




Summary

Introduction

Immunohistochemical staining is one of the tools used by the pathologist to examine tissue samples.
This method is used to determine the presence cancerous tissue and its type by applying specific
stains. Different cellular components have different responses and this will highlight differences.
The pathologist can then base their diagnosis on the observations made on these responses. The
immunohistochemical staining itself is a process that involves several steps which can lead to varia-
tions. Several studies have covered the topics of inter-laboratory and inter/intra-observer variability,
but intra-laboratory seems uncovered. The inter-laboratory variability seems to be commonly ac-
knowledged by most authors. Their primary suggest is that standardisation of protocols should
be attempted. However in order to standardise, one should have points of reference as to what a
good staining is. Also, at the observer’s level the variability is present, both the inter- and intra-.
This was found to be a minimum for the inter-observer variability. However for the intra-observer
variability studies it was found that the subjective interpretation of the observer could vary on a
daily basis, and since it is done manually that it can depend on the alertness and experience of
the observer. One of the initiatives that acts as a quality assessment for laboratories worldwide
is NordiQC based in Aalborg, Denmark. The laboratories’ samples are graded in consensus by 5
clinicians into optimal, good, borderline or poor based on the staining quality. This grading is
the qualitative interpretation and is thus still subject to variability. Studies examining the use
of Computer-Aided-Decision systems have shown that these can be a future tool within pathol-
ogy. Therefore this master thesis seeks to investigate the plausibility of grading the samples using
quantitative measures by the following study aims:

• To develop an algorithm capable of analysing the NordiQC samples separately

• To investigate the possibility of using image features and classification to describe NordiQC
grades

• To validate the results compared to the NordiQC grades

• To explore the plausibility of a CAD system for the NordiQC collaboration

Method

MATLAB® 2016b was used to develop a set of algorithms. Initially the oesophagus was removed
from the sample. This was followed by the detection of each tissue core for all samples. This would
specify the region of interest for the subsequent snake. A dictionary snake model was applied to
segment all the cores and remove the background. From the segmented cores the features were
extracted and the Quadratic Discriminant Analysis was applied. Using the Sequential Forward
Selection and the Backward Elimination, the feature selection was done for each core. A 5-fold
classification was then applied to validate the results comparing them to the NordiQC assessments.

Results

All cores were successfully detected and the deformable model segmented all cores with acceptable
results. Excluded features varied between cores suggesting different features describe each core. The
maximum and minimum accuracy, sensitivity and specificity were calculated for all cores. From 10
repetitions the average accuracy when validating each core was between 60-85%. Core 2 gave the
best results, while core 6 had the lowest accuracy. Tables of misclassifications show also that the
classified sample for core 2 rarely shifted more than one grade compared to its assessed grade, while
core 6 had a larger frequency of misclassified grades. There was little difference between the average
accuracy and the grade specific accuracy for each core.
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Discussion

From the results of the validation it is shown that the used classifier can indeed differentiate the
samples into their NordiQC grades. This was done by showing an average accuracy ranging from
60-85%. This performance was achieved using only 38 samples and the initial 91 features, primarily
intensity-based supplemented by staining colour specific features. This could possible be improved
by adding more samples or introducing other feature spaces. The detection and segmentation made
it possible to analyse each core in each sample separately. This segmentation process could be
refined by introducing core specific deformable models. This thesis shows that CAD can be used
to classify staining quality in the case of NordiQC. However to increase the overall performance,
further study should be conducted.
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Resume

Introduktion

Immunohistokemisk farvning er blot en af de redskaber en patolog kan gøre brug af når vævsprøver
skal undersøges. Denne metode bruges til at vurdere tilstedeværelsen og type af cancer gennem
anvendelsen af specifikke farvestoffer. Forskellige cellekomponenter reagerer forskelligt på selve
farvningen og dette kan tydeliggøre forskelle i vævsprøven. Patologen kan derefter udforme en
diagnose ud fra observationer gjort i selve vævsprøven. Selve den immunohistokemiske farvning
er en proces der indeholder mange forskellige trin, som kan lede til variationer. Flere studier har
undersøgt emnerne omkring inter-laboratorie samt inter-/intra-observatør variabilitet, selvom intra-
laboratorie variabilitet synes uberørt. Selve inter-laboratorie variabilitet lader til at være anerkendt
af de fleste forfattere. Deres primære forslag til dette er at standardisering af protokoller bør
forsøges. Men før man kan standardisere disse, så bør man have referencepunkter til hvad en god
farvning reelt er. Også på observatørniveau optræder variabilitet, både som inter- og som intra-.
Selve inter-observatør variabilitet blev fundet til at være et minimum. Men for intra-observatør
variabilitet fandt flere studier at observatørens subjektive fortolkning kunne variere fra dag til dag,
og da dette udføres manuelt så afhænger dette af observatørens årvågenhed og erfaring. En af de
initiativerne som fungere som kvalitetsvurdering for laboratorier på verdensplan er NordiQC med
beliggenhed i Aalborg. De enkelte laboratoriers prøver bliver vurderet af et panel bestående af 5
klinikere som enten optimal, good, borderline el. poor ud fra kvaliteten af selve farvningen. Denne
vurdering er en kvalitativ fortolkning og kan derved stadig påvirkes af variabilitet. Undersøgelser
har vist at Computer-Aided-Decision kan blive et fremtidigt redskab for patologer. Derfor søger
dette speciale at undersøge muligheden for vurderingen af disse vævsprøver ved hjælp af kvantitative
enheder. Dette gøres gennem følgende projektmål:

• Udviklingen af en algoritme der muliggør separat analyse af NordiQC vævsprøver

• Undersøge muligheden for at beskrive NordiQC vurderinger gennem brugen af billedkarakter-
istika og klassifikationer

• Validering af resultaterne op mod vurderinger foretaget af NordiQC

• Udforske muligheden for et CAD system målrettet NordiQC

Metode

MATLAB® 2016b blev anvendt til at udvikle en serie af algoritmer. Indledningsvist blev øsofagus
fjernet fra vævsbilledet. Dette blev efterfulgt af identifikationen af hver vævskerne i alle vævs-
billeder. Dette ville specificere området til den efterfølgende deformerbare model. En ’dictionary
snake’ blev anvendt til at segmentere alle vævskerne og fjerne billedbaggrunden. Fra disse seg-
menterede vævskerne blev der udtrukket ’features’ og ’Quadratic Discriminant Analysis’ blev an-
vendt. Gennem ’Sequential Forward Selection’ og ’Backward Elimination’ blev ’features’ valgt for
hver eneste vævskerne. En 5-fold klassifikation blev slutteligt anvendt for at validere resultaterne
og sammenligne dem med NordiQC’s vurdering.

Resultater

Alle vævskerne blev identificeres med succes og den deformerbare model segmenterede alle vævskernes
med acceptable resultater. De udeladte ’features’ varierede mellem vævskerne hvilket antyder at
hver vævskerne beskrives af forskellige ’features’. Den maksimale og minimale nøjagtighed, sensi-
tivitet og specificitet blev beregnet for alle vævskerne. Efter 10 repetitioner var den gennemsnitlige
nøjagtighed under valideringen af hver vævskerne mellem 60-85%. Vævskerne 2 havde det bedste
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resultat og kerne 6 havde det laveste. Tabeller over fejlklassifikationer viser at de klassificerede
vævsprøver for kerne 2 sjældent skifter mere end en grad når denne sammenlignes med NordiQCs
vurdering, hvorimod vævskerne 6 havde en større frekvens ang. fejlklassifikation. Der var mini-
mal forskel mellem den gennemsnitlige nøjagtighed og den vurderingsspecifikke nøjagtighed for alle
vævskerner.

Diskussion

Fra resultaterne af valideringen kan det ses at den anvendte ’classifier’ er i stand til at differen-
tiere vævsprøverne op mod deres NordiQC vurderinger. Dette viste en gennemsnitlig nøjagtighed
mellem 60-85%. Dette blev præsteret med kun 38 vævsprøver og de indledende 91 ’features’. Dette
kunne sandsynligvis forbedres hvis flere prøver blev tilføjet datasættet eller gennem anvendelse af
flere ’features’. Identifikationen og segmenteringen gjorde det muligt at analysere hver vævskerne
individuelt. Selve segmenteringen kunne bedres ved at introducere deformerbare modeller målret-
tet den enkelte vævskerne. Dette projekt viser at CAD kan anvendes til at klassificere kvaliteten
af farvningen i vævsprøver fra NordiQC. Det anbefales dog at dette undersøges yderligere således
klassifikationens præstation kan forbedres.
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Preface

This master thesis is the product of the fourth semester during the masters program in Biomedical
Engineering and Informatics at Aalborg University. The project period spanned from February 6th
2017 to June 7th 2017.

The initial project proposal was to investigate the possibility of extracting image features from
39 immunohistochemically stained samples in order to classify the quality a given staining protocol
according to NordiQC assessment.

The project touches the topics of image analysis and pattern recognition, and a pre-existing knowl-
edge within these fields may prove beneficial to the reader. The thesis itself is primarily aimed
towards the investigation of the project proposal. However those with interest within the topics of
quality control of IHC staining and computer-aided-decision may find it to their liking as well.

To reference the literature the Harvard method was used in this project. Citations are applied
in brackets with author and the year when published. If no date is available the notation n.d. is
used instead of the date. If the citation is made after a punctuation mark, it is concerns the text
until the start of the paragraph, or until another citation. If the citation is only used for one specific
sentence it is written before the punctuation mark. If more than one citation is made for the same
statement, citations are comma separated. Figures and tables are also included with citations. All
the sources for citations are gathered in a literature list with further details.
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Chapter 1
Introduction

Immunohistochemical (IHC) staining is a technique which utilises antibodies that bind to specific
antigens. The IHC staining is used within many fields but its use is highly adopted within the med-
ical field of pathology. The pathologist can use the IHC technology to determine if specific antigens
are present within a tissue sample. By using specific cancer-targeting antibodies the pathologist
is able to assess whether or not the tissue could contain a type of cancer. Given this technology
the pathologist is better able to detect the presence of cancer even if it is not visible under the
microscope. This will allow earlier detection and diagnosing of cancer thus enabling better survival
chance given earlier treatment. [Sino Biological, Inc., n.d.b]

The quality of the staining is crucial as the future cancer therapy will be greatly influenced by
the result of this. If the staining is either too strong or too weak it might result in a false negative
or a false positive from the interpretation by the pathologist. If it results in a false negative there
would indeed be cancer cells within the patient’s tissue sample and most likely within the patient,
but the patient would not be diagnosed with cancer which would delay any potentially lifesaving
treatment(s). If a false positive would occur the tissue sample would not contain any cancer cell
but the patient would be diagnosed with cancer. The patient would then be exposed to the concern
of being diagnosed with cancer and unnecessary side effects from the treatment(s). Neither of these
are recommendable and should be avoided if possible which adds importance to the quality of the
staining in diagnostic purposes. [Reiner-Concin, 2008]

The use of IHC depends not only on the pathologist but also that the staining is done properly.
The staining process itself is influenced by the technician, machinery, stains, and protocols. There
exists multiple manufacturers each with an assortment of machinery that is used in the staining
process. The staining agents are also produced by multiple companies or within the laboratory
itself. The protocol by which the staining is performed can also vary between laboratories. Both the
machinery, the stains, and the protocol contribute to a source of staining variability. As described
by Taylor [2000] the technicians/lab might utilise a qualitative approach to staining quality in order
to comply with the pathologist’s request [Taylor, 2000]. What is sufficient can vary from pathologist
to pathologist, and this approach does not lend itself to any high degree of standardisation thus
increasing variability.

Within the given laboratory the Quality Control (QC) should ensure that procedures are done
according to protocol ie. monitoring and detection, and similarly the Quality Assurance/Assessment
(QA) focus on ensuring the quality of the result [Arthur, n.d.]. In the staining IHC context this
relates to: the correct patient, the correct staining/protocol result, and the correct interpretation.
Maxwell and McCluggage [2000] also mentions that even through the use of positive and negative
control, few recommendations exists for the internal QC to determine the quality of IHC staining
[Maxwell and McCluggage, 2000]. One option to overcome this is through the use of external QA,
either the UK National External Quality Assurance (UK-NEQAS) or the Nordic immunohistochem-
ical Quality Control (NordiQC) [Maxwell and McCluggage, 2000, Eisen, 2008].

The Nordic immunohistochemical Quality Control was established in 2003 to act as an external
QA programme. The NordiQC is a collaboration between the founding countries of Denmark,
Norway, Sweden and Finland. As of 2015 the NordiQC serves as a QA for more than 700 laboratories
from about 80 countries. Laboratories receive tissue samples, organised into Tissue Micro Arrays
(TMA), which they are to stain according to their own protocol and are then graded by NordiQC. An
example of such an TMA is Pan-Cytokeratin (Pan-CK). The Pan-CK is important in IHC staining
when the pathologist wants to detect and classify carcinomas which is the most common group of
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CHAPTER 1. INTRODUCTION

cancers, and it will also allow for the differentiation of carcinomas without many morphological
characteristics. [NordiQC, 2016, Vyberg et al., 2005, Vyberg and Nielsen, 2016, Jørgensen et al.,
2017]

However there are no quantitative measures or definitions for these four different gradings beyond
what is mentioned in the assessment.
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Chapter 2
Problem Analysis

2.1 The immunohistochemical staining
The process of immunohistochemical staining is based on the sensitive interaction between im-
munoglobulin (Ig), more commonly known as antibody, with an antigen. The antibody’s binding
to the antigen occurs at a specific site called the epitope and may be characterised by a specific
sequence of amino acids or spatial structure. [Oliver and Jamur, 2009]

The B-lymphocytes are responsible for the production of antibodies found in humans, and can
be grouped into five major Ig-classes consisting of IgA, IgD, IgE, IgG and IgM. An illustration of
these can be seen in figure 2.1. Each B lymphocyte produces only one of the five Ig antibodies,
thereby targeting a single epitope. The IgG is the most used in IHC staining with its prevalence
of 75 % in human serum. The IgG can be further divided into four different subclasses in humans,
while five subclasses can be found in mice. These subclasses are IgG1, IgG2a, IgG2b, IgG3 and IgG4.
[Oliver and Jamur, 2009]

Figure 2.1: An illustration of the types of Ig antibodies. [Serotec, n.d.]

2.1.1 The IHC process

The IHC involves a series of steps based on the protocol. Oliver and Jamur [2009] describes a
method when performing IHC staining which is summed up into four main steps; Common fixation,
Preparation of tissue blocks, Preparation of slides, Preparation of sections for immunostaining
[Oliver and Jamur, 2009]. These steps can be seen in figure 2.2. Note that these steps only focus
on the staining procedure and that prior to these steps the tissue in focus would be or is extracted
from the patient. Likewise the pathologist, or technician, would inspect and document the findings
within the sample leading to the diagnosis.

Figure 2.2: An illustration of the generic IHC staining process from start to finish
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CHAPTER 2. PROBLEM ANALYSIS

After the tissue is extracted, it is then placed in a fixative that should equal to 10x the volume of
the tissue sample. This is done in order to fixate the cells within the tissue thus halting any decay.
If this is not performed the antigen epitopes can deteriorate and therefore antibodies might not
bind sufficiently, resulting in a weak staining response. The duration before a satisfiable fixation
is acquired is dependent on the used preservative. When using formalin 10 % the duration ranges
between 6-12 hours.[Oliver and Jamur, 2009]

After the fixation is complete the tissue placed with cassettes and dehydrated, thereby reducing
the water content of the tissue. The tissue sample is then embedded in paraffin. If the tissue
is greater than the size of a single cassette it should be cut into smaller portions and embedded
separately. After the paraffin casting the samples are sectioned into a paper thin ribbon which is
transferred onto a water bath. Each slice is 4 µm in thickness and is carefully separated. These are
then placed between two pieces of glass. [Oliver and Jamur, 2009, Chiannilkulchai et al., 1989]

The slices are stained using stains that target specific structure on or within the cell. The
choice of staining agent depends on the goal of the staining. The staining agent can either be
commercially available or isolated within the laboratory. Where the previous steps illustrate the
generic, the staining step can be much more specialised. Depending on the protocol and the use
of counterstains, several iterations of washing, preparing, staining may be be needed. As noted by
Oliver and Jamur [2009] the use of secondary antibodies that specifically binds to the subclass of
the primary antibody gives the best result when using monoclonal antibodies. [Oliver and Jamur,
2009]

An example of agents used in IHC would be the use of Pan-CK, 3,3'-diaminobenzidine (DAB)
and Hematoxylin & Eosin (HE). Pan-CK is a mouse monoclonal antibody cocktail and is often used
to identify tumor in epithelial cells by binding to specific antigen epitopes [Sorenson et al., 1987].
After the use of Pan-CK it is now easier to locate structures of interest and attach chromogens or
other antibodies. DAB is an agent used in staining that stains brown where it is attached. The
DAB is activated by the use of peroxidase [Sino Biological, Inc., n.d.a]. This is often used to stain
structures of interest. The use of DAB is illustrated in figure 2.3. HE is one of the fundamental
stains. Hematoxylin is used to stain the cell nucleus a blue or purple colour whereas the eosin stains
the cytoplasm a red or pinkish colour [University of Leeds, n.d.]. The HE is often used as either
stain or counterstain in IHC. By this method it is possible to locate tumorous epithelial cell via
Pan-CK, stain them brown using DAB, and counterstain nucleus blueish and cytoplasm pinkish.
It is especially important in differentiating poorly differentiated carcinomas without morphological
characteristics.

Figure 2.3: An illustration using primary and secondary antibodies to stain using DAB. Image has
been modified. [Bitesize Bio, n.d.]

After the staining is complete the pathologist, or in some cases technicians, describe the findings
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CHAPTER 2. PROBLEM ANALYSIS

within the sample which ultimately should lead to a diagnosis.

2.2 Variability within IHC staining
The IHC staining is a multi-step process with multiple variables. Therefore it is expected that differ-
ences in results to occur even if input is identical. The variability can occur both at a protocol level
where the staining results may differ or/and at an interpretation level where the observers’ find-
ings deviate. Laboratory variability would concern the protocol level where the observer variability
concern the interpretation. This variability has been the subject in multiple studies throughout the
last decade. It has been addressed by multiple authors that the variability may lead to difficulties
in standardization. [Taylor, 2000, Lin and Chen, 2014, Naik et al., 2008]

Cancer diagnosis depends on the subjective visual inspection of both the clinical and the histopatho-
logical information to place tumours in categories based on the tumour’s tissue of origin. Clinical
information though, can be incomplete or misleading and there is also a wide spectrum in cancer
morphology. These complications can result in misjudgements, making second opinions obligatory,
leading to an increase of the expense of patient care. [Ramaswamy et al., 2001]

Inter-laboratory variability concerns the difference of IHC results when all laboratories are
given identical tissue samples to be stained. This has been examined by several authors and it seems
to be a common acknowledgement. [Fitzgibbons et al., 2014, Mengel et al., 2002, von Wasielewski
et al., 2002, O‘Leary, 2001]

The primary suggestion by most authors has been to attempt standardisation of protocols.
However specific indicators of a ’good’ staining has yet to be uncovered.

Intra-laboratory variability appears to be a weakly described topic if uncovered at all. However
it is possible that the interest in this subject could be based on the future QC and QA of staining.
Alternatively this is examined by the laboratory for internal reasons and the results are not published
to the community.

Inter-observer variability was found to be at a minimum by multiple studies. Both Mengel
et al. [2002], von Wasielewski et al. [2002] have conducted inter-observer variability studies using
data from 172 participants/laboratories. However the number of observers was only 2 perhaps
making their inter-observer variability less proof. Also it was suspected that both utilise the same
data set in their separate articles. [Mengel et al., 2002, von Wasielewski et al., 2002]

Intra-observer variability does not appear to have been researched. However Ranefall et al.
[1997] mentions that assays can depend on the subjectivity of the observer on a daily basis, which
does suggest some intra-observer variability is possible. Kirkegaard et al. [2006] also mentions that
intra-observer variability can be managed if training and QA is given attention. Another factor,
according to Walker [2006], is that as the analysis of immunohistocemistry is mostly manual, it
depends a lot on the experience and the alertness of the interpreter suggesting automatic analysis
as a more accurate quantifier. [Ranefall et al., 1997, Kirkegaard et al., 2006, Walker, 2006]

2.3 NordiQC Assessments
According to Vyberg2005 the grading of the result of each laboratory’s staining protocol is performed
in consensus by 4 pathologist (DK, NO, SWE, FIN) and 1 (appointed) technician, and the grading
scores are poor, borderline, good and optimal. [Vyberg et al., 2005, Vyberg and Nielsen, 2016]

In the latest Pan-CK assessment, run 47, the criteria for optimal staining are listed. Five criteria
have been listed each of which relates to one or two tissue arrays which are seen in figure 2.4.
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CHAPTER 2. PROBLEM ANALYSIS

Figure 2.4: TMA that a laboratory must stain using their own Pan-Cytokeratin protocols. Image
is modified from [NordiQC, 2016]

For TMA-1, the oesophagus, all the squamous epithelial cells should have a strong, distinct
cytoplasmic staining throughout all the cell layers. For TMA-2, the liver, there should be a strong,
distinct cytoplasmic staining of the epithelial cells in the bile duct, and at least a moderate staining
of the cytoplasm of the vast majority of the hepatocytes emphasising membranes. An at least
moderate, distinct cytoplasmic, dot-like staining reaction should be achieved in the majority of
neoplastic cells from the small cell lung carcinoma in TMA-3 For the lung adenocarcinoma and the
lung squamous cell carcinoma, the TMA-5 and TMA-6, the majority of the neoplastic cells should
have a strong, distinct staining of the cytoplasm. In TMA-7 at least a weak to moderate, distinct
staining of the cytoplasm and membrane should occur in the majority of the neoplastic cells in renal
clear cell carcinoma. [NordiQC, 2016]

As previously described the grading is performed as consensus and the criteria to which the
samples most comply with in order for the optimal grade. However it is not described whether a
staining can be graded optimal even if all criteria are not fully met. And if the panel is asked to
perform same evaluation of a sample will they reproduce the same over an over again, or can some
variation occur?

Figure 2.5 shows two very similar samples from the latest Pan-CK assessment in which the tissue
has been graded by NordiQC. The one on the left is graded optimal whereas the right is graded
good.

Figure 2.5: Optimal sample to the left. Good sample to the right.
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As with the previous comparison the samples shown in figure 2.6 have been graded. A borderline
staining to the left and a poor to the right

Figure 2.6: Borderline sample to the left. Poor sample to the right

As mentioned by Torlakovic et al. [2015] both the antibody and the IHC protocol influence
the staining result. The use of a high quality antibody with a poor protocol may yield suboptimal
results, and the use of difficult low-affinity antibodies with a good protocol may lead to good results.
Here the results may come as sensitivity and/or specificity. [Torlakovic et al., 2015]

One approach of determining if the protocol provides a sufficient staining is through the inclusion
of tissue with different expression levels in the TMA. High expressors is often tissue with higher
amounts of specific proteins whereas low expressors have lower amounts. These are used to demon-
strate the overall sensitivity of the protocol and that it is able to detect the targeted expressor.
High expressors due to their increased amount of specific proteins are more likely to stain, which
can be used to reveal the lower threshold for a positive control. Low expressors can be used as an
indicator that the staining protocol is sufficient and that targeted expressors are stained. In the
evaluation of the protocol, the high and low expressors can reveal the quality of the staining, and
it is this staining quality that can greatly influence the observers ability to detect tissue features
leading to cancer diagnosis. [Torlakovic et al., 2014, 2015]

2.4 Computer Aided Decision
Computer Aided Decision (CAD) systems have been researched within multiple different clinical
applications. Within the medical field of pathology these are also available. As stated by Kothari
et al. [2013] several commercial software tools exist that aid in the objective and quantitative
analysis. However in most cases these are not fully automated and the pathologist has to manually
select the region(s) of interest (ROI). Furthermore the pathologist is given information feedback
based on the ROI which then can lead to a diagnosis. Thus they primarily act as a CAD. To this,
one might state that what the commercial tools lack in automating they provide in objectivity.
[Kothari et al., 2013]

Tissue biopsies can also have a very high resolution sometimes up to 40000x60000 pixels. These
images often contain large amounts of spatial information including low and high-grade tumour,
necrosis etc. When manually assessing these images the pathologist identify and study the possible
ROI. Due to limitations of technology these often need to be cropped into smaller tiles of 512x512
pixels before image features are extracted when algorithms/systems attempt the same. This how-
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ever, may be dependent on prior knowledge regarding possible ROI as some tiles can be more
interesting than others. Previously multiple researchers have developed supervised models for the
identification of these ROI, yet some are now shifting their focus to unsupervised knowledge-based
models. [Kothari et al., 2013]

Several researchers have attempted to create algorithms able to detect/diagnose/grade cancer
using a standardised grade. These are however often aimed at specific cancer types such as prostate
or breast cancer and not general topics such as staining quality. One of such studies is by Doyle
et al. [2007] which addresses the inter/intra observer variability of prostate cancer grading using
the Gleason scale and the lack of standardisation methodology. In their study 102 graph-based,
morphological, and textural features are extracted and used to quantify the tissue information
from 4 different tissue classes: benign epithelium, benign stroma, Gleason grade 3 and grade 4
adenocarcinoma. Accuracy between grade 3 & 4 was 76.9 % which according to Doyle et al. [2007]
also poses the largest variability and error when pathologists manually score. The remaining 5
combinations had an accuracy ranging between 85.4-92.8 %. [Doyle et al., 2007]

2.5 Problem Statement
IHC is often used by the pathologist to examine tissue in search of cancer as different staining
agents can highlight objects/regions of interest. But the staining quality can differ from place to
place based on laboratory and observer variability, both inter and intra. The NordiQC collaboration
acts as an external QA and provides feedback to laboratory nationwide. This grading process is
still performed by clinicians and thus not free from variability. With the progress of technology the
next step could be computer aided decision systems targeting IHC staining quality and applied to
a NordiQC assessment run.

Therefore the aim of this study is the following:

• To develop an algorithm capable of analysing the NordiQC samples separately

• To investigate the possibility of using image features and classification to describe NordiQC
grades

• To validate the results compared to the NordiQC grades

• To explore the plausibility of a CAD system for the NordiQC collaboration
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Chapter 3
Data Acquisition

The raw data was a subset of the NordiQC Assessment Run 47 2016 Pan Cytokeratin. This was
acquired from Pathological Institute at Aalborg University Hospital. The presented data consisted
of 39 images and associated NordiQC classification. Each image consisted of one irregular shaped
tissue sample and six quasi-circular tissue samples. The subset had been classified as either; optimal,
good, borderline or poor. These images are listed in table 3.1.

Table 3.1: Table containing the sample number and its associated NordiQC grade

NordiQC grade and sample no.
Optimal Good Borderline Poor
1 4 26 15
2 11 27 18
3 12 28 20
5 13 29 21
6 14 30 22
7 16 31 25
8 17 33 32
9 19 34 36
10 23 35 37

24 38 39

Excluded Data

One of the 39 images was excluded. This was done because it contained to much noise in the form of
an air bubble trapped within the sample. Worth mentioning is also that it received a poor NordiQC
score. The excluded image is shown in figure 3.1.
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Figure 3.1: The figure shows the sample that was excluded from the data set due to poor quality
and high background noise
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Chapter 4
Method

4.1 Solution Strategy
This section outlines how the solution strategy was organised. This is done in order to fulfil the
aims of this study as described in the problem statement, section 2.5.

The solution strategy consisted of three steps. These are shown in figure 4.1. Step 1 was the
Core Detection which mainly addressed the separation and labelling of NordiQC tissue samples from
each other. This makes up section 4.2. Step 2 was the Core Segmentation which further refined
the separated images and prepared for the feature extraction and classification. This is described
in section 4.3. Together step 1 and 2 focused on the first study aim of analysing samples separately.
Step 3 focused on classifying the individual cores and validating according to the NordiQC score.
This is described in section 4.4. This primarily addressed the second study aim of investigating
the possibility of classifying images according to staining quality, and the validation of the results
as described in the third study aim. The combination of step 1-3 explored if this project yielded
plausibility for a future computer aided decision with this given approach according to the fourth
study aim.

Figure 4.1: An illustration of the 3 steps of the solution strategy

Matlab version 2016b was used in order to design and develop the algorithm in during this
project. The algorithm was, just like the solution strategy, made up of several steps allowing for
stepwise application if needed during future study.
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4.2 Core Detection
The Core Detection separated the individual cores1 within the slides and the irregular shaped
oesophagus tissue. Afterwards an initial segmentation was applied to each tissue core which was
followed by a labelling. This was done to make sure that the cores were organised in the correct
order for later use. This order is also shown in figure 4.2.

Figure 4.2: Figure showing the first step of the solution strategy and its contents

The flowcharts for the Core Detection are illustrated in appendix A where figure A.1 shows the
general flowchart for step 1.

4.2.1 Initial Separation

Before the initial segmentation of the tissue could be done, the image was divided into a region con-
taining mostly oesophagus tissue and a region mostly containing cores. The reason behind was that
throughout the 38 images there was inconsistency with respect to the size and irregular shape of the
oesophagus tissue whereas the remaining cores were highly consistent in shape and size. Therefore,
only the 6 cores were considered for further processing and the oesophagus region was deemed to
be beyond the scope of this project. This process is illustrated in the following pseudocode.

for all sample do
load image;
convert RGB to binary;
/* image is binary. Identify object using 8-connected */
use 4/8-connectivity to label image elements;
find the 7 biggest objects;
/* assume leftmost object is the oesophagus */
exclude leftmost object

end
Algorithm 1: The pseudocode illustrating how the oesophagus tissue is excluded from the sample

1 quasi-circular shaped tissue samples
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Using 8-connectivity made it possible to identify the largest objects in the image which corre-
sponded to the tissues. When converting the image to binary the use of the grayscale intensity of
the background should make sure that it did not interfere when the neighbouring elements were
labelled.

In appendix A.2 the flowchart for the algorithm regarding the initial separation is shown in
greater detail.

4.2.2 Initial Segmentation

The initial segmentation made use of several steps in order to detect each core which also included
that each core should only be detected once per sample.

To identify the cores the approximate area (of a tissue core) was calculated based on visual
inspection of the data. It was noted that the image height was roughly 3.5 times the core diameter
and that each core almost had the same size. This area should however not differ as the core should
be extracted using similar methods. From this the approximate area could be derived as

area = π ∗ radius2

where
radius ≈ imageheight

7
This area was furthermore increased by 10% and would describe the maximum area that would be
expected of a tissue core. From the approximate area the two other cases could occur. The first
was that tissue cores could touch or to some degree overlap which was observed in several samples
in the data. This would result in an area greater than the approximated area. The other case was
that the core could have a lower area from weak staining, a low expressor or background noise. This
led to the following definition of radius and thereby areas:

• touching cores > approx radius

• approx radius > expected core size > 0.5x approx radius

• 0.5x approx radius > weak core > 0.3x approx radius

Any radius and thereby area below the weak core should be considered fragments or a special case
that might require a different approach. In figure 4.3 a comparison between core type and their size
is shown.

Figure 4.3: A comparison between the size of the defined core types
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The process can also be described using the following pseudocode. This can be supplemented by
the flowchart figure A.3 where the process is described in greater detail.

for all sample do
load image;
convert RGB to black/white;
find image height, approx radius and area;
while cores identified <6 do

use 8-connectivity to label image elements;
if expected core is found then

get position;
exclude object/core from image

else
if touching cores is found then

separate cores;
get position;
exclude object/core from image

else
if weak core is found then

get position;
exclude object/core from image

else
/*must be fragments or special case*/

end
end

end
end

end
Algorithm 2: Pseudocode that illustrates how the core sizes should be identified and in which
order
First the image was converted to grayscale before it was converted into binary using a grayscale

threshold. The threshold value would be calculated as the mean of the background. This was done
using two squares with the size of 10% image width by 10% image height, which was placed in the
top left and in the bottom right of the image. If the threshold value exceeded upper or lower limit,
a default value of 0.8 was used.

After the binary conversion the regionprops was used to find the boundary boxes in Matlab.
This would find binary clusters and by sorting these by area in descending order would reveal the
different types of cores as shown in figure 4.3. This would mimic the labelling through 8-connected
neighbours. When segmenting the core from the image it would have its radius increase by 10%
to ensure that all information about this core should be included. The process of classifying and
excluding the core is illustrated in greater detail in figure A.4

An issue could be that the cores had a weak staining, and therefore parts of the core would be
considered background when the image was binarised. This was a recurring issue for two of the
cores. This would make the area fall below the threshold for a weak core and thus not be included.
To counter this the threshold would shifted thus making the extraction of weak cores possible,
through the error handling.
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4.2.3 Labelling

From the Initial segmentation it was expected that a core wouldn’t always be segmented in the
same order when iterating through the data set. Therefore each core was sorted by coordinates and
labelled accordingly. The labelling of cores is shown in figure 4.4

Figure 4.4: The labelling of each core with a specific number
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4.3 Core Segmentation
After the Core Isolation each set of images, ranging in category from 1 to 6, would now consist of
38 images. These images would mainly contain the tissue core of interest together with surrounding
background and/or parts of adjacent tissue. The tissue core of interest would be at the centre of the
image, and the image itself would be 10 % taller and/or wider than the cores radii, which ever was
the largest. To segment the tissue core from the background in the remaining image a deformable
model was used. This would allow for the creation of a mask which was used to extract the majority
of the core and minimize inclusion of background. The image segmentation process is illustrated in
figure B.1.

Figure 4.5: Figure showing the second step of the solution strategy and its contents

The process of the Core Segmentation and its deformable model can also be described using the
following pseudocode.

for all cores do
for all samples do

load image;
add 500 point to form a circle in the image;
for 1:150 do

apply deformable model;
move points in image

end
create mask;
extract ROI

end
end

Algorithm 3: The pseudocode illustrating the Core Segmentation procedure

4.3.1 Deformable Model

Deformable models are used to segment object using energy formulations. A contour shape is
defined within the image where it is deformed to the object in order through determining the low-
est energy level. When the contour encloses the object the energy level should be at its lowest.
There are several different types of contour representations. Given the data a paramteric contour
representation would be more suitable to use. This is due to the fact that all the cores show cir-
cular or quasi-circular shape, which would not define the shape of the object as complex. Also
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no self-entangling was seen possible. This would make the parametric representation more ideal
compared to the geometric representation. Had there been topological changes then the geometric
representation would be preferred. [McInerney and Terzopoulos, 1996, Sonka and Fitzpatrick, 2000]

The mathematical expression of the deformable model is a curve C(s)=(X(s),Y(s)), s ∈ [0 1]. This
curve moves across the image where its goal is to minimize an energy function E(C) consisting of
internal and external energy. Through iterations the lowest total energy is the goal.

E(C) = Einternal(C) + Eexternal(C)

The internal and external energies can be further elaborated and weighting parameters can be
added. The internal energy can also be split into two terms where α weights the tension/elasticity
and β weights the rigidity/bending. For the external energy the γ can be used for weighting.

E(C) = αEtension(C) + βErigidity(C) + γEexternal(C)

The internal energy is responsible for holding the contour together and determining the elasticity
and the rigidity. The Etension is described by the first order partial derivative and the Eridigity is by
the second order partial derivative of the curve at point s. [Demir and Yener, 2004, McInerney and
Terzopoulos, 1996, Sonka and Fitzpatrick, 2000]

Einternal(C) =
ˆ 1

0
α(s)|∂C

∂s
|2 + β(s)|∂

2C

∂s2 |
2ds

The external energy is responsible for pulling the contour towards the desired objects boundaries.
This is done by integrating the potential external energy function P(x,y) along the contour C(s).

Eexternal(C) =
ˆ 1

0
P (C(s))ds

The potential external energy function P is driven by a gradient operator ∇ and a Gaussian filter
with the standard deviation σ which is convoluted with the gray-level image I(x,y).

P (x,y) = −we|∇[Gσ(x,y) ∗ I(x,y)]|2

To find the curve C(s) that holds the minimum energy can be done by using Euler-Lagranges
equation as the curve that minimizes E(C) satisfies this. [Sonka and Fitzpatrick, 2000]

∂

∂s
(α∂C
∂s

)− ∂2

∂s2 (β∂
2C

∂s2 )−∇P (C) = 0

Snake Model

A modified version of the deformable model made by Dahl and Dahl [2016] was implemented into
the algorithm. The deformable model was a dictionary snake and was based on their previous
research from the paper Dahl and Dahl [2014]. The original version was modified to take a RGB
image matrix as an input, and return the points that made up the final contour. The parameters
α and β were set as 3 and 1.5 respectively which were determined by empirical process. The γ did
not appear as a parameter in their work.

The a priori knowledge used with the snake was that the image would be 10 % larger than
the previously isolated core, and since this core itself primarily was qausi-circular in shape, it was
assumed that the starting radius of the snake could be 70 % of image radius. This could reduce
amount of iterations needed before the boundary would be reached. Subsequently the number of
iterations was set as 150. The starting shape of the snake itself would be a circle made up of 500
points equidistantly spaced along the circumference. This would result in a circle inflating from
within the targeted core and it should stop at the boundary between tissue and background.
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From the snake model, 500 points were retrieved which made up the boundary. Linking these
points together represent the deformable model with the lowest total energy level.

The points alone made up a discrete boundary between the core and the background. Before
the extraction mask could be created the points were connected. This was done by determining the
euclidean distance between the current point and the previous point. Using the maximum distance
would ensure that all points were connected. This was followed by filling the inside of the contour.

The mask itself was made binary with background having the value of 0 and the ROI being 1.
This was then used to extract the majority of the core within the image. The result was then placed
into a new image where the background had no RGB values. By doing so, it would be possible
to determine the total area of the extracted by measuring the amount of non-zero elements in the
image matrix.
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4.4 Core Classification
From the Core Segmentation the cores should now mainly consist of tissue, which also included the
exclusion of other tissue cores. From these the features could be extracted which would later be
used in the classification and validation of the samples.

Figure 4.6: Figure showing the third step of the solution strategy and its contents

4.4.1 Features

The selected features were split into two groups. The first was the features that were based on
intensity, while the second group of features were based on the dominance of specific colours.

Intensity-based features

The features can be defined at either a cellular or a tissue-level. The cellular aims to quantify
properties within the cell but does not consider the spatial information between each cell. At a tissue-
level the distribution of the cells throughout the tissue is quantified thus the spatial information
would be considered. Throughout the whole data set it’s safe to assume that the tissue was cancerous
given its nature, and thus no spatial information was necessary. As no spatial information should
be needed the choice of features should rely on cellular-level features. When visually inspecting
the images the preliminary difference between the different grades; optimal, good, borderline, poor,
was the colour intensity. This corresponds well with the fact that tissue staining being the main
difference. This led to the approach of using intensity-based features as mention by Demir and
Yener [2004]. In their paper it’s mentioned that colour value can be obtained at a pixel level in
one or more colour channels. The mean value, standard deviation (SD) and ratio between channels
were some of the features mention. [Demir and Yener, 2004]

This was expanded upon by including multiple colour spaces which were Red/Green/Blue (RGB),
Cyan/Magenta/Yellow/Black (CMYK) and Hue/Saturation/Value (HSV) as these were all well
established colour spaces.
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Table 4.1: Table of the initially planned features and the corresponding colour spaces

Feature RGB colour space CMYK colour space HSV colour space
Non-zero elements RGB image CMYK image HSV image

Red channel Cyan channel Hue channel
Green channel Magenta channel Saturation channel
Blue channel Yellow channel Value channel

Black channel
Ratio Red/Green Cyan/Magenta Hue/Saturation

Red/Blue Cyan/Yellow Hue/Value
Green/Blue Cyan/Black Saturation/Value

Magenta/Yellow
Magenta/Black
Yellow/Black

Mean RGB image CMYK image HSV image
Red channel Cyan channel Hue channel
Green channel Magenta channel Saturation channel
Blue channel Yellow channel Value channel

Black channel
Standard Deviation RGB image CMYK image HSV image

Red channel Cyan channel Hue channel
Green channel Magenta channel Saturation channel
Blue channel Yellow channel Value channel

Black channel
Entropy RGB image CMYK image HSV image

Red channel Cyan channel Hue channel
Green channel Magenta channel Saturation channel
Blue channel Yellow channel Value channel

Black channel
3rd moment Red channel Cyan channel Hue channel
(skewness) Green channel Magenta channel Saturation channel

Blue channel Yellow channel Value channel
Black channel

4th moment Red channel Cyan channel Hue channel
(kurtosis) Green channel Magenta channel Saturation channel

Blue channel Yellow channel Value channel
Black channel

Using these features combined with the three colour spaces results in 84 features each of which
was applied to the different cores throughout the data set.

Staining Colour specific features

Besides the 84 features listed in table 4.1 a few more features were added. These features target
the primary staining colours in the stained sample from the Pan-CK protocol.

In figure 4.7 the colour combinations are shown for Core 1. Here the difference between the
dominant and the secondary colour was most obvious. One case would be where Core 1 had a
blue and purple combination as shown in figure 4.7a. Here the blue colour would be the dominant
colour and purple is the secondary colour. Another case would be where Core 1 had a blue and
brown colour combination as shown in figure 4.7b, blue being the dominant and brown being the
secondary. The last case was when Core 1 had a purple and pink colour combination as illustrated
in figure 4.7c
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(a) Blue-Pink colour combination. (b) Blue-Brown colour combina-
tion.

(c) Purple-Pink colour combina-
tion.

Figure 4.7: Illustration of cores with a different colour combination as a result of the staining.

For ease of reference blue and purple are being referred to as dominant colour while pink and
brown are being referred to as secondary colour.

The colour combination was recognized by comparing the maximum intensity of the magenta and
the yellow channel in the CMYK colour space. The channel with the largest value was chosen. A
threshold of twice the mean intensity of the chosen channel was set. The secondary colour of the
core was a result from the pixels with a value less than the threshold. The dominant colour was a
result of the subtraction of the black channel and the secondary colour. The steps can be seen in
Algorithm 4 and illustrations are available in subsection 5.3.1.

for all cores do
for all samples do

calculate the amount of non-zero pixels;
convert RGB to CMYK;
if Yellow channel < Magenta channel then

threshold = 2x mean of Magenta channel;
select Magenta channel

else
threshold = 2x mean of Yellow channel;
select Yellow channel

end
for the selected channel make all pixels < threshold = 0;
/*the resulting is the Secondary colour*/
get Secondary colour;
/*limit found by inspection*/
for the K channel make all pixels < limit = 0;
/*get the Dominant colour*/
Dominant = selected channel - K channel

end
end

Algorithm 4: The pseudocode illustrating how the Dominant and Secondary colour should be
found.
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The mean, standard deviation, and ratio were then calculated for the dominant and secondary
colours as well. This led to the following stain specific features:

• Dominant colour ratio of Non-zero pixels

• Secondary colour ratio of Non-zero pixels

• Dominant / Secondary colour ratio

• Mean of Dominant colour

• Mean of Secondary colour

• Standard deviation of Dominant colour

• Standard deviation of Secondary colour

As a result, 91 final features were selected.

4.4.2 Classification

Classification is the process of selecting which class an observation best fits by using training datasets
of observations where it is already known where the classes belong [Kim, 2010]. In the case of this
thesis the aim of the classification is to determine the staining quality of each core and compare this
to the assessment performed by NordiQC. Linear Discriminant Analysis (LDA) and Quadratic Dis-
criminant Analysis (QDA) are the most commonly used approaches in classification tasks [Franklin,
2005]. Both have advantages and disadvantages though. LDA requires Gaussian distributed classes
and homogeneous variances of the classes leading to linear decision boundaries. In QDA, even if a
Gaussian distribution is also assumed, the variances are expected to be heterogeneous which pro-
vides arbitrary decision boundaries taking any form [Dougherty, 2012]. Since the core types are not
identical the covariance between the features and thereby between the cores was assumed to differ
among the four gradings. For this reason, the QDA was chosen for classification purposes.

Features Excluded

During the feature extraction it was noticed that there were some features having the same value
for all the different samples. Having zero variance or producing singular covariance matrices would
lead to errors during cross validation thus it was decided to exclude these. Moreover, there were
some Inf2 values or NaN3 for some features that would give an error as well. Therefore it was
decided to exclude all the features with at least one Inf or NaN value.

4.4.3 Dimensionality Reduction

Dimensionality of the feature space as well as the number of training samples are important factors
for the complexity of the classification. When having a small amount of training datasets and large
dimensionality then some of the features may be irrelevant or unnecessary, thereby affecting the
performance of the classifier by over fitting the classifier to the data. This is called the curse of
dimensionality. [Dougherty, 2012]

The decrement of the amount of features improves the prediction accuracy, simplifies the data
collection, reduces both storage space, and classification procedure time [Neumann et al., 2005].
There are two major methods for feature reduction: feature selection and feature transformation.
The objective of the first is to pick an optimal subset of features, while the latter aims to find an op-
timal transformation of the initial feature space for a new space with lower dimensions. [Dougherty,
2012]

The feature selection method was selected, as it keeps the clarification of the data. [Janecek
et al., 2008]
2 infinite
3 Not-a-Number
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Feature Selection

Feature selection techniques usually consists of three methods: filtering, wrapping, and embedded.
[Stańczyk and Jain, 2015]

In the filtering method a feature subset is selected by statistical measures and not by using a
classifier learning algorithm. Filter methods can easily be scaled to high-dimensional datasets and
can be computed fast. However, each feature is considered independently without taking possible
correlations between features into consideration, which compared to other techniques may result to
worse classification performance. [Stańczyk and Jain, 2015]

The wrapping method, on the other hand, tests the performance of each feature subset by using
a learning algorithm, which leads to an optimal performance of the classification algorithm. For
N features there are 2N-1 potential feature subsets [Guyon et al., 2008]. However, it often goes
through all the subsets, making it necessary to combine it with additional methods to limit the
search space of the feature subsets [Stańczyk and Jain, 2015]. The two techniques mainly used to
reduce the search space are the sequential forward selection (SFS), where features are added one
at a time, and the backward elimination (BE), where features are removed gradually [Dougherty,
2012].

In the embedded methods the training of the classifier as well as the feature selection are done at
the same time. This way, the selected features are only accurate for the specific classifier. [Stańczyk
and Jain, 2015]

The wrapping method can be implemented easier than the embedded method and compared to
the filtering method, it performs better [Saeys et al., 2007]. For this reason a wrapping method was
selected. One of the problems of the SFS is that when a feature has been selected it is not possible
to be unselected even if it may be unnecessary later in the process [Guyon and Elisseeff, 2003]. To
avoid this, both SFS and BE were implemented.

Sequential forward selection is an algorithm that starts searching with an empty feature
subset and adds features one at a time which is decided by the learning algorithm used [Marcano-
Cedeño et al., 2010]. The classification was done using QDA, meaning that in the SFS approach
this was the learning algorithm of interest. The features of the SFS were calculated from the QDA
accuracy, meaning that the selected feature should increase the classification accuracy if it was to be
included in the feature subset. On the first iteration the algorithm selects the feature that gives the
highest accuracy and on the following iterations a feature is added if it produces a higher accuracy
in combination with the already existing set. In case an iteration doesn’t include any features that
increase the accuracy, the algorithm stops without adding any additional features to the feature
subset.

Backward elimination is similar to SFS. It initially starts with the whole feature space and
in every iteration it discards the feature whose removal will result in an increase of the accuracy.
The BE algorithm stops when the removal of any more features will result in a decreased accuracy.
The remaining feature space will then only consist of features that contribute to the accuracy in a
positive manner. [Guyon and Elisseeff, 2003]

4.4.4 Validation

To estimate the accuracy of a classifier generated by the supervised learning algorithms, the esti-
mation of its future prediction accuracy is important. For this estimation, a method with low bias
and also low variance is needed. [Wolpert, 1992]

Even though the Leave-One-Out Cross-Validation (LOOCV) method is nearly unbiased, it may
produce unreliable estimates because of the high variance [Efron, 1986]. For that reason the M-fold
method was selected. In M-fold method the dataset is split randomly into M subsets about the
same size. The inducer uses all the subsets except from one to train and is then tested with the
remaining subset. This will happen M times, with the subset left out changing every time. [Kohavi
et al., 1995]
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The accuracy of a classifier is the possibility of predicting correctly a random instance’s class. The
cross validation was totally based on accuracy, but this measurement only represents the number
of errors and not what sort of errors that occur. This is the reason why sensitivity and specificity
were also calculated. [Dougherty, 2012]

Sensitivity describes how correctly a model identifies the class an instance belongs to, while
specificity describes the model’s ability to correctly identify the instances that don’t belong in a
certain class. [Dougherty, 2012]

Accuracy, sensitivity and specificity is calculated using the true positive (TP), false positive
(FP), true negative (TN) and false negative (FN) as stated in the following formulas [Baratloo
et al., 2015].

Accuracy = TP + TN

TP + FP + TN + FN

Sensitivity = TP

TP + FN

Specificity = TN

TN + FP

For our method, as a TP was when the classifier produced the same result in compliance with
the NordiQC grade. A TN was the avoiding of a misclassification to a given grade. An example for
the optimal classifier can be seen in table 4.2.

Table 4.2: Example of confusion matrix for Optimal Classifier. ’o’ = optimal grade, ’g’ = good
grade, ’b’ = borderline grade, ’p’ = poor grade.

Optimal Classifier
Positive Negative

True Classifier: ’o’
NordiQC grade: ’o’

Classifier: ’g’/’b’/’p’
NordiQC grade: ’g’/’b’/’p’

False Classifier: ’o’
NordiQC grade: ’g’/’b’/’p’

Classifier: ’g’/’b’/’p’
NordiQC grade: ’o’

One-versus-all

In order to reduce the classifying problem of four classes One-Versus-all (OVA) was used. By doing
so the classification was reduced into four binary problems. Each one of them, distinguishes a given
class from the remaining three classes. For this approach, four binary classifiers were required,
where the 4th classifier was trained with positive examples that belonged to class 4 and negative
examples that belonged to the other three classes. [Bishop, 2006]

Even though this approach was simple, its performance could provide results that were often as
accurate as other methods. [Rifkin and Klautau, 2004]
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Chapter 5
Results

5.1 Core Detection

5.1.1 Initial Separation

Before the initial segmentation of the original image (5.1a), the oesophagus was cropped from the
whole sample. The result is shown in figure 5.1b.

(a) Illustration of the original image in RGB
(b) Illustration of the cropped image without
the oesophagus tissue.

Figure 5.1: Illustration of the removal of oesophagus.

5.1.2 Initial Segmentation

When isolating the remaining six cores the cropped image would also use the two rectangles to
calculate the background after the image was grayscaled. Once the core with the ’biggest’ area was
identified, it was then copied into a separate image file from the original RGB image (figure 5.1a),
and the area would be concealed in the grayscale image (figure 5.1b) using the background intensity
values found earlier. The removal of the extracted core and the visible remaining cores are shown
in figure 5.2a and figure 5.2b for the first two in sample 1.
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(a) First core detected, core 4. (b) Second core detected, core 5.

Figure 5.2: Detection of the cores in sample 1. The red dashed line illustrates the extracted area
as it has been excluded.

The extracted cores from the RGB image could fall into two types. The first would be regular
cores where they would be separated from other cores. The other would be irregular where tissue
cores would/could touch or even overlap. In figure 5.3a a regular core has been segmented, and in
figure 5.3b a irregular core is shown as it touches core 2 and 3.

(a) The figure shows core 4 that was ex-
tracted from figure 5.1a

(b) The figure shows the core 1 that was ex-
tracted from figure 5.1a. The core touches
core 2 to the right and core 3 below.

Figure 5.3: Extracted cores of sample 1.

5.1.3 Labelling

The order in which the tissue cores were extracted could vary greatly in between the 38 samples.
The expected sized cores would be extracted first, then overlapping/touching cores followed by weak
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cores. As illustrated in figure 5.4a it is clear that core 1 was not always the first core to be extracted.
This therefore had to be addressed such that the cores were labelled following the order shown in
figure 5.5

(a) Sample 1 graded as Optimal (b) Sample 4 graded as Good

(c) Sample 30 graded as Borderline (d) Sample 22 graded as Poor

Figure 5.4: Illustration of the order in which the cores were extracted for samples with different
grading.
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Figure 5.5: The labelling of each core with a specific number
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5.2 Core Segmentation

5.2.1 Deformable Model

The use of the snake function resulted in the extracting of the majority of the tissue core while
excluding as much background as possible. In some cases the snake function omitted minute parts
of the tissue core. However an overall acceptable segmentation was achieved for every 38 images
regarding each tissue core. This was consistent throughout both the regular and irregular cores.

The starting position of the deformable model is shown in figure 5.6a for a regular core and figure
5.6b for an irregular core.

(a) Initial contour for core 4 of sample 1. (b) Initial contour for core 1 of sample 1.

Figure 5.6: Initial contour did not depend on whether the selected core was connected to others or
not.

The outcome of the used deformable model is shown in figure 5.10a for the regular and figure
5.7a for the irregular core. The figures 5.7-5.12 all show a good versus a sub-optimal segmentation
for every core. The green boundary visualises the minimum total energy after 150 iterations. The
green boundary itself consisted of 500 points and at a pixel level it only created a discrete boundary
between the core and the background.
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(a) Good example of the deformable model in sample
1.

(b) Sub-optimal example of the deformable model in
sample 19.

Figure 5.7: The final contour on core 1.

(a) Good example of the deformable model in sample
31.

(b) Sub-optimal example of the deformable model in
sample 15

Figure 5.8: The final contour on core 2.
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(a) Good example of the deformable model in sample
5.

(b) Sub-optimal example of the deformable model in
sample 23.

Figure 5.9: The final contour on core 3.

(a) Good example of the deformable model in sample
1.

(b) Sub-optimal example of the deformable model in
sample 14.

Figure 5.10: The final contour on core 4.
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(a) Good example of the deformable model in sample
2.

(b) Sub-optimal example of the deformable model in
sample 26.

Figure 5.11: The final contour on core 5.

(a) Good example of the deformable model in sample
8.

(b) Sub-optimal example of the deformable model in
sample 18.

Figure 5.12: The final contour on core 6.
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5.2.2 Extracted Image

The green contour illustrated in previous figures was used to create the mask used for extraction of
the core. The resulting mask itself was a binary image indicating which indexes of the segmented
image that should be used.

Using the extraction mask the large majority of the tissue core has been extracted. The extracted
portion is shown in figure 5.13a for the regular core for sample 1. Figure 5.13b shows the extracted
irregular core in sample 1.

(a) Figure showing the extracted portion of core 4 in
sample 1. Core was of the regular type

(b) Figure showing the extracted portion of core 1 in
sample 1. Core was of the irregular type

Figure 5.13: Extracted cores 1 & 4 after the snake model for sample 1. The resulting image from
figure 5.6
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5.3 Core Classification
The results of the Core Classification consist of the features and the validation. The excluded
features were based on the criteria mentioned in the method subsection 4.4.2. The Selected Features
was the result of 10 repetitions. This approach should introduce randomness. The features and the
validation have been combined to show the maximum and minimum result for each core. This is
further expanded by confusion matrices and distribution of misclassifications that can be seen in
subsection 5.3.4.

Four classifiers were used, one for each grade. These were then validated by comparing each clas-
sifier’s results with the NordiQC assessments. This was done for the true positive and true negative
being accurate classification, and the false positive and false negative being the misclassification.

5.3.1 Stain Colour Separation

Illustrations of stain colour separation for the 3 different colour combinations are presented in fig-
ures 5.14 - 5.16.

(a) Blue-Pink colour combination. (b) Dominant Colour. (c) Secondary Colour.

Figure 5.14: Illustration of colour separation for the Blue-Pink combination.

(a) Blue-Brown colour combina-
tion. (b) Dominant Colour. (c) Secondary Colour.

Figure 5.15: Illustration of colour separation for the Blue-Brown combination.
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(a) Purple-Pink colour combina-
tion. (b) Dominant Colour. (c) Secondary Colour.

Figure 5.16: Illustration of colour separation for the Purple-Pink combination.

5.3.2 Features Excluded

For all cores, the mean of the RGB Image was excluded. The Non-zero pixels in the Volume channel
was excluded from core 1, 2, 3 and 5. The Non-zero pixels in the Red channel was excluded for
cores 2 and 5. The Dominant / Secondary colour ratio, Mean of Secondary colour and the Standard
deviation of Secondary colour were excluded for core number 4 and 5. The Non-zero pixels in the
Green channel and the Red/Green Ratio were also excluded for core 2. For core 4, the last 2 features
that were excluded were the Cyan/Magenta ratio and the Secondary colour ratio of the non-zero
pixels. The specific core and its excluded features are shown in table 5.1.

Table 5.1: Table contains a list of the features that were excluded for each core.

Features Excluded
Core 1 • Mean of RGB image

• Non-zero pixels in Volume channel
Core 2 • Mean of RGB image

• Non-zero pixels in Volume channel
• Non-zero pixels in Red channel

• Non-zero pixels in Green channel
• Red/Green Ratio

Core 3 • Mean of RGB image
• Non-zero pixels in Volume channel

Core 4

• Mean of RGB image
• Dominant / Secondary colour ratio

• Mean of Secondary colour
• Standard deviation of Secondary colour

• Cyan/Magenta ratio
• Secondary colour ratio of non-zero pixels

Core 5

• Mean of RGB image
• Non-zero pixels in Volume channel

• Non-zero pixels in Red channel
• Dominant / Secondary colour ratio

• Mean of Secondary colour
• Standard deviation of Secondary colour

Core 6 • Mean of RGB image
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5.3.3 Features Selected

After 10 repetitions, the features that had a selection frequency more than 50% were taken as the
most important. These features can be seen in table 5.2.

Table 5.2: Selected features after 10 repetitions. The first percentage is the frequency of the feature
being selected from SFS and the second the frequency of the feature being selected from BE. If both
techniques gave the same percentage, it’s stated only once.

Features

Core 1
Standard Deviation of Blue channel (90%, 80%)

Non-zero pixels in Yellow channel(60%)
Dominant colour ratio of non-zero pixels (50%)

Core 2 Dominant / Secondary Ratio (90%)
Standard Deviation of Volume Channel (70%)

Core 3 Mean of Blue channel (100%)
4th moment of Volume channel (60%, 0%)

Core 4 3rd moment of Saturation channel (70%)
4th moment of Green channel (60%)

Core 5 Standard Deviation of Blue channel (90%)
Non-zero pixels in Cyan channel (80%)

Core 6 Standard Deviation of Green channel (80%)
Secondary colour ratio of non-zero pixels (80%)

5.3.4 Validation

All cores had an average accuracy over 60%. Core 2 had the highest average accuracy with 85.74%,
while core 6 had the lowest with 60.65%. Core 1 and 5 have both an accuracy higher than 75%,
while core 3 and 4 have accuracies between 65-70%. The average accuracy, sensitivity and specificity
for each core can be seen in table 5.3 in which the four classifiers are compared to each other.

Table 5.3: Table showing the average result of the cores regarding the accuracy, sensitivity and
specificity.

Core 1 Core 2 Core 3 Core 4 Core 5 Core 6
Accuracy 76.01% 85.74% 69.35% 66.51% 77.56% 60.65%
Sensitivity 75.97% 85.92% 69.67% 66.67% 77.72% 60.75%
Specificity 76.84% 85.57% 69.03% 66.35% 77.41% 60.55%

Apart for the general average of accuracy for each core, the accuracy for each grading of the
cores was calculated. The highest accuracy for the optimal, borderline and poor grading was in core
2, while for the good grading was in core 5 with 79.5%. The minimum accuracy for all grading was
in core 6, having 66.86% for the optimal, 56.18% accuracy for the good, 62.29% for the borderline
and 57.28% for the poor grading. All the results can be seen in table 5.4.

Table 5.4: Average accuracy for the 4 different grading of each core.

Core 1 Core 2 Core 3 Core 4 Core 5 Core 6
Accuracy for Optimal grading 73.58% 86.69% 71.99% 70.73% 78.28% 66.86%
Accuracy for Good grading 74.75% 79.25% 60.29% 57.46% 79.50% 56.18%

Accuracy for Borderline grading 78.29% 87.29% 69.29% 69.68% 71.14% 62.29%
Accuracy for Poor grading 77.41% 89.75% 75.82% 63.83% 81.34% 57.28%

For core 1, the maximum accuracy achieved was 78.95% using 5 features that can be seen in
table 5.5. Both SFS and BE selected the same features.
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Table 5.5: Table showing the maximum and minimum result for Core 1.

Maximum Result Minimum Result
Accuracy 78.95% 65.79%
Sensitivity 78.33% 65.83%
Specificity 78.88% 65.79%

Features Selected • Standard Deviation of
Volume channel

• Standard Deviation of Blue
channel

• Standard Deviation of Blue
channel

• Entropy of Blue channel
• Non-zero pixels in Yellow

channel
• 3rd moment of Black channel

In table 5.6, the error matrix can be seen. For core 1, the biggest error percentage was in the
optimal grading. In average, 2.6/9 of the optimal graded cores were classified as good. More results
about the errors can be seen in table 5.7. Figure 5.17 shows two examples of a TP result from the
borderline classifier (5.17a) and an FN from the poor classifier (5.17b).

Table 5.6: Confusion matrix for all grades in core 1.

Optimal Grading Good Grading
Positive Negative Positive Negative

True 68.89% 78.28% True 72.00% 77.50%
False 31.11% 21.72% False 28.00% 22.50%

Borderline Grading Poor Grading
Positive Negative Positive Negative

True 83.00% 73.57% True 80.00% 74.83%
False 17.00% 26.43% False 20.00% 25.17%

Table 5.7: Table showing the distribution of misclassifications for core 1 between the NordiQC grade
(rows) versus the classifier (columns).

grade / classification Optimal Good Borderline Poor n total = 38
Optimal 6.2 2.6 0.0 0.2 9
Good 1.8 7.2 0.6 0.4 10

Borderline 0.1 0.1 8.3 1.5 10
Poor 0.0 0.6 1.2 7.2 9
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(a) True positive of borderline classifier.
(b) False negative of poor classifier, graded as good.

Figure 5.17: TP and FN examples from classifiers for Core 1.
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For core 2, the minimum accuracy was 81.58% with 3 features selected from SFS and 2 from BE.
The minimum and maximum results achieved for core 2 can be seen in table 5.8.

Table 5.8: Table showing the maximum and minimum result for Core 2. * not selected from the
Backward Elimination

Maximum Result Minimum Result
Accuracy 89.47% 81.58%
Sensitivity 89.72% 82%
Specificity 89.50% 81.59%

Features Selected • Mean of Saturation channel • Hue/Saturation Ratio*
• Standard Deviation of

Volume channel
• Standard Deviation of

Volume channel
• Dominant / Secondary Ratio • Dominant / Secondary Ratio

Core 2, had an average accuracy for poor grading of 97.78% while the lowest was in good grading
with 66%. All the results can be seen in table 5.9 and more detailed in table 5.10. Figure 5.18 shows
two examples of a TP result from the poor classifier (5.18a) and an FN from the good classifier
(5.18b).

Table 5.9: Confusion matrix for all grades in core 2.

Optimal Grading Good Grading
Positive Negative Positive Negative

True 88.89% 84.48% True 66.00% 92.50%
False 11.11% 15.52% False 34.00% 7.50%

Borderline Grading Poor Grading
Positive Negative Positive Negative

True 91.00% 83.57% True 97.78% 81.72%
False 9.00% 16.43% False 2.22% 18.28%

Table 5.10: Table showing the distribution of misclassifications for core 2 between the NordiQC
grade (rows) versus the classifier (columns).

grade / classification Optimal Good Borderline Poor n total = 38
Optimal 8.0 1.0 0.0 0.0 9
Good 3.3 6.6 0.1 0.0 10

Borderline 0.0 0.8 9.1 0.1 10
Poor 0.0 0.0 0.2 8.8 9
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(a) True positive of poor classifier. (b) False negative of good classifier, graded as optimal.

Figure 5.18: TP and FN examples from classifiers for Core 2.
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For core 3, as it can be seen in table 5.11, the minimum and the maximum results had a difference
of about 5% in accuracy.

Table 5.11: Table showing the maximum and minimum result for Core 3. * not selected from the
Backward Elimination

Maximum Result Minimum Result
Accuracy 73.68% 68.42%
Sensitivity 74.14% 69.17%
Specificity 73.74% 68.50%

Features Selected • 4th moment of Volume
channel

• 4th moment of Volume
channel*

• Mean of Blue channel • Mean of Blue channel
• 3rd moment of Blue channel*
• 4th moment of Green channel

For all gradings, in core 3, the true negative’s percentage was above 60% as table 5.12 shows,
while the most errors were in the good grading with an average of 4.8/10 identified correctly (table
5.13). In figure 5.19 two examples of a TP result from the poor classifier (5.19a) and an FN from
the good classifier (5.19b) can be seen.

Table 5.12: Confusion matrix for all grades in core 3.

Optimal Grading Good Grading
Positive Negative Positive Negative

True 77.78% 66.21% True 42.00% 78.57%
False 22.22% 33.79% False 58.00% 21.43%

Borderline Grading Poor Grading
Positive Negative Positive Negative

True 70.00% 68.57% True 88.89% 62.76%
False 30.00% 31.43% False 11.11% 37.24%

Table 5.13: Table showing the distribution of misclassifications for core 3 between the NordiQC
grade (rows) versus the classifier (columns).

grade / classification Optimal Good Borderline Poor n total = 38
Optimal 7.0 2.0 0.0 0.0 9
Good 2.3 4.8 1.9 1.0 10

Borderline 1.9 0.1 7.0 1.0 10
Poor 0.0 0.0 1.0 8.0 9
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(a) True positive of poor classifier. (b) False negative of good classifier, graded as poor.

Figure 5.19: TP and FN examples from classifiers for Core 3.
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Table 5.14, shows that for the maximum results of core 4, three features were selected from SFS
and BW giving an accuracy of 71.05%.

Table 5.14: Table showing the maximum and minimum result for Core 4.

Maximum Result Minimum Result
Accuracy 71.05% 60.53%
Sensitivity 71.39% 61.39%
Specificity 71.09% 60.62%

Features Selected • Standard Deviation of
Saturation channel

• Standard Deviation of
Saturation channel

• Mean of Blue channel
• 4th moment of Green channel

Core 4, had 41% average accuracy for good grading as table 5.15 shows. In table 5.16 can be seen
that in average, 4.1/10. Figure 5.20 shows two examples of a TP result from the optimal classifier
(5.20a) and an FN from the poor classifier (5.20b).

Table 5.15: Confusion matrix for all grades in core 4.

Optimal Grading Good Grading
Positive Negative Positive Negative

True 81.11% 60.34% True 41.00% 73.93%
False 18.89% 39.66% False 59.00% 26.07%

Borderline Grading Poor Grading
Positive Negative Positive Negative

True 79.00% 60.36% True 61.11% 66.55%
False 21.00% 39.64% False 38.89% 33.45%

Table 5.16: Table showing the distribution of misclassifications for core 4 between the NordiQC
grade (rows) versus the classifier (columns).

grade / classification Optimal Good Borderline Poor n total = 38
Optimal 7.3 1.5 0.2 0 9
Good 3.1 4.1 1.9 0.9 10

Borderline 0.1 1.2 7.9 0.8 10
Poor 0.9 0.8 1.8 5.5 9
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(a) True positive of optimal classifier. (b) False negative of poor classifier, graded as good.

Figure 5.20: TP and FN examples from classifiers for Core 4.
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For core 5, two features selected both from SFS and BE gave the best result with 78.95% accuracy
(table 5.17.

Table 5.17: Table showing the maximum and minimum result for Core 5.

Maximum Result Minimum Result
Accuracy 78.95% 71.05%
Sensitivity 79.17% 71.94%
Specificity 78.97% 71.15%

Features Selected • Standard Deviation of Blue
channel

• Entropy of Yellow channel

• Non-zero pixels in Cyan
channel

Accuracy in all 4 different gradings was above 50%, as table 5.18 shows. Especially poor grading,
table 5.19 presents that the average error was 1 out of 9 which was classified as borderline grading.
In figure 5.21 are presented two examples of a TP result from the good classifier (5.21a) and an FN
from the borderline classifier (5.21b).

Table 5.18: Confusion matrix for all grades in core 5.

Optimal Grading Good Grading
Positive Negative Positive Negative

True 80.00% 76.55% True 84.00% 75.00%
False 20.00% 23.45% False 16.00% 25.00%

Borderline Grading Poor Grading
Positive Negative Positive Negative

True 58.00% 84.29% True 88.89% 73.79%
False 42.00% 15.71% False 11.11% 26.21%

Table 5.19: Table showing the distribution of misclassifications for core 5 between the NordiQC
grade (rows) versus the classifier (columns).

grade / classification Optimal Good Borderline Poor n total = 38
Optimal 7.2 1.8 0.0 0.0 9
Good 1.4 8.4 0.0 0.2 10

Borderline 0.0 1.4 5.8 2.8 10
Poor 0.0 0.0 1.0 8.0 9
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(a) True positive of good classifier. (b) False negative of borderline classifier, graded as
poor.

Figure 5.21: TP and FN examples from classifiers for Core 5.
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Core 6 had as maximum result and accuracy less than 70% and a minimum a bit more than 50%
(table 5.20.

Table 5.20: Table showing the maximum and minimum result for Core 6.

Maximum Result Minimum Result
Accuracy 65.79% 52.63%
Sensitivity 66.11% 52.50%
Specificity 65.83% 52.62%

Features Selected • Standard Deviation of Green
channel

• Mean of Volume channel

• Secondary colour ratio of
non-zero pixels

The best accuracy was for the optimal grading with 78.89%, as table 5.21 shows. More informa-
tion about the error can be seen in table 5.22. Figure 5.22 shows two examples of a TP result from
the optimal classifier (5.22a) and an FN from the poor classifier (5.22b).

Table 5.21: Confusion matrix for all grades in core 6.

Optimal Grading Good Grading
Positive Negative Positive Negative

True 78.89% 54.83% True 47.00% 65.36%
False 21.11% 45.17% False 53.00% 34.64%

Borderline Grading Poor Grading
Positive Negative Positive Negative

True 66.00% 58.57% True 51.11% 63.45%
False 34.00% 41.43% False 48.89% 36.55%

Table 5.22: Table showing the distribution of misclassifications for core 6 between the NordiQC
grade (rows) versus the classifier (columns).

grade / classification Optimal Good Borderline Poor n total = 38
Optimal 7.1 0.7 0.7 0.5 9
Good 1.2 4.7 3.4 0.7 10

Borderline 0.9 1.8 6.6 0.7 10
Poor 1.2 1.3 1.9 4.6 9
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(a) True positive of optimal classifier. (b) False negative of poor classifier, graded as optimal.

Figure 5.22: TP and FN examples from classifiers for Core 6.
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Chapter 6
Discussion

This project is the result of a master thesis which seeks to uncover if image analysis combined with
pattern recognition is able to segment and classify immunohistological samples with comparison
to the assessment done by NordiQC. Presently the assessment is done in consensus between 5
clinicians but as revealed in the problem analysis, variability is present both at a laboratory and
observer level. And these assessments are still qualitative even though guidelines exists. Therefore
this project investigated the possibility of performing quantitative measures with reference to the
assessments by NordiQC.

6.1 Core Classification
The features used for classification were not consistent throughout the six cores. This is shown in
the results table 5.1 where the excluded features are presented for each core. These were excluded
either because there was little/no variance between the cores or exclusion due to the covariance
matrix regarding each class/grade. The feature that proved most important was the Blue channel
as it was included as a feature in Core 1, 3 & 5. Here it was selected as a features for each core in
more than 80% of the repetitions.

Choosing to primarily rely on intensity-based features might have limited the variance in the
features. However this is unsure since the initial impression of the data only revealed differences
with regards to the colour and intensity between the NordiQC assessments. Also, by combining
3 colour spaces with comparable features, added to the ability of describing the individual images
in a quantitative manner. The inclusion of staining specific features namely the Dominant and
Secondary colour added 7 additional features. However the Dominant and Secondary colour only
appeared as included features twice, thus making them less useful.

Increasing the amount of features might not always produce more accurate results as this also
may lead to the curse of dimensionality. However compared to the NordiQC Pan-CK assessment
criteria it could increase the results by adding spatial information into the feature space.

The validation of the classifier shows that it is possible to accurately classify the 38 samples. This is
shown in table 5.3 for the average accuracy, sensitivity and specificity. The results range from 60%
for core 6 up to 85% for core 2. When comparing this with the elaborated table 5.4 that also shows
the grade, it shows that it is possible to categorise the 38 samples using a quantitative classifier.
Table 5.7, 5.10, 5.13, 5.16, 5.19 & 5.22 all show the distribution of misclassifications and from this
it is clear that the result rarely shifts more than one grade if the classifier was wrong compared to
the NordiQC assessment.

For this study 5-fold validation was used. According to Kohavi et al. [1995] a 10-fold or 20-fold
cross validation would give better results and be less biased. Due to the limited amount of data
available this would not prove a viable option, as 10-fold would create 3-4 samples per group and
20-fold would create only 2 samples per group [Kohavi et al., 1995]. However considering the amount
of data, a 5-fold would give lower variance when compared to 10- or 20-fold.

It is easily noticed that core 6 had the lowest accuracy in average. This may be caused by the
large amount of holes within the tissue of core 6. In order to avoid this, one could try implementing
deformable models that are specialized towards a single core type like core 6.
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6.2 Core Segmentation
The results in 5.7-5.12 show how the deformable model performed for each different core regarding a
good and a bad segmentation. These results can in general be considered acceptable. In some of the
segmentations the small outliers have not been included, which reduces the amount of information
by very little. On the other hand, this has also omitted small portions of core which often was
caused by holes in the periphery of the tissue sample. In some other cases the deformable model did
not include tissue fragments that were separated from the main tissue. This leads to an issue where
one must determine if the lack of including core tissue or fragments can outweigh the exclusion of
what can be considered background or noise.

The use of a single deformable model which was used to segment all six different cores gave
acceptable results. However these cores were not completely identical and differences did occur
between them, which also appeared in some segmentations. Another approach would be to have a
deformable model that would be specifically tailored to each core. This could lead to a segmentation
that could consider each core’s special characteristics such as sharper edges, separated fragments,
or even a shrinking snake instead. Based on the visual inspection of the cores their shape was not
considered complex and this led to the choice of a parametric deformable model. As time can be
a precious resource it was chosen to search for existing deformable models for Matlab and modify
this to our purpose. A handful of deformable models were found, yet only one was in such a state
that it allowed seamless integration. The integrated model was made by [Dahl and Dahl, 2016] and
features a dictionary snake which is different from the planned parametric model. It is possible that
a parametric snake could yield different segmentation results. However this has not been evaluated
due to time limitations.

The segmentation performance of the deformable model is limited by its ability to segment
the core from the background in multiple different tissue cores. Since there is a large structural
variability between the cores, the snake model cannot be finely tuned for a specific core type. This
places a constraint on the overall performance, as the snake has to segment multiple different core
types. This limitation becomes clear as fragments of tissue were not included in the segmentation.
However, it is unsure how large of an effect the inclusion of this would have on the classification
results. But by utilising a deformable model adjusted for each specific core it would become possible
to achieved a more close fitting contour as opposed to using only one. This could be reasonable
when considering the cavitis within core 6. These would require different weighting parameters than
e.g. core 5.

6.3 Core Detection
The core detection was used to identify the position of each tissue core in every sample. To describe
the position, the cores center point and radius were used. As seen in the figure 5.4 this was performed
to a very satisfying degree even when some of the cores connected with each other, which could
make the distinction between core centre points difficult as these cores could be considered as one.

The performance of the core detection could be attributed to its use of a background specific
intensity measure which ensured that the background was used as the threshold when converting
grayscale into binary. This was performed to each sample individually which could take the colour
intensity into account as this varied between samples and their NordiQC score. This approach lent
itself very useful as 8-connectivity was used to find the cluster throughout the image and the clusters
present in the binary image was sensitive to the threshold used when converting from grayscale to
binary. One reason why the Core detection proved useful was that it specified the location where
the Core Segmentation should start which could vary between samples. As a byproduct it also
reduced the computation required as only a portion of the image was used.

As discovered early in the process the Core Detection had one instance where it was completely
unable to identify each of the cores. This happened when the Core Detection was performed on
the excluded sample. Because of its high amount of noise due to an air bubble the Core Detection
was unable to identify the individual cores and the results hereof were far from satisfying. However
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CHAPTER 6. DISCUSSION

after consulting with a NordiQC clinician it was agreed that such a sample should rarely or even at
all represent the result from a laboratory given its very poor quality which justified its exclusion.

The isolation of the oesophagus from the cores was done to a satisfying degree as more than half
of the oesophagus tissue was removed throughout all the samples. By doing so, it enabled a more
precise detection of the tissue cores. This would prove important as the oesophagus’ irregular
shape and size as a starting point would require a different approach if it should contribute to the
classification results at the same level as the tissue cores.

The 8-connectivity was also used to find the leftmost object which should match the oesophagus.
However this approach is based on some assumptions on the position of the oesophagus in all the
samples. Also the removal could be considered rough as border between oesophagus and tissue cores
wasn’t aligned to fit between them but rather was a vertical border. This would often lead to the
inclusion of small portions of oesophagus but this did not interfere with the core detection.

One limitation would be the orientation of the sample as it was assumed that the oesophagus
would always be the leftmost object. Another approach could be to detect a line that would allow the
rotation of the image. Then a vertical border could be placed more precisely. Identifying the correct
line would be challenging though, as the background had plenty of hidden lines that were visible
only after turning the image into the grayscale space and using histogram equalisation. Another
limitation of excluding the oesophagus is that the classification is based solely on the six tissue cores
and it cannot be ruled out that these results could become better if this image information was
added.
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Chapter 7
Conclusion

This project sought to investigate the possibility of classifying IHC samples using image features.
To achieve this the following four study aims were defined. These are the following:

• To develop an algorithm capable of analysing the NordiQC samples separately

• To investigate the possibility of using image features and classification to describe NordiQC
grades

• To validate the results compared to the NordiQC grades

• To explore the plausibility of a CAD system for the NordiQC collaboration

From the results it was shown that an algorithm could be developed which allowed for the
separate analysis of NordiQC samples. This was achieved through the Core Detection and the Core
Segmentation. Using two groups of features to describe the NordiQC grades proved possible. The
two groups were intensity-based features and staining colour specific features, which made up 91
features in total. These features were validated against the NordiQC grades. The end average
accuracy for the cores was between 60-85% when considering all possible NordiQC grades. These
results did not differ significantly for the classifier of each grade within the cores. From these results
it is therefore concluded that CAD systems are plausible.

The provided data set consisted of 39 samples, one of which was excluded. The 38 samples were
grouped into four different grades, thereby only leaving 9-10 samples per group. It should therefore
be noted that a larger amount of data should be used in future studies to supplement this study
and its results. Furthermore including features able to differentiate cellular components within each
sample should be considered as to comply with NordiQC assessment criteria. Adding more samples
and including additional feature may lead to improved results.
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Appendix A
Flowchart - Step 1

A.1 Overview

Figure A.1: Flowchart of the general preprocessing. The Separate tissues is expanded in INITIAL
SEPARATION, and the Isolate each core is expanded in INITIAL SEGMENTATION
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APPENDIX A. FLOWCHART - STEP 1

A.2 Initial separation

Figure A.2: Flowchart of the initial separation of oesophagus and the cores
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APPENDIX A. FLOWCHART - STEP 1

A.3 Initial segmentation

Figure A.3: Flowchart of the isolation of each core
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APPENDIX A. FLOWCHART - STEP 1

Figure A.4: Flowchart of the extraction of each core.

62



Appendix B
Flowchart - Step 2

B.1 Overview

Figure B.1
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