quency. If K = 0, it is equal to ring modulation, which differs from amplitude
modulation in the components of the result, since in ring modulation the frequency
of the the carrier signal doesn’t appear in the spectrum.

Frequency modulation

This technique is based on the modulation of the frequency or phase of a simple peri-
odic waveform with frequency fc (the carrier) with another simple periodic waveform
with frequency fm (the modulator). This causes diverse sideband sinusoids with fre-
quencies derived from the carrier frequency plus and minus integer multiples of the



modulator frequency [7; 8]. It can be expressed as:

y(t) = sin(2πfct+ Isin(2πfmt)) (2.2)

Where I is called the modulation index and determines the strengths of the
Kth side components given by the Bessel functions of Kth order. A rule of thumb,
Carson’s rule, considers that the number of significant sidebands is approximately
equal to I + 2.

2.2.4 Physical modelling methods

Physical modelling techniques aim to generate a waveform by using mathematical
approximations that simulate the physical processes that produce the sound in a real
acoustic instrument or sound event.

Modal synthesis

Modal synthesis states that the sound produced by a vibrating object can be gen-
erated by the sum of their modal components (particular patter of vibration that is
associated with resonances in the spectrum).

The acoustic response of an object to an impulse at location k can be seen as a
sum of modes (damped sinusoidal waves):

y(t) =
N∑

n=1
(ank)e−dnt ∗ sin(2πfnt) (2.3)

where ank is the amplitude of the mode at the location k and fn is the frequency
of the mode n. The damping coefficient of each mode is represented by dn and is
highly influenced by the material.

This technique is an efficient way of generating the sounds of objects that show
a relative small number of main modes.

Modal Synthesis can be used to generate complex interactions as well. Van
den Doel et al. introduced an algorithm that used modal models to automatically
simulate sounds of impact, sliding and rolling [2] for interactive simulations as games
and for animations. In [9], Ren et .al present a method that uses pre-recorded impact
audio clips to estimate the material parameters associated to some particular objects.
These parameters are then used to generate the audio through modal synthesis.

Digital waveguides

Digital waveguide models which simulate travelling waves, are based on the discrete
modelling of the wave propagation [10].

Waveguide techniques arises from the D’Alembert’s solution of the ideal wave
equation:

d2y/dx2 = (1/c2)d2y/dt2 (2.4)



D’Alembert stated that it can be interpreted as two travelling waves, one traveling
left and other traveling right, which move at the rate c of the speed of sound in that
medium:

y(x, t) = yL(t+ x/c) + yR(t− x/c) (2.5)

Therefore, the solution of the wave equation can be seen as a sum of travelling
waves, which can be represented as delay lines. Digital filters are used to simulate
traveling-wave attenuation [6; 10]

Figure 2.2: Simple simulation of a travelling wave. The filter G(z) represents the propagation
losses

Digital waveguides have been widely used for vibrating strings and wind sounds.



Chapter 3

Object detection

3.1 Introduction
Object detection systems are able to find objects in videos and images that belong
to a certain class such as cars, dogs or faces. For humans, this task is performed
effortlessly but for computers, which see the images as an array of pixel values, the
process is more challenging.

Detecting and recognizing objects in an image is a challenge that has been ex-
tensively addressed in the computer vision field. There exist a large number of
approaches that have been developed and which use multiple different techniques.
These techniques include classification methods as support vector machines (SVM)
or neural networks. Object detection systems use datasets of annotated images with
labeled objects and extract characteristics of them like geometric forms or colours us-
ing a particular algorithm. A very broadly summary of these techniques is presented
below.

3.2 Techniques

3.2.1 Feature-based techniques

Feature-based methods [11; 12], which are based on the extraction of features from
the image, establish correspondences with a database containing the features ex-
tracted from the objects of interest. These characteristics can be borders, corners or
even colours. These methods, intended for image recognition, have been commonly
adapted and extended to video.

3.2.2 Template matching

Template matching is a technique in which object recognition is achieved by find-
ing parts of an image that match a stored template [13]. Two main techniques are
used in fixed template matching: image subtraction, where the goal is to minimize
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the distance function between the aligned template and different parts of the image,
and correlation, where the similarity between the segments of the input image and
the template is measured by cross-correlation or normalized cross-correlation. De-
formable template matching process are appropriate for non-rigid bodies that vary
due to deformations of the object or because of different transformations relative to
the camera, like rotation and scaling.

3.2.3 Motion detection

Background subtraction

A simple and widely used technique for object segmentation in static scenes [14] is
background subtraction. It compares the input image with a reference background
images that doesn’t contain any objects of interest and threshold the result to detect
new objects. If there is a significant difference between the input image and the back-
ground image, then it means that there is an object of interest in that area. Although
background subtraction techniques can perform well for some applications, such as
video surveillance, they are sensitive to sudden illumination changes or changes in
the background (for example, if there was a piece of furniture that then is moved or
removed).

Optical flow methods

Optical flow methods are commonly used techniques based on the distribution of
apparent motion of objects that arise from the relative motion between the objects
and the viewer [15]. The common hypothesis in measuring image motion is that pixel
intensities are translated from one frame to the next. The optical flow constrain
equation is defined as

∇Iv + It = 0 (3.1)

where ∇I = (Ix, Iy) and It are the spatial and temporal partial derivatives of the
image I and v = (u, v) is the velocity of the image. This equation with two unknowns
cannot be solved as such (aperture problem) and therefore additional constraints must
be introduced to determine the flow. However this won’t be developed any further
as it exceeds the scope of this thesis.

3.2.4 Convolutional neural networks

Introduction

Artificial neural networks (ANNs) are connectionism models (movement emerged
in the context of cognitive science) based on a collection of connected units called
neurons. The area of ANNs was inspired by the way biological neural systems process
information.



The basic unit of the brain is a neuron. Each neuron receives inputs that have
associated weights and computes an output by applying a function, called activation
function to the weighted sum of inputs. Commonly used activation functions are
[16]:

• Sigmoid. The sigmoid function squashes the input into the range [0, 1]. This
function saturates when its arguments are large negative or large positive num-
bers. Large negative numbers become 0 and large positive numbers become 1.
Therefore this function becomes very insensitive to small changes in its input.

σ(x) = 1/(1 + e−x) (3.2)

• Tahn. Tahn function takes its input and squashes it to the range between -1
and 1. It is similar to the sigmoid function but in this case, the output is
zero-centered. It has the mathematical form

tanh(x) = 2σ(2x)− 1 (3.3)

• ReLu. This activation function, popular in modern neural networks, thresholds
the input at zero. It is defined as

f(x) = max(0, x) (3.4)

Feedforward neural networks consist of multiple neurons arranged in layers. These
networks are called feedforward because there are no feedback connections. When
these networks include feedback connections, they are called recurrent neural net-
works. Convolutional networks are a specific kind of neural networks that use con-
volution in at least one of their layers [17]. The network is formed by three types of
layers: the input layer, which receives the inputs; the output layer, which is the last
fully-connected layer that produces the output of the network; and the hidden layers
that are located in between these two.

Neural networks can be be formed by numerous hidden layers (deep learning).
The overall length of the layers gives the depth of the model.

The input to a convNet is an array of pixel values. These input images are
convoluted with a filter to obtain feature maps. The succeeding hidden layers can
be seen as individual feature detectors which recognize more sophisticated patters
as it is propagated through the network. The pooling (downsampling) layers further
reduce the size of the representation to minimize the amount of parameters and
computation of the network. In this way, the original image is transformed layer by
layer from the pixel values until obtaining a one-dimensional vector, which represents
the final classes scores.

In order to train the network some feedback about its performance must be
provided. This is done by the loss function, which measures the accuracy of the
prediction considering the ground truth. The objective is that the predicted label is



the same as the training label or in other words, to minimize the loss of the network
by changing the weights between the different neurons. A popular method randomly
initializes the weights and tunes them iteratively by moving on the direction given
by the descendent gradient of the loss function. The learning rate is a parameter
that can be adjusted to find a minimum in the function and that determines the size
of the step in every iteration.

Applications

Besides traditional computer vision techniques [18; 11], convolutional neural networks
(ConvNets) have been widely applied, either for car plates [19] or action recognition
[20], toys recognition[21] or scenes and objects classification in photographs [22; 23].
With the advent of large datasets of images, ConvNets have been able to move
forward such as with the 1000-classes ImageNet dataset [24], which contains millions
of labeled images and that is used in the ImageNet Challenge [25]. One particular
case is the versatile network “Alexnet” [22] that has been applied to a diversity of
computer vision applications such as object detection, video classification [26] and
segmentation [27].

3.3 Generating sound from silent videos
Recent work has used neural networks to synthesize sound from silent videos of a per-
son using a drumstick to hit and scratch different objects [28], or to recognize objects
and scenes from the sound of videos [29] Likewise, in [30], Daves et al. recover audio
from high-speed videos of objects that stir in response to the sound. They extract
those vibrations and recover the original sound that produced them. Other methods
automatically generate contact sounds by using physical parameters obtained from
animated simulations [2]. Similarly, in [31], the algorithm generates a soundtrack for
an animation by using other animations soundtracks.



Chapter 4

Implementation

A system that helps the sound designer in the process of adding audio effects to
videos was implemented. An overview of the algorithm can be seen in the graph
below (Figure 4.1).

Figure 4.1: Flow chart of the implemented method

The tool can be divided in three modules: video analysis, data processing and
sound synthesis. The input of this system is a silent video file recorded with a static
camera and the output is an audio file that matches the action performed in the
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movie. The video is analyzed with the help of a neural network, which detects the
objects present in the movie, i.e., it labels the the items in every frame, and then
this data is sent to the data processing module.

After receiving this information, the velocity of a moving object can be computed
and, if there is more than one object in the scene, impacts are detected.

This information is sent to the sound synthesis module which generates the spe-
cific audio associated to the performed action and material.

4.1 Video analysis

4.1.1 Object detection

Preparation of the dataset

The images used to train the network were pulled out from the ImageNet database.
ImageNet is a large image database comprised of more than 14 million of images and
intended for object classification and detection. The ImageNet [24] labels are taken
from a language database called WordNet [32], which organize words (nouns, verbs,
adjectives and adverbs) into sets of synonyms called synsets (synonym sets).

These synsets are interconnected according to their semantic and lexical relations.
For example, in WordNet oak and birch are hyponyms or subordinates of tree, which
is a type of plant, which is an organism, etc. ImageNet database is arranged according
to the hierarchy of nouns of WordNet and each node is constituted by hundreds or
thousands of images. The average number of images is over five hundred per node.

However, despite the large amount of synsets, there are none intended for material
detection. Therefore, the dataset used was created by combining images of different
classes taken from ImageNet and additional pictures taken by the author. A more
detailed description can be found in the appendix A.

The downloaded synsets contain thousands of pictures. However, just a little
more than a hundred of labeled bounding boxes are available in the dataset. There-
fore, the images that did not have their corresponding labeled data were discarded.
The remaining images were grouped in different classes and labeled as metal, wood,
glass or motor.

Finally, the bounding boxes files were converted from PASCAL (Visual Object
Classes) VOC [33] format (.xml file with the metadata) to Darknet format (text file
containing only the information about the class and the bounding boxes).

In addition to the images downloaded from ImageNet, more images were taken,
hand-labeled 1 and added to the dataset.

Once we had all the images and their corresponding annotations, the train and
test files were generated.

1Using the software provided by https://github.com/puzzledqs/BBox-Label-Tool



Data augmentation To increase the size of the dataset and make the model
more robust, before creating the train and test files, all the pictures were processed.
Gaussian noise was added to the pictures and their brightness was reduced by a
factor of 2 and 3, and increased by a factor of 1.5.

Figure 4.2: Example of the modified images. From upper left to bottom right: original photo,
photo with brightness increased, photo with brightness reduced by a factor of 2, photo with brightness
reduced by a factor of 3, with gaussian noise of mean = 0.05 and gaussian noise with mean = 0.2

In this way the number of images for all the classes was increased. In total, 23293
images were used for training and 5950 for testing.

YOLO object detection system

YOLO (You only look once) [34] is a open source state-of-the-art object detector
which is able to process video in real time. It is implemented in a neural network
framework, Darknet [35], that was developed by Joseph Redmon. This detector is
used to obtain the bounding boxes and the classes of the objects in the video.

YOLO, which is inspired by the GoogleNet model for image classification, reshape
object detection as a regression problem [34] and split the input image into an SxS
grid, predicting SxSx(B*5+C) values. Each cell of the grid predicts C conditional
class probabilities and B bounding boxes and their corresponding confidence scores,



which represent how confident the system is that the box contains an object and how
accurate.

The generated bounding box is an area with sides parallel to the X,Y coordinate
axes and that defines the rough size of an object.

The network predicts 5 coordinates for each bounding box: tx, ty, th, tw and to.
The center coordinates of the bounding boxes are (tx, ty) and (tw, th) are the width
and high. All these values are in fractions of image size. So, for instance, (tx, ty) =
(0.5, 0.5) is the center of the image and if tw = 1, th = 1, the bounding box is the
size of the input image. To determine the coordinates in pixels, a conversion must
be done:

left = (tx − tw/2) ∗ w
right = (tx + tw/2) ∗ w
top = (ty − th/2) ∗ h
bot = (ty + th/2) ∗ h

x = txw

y = tyh

(4.1)

where w and h are the width and high of the original image.
The network was trained with the customized dataset of images, with a learning

rate of 10−3, a momentum of 0.9 and the pretrained weights provided by the author
of the model [35]. The training was done in a computer with Ubuntu 16.04 operating
system using a Titan X graphics card and it took 3 days to complete 80000 epochs.
This was empirically tested 6 times until a good result was found.

The output classifies the detected objects into 4 different classes: wood, glass,
metal and engine.

Figure 4.3: Plot of the loss value. Y-axis is the error and X-axis the number of epochs.



4.1.2 Postprocessing of the file

In this step, the file containing the bounding boxes and classes is modified in order
to fix possible errors and to compute the velocity which will be used afterwards to
generate the sound. The detector does not perform perfectly so sometimes the objects
disappeared suddenly in some frames. This problem arises mainly while performing
fast movements, like in the case of strong knocks, where the moving object becomes
blurry and therefore it is more difficult to detect. This problem is solved by adding
the missing object to the file in those frames where it has disappeared. The bounding
boxes’ coordinates of the missing objects are computed by calculating the mean value
of the previous and consecutive frames. This process is applied both for videos that
contain one or two elements.

The text file is processed to check how many objects were detected in the whole
video. The system has a constraint of a maximum of only two objects to keep a
simplicity in the model. If two objects were found in the video, then an impact
detection is conducted.

Impact detection

A second process of the file is done if there are two objects detected in the video.
This is performed in order to detect if an impact has occurred between both objects.
The first step detects collision between the two items. This is done by verifying that
the two bounding boxes are overlapped or adjoining. However, as stated above, the
bounding boxes are parallel to the axes and this is problematic if the objects are not
facing the desired direction or if they have a shape that differs a rectangle.

Therefore it is not enough just to verify that the bounding boxes are overlapped
to guarantee if two objects have touched.

Figure 4.4: Detected bounding boxes of two knifes. The bounding boxes are overlapped but the
real objects are not touching.

To ensure that one object has hit the other one, the velocities must be additionally
checked.



The velocities of the objects are estimated by finding the displacement of the
respective centroids of the bounding boxes between two consecutive frames.

v = x1 − x0
∆t = ∆x

∆t
(4.2)

After computing the means of the velocity of both objects, the system can discern
which object is the one that is moving and which one is remaining still. This is
necessary to compute the relative velocity of the moving object which is used to
detect the impact. This is also needed to determine the material involved in the
action. The object that is struck is considered as the one that wants to be sonified.
Thus, the sound produced will have the characteristics of the material of the object
that has been hit.

Once the velocity vector is obtained, peaks in the array are detected. When the
velocity reaches its maximum and then drops or changes its sign (i.e. the object
bounces to the opposite direction), there is the possibility that the object has hit
something.

If both conditions have been fulfilled, then the system determines that an impact
has occurred. The information containing the frame where the impact has been
detected as well as the location of it, is sent to the sound synthesis module. The
location of the impact corresponds to the point where the two bounding boxes are
overlapping or touching.

The velocity is given in pixels per frame. Before sending this information to
the next module, a conversion to meters per second is done by assuming that the
space from side to side at the objects distance is 1 meter. This is a very rough
approximation that can be easily changed afterwards if the result does not satisfy
the sound designer.

After the file is processed, it can be sent to the sound synthesis/spatialization
module.

4.2 Sound synthesis

4.2.1 Impact sounds

The last step of the system makes use of the well know modal synthesis technique to
model the sounds generated by rigid bodies.

Modal synthesis can be seen as a connection of second order resonant filters [36]:

y(n) = 2R cos(θ)y(n− 1)−R2y(n− 2) + aF (n− 1) (4.3)
R = e−d/fs (4.4)
θ = ω/fs (4.5)

where d is the decay rate, fs is the sampling frequency and ω = 2πf is the
frequency of the mode. As stated above, the resulting sound depends on many



factors as the shape and dimension of the object, the impact velocity or the location
of the collision. The literature has shown that the perception of the material in
impact sounds is mainly based on the frequency-dependent damping of the spectral
components (equivalently, the sound decay) and the spectral content of the sound
[37].

The parameters associated to the sound of each material (wood, glass and metal)
can be extracted experimentally by analyzing real recordings and fitting the model
parameters to the recorded sound. This was done for glass, metal and wooden sounds.

Figure 4.5: Spectrogram of the glass sound. The main modes can be easily appreciated

Wooden sounds, characterized by a low pitch and rapid decay, have larger decay
rates than metal and glass sounds that are characterized by long decay times.

Several signals were tested to generate the excitation of the system: impulses,
bursts of noise and the model proposed in [2] 1− cos(2πt/τ), where 0 ≤ t ≤ τ and τ
is the total duration of the contact. However the sounds generated by these models
weren’t plausible enough, so it was decided to use the residual from the recordings
of the different struck objects by using inverse filtering of the main modes.

Engine sound

The sound for the car and motorbike was generated using the Andy Farnell’s engine
model [38]. It is based in a four-stroke engine which produces its characteristic noise
due to the gas expelled at high pressures by the pistons and that resonates inside
the exhaust system. He considers some sound sources [38]:

• Explosive pulses radiated directly from the engine

• Pulses that are coupled through the vehicle body

• Radiation from the exhaust pipe surface

• Pulses from the tailpipe



• Other sounds like tyres, fanbelt etc.

The source of energy is generated by a sawtooth wave split into various subphases.
The engine, exhaust, and body can be seen as a series and parallel network of exci-
tations, modeled by a combination of delays, filters, phase splitting and wrapping.
A description of the model can be seen in Figure 4.6

Figure 4.6: Block diagram of the Andy Farnell’s engine model. Taken from [39]

4.2.2 Sound panning

After the mono sound is generated, it is panned according to the relative position of
the source in the video.

The generated mono sound as well as the information containing the coordinates
of the object/impact location that are present in the video image are fed into this
last function which locate it and produces a stereo output sound.

4.3 Limitations
• Perspective. Two bounding boxes can be overlapped without being touched.
For example, if there are two objects, one behind the other, and one of it
performs a sharp movement, an impact will be wrongfully detected.

• Bounding boxes. A rectangle is a very rough shape that barely indicates the
location of the detected object. This leads to problems in the impact detection
as well as for getting a more accurate sound that matches the struck object
since it is not possible to know accurately in which part has been hit.

• Both objects (the one that strikes and the one that is hit) need to be detected
by the network. So for example, if the moving object was a plastic stick with



an uncommon shape, the model wouldn’t detect it and therefore no impacts
would be searched.



Chapter 5

Evaluation

To asses the quality of the generated sounds and how well they match real objects,
a perceptual evaluation was performed.

5.1 Study design and stimuli
Two cases were studied: sounds without any video and videos sonified using different
methods. The test was based in two main hypothesis:

• Audio sounds better if there is a visual input. The quality of the sound is rated
higher when there is a video that accompany the audio.

• The developed system has the same performance as a manually matched work.
The sounds automatically generated by the model fits the videos as good as
the recorded and manually modified audios.

For the first case, in which no visual input was given, two examples of glass,
wood and metal sounds were evaluated: synthesized sounds and recorded audio clips
(downloaded from freesound.org, a collaborative sound database).

In the second part of the test where the subjects watched a short video, glass,
wood and metal sounds were considered as well as a motor sound. To obtain the
corresponding audio, three methods were used:

• Sounds generated by modal synthesis. To obtain the characteristic sounds for
each material some recordings were done and the main modes were extracted
from the corresponding spectrograms.

• Modal synthesis sounds manually matched. In other words, the same synthesis
method was used but the timing and the parameters of velocity, location and
sound volume were manually changed to match the video.

• Recorded sounds. The sounds were downloaded from freesound.org, the syn-
chronization with the video was done manually and the amplitude was changed
according to the velocity of impact.
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In addition to these sounds, an anchor, consisting in the low-pass filtered ver-
sion of the excitation sounds for each material, was added. The panning and the
synchronization were also modified to be wrong.

For motor sounds only two cases were studied:

• Physical modelling based on the Andy Farnell’s synthesis model [38]. The
parameter of the engine’s velocity and panning were automatically modified
according to the apparent velocity extracted from the moving objects in the
video.

• Recorded sounds. The sounds were downloaded from freesound.org as it
was done for the previous examples. The panning and volume were manually
adjusted to match the video.

A total of 4 videos were shown (see Appendix B). They were recorded with the
rear camera of a Samsung Galaxy S6 in a typical kitchen scenario. In particular, the
videos recorded were:

• A knife hitting a glass jar

• A knife hitting a metallic pot

• A glass jar hitting a wooden table

• A clip of a movie in which a man rides a motorcycle

Figure 5.1: Frames extracted from the videos of small impacts

5.1.1 Procedure

The participants filled in a questionnaire (see Appendix B) that contained the videos
to be studied and the links to the audio files.

Before starting the evaluation, the subjects were asked about their experience in
sound design and the hours that they spent watching movies or playing videogames.

In the first part of the test only audio stimuli was given to the subjects. They
listened some examples of the sounds and were asked to rate the quality and choose
the apparent material of the sound that was played. In the second part of the
test the subjects watched the videos sonified by the different models. They were

freesound.org


asked about the quality of the sound considering the objects involved in the scene
and the matching of the video with the audio. Finally they were asked about their
preferences.

5.2 Results and discussion
A total of 15 participants aged between 24 and 60 volunteered in the evaluation. Only
4 of them spent more than 5 hours per week watching movies/series and 2 playing
videogames. This number of hours is not extraordinary high so this information
wasn’t take into consideration for the analysis. The subjects that rated their sound
design experience with more than 5 in a scale of 10 were considered expert listeners.

5.2.1 Evaluation of audio stimuli

A t-test was conducted in the normal-distributed data. The results for the first part of
the test showed that the listeners didn’t perceived significant differences between the
recorded and synthesized sounds of metal (p = 0.91, α = 0.05) and glass (p = 0.16).

Figure 5.2: Means and standard deviations of the measured qualities. Rec stands for recorded
sounds and Synth for synthesized sounds.

However, the subjects rated the synthesized wooden sounds with a lower quality
than the recorded one. A t-test found significant differences (p = 0.03, α = 0.05)
between the recorded and the synthesized sounds of wood at 5% significance level.
To be sure about these results, the Bonferroni correction was applied (α′ = 0.017),
and no significant differences were found in any of the three cases.

A comparison between the results obtained in the first part of the test (only audio
input) and the second one (audiovisual input) revealed that -although the means of
the sound quality of the generated and recorded sounds were slightly higher in the
cases where a visual input was given- there are not significant differences if a visual
cue is added. After computing a Two One-Sided Test (TOST) test for equivalence,
it was proved that the results were equivalent only for the synthesized sound of glass
(p = 0.009α = 0.05, diff.mean = 0.7).



5.2.2 Evaluation of audiovisual stimuli

The second part of the test suggest that people still prefer recorded sounds than
synthesized ones. Almost all of the subjects -12 to be precise- preferred the recorded
sound for the video of the table. In the case of the engine the number of volunteers
that preferred the recording was 10, for the video of the pot there were 9 and 8 for
the glass.

In the question regarding the matching of the video and audio, the best results
were found for the case of glass sounds. An ANOVA test showed that there were
statistical differences between groups for the three cases at a significant level of
0.05 (wood, p = 0.910−5, metal p = 0.310−4, and glass, p = 0.210−3), which was
expected since there is an anchor signal. Significant differences were also found
between the recorded and automatically generated sound for wood (p = 0.0043) and
metal (p = 0.110−7) but not for glass (p = 0.1). A TOST test revealed that the
recorded and automatically generated sounds for glass can be considered equivalent
(p = 0.03, hypoth.mean = 0.7, α = 0.05).

No significant differences were found between the recorded and the generated
sounds -those manually modified to match the video- and the expert listeners even
preferred the synthesized one sometimes.

Figure 5.3: Means of the answers to the question Does the sound match the video? in the video of
the glass jar (expert listeners)

Although on average the expert listeners rated the matching of synthesized manually-
matched sound higher and a TOST test revealed that the results of the recorded and
the manually-matched generated sounds can be considered equivalent (p = 0.03, α =
0.05,mean = 0.7).

Similar results were found in the case of wooden sounds. Although the recorded
sound was preferred, no significant differences were found with the video that has
manually-matched synthesized audio. A TOST test found that they can be seen as
equivalent.

In the case of the video of the motorcycle, the subjects rated the adequacy of the
sample-based video with a higher score than the synthesized one. A t-test confirmed
that there were significant differences (p = 0.004, α = 0.05) between the two videos.



Therefore, our second hypothesis could not be proved neither since the automat-
ically generated and recorded sounds were considered equivalent in the case of the
glass.

Figure 5.4: Matching rates for the video of the glass jar (expert listeners)

The worst results were found in the videos with the metallic sound. This may
be possible due to the shape of the object. The sound was marked as metallic in
the first part of the test but it didn’t fit very well with the object displayed in the
video. The generated sound had bright modes with long decays and the recorded
sound was more noisy. The subjects commented that the timbre of the synthesized
sound didn’t match the video because of the location of the struck. Therefore one
can consider that the synthesized sound could have worked well if the knife had hit
the body of the pot, where a clear metallic sound is expected. However the pot was
struck on its edge, which entails a more noisy sound.

These results indicate that the synthesized sounds are good enough to be added to
real videos but that the parameter estimation must be improved since the subjects
stated in some cases that the synchronization of the hit was not perfect nor the
suitability with the location of the hit.



Chapter 6

Conclusion

A system composed by a object detector, impact detector and sound modeler was
proposed. This system would speed up and facilitate the work of sound designers
when they sonify a video, which can be a very tedious labour. The system would
automatically generate the audio of simple actions. In this way the worker could
focus on more important sounds and put less effort in matching the sound of these
simple actions.

The results of the test show that the sounds generated by the system were ac-
ceptable to be added to a realistic video. However, the system performance is not
perfect. The main problems were due to the lack of accuracy of the object detection
stage. Bounding boxes are not exact enough to determine the real position of an
object and a better model should be used to get better results. In addition, since
the video provides a 2D image, there is no distance involved.

There is still much work to do. The video analysis must be improved to get a more
accurate model of the objects or materials involved in the actions. In addition, other
networks could be more advantageous as one that performs object segmentation -
partition the video image into regions- as well. By performing segmentation we could
have a better model of the image and assume its shape which lead a better impact
detection and timbre of the sound. With a better detection of the objects, other
actions could be identified, such scrapping or rubbing and other methods intended
for sound synthesis, like digital waveguide synthesis could be used.

If the system were improved and implemented in real time it could result in
artistic applications or games as well. With the use of a webcam, the system could
detect some objects or actions and generate a response, such a musical or cartoon
sound.

Therefore, one can see a promising future for systems that combine the best tools
of different fields.
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Appendix A

Dataset details

The dataset used to train the network was a combination of the following synsets
taken from Imagenet:

• Glass

– Mason jar. Wnid: n03725600
– Wine bottle. Wnid: n04591713
– Beer bottle. Wnid: n02823428
– Water glass. Wnid: n04559910

• Wood

– Dinning table, board. Wnid: n03201208
– Dining-room table. Wnid: n03201035
– conference table, council table, council board. Wnid: n03090000

• Metal

– Pan, cooking pan. Wnid: n03880531
– Frying pan, frypan, skillet. Wnid: n03400231
– Caldron, cauldron. Wnid: n02939185
– Knife. Wnid: n03624134
– Knife. Wnid: n03623556
– Spoon. Wnid: n04284002

• Motor

– Motorcycle. Wnid: n03790512

Wnid stands for WordNet ID

32



Appendix B

Questionnaire
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Links to the videos

Wood:

• Recorded sound: https://www.youtube.com/watch?v=gWoGSpHUbGA

• Synthesized manually matched sound: https://www.youtube.com/watch?v=
w7CB9MocS2I

• Automatic synthesized sound: https://www.youtube.com/watch?v=RqBSLgqbfaU

• Anchor: https://www.youtube.com/watch?v=ri1bn8T_cKc

Glass:

• Recorded sound: https://www.youtube.com/watch?v=rJBSguy7ITc

• Synthesized manually matched sound: https://www.youtube.com/watch?v=
QrqG0BWsiYU

• Automatic synthesized sound: https://www.youtube.com/watch?v=o-7V6qH5bJ8

• Anchor: https://www.youtube.com/watch?v=uMWqjZqJtL4

Metal:

• Recorded sound: https://www.youtube.com/watch?v=GaCU7bwGXyY

• Synthesized manually matched sound: https://www.youtube.com/watch?v=
u63iVA5_Ec0

• Automatic synthesized sound: https://www.youtube.com/watch?v=6JB-uuFD-yg

• Anchor: https://www.youtube.com/watch?v=uMWqjZqJtL4

Motor:

• Recorded sound: https://www.youtube.com/watch?v=rkQa__Pp_PI

• Automatic synthesized sound: https://www.youtube.com/watch?v=F1CL7He8k3s
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