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Preface

This study is a product of a master’s thesis project by two Software students at Aalborg
University. Throughout the study appropriate terminology is used, this means that the
readers must have some knowledge about computer science.

Joakim Iversen Tobias Hvass Mølbak
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Introduction 1
Driver activity recognition and monitoring is an advancing research topic as vehicles are
becoming more technological. As various assistance systems are implemented in cars [5],
drivers have adopted a more relaxed driving style. This results in some drivers using
suboptimal steering techniques, such as only having one hand on the steering wheel. The
goal of the research is to find a way to encourage good driving behaviour. The research is
further focused on preventing possible accidents caused by fatigue, sleepiness, reckless
behaviour, or distractions [4]. Observational studies [11; 6] have further showed that very
few drivers use the recommended steering techniques, thus resulting in them having less
control over the vehicle.

Various technologies have been utilised in experiments in an attempt to solve these
problems, a few examples being cameras [12; 10], pressure pads [8], and infrared
sensors [8]. One of the most utilised methods throughout the research is eye and iris
detection [1; 2], focusing on the driver’s gaze and how much of the iris is covered by the
eyelid. Few studies have also looked at limb recognition to determine the activity of the
driver [12; 10; 13], however these setups include externally placed cameras making them
unfit for regular driving.

In order to prevent the detected accidents from happening, a feedback method to alert
the driver is required. Various experiments [9; 3; 7] have been made to determine which
type of feedback is best for certain situations, however most of them utilise immediate
feedback requiring the drivers to shift their attention when it happens.

Based on the problems regarding distractions and poor steering techniques, the goal of this
study is to develop a system capable of accurately recognising a driver’s activities using
hand gestures. These recognised activities are used to warn the driver about suboptimal
driving behaviour, which is presented at times where the driver can comprehend this
feedback.
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Research Contribution
Summaries 2

2.1 Utilising The Leap Motion Technology To Classify Hand
Gestures In Vehicles

The paper is found in Appendix A.

Driver activity recognition and monitoring is a widely researched topic. One of the
primary reasons for this, is to reduce the number of accidents caused by distracted and
fatigued drivers. Within the field, some of the most researched observations methods
are eye and iris detection, which bases its prediction on the driver’s gaze. However,
fewer studies focus on driver’s hand gestures to determine the activity. Different types
of distractions are further analysed, to understand driver interactions in vehicles.

Throughout this paper, we research hand gestures and how these could be used to
determine the current activity of a driver. The analysed hand gestures are the naturally
occurring interactions that every driver is performing to control the vehicle, e.g. holding
the steering wheel or using the gear stick. In order to do so, we are utilising a Leap Motion
controller placed at the roof, just above the steering wheel. The data stream provided
by this Leap Motion is extracted and classified using a SVM algorithm, which allows the
system to determine the driver’s current hand gesture.

The system averaged an accuracy of 85.60% based on 17 evaluations performed in 2 cars
with 13 participants. From this we conclude that hand gesture recognition is a viable
method to accurately determine a driver’s activities and that it should be studied further.

2.2 Driving Performance Evaluation Through Timely Feedback:
An Exploratory Study

The paper is found in Appendix B.

Current driver activity recognition systems are primarily focused on detecting certain
states such as fatigue or sleepiness. These states are however only part of the problem
that comes with the monotonous driving task and the accidents that follows. Statistics [4]
shows that driving while distracted and reckless driving behaviour also causes accidents
each year.

To prevent these suboptimal driving styles, feedback is required to alert the drivers of
their reckless behaviour. Most research papers experiment with feedback systems that

2



Research Contribution Summaries Aalborg University

provide feedback immediately, regardless of the situation. In this article we develop a
system utilising timely feedback, which provides feedback at appropriate times where
the driver’s cognitive resources can comprehend it, without compromising the driving
performance. By utilising the Leap Motion technology and our previously built driver
activity recognition system, we explore usages of this system in combination with timely
feedback, by conducting a pilot study with a driving academy and a field test with regular
drivers.

Our system showed good correlations between the actual situation and the system’s
predictions. The system’s feedback, not just timeliness but also frequency and message,
was well received by both the participants and the driving academy, and some
participants were surprised about their own subconscious behaviour. The participants
showed an interest in the system, and mentioned that implementing gamification
principles would be a viable solution to help them stay focused on the road.

3



Conclusion 3
As cars have been implemented with more assistance systems, drivers have adopted
a more relaxed driving style. In order to prevent accidents caused by this, we have
developed two systems, DOS and DOSAF. DOS being capable of detecting the driver’s
current actions through hand gesture recognition, and DOSAF expanding DOS by
providing timely feedback to inform the driver about their driving behaviour.

We conclude from DOS that hand gesture recognition is a viable method for detecting a
driver’s current activities, despite the Leap Motion technology having range limits and
problems with light reflections. Based on the interviews from the DOSAF evaluation, we
can further conclude that providing feedback during full stops is a viable solution, as the
driver has more time to register the feedback and think about the provided message.
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ABSTRACT
Driver activity recognition and monitoring is a widely re-
searched topic. One of the primary reasons for vehicle ac-
cidents is distracted drivers. The most researched observation
method are eye and iris detection, where the prediction is
based on the driver’s gaze. Understanding what drivers are
doing while driving could help develop systems to prevent
further accidents. Throughout this article, we explore hand
gestures and how these can be used to determine the activity
of the driver, due to the natural occurring interaction inside the
car include distinct hand gestures, e.g. holding the wheel or
the gear stick. With an average accuracy of 85.60% based on
17 evaluations in two cars with 13 participants and six differ-
ent gestures, we conclude that hand gestures provide enough
insight to accurately classify driver activities.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous; See http://acm.org/about/class/1998/ for the
full list of ACM classifiers. This section is required. Experi-
mentation

Author Keywords
Driver Activity Recognition; Leap Motion; Hand Gestures;
Classification.

INTRODUCTION
The automobile evolution has expanded with newer and easier
ways to use the car, including automatic assistance systems
like the ABS brakes, automatic gear transmission, and autopi-
lot features. In addition to the automobile evolution, so too
has the evolution on everyday devices. As it has become safer
to control a vehicle, the safety of drivers and passengers has
increased [16]. At the same time, decreasing the difficulty
of driving increases the comfort levels of drivers, enabling
them to do other tasks, such as using their phones, while still
feeling in control of the vehicle. The reason for most frequent
road accidents are distracted drivers [11]. Consequently, driver

Paste the appropriate copyright statement here. ACM now supports three different
copyright statements:
• ACM copyright: ACM holds the copyright on the work. This is the historical ap-
proach.
• License: The author(s) retain copyright, but ACM receives an exclusive publication
license.
• Open Access: The author(s) wish to pay for the work to be open access. The addi-
tional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement assuming it is
single spaced.
Every submission will be assigned their own unique DOI string to be included here.

activity recognition is a widely researched topic, where the
goal is to understand what drivers are doing while driving, and
prevent dangerous situations by preemptively detect instances
of distracted driving and alerting the drivers.

As the secondary driving task controls have become more re-
quiring and infotainment oriented [20], the cognitive resources
spend on using them have increased. Phone usage have also
increased significantly [11], despite being illegal to use while
driving. Both [40] and [42] have shown that messaging and
talking on the phone requires a lot of cognitive resources, to
such a degree that it is considered a very dangerous activity
to do while driving. Visual, kinetic, and cognitive resources
are being used while using the infotainment controls or the
phone, which decreases the focus on the road and increases
the response time to react on events.

By utilising driver activity recognition it would be possible to
determine the driver’s actions while driving, and whether they
are primary task related or not. Most researched systems use
gaze and eye movements to determine the activity of drivers
and hand gestures are mostly used for interaction purposes.

While driving, many distinguishable gestures take place, such
as grabbing the gear shift, manipulating the secondary tasks by
finger presses, resting the hand, and holding on to the steering
wheel. This study explore hand gestures in cars, and more
importantly if these could reliably distinguish and determine
the activity performed by the driver. This study utilises the
technology provided by the Leap Motion controller, a depth
camera able to recognise arm, hand, and finger movements and
supply a stream of output information in real time. The Leap
Motion controller is small and allows for unique positioning
inside the vehicle.

Based on the lack of research done within the topic of using
hand gesture recognition for observation purposes within cars,
we have decided to explore a system capable of recognising
the driver’s activities through the naturally occurring hand
gestures. We develop a proof-of-concept system to determine
two gestures for the left hand and four gestures for the right
hand and evaluate the accuracy of this concept system.

RELATED WORK
According to [40], humans’ have a set of cognitive resources
which is used when performing e.g. visual perception, kinetic
movements, and cognitive tasks. Driving and focusing on the
road takes up a certain part of these resources. Multitasking



takes away some of the cognitive resources spend on the pri-
mary task in order to do the secondary task. In an automotive
context, these tasks are what is known as a distraction. In
a vehicle context, distractions comes in two kinds, internal
and external distractions. Internal distractions are those hap-
pening inside the vehicle, e.g. secondary controls, handheld
devices, and passengers. External are things occurring outside
the vehicle, e.g. other drivers, the landscape, and billboards.

Internal Distractions
Stutts et al. [43] observed 70 drivers with cameras installed
in their cars over the course of a week. Here they observed
distractions that occurred, hand positions, gaze direction, and
irresponsible vehicle events such as crossing the lines and
sudden braking. A larger number of distractions were reported;
using the phone, eating and drinking, grooming, reading and
writing, and fumbling around with objects in the vehicle. Each
distraction was shown to have a significant impact on the
number of hands on the steering wheel and eyes directed
inside the vehicle instead of on the road. Preparing to eat
or drink and reaching, leaning, or looking for objects inside
the vehicle also had a significant impact on the number of
irresponsible vehicle events.

Manipulating the secondary controls includes a wide range of
tasks such as; changing the music settings or radio channel,
adjusting the heating of the car, and setting up or following
the GPS instructions [34, 23]. Each of these does not seem
complicated, however they each force the driver to shift at-
tention from the road and onto the task, both visually and
cognitively [40]. According to NHTSA [32] phones are one of
the primary offenders in regards to distracted drivers crashing.
Interaction with passengers have both positive and negative
effects on driving [21]. The driver is less likely to get sleepy
while communicating with a passenger, and the passenger
takes a responsibility and helps with observing the road. It is
however an internal distraction as communicating requires cog-
nitive resources [15, 40]. [48] researched the concept of mind
wandering and how it increases a driver’s response time. Re-
sults showed that while mind wandering the observed drivers’
response time increased from 0.9 seconds to 1.1 seconds. It
furthermore causes a form of inattentional blindness, where
drivers are less likely to register critical situations on the road.

External Distractions
Statistics from the danish road directorate [45] shows that
accidents occurs 15 times more often on city and rural roads,
compared to on the highway. The reason for this is that the
highway has less surprising elements; usually everything can
be seen well in advance, everyone is heading in the same direc-
tion with similar speed, and entering and exiting the highway
can be done so without braking in front of others [28]. Driving
in different kinds of landscapes or with different road condi-
tions impacts the driver’s focus on the road. The driver’s stress
level is reduced if the road condition is considered simple,
such as driving on a straight wide road in an open landscape
with clear sight of incoming traffic and turns. Consequently,
driving an easy road takes away some of the attention put into
driving. This effect is reversed in stressful conditions [4, 3].
Landmarks and events happening externally makes the driver

shift attention [3]. The behaviour of the cars surrounding the
driver can also act as a distracting element [39], especially
when they are driving differently than expected.

Driver Activity Recognition
From researching the topic, various approaches of driver activ-
ity recognition were observed. The most researched approach
has been detecting the gaze of the drivers where both head
direction, eye, and eyelid movements are used to determine
their activity. With this approach, the goal is often not on the
activity, but instead the emphasis is put on detecting sleepiness
and drowsiness from the driver. One of the possible detection
solutions to this is by tracking the driver’s eye movement,
gaze, and face orientation [6, 7, 33, 12]. Across all studies,
the tracking was performed using a camera. Based on the
images, a machine learning algorithm was taught to recognise
heads and faces. Such research proves that the eyes and face
reveals whether the driver is distracted or sleepy. Eye tracking
is actually a combination of iris and eyelid detection. Based
on how much of the eye is covered by the eyelid, the system
can determine if a driver is sleepy or distracted [18, 14]. Gaze
tracking have proven to be a reliable solution in regards to
detecting if the driver is distracted or looking at the road [1].

Some of the more recent research has looked into predicting
aspects on the driving not obviously related to the gaze. [13]
use driver gaze to predict where the drivers attention is al-
located, where previously only fatigue and sleepiness were
detected. Based on data from the 100-Car Naturalistic Driving
Study dataset [17], the authors associate glance patterns with
information about the driving environment, driver behaviour,
and driver demographics.

Gesture Recognition
Another approach is limb detection, where the determined
activity is based on hand position and movements. Usually,
hand gestures are only studied for interaction purposes, where
natural user interaction can make the interaction more fluid
and intuitive. The authors of [46, 44, 47] analysed drivers
activities through limb recognition using depth camera. In
most of these experiments, the camera is mounted on the side
of the vehicle, viewing the driver from the side, and silhouette
recognition is used to determine the driver’s activities in these
cases.

Others have experimented with applying sensors and pressure
pads to the driver seat, allowing them to analyse the differ-
ent movements between a regular and a distracted driver [37].
The authors further expanded their system, by making it able
to differentiate between different drivers [38]. This makes it
possible for the car to detect which driver is currently driv-
ing, allowing other systems to adjust based on the individual
driver’s preferences.

When driving, people are already making hand gestures, such
as holding the steering wheel, grabbing the gear stick, or ma-
nipulating the secondary controls. Hand gesture recognition
have shown potential in other fields such as medical [19],
communication [25, 35, 41], and entertainment [22, 24]. In
regards to driving, some of the larger car manufacturers such
as BMW [10] have started exploring gesture interaction to



control their interfaces. This feature requires less visual and/or
touch precision, resulting in more time to look at the road.

Making hand gestures within a defined space opens up new
ways to control and manipulate the vehicle. Researchers have
found that using hand gestures for interacting with secondary
tasks in a vehicle can have a positive effect on driving, as hand
gestures require less cognitive resources. The most notable
benefits are the reduced time spent looking away from the road
and the reduced mental strain that comes along with it [5, 34,
9, 2].

This study examines hand gesture recognition in vehicles using
the Leap Motion technology. The Leap Motion allows for
unique positioning inside the vehicle, that can be focused
around the driver’s limited interaction area. Previous studies
on hand gesture recognition in vehicles are suboptimal, as
their setups would not be usable in a regular driving context.
This study uses hand gestures for observatory purposes, to get
an indication about the drivers hand activity.

MOTIVATION
Driving a vehicle is done by performing a set of gestures such
as holding the steering wheel and grabbing the gear stick.
By observing the features and movements of their hands and
arms, it should be possible to get an adequate view into what
the driver is currently doing. As the driver is bound to the
driver seat, their area of interaction is limited, thus limiting
the required observation to this area. If it could reliably be de-
termined that the hands were positioned at the steering wheel,
with some intervals of using the gear stick with the right hand,
we could deduce that the driver is attentive of the road. Too
much interaction with the secondary controls could further
indicate that the driver is most likely focusing on those instead
of the road, resulting in him being inattentive.

The overall concept of this study is to detect the naturally
occurring gestures performed while driving. With knowledge
of the driver’s hand positions, we can deduct information about
what the driver is currently doing.

SYSTEM OVERVIEW
The system is named Driver Observation System (DOS).

The detectable gestures are all related to operating the vehicle
and internal distractions. For this study, we focus on detecting
the following gestures:

1. Hands on the steering wheel

2. Resting the hand

3. Using the gear stick

4. Using secondary controls

Based on these actions, the level of attention can be measured
through how much time not spent on having the hands on
the steering wheel. In order to recognise the hand gestures
detected by DOS, we intent to make a classifier. Seeing as this
is a proof-of-concept, the classifier’s initial training and base
parameters are built using a two different subjects in two dif-
ferent cars. This is later evaluated with multiple participants.

Technology
Within the field of arm, hand, and finger recognition, Mi-
crosoft’s Kinect [26] and the Leap Motion [30] were the most
viable technologies. As Kinect acts as a full-body camera it is
able to detect gestures between 40 and 400 centimetres [27].
Leap Motion has a shorter detection range, between 0.25 and
60 centimetres [31], due to it being focused on detecting arms,
hands, and fingers. The 40 centimetre minimum on Kinect
makes it hard to place within a car, making the Leap Motion
the most suitable hardware for this study. In addition, the Leap
Motion’s short minimum range and wide angle allows us to
experiment with unique positions that are not possible with
normal cameras.

Implementation
The Leap Motion controller is able to provide a stream of data
about the hands within its field of view. The data is extracted
and calculated based on the frames captured by the infrared
camera at a frame rate between 40 and 115 FPS, depending on
the settings. Each frame contains data about the direction and
position of each arm, hand, and finger within the field of view.

From the Leap Motion controller, we have identified and exper-
imented with different data values, to understand which values
distinguishes the most between different gestures. The values
are observed while performing the required gestures to observe
which can distinguish the gesture adequately. As an example
we excluded hand velocity. We want to determine if the hands
are on the steering wheel and not differentiate between turning
and simply holding it. In this case, the gesture would have
contradictory velocity values, making it ambiguous. The used
values include both location and directional properties for both
hands and fingers. The following information is used for the
classifier:

• Hand centre and direction x, y, and z

• Hand pitch, roll, and yaw

• Palm normalised x, y, and z

• Grab and pinch strength

• Finger direction x, y, z and stabilised tip position

All of these values are represented as a double ranging from
−1.0 <= value <= 1.0, where grab and pinch strength ranges
from 0 <= value <= 1.0. DOS is utilising a Support Vector
Machine (SVM) algorithm for the classification of hand ges-
tures. The SVM algorithm is a supervised learning algorithm
that functions well in cases with a high number of variables
and loads of training data [36]. In our case, the data stream
supplied by the Leap Motion controller acts as variables. For
the classifier implementation we utilise LIBSVM [8], a freely
available library allowing us to utilise machine learning. The
SVM type is a classifier.

The classifier takes a set of samples as input for the training
phase of the classifier. A sample consists of all of the above
mentioned values, along with an extra value used to describe
what gesture the sample represents. When training the classi-
fier, we use samples where the gesture is known beforehand,
gathered by performing a controlled test in the vehicle.



In order to test and configure the algorithm, a data set of
approximately 15000 samples was collected and split into two
categories, training data and testing data. 75% of the data set
was used for training the algorithm to recognise the different
classifications. The remaining 25% was used for validating the
algorithm’s accuracy. These test results were used for further
tweaking of the algorithm’s values and kernel configurations.
This process was repeated until the tweaking had no significant
impact on the accuracy. During our tweaks, we found that a
linear kernel provided the best results with cost set at 10, the
remaining values are similar to the default values [8].

During the evaluations, we determine what action were per-
formed 4 times pr. second, based on a single sample at the
time of determination. In addition, we use a confidence thresh-
old where we only accept the classifier’s determination if it is
more than 70% confident about the result. Besides the gestures
focused on, drivers perform various other actions such as eat-
ing, drinking, smoking, communicating with their hands, and
using phones [43]. The confidence threshold is implemented
to catch these actions and the transitions between all actions.

Calibration
To achieve the most accurate readings of the driver, the system
has to be calibrated to the individual vehicle. This is necessary
as vehicles’ interior design can differ greatly. The interaction
can also vary due to different modalities utilised to interact
with vehicles, e.g. buttons, rotary controller, etc.

To overcome this problem, a calibration program have been
built. When executed, the program builds a new data set, in
which it collects data about the driver’s current hand position.
This is done by the driver performing the first of the desired
gestures, i.e. hand on the steering wheel, resting the hand,
holding the gear stick, and interacting with the secondary con-
trols with his right hand. Meanwhile the left hand is hidden
from the Leap Motion’s line of sight. The program collects
a new data sample approximately 20 times pr. second. After
mimicking the first gesture for approximately 600 measure-
ments, he continues to the next gesture and repeats the process.
After completing all the right handed gestures, he switches
hands, and performs all of the left hand gestures.

The newly collected data set is used as training data for the
classification algorithm. This particular set is then used when
performing an evaluation in the respective vehicle.

Hardware Setup
To properly capture all the desired gestures, the Leap Motion
controller had to be placed in close proximity to the driver.
As such we experimented with placement around the gear
stick, dashboard, door, and roof. Results showed that the most
efficient placement for the Leap Motion controller is at the
car’s roof, just above the steering wheel, pointing downwards.
This position is furthermore fitting due to the Leap Motion
controller’s short range. Figure 1 shows the position of the
Leap Motion controller.

In order to power and acquire the data gathered by the Leap
Motion, a laptop has to be connected by cable. To avoid
additional distractions for the driver and remove the laptop

Figure 1. The leap motion placement. The leap motion can capture both
hands and a large part of the area of interest.

operators hands from the Leap Motion’s detection field of
view, the laptop is placed on the backseat of the car.

EVALUATION

Participants
A total of 13 participants (4 female, 9 male) aged from 20
- 82 (M = 37.1, SD = 19.0) participated in the experiment.
4 Participants did the evaluation in both cars, for a total of
17 evaluations. The participants are all family, friends, or
colleagues.

Setup
The system is evaluated based on its ability to correctly detect
the hand gestures. Accuracy was measured during a perfor-
mance test, performed in a stationary car. The car remained
stationary throughout the experiment, as the experiment could
be conducted without starting the car. In preparation for this
evaluation, the car was equipped with a video camera pointing
towards the driver seat, ensuring that all actions were recorded.
The evaluation was performed in two different cars, a Hyundai
i10 (car A) and a Volkswagen Passat (car B), with 8 evaluations
performed in car A and 9 in car B.

Procedure
Before the evaluation started, the system was calibrated for
that particular car. The evaluation consisted of the partici-
pants mimicking driving the car for five minutes, while being
recorded by the system and the video camera. The drivers
were told to drive as they normally would. The driver’s hand
gestures and when they were performed was then extracted
from the video, allowing for comparison to the data gathered
by the system. The results of this comparison resulted in the
system’s performance.



Participants
Gestures #1 #2 #3 #4 #5 #6 #7 #8

Left
Wheel 45.89 63.11 99.83 100.00 96.47 68.69 77.74 71.60
Rest 100.00 100.00 - 100.00 100.00 100.00 94.74 0.00
Total 47.75 63.35 99.83 100.00 96.82 69.64 79.05 66.75

Right
Wheel 85.16 88.58 98.32 99.75 99.64 97.10 86.87 86.87
Gear 73.07 89.78 87.05 99.50 100.00 72.86 96.95 88.30
Rest 100.00 1.09 100.00 54.48 22.00 - - -
Secondary 81.48 94.29 37.14 78.33 96.61 50.00 84.16 96.69
Total 85.07 82.36 88.82 89.20 96.09 87.30 88.26 88.15

Table 1. Accuracy of the 9 participants in car A.

Participants
Gestures #1 #2 #3 #4 #5 #6 #7 #8 #9

Left
Wheel 98.69 87.76 86.50 84.05 99.02 96.94 97.11 96.30 71.50
Rest 89.87 - - 12.09 - 98.41 25.71 93.33 -
Total 98.12 89.23 86.50 78.77 99.02 97.11 91.26 96.19 71.50

Right
Wheel 95.67 98.69 86.54 97.37 88.22 94.93 99.72 94.37 95.93
Gear 63.79 99.39 98.61 68.97 53.03 89.01 64.74 99.09 78.44
Rest - 4.04 98.57 83.90 100.00 21.50 97.69 83.33 59.26
Secondary 98.52 95.55 81.41 91.33 87.07 59.55 40.87 71.95 80.00
Total 88.12 90.47 90.89 86.15 82.80 82.65 84.62 89.24 87.08

Table 2. Accuracy of the 9 participants in car B.

Results
Table 1 and Table 2 shows the results of the 17 evaluations. As
the participants were instructed to act as they normally would,
some gestures were not performed by all participants. These
are noted by a minus symbol (-), in the tables.

Car Instances Left correct Left % Right correct Right %

A 9797 7627 77.90 8636 88.16
B 11084 9950 89.58 9630 86.75

Table 3. Recorded instances and their accuracies across the experiments.

Table 3 shows the total percentage from the entire evaluation,
taking into consideration the samples spent on every task. The
average percentage of the left hand accumulates to 83.74%,
with the right hand at 87.46%. This gives an average percent-
age for both hands of 85.60%.

Holding the hand on the steering wheel reached a combined
accuracy of 84.40% for the left hand and 93.70% for the right
hand.

Resting the hands achieved the lowest accuracy throughout
the entire evaluation. For the right hand resting gesture, the
observed accuracy was at 56.47% in average between both
cars. As there is not enough space to comfortably rest the left
hand in as many different positions as the right hand, the left
hand resting gesture achieved a higher accuracy of 74.42%.

The system is also reliable in determining if the user is ma-
nipulating the secondary controls. An average percentage of

77.91% were achieved in the two vehicles. The results showed
that the system’s primary problem with recognising the sec-
ondary controls task, was differentiating between using the
gear stick and the secondary controls.

Detecting the right hand on the gear stick proved to be very
accurate, 88.44% in car A and 79.45% in car B, despite the
gear stick being positioned close to the secondary task and the
hand gestures for both being similar.

DISCUSSION
The results from the evaluation shows that with the right hard-
ware, it is possible to detect a driver’s current activity through
their hand gestures. While not perfectly accurate, it still pro-
vides a determination of what is happening within the car.
However, with an overall accuracy of 85.60% for both hands,
this determination is bound to have false positives and false
negatives. For example, in a system responsible for warning
drivers that they are driving dangerously, this can be dangerous.
Too many false positives could end up annoying the driver, re-
sulting in them disabling the system. Too many false negatives
would cause the system to not warn the driver, resulting in the
driver continuously driving dangerously.

The experiments performed by [25, 35, 41], who all used the
Leap Motion for sign language, resulted in an accuracy of
90%, 80%, and 65% respectively. [44] reached an accuracy
of approximately 60% with their system mounted outside the
vehicle and looking at the driver from the side. We determine
between a total of 6 states, where the other projects range from



2 to 31 classes. Compared to previous studies, our work on a
classification system reaches the accuracy of similar systems
with high accuracies.

The setup within the car worked well. The position in which
the Leap Motion is placed on the interior roof is accessible
in almost every car. However, due to the Leap Motion’s very
wide detection area which sometimes picked up the hands of
the person in the passenger seat, the laptop had to be placed
on the back seat. Combined, these two problems forced the
USB cable to be drawn directly from the Leap Motion and in
between the driver and passenger seat, resulting in the cable
being a slight distraction for the driver.

The Leap Motion controller proved to be a solid choice in
regards to hardware. Once calibrated, the system was effective
at distinguishing between the different hand gestures. During
the evaluation we did however encounter certain limitations
with the Leap Motion. The biggest issue came when driving
on a sunny day. The sun’s reflections within the car would be
picked up by the Leap Motion, resulting in it having difficulties
detecting the driver’s hands. The Leap Motion is not capable
of handling reflections from other light sources if it interferes
with the frequency at which the Leap Motion’s own LED
pulses [29]. As such, the solution lies in preventing reflections
or using other frequencies, both of which cannot be affected
from our position. Secondly, the Leap Motion could have
distance problems within some cars. With different cars comes
different car interiors, resulting in varying distances between
the Leap Motion and the driver’s hands. This could cause the
hands to sometimes being out of range for the Leap Motion,
resulting in the Leap Motion either reading the hands wrong
or not detecting them at all. A possible solution for this would
be to implement multiple Leap Motions, preferably one for
each hand. It is however currently not possible to connect two
Leap Motions to the same laptop, resulting in a second laptop
having to be implemented into the setup. While possible, the
one Leap Motion worked sufficiently.

During the evaluation and based on the results, we learned
that it was necessary to calibrate the system for the various
car interiors we would encounter. As such we implemented an
on-the-fly calibration feature, allowing dynamic alteration of
the training set used for the classifier. This ensured optimised
training data for the interior of the car which proved overall
positive for the results. We learned that certain hand gestures
are hard to calibrate accurately. As shortly introduced in the
evaluations results, resting your hands while driving can be
done in various ways. For the system to accurately predict
the resting hand, the same position would have had to be used
during the calibration. This revealed another problem with
calibration.

With a total of 17 evaluations performed by a wide variety of
participants in two cars, the classifier has been tested though
many different driving styles and behaviours. The evaluations
were performed while the vehicle was holding still, thus not
reflecting real life driving entirely.

As introduced earlier, distractions can be both internal and
external. The current iteration of our system only attempts to

detect the internal distractions, leaving the driver vulnerable to
external ones. Attempting to detect external distractions could
be possible with information regarding the current environ-
ment, such as traffic, weather, landmarks, and road conditions.
In combination with hand gestures we might detect certain
changes in behaviour as the external conditions varies.

CONCLUSION
As cars have been equipped with automatic assistance systems,
driving itself have become easier, safer, and more comfortable.
This have caused drivers to believe that they have more time
for other tasks, such as their phone or GPS. Statistics shows
that phone usage is the most common reason for distracted
drivers to crash. In this experimental study, we have explored
the possibilities of using hand gesture recognition hardware to
determine where the driver’s hands are while driving.

Our research shows that hand gestures of a driver can be ac-
curately recognised and classified. The chosen hardware did
however have certain limits in form of range and reflection
from other light sources, reducing its performance and ac-
curacy. The evaluation was performed by 13 participants,
resulting in a wide array of driving styles being tested by the
system. Despite the varying styles, the system proved accu-
rate with a combined accuracy for the left hand at 83.74%
and 87.46% for the right hand across two vehicles. Based on
these preliminary results, we believe the concept could be a
viable solution for driver activity recognition, however further
exploration is required.

FUTURE WORK
Based on the preliminary findings from this study, we will fur-
ther investigate possible uses of the driver activity recognition
system developed. The next step of the project is to further
evaluate the concept in an application for real life problems.
Further studies could focus on dynamic driver evaluation, after
drive evaluation, emergency systems, driver classification for
insurance calculation, or for accident assessment. Further fea-
tures could include automatic vehicle calibration and multiple
Leap Motion controllers.
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ABSTRACT
The usages of driver activity recognition are primarily focused
on detecting certain markers of e.g. fatigue or sleepiness. But
fatigue and sleepiness are only parts of the problem with the
monotonous driving task, where also distractions and reckless
driving cause vehicle accidents. All of the researched papers’
developed systems provide feedback immediately, regardless
of the situation. We provide timely feedback at appropriate
times, where the driver’s cognitive resources can comprehend
this without compromising driving performance. By utilising
the Leap Motion technology and our activity recognition sys-
tem DOS [11], we explore usages of the system by conducting
a pilot study with a driving academy and a field test with 10
participants. Our system showed good correlation between
the actual situation and the system predictions. The system’s
feedback was well received by both participants and the driv-
ing academy, and some participants were surprised about their
subconscious behaviour.
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Miscellaneous; See http://acm.org/about/class/1998/ for the
full list of ACM classifiers. This section is required.
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INTRODUCTION
As the automobile industry has evolved, cars have become
easier and safer to operate due to the amount of implemented
technology [10], such as automatic assistance systems like the
ABS brakes, automatic gear transmission, and autopilot fea-
tures. This decrease in difficulty increases the overall comfort
of driving. This new level of comfortability have changed the
driver’s perception of the focus required to safely control a
vehicle, thus resulting in them performing other tasks such as
operating the infotainment unit or using their phones. Simi-
lar behaviour is shown in semi-autonomous vehicles, where
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the semi-autonomous features makes the drivers trust the sys-
tem. The semi-autonomous features are still early in devel-
opment, and despite the system warning the drivers’ about
this, they still lose focus on the road and divert their attention
elsewhere [30, 22]. This lack of focus and carelessness, is
the reason that the most frequent reason for road accidents
is due to distracted drivers [6]. Consequently, driver activity
recognition is a widely researched topic, where the goal is to
understand what drivers are doing while driving, and prevent
dangerous situations.

Despite phone usage being illegal while driving and infotain-
ment systems becoming more and more simplified, it have not
stopped drivers from getting distracted. Apple has announced
that in iOS 11, a “Do Not Disturb While Driving” feature
will be implemented, as a way to remove potential distractions
coming from the smartphone while driving [35]. Distractions
are however inevitable as other factors can disturb the driver.

Observational studies [33, 12] further prove that very few
drivers apply the recommended steering techniques, with two
hands on the steering wheel at either 9 and 3 o’clock or 8 and
4 o’clock [19]. Using inferior hand positions on the steering
wheel reduces the overall control of the vehicle, thus increas-
ing ones reaction time. It has been suggested that drivers
change their hand placement based on perceived risk [31] or
changes in mental workload [5].

This lack of focus on the road combined with unavoidable
distractions and improper steering techniques all contribute to
decreased reaction times and control of the vehicle, exposing
the driver, passengers, and the surrounding environment to
unnecessary risks. A solution could be to provide feedback
on drivers’ dangerous behaviour and recommend changes to
accommodate a safer driving style.

Different manufacturers utilise different feedback methods to
alarm drivers of inattention in semi-autonomous vehicles [26].
Some favour visual and others audio. The activation is handled
differently, as both static timers and dynamic detection is used.
Various kinds of feedback methods are being utilised including
visual, audio, and vibration. Each of these offer challenges in
an automotive context; visual requires moving the eyes from
the road, audio cues can be missed due to other sounds and
noise, and vibration are hard to distinguish from the naturally
occurring vibrations and road bumps.

This study explore a combination of visual and audio feed-
back and how this can affect drivers’ driving behaviour. While



driving, many factors have an impact on the driver’s cognitive
resources. As such, providing feedback on how to improve
their driving style should be done in a timely manner. A
feedback system dynamically activated based on the drivers
behaviour could decrease the number of messages and the
annoyance of the system, compared to a statically timed acti-
vation system [28].

This feedback system will expand upon DOS (Driver Obser-
vation System) [11], by utilising the driver recognition capa-
bilities in a real world setting. The combined system and the
feedback are evaluated in a field study by a driving instructor
and regular drivers.

RELATED WORK
There are two aspects to consider; the understanding and be-
haviour of the drivers and findings from providing feedback
in an automotive context. We need a better understanding
of the strain of driving and the drivers behaviour, to which
we explore the research in these fields. By exploring manual
and semi-autonomous vehicles, it is seen that the different
manufacturers use different methods of alarming the driver of
dangerous situations [26]. Based on the many different sys-
tems, it appears that the optimal solution has not been found
yet.

Driver
To properly design a system for drivers, two aspects have to
be analysed; the cognitive resources required to drive and the
norms and behaviour of drivers.

Cognitive Strain
Salvucci and Taatgen [24] explored the concept of multitask-
ing, with a partial focus on driving and driver distractions.
Through their experiments they explore how visual percep-
tion, kinetic movement, and cognitive tasks uses cognitive
resources. In a regular driving scenario, a driver looks at the
road while performing small kinetic tasks. If the driver have
to control an infotainment unit, it requires spending cognitive
resources that would otherwise have been spent on driving the
car, reducing the driver’s overall focus on watching the road
and steering the car. The authors of [3] experimented with how
much speaking compared to listening while driving affects the
driver’s cognitive resources. Through a reaction experiment
performed within a high fidelity car simulator where the partic-
ipant had to press a button whenever a vibrator vibrated, they
concluded that speaking does indeed require more cognitive
resources than listening while driving.

Hand Positioning
In regards to handling a steering wheel, the NHTSA have made
a set of guidelines for proper steering [19]. They recommend
a two handed symmetric positioning around either 9 and 3
o’clock or 8 and 4 o’clock, as this gives the most control over
the vehicle and it allows for the airbag to deploy without in-
juring the driver’s arms. Jonsson [12] observed drivers to find
which hand positions drivers used while driving. The most
commonly observed hand pattern is with one hand around the
10 o’clock or 2 o’clock position for left and right hand respec-
tively. Symmetric steering techniques are very rare, with only

6 percent among males and 12 percent among females using
them, despite being the recommendation from NHTSA [19].

Thomas and Walton [33, 31] have made several studies about
drivers’ hands’ position on the steering wheel. They theorised
that the driver’s perception of risk can be measured based on
how the driver is holding onto the steering wheel. Two hands
on the upper half of the steering wheel suggests that the driver
is focused due to being in a more intense situation, compared
to using only one hand on the lower part of the steering wheel.
Based on their work, De Waard et al. [5] further analysed that
although hand position are related to risk perception, these are
closer related to the mental workload the driver was experienc-
ing. Fourie et al. [8] observed everyday drivers over a period
of time, which further proved that drivers using two hands
on the upper half of the steering wheel were driving slower
than those having one or zero hands on the upper half. This
further adds to the theory about hand positioning is depending
on mental workload.

Feedback
The feedback provided to drivers can be of various forms.
Feedback is provided to users based on their interactions,
where a message is sent with information about the anomaly.
In an automotive context, three primary types are explored by
researchers; visual, audio, and vibration. Keeping in mind that
Sundareswara et al. [28] found that feedback activated from
static intervals tend to be ignored and deemed annoying by
drivers, the success of a feedback system lies in the timeliness
and immediate importance of feedback. Exploring a dynami-
cally activated system would be in the best interest of drivers
to avoid emergency states.

Visual Feedback
Visual feedback relies on the driver actively diverting their
eyes from the road to where the feedback is provided. As
visually demanding systems have started being incorporated
into cars [13], the driver’s visual resources are being diverted
away from the road. Blissing et al. explored a system fea-
turing a short latency after clicking buttons in the vehicle [1].
During this latency, an increase in driver glances on the road
and course corrections were observed, such that the time wait-
ing on the secondary system were spent on the driving task.
Alternatively [25] explored the usage of augmented reality
and gamification concepts to warn the driver of dangerous
situations. They theorise that in regards to semi-autonomous
or fully autonomous cars, the most dangerous situations arise
when the driver is trusting the car to drive perfectly and no
longer watches the road. They suggest a system where dan-
gerous situations are recognised by the hardware and a visual
overlay is placed on top of it, to increase awareness of the
situation.

In regards to visual feedback, visually anthropomorphic de-
signs are explored, as these had proven more trustworthy in
previous studies [15]. These designs are focused on the im-
pression of having a personal assistance in the car. Drivers
would be able to relate and trust the messages from this sys-
tem. [21] looked into attitudes and opinions towards assistive
robots, where they explored different physical forms the robot



could take. It was found that mechanical human-like and me-
chanical animal-like designs were favoured. [18] explored
anthropomorphic user interfaces and how these are perceived.
They conclude that these interfaces are more effective in 66%
of the conducted tests and preferred by users in all.

Audio Feedback
Christiansen et al. [4] found that using audio as output com-
pared to visual resulted in significantly fewer eye glances.
However, task completion time took longer compared to the
visual output, which is significantly faster to process. The
need for visual information could explain the increase in the
number of eye glances. They observed a decrease in primary
driving task performance when using audio as output. Based
on their findings using just visual feedback, they were able to
categorise glance duration into three categories; less than 0.5
second, between 0.5 and 2 seconds, and above 2 seconds. The
results showed that less than 3% of all glances were above 2
seconds, proving that the subjects’ perception of risk reaches
a threshold, where they are no longer comfortable ignoring
the road. The results for audio were significantly lower with
less than 1% of the glances being above 2 seconds.

A recent project made by Wang et al. [34] explore 3D sound
cues to provide spatialised advisory information representing
the state outside the vehicle during critical situations. These
sound cues vary in intensity and movement based on the mon-
itored traffic movements. If a car comes up from the rear and
overtakes, the system provides sound from the back of the
left side, and moving up past the driver as the vehicle moves
past the driver. Their results show significant results for the
understanding and response time for each of these situations
in addition to reduced number of collisions.

Both Cao et al. [2] and Larsson [14] have explored the possi-
bilities of audio feedback in combinations with other feedback
methods for communicating while driving. Larsson [14] ex-
plored an audio feedback system for reading and sending text
messages. This was performed in combination with a visual
element in form of a tablet. The audio was initially performed
through minor audio cues which proved insufficient and was
instead replaced with a text-to-speech system. The final sys-
tem required less and shorter glances than a purely visual
system. Cao et al. [2] experimented with a feedback system
where the intensity of the audio cue depended on the severity
of the feedback. They further incorporated a vibration system
into the car, allowing them to combine the audio feedback
with vibrations. Throughout their evaluation they found that
a pure vibration based system is a promising alternative to
audio feedback, as it caused less interference while driving. In
regards to response times and driver comfort, vibrations were
however inferior compared to audio.

Vibratory Feedback
Riener et al. [23] explored a vibration feedback system and
factors that can affect its results. Their vibration hardware is
placed within the driver seat. Their experiments found that
many factors impact the efficiency of a vibrations system.
Meng et al. [16] used a vibration system to alert drivers of
collisions. Directional tactile feedback is used to warn the
driver of the direction of the danger. Ogawa et al. [20] have

Author & Reference Feedback

Blissing et al. [1] Visual
Schroeter et al. [25] Visual
Christiansen et al. [4] Visual & audio
Larsson, Pontus [14] Audio
Sundaresware et al. [28] Audio
Cao et al. [2] Audio & vibrations
Wang et al. [34] Audio
Riener et al. [23] Vibrations
Meng et al. [16] Vibrations
Takahashi et al. [29] Vibrations

Table 1. Overview of explored feedback studies.

proven that ones heartbeat can be manipulated through the use
of vibration. Based on these findings, Takahashi et al. [29]
made a system that detects when the driver’s heartbeat is
slowing down, indicating sleepiness, which is then countered
by the driver seat vibrating in a more up-beat rhythm. The idea
is for the driver’s heart to pick up this rhythm and therefore
prevent the driver from falling asleep.

Feedback Systems
Table 1 provides an overview of the feedback solutions pre-
sented in this article. The challenge for feedback systems is
to get their message through to the driver in a quick and safe
manner. The feedback should be timely and accurate, as they
still consume cognitive resources and removes the attention
from the road. This is important as the reason for the feedback
system is to make the driver aware of the road. Dynamically
providing this feedback seems like the best way, to ensure that
only the minimum number of distractions are caused by the
feedback Sundareswara et al. [28]. Keeping the number of
feedback messages low, while still warning about important
events on the road can however be an ambiguous goal.

Feedback can be provided at various occasions. There could
be an upcoming accident that requires immediate breaking,
it could be the road being prone to causing accidents, or to
inform that bad weather is making the road slippery. With
information about the driver’s movement and physiological
signals, feedback could be provided if the driver is behaving
irresponsibly or showing signs of fatigue and sleepiness.

DESIGN
DOS is a system capable of detecting driver activity through
hand gestures by utilising the Leap Motion technology. The
goal of this study is to explore how DOS could be used in a real
world setting. Based on the problems regarding distractions,
fatigue, and poor steering techniques, we explore a system
that can improve the driver’s attention to the driving task, by
informing about incidents of poor driving. The developed
system is named DOSAF (Driver Observation System And
Feedback), and is an extension on the previously developed
DOS system. The extension includes providing feedback,
collecting information while driving, and presenting this to
the driver via an Android smartphone.

The exploratory nature of this study has inclined us to refer
to it as a technology probe. The goal of this probe is to



explore the usage and perception of a hand observatory system
in a vehicular context. Technology probes are considered
simple, flexible, and adaptable technologies with focus on
three goals [9]. The first goal is to understand the needs and
desires of the targeted users. The second is to field test the
technology to evaluate the utility and value in the context.
Lastly, technology probes allows inspiration for users to think
and reflect upon the technology.

Providing Feedback
When to provide feedback is based on the driver’s actions and
state. For this probe, the actions are limited to distinguishable
gestures that appear in all vehicles. These gestures include;
driving related interactions such as holding the steering wheel
or using the gear stick, hand resting from either fatigue or
habit, and secondary tasks such as manipulating the radio or
heating options. These gestures are arguably the most common
while driving. The gestures are narrowed down from other
activities such as interacting with mobile devices and using
hands for social interaction purposes.

After consulting with the driving academy, Trend Driving [7],
the feedback is supplied only at times where the driver would
have time to comprehend this. [28] reported that the success of
a feedback system is related to the timeliness, such that it is not
annoying, ignored, and comes at times where the driver can
comprehend it. This include times when the vehicle is holding
still, e.g. while holding still at an intersection, roundabout,
or after the drive has ended. In total, two types of driver
evaluations are implemented:

• While driving - Timely feedback provided at appropriate
times, describing the driver’s most recent performance.

• After drive - A map containing the driven route and ob-
served performance, allowing drivers to self evaluate.

We have explored the field of feedback within cars, and con-
cluded that for our system, the most appropriate form of feed-
back is a combination of audio and visual. Vibration feedback
is hard to distinguish with all the naturally occurring road
bumps and vibrations caused by the car [23]. Visual feedback
is reliant on the visual resources which are heavily utilised
while driving. However, visual feedback are perceived and
processed quickly, and can be clear in purpose [4]. Audio
feedback is slower to process and interferes more with the
driving performance than visual do. Audio does however not
require eye glances, which allows for keeping the eyes on the
road. Lone visual cues are prone to be overlooked, should
the driver’s gaze be focused elsewhere, and the content of
the audio feedback can be overheard due to it appearing out
of nowhere or being mixed with sounds from the environ-
ment. As such we want to utilise the reliability of noticing
audio messages with visual feedback being available for fur-
ther explanation. Despite the combination of audio and visual
feedback being fairly requiring, we deem it fitting as feedback
is only given in low pressure situations.

The feedback while driving is presented as an anthropomorphi-
cally voice reading a message out loud and visual text showing
the driver a score and a message. This score is an indicator of
the driver’s performance, and is calculated based on their hand

positions. The score ranges from 0 - 100, where a score of 100
is the best. Three different messages exist, and the provided
message depend on the calculated score.

1. Good - Score >= 80 : “Good job on that last section”.

2. Neutral - 60 <= Score < 80 : “Remember to hold the
steering wheel properly”.

3. Negative - Score < 60 : “Your driving should be im-
proved”.

The feedback is presented near the car’s dashboard, granting
the driver quick access to this information. Christiansen et
al. [4] found that 97% of eye glances are below 2 seconds in
duration. In less than 2 seconds, the driver should be able to
locate the feedback and understand the message and score to
complement their finding.

The after drive feedback can be accessed from the Android
application, where a map is drawn of the driven route, see
Figure 3. The route is divided into segments that each hold
information about the driver’s performance on that particular
segment. Each segment consists of a line and a marker. In
addition, segments are colourised to distinguish between good,
neutral, and negative segments. This is represented with green,
yellow, or red, depending on the driver’s score. A final marker
is shown at the end that contains the information from the
entire trip.

Architecture

Hardware
DOS utilises the Leap Motion technology, a depth-camera spe-
cialised in arm, hand, and finger detection. The Leap Motion
controller is placed right above the steering wheel, which the
technology allows with the small minimum range it offers, see
Figure 1. Due to the Leap Motion’s requirements [17], the sys-
tem has to be run on a laptop. The laptop is further connected
to an Android device through Bluetooth, which is used for
sending the Leap Motion results to the Android application.

Software
DOS provides a data stream of the current location of the
driver’s hand, calculated through machine intelligence based
on the data stream provided by the Leap Motion. DOSAF ex-
pands DOS by calculating a driver state based on the observed
hand locations and recognitions made. This driver state is
based on behaviour, and can either be attentive or inattentive.
In addition to the driver state, the determined hand gestures
are saved. Recognitions are made approximately 4 timer pr.
second.

The determined driver state and hand gestures are sent via
Bluetooth to the Android application, on which it is associated
with a driven segment. Besides the driver states and deter-
mined hand gestures, a segment includes the segment’s start
and end locations, distance between these, average speed, and
the score of the segment. A new segment is created approxi-
mately every 60 meters driven, and the obtained information
is associated with this segment. The presented message and
related score are calculated based on the information gathered



Figure 1. Leap Motion placement within the car.

from the location of the last provided feedback up till the cur-
rent location. The score is a percentage, calculated by dividing
the number of attentive driver states with the total number of
driver states. The screen presented when showing feedback is
seen in Figure 2.

The user interface is simplistically designed, to keep the visual
content concise. As such, the visual feedback is only visible
for 8 seconds to avoid the feedback distracting the driver longer
than necessary. By giving the driver 8 seconds to react to the
message, they have time to check their surroundings before
turning their head towards the screen to read the score and
message.

When the car reaches its destination, all of the segments are
saved. This prepares the application for its second purpose,
the after drive evaluation. Here the driven route is loaded
into a map, as seen in Figure 3. Each segment is represented
by a red marker, which when clicked shows the information
about the segment. At the destination, a blue marker is placed,
with information about the entire trip, see Figure 4. An ad-
ditional feature is developed for viewing information from
multiple markers at once. By pressing the desired start and
end markers, the information from all the markers inbetween is
combined and presented. Another feature furthermore allows
for hiding the red markers. As a red marker is placed every 60
meter, viewing the entire route with markers enabled is quite
extensive.

DRIVING ACADEMY PILOT STUDY
Trend Driving, a driving academy located in Aalborg, helped
us evaluate the rules for which we determine attentiveness.
Their critique is used to improve the classification to better
reflect what the driving instructors are looking after when
they are teaching students. The focus of this evaluation is to

evaluate the rules that we have implemented and to evaluate
the use for their context as driving instructors.

Rules
We believe that the conditions to which we determine inatten-
tiveness should be considered closely by other authorities with
more knowledge of the area. With this in mind, we still need
to evaluate the developed system, to which these numbers and
conditions can be tweaked at a later time. For this study, we
determine that the driver is inattentive during the following
cases:

1. No hands on the steering wheel

2. No hands on the upper part of the steering wheel

3. One hand on the steering wheel and the other manipulating
secondary controls

These rules are evaluated by a driving instructor, to ensure
that they represent an adequate view of the drivers’ steering
technique and provide a proper review of their performance.

Procedure
One of us sat in the back of the car, with the driving instruc-
tor in the passenger seat, and the student at the wheel. Dur-
ing the course of two hours, the driving instructor evaluated
DOSAF with two different students, both almost ready for
their driving exam. We installed the system and calibrated the
classifier to the interior before starting the drive. The driving
instructor were in charge of the route, and the small talk from
our part was kept to a minimum, however this did not affect
the evaluation. After the driving sessions we had an interview
with the instructor, divided into the performance of the indi-
vidual student, DOSAF, and the concept of observing hand
gestures to evaluate driving. During the drive, the feedback
was limited to the audio part, to avoid distracting the student
too much. Information about their hand positions, score, and
route information was saved and used for the interview with
the instructor.

Results
The results are based on an interview with the driving instruc-
tor, where the experience with DOSAF and the collected data
are used as basis for the interview. The instructor thought that
both students performed well during their respective driving
sessions. The instructor was told to rate the students hand
positioning performance based on his own observations. The
range of the rate are from 0 to 100. The first student was rated
100 by the instructor based on her hand positioning, where
DOSAF rated her 99. The driving instructor said that she
performed as taught during their classes, keeping both hands
at the top- and middle part of the wheel and performed gear
switches quickly. The second student was rated 95 by the in-
structor and 96 by our system. There was a segment where her
hands were positioned very low on the steering wheel during
the drive, to which the instructor told her that she should keep
these higher on the wheel. This exact segment was marked
in our observations and the instructor agreed with the timing
and reasoning as to why we gave a lower score. Both students
were not affected by the equipment according to the instructor.



Figure 2. The feedback shown to the driver
when driving.

Figure 3. The driven route in the Android appli-
cation. Red markers are currently hidden as the
route contained 375 markers.

Figure 4. Combined information about the
entire route.

Regarding the feedback feature, the instructor praised the time-
liness and precision of the message. He felt that the feedback
came at appropriate times, where the driver would have time to
hear the message and not be distracted by it. Shorter and more
precise instructions to keep the distractions at a minimum and
to avoid complicated feedback were preferred. Dynamic mes-
sages suitable to the context were preferred over the score part.
However, he agreed that the score had potential in combination
with gamification principles.

Concerning the evaluation of the rules, the currently imple-
mented rules reflect the reality nicely. He emphasises that
relaxation is the reason why drivers perform badly, and that
a more strict hands-on-the-wheel policy would be better, as
two hands on the steering wheel improves the steering and
reaction capacity of the driver.

The driving instructor liked the after drive map, where they
had the ability to show their students what they were doing
and evaluate certain areas. He believe that the system could
help increase traffic safety. Using the system as an “additional
driving instructor” for when they had passed their exam could
be nice, however he believed that it would probably be turned
off quickly.

REAL DRIVING EVALUATION
To evaluate DOSAF, a field experiment was conducted. Here a
number of participants participated by driving a predetermined
route with the system implemented.

Participants
As the effect of the system differentiates between users, 10
participants were evaluated in the experiment. The group
consisted of 8 males and 2 females. Table 2 contains additional
information about the participants. The experience stated in
the table is the participants own evaluation of their driving
experience on a scale from 1 to 10. The participants are all
family, friends, or colleagues, all of which either studies or
works.

Range Mean SD

Age 23-25 24.1 0.74
Years with driving license 2-7 5.45 1.38
Experience 6-9 7.1 1.10

Table 2. Statistics information about the participants. Driving license
is measured in years and experience was evaluated by the individual
participants on a scale from 1 to 10.

Setup
The experiment was performed as a field experiment, with
the participants being responsible for driving the car. They
were given a predetermined route of approximately 20 kilome-
tres, resulting in a 30 minute drive. The predetermined route
was designed based on the statistics about rural driving being
calmer than city driving [32]. To let the participant become
familiar with the system, the first half of experiment therefore
started in a rural area while the latter part took place in the
city. Car-wise, it was preferred if the participants had their
own car, as they would drive more naturally compared to using
a borrowed car. As such, 5 participants drove their own car,
while the remaining participants borrowed our car. Besides the



participant, there were a test leader and an analyst within the
car. The test leader was responsible for guiding the participant
and answering questions. The analyst’s task was to ensure
that the system was working as intended, by validating the
predictions. This was done by watching the live data stream
running through the laptop. The laptop was placed on the
backseat to avoid distracting the driver and to avoid the laptop
analyst’s hands being picked up by the Leap Motion camera.
The only task given to the participants was to drive as they
normally would.

Procedure
Before engaging the experiment, the participants were briefed
about the system, the score it provides, and how often it gives
feedback. The participants were furthermore instructed to
drive as they were used to, while still obeying danish road
laws. Lastly the planned route was shortly explained to the
participants.

Throughout the drive, the test leader observed and noted how
each participant reacted to the feedback provided by the sys-
tem. This and the collected information are used for the inter-
views to assist the participants in remembering what happened
and later show what DOSAF determined. After completing the
route, the participants were immediately interviewed. The first
part of the interview was based around questions regarding
their driving behaviour, opinions about the feedback, and the
system in general. During the second part, the participants
were shown the route again, this time with markers containing
score for each segment of the route, see Figure 3. If a score
was low, the participant would be asked why they thought it
was low, giving them a chance to recall the scenario by also
showing the location. Perhaps they used the radio without
thinking about it or lowered their hand positions due to fa-
tigue. Their answers are both recorded and written down at
the interview.

Results
The results of this evaluation are based on the answers the
participants gave during the interviews and observations about
their driving. The information gathered during the drives were
used as a basis for the latter part of the interview. Some
questions are asked regarding concrete usages of DOSAF and
some questions leads the participants to reflect further. We
collected all their answers and divided these into categories.
The finding are reported here.

The structure of the results follows the goals of the technology
probe, as described in the Design section. First we will go
though the general observations made, followed by the evalua-
tion of DOSAF, which leads to the participants reflections of
the system and technology.

General Observations
Almost all of the participants mentioned feeling “watched” by
the system while driving, thus affecting their driving behaviour.
Participant #3 felt that “the lady was breathing down his neck”
and participant #4 mentioned that the feeling of being watched
would “cling to him for days”. The participants who borrowed
a car for the experiment required a few minutes to become
comfortable with the car, and they subconsciously drove more

careful as it was not their own car. Participant #1 drove our car,
and mentioned “Well it’s a new car, and I drive more safely
and carefully when in a new car”.

As observed, if the participants rated themselves high in re-
gards to driving experience, they tend to relax more while
driving. This is shown by lower hand positions and only using
one hand on the wheel most of the time. When confronted
with this, they generally agreed that they had enough control
over the vehicle to only use one hand. The route included a
small segment of cobblestone road, where all participants used
both hands. The road conditions might have created a need for
more control as the participants responded the way they did. It
became clear through the experiment that the more familiar the
participant was to the car, the more relaxed their driving style
became. This resulted in more participants using the radio,
falling back into their seat, and relaxing their hand positions.
The participants stated that when they drive recklessly, they
are well aware of this, however they still feel that they have
the adequate control over the car.

Feedback
Throughout the evaluation, the participants average score
ranged from 77 to 96 (M = 85.4, SD = 6.6). Compared to
the message, the score gave a more precise evaluation of the
driver’s performance. Participant #7 felt that the score was
better, as the message was the same all the time, due to his
performance. In addition, participant #3 mentioned that the
score provided a better understanding on how to improve as
he could experiment with different styles. Participant #5, #7,
and #10 liked that the system confirmed that they performed
well enough. Participant #7 mentioned that “When I got the
confirmation that I was doing something good, then I tried to
do the same and keep that rhythm going.” and also mentioned
that he tried to relax more at this point.

While the message felt assuring when the performance was
good, the more negative stages of the message lacked informa-
tion about how to improve the performance. Participant #3 felt
that the voice provided an objective view on his performance,
and would rather listen to this feedback than a passenger telling
him to improve. In addition, he mentioned that it might be
humiliating if he got negative feedback while driving with
friends.

Feedback Frequency
During the drives, the participants received the feedback be-
tween 5 and 11 times (M = 7.4, SD = 2.2). The feedback
frequency of only providing feedback at full stops was well re-
ceived by all the participants. Concerns were however shown
about the calculations after a long distance motorway drive.
Participant #1, #2, and #3 preferred more feedback, however
the other consensus was that it should come more often in the
start and decrease in number as the drive went on. Participant
#6 commented that “I had to drive for a while before getting
a message.”, while he was driving in a rural area without any
stops. Participant #8 expressed that the feedback should come
as the driver did something irresponsibly. Participant #9 men-
tioned that the feedback an “appropriate amount of times, not
annoying like GPS that spams you. It was alright.”.



Misconceptions
Despite most participants driving very carefully, either due to
driving a new car or the feeling of being watched, some of
them had noteworthy segments on their after drive map. They
were either clueless about the segment or thought that they
had rested for too long on the gear stick. These segments were
often caused by subconscious secondary task usage. When
shown the map and thinking back they remembered the seg-
ment and were surprised as to how much they subconsciously
used these controls. Participant #8 referred to the system as

“creepy” due to how precise it was at detecting his radio usage.
Also participant #7 and #10 were surprised regarding their
secondary task behaviour, where participant #7 mentioned that

“Apparently I touched the radio more than I realised.”. There
were however deviations as participant #5 and #7 used their
hands for communication purposes.

Gamification
The concept of gamifying the system was suggested by mul-
tiple participants. Getting a low score felt like a challenge,
thus encouraging better driving behaviour in an attempt to
increase the score. It was further suggested that these scores
were saved on a high score, allowing it to be compared among
friends, for each city, and for the entire country. The opposite
effect was also observed, as some tried to lower their scores as
well to understand the boundaries of the system. The system
observed this behaviour and scored them accordingly, and the
participants agreed on the systems predictions.

Participant #1, #2, #3, #6, and #7 said that it felt like a game,
where the score motivated them to improve. Curiosity created
an interest in finding out how to improve, by experimenting
with different hand positions and styles. Participant #2 got a
score of 91 on a segment and said “Only 91? I can do better
than that!”, which sparked an interest to improve. Participant
#3 mentioned that he “Wanted to get to 100, and see how I
am supposed to drive, to learn what the best way of driving
is.”. Participant #6 showed explorative behaviour by stating
that “then I got the score of 97. After that I wanted to see if
I could get a lower scores to test the system.”. Participant #5
mentioned that she did not try anything to improve the score,
however she was still affected, as she tried to keep up with her
previous score.

Alternative Implementations
There were several suggestions for future uses of the system,
with the most common being assistance to newly educated
drivers. The system could help reinforce a good hand position,
even after leaving the driving school. The after drive map
could further be used as parental monitoring, helping parents
guide their children despite not being in the car. Participant
#2, #4, #5, #7, #8, and #9 all suggested implementing the
system into newly educated drivers’ cars. Participant #5 had
personal experience with being reckless as a newly educated
driver, saying that “At this point, I was a very irresponsible
driver, but didn’t really know it.”.

DOSAF could also be implemented in commercial vehicles
as a safety measure. These vehicles transports passengers or
large loads, and are therefore, arguably, more dangerous in
case of emergencies. Participant #1 and #10 both saw potential

in commercial vehicles e.g. trucks and busses. Participant #10
expressed that “Depending on their scores you can have an
evaluation discussion with their boss, if they drive irresponsi-
bly.”.

DISCUSSION
The results showed that despite the participants were focusing
on the road, most of them had segments in which they were
deemed inattentive due to secondary task usage and didn’t
understand why. Subconsciously the participants were manip-
ulating the secondary tasks. When shown these segments, the
participants recalled their interactions and agreed on the sys-
tems predictions. This shows that the system is able to detect
their actions and notify the driver about their inattentiveness,
thus increasing the overall driving safety.

One of the suggested concepts among our results, was the
concept of gamification. Numerous participants mentioned
this as a way to engage them further into the driving task.
Progress tracking, achievements, and high score comparison
were suggested by the participants to increase their engage-
ment. Schroeter et. al. [25] utilised gamification principles and
augmented reality to increase engagement and warn drivers
of dangerous situations. In addition, Steinberger et al. [27]
looked into using gamification principles to increase engage-
ment of drivers, to reduce boredom and exposure to potential
distractions such as phone usage. All of these can result in
speeding and reckless driving. Their evaluation showed that
gamification principles can increase driver engagement, by
providing progress and a sense of accomplishment in addition
to making the task more enjoyable. In accordance with their
results and findings, similar results were found for this study.
By providing a score of their performance, some of the partic-
ipants intuitively wanted to improve on this score. The way
to improve the score is to drive more carefully and be more
attentive on the road, which in term increases road safety.

In the related work section we analysed various researched
methods of providing feedback in an automotive context. Vi-
sual, audio, and vibration were the most popular choices, due
to the speed of perception and the low cognitive strain these
causes. DOSAF uses a combination of visual and audio to en-
sure that the feedback is perceived by the drivers. Despite the
feedback content being delivered through multiple channels
that can distract the driver, the feedback is only presented at
appropriate times. This complies with the findings of Salvucci
and Taatgen [24] that the cognitive requirements should be
kept at a minimum, to avoid affecting the overall driving per-
formance. As such DOSAF only provides feedback when the
car is holding still, and have driven at least 600 meters since
the last given feedback. This accommodates Sundareswara
et al. [28] finding that dynamically activated feedback is pre-
ferred, and keeping the annoyance low with fewer messages.
In addition, the driving instructors at Trend Driving also recom-
mended that the feedback is kept at a minimum. Consequently
both the participants and the driving instructor expressed that
the evaluated system provided an “appropriate amount” of
feedback, that did not interfere negatively on their driving
performance. In regards to the provided score, both the partic-



ipants and driving instructor agreed with the scores calculated
by the system.

NHTSA’s [19] guidelines about hand positions on the steering
wheel matches the ones provided by the driving instructor in
the pilot study. These are however rarely used, as reported
by [12]. The research as to why the steering wheel is not
held properly is not clear, however there are two theories as to
why. Thomas and Walton [33, 31] conclude that the drivers
perception of risk, along with habits, comfort, and fatigue
determine their positioning. Secondly De Waard et al. [5]
found that it might be closer related to mental workload rather
than perceived risk that determine hand positioning. Based on
their research, we observed certain patterns during the eval-
uation. If the participant rated themselves more experienced
and comfortable in a car, they were more prone to holding the
steering wheel lower or only use one hand while driving. This
behaviour could be explained by both of these theories.

The system could be implemented as a safety feature in semi-
autonomous cars. Previous studies proved that despite the
semi-autonomous car warning people about being aware when
using the automatic driving feature, people still have tenden-
cies to check their phones, user their computers, and generally
turn their head away from the road. In these situations, the
system would be able to detect their activities and warn them
about it.

While the current system provides both visual and audio feed-
back, there are several ways of improving it. The current
iteration of feedback could be improved by making more dy-
namic and instructive feedback, by giving concrete feedback
on how to improve their driving. An example could be “You
should avoid using the radio too much”. This was suggested
by both the driving instructor and some of the participants.

During the interview, the driving instructor evaluated our rules
on which the score is calculated. Although he found them
appropriate, he mentioned that a more strict hands-on-the-
wheel policy could be beneficial. A stricter policy could more
accurately reflect the driving situation to better match the
decrease in control. This is a valid point, and based on the
comments from the participants, it would be a viable option
for newly educated drivers. The feature could be implemented
by lowering the score, whenever the driver’s hands are on the
lower part of the steering wheel or when driving with one
hand. This would reinforce the driving behaviour learnt by the
driving academy.

As statistics have shown, car accidents are more prone to hap-
pen in the city than on the motorway or in rural areas [32].
The knowledge of the car’s current location could be utilised
to affect the strictness of the system. This would allow the
driver a more relaxed driving style during the less straining en-
vironments, while remaining strict during the more demanding
conditions.

With its simplistic visual design, DOSAF can be expanded into
an overlay feature for a GPS application. This would allow
the driver to receive concise feedback about their performance,
while still being able to follow the planned route.

DOSAF current iteration only handles distractions coming
from the vehicle’s dashboard. The recognition algorithm could
be further trained to recognise phone usage. Unlike controlling
a vehicle, using a phone always results in the driver’s hand
facing upwards towards their face. This makes phone usage a
distinct hand gestures, easily recognisable by the algorithm, as
it already considers palm and finger directions when making
its predictions.

CONCLUSION
As cars have evolved and become easier and more comfort-
able to use through the implementation of various assistive
systems, some drivers have adopted a more relaxed driving
style. Steering with just one hand results in less control over
the car, which can be dangerous should sudden situations oc-
cur. In this experimental study, we have explored feedback
with the purpose of improving the drivers safety. A system
capable of observing, recognising, and rating a driver’s hand
positions in accordance to rules formulated by us and vali-
dated by a driving instructor has been developed. Based on the
system’s observations, a calculated score reflecting the driver’s
performance and an associated message is provided.

Our design of combining a visual score with an audio descrip-
tion of the score and only displaying feedback when the car is
at a stop, was well-received by the participants and the driving
instructor. The participants liked the idea and found the feed-
back assuring, however concrete feedback on how to improve
their driving was sought-after. The after-drive feedback is fur-
ther able to inform the driver of any subconscious secondary
task usage. Despite the feedback being appreciated by the
participants, we believe that further research is required within
the field of feedback while driving.

FUTURE WORK
The results from the driving academy evaluation indicate an
educative aspect behind the system, in which safer behaviour
and habits could arise. Gamification principles to increase
engagement in the driving task could avoid interaction with
other devices. A combination with multiple sources of infor-
mation within the car, e.g. eye detection and posture, could
improve the recognition precision and allow for a wide variety
of additional actions to detect, such as proper mirror checking
before turning and phone usage.
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