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Abstract

This thesis aims to evaluate the use of Nonlinear Model Predictive Control (NMPC) as a
control concept for production planning and balance control, for a fictitious combined
power and district heating production portfolio, in a component-based modeling con-
text. A comparison to Linear Model Predictive Control (LMPC) is used as basis for this
evaluation. The desire to use NMPC is due to the desire of eliminating the need for lin-
earization; potentially loosing valuable information and minimizing the need for manual
preconditioning labor.

An optimization-friendly first-principle nonlinear model of the production portfolio
and consumers is constructed in Modelica, heavily relying on the component-based
capabilities of the language. This model is linearized; thus both a nonlinear model usable
in NMPC and a linear model usable in LMPC is obtained. Through simulations, the linear
model was found comparable to the nonlinear model – but with deviations when using
the accumulator included in the production portfolio.

The MPC control scheme is designed around an economical cost function, derived
through basic economical considerations of the use of production units and a simplified
power market model. The resulting optimal control problem is shared between both
NMPC and LMPC; the only difference being the model employed in the constraints
enforcing system dynamics. To provide full state information an Extended Kalman Filter
(EKF) is designed, under the assumption that consumer states are not measurable.

The optimal control problems are solved using JModelica.org, a framework that
allows optimization directly on Modelica models. Thus, a simulation framework is de-
signed and implemented on top of JModelica.org, allowing for simulations with both
NMPC and LMPC.

Simulation studies show, that NMPC uses the accumulator more actively. The ex-
tensive use of the accumulator by NMPC, is performance-wise better, considering long
simulations with historical power prices and ambient temperatures. The method of using
first-principle nonlinear models directly in MPC is thus, at least on a conceptual level,
highly encouraged.

Publication of this report’s contents without permission from the author is prohibited.
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Abbreviations

AMR Automatic Meter Reading

AST Abstract Syntax Tree

CHP Combined Heat and Power

COP Coefficient of Performance

DAE Differential Algebraic Equation

DOP Dynamic Optimization Problem

EDP Economic Dispatch Problem

EKF Extended Kalman Filter

FMI Functional Mockup Interface

FMU Functional Mockup Unit

HP Heat Pump

IDE Integrated Development Environment

LMPC Linear Model Predictive Control

LQR Linear Quadratic Regulator

MPC Model Predictive Control

MSL Modelica Standard Library

NLP Nonlinear Program

NMPC Nonlinear Model Predictive Control

OCP Optimal Control Problem

ODE Ordinary Differential Equation

QoS Quality-of-Service

UCP Unit Commitment Problem
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Notation

The following notation is used throughout this thesis:

ẋ Time derivatives are denoted with an ’over-dot’.

sgn(x) The sign operator; -1 for x negative, and 1 for x positive.

E(x) The expectation operator.

x Vectors are denoted in lower-case bold.

A Matrices are denoted in upper-case bold.

Also, the convention for denoting heat flows in MJ/s and electrical power in MW is used.
Electrical power will often just be refered to as power.
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Introduction 1
Power production in Denmark is increasingly stochastic, especially since more and more
energy is produced by wind turbines and photovoltaics. At the time of writing, wind
turbines make up for more than 40 % of the total energy production in Denmark, with
the goal of hitting 50 % by 2020[1]. But even more so, for a total of 1460 hours in of
2015, wind turbines in Western Denmark (Jutland and Funen) delivered more energy
than what was consumed in Western Denmark[1]. The production surplus can in many
cases be exported to bordering countries and thus still provide an income – but even so,
the energy produced by renewable sources is reaching a critical mass, introducing effects
such as negative electricity prices; meaning that suppliers have to pay to get rid of the
electricity they produce. Instead of simply getting rid of this excess power, it would be
beneficial to use it, to avoid expenses and wasting resources.

In Denmark, district heating is responsible for supplying heat to approximately 65 %
of all households[2]. One use of the excess electricity, would be to convert it to district
heating. Conversion to district heating is beneficial for one reason in particular; storage.
Even if at the time of conversion, heat is not in demand, it is possible with the current
district heating infrastructure to store it in accumulator tanks for later use. The problem
with this method, is, that energy is converted several times, before delivered as heat to
the consumer, resulting in undesirable losses; e.g. from thermal energy, to mechanical
energy, to electrical energy and finally back to thermal energy again. Converting excess
electricity to district heating is therefor not the ideal solution, but combined with new
modes of operation (e.g. turbine bypass) in the production of heat and power, it can
provide desirable added flexibility.

The increasingly stochastic electricity production is imposing new requirements to
production planning and balance control, where new control strategies are required to
match the change in dynamics. Production planning involves distributing load amongst
units in a production portfolio. This is often done, by the use of static optimization,
solving what is commonly known as the Unit Commitment Problem (UCP). The solution
to a UCP determines the active subset of portfolio units and a load plan. Often the UCP is
formulated as minimizing/maximizing an economical cost function and is often solved on
a daily or weekly basis. The load plan is not guaranteed to hold, due to prediction errors,
disturbances and fluctuations in production – hence, a balance controller is introduced,
regulating load to balance production and consumption.[3]

In [4], short-term production planning is considered for a district heating produc-
tion portfolio. The approach taken divides the problem into two separate optimization
problems; the UCP and the Economic Dispatch Problem (EDP). In [4], the solution to the
UCP is used to determine whether a unit is online or not, and as such, it is modeled by
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2 Chapter 1. Introduction

mixed-integer linear models and solved by standard mixed-integer solvers. Determining
the load for the online units is handled by solving the EDP. The solution to the EDP
includes dynamic optimizing of nonlinear first principle models, and determines the
load and different setpoints for the individual units. Furthermore, in [5], the method
is suggested to be extended to having the EDP solved in a loop, utilizing Model Pre-
dictive Control (MPC). It is concluded that this would further improve on the obtained
results[5]. In [3], a balance controller for a portfolio of electricity producing units is
also designed using an MPC scheme, which was found to give significant improvements
over the standard industry approach of distributed PID controllers; both in terms of
minimizing cost and rejecting disturbances[3].

The thermo-hydraulic models necessary to describe both a power production and
district heating system are inherently nonlinear. The nonlinearities stem from several
different phenomena. These phenomena are for example:

• Transmission lines feature a quadratic relation between flow and pressure.

• Multiplication of conjugate variables in energy balances 1.

• The general mathematical description of fluid properties.

The majority of literature around controller design is based upon linear systems. Thus,
when a control law is desired for a system including nonlinearities, the nonlinearities
are often handled by linearizing the system. The linearization will be around a suitable
operating point, under the assumption that small perturbations around this operating
point are adequately described by linear models. This approach is however tedious,
especially when one operating point is not enough. It is highly desirable, to be able to
work directly with the physical models – including their nonlinearities – to avoid both
the loss of information and the tedious work, credited to linearization.

Using MPC as a control concept, it is to some extent possible to work directly with
the nonlinear physical models. In general, one distinguishes between Linear Model Pre-
dictive Control (LMPC) and Nonlinear Model Predictive Control (NMPC). For the case of
LMPC, the system model and all constraints are linear and the Optimal Control Problem
(OCP) can be cast as a quadratic problem. This has the benefit of guaranteed efficient
solutions and is also the most common approach. For the case of NMPC, the OCP can be
cast as an Nonlinear Program (NLP); and as such, the system model and constraints are
no longer required to be linear, making it possible to avoid linearization and the resulting
loss of information. An NLP is however computationally more demanding to solve and
with the added risk for an optimizer, of not finding a feasible solution.[7]

1 Conjugate variables are sets of intensive (X ) and extensive variables (x), where the product, Xdx , is
the change in internal energy of a system. These products arise in energy conservation in all domains, and
is thus not specific to thermodynamics or hydraulics, as is the case in this thesis. An intensive variable, is a
material property which is independent of the amount of material; e.g. a concentration or a temperature.
An extensive variable, is a material property which is dependent on the amount of material; e.g. mass or
energy.[6]
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1.1 Problem statement

This thesis is done in collaboration with the danish company Added Values P/S. At
Added Values P/S, dynamic modeling and control of power and district heating produc-
tion portfolios is an essential part of their work. Added Values P/S are interested in
investigating, whether they can minimize manual preconditioning labor; one example
hereof would be linearization and the overhead it includes. An optimal approach, for
Added Values P/S to provide a complete modeling and control concept, would include
reusing models of complete production units, in a combined system model. An MPC
would then be added, requiring no changes to the model, for it to be used in an OCP.
Thus, Added Values P/S are very much interested in evaluating the use of NMPC together
with component-based modeling.

The aim of this thesis, is to evaluate the use of NMPC as a control concept, when
considering production planning and balance control, for a given combined power
and district heating production portfolio, in a component-based modeling context.

1.2 Production portfolio

This thesis will consider a fictitious production portfolio. For inspiration, the portfolio of
Sønderborg Fjernvarme is used. Sønderborg Fjernvarme is a district heating supplier in
the southern part of Jutland. At the time of writing, Sønderborg Fjernvarme is responsible
for delivering district heating to its approximately 10 000 customers. In 2016, 253 GW h
heat was sold to the consumers and 28 GW h electricity was sold to the grid. This gives
an average heat output of approximately 28 MJ/s and an average power output of 3 MW
– not considering losses. The heated water is supplied at a temperature of 75 ◦C to 82 ◦C
and the pressure difference across the consumer is maintained at 0.3 bar to 0.6 bar.[8]

Sønderborg Fjernvarme is comprised of several distributed production units, includ-
ing a Combined Heat and Power (CHP) Waste-to-Energy plant responsible for 49 % of
the heat production and almost all the power production. The secondary production unit
delivering 38 % of the heat, is a plant fueled by biomass and utilizing geothermal heat
as a reservoir for four absorption Heat Pumps (HPs). The last 13 % is from peak load
boilers (fueled by gas and oil) and from a solar heating plant. An accumulator tank is
also present in the portfolio, allowing excess heated water to be stored and supplied to
consumers at a later point in time.[8]

Just as the Sønderborg Fjernvarme portfolio, the portfolio in this thesis will include a
CHP. Instead of the secondary biomass and absorption HP plant, this thesis will include a
compression HP, driven by electrical energy, in the portfolio. This inclusion is interesting,
as it will allow power, produced from the CHP and/or bought, to be converted into heat
instead. This will increase the flexibility of the portfolio, which will allow it to adapt to
the fluctuating electricity prices. A peak load boiler is also considered, fueled by e.g. oil,
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as well as an accumulator tank. The production portfolio is depicted in Figure 1.1. The
sizing and parameterization of the individual units will be done, to approximately match
the scale of the production at Sønderborg Fjernvarme, but with some design freedom.

Figure 1.1: (1) CHP, (2) peak load boiler, (3) compression HP, (4) accumulator
tank and (5) consumers.

1.3 Scope and approach

This thesis will focus on evaluating the use of NMPC for a combined production planning
and balance controller for the fictitious production portfolio described in Section 1.2.
Specifically, how first principle nonlinear models can be used directly in the optimization
part of MPC, eliminating linearization. To be able to evaluate the performance of NMPC,
a comparison to LMPC will be made.

The work of this thesis will include:

• Building a nonlinear model of the production portfolio.

• Designing both an NMPC and a comparable LMPC control concept.

• Evaluation; including the design method and the performance of the two con-
trollers.

Production planning and balance control is complex, including among others: regulations,
taxation, pricing heat production and trading on the power market. These elements will,
in this thesis, be greatly simplified, as the focus is purely conceptual. The following
simplifications have been made:

Pricing heat production
Cost of running the CHP and peak load boiler will be a fixed price pr. MW h. Cost
of running the compression HP will be based entirely on the selling price of power.

Power trading
Power prices will be fixed, based on the ELSPOT day-ahead market – but power
can be traded at all times.
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This thesis will also not include scheduling units as online or offline; it will assume all
productions units to be running all the time, as if the UCP was already solved. As such,
the production planning part is reduced to load distribution; and as such, focus is on the
EDP.

The specific design approach taken in this thesis, will draw on the approach taken in
[4]. In [4], the EDP is solved using a particular set of tools. The object-oriented modeling
language, Modelica, is used to create first principle based models of the district heating
production portfolio. These models are then used, with no modifications, in solving the
EDP, by employing JModelica.org. JModelica.org is an open source Modelica platform,
that handles both modeling, simulation and optimization. The optimization part is key
here, as it allows for using Modelica models directly in a optimization problem, posed
using language constructs added on top of the standard Modelica language. This is an
interesting approach for Added Values P/S, as they already use Modelica.

Thus, the same method will be applied in this thesis; using Modelica and JModel-
ica.org to undertake the modeling and optimization on the nonlinear models – and as
such, a major part of this thesis is therefor also an evaluation of this specific approach
and choice of tools.





Methods 2
The chapter will first account for modeling using the Modelica language and the benefits
that stem from acausal component-based modeling. Then, optimal control considering
nonlinear models is introduced; including the underlying principles in how an optimal
control problem is solved. With the introduction of optimal control, MPC is accounted
for and the chapter will then move on to introduce JModelica.org and how it can be used
to solve optimization problems involving Modelica models directly.

2.1 Modelica

The classical approach to modeling dynamic systems, is causal block-oriented mod-
eling[9]. Causal block-oriented modeling deals with Ordinary Differential Equations
(ODEs), to which efficient numerical solutions are available[9]. A more modern approach
is that of acausal modeling. Acausal modeling allows for posing models, by declarative
equations, without the overhead of having to reformulate the equations, to adhere to a
certain signal path.

Acausal modeling is historically very domain-specific, e.g. SPICE which only deals
with modeling of electrical circuits[9]. However, system modeling in general also includes
cross-overs between domains, and thus a holistic approach to modeling is desired. One
example is that of a car; here one needs to deal with both mechanics, thermodynamics,
electronics etc. Another is that of a district heating system, which for instance deals with
both thermodynamics, fluid dynamics and power system dynamics.

Modelica is a general purpose modeling language for acausal modeling[10]. The
Modelica language allows for multi-domain modeling with a focus on modularity by
being object-oriented. Modelica deals with Differential Algebraic Equations (DAEs) in-
stead of ODEs, but also allows for the formulation of discrete equations, such that hybrid
systems can be modeled. The Modelica language is open-source and developed by the
Modelica Association[10].

One disadvantage to causal modeling, lies in the complexity, which arises in large
hierarchical models. To allow for efficient simulation using numerical methods, a signifi-
cant amount of preprocessing is required[9]. This is however handled behind the scenes
by the chosen Modelica compiler, and as such it does not result in extra work for the
modeler.

7



8 Chapter 2. Methods

This project will employ Modelica, to construct a model of the district heating pro-
duction portfolio. The model will rely heavily on the object-oriented approach, to allow
for an iterative design procedure. For developing the Modelica models for this project,
Dymola has been chosen as the Integrated Development Environment (IDE). Dymola
is a proprietary tool, including a commercial Modelica compiler. Open alternatives also
exist. It is for example possible to rely solely on the JModelica.org suite of tools – this
does however not feature a graphical editor for constructing the Modelica models, which
is a valuable tool, dealing with large models.
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2.2 Optimal control

Optimal control deals with the formulation of control laws, based on the solution to
optimization problems. One concept of optimal control, is that of trajectory optimization.
Trajectory optimization seeks to find an optimal trajectory for some dynamical system;
whether that be by minimizing control action, minimizing the final time of the trajectory
or perhaps maximizing profit. A general trajectory optimization problem in continuous
time can be formulated as:

minimize
x ∗, u∗

J(x , u) =

∫ t f

t0

g(t, x , u) dt (2.1)

subject to:

ẋ = f (t, x , u), x min ≤ x ≤ x max, umin ≤ u ≤ umax

Here g is some function that maps from states, x ∈ Rn, and inputs, u ∈ Rm, to R. The
dynamics of the system are given by f (possibly nonlinear), as the optimal solution has
to confine itself to what is physically possible. Furthermore, constraints can optionally be
posed on states and inputs, but also on boundary conditions; e.g. on the final time or the
value of a state to the final time – not all types of constraints are shown in Equation (2.1).

There are several approaches to solving such an OCP, but two approaches are worth
mentioning, as they scale well for high-dimensional nonlinear systems with constraints;
one is by indirect methods the other is by direct methods. A direct method minimizes the
objective function, by constructing a sequence of points[11]:

(x 2, u1), (x 3, u2), ..., (x ∗, u∗)

Such that the following typically holds:

J(x 2, u1)> J(x 3, u2)> J(x ∗, u∗)

The direct method does this, by transcribing the above infinite dimensional optimization
problem (infinite because it is continuous), to a finite dimensional NLP – effectively
discretizing the continuous problem to a discrete problem. The NLP is then solvable by
a wide-range of available solvers.[11]

An indirect method on the other hand, attempts to find a root for the necessary
condition:

∇J(x , u) = 0 (2.2)

An indirect method must therefore compute the slope, ∇J , and then decide whether it
is sufficiently close to zero. This optimality condition, together with the problem itself is
then transcribed to a NLP and then solved. The distinction between the two, can roughly
be boiled down to:
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• Indirect: "optimize, then transcribe"

• Direct: "transcribe, then optimize"

Both methods feature transcription, but they differ in how they determine an optimal so-
lution. Indirect methods can also be numerically unstable and difficult to both implement
and initialize[11]. For these reasons, direct methods are preferable. In JModelica.org,
optimization is handled by an implementation of a direct method and therefor these will
be further accounted for.

2.2.1 Transcription

The solution to an optimization problem such as Equation (2.1), is by a direct method, a
two-step procedure. First, the continuous OCP is transcribed into a NLP. The transcription
is basically a discretization, where the problem is sampled such that a finite dimensional
problem arises. By transcribing the problem:

• Decision variables change from vector function into real numbers.

• Differental equations change to algebraic equations.

The methods for transcribing an infinite dimensional optimization problem, as the one
in Equation (2.1), can be divided into two classes. Shooting methods and simultaneous
methods. The difference lies in how the system dynamics are enforced. Shooting methods
use a simulation, to explicitly enforce the dynamics and a constraint in the resulting NLP
is that the endpoints for two consecutive simulations touch; giving rise to the notion
of defect constraints. The simultaneous methods enforce the dynamics only at a series
of points along the trajectories and the trajectories are then approximated as piece-
wise polynomial. A constraint in the resulting NLP is thus, that the dynamics at these
specific points match the actual dynamics. The two methods are conceptually visualized
in Figure 2.1.[9]

Figure 2.1: (Multiple) shooting method on the left. Simultaneous method on the
right. For shooting methods, the dynamics are enforced by a simulation. For

simultaneous methods, the problem is approximated as piece-wise polynomial, with
the dynamics enforced at specific collocation points.
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The transcription method used in JModelica.org is a simultaneous method, also known
as a collocation method. But before diving into the specific method in JModelica.org, a
basic example using a simple simultaneous transcription method is considered, to grasp
the underlying concept.

Generally, for simultaneous methods, the problem is first sampled at N grid points:

x k = x (tk)

uk = u(tk)
⇒

t → [t0, t1, ..., tN ]

x (t) → [x 0, x 1, ..., x N ]

u(t) → [u0, u1, ..., uN ]

(2.3)

Now for a very basic approach, the control action and the dynamics can be estimated to
be linear between the samples. This is known as collocation using a trapezoid method.
By this, the objective function can be approximated as:

J(x , u) =

∫ t f

t0

g(t, x , u) dt

≈
N−1
∑

k=0

hk

2
( g(tk, x k, uk) + g(tk+1, x k+1, uk+1) ) (2.4)

Where hk is the time between the two consecutive samples; tk+1− tk. This approximation
is illustrated in Figure 2.2.

Figure 2.2: Linear approximation between the selected grid points, gives rise to an
objective function, that can be approximated as the sum of the area of a series of

trapezoids.

The constraints imposed by the dynamics, can be transcribed by:

ẋ = f (t, x , u)⇔ ẋ (t) = f (t, x (t), u(t))

x (tk+1)− x (tk) =

∫ tk+1

tk

f (t, x (t), u(t)) dt (2.5)

x (tk+1) = x (tk) +

∫ tk+1

tk

f (t, x (t), u(t)) dt (2.6)
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Now, employing the same method as for the objective function, the following colloca-
tion constraints are obtained:

x k+1 = x k +
hk

2
( f k+1 + f k) (2.7)

Using the above, an NLP is obtained:

minimize
[x 0,...,x N ], [u0,...,uN ]

N−1
∑

k=0

hk

2
( g(tk, x k, uk) + g(tk+1, x k+1, uk+1) ) (2.8)

subject to:

x k+1 − x k =
hk

2
( f k+1 + f k) (2.9)

x min ≤ x k ≤ x max

umin ≤ uk ≤ umax

This simple example of a transcription method provides the basis of understanding di-
rect collocation in general, which is used in JModelica.org.
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2.3 Direct collocation

This section will account for the method implemented in JModelica.org, to solve optimal
control problems; obtaining an NLP through direct collocation, after which the NLP is
solvable by a wide range of solvers. The basis of this section is [9], which gives a detailed
description of the specific implementation.

The general optimal control problem considered, is given as:

minimize:

∫ t f

t0

L(x (t), y(t), u(t)) dt (2.10)

with respect to:

x : [t0; t f ]→ Rnx , y : [t0; t f ]→ Rny

u : [t0; t f ]→ Rnu

subject to:

ẋ (t) = f (t, x (t), y(t), u(t))

g (t, x (t), y(t), u(t)) = 0

h(t, ẋ (t), y(t), u(t))≤ 0

∀t ∈ [t0; t f ]

The objective function includes the definite integral of the function L; where L maps
from states, outputs and inputs to R. The constraints are comprised of system dynamics,
equality constraints and inequality constraints.

The optimization time horizon, t f − t0, is divided into Ne elements, where hi denotes
the length of the i-th element – and the length, hi, is normalized, such that the sum of
all element lengths is one. Furthermore, a local time, τ, for each element is introduced.
The local time is also normalized, so that it is 0 at t i−1 and 1 at t i. The corresponding
unnormalized time, t̄ i , is then described by:

t̄ i(τ) := t i−1 + hi (t f − t0) τ ∀ τ ∈ [0; 1], ∀ i ∈ [1..Ne] (2.11)
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One
element

ti−1 ti

hi hi+1 hNe

τ

0 1

Figure 2.3: The optimization horizon is divided into Ne elements; each element i
features a normalized length, hi – normalized, such that the sum of all Ne element

lengths is equal 1.

Within element i, a time-dependent system variable z is defined as:

z i = [ẋ i , x i , y i , u i] (2.12)

Where x is the state, y is the output and u is the input. Where in the trapezoid method,
the input and the dynamics were estimated to be linear – they are now estimated as
a polynomial of given degree. The desire is, to estimate the system variable, z, by a
polynomial, which maps from τ to Rnz – where nz , is the number of variables in z. The
polynomial is denoted the collocation polynomial, for that given element.

The collocation polynomials are created, by choosing a number of collocation points,
Nc, for each element – using the collocation points as interpolation points. Consider
collocation point k ∈ [1..Nc], which is located at local time τk, then:

z(τk) = z i,k = [ẋ i,k, x i,k, y i,k, u i,k] (2.13)

Collocation
point

τk τk+1

Figure 2.4: Collocation polynomials are formed on the basis of Nc collocation points
for each element.
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The collocation polynomials are formed as:

x i(τ) =
Nc
∑

k=0

x i,k
¯̀

k(τ) (2.14)

y i(τ) =
Nc
∑

k=1

y i,k `k(τ) (2.15)

u i(τ) =
Nc
∑

k=1

u i,k `k(τ) (2.16)

Where ¯̀
k and `k are Lagrange basis polynomials, defined as:

¯̀
k(τ) :=

Nc
∏

l∈ [0..Nc]\{k}

τ−τl

τk −τl
∀k ∈ [0..Nc] (2.17)

`k(τ) :=
Nc
∏

l∈ [1..Nc]\{k}

τ−τl

τk −τl
∀k ∈ [1..Nc] (2.18)

There is one subtle difference, for the collocation polynomial for x i(τ). Since the state
has to be continuous on the interval [t0; t f ], an extra collocation point is added to each
element, at τ = 0. This will ensure continuity of x , as the start collocation point of an
element will be situated at the same place as the end collocation point for the previous
element. This is visible in the initialization of k in the summation in Equation (2.14).

Since the time is normalized, the basis polynomials are identical for all elements.
Furthermore, the polynomials satisfy the important property that:

`k(τ j) =

(

1 if j = k

0 if j 6= k
(2.19)

This property makes sure, that exactly at the collocation points, the value of the col-
location polynomial is equal to the respective system variable; state, output or input.
Consider the following:

x i(τk) =
Nc
∑

k=0

x i,k
¯̀

k(τk) (2.20)

x i(τk) = x i,0
¯̀

0(τk) + x i,1
¯̀

1(τk) + ...+ x i,Nc
¯̀

Nc
(τk) (2.21)

Now, as an example, let τk = τ0:

x i(τ0) = x i,0
¯̀

0(τ0) + x i,1
¯̀

1(τ0) + ...+ x i,Nc
¯̀

Nc
(τ0) (2.22)

x i(τ0) = x i,0 · 1+ x i,1 · 0+ ...+ x i,Nc
· 0= x i,0 (2.23)
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Equation (2.14) through Equation (2.16) does not cover all of z, as the state deriva-
tive, ẋ , has not been given an explicit collocation polynomial. This can be obtained, by
differentiating the collocation polynomial for x i with respect to time:

ẋ i(τ) =
dx i

d t̄ i
(τ)

chain rule
=

dτ
d t̄ i

dx i

dτ
(2.24)

From the definition of t̄ i , τ can be isolated and differentiated with respect to t̄ i:

τ=
t̄ i

hi (t f − t0)
− t i−0 ⇒ dτ

d t̄ i
=

1
hi (t f − t0)

(2.25)

And differentiating the collocation polynomial for the state, x i , with respect to τ, gives:

dx i

dτ
=

Nc
∑

k=0

x i,k
d¯̀

k(τ)
dτ

(As x i,k is constant) (2.26)

And thus:

ẋ i(τ) =
1

hi (t f − t0)

Nc
∑

k=0

x i,k
d¯̀

k(τ)
dτ

(2.27)
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2.3.1 Placement of collocation points

The above account of the underlying math of the collocation method, does not include
how collocation points are placed. A number of methods are available, to decide upon
the location of the collocation points. The most common being Radau quadrature and
Legendre-Gauss. Both of these are supported in JModelica.org, with Radau being the
default. By using Radau, the collocation points within an element are placed at the
approximate local times, τ, given by Table 2.1. One collocation point is always placed
at beginning of the element; τ1 = 0. Leaving Nc − 1 free collocation points. These are
placed at the roots of the following polynomial:

PNc−1(τ) + PNc
(τ)

1+τ
(2.28)

Where P(τ) are Legendre polynomials – the first few given as:

P0(τ) = 1, P1(τ) = τ (2.29)

P2(τ) =
1
2
(3τ2 − 1), P3(τ) =

1
2
(5τ3 − 3τ) (2.30)

P4(τ) =
1
8
(35τ4 − 30τ2 + 3) (2.31)

By increasing the number of collocation points, the accuracy of the transcription increases;
but so does the dimension of the resulting NLP. The number of R optimization variables,
nZ , is determined as:

nZ = (1+ Ne Nc) nz + (Ne − 1) nx (2.32)

Where Ne is the number of elements, Nc the number of collocation points, nz the number
of system variables and nx the number of states[9].

Nc τ1 τ2 τ3 τ4

2 0 2/3
3 0 0.35 0.84

4 0 0.22 0.59 0.91

Table 2.1: Approximate placement of collocation points using Radau quadrature; at
local times, τ, within a single element.
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2.4 Model Predictive Control

Many control problems stem from the desire to design stabilizing feedback that minimizes
a performance criterium and does not violate given constraints. A closed solution to
such a problem is often not obtainable – even without considering constraints[7]. One
approach is solving an open-loop OCP to a given state, applying only a part of the optimal
control input to the system, and then repeating this process. This control strategy is what
defines MPC. Thus, MPC ties up open-loop optimal control in a loop consisting of the
following steps:

• Obtain state or state estimate, x k

• Find control input, uk, by solving an OCP

• Apply control input to process

The OCP is identical to Equation (2.10), but with a shifting optimization horizon. That
is, t0 and t f , which define the start and end of the definite integral, change with the
current time, t. Generally, the notion of a prediction horizon, tH , is introduced. The
prediction horizon determines, how far out in the future, the process behavior is to be
predicted. Thus, at time tk, the optimal control problem is considered from t0 = tk to
t f = tk + tH . The concept of MPC and the shifting optimization horizon is depicted in
Figure 2.5.

As MPC is a discrete control method, it features a sample time, ts = tk − tk−1.
During a sample period, the control input, uk, is often held constant. As the solution
to the OCP is an optimal input trajectory, u(t), one has to decide upon how to pick uk.
This can however be handled, by specifying in the OCP, that u(t) should be piecewise
constant, only changing at specific time instants. The optimal control input will thus be
a discrete input sequence u = {u1, u2, ..., uN}. A common approach, is to specify u(t) to
be piecewise constant, only changing at time instant that correspond to the MPC sample
period of ts; then uk is chosen as u1.

The algorithm is identical for both NMPC and LMPC – the only difference is whether
the models and constraints are nonlinear or linear.

Figure 2.5: The concept of MPC, graphically represented by the fictive state, x, and
input signal, u.
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2.5 State estimation

Generally, it can not be expected, in a control application, that all states are measurable.
Therefore, state estimation is almost always required for a successful design. In this
particular case of production portfolio control, one reason to apply state estimation is
due to the assumption that not everything is measurable at the consumers, even with
the introduction of Automatic Meter Reading (AMR) for both power, heating and water
supply. Several options for state estimation are available, but a popular choice in control
applications is the Kalman Filter.

Given a discrete-time linear system with state and measurement noise:

x k+1 = Ax k + Buk + w k ∧ w k ∼N (0,Q) (2.33)

yk = C x k + Duk + v k ∧ v k ∼N (0,R) (2.34)

Where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m; letting n be the number of states, m
the number of inputs and p the number of outputs. The matrices, Q and R, are covariance
matrices. The Kalman Filter finds a state estimate, x̂ k, that minimizes the mean square
estimation error:

minimize
x̂ k

E[(x k − x̂ k)
T M (x k − x̂ k)] ∧ M > 0 (2.35)

The following notation is used, where Y k denotes all, including the k-th, measurements:

x̂ k|k ¬ E[x k|Y k] (2.36)

x̂ k|k−1 ¬ E[x k|Y k−1] (2.37)

Pk|k = E[(x k − x̂ k|k)(x k − x̂ k|k)T ] (2.38)

Pk|k−1 = E[(x k − x̂ k|k−1)(x k − x̂ k|k−1)
T ] (2.39)

The Kalman Filter works like an observer:

x̂ k|k−1 = Ax̂ k−1 + Buk (2.40)

ŷk|k−1 = C x̂ k|k−1 + Duk (2.41)

x̂ k|k = x̂ k|k−1 + K k(yk − ŷk|k−1) (2.42)

Where the observer gain, K k, is denoted the Kalman gain.
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The implementation of a Kalman Filter is often done, by splitting it up in two steps;
a time update step and a measurement update step:

Time update:

x̂ k|k−1 = Ax̂ k−1|k + Buk (2.43)

Pk|k−1 = A Pk−1|k AT +Q (2.44)

Measurement update:

ŷk|k−1 = C x̂ k|k−1 + Duk (2.45)

K k = Pk|k−1C T (CPk|k−1C T +R)−1 (2.46)

x̂ k|k = x̂ k|k−1 + K k(yk − ŷk|k−1) (2.47)

Pk|k = (I − K k C)Pk|k−1(I − K k C)T + K k RK T
k (2.48)

As such, the implementation is straight forward, given a linear system – and the design
itself will deal with the choice of appropriate covariance matrices.

However, problems arise when dealing with nonlinear systems; as assumed in this
thesis. One approach could be to linearize the system in question, and use the Kalman Fil-
ter as is. Performance may be acceptable, but it may also happen, that critical information
is lost in the linearization, which will influence the estimation performance.

The Extended Kalman Filter (EKF) can be used for state estimation on nonlinear
systems. The EKF builds upon the linear Kalman Filter with two additions: using the
nonlinear model when possible and linear models where necessary – by employing online
linearization. Thus, for each iteration of the EKF, a new linear system is obtained.

For the EKF, Equation (2.43) in the time update step is replaced by:

x̂ k|k−1 = f (x̂ k|k−1, uk) (2.49)

And Equation (2.45) in the measurement update step is replaced by:

ŷk|k−1 = g (x̂ k|k−1, uk) (2.50)

Where f and g constitute the nonlinear model. The EKF is not optimal in the sense
the linear Kalman Filter is and stability is not guaranteed for the observer – but this
thesis will however consider the EKF for state estimation, given the straight-forward
implementation.
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2.6 JModelica.org

JModelica.org is a tool including functionality for modeling, simulating and optimization,
for large-scale dynamic systems[12]. The most prominent feature being the possibility
of solving Dynamic Optimization Problems (DOPs), involving models written in the
Modelica modeling language. This is done, by utilizing the Modelica language extension,
Optimica. Optimica adds language constructs to Modelica, that allow the formulation
of optimization problems. The functionality of JModelica.org is exposed to the user, via
an API in Python. Relevant parts of the process, from Modelica and Optimica code, to a
solved optimization problem, are depicted in Figure 2.6.

First, the JModelica.org compiler creates an Abstract Syntax Tree (AST), an internal
representation of the Modelica and Optimica code. An AST is a data structure, represent-
ing all language constructs found in the given source files, as a tree – it is an essential
part of any compiler. Using the AST, several steps are taken; including resolving class
inheritance to obtain one flat model and alias elimination to minimize the number of
equations; general symbolic transformations, handled by any Modelica compiler. The
resulting AST is a symbolic representation of the DOP.[12]

This AST is then used, to create a CasADi representation of the DOP. CasADi is
a symbolic framework for algorithmic/automatic differentiation for use in numeric op-
timization; effectively allowing the construction of symbolic expressions that can be
efficiently differentiated. CasADi expressions are created, mapping to the expressions
of the DOP. The steps until now, has effectively mapped Modelica and Optimica code
to CasADi expressions, and the CasADi expressions can now be used to obtain deriva-
tives.[12]

Transcription to an NLP, is now handled by a direct collocation algorithm, working
with the CasADi expressions. The resulting NLP is then numerically solved using an
external solver – with IPOPT being the default – and the result is delivered to the user.[12]

Figure 2.6: From Modelica and Optimica code to a solved optimization problem. The
box outlines what is handled behind the scenes by JModelica.org.
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2.6.1 Functional Mockup Interface

The simulation part of JModelica.org is tightly coupled to the Functional Mockup Inter-
face (FMI). The FMI is a tool independent standard for model exchange and co-simulation
of dynamic models. One particular benefit is that e.g. a Modelica model created using
Dymola, can be easily packaged as an Functional Mockup Unit (FMU) and then used
in different tools, employing this standard. One use case would be to use Dymola and
Modelica purely for modeling, then package the model up as an FMU and use the FMU
in a control design, for e.g. performance verification through simulations on given FMU.

JModelica.org includes a Python API, pyfmi, to handle FMUs; including simulation
and the possibility of extracting linear models.
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The modeling in this thesis is undertaken using the object-oriented modeling language,
Modelica. The object-oriented approach is especially beneficial for a model scenario as
this one, as the combined model includes several sub-models that can be modeled inde-
pendently. By keeping to a fixed set of interfaces, production units can later be changed
for different ones, e.g replacing them with refined models including added dynamics or
interesting nonlinearities worth investigating. This approach is a big incentive, to keep
the models very simple at first and then iteratively expand.

To allow for optimization on nonlinear models, the problem has to be well-posed.
In this case, well-posed is a requirement to the model, as it has to be C2 continuous; first
and second order derivatives are continuous. This requirement stems from the fact, that
JModelica.org employs a gradient-based method, based on Newton’s method, to find a
solution to first order optimality conditions[12].

This requirement raises an issue for the modeling part of the project. Modeling of
the system is done in the Modelica language. The advantages in using Modelica especially
lies in the object-oriented modeling approach with great emphasis on reuse of compo-
nents and the Modelica Standard Library (MSL) with already available components and
interfaces for a wide range of applications. Thus, to model a district heating system in
Modelica, one could use the components of the Fluid Library and Media Library (part
of the MSL) to model the fluid dynamics of water in pipes. This would both lower the
amount of work needed to put up a model, but by using interfaces in the MSL, lock-in to
custom interfaces is avoided, which makes the project much more available for future
work.

The problem is, however, that the MSL does not adhere to the C2-requirement,
eliminating its apparent use in the project. A well-acknowledged third-party library
would be a viable solution to limit the lock- in; however none seem to exist. Thus, basic
fluid components and interfaces have to be constructed for this project, to allow for the
use together with JModelica.org.

Now, other than lock-in to a set project defined components and interfaces, a certain
level of accuracy will also be lost, in terms of how well the model fits reality. This is
also undesirable. Thus, to still have a reality to simulate against, two models will be
considered; a C2 model that is usable in an optimization context and a simulation model.
The simulation model will be modeled using components from the MSL. Due to the
object-oriented nature of Modelica, a certain level of reuse between the two models is
possible (e.g. sharing parameters).

23
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The chapter will focus on describing the C2 model, as this has been the primary
model in the project. Afterwards, the differences between the C2 model and the simula-
tion model will be outlined. Throughout the modeling, it has been attempted to apply
some of the principles of obtaining fast simulation speeds for Modelica models, discussed
in [13]. Among these principles, is avoiding algebraic loops by decoupling through ad-
ditional states; this is sometimes referred to, as employing a staggered grid. Algebraic
loops, formed by interdependent equations, require an iterative solution which is time
expensive[13].
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3.1 Fluid library

A Modelica fluid component library is built, to allow the construction of a model on
which optimization is possible – adhering to the C2 requirement. It is required to model
the behavior of subcooled water flowing in the system and the heating of said water. As
only subcooled water is modeled, it is assumed that the specific heat capacity, cp, and
density, ρ, are constant.

3.1.1 Connectors

The Modelica component library created contains a set of Modelica connectors, defining
the interface. These connectors are to be used on any component that is to take part in
the combined district heating system. The fluid connectors define the three states; p, ṁ
and h at that connector – pressure, mass flow and specific enthalpy, respectively.

Specific enthalpy is defined as:

h¬ cp (T − T0) +
p
ρ
∧ T0 = 273.15 K (3.1)

The above equation does not violate the requirement of C2 models. It would however
violate the C2, if one considers phase change, as this introduces discontinuities. Disre-
garding phase changes limits the case to constant cp and constant ρ. Considering the
case of constant pressure as well1, the equation can be rewritten as:

h= cp (T − T0) + constant (3.2)

The constant relates to the compressibility of the liquid, and is unnecessary considering
energy balances. The notion of enthalpy can thus be simplified to the following very
operational and linear function of temperature:

h(T ) = cp (T − T0) (3.3)

3.1.2 Pipe

The pipe is connected to boundary components using the liquid water connectors – water
flows in and water flows out. The pipe component is modeled as a component with mass
storage and energy storage; it thus potentially has two states, but the pipe is modeled with
a constant volume and the density is assumed constant, thus the mass is also constant.
The equations governing the pipe model are as follows:

m= V ρ (3.4)

U = m cp (T − T0)≈ m hout (3.5)

1Water is approximately incompressible.
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The total energy in the pipe, U , is the mass, m, multiplied with the enthalpy of the water
leaving the pipe. The state equations are given as:

ṁ= ṁin + ṁout (= 0) (3.6)

U̇ = ṁin hin + ṁout hout + Q̇ (3.7)

The change in energy allows for heat added to or removed from the water through Q̇.
Given the linear relationship between U and T , with m and cp constant, T can be used
in the state equations instead of U:

Ṫ m cp = U̇ (3.8)

The pipe, complete with two fluid connectors and a heat port, is depicted in Figure 3.1
with the icon representation in Modelica.

Figure 3.1: The pipe model’s graphical representation.

3.1.3 Valve

A simple valve with a linear opening characteristic is modeled as a static component,
connected to boundary components using the liquid water connectors. The valve behavior
is given by the following equations:

ṁ= u
Æ

k |∆p| sgn(∆p) (3.9)

Where the valve opening, u, is in the interval [0; 1], k is given as:

k =
ṁ2

nominal

u2
nominal ∆pnominal

(3.10)

The pressure drop is given as the pressure difference between the two connectors:

∆p = pin − pout (3.11)

As the valve represents an isenthalpic process, there is no change in energy and thus:

hin = hout (3.12)

The valve, complete with two fluid connectors and an opening signal, is depicted in
Figure 3.2.

Figure 3.2: The valve model’s icon representation in Modelica.
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3.1.4 Pump

A simple pump is modeled as a static ideal component and is governed by the following
equations:

hout = hin (3.13)

ṁout = −ṁin = ṁset (3.14)

Where ṁset is an input to the pump. The pump, complete with two fluid connectors and
a mass flow setpoint signal, is depicted in Figure 3.3.

Figure 3.3: The pump model’s icon representation in Modelica.

3.1.5 Sources and sinks

To allow for non-cyclic simulation experiments, a set of boundary conditions in the form
of source/sink components have been created. These components have a single liquid
water connector with two of the states fixed. Specifically, a mass flow boundary and a
pressure boundary is constructed. The mass flow boundary has the mass flow and the
outlet temperature (and thus enthalpy) fixed. The pressure boundary has the pressure
and the outlet temperature fixed. The icon representation is depicted in Figure 3.4.

Figure 3.4: The graphical representation of a source or sink model.
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3.2 Consumer

Each consumer is modeled as a house with floor heating. The floor heating is supplied
with hot water from the district heating system. Heat is then transferred from the floor
heating pipes to the floor mass itself and from the floor to the surrounding air. The
consumer has a variable desired room temperature. To be able to control the temperature
to reach the desired temperature, a valve is included in the floor heating, to change the
mass flow of the water in the pipes. A simple SISO controller can then be implemented
on top of the floor heating system, and the controller can be adjusted to the desired
consumer dynamics.

Several types of consumers exists, but as stated, this consumer will be a house.
The average annual heat consumption for detached houses, terraced houses and flats, in
Denmark, is 12 524 kW h[14]. From this, the average heat flow can be computed:

Q̇consumer =
12.524MW h

1year
≈ 1.42968 kW h/h≈ 1.4kW (3.15)

This heat flow is the basis of the consumer model; from this the consumer model will be
nominally parameterized.

3.2.1 Floor heating

The floor heating model has one input and one output; a valve opening signal, uvalve,
and the heat flow leaving the floor, Q̇. Furthermore, it has a heat flow interface and
fluid interfaces. The graphical component-based model of the floor heating is depicted
in Figure 3.5a together with the icon representation in Figure 3.5b.
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Figure 3.5: The floor heating model’s component model and icon representation in
Modelica.
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The floor heating model contains a valve component, described in Section 3.1.3, char-
acterized by the constant k, given in Equation (3.9). The constant is determined by
nominal mass flow, nominal opening of the valve and the nominal pressure difference.

The nominal mass flow is determined by the nominal heat consumption for the
consumer, 1400 W, the nominal temperature drop over the consumer, and by knowing
the specific heat capacity of water. The nominal temperature drop is estimated to be 40 ◦C.
The choice of 40 ◦C is due to the fact, that a minimum cooling requirement is posed by the
district heating supplier. The minimum cooling requirement from Sønderborg Fjernvarme
is set at 30 ◦C[8].

ṁnominal =
Q̇nominal

Cp, water ∆Tnominal
=

1400 W
4186 J/(kgK) 40 ◦C

= 8.36× 10−3 kg/s (3.16)

The nominal pressure drop over the valve is given to be 0.6 bar and the nominal open-
ing of the valve, unominal, is set to 50 %. Choosing a nominal supply temperature of
Tsupply,nominal = 80 ◦C, equivalent to Sønderborg Fjernvarme, the nominal return temper-
ature thus becomes Treturn,nominal = 40 ◦C.

The floor heating piping, modeled by a pipe component described in Section 3.1.2,
is parameterized by volume, V , which is specified from the length and the diameter of
the piping. These are loosely chosen as 100 m and 0.02 m, respectively. Furthermore, the
floor heating includes a heat capacitance which models the concrete floor, in which the
piping is laid out. This is parameterized by the mass of the concrete and by knowing the
specific heat capacity of concrete to be:

cp, concrete = 960 J/(kgK) (3.17)

The mass of the concrete is chosen, based on a desired temperature response. It should
take approximately 10 h to introduce a 10 ◦C temperature change of the concrete. This
is, by simulations, obtainable at a mass of mconcrete = 360kg.

The concrete floor also includes two thermal resistors2, modeling a temperature
difference over the concrete floor. The thermal resistors model a nominal temperature
difference of 10 ◦C; this together with the nominal return temperature determines the
nominal temperature of the floor:

Tfloor,nominal = Treturn,nominal − 10 ◦C= 40 ◦C= 30 ◦C (3.18)

Knowing that the heat transfer through the resistors is nominally 1400 W, the total
resistance becomes:

Rtot,concrete =
10K

1400W
= 7.1× 10−3 K/W (3.19)

2The reason for employing two resistors, instead of just one, is to use the staggered grid approach,
briefly introduced in the chapter introduction.
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3.2.2 House

The floor heating model is used in a house model, with the graphical component-based
model of the house depicted in Figure 3.6a together with the icon representation in
Figure 3.6b. The house model includes two inputs and two outputs. The first input is a
setpoint temperature, Tset, which is the desired temperature at the surface of the floor.
The second input is an ambient temperature input, Tamb, determining the temperature
outside the house. The first output gives the current heat consumed and the second
output is the error between desired temperature and actual temperature, at the surface
of the floor – useful as a simple measure of Quality-of-Service (QoS).

The house model is connected to the rest of the district heating system by a set
of fluid interfaces. These fluid interfaces are routed directly to a floor heating model
included in the house model.
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Figure 3.6: The house model’s component model and icon representation in
Modelica. The PI regulator uses the output from the floor temperature sensor as

measurement signal.

To model a temperature difference of Tfloor,nominal−Tamb,nominal = 20 ◦C, between outside
and the top of the floor, a thermal resistance is used – again knowing the nominal heat
consumption:

Rwall =
20 ◦C

1400W
= 14.3× 10−3 K/W (3.20)

The floor heating is controlled using a PI controller, tuned until a satisfactory response
was obtained. The PI controller is given a gain of 1× 10−3 and a time constant for the
integrator of 360 s.

The entire consumer model only contains a single constraint; limiting uvalve to be
between 0 and 1. This inequality constraint is posed in the Modelica code, by utilizing
min and max attributes.
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3.2.3 Scaling

The above model considers a single consumer, but it is desirable to include the possibility
of scaling the model, to represent several thousand consumers – e.g. 10000 as is the
case for Sønderborg Fjernvarme. This is handled by scaling the nominal heat flow by
Nconsumers, which is the basis of determining several other nominal characteristics, scaling
the thermal capacitance of the concrete floor by Nconsumers and the floor heating pipe
length by Nconsumers.

The reason why the thermal capacitance also has to be scaled, lies in the desire not to
alter the dynamics in the model, but only the amplitude. Here the amplitude relates to the
heat consumption and the mass flows. In Figure 3.7, the thermal capacitance modeling
the concrete floor is depicted, in conjunction with one of the thermal resistors. A direct
analogy can be drawn to an electrical circuit, which is also depicted in Figure 3.7. Both
systems in their respective domain, are characterized as first order systems, governed by
a differential equation of the same form. For the thermal system, the equation is given
as:

C Ṫ =
(Tin − T )

R
(3.21)

Where R is the thermal resistance and C is the thermal capacitance. By rearranging the
equation, the following is obtained:

RC Ṫ = −T + Tin (3.22)

Thus, a time constant can be identified, as τ = RC , just as for the electrical equiva-
lent. Now, if only scaling the heat flow by Nconsumers, the thermal resistance will become
Nconsumers times larger, resulting in τ being Nconsumers times smaller. To avoid this, C has
to be Nconsumers larger, such that the time constant is unchanged through the scaling.
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Comparison to an electrical equivalent; a standard RC circuit.
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3.2.4 Simulations

A few simulations of the house model with fixed boundary conditions are undertaken,
to investigate the response to some known inputs. The boundary conditions are set, so
that the house is supplied with heated water at a temperature of 80 ◦C at 6 bar and so
that the pressure at the outlet of the house is at 5.4 bar, providing the nominal pressure
drop of 0.6 bar. The ambient temperature is fixed to 10 ◦C and the setpoint temperature
is provided as a step, which starts at 30 ◦C and jumps down to 20 ◦C at t = 11 h.

The simulation is performed for both a single consumer (Nconsumers = 1) and for
10000 consumers (Nconsumers = 10000), to validate that the model can be scaled suc-
cessfully. Results are given in Figure 3.8. There is a noticeable undershoot, which is
undesirable for an actual consumer – but nothing which conflicts with the purpose of
this model. The results indicate that the scaling is successful, as the responses are identi-
cal for one and for 10000 consumers – it only changes the total heat flow consumed and
the total mass flow. To compare the two simulations, the mass flow and the heat flow is,
for the case with just one consumer, multiplied with 10000.
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3.3 Base production unit

The district heating production units share the same base component, described in this
section. The base production unit contains two inputs and a single output; a mass flow
setpoint, a heat flow input and a measurement of the forward temperature available for
control. Included in the base production unit is a pump, a pipe and a temperature sensor.
The model is depicted in Figure 3.9 and is purely based on instantiating and connecting
existing models.

The mass flow setpoint is used directly in the pump component, to control the
mass flow through the base production unit. Together with the forward temperature
measurement, this allows a controller on top of the unit, to control forward temperature
by changing the mass flow. The heat flow input is used directly on the pipe component,
and determines the amount of heat supplied to it.

As no dynamics are included in the pump model or the temperature sensor model,
the production unit is only parameterized by the volume of the pipe. This is chosen as
V = 0.5m3.
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Figure 3.9: The base production unit model’s component model and icon
representation in Modelica.
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3.4 Combined heat and power plant

The production portfolio contains a CHP, a unit which generates both heat and power.
The CHP contains two inputs, a load setpoint and a forward temperature setpoint. The
output is the produced power and the produced heat. The CHP is connected to the rest of
the system via a set of fluid connectors. The model of the CHP is given in Figure 3.10 and
includes a base production unit component, described in Section 3.3, and a PI controller.

The amount of power produced and the amount of heat produced is directly deter-
mined by the load. The CHP has been dimensioned, such that for each W power produced,
the plant produces twice the amount of heat. With a fixed maximum power production
of 10 MW the plant can produce a maximum of 20 MJ/s heat. The load determines the
heat produced, such that a load of 100 % correspond to 20 MJ/s heat – and in turn also
10 MW power. This mode of operation, where heat production is primary and power
production is a secondary product, is often referred to as back-pressure.

The load variable has been constrained to be within 0.3 and 1; thereby complying
with the maximum heat and power productions – and setting a minimum heat and power
production, to model that the CHP is always running. The maximum and minimum load
constraints, are imposed, by setting min and max attributes on the variable in Modelica.

The load is not static, but is governed by the following differential equation:

τ L̇ = −L + Lset (3.23)

Thus, by adjusting the time constant τ, it can be determined how fast the unit will react to
a change in load setpoint. The time constant is chosen as τ= 3600 s. The heat produced
is added to the pipe, and consequently added to the water flowing through it.

The forward temperature is controlled by adjusting the mass flow. Thus, the forward
temperature is measured and fed into a PI controller where the control signal is a mass
flow setpoint. The PI controller is tuned to obtain a satisfactory response. The PI controller
is given a gain of 1 and a time constant for the integrator of 360 s.
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Figure 3.10: The CHP model’s component model and icon representation in
Modelica. The unconnected inputs and outputs, are governed by equations specified in

the underlying Modelica code.
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3.4.1 Simulations

Two simulations are performed, to see how the CHP responds to known inputs and to
verify that it behaves as desired. In both cases, the boundary conditions are set to: an
inlet temperature of 40 ◦C and inlet pressure of 5.4 bar – the outlet pressure is fixed at
6 bar.

The first simulation starts with Tset = 80 ◦C and Lset = 1. At t = 5h, Lset is ramped
down to 0.5, over a period of 30 min. Results are given in Figure 3.11. The first graph
shows how the production of both power and heat is ramped down, as the load is ramped
down. The second graph shows how the mass flow is lowered to half; this is the temper-
ature controller acting in response to less heat being added to the water.

The second simulation has the load setpoint fixed at Lset = 1 and instead introduces
a step in the temperature setpoint. The step is introduced at t = 5h, where the tem-
perature setpoint is changed from 80 ◦C to 90 ◦C. Results are given in Figure 3.12. The
change in reference has the temperature controller turn down the mass flow, in order to
reach the desired temperature.
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Figure 3.11: Simulation where CHP load is ramped down from 1 to 0.5 over 5 h.
Production of both power and heat is correspondingly lowered – and to keep the
desired forward temperature, the mass flow through the CHP is turned down.
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Figure 3.12: Simulation where the forward temperature setpoint for the CHP is
changed from 80 ◦C to 90 ◦C. This has the the temperature controller lower the mass

flow through the CHP, to reach the new desired temperature.
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3.5 Compression heat pump

The production portfolio contains a compression HP, which can produce heat by using
electricity. The HP model, depicted in Figure 3.13, has two inputs and one output. One
input is a forward temperature setpoint, Tset. The other input is the electrical power
supplied to it, P. The output is heat produced, Q̇produced. The HP is connected to the rest
of the district heating system by fluid connectors, but it also includes a heat connector,
as an interface to a heat reservoir. The HP model closely resembles the CHP model, by
including the same base production unit, described in Section 3.3.

The main equations governing the HP:

Q̇produced = P + Q̇reservoir (3.24)

Q̇reservoir = P (COP− 1) (3.25)

Where Q̇reservoir is the amount of heat taken from the connected reservoir. The connected
reservoir will for this portfolio be the ambient temperature. The Coefficient of Perfor-
mance (COP), is modeled as a replaceable Modelica function; allowing both for constant
COP or a COP dependent on e.g. temperature. As default, the COP will be given by the
following linear function:

COP(Tsupply, Treservoir) = −0.1 (Tsupply − Treservoir) + 10 (3.26)

COP(80, 10) = 3, COP(80,0) = 2, COP(80, 20) = 4 (3.27)

Thus, in nominal conditions with the ambient temperature varying in the interval 0 ◦C
to 20 ◦C, the COP will vary between 2 and 4.

The power input, P, has been limited to be within 100 kW and 5 MW; thus modeling
that the HP is always running. These constraints have been imposed by setting min and
max attributes on the power input variable in Modelica.
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Figure 3.13: The HP model’s component model and icon representation in Modelica.



3.5. Compression heat pump 37

3.5.1 Simulations

A simulation is performed, with a fixed forward temperature setpoint of Tset = 80 ◦C
and a change in power input. The boundary conditions are, just as for the case with
the CHP simulations, an inlet with nominal return water conditions; temperature of
40 ◦C and a pressure of 5.4 bar and an outlet where the pressure is fixed at 6 bar. The
heat reservoir, from where the HP takes the additional heat it needs, is set as the ambient
with a temperature of 10 ◦C.

The power input, P, is ramped from 5 MW to 2.5 MW over 30 min starting at t = 5 h.
From the response given in Figure 3.14, the produced heat ramps down as the power in-
put ramps down. The produced heat is however not always 3 times as large as the power
input; as the produced heat decreases, the mass flow required to maintain Tsupply = 80 ◦C
also has to decrease. As the temperature control is not ideal, the forward temperature
drops, until the required mass flow is reached. During this period, with a lower forward
temperature, the COP is equivalently higher, as the difference between forward temper-
ature and ambient temperature is lower. The magnitude of this effect is however very
dramatic due to the over-simplified COP model, but it provides an interesting element,
perhaps exploitable by a controller.
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Figure 3.14: Simulation where HP power input is ramped down from 5 MW to
2.5 MW over 30 min. The production of heat is correspondingly lowered – and to

keep the desired forward temperature, the mass flow through the HP is turned down.
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3.6 Boiler

The production portfolio also includes a boiler, which produces heat using an arbitrary
fuel. Furthermore, this boiler model also serves the purpose of pressure control in the
entire production portfolio.

The boiler is modeled using a different approach than the other production units;
where the other production units have embraced the component-based modeling paradigm,
the boiler model is purely based on explicit equations. This is due to the fact, that the
boiler is modeled with an ideal pressure difference controller. The reason for this was to
simplify the system, by abstracting away yet another controller. It includes two inputs;
a pressure difference setpoint, ∆pset, and a forward temperature setpoint, Tset. It has a
single output; the heat produced, Q̇. No graphical model in Modelica is given but the
icon is shown in Figure 3.15.

Figure 3.15: The boiler model’s icon representation.

There is no mass storage in the boiler:

ṁin + ṁout = 0 (3.28)

And there is no energy storage:

ṁin hin + ṁout hout + Q̇ = 0 (3.29)

The boiler is ideally controlled regarding forward temperature and the pressure differ-
ence. However, first order dynamics have been added for the temperature control, in the
form of a time constant parameter, which can be adjusted. The ideal control gives the
following two equations:

τ Ṫout = Tout,set − Tout (3.30)

pout = pin +∆pset (3.31)

Given the affine relation between temperature and enthalpy, due to the assumption of
constant specific heat capacity and constant density of the water, the outlet temperature
can be related to the outlet enthalpy as:

Tout = T (hout) =
hout

cp
+ T0 ∧ T0 = 273.15 K (3.32)

This means, that the outlet enthalpy is independent from the inlet enthalpy, which implies
that Q̇ must be the difference between the inlet enthalpy and the outlet enthalpy.
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The energy flow required by the boiler, to comply with the desired outlet tempera-
ture, is thus Q̇.

The heat production is limited, to model that the boiler is always running, by setting
a minimum and maximum value for Q̇. Minimum heat production is set at 1 MJ/s and
maximum at 10 MJ/s. These minimum and maximum constraints, are imposed, by setting
min and max attributes on the heat flow variable in Modelica.

This is a very basic boiler model, but sufficient for the scope of this project, allowing
for focus to be placed elsewhere.

3.6.1 Simulations

For the boiler, a single simulation is made, with a step in the forward temperature setpoint.
The step is from 80 ◦C to 65 ◦C and is introduced at t = 5 h. Also, a step in the pressure
difference is made, from 0.6 bar to 1.0 bar, at t = 10 h. The boundary conditions are
nominal return water conditions; temperature of 40 ◦C and a fixed inlet mass flow of
30 kg/s and the outlet pressure is fixed at 6 bar. The results are given in Figure 3.16.

From the results, it can be concluded, that the boiler functions as intended. When a
lower forward temperature is requested, less heat is produced, and the pressure difference
is ideally controlled.
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Figure 3.16: Simulation where the forward temperature setpoint for the boiler is
changed from 80 ◦C to 65 ◦C. To decrease the forward temperature, the heat produced

is decreased. Step in pressure difference setpoint has the ideal controller respond
accordingly.
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3.7 Accumulator

The production portfolio also includes an accumulator. The accumulator is a tank, which
can store a limited amount of heated water. The accumulator is connected to both the
supply pipe and the return pipe of the district heating system. Thus enabling it to let
both supply water and return water, enter and exit the accumulator. The principle is, that
the accumulator is always full – it is just the ratio between supply and return water that
can change. The notion of charge will be used to describe the accumulator. When the
accumulator is fully charged, it only contains supply water (hot water) – and when it is
fully discharged, it only contains return water (cold water).

Just as the boiler model, the accumulator does also not rely on the component-based
approach to modeling in Modelica. Instead, it is solely based on explicit equations. It
includes a single input; a charge rate, Q̇charge, and a single output; the charge. The charge
rate determines whether the accumulator is charging or discharging and how fast this is
done. No graphical model in Modelica is given, but the icon is shown in Figure 3.17.

In the real world, the accumulator would be driven by the pressure difference;
working as buffer. But, as the pressure difference is kept constant in this district heating
system, by the simplified boiler model, it would effectively only allow the accumulator
to charge and not discharge. Thus, the introduction of an input signal. This also has the
added benefit of more direct control over the accumulator in a control design.

Figure 3.17: The accumulator model’s icon representation. It has a ’hot side’ and a
’cold side’, which illustrates that it contains a mixture of both supply water and

return water.

The accumulator is governed by the following energy balance and mass balance:

Ė = ṁin hin + ṁout hout = Q̇charge (3.33)

ṁin + ṁout = 0 (3.34)

Thus, by setting a desired charge rate, Q̇charge, the energy stored in the accumulator is
changed at this rate. The accumulator is limited to a maximum energy storage, Emax,
which is equivalent to a charge c = 1. This is handled by defining the charge as:

c = E/Emax (3.35)

The maximum energy storage is chosen as 100 MW h and the minimum is 0 MW h. The
maximum and minimum constraints, are imposed, by setting min and max attributes on
the charge and energy variables in Modelica.
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One thing not considered for the accumulator is loss. When storing supply water, it
can not maintain the temperature which the water had when it entered the accumulator
– heat will transfer to the surroundings of the accumulator.

3.7.1 Simulations

The accumulator is initialized with a charge of 0.0 and thus contains 0 MJ. The boundary
conditions are set to nominal case, where the supply water has a temperature of 80 ◦C
at a pressure of 6 bar and the return water has a temperature of 40 ◦C at 5.4 bar.

The charge rate is at t = 2.5 h set to 10 MJ/s, thus charging the accumulator. At
t = 7.5h, the charge rate is set to 0 MJ/s for 5 h, where after at t = 12.5 h, the charge
rate is set to −10 MJ/s for 5 h. The expected outcome is, that the accumulator will, at
t = 7.5h have reached a charge of c = 0.5. And that the charge will again be c = 0.0 at
t = 17.5 h. As seen in Figure 3.18, this is exactly what happens.
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Figure 3.18: The accumulator is first charged to c = 0.5, at a charge rate of
10 MJ/s. Then at t = 12.5 h, the accumulator is again discharged, with a charge

rate of −10 MJ/s until reaching a charge of c = 0.0 at t = 17.5h.
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3.8 District heating system

The production units and the consumer are connected in parallel, to form the complete
district heating system. The number of consumers, Nconsumers, will be kept at 10 000
and the HP uses the ambient as heat reservoir. This combined system is depicted in
Figure 3.19. Besides connecting the units in parallel, some additional connections are
given in the diagram. To handle inputs and outputs for each of the production units and
the consumer, buses have been laid out. These are realized using Modelica’s expandable
connector. An input bus and an output bus is available on each component. These buses
are connected to two master buses; one for inputs and one for outputs, thus making all
inputs available on a single connector and all outputs available on a single connector. This
is simply a Modelica technicality, to minimize overhead when having to apply different
inputs.

The pressure on the return side of the system is fixed to 5.4 bar. This is necessary
to avoid singularity issues, when initializing the system, since all components consider
pressure differences and not absolute pressure. A direct analogy is an electrical circuit,
where a reference voltage – or ground – is needed.

Figure 3.19: The combined district heating system, with all production units and the
consumer included. The green bus is the input bus, the orange bus is the output bus.

The blue connections represent water flowing to/from the different components, using
the constructed fluid connectors.



3.8. District heating system 43

3.8.1 Simulations

The combined system is simulated with known inputs to the different units, to investigate
whether the behavior is as desired. The number of inputs available has been minimized,
by connecting all the forward temperature setpoints together on the input bus; exposing
a single forward temperature setpoint that is used by all production units. Thus, the
following controllable inputs are available:

• Lset: Load setpoint for the CHP

• PHP: Power input for the HP

• ∆pset: Pressure difference setpoint for the boiler

• Tset,supply: Forward temperature setpoint for all production units

• Q̇charge: Accumulator charge rate

The setpoint temperature, Tset,consumer for the floor temperature controller inside the
consumer is regarded as a disturbance, along with the ambient temperature, Tamb. For
this simulation, Tset,consumer is kept constant at 30 ◦C. The system has been simulated for
110 h with input signals as given in Figure 3.21. These input signals utilize all units in
the portfolio, but allows for the system to settle, in between applying different inputs,
such that their effect can be identified in the overall system response. The inputs are
applied in the following sequential manner:

1. At t = 3h: Ramp down Lset from 0.5 to 0.3 over 1 h.

2. At t = 10h: Ramp down Tset,supply from 80 ◦C to 70 ◦C over 1 h.

3. At t = 30h: Ramp up PHP from 0.1 MW to 1 MW over 1 h.

4a. At t = 40h: Step in Q̇charge from 0 MW to 2 MW (charging).

4b. At t = 40h: Step in Q̇charge from 2 MW to 0 MW.

5. At t = 60h: Ramp up ∆pset from 0.6 bar to 1.0 bar over 1 h.

6. At t = 80h: Ramp down Tamb from 10 ◦C to 5 ◦C over 5 h.

In this context, the overall system response is a plot of the produced and consumed heat
for each of the components in the system – and a sum of all the heat flows, to verify that
production and consumption is balanced. A plot of the heat flows in the system is given
in Figure 3.20.



44 Chapter 3. Modeling

0 20 40 60 80 100
t [h]

−15

−10

−5

0

5

10

[M
J/

s]

Heat balance

Q̇CHP

Q̇HP

Q̇boiler

Q̇accumulator

Q̇consumer

Q̇balance
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Figure 3.21: The input signals applied to the district heating system. The inputs are
changed sequentially, such that their effect on the overall system response can be

identified.
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Event 1

At t = 3 h the load setpoint for the CHP is ramped down from 0.5 to 0.3 over 1 h as is
seen in Figure 3.21. This has the effect, that the heat produced from the CHP is lowered
from 10 MJ/s to 6 MJ/s, which is seen in Figure 3.20.

Before the change in input, the boiler is producing 4 MJ/s, the HP is producing
0.1 MJ/s and the accumulator is neither charging nor discharging. As the total heat
consumption is approximately 14 MJ/s, the drop in production from the CHP has to be
matched by an equal rise in production from another unit, in order to balance the system.
Due to the drop in CHP load, the following occurs:

• The mass flow through the CHP has to be decreased, to keep the supply temperature
at 80 ◦C – handled by the PI regulator in the CHP.

• This decrease in mass flow propagates to the consumer, where a decrease in mass
flow induces a drop in floor temperature.

• The PI regulator in the consumer responds, by opening the consumer valve more.

• Opening the consumer valve more results in a pressure drop.

• The boiler, with ideal pressure difference control, counteracts the pressure drop;
increasing the mass flow and thus the heat flow – ramping it up to ≈ 8MJ/s.

The transfer of load from the CHP to the boiler is seen in Figure 3.20. The transfer is not
entirely bump-less, inducing a small drop in floor temperature at the consumers, visible
in Figure 3.20 as a small drop in the heat supplied to the consumers. The increase in
mass flow through the boiler is seen in Figure 3.25
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Figure 3.22: The outlet temperature and the mass flow through the CHP.
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Event 2

At t = 10 h the forward temperature setpoint is lowered from 80 ◦C to 70 ◦C over 1 h,
which is seen in Figure 3.21. This is reflected in Figure 3.20 by an equivalent ramp
down of the heat consumption, from 14 MJ/s to approximately 12 MJ/s. This is because
the temperature controllers in the production units are significantly faster than the
temperature controller in the consumer model. Thus, it takes a noticeable amount of
time, for the PI regulator in the consumer model to increase the mass flow, so that the
reference floor temperature is again met. This is reflected in the Tfloor and mass flow
responses in Figure 3.26.

The lower forward temperature setpoint has the CHP raise the mass flow through
it, since the heat flow is fixed, given the load setpoint. This is seen in Figure 3.22.

Event 3

At t = 30h the HP is introduced, by ramping up the power input to it, from 0.1 MW to
1 MW over 1 h. This change in input is seen in Figure 3.21. Given the COP at the current
forward temperature and ambient temperature, this correspond to 4 MJ/s heat produced.
This introduction of extra heat flow, has the boiler reduce the mass flow through it, such
that heat balance is preserved.

The HP PI regulator introduces a spike in the outlet temperature, before it settles
at the desired 70 ◦C. This increase in temperature propagates to the consumer, and is
visible as a very small increase in the floor temperature (see Figure 3.26) and thus also
the heat consumption. This is however attenuated by the consumer PI regulator.
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Figure 3.23: The outlet temperature and the mass flow through the HP.
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Event 4

At t = 40h the accumulator is charged at a rate of 2 MJ/s. The input signal is seen in
Figure 3.21. This increase in heat consumption is handled by the boiler, responding with
an increase in heat production, by increasing the mass flow. After 10 h of charging, the
accumulator has reached a charge of 0.7 and stops charging. The boiler responds by
lowering the heat production.
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Figure 3.24: Charge of the accumulator and the mass flow through the accumulator.

Event 5

At t = 60h the pressure difference is raised from 0.6 bar to 1.0 bar over 1 h. This change
in input is seen in Figure 3.21. The effect is closely related to the effect of changing
the forward temperature. The pressure increase means that the consumer valve can
handle the same mass flow at a lower opening. The pressure increase therefore induces a
sudden increase in the mass flow through the consumer, visible in Figure 3.26. This has
the heat consumption rise, giving an undesirable higher floor temperature. The higher
temperature has the PI regulator in the consumer react, lowering the mass flow, such
that the floor temperature once again reaches 30 ◦C.

The increase in consumption, which is apparent as long as the floor temperature
has not yet fallen back to 30 ◦C, has the boiler increase the heat production, by increasing
the mass flow. The effect also propagates to the mass flow through the CHP and the HP,
through a brief increase return temperature.
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Figure 3.25: The outlet temperature and the mass flow through the boiler.
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Event 6

At t = 80h, the ambient temperature is lowered from 10 ◦C to 5 ◦C over 5 h. The input
signal is seen in Figure 3.21. This results in a slowly increasing heat consumption –
and an equivalent increasing production. The temperature drop is too large, for the
consumer PI regulator to suppress it, and thus, the floor temperature drops, which is
seen in Figure 3.26. At t = 85 h, when the ambient temperature has settled on 7 ◦C, the
consumer PI regulator slowly pulls the floor temperature back up to 30 ◦C.

The increase in heat demand, caused by an increase in mass flow through the
consumer, is reflected mainly in the increase of mass flow through the boiler (see Fig-
ure 3.25), but is also visible for both the CHP (see Figure 3.22) and for the heat pump
(see Figure 3.23).
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Figure 3.26: Floor temperature for a consumer and the mass flow through all
consumers.

Comment

A general comment is, that it is always the boiler, which without any change in input,
adapts the produced heat to meet the consumer demand, such that heat balance is main-
tained. This is the property of not having the heat production as a boundary condition. In
reality, the balance between production and consumption can be handled by an accumu-
lator tank working as a buffer and with a series of pumps spread around the network to
maintain a constant pressure difference. Letting this be handled by the boiler is however
deemed acceptable for this project.
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3.9 Linear model

To allow for linear MPC a linear model is necessary. The linear model is obtained by lin-
earizing the C2 continuous nonlinear model described in the previous sections. Lineariza-
tion is undertaken using the built-in methods of the pyfmi Python module, included in
JModelica.org (see Section 2.6.1), by first compiling the nonlinear model as an FMU.

The FMU is first simulated to steady-state, using the desired operating point input
signals. Here, nominal values have been used, for a general purpose operating point:

Tset,consumer = 30 ◦C, Tamb = 10 ◦C

Lset = 0.5, PHP = 1MW, Q̇charge = 0MJ/s

∆pset = 0.6bar, Tset,supply = 80 ◦C

The linearized system is, on state-space form, given as:

ẋ = Ax + Bu (3.36)

Where A ∈ R10×10, B ∈ R10×7. The states have, by the underlying Modelica compiler,
been selected as3:

x =

[ Tfloor Tfloor,pipe ṁI,consumer Tsupply,boiler L ṁI,CHP Tsupply,CHP E ṁI,HP Tsupply,HP ]T (3.37)

Where some of the states have been mentioned previously, except for Tfloor,pipe which is
the temperature of the water leaving the floor heating pipe (effectively also the return
temperature) and ṁI,x are integrator states for the PI regulators situated in both the
consumer, the CHP and the HP.

The system matrix, A, has the following eigenvalues:

w =













−0.20
−0.16

−14.8× 10−3

−1.37× 10−3

−1.09× 10−3

−0.55× 10−3

−0.28× 10−3

(−92.0± 55.0j)× 10−6

0













(3.38)

Which characterize the system as being stable – except for one single eigenvalue; the
one in zero. This eigenvalue, or the corresponding pole, is due to the integrator in the
accumulator. The system contains no transmission zeros.

3As default, a Modelica compiler will choose states, based on the usage of der(), the operator for
derivatives of variables. It is possible, through the attribute stateSelect, to provide the compiler with
information on whether to use a specific variable as a state or not.
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It is desirable to see, whether the system is controllable or not, given the available
controllable input signals. These are all the input signals, excluding Tset,consumer and Tamb.
As such, controllability is tested using a reduced B ∈ R10×5 matrix, with these inputs
removed, after which the controllability matrix is computed as:

Co =
�

B AB A2B ... An−1B
�

(3.39)

The controllability matrix is found to have rank(Co) = 10, meaning that all states are
controllable. It is worth checking the condition number of the controllability matrix,
since it may be ill-conditioned, given the large differences in magnitudes of the states.
The condition number of Co is computed as:

κ(Co) =
σ1

σ10
=

1

40.0× 10−9 = 2.50× 107 (3.40)

Where σ1 and σ10 are the largest and smallest singular values of Co, respectively. The
condition number is large, but not so large as to not trust the rank computation, thus
concluding, that the system is controllable.

3.9.1 Simulation

A simulation has been performed, comparing the nonlinear to the linear system. The
simulation is comprised of the following events:

1. At t = 5h: Ramp down Lset from 0.5 to 0.3 over 1 h.

2. At t = 20h: Ramp up PHP from 1 MW to 2 MW over 1 h.

3. At t = 30h: Charge up accumulator, with a charge rate of 5 MJ/s, for 5 h.

4a. At t = 40h: A change of −10 ◦C in Tsupply,boiler (disturbance).

The simulation results are given in Figure 3.27, where all states are shown. Generally, by
inspection of the simulation results, the linear model fits the nonlinear model, especially
considering the magnitudes of the states – but with noticeable differences in dynamics.
Mainly states located in the consumer model differ, where the linear model fails to capture
some of the faster dynamics. Another noticeable difference, is the effects induced by using
the accumulator.

When the accumulator suddenly charges at t = 30 h, a drop in the return temper-
ature is introduced, as cold water leaves the accumulator to make room for hot water.
Due to the dynamics of the PI regulators in the production units, it takes time to settle
on a new mass flow, which again gives the desired supply temperature. The same hap-
pens, when the accumulator again stops charging, as the cold water stops leaving the
accumulator. This effect is lost through linearization.
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Together with the simulation results in Figure 3.27, the heat production and con-
sumption is for the same simulation given in Figure 3.28. One difference is, that here
the simulation time is extended to also show the effect of a step in Tamb, from 10 ◦C to
5 ◦C, at t = 45 h. From the comparison in Figure 3.28, the conclusion can be drawn, that
the linear model is suitable for use in a controller design, given how well the trajectories
fit. The main difference appears when using the accumulator and when introducing a
step in Tamb.
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Figure 3.27: Simulation, comparing the nonlinear C2 continuous model to a
linearized model. Noticeable dynamics have been lost through linearization,

especially regarding effects of the accumulator, but nothing that introduces large
deviations in magnitude.
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Figure 3.28: Heat production and consumption for the different units in the district
heating system – comparing the nonlinear C2 continuous model (solid) to a

linearized model (dashed). Noticeable differences when using the accumulator and
when changing the ambient temperature. Note that Q̇accumulator = −Q̇charge.
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3.10 Simulation model

This section will outline the differences between the nonlinear C2 continuous model on
which optimization is possible and a nonlinear simulation model. Where the C2 model
uses a simplified fluid library constructed for the purpose of this project, the simulation
model uses the fluid and media libraries from the MSL. Together with using components
from the MSL, the consumer model is expanded in the simulation model. Instead of
considering a single scaled consumer model, the simulation model introduces stochastic
parameter variation on groups of consumers.

The Nconsumers = 10000 have been equally divided into Ntypes = 5 groups with
Nconsumers/Ntypes consumers in each group. Each group – effectively a single scaled con-
sumer – is given a parameter set, drawn from a normal distribution. The parameters
considered, together with their mean and standard deviation, are given in Table 3.1.
These are chosen to provide enough interesting variations for a noticeable effect in
simulations.

Parameter Description µ σ Unit

∆Tnominal Temperature drop over consumer 40 3 ◦C
∆Tnominal,amb Temperature drop between floor and ambient 20 2 ◦C
KPI PI regulator gain 0.001 0.0001 1/◦C
TPI PI regulator time constant 360 10 s/◦C
cp,concrete Concrete specific heat capacity 960 20 J/kgK

Table 3.1: Parameter variations used in the stochastic consumer models in the
simulation model. Variations on the specific heat capacity of concrete allow change in
the heat capacity, independently of mass, which is scaled by the number of consumers.

3.10.1 Simulation

A simulation is made, to compare the C2 model to the simulation model. The simula-
tion features the same input signals, as for the comparison with the linearized model.
For the simulation model, the consumer now includes Ntypes = 5 times more states. In
Figure 3.29, the results for all states have been shown and in Figure 3.30, the heat pro-
duction and consumption is shown, where a step in Tamb is also introduced at t = 45h.
Generally, the two models are almost identical, except for, naturally, the stochastic con-
sumer model. This result is important, as it validates the further use of the C2 continuous
model – and provides a simulation model with a stochastic element to test both LMPC
and NMPC against.



54 Chapter 3. Modeling

38

40

T f
lo

or
[◦

C
]

38

40

42

T f
lo

or
,p

ip
e
[◦

C
]

400

500

600

ṁ
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Figure 3.29: Simulation, comparing the nonlinear C2 continuous model to the
nonlinear simulation model. The trajectories are almost identical; the only difference

is, naturally, in the extended stochastic consumer model. The stochastic consumer
model features Ntypes = 5 times more states, and they are all plotted.
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Figure 3.30: Heat production and consumption for the different units in the district
heating system – comparing the nonlinear C2 continuous model (solid) to the

nonlinear simulation model (dashed). The simulation model response gives a slightly
higher heat consumption for the consumers, which propagates to the boiler providing
the additional heat. The simulation model consumer heat flow, is the sum of the heat

flow for the 5 consumer groups. Note that Q̇accumulator = −Q̇charge.





Control 4
This chapter describes the design of MPC for production planning and balance control
of the production portfolio. The design of a MPC is mainly the formulation of a suitable
optimization problem; including cost function and constraints. The cost function and
constraints will be the same for both NMPC and LMPC, for comparison purposes – only the
model will differ; whether it is nonlinear or linear. Furthermore, this chapter describes the
design of an EKF for state estimation, as it is assumed that not all states are measurable.
A diagram of the control scheme is given in Figure 4.1.

(N/L) MPC 
District Heating

System

EKF C+

vk

x̂k xk

uk

,  Tamb,k κelspot,k

Figure 4.1: MPC control scheme with an EKF for state estimation. Here C illustrates
that measurements are picked from the full state and v k illustrates that noise is

added to these measurements.

4.1 Cost function design

The objective of the controller is two-fold, as it includes both production planning and
balance control. First it has to plan and execute production, in an economical optimal
sense. This could either be by maximizing revenue or minimizing cost. Secondly, produc-
tion and consumption has to be balanced – especially in a sense, where the consumers
get the heat they desire, such that a certain QoS is maintained.

57
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The inputs available are given in Table 4.1. They are divided in control inputs
and exogenous inputs (disturbances). To simplify matters, it has been decided to keep
Tset, supply and ∆pset constant, reducing the degree of freedom for the optimizer, even
though e.g. changing Tset, supply could be economically beneficial[4]. Three control inputs
are therefor considered. To allow for slew rate constraints, the actual control inputs will,
in the case of Lset and PHP, be their derivatives; L̇set, ṖHP. The accumulator input is already
a rate input (Q̇charge), and will be used as is. As changes in consumer heat demand, can
be achieved solely through changes in ambient temperature, it has been decided to keep
Tset, consumer constant at the nominal 30 ◦C.

Input Description Unit

Control inputs

Lset Load setpoint for the CHP ·
PHP Power input for the HP W

Q̇charge Charge rate input for the accumulator J/s

Tset, supply Supply temperature setpoint for all production units ◦C
∆pset Pressure difference setpoint for the boiler bar

Exogenous inputs

Tset, consumer Temperature setpoint for the consumer (floor heating) ◦C
Tamb Ambient temperature ◦C
κelspot Power price DKK/MWh

Table 4.1: Available control inputs and exogenous inputs; for the control design,
only a subset of the available inputs is considered.

4.1.1 Production portfolio economics

In [4] and [5], the economical objective is to maximize revenue; the costs of running the
production portfolio subtracted from the income. This is also the objective considered
in this thesis. The following costs of running the production portfolio are considered:

• Cost of running CHP, ηCHP [DKK/s]

• Cost of running boiler, ηboiler [DKK/s]

In the case of the CHP and the boiler, the cost is defined by the amount of heat produced;
a fixed price, κCHP, multiplied with the heat output, Q̇CHP. The fixed price is thus given
in DKK/J. The (instantaneous) cost terms are given by η:

ηCHP = Q̇CHP κCHP (4.1)

ηboiler = Q̇boiler κboiler (4.2)
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Income is given by the heat sold to the consumers, with a fixed price. The (instantaneous)
income terms are given by ξ:

ξheat = Q̇consumer κheat (4.3)

The fixed price the consumers pay is chosen as κheat = 500 DKK/MWh, this is com-
parable to the price set by Sønderborg Fjernvarme, where the price is approximately
400 DKK/MWh[8]. The prices for producing heat have been chosen as:

• κCHP = 300DKK/MWh

• κboiler = 500DKK/MWh

Making the boiler the more expensive production unit.
Power trade defines the cost of running the HP and a possible income or expense

from selling/buying power. As the portfolio allows power produced by the CHP to be
used directly in the HP, the power traded is given by the following equation:

Ptrade = Pproduced − Pconsumed (4.4)

Where Pproduced is the power produced by the CHP and Pconsumed is the power consumed
by the HP. Thus, when producing more than consuming, power is sold (Ptrade is positive),
and when consuming more than produced, power is bought (Ptrade is negative). Selling
price and buying price will in this thesis be the same; ηelspot. Power trade will therefor
not be regarded as either income or cost:

λpower = Ptrade κelspot (4.5)

The power prices considered, are ELSPOT prices for Western Denmark. In 2015, the
average price was 170 DKK/MWh[15], thus making the HP the cheapest unit on average.

With the above, (instantaneous) revenue, R [DKK/s], is defined as:

R= λpower + ξheat − (ηCHP +ηboiler) (4.6)

And from an optimization view, the desire is now to maximize the integral of R. The
above economical break-down does not necessarily reflect reality, but it shows how basic
economic considerations can be used in the formulation of a cost function.
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4.1.2 Weighting control action

Through preliminary evaluation of JModelica.org for optimization and [4], it has been
concluded, that weighting control action is necessary, to obtain a well-behaved optimiza-
tion problem. If no weight is present, the input can practically move arbitrarily without
cost. The input weight term introduced:

W = uT Wu (4.7)

u =
�

L̇set ṖHP Q̇charge

�T
(4.8)

W =







w L̇set
0 0

0 w ṖHP
0

0 0 wQ̇charge






(4.9)

And the desire is, to minimize W , penalizing control action. The weights, w, are ini-
tially determined by Bryson’s Rule, which is normally applied when synthesizing a Lin-
ear Quadratic Regulator (LQR), where the cost function is given as:

J =

∫ t f

t0

x T Qx + uT Ru dt (4.10)

Disregarding how the cost function is quadratic in the state, x , the input term is equiva-
lent. Bryson’s Rule states, that weights (on either states or inputs), qx , should be calcu-
lated as:

qx =
1

x2
max

(4.11)

Where qx are diagonal entries in the given weight matrix and xmax is the maximum
acceptable value of x .

4.1.3 Ensuring Quality of Service

It is critical, that the consumers receive the heat they desire. As such, an attempt has
been made to include the satisfaction of the consumers, in the optimization problem. One
very direct measure of satisfaction, is the deviation between the desired temperature at
the consumers and the actual temperature; the error signal, e, in the local floor heating
PI regulator running at the consumer. A measurement of this signal is not available for
the producer, but an estimate is obtainable, through state estimation. One disadvantage
to using this measure of dissatisfaction, is that it is not decoupled, from the performance
of the local PI regulator.
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Defining the dissatisfaction, D, as the error signal for the local PI regulators, enables
the inclusion in the cost function. Three different ways of including it:

• As a direct term in the cost function, minimizing D

• As constraints, requiring D to be within given requirements

• Both of the above

It will be included only as a term in the cost function, to avoid constraint violation because
of the consumer PI controller.

4.1.4 Constraints

Constraints are given by the system dynamics:

ẋ = f (t, x , u) (4.12)

Together with equality constraints and inequality constraints, as stated in the general
OCP, in Section 2.3. The model contains, besides constraints given by the dynamics,
also inequality constraints by limits on certain variables, posed as min/max attributes
in Modelica. These are noted in Chapter 3 Modeling. Constraints on inputs have also
been posed in Chapter 3 Modeling, but since derivatives of two input signals have been
introduced, slew rate constraints have also been posed.

The following slew rate constraints have been introduced:

• | L̇set|< 1× 10−3 s−1

• |Ṗhp|< 1kW/s

• |Q̇charge|< 15 MJ/s

By limiting Lset, to not change more than 1× 10−3/s, ramping from minimum load (0.3)
to maximum load (1.0) is given an upper limit of 0.7/1× 10−3 s= 700s≈ 12 min. This
is deemed acceptable, given the capacity of the modeled CHP.

By limiting Php, to not change more than 1 kW per s, going from minimum load
(0.1 MW) to maximum load (5 MW), is limited to take 4.9 MW/1 kW/s= 490s≈ 8 min.
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4.1.5 Resulting optimal control problem

Combining the economical term, the control action term and the QoS term, results in
the following cost function:

J =

∫ t f

t0

R(t)−W (t)− D(t) dt (4.13)

And the optimization problem can then, subjected to the constraints, be posed as:

maximize
u∗

J (4.14)

Or equivalently, posed as a minimization problem:

minimize
u∗

− J (4.15)

The minimization problem is what will be implemented in practice, as the Optimica
language constructs only allow for posing minimization problems.

4.1.6 Stability

The general NMPC problem, considers a cost function, where the distance to a predefined
equilibrium is penalized. This is not the case in this thesis, where an economical cost
function is considered. When using an economical cost function, the domain is often
referred to as economic NMPC. The disadvantage, to such a free-form cost function,
is that it is not clear, whether MPC yields a well-performing closed-loop solution[16].
Progress has however been made, to establish grounds for a stability analysis of economic
NMPC; e.g. [17] and [18] – but these results have not been applied in this thesis.
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4.2 Choosing MPC settings

A sample time, ts, a prediction horizon, tH and the number of collocation points has to
be determined. The sample time has to be chosen small enough, to allow the controller
to respond to changes in power prices, κelspot, changes in ambient temperature, Tamb

and attenuate the effect of model deviations between the C2 model and the simulation
model. The trade-off lies in computational effort. As power prices are given per h[15],
it has been chosen to let ts ≤ 1 h. A longer prediction horizon gives better performance,
since the controller can take into account more information, when determining optimal
inputs. But a longer prediction horizon also increases memory requirements and solution
times.

Transcribing the OCP by direct collocation requires the selection of the number of
elements, Ne, and the number of collocation points per element, Nc. For convenience,
each element will be ts long. The number of elements will make up the entire prediction
horizon, and will thus be given by:

Ne =
tH

ts
(4.16)

The number of collocation points determines the accuracy of the transcribed system, but
also greatly influences solution time, by increasing the number of variables in the NLP.
The number of variables in the NLP is given by the following equation, introduced in
Section 2.3:

nZ = (1+ Ne Nc) nz + (Ne − 1) nx (4.17)

By replacing the number of elements with Equation (4.16), the equation becomes:

nZ = (1+
tH

ts
Nc) nz + (

tH

ts
− 1) nx (4.18)

Relating the number of collocation points, the prediction horizon and the sample time
to the size of the NLP; serving as a measure for the computational effort.

A sample time ts = 30 min has been chosen, given the power price resolution of
1 h and the slow dynamics of the consumer. With the sample time fixed, the effect of
changing the number of collocation points is investigated, through a series of open loop
simulations, solving the specified OCP only once and applying the optimal inputs in a
simulation of the C2 model. This will reveal the deviations due to collocation. The OCP
is solved with Nc = 2, Nc = 3 and Nc = 4. The final time of the OCP is set to 10 h.
The results are given in Figure 4.2, where the comparison is of the consumer heat flow,
Q̇consumer.

The effect of increasing the number of collocation points is visible, as the collocation
response better approximates the simulation response for larger Nc . The corresponding
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solution time for the OCP also increases. For Nc = 2, the solution time, tsol was 0.82 s,
while for Nc = 4 the solution time was 2.31 s; almost 3 times higher1.

To be able to keep the low sample time, without sacrificing prediction horizon, the
number of collocation points has been chosen as 2. It was then possible to successfully
solve the OCP with a final time of 10 h; decreasing sample time, increasing collocation
points or prediction horizon beyond these settings and JModelica.org would exit with
errors regarding memory consumption. No further investigation into the memory issues
have been conducted, as it was concluded, that a 10 h prediction horizon is long enough,
to evaluate the performance MPC as a control concept for the production portfolio.

As such; the base settings will be ts = 30 min, tH = 10h and Nc = 2.
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Figure 4.2: Comparing the results of collocation, through the solution of the
specified OCP, and a simulation run with the resulting optimal inputs.

1Performed on the same piece of hardware; a Lenovo ThinkPad T530, Intel i5-3320M @ 2.60 GHz and
4GB RAM.
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4.3 Observer design

As discussed in Section 2.5, it is a fair assumption, that no measurements are available
at the consumers. This assumption is embraced, by designing an observer to provide
estimates of all states. It will further be assumed, that measurements of all states of the
production units are available. From Section 3.9, the states were found as:

x =

[ Tfloor Tfloor,pipe ṁI,consumer Tsupply,boiler L ṁI,CHP Tsupply,CHP E ṁI,HP Tsupply,HP ]T (4.19)

Here, Tfloor, Tfloor,pipe and ṁI,consumer are not measurable, while the rest are. By not con-
sidering measurements at the consumer, the fact that the simulation model – where the
measurements would be taken – contains Ntypes more states in the consumer model does
not require any extra care in the estimator. No specifications of measurement noise is
known, as the project is purely conceptual. Thus, the the standard deviation has been
set to be 5 % of the nominal values, for each state measured. Refer to Table 4.2 for the
actual values.

Considering the linearized system, obtained and described in Section 3.9, an ob-
servability analysis is performed. It has to be noted, that this is only valid for the general
purpose operating point considered for the linear model, but it will still provide infor-
mation as to if the measurements available are enough to provide estimates of all states,
necessary for control. On the basis, that no states at the consumers are measurable, a
C ∈ R7×10 matrix is formed as:

C =





0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



 (4.20)

Observability is checked, by forming the observability matrix as:

Ob =
�

C CA CA2 ... CAn−1
�T

(4.21)

The observability matrix is found to have rank(Ob) = 10, meaning that all states are
observable for the linear system. Just as for the controllability matrix in Section 3.9, the
condition number of the observability matrix is computer. It is found as:

κ(Ob) =
σ1

σ10
=

9.80

11.1× 10−9 = 8.83× 108 (4.22)

Again, the condition number is large, but not large enough to reject the rank computation
– concluding that the system is indeed observable.

The observer will be implemented as an EKF, as noted in Section 2.5. Generally,
the design of a Kalman Filter deals with the choice of appropriate covariance matrices; Q
and R. By weighting the matrices differently, the observer can be tuned to either trust the
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model or the measurements, more or less. Generally, a good approach is to only consider
diagonal elements in Q and R. For a first design iteration, the choice has been to let
the diagonal elements of Q reflect a standard deviation of 1 % of the nominal values of
the states. The diagonal entries in R have been given the measurement noise standard
deviations; 5 % of the nominal values. Thus, the observer trusts the model more than
the measurements. The actual values are given in Table 4.2.

The EKF will run with the same sample time, ts = 30min, as the MPC; thus the
linear system used in the EKF will be discretized with this sample time.

State Measurement noise σ State noise σ Unit

Not measurable

Tfloor 0.3 ◦C
Tfloor,pipe 0.4 ◦C
ṁI,consumer 0.5 kg/s

Measurable

Tsupply,boiler 4.0 0.8 ◦C
L 25× 10−3 5× 10−3 ·
ṁI,CHP 3.0 0.6 kg/s

Tsupply,CHP 4.0 0.8 ◦C
E 1.8× 109 360× 106 J

ṁI,HP 1.0 0.2 kg/s

Tsupply,HP 4.0 0.8 ◦C

Table 4.2: Standard deviations for measurement noise and state noise, used in the
observer design, parameterizing Q and R for the EKF.



Implementation 5
A simulation framework has been designed and implemented around the APIs provided
by JModelica.org. The main goal of the framework, is to provide easy and configurable
simulations with both NMPC and LMPC. The simulation framework consists of several
different components. In Figure 5.1, an overview of all the components is given. Two
domains are considered when discussing the implementation; the Modelica domain and
the JModelica.org domain. The JModelica.org domain is in practice a collection of Python
modules. The following sections will account for the different components in Figure 5.1,
together with implementation considerations regarding MPC and EKF. A more practi-
cal introduction to the software is given in Appendix B, together with setup and run
instructions in Appendix A.

Figure 5.1: Overview of the different components included in the implementation.

5.1 Modelica domain

The Modelica domain, depicted in Figure 5.1, shows the three models considered in this
project; the C2 model, the linear C2 model and the simulation model. The C2 model
and the linear C2 model include an OCP formulation in Optimica, as they are used in
optimization. The simulation model only includes a Modelica model, as it only serves
the purpose of simulation.

The Modelica domain consists of the models described in Chapter 3 Modeling.
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However, when employing JModelica.org for optimization purposes, a single model with
clearly defined inputs and outputs has to be provided. The combined district heating
model described in Section 3.8, uses an input and output bus, to apply input signals and
extract output signals, for all production units and the consumers. Due to limitations
in the JModelica.org Modelica compiler, it is required that the top-level inputs, for a
model used in an optimization problem, are defined with the type Real. Thus, a specific
Modelica model has been created, for the sole purpose of use in JModelica.org, which
instantiates the combined district heating system, and routes the bus I/O to Real inputs.
The Modelica model is depicted in Figure 5.2.

This JModelica.org-exposed Modelica model also handles the implementation of the
cost function, defined in Section 4.1. Another possibility would have been to implement
it in the Optimica code, which handles the formulation of the OCP, but by implementing
it in Modelica code, the cost function is always evaluated, even when simulating to pre-
defined input signals. This very useful, considering the fact, that a specific simulation
model has been constructed. Thus, when simulating using the simulation model, the
cost function will also be evaluated. As Modelica is object-oriented, the JModelica.org-
exposed Modelica model is shared between the C2 model, the linear C2 model and
the simulation model; the only difference lies in which district heating system model is
instantiated. This has the benefit, that the three models share the same interface, making
it easy to apply the same set of input signals to all models.

Everything related to the cost function, is implemented in the MPC-block, depicted
in Figure 5.2. By handling the cost function in the Modelica model, the Optimica code
very conveniently boils down to extending the Modelica model and simply pointing to
the cost function defined in the MPC-block.
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Figure 5.2: The JModelica.org-exposed Modelica model; routing inputs to Real
signals, through an MPC-block. The MPC-block implements the cost function is
Modelica code; this enables the evaluation of the cost function, even when just

simulating the system to fixed input signals.
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5.2 JModelica.org domain

Moving from the Modelica domain to the JModelica.org domain, is handled by compiling
FMUs for each model and by compiling Modelica models and Optimica models to DOP
using the Modelica compiler in JModelica.org. This is depicted in Figure 5.1. The linear
C2 model is derived by linearizing the C2 model using methods available through pyfmi
in the JModelica.org domain. This is illustrated in Figure 5.1, by the arrowing from the
C2 simulator FMU to the linear C2 simulator FMU and DOP. The simulator objects in
Figure 5.1, are effectively implemented as a Python Simulator class, wrapping simulation
functionality available through pyfmi and extending with data aggregation functionality.
Thus, the three simulator objects expose almost the same interface. MPC and EKF have
also been implemented as Python classes.

5.2.1 MPC class

The purpose of the MPC class, it to wrap the optimization tools provided by JModelica.org
in an appropriate abstraction level. The desire is construct a class, that boiled down
exposes two methods; an update method that takes state information and sets up a new
optimization problem to be solved and a sample method, that solves the optimization
problem and returns optimal inputs to be applied for a single sample. Upon instantiating
an object of the class, everything else is setup behind the scenes, given options provided
in a a suitable data structure – thus allowing an MPC simulation loop with minimum
code overhead.

The implementation of MPC is divided into three step:

• Initialization step: OCP is transcribed to NLP

• Update step: Initial conditions, start time (t0) and final time (t f ) are updated

• Solution step: NLP is solved

It is desirable to limit the computational effort on-line, even though the sample time has
been chosen as ts = 30min, which in a real-world scenario gives plenty of time for com-
putations to complete. By limiting the amount of computations on-line, the simulation
loop can be executed faster. Thus, the initialization step is kept off-line, only transcribing
the OCP to an NLP once. This is possible, as JModelica.org provides methods to alter the
resulting NLP, manipulating parameters such as initial conditions for states, start time,
t0, and final time, t f .

A good initial guess for the optimizer is essential[12]. To provide a good initial
guess on-line, JModelica.org provides warm starting of the optimizer; using the previous
solution as an initial guess for the subsequent optimization. A first initial guess is provided
by using nominal trajectories.
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Numerical optimization performance is highly dependent on how well scaled the
problem is; with poor scaling resulting in slow convergence or divergence. Scaling is espe-
cially important for thermo-hydraulic model, as the difference in magnitude of the states
(e.g. temperature in ◦C versus pressure in Pa) often provides ill-conditioned systems.
Scaling is handled automatically in JModelica.org, by providing nominal trajectories in
the form of a previous simulation. The maximum absolute value of all variables is then
used in a scaling. Scaling is handled before transcription; this can prove a problem if the
trajectories move to far away from the nominal trajectories used for scaling. It is however
possible to update scaling factors on-line directly in the NLP, if deemed necessary.

It is desirable to provide trajectories with power price data, κelspot, and ambient
temperature, Tamb. JModelica.org allows specifying external data (e.g. references, dis-
turbances) for an optimization problem before transcription. These exogenous inputs
are thus also transcribed. Extra care had to be given here, since the NLP is discrete, the
exogenous inputs are after transcription not specified by time, t, but by sample number,
k.

Consider an example, of a price increase at t = 1h. With a sample time of ts =
30 min, the price increase would in the NLP happen at sample k = 2. This works the
first time the NLP is solved. For the next iteration, the start time, t0, and final time, t f ,
have been updated to reflect the moving horizon, but the price increase is still fixed at
k = 2, thus happening one hour into the future (given the specified sample time). The
exogenous inputs have to be shifted one sample per iteration, to adhere to the moving
horizon. This feature is essential for this thesis and is not implemented in existing MPC
frameworks, e.g. the one described and implemented in [19].

5.2.2 EKF class

The purpose of the EKF class is equivalent to the MPC class; to wrap the underlying algo-
rithm in an appropriate abstraction level. The desire is to construct a class that, boiled
down, exposes three methods; a method computing the time update step, a method com-
puting the measurement update step and a method that returns the current state estimate,
x̂ . The EKF implementation is straight forward, given the account of the algorithm in Sec-
tion 2.5. Especially when using FMUs, as pyfmi, introduced in Section 2.6.1, provides
methods to obtain linearized systems.

Instantiating an object of the EKF class, requires an FMU – together with covari-
ance matrices, sample time and configurations related to measurable states. The FMU is
used to both provide on-line linearization but it is also used to simulate the nonlinear
model; providing both x̂ k|k−1 and ŷk|k−1; state and measurement estimates given no
new measurement information.
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5.3 Simulation setup

The simulation loop is conceptually implemented, as the control loop depicted in Fig-
ure 5.3. The exogenous inputs, Tamb and κelspot used in simulation, is historical data
provided by Added Values P/S. The data provided is sampled with a sampling time of
1 h. The power price, κelspot, is for Western Denmark in 2015. The ambient temperature
is also for 2015, but is sampled in Wales. This inconsistency is acceptable, given that
the entire project is on a conceptual basis and since the Tamb data fits with the designed
nominal ambient temperature of 10 ◦C. To distinguish between using Tamb and κelspot

for prediction in MPC and for simulation, noise is applied before applying the inputs
in simulation. Each Tamb sample is applied noise sampled from a normal distribution
with standard deviation σ = 0.1 and each κelspot sample is applied noise sampled for a
normal distribution with standard deviation σ = 10.

Before running the simulation loop, all states are initialized in steady-state. The
entire simulation loop is run with a sampling time of 30 min, equivalent to that of the
designed MPC and EKF. A single iteration consists of the following steps:

Update MPC Updating initial conditions given x̂ k, final time, shifting exogenous input

Sample MPC Solving the OCP, obtaining input uk

EKF time update EKF time update step, given the new input signal

Apply uk Simulate all three models with uk and noisy exogenous inputs

Obtain noisy measurement Select measured states and add noise accordingly

EKF measurement update Use measurement in EKF to obtain state estimate, x̂ k

All three models are always simulated, to always provide the necessary data to perform
comparisons.
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Figure 5.3: The implemented simulation loop. All three models are always simulated
for comparison purposes. Noise is added to exogenous inputs before applying them, to
distinguish from the inputs used for prediction. Measurement is obtained, by selecting

measured states through C and applying noise.



Results 6
This chapter will account for and discuss simulations performed, using the designed
control strategy described in Chapter 4 Control and the designed simulation framework
described in Chapter 5 Implementation. First, a simulation has been performed, to a
set of predefined ambient temperature and power price sequences, in order to provide
a well-defined simulation scenario, where causality is more easily identified. The main
performance evaluation, will however be by a very long simulation, using historical data
for both ambient temperature and power prices.

6.1 Preliminary simulation

The preliminary simulation, has been run with the exogenous inputs given in Figure 6.1.
These inputs define clearly distinguishable events, with low and high prices and low
and high ambient temperatures, without overlap. The preliminary simulation has been
performed – both for NMPC and LMPC – with exactly the parameterization derived in
Chapter 4 Control. The preliminary simulation was run on a Lenovo ThinkPad T530,
Intel i5-3320M @ 2.60 GHz and 4GB RAM.
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Figure 6.1: Exogenous input sequences used for preliminary simulation.
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6.1.1 Control inputs

In Figure 6.2, the resulting control input trajectories are shown. Generally, NMPC uses
more control input than LMPC. Looking at the load setpoint for the CHP, Lset, it is from
t = 0 h drawn to its minimum value of 0.3, as the CHP is more expensive to use comparing
to the HP. However, when the power price rises to 600 DKK/MWh at t = 36 h, the CHP
load is ramped up, to produce more power to sell. NMPC uses the CHP more than
LMPC. When the price drops down to 200 DKK/MWh again, the CHP is ramped down
to minimum load again.

The HP is used extensively through the simulation, as it is on average the cheapest
production unit. At the base power price of 200 DKK/MWh, the HP in powered with
approximately 2 MW. When the price goes negative, the incentive to use the HP increases
(as it will cost money to send produced power to the grid) and both the NMPC and
LMPC increases power to the HP; more in the case of NMPC. When the price rises to
600 DKK/MWh, the incentive to use the HP is very low and it it almost powered down
entirely. At t = 60 h, the ambient temperature drops, increasing the heat consumption of
the consumers. As a result of this, the HP power input is ramped up, because it is at that
time the cheapest production unit. Equivalently, when the ambient temperature rises,
the heat consumption decreases and the HP power input is lowered.

The accumulator is used very differently by NMPC and LMPC. The overall takeaway
is, that the NMPC uses the accumulator more aggressively, charging and discharging
more often. Both discharge during the first 12 h; the accumulator tank is half full, so
plenty of heat is available at almost no cost1. When the price drops below zero, both
the NMPC and the LMPC start charging, using excess heat produced by the HP, as it
is free. When the price reaches 200 DKK/MWh again, the accumulator is in both cases
again discharged. At t = 36 h the price reaches 600 DKK/MWh and the CHP load is
increased to produce more power to sell, however increasing the load also has the CHP
produce more heat; the heat production and consumption is balanced, by charging the
accumulator with the excess heat. In the LMPC case, the CHP load is simply kept lower,
to not produce excess heat. The LMPC keeps discharging the accumulator until zero
charge is reached – except for when the temperature rises, decreasing the consumer heat
consumption.

1Only control input penalty.
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Figure 6.2: Control inputs from preliminary simulation, for both NMPC and LMPC.
Showing both derivatives (the actual manipulated variables) and the correspondingly

integrated signals.
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6.1.2 EKF performance

In Figure 6.3 the EKF provided state estimates of the three non-measurable consumer
states are shown, together with the estimated consumer heat flow. To investigate the
performance of the EKF, the actual states in the simulation model are shown. As discussed
in Section 3.10, the simulation model includes a stochastic consumer model, featuring
five groups of consumers, resulting in five actual states pr. state shown in Figure 6.3.
The EKF however, is based upon the C2 nonlinear model and thus only includes a single
group of consumers.

The EKF provides reasonable state estimates, given no tuning of the covariance
matrices. The consumer heat flow estimate shows a steady-state error but nothing too
alarming. It is concluded, that no tuning is required and that the estimates are usable
for control. Especially since both NMPC and LMPC works with the EKF state estimates.
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Figure 6.3: EKF performance by a comparison to non-measurable consumer states.
Deviations are acceptable, considering no measurements. A small steady-state error
appears on the consumer heat flow. Only showing response from simulation with
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6.1.3 Heat production and consumption

In Figure 6.4, an overall view of heat production and consumption is given. Just as
noted in Section 6.1.1, the responses provided by NMPC and LMPC are similar, the
main difference being the use of the accumulator. The boiler is generally not very active,
given the high cost of heat production, but due to the ideal pressure difference control,
the response is very jumpy. The boiler is mainly active when the accumulator is charged
or discharged. Another interesting effect visible, is that the LMPC HP response almost
seems delayed compared to the NMPC response. Figure 6.4 also shows how the NMPC
uses excess heat from the CHP, when power prices are high, to charge the accumulator.
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Figure 6.4: Heat production and consumption; using NMPC (solid) and LMPC
(dashed). Noticeable difference in use of accumulator.

6.1.4 Supply and return temperature

In Figure 6.5 the supply and return temperatures are given. The supply temperature
is kept very close to the desired 80 ◦C by the temperature controllers in the production
units. The return temperature is close to the nominal return temperature of 40 ◦C. Also
shown in Figure 6.5 is the COP for the HP, as it depends on the supply temperature
and the ambient temperature; with a seemingly steady supply temperature, the changes
in COP is mostly due to the changes in ambient temperature. The change is COP does
not seem to motivate either controller to use the HP more, as it is already the cheapest
production unit.
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Figure 6.5: Supply temperature, return temperature and COP; using NMPC (solid)
and LMPC (dashed).
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6.1.5 Power trade

In Figure 6.6 variables related to power trade are shown. The traded power, Ptrade, is the
difference between power produced by the CHP, Pproduced, and the power consumed by
the HP, Pconsumed. During the time where the power price is 200 DKK/MWh, Pproduced =
3 MW and Pconsumed ≈ 2 MW; leaving ≈ 1MW to be sold. When the price drops to
−200 DKK/MWh, it is undesirable to sell power letting more power be consumed instead.
When the price increases to 600 DKK/MWh, it is desirable to produce and sell as much
power as possible; and thus Pconsumed ≈ 0 MW and Ptrade ≈ Pproduced.

When the ambient temperature drops to 5 ◦C, the heat consumption increases. The
cheapest way to provide more heat is through the HP, buying the necessary extra power
from the grid. As the ambient temperature rises to 15 ◦C, the heat consumption decreases,
thus Pconsumed is lowered and Ptrade is equivalently increased.
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Figure 6.6: Power trade; using NMPC (solid) and LMPC (dashed). Power
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6.1.6 Cost function breakdown

In Figure 6.7 a breakdown of the cost function is depicted. Here J is the combined cost
function, described in Section 4.1:

J =

∫ t f

t0

R(t)−W (t)− D(t) dt (6.1)

The performance of NMPC and LMPC, is for this simulation almost identical, when looking
at the value of the cost function. The same goes for a comparison of the cumulated
revenue,
∫

R, showing that using either controller results in almost the same revenue
trajectory. Comparing the control input penalty term, W , NMPC is generally punished
more, which is due to the more aggressive use of the accumulator. Finally, the consumer
QoS term, D, shows that the consumer floor temperature is kept close to the desired floor
temperature – for both NMPC and LMPC; only deviating when the ambient temperature
changes. The deviation is however only ≈ 2 ◦C, which is deemed acceptable.
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6.1.7 Solution time

In Figure 6.8, a comparison of MPC solution time has been made. It shows, for both
NMPC and LMPC, the solution time, tsol for each sample/iteration. NMPC is significantly
slower than LMPC, requiring almost double the time to obtain a solution.
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Figure 6.8: Comparing NMPC and LMPC solution times. The plot shows the solution
time, tsol, for each iteration throughout the simulation.
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6.2 Long simulation

The long simulation has been run with exogenous inputs given in Figure 6.9. These
inputs are from historical data of ELSPOT prices for Western Denmark in 2015 and
temperatures from Wales in 2015, provided by Added Values P/S. The simulation time
is set to 80 d; both to investigate robustness through real-world data and to provide a
longer simulation on which to evaluate performance.

Also, due to the long simulation time, the hardware on which the simulation was
run, has been changed, to reflect a significant increase in memory requirement. Thus, the
long simulation was run on a desktop computer featuring an Intel i7-6700 @ 3.40 GHz
and 16GB RAM. This has to be noted, since the processor change is reflected in faster
solution times.
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Figure 6.9: Exogenous input sequences used for long simulation.

6.2.1 Control inputs

In Figure 6.10, the resulting control input trajectories are shown. Generally, as for the
preliminary simulation, NMPC uses more control input than LMPC. Looking at the load
setpoint for the CHP, Lset, it is mainly kept at minimum load, except times with signifi-
cantly higher power prices, e.g. at t ≈ 20d and t ≈ 35d, where the power price reaches
400 DKK/MWh.

The HP use is similar between the two controllers; the trajectories feature the same
overall response, except for e.g. at t ≈ 20d, where NMPC turns down the HP, as the CHP
is used at almost maximum load providing more than enough heat for the consumers.
The reason for this difference may stem from the difference in use of the accumulator,
between NMPC and LMPC.

The accumulator is almost neglected when running with LMPC. It is discharged
from the beginning, leaving it almost empty through the entire simulation. On the other
hand, NMPC uses it extensively, charging and discharging on a daily basis, following the
daily change in ambient temperature – and when power prices are significantly high and
low.
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Figure 6.10: Control inputs from long simulation, for both NMPC and LMPC.
Showing both derivatives (the actual manipulated variables) and the correspondingly

integrated signals.
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6.2.2 EKF performance

In Figure 6.11 the EKF provided state estimates of the three non-measurable consumer
states are shown, together with the estimated consumer heat flow. The EKF provides
acceptable state estimations, just as shown for the preliminary simulation. The most
notable performance issue, is the steady-state error on the consumer heat flow.
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Figure 6.11: EKF performance by a comparison to non-measurable consumer states.
Only showing response from simulation with NMPC; no difference in performance

when using LMPC.

6.2.3 Heat production and consumption

In Figure 6.12, an overall view of heat production and consumption is given. Just as
noted in Section 6.1.1, the responses provided by NMPC and LMPC are similar, the main
difference being the use of the accumulator; this is reflected in the increased use of the
boiler by LMPC.
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Figure 6.12: Heat production and consumption; using NMPC (solid) and LMPC
(dashed).
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6.2.4 Supply and return temperature

In Figure 6.13 the supply and return temperatures are given. The supply temperature
is kept close to the desired 80 ◦C by the temperature controllers in the production units.
The return temperature is also close to the nominal return temperature of 40 ◦C.

The varying COP is also given in Figure 6.13. At t ≈ 40 d, the ambient temperature
drops below 0 ◦C, which has the COP drop below 2. It would be interesting to see a
corresponding drop in use of the HP, but a drop in power price is featured at the same
time; motivating the use of the HP, making it difficult to identify the effect of the COP
on the use of the HP.
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Figure 6.13: Supply and return temperature; using NMPC (solid) and LMPC
(dashed). The COP is dependent on ambient temperature and supply temperature.

6.2.5 Power trade

In Figure 6.14, power trade is shown, together with power produced and power con-
sumed. The most notable difference is given at high power prices, where NMPC uses the
CHP more, to produce more power to sell.
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Figure 6.14: Power trade; using NMPC (top) and LMPC (bottom). Power
consumption is power used by the HP and power production is power produced by the

CHP.
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6.2.6 Cost function breakdown

In Figure 6.15 a breakdown of the cost function is depicted. The most interesting result,
compared to the preliminary simulation, is that in the long run, NMPC features better
performance, reflected in both the combined cost function and the cumulated revenue.
The extensive use of control input by NMPC is also identifiable in the control input
penalty term, W .
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Figure 6.15: Comparing NMPC and LMPC through the cost function and terms
involved.

6.2.7 Solution time

In Figure 6.8, a comparison of MPC solution time, tsol for each sample/iteration, has
been made. The comparison shows, that LMPC is faster and computationally more robust.
Several iterations show very long solution times for NMPC and at t ≈ 38d, NMPC fails
to converge to a solution. This incident could be related, to a low ambient temperature
and a low power price happening at the same time.
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Figure 6.16: Comparing NMPC and LMPC solution times. The plot shows the
solution time, tsol, for each iteration throughout the simulation.





Conclusion 7
The aim of this thesis was to evaluate the use of NMPC as a control concept for produc-
tion planning and balance control, for a fictitious combined power and district heating
production portfolio, in a component-based modeling context. The fictitious production
portfolio was chosen to include a CHP (producing power and heat), a compression HP
(electrical power to heat), a peak-load boiler and an accumulator tank. These units were
chosen with inspiration from the production portfolio at Sønderborg Fjernvarme.

The idea was to investigate the benefits of MPC, considering first-principle non-
linear models in the optimization problem, eliminating the need for linearization. This
is desirable, as linearization potentially involves the loss of valuable information in an
optimization context – and because linearization involves manual preconditioning la-
bor. To evaluate the benefits, a comparison of NMPC and LMPC was necessary; the only
difference being the use of either nonlinear or linear models.

A nonlinear C2 continuous model of the production portfolio together with con-
sumers has been built in Modelica. The model has to be C2 continuous in order to enable
its use in an optimization context. For the model to be C2 continuous, extended use of the
MSL was not possible, and a set of simplified Modelica fluid connectors and components
were built to meet the requirement. A scalable consumer model was designed as a sim-
plified house with floor heating, to reflect average heat consumption. Being scalable, the
consumer model could parametrically be set to model the heat consumption of 10000
consumers, comparable to the amount of consumers supplied by Sønderborg Fjernvarme.
The production units were modeled equally simple, featuring only the most basic dynam-
ics – but they were all built using the object-oriented capabilities of Modelica, allowing
exchange for more detailed models.

A C2 continuous model of a district heating system was obtained, complete with
control inputs for the different production units, by connecting the production portfolio
together with the consumers. This model was linearized around a single general-purpose
operating point, obtaining a linear model of the system for use in LMPC. Through simula-
tion studies, the linear model gave a response similar to the nonlinear model – but with
a noticeable difference for two states when charging and discharging the accumulator.

Together with the C2 continuous nonlinear model and the linear model, a third
model was built; a simulation model. The simulation model was, to distinguish it from
the C2 model, constructed using components from the MSL, providing a more detailed
model. For more interesting simulations, the simulation model includes an extended con-
sumer model, featuring several groups of consumers with stochastic parameter variations.
Simulations showed comparable responses between the C2 model and the simulation
model, with the most notable difference being the consumer response, as expected.
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The MPC control concept, was designed to feature an economical cost function,
maximizing revenue and consumer QoS, subjected to a changing power price and am-
bient temperature and with a simplified power market, allowing power to be bought or
sold at the same price. To solve the included OCP, JModelica.org, a framework provid-
ing optimization tools on Modelica models, was employed. Using JModelica.org, direct
collocation was used to transcribe the infinite dimensional OCP into a finite dimensional
NLP. Under the assumption that consumer states are not measurable, an EKF was de-
signed to provide full state information. A simulation framework was built around the
APIs provided by JModelica.org, allowing simulations with both NMPC and LMPC, by
providing it with Modelica models.

Simulation studies were conducted, to investigate the differences between NMPC
and LMPC. A preliminary simulation, featuring a fabricated power price and ambient tem-
perature with clearly distinguishable events – and a long simulation, featuring historical
power prices and ambient temperatures, simulating the system over several months. The
two simulations showed acceptable performance of the EKF, with generally good state
estimates but with a noticeable steady-state error on the estimated heat consumption.

Comparing NMPC and LMPC, an overall similar response was obtained through
both the preliminary simulation and the long simulation. The main difference was in the
use of the accumulator; where NMPC showed aggressive use of the accumulator, LMPC
showed the desire to always empty the accumulator – only very special cases (e.g. very
low power prices) motivated the LMPC to charge. This difference in accumulator use also
propagated to the use of other production units. One noteworthy example; when power
prices were high, the incentive was high for the CHP to run at a high load, producing
power to be sold. In the NMPC case, it would run the CHP at full load, charging the
accumulator with the excess heat. In the LMPC case, it would run the CHP at a lower
load, not utilizing the capacity of the accumulator. It is very interesting to note, that it
was also accumulator use, that featured the most noticeably difference in simulation
response, when comparing the nonlinear model to the linear model.

Looking at the preliminary simulation, no difference in performance between NMPC
and LMPC was identifiable, when looking at the cost function. However, when looking
at the long simulation, it was very clear that NMPC was better performing; both in term
the entire cost function but also considering only the revenue term. This performance
difference is likely due to the more active use of the accumulator by NMPC. The lack of
accumulator use by LMPC could perhaps be alleviated by choosing a different operating
point – or by configuring the accumulator differently – but the likely conclusion to be
drawn, is that information lost through linearization meant that NMPC had the upper
hand in the performance comparison.
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There is however also a drawback when using NMPC, as a comparison of MPC
solution times showed the LMPC to provide solutions significantly faster and more robust,
with the NMPC sometimes not converging to a solution at all. The solution time aspect is
however, in a real-world implementation not as important, considering the sample time
chosen – but numerical robustness is important and contingency strategies have to be
considered.

Considering the resulting MPC control concepts in a real-world context, the simpli-
fications made do not allow for any noteworthy results. Important aspects not included
in the models are e.g. transport delays and heat loss, which would be very interesting
to add. The power market model would also need to be updated. Thus, the results are
only interesting in a purely conceptual sense.

However, the method of posing first-principle models in Modelica and using these
models directly in an OCP for MPC – with a minimum amount of preconditioning labor
– was by the author found to be very productive and it is highly encouraged to actively
pursue this approach. The biggest disadvantage, considering the specific tools, currently
lies in the lack of a MSL fluid interface, that supports the C2 constraint, to avoid lock-in
to a custom interface. If the interface could allow for both detailed medium models and
C2 models, a greater level of component-reuse is achievable.
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Software setup and run A
This appendix contains as guide to setting up the designed simulation framework. The
guide assumes the host PC to be running GNU/Linux 64-bit; attempts at using the soft-
ware under Windows or OS X has not been made.

A.1 Dependencies

The software depends on JModelica.org and Dymola. For this thesis, JModelica.org 1.17
(r9313) was used. During the work on the thesis, JModelica.org 2.0 was released; how-
ever first attempts at moving to the new release showed issues, when compiling Modelica
models. Thus, for reproduction of results, it is advised to use r9313. JModelica.org was
compiled to use IPOPT 3.12.4 and Java 7 – it was later found that Java 8 was also
compatible.

Dymola 2017 has been used.

A.2 Setup

The software is available in the .zip archive, handed in together with the thesis. It has
the following tree structure when extracted:

/
design/

control/
data/
model/
start.mos

documentation/
setup.sh
README.md

The documentation folder contains notes on installing JModelica.org and Dymola. After
extraction, the setup consists of setting up environment variables. This is conveniently
handled, by sourcing the setup.sh file in the root folder. Sourcing is done by issuing
the following command:

$ . setup.sh

The setup.sh file assumes that JModelica.org is installed in /opt/jmodelica and that
IPOPT is installed in /opt/ipopt. This has everything setup for single session use; for
continuous use, ensure that the shell of choice sets up the environment variables upon
startup.
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A.3 Running

Simulations are started, using the design/control/run.py script. The script can be
run without arguments; this will start a simulation using NMPC, with t f = 1d:

$ cd design/control
$ ./run.py

NOTE; JModelica.org depends on Python 2.7, thus ensure that the current environment uses
Python 2.7 as default, otherwise, start the script using the Python 2.7 interpreter directly.
The run.py script exposes several command-line arguments, to configure the simulation:

# Simulate 5 days w. LMPC, w. historical data from day 20
$ ./run.py -c LMPC --start 20 --length 5
# Simulate 10 days w. NMPC, w. historical data from day 100
$ ./run.py -c NMPC --start 100 --length 10

The software employs caching of compiled FMUs, these are stored in design/control/FMUs.
To clear the cache (if changes to Modelica model has been made), delete the contents
of the folder or use the –clear flag, when simulating:

# Simulate w. clear cache; forcing re-compilation of FMUs
$ ./run.py --clear -c NMPC --start 10 --length 10

Simulation output, is provided in the HD5 format, with trajectories for all model vari-
ables. Configurations to simulation parameters; e.g. MPC parameters or EKF covariances
are done in design/control/helpers/config.py. A successful run, will exit with the
following output:

$ ./run.py
...
0: Solve_Succeeded in 28 iterations
1: Solve_Succeeded in 40 iterations
2: Solve_Succeeded in 39 iterations
...
47: Solve_Succeeded in 33 iterations
Simulation complete (setup: 13.0 s, sim: 73.0 s)



Software documentation B
The software is available in the .zip archive, handed in together with the thesis. When
extracted, the following source tree is available:

/
design/

control/
data/
model/
start.mos

documentation/
setup.sh
README.md

The design folder holds the software, consisting of two parts; a Modelica model residing
in model and a simulation framework built using JModelica.org, residing in control.
The data folder contains the historical data used in simulations.

B.1 Simulation framework

The simulation framework, is constructed by a series of Python modules and classes. The
source tree is given as:

control/
controllers/

MPC.py
EKF.py

dhsim/
simulators.py

helpers/
simulation.py
run.py
problem.mop
gen_dhp_fmu.mos

The controllers module contains classes for MPC and EKF and the simulators con-
tains simulator classes, extending on the functionality provided by pyfmi to simulate
FMUs. The helpers module contain several helper functions, used extensively in the
other modules. In simulation.py, the main simulation loop is given and run.py is
a convenient script, that starts the simulation loop exposing simulation parameters
as command-line arguments. The optimization problem is formulated in Optimica in
problem.mop and gen_dhp_fmu.mos is a Dymola script, compiling the simulation model
to an FMU.
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B.1.1 MPC class example

The MPC class is instantiated and used as:

from controllers import MPC
# Instantiation:
mpc = MPC(

problem, data, init_trajectory, nom_trajectory,
settings

)
# k = sample number, x_k = state
mpc.update(k, x_k)
# time = solution time, u_k = new control input
time, u_k = mpc.sample(k)

Parameters used for instantiating an MPC object:

problem a DOP compiled with JModelica.org

data exogenous input trajectories

init_trajectory initial solution guess as simulation trajectory

nom_trajectory nominal trajectory for variable scaling

settings sample time, prediction horizon and collocation points

B.1.2 EKF class example

The EKF class is instantiated and used as:

from controllers import EKF
# Instantiation:
ekf = EKF(C2_simulator, settings)
# k = sample number, x_hat_k = state estimate
# u_k = control input
ekf.time_update(k, x_hat_k, u_k)
# y = measurements
ekf.measurement_update(y)
x_hat_k = ekf.get_x_hat()

Parameters used for instantiating an EKF object:

C2_simulator Simulator object (FMU abstraction)

settings Sample time, measured states, P0, Q, R
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B.1.3 Simulator class example

The Simulator classes, provides an appropriate abstraction on top of the FMU class.
The main functionality being steady-state initialization per default, providing trajectory
aggregation functionality, maintaining a compiled FMU and DOP and exposing initial
and nominal trajectories, for easy use together with the MPC class. The Simulator
classes are instantiated and used as:

# One class for each model considered in the project,
# but they all extend the same base class
from dhsim import SimulatorC2, LinearSimulatorC2, Simulator
import helpers

models = helpers.get_models()
# Instantiation (models is a dict() pointing to Modelica models):
simulators = {}
simulators['C2'] = SimulatorC2(models['C2'])
simulators['linC2'] = LinearSimulatorC2(models['linC2'])
simulators['sim'] = Simulator(models['sim'])

u_k = helpers.constant_input(
{'T_amb': 10, 'der_L_set': 0, 'der_P_hp': 0, 'charge_rate': 0}

)
# Simulations, starting in steady-state (state parameter)
# with the input u_k. The append parameter, ensures that
# resulting trajectories are appended to an underlying data structure
simulators['C2'].simulate(

state=simulators['C2'].x_ss,
start_time=0, final_time=3600,
input=u_k, append=True

)
simulators['linC2'].simulate(

state=simulators['linC2'].x_ss,
start_time=0, final_time=3600,
input=u_k, append=True

)
simulators['sim'].simulate(

state=simulators['sim'].state_ss,
start_time=0, final_time=3600,
input=u_k, append=True

)

# Get state
x_C2_k = C2.get_state()
x_linC2_k = linC2.get_state()
sim_state_k = sim.get_fmu_state()
# Get aggregated trajectories for all variables
C2_res = C2.aggregated_result()
linC2_res = linC2.aggregated_result()
sim_res = sim.aggregated_result()
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B.1.4 Minimal NMPC loop example

A condensed example, of how an NMPC simulation loop is put together, using the above
mentioned modules, simulating only on the simulation model – using historical data.

from dhsim import SimulatorC2, Simulator
from controllers import MPC, EKF
import helpers

models = helpers.get_models()
settings = helpers.get_settings(24) # 24 hour simulation

SIM = Simulator(models['sim'])
C2 = SimulatorC2(models['C2'])
SIM.build_state_map(C2.x_ss)

data = {}
data['elspot'] = helpers.create_external_data(

*helpers.get_elspot(0, 24 + 10)
)
data['T_amb'] = helpers.create_external_data(

*helpers.get_tamb(0, 24 + 10)
)

mpc = MPC(
C2.problem, data, C2.initial_trajectory,
C2.nominal_trajectory, settings['MPC']

)
ekf = EKF(C2, settings['EKF'])

sim_state_k = SIM.state_ss
x_hat_k = C2.x_ss
u_k = ()

for k in range(settings['N_samples']):
mpc.update(k, x_hat_k)
time, u_k = mpc.sample(k)
ekf.time_update(k, x_hat_k, u_k)

SIM.simulate(
state=sim_state_k,
start_time=k*mpc.Ts, final_time=(k+1)*mpc.Ts,
input=u_k, append=True

)
sim_state_k = SIM.get_fmu_state()

ekf.measurement_update(
SIM.get_measurement(

ekf.outputs, settings['measurement_noise_std']
)

)
# Get state estimate
x_hat_k = ekf.get_x_hat()

sim_res = SIM.aggregated_result()
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B.2 Modelica model

The Modelica model is found in design/model, and is divided into two component
libraries; one for the district heating models (model/DHP) and one for the simplified
C2 continuous media model (model/FluidJM). The district heating component library
has the following tree structure:

DHP/
Components/
Optimization/
DATA/
Icons/

The Components include all production portfolio models and consumer models, divided
into the C2 models and the simulation models. For each model in the production portfolio,
Variants are available, allowing easy substitution with more detailed models. Also, the
Modelica model is complete with UnitTests for each model, subjecting the models
to known inputs, with fixed boundary conditions. The Loops models consists of the
combined district heating system; using both C2 models, simulation models and the linear
model. The Interfaces contain the interfaces shared among the different models, e.g.
the input and output bus.

Components/
C2/

Consumers/
Consumer.mo
Variants/
UnitTests/

Producers/
PowerPlants/

CHP.mo
Variants/
UnitTests/

HeatPumps/
Boilers/
Accumulators/

SIM/
Consumers/
Producers/

Loops/
LoopC2.mo
LoopSIM.mo
LoopLIN.mo

Interfaces/
InputBus.mo
OutputBus.mo

DATA contains shared parameters, Optimization contains the models exposed to JMod-
elica.org, complete with the cost function.
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