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1 Introduction
Since the introduction ofmechanization in industry in the late 18th century, theman-
ufacturing industry has undergone several transformations, most notably electriûca-
tion (second industrial revolution) anddigitalization (third industrial revolution). _e
term Industry 4.0was introduced in 2011 and refers to the fourth industrial revolution
which introduces modern and emerging information and communication technolo-
gies, such as 5G wireless communications, cloud computing, and virtualization, to
industrial manufacturing systems [1, 2]. _is introduces several beneûts such as high
�exibility and traceability, and opens new business models for themanufacturing in-
dustry [2–4].
Although communication networks have been in part ofmanufacturing systems for

several years, they have traditionally been used exclusively for control and supervision
of themanufacturing process in a static conûguration [5]. Industry 4.0 causes a tran-
sition towards a cloud architecture where the network not only provides the means
for transportation of data between devices, but also provides a large elastic pool of
conûgurable resources including communication, computation, storage, applications
and services [6–8]. _is brings a high degree of �exibility to the production lines
as it allows them to change and scale without reconûguring the control systems and
modifying the physical infrastructure. For example, a personalized medicine manu-
facturing process may gather patient information directly from the patient database,
and an optical inspection system may oøoad image analysis to the cloud.
Along with the introduction of cloud computing, it is envisioned that the number

of interconnected physical devices increases drastically, and that the devices continu-
ously will interact with the cloud in order to act intelligently and �exibly. _is causes
the communication networks to serve a very diverse set of users with a mixture of
best-eòort traõc, and applications which require end-to-end latency in the order of
milliseconds, or even microseconds, and a reliability up to the order of 1− 10−9 (“nine
nines”) [9]. Furthermore, as wireless communication technologies become more re-
liable, it is expected that they will, partially or completely, replace wired technologies
which are currently dominating industrial networks [9]. _is introduces a high degree
of dynamics in the network due to varying channel conditions and moving devices.
_is in turn leads to varying data rates and reliability guarantees, as well as constantly
changing end-to-end traõc paths. _erefore, dynamically adapting the network re-
sources to the current conditions is required to maintain the strict Quality of Service
(QoS) needed in industrial networks. Here, QoS refers to the properties of a service
which may include, but are not limited to, latency, packet error rates, throughput and
security properties.

_e overall communication scenarios in Industry 4.0 are covered by the Massive
Machine Type Communications (mMTC) andUltra-Reliable and Low Latency Com-
munications (URLLC) scenarios envisioned for 5G cellular systems. Hence, much
attention has been drawn towards ideas and concepts investigated for 5G, and to en-
able 5G technologies for industrial systems. In this context, one promising enabling
technology is network slicing, which addresses the problem of serving applications
with diverse end-to-end QoS requirements in the same network [10–14]. Network
slicing refers to the process of slicing the physical network into logical sub-networks
which provide certain characteristics [15]. For instance, one network slice may oòer
very low latency information access by allocating storage and computation resources

1
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Figure 1.1:_e network slicing concept.

for deploying a cache close to the user, and by reserving communication resources
in the network. Similarly, another network slice in the same physical network may
oòer best-eòort communication between sensors and a cloud service. Hence, a net-
work slice consists of communication resources, a set of Network Functions (NFs),
i.e. processing functions which are executed within a network, and resources to run
these functions (Figure 1.1). NFs include traõc policers, ûrewalls and load balancers,
but may also be extended to storage and servers, or control systems in the context of
Industry 4.0.

Two technologies strongly facilitate the creation of management and of network
slices; So�wareDeûnedNetworking (SDN) anNetworkFunctionVirtualization (NFV).
SDN allows for separation of the forwarding ofmessages and the speciûcation of how
to forwardmessages [16]. In the context of network slicing it facilitates the routing be-
tweenNFs, aswell as queuemanagement. NFV refers to the technology that allows for
virtualization ofNFs, and is illustrated in Figure 1.2. _e physical plane (also referred
to as the substrate network) contains the physical components in the network, such
as servers, storage, and communication technologies. _e virtualization plane con-
sists of virtual resources which are logical partitions or groupings of the underlying
physical components. A virtual resourcemay be a virtual machine consisting of a cer-
tain amount of computational resources andmemory, a portion of a physical storage
medium, or a virtual network with a certain capacity. Finally, the service plane con-
tains a number ofVirtual Network Functions (VNFs),which are constructed from the
virtual resources. _e three planes aremanaged by a NFV Management and Orches-
tration (NFV-MANO)mechanismwhich is responsible for allocating resources based
on application requirements and for conûguring the physical and virtual resources
that provide the network functions.

1.1 Network Slicing in 5G Cellular Networks
As network slicing has already been considered for 5G cellular networks,much work
can be obtained fromwhat has already been done in this context. In the current state of
the 3GPP 5G standardization process, network slicing is a central part of the architec-
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Figure 1.2:_ree abstraction layers in Network Function Virtualization.

ture [10],where it provides themeans for end-to-endQoS, aswell as isolation between
diòerent services. For instance, a slice could be constructed to serve all �ows which
seek information in a speciûc database in the cloud, while another slice could be con-
structed to provide a non-critical high-throughput service such as video streaming.
In order to do so, diòerent network slices may be based on diòerent technologies, so
that amMTC slice uses another access technology than the slice for e.g. smartphones.
Furthermore, network slices can be composed with a minimum number features re-
quired to provide a certain service so that the user equipment does not have to support
all features in order to use the network. _is increases the range of devices that can
possibly make use of 5G networks. Finally, network slicing can be used to evaluate
new technology in a fully deployed network without in�uencing the service provided
by other slices.

Network slicing also introduces new businessmodels and partnerships between ac-
tors in the business ecosystem [11]. For instance, end-to-end slicing enables infrastructure-
as-a-service,where operators, or connectivity providers, rent one or more slices of the
physical network which they can provide services on top of. _e individual network
slicesmay bemanaged by the infrastructure provider, the connectivity provider, a con-
tent provider, etc. As an example, a content provider, e.g. a video on demand company
or a content-delivery network provider,may optimize their own network slice for pro-
viding a good user experience.
Although network slicing is a central element in the 5G architecture, there are sev-

eral open challenges which are unlikely to be considered in the standardization. _is
includes anything that is not related to architecture, communication protocols, or in-
terfaces, such as which network slices to construct, and how to allocate resources in
order to provide certain end-to-end characteristics. Nevertheless, there exists a vast
of literature on the subject, and even reference implementations for realizing network
slicing. However, the underlying networks and the end-to-end requirements in Indus-
try 4.0 diòer signiûcantly from those considered in a traditional 5G cellular networks,
even with the introduction ofmMTC and URLLC.

1.2 Network Slicing for Industry 4.0
Whilemuch work done in the context of 5G apply to industrial networks as well, it is
important to recognize the areas where the use-cases and requirements for industrial
networks and Industry 4.0 diòer from those currently considered for 5G.
Figure 1.3 illustrates an example of network slicing in an industrial setting. _e
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Physical network

Network slice 1

Network slice 2

Figure 1.3:_e network slicing concept in an industrial setting where a physical network is sliced into
two network slices.

physical network consists of various physical components which are interconnected
through various communication technologies (indicated by colors). _e computation
and storage resources are connected to the cloud through a high-capacity network
while machines and instrumentation are interconnected by industrial communica-
tion technologies such as Industrial Ethernet. InNetwork slice 1, a collection of devices
sharing a controller are connected to the cloud and to local storage. Furthermore, suf-
ûcient computational resources and link capacity are allocated to provide the desired
service. In Network slice 2, computation resources are allocated for the control of two
robotic arms. Notice that one of the physical servers is shared by both network slices.
_is may be the case if the virtual network function is used by both slices, or if both
slices have a virtual network function which is running on same the physical server.
Other use-cases of network slicing in Industry 4.0 include a scenariowhere a supplier
of some component or a machine needs to do condition monitoring or update the
ûrmware. It is desired that these operations do not in�uence the overall manufactur-
ing process, and hence is isolated from the control network.

Splitting a physical network into network slices is a nontrivial andmultifaceted task.
From a technological perspective, the necessary steps to implement slicing of indus-
trial networks include:

Abstraction/virtualization of industrial networks. Since industrial networks con-
sist of multiple technologies, and hence constitute a heterogeneous network,
deûning a common abstract representation of the network characteristics is re-
quired to simplify the creation and use of network slices.

Realization ofNFV. While virtualization of a wide range of network functions is
already possible, functions that are speciûc to industrial networks are limited.
_is includes virtualization of industrial Ethernet switches, etc., where reliabil-
ity requirements are very strict.

End-to-endQoS analysis. Due to the strict latency and reliability requirements in
industrial networks, there is a need for analyzing end-to-end characteristics
in heterogeneous networks at high percentiles of their distributions. However,
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1.3 PROBLEM STATEMENT

providing end-to-end guarantees in computer networks without signiûcant re-
source overprovisioning is diõcult due to traõc pattern uncertainties, queuing,
and interaction between traõc �ows. _is is particularly true close to the edge
of the network where the number of traõc sources is low. Furthermore, the
strict requirements set by industrial applications mean that there is little mar-
gin for unexpected and rare events that may in�uence the service provided by
the network, and hence heuristic provisioning based on experience, simulation
or emulation is insuõcient and time consuming.

Construction ofmethods for slicing networks. Network slicing as currently con-
sidered for 5G does not target industrial protocols, and hence there is a need to
design slicing mechanisms for these protocols. Furthermore, the strict require-
ments of industrial applications need to be taken into account in this process.

Infrastructure realization. While network slicing may be implemented on top of
existing deployed networks, the full potential requires an infrastructure built
around network slicing. Considering the conservatism of the manufacturing
industry, this is likely to take several decades. _erefore, methods for allowing
network slicing within an existing infrastructure need to be considered.

While all of the above points need to be addressed to introduce network slicing in
Industry 4.0, some of them aremore critical than others. For instance, without being
able to characterizing end-to-end QoS, it is very unlikely that network slicing will be
accepted by the industry. On the other hand,NFV is less critical for an initial realiza-
tion of network slicing, but increases the usefulness. Furthermore, some functionality
depend on other elements in order to be realized. For instance, it is diõcult to dy-
namically slice heterogeneous networks without having a common abstraction level
for describing the networks. _is thesis studies the task of providing end-to-end QoS
in industrial networks as outlined by the following problem statement.

1.3 Problem Statement
Providing end-to-end guarantees in heterogeneous networks is a critical part of slic-
ing industrial networks, and the requirements in industrial networks aremuch more
strict than those that are typically considered in the context of network slicing and
end-to-end QoS. _e strict guarantees causes the impact of rare events to be signiû-
cant, and hence traditional methods based on simulation and emulation of the systems
are not suited for this use-case. Instead, a structuredmethod for allocating slices that
guarantee that the requirements are fulûlled is needed. Prerequisite for this is to an-
alyze end-to-end properties in heterogeneous networks, and to deûne an abstraction
layer that allows network slices to be constructed across heterogeneous network tech-
nologies. Furthermore, since industrial communication protocols are o�en based on
statically allocated, deterministic resources, strategies for slicing these protocols need
to be investigated. Finally, due to the high number of expected slices and the diver-
sity of their requirements, potential ways of automating the construction of networks
slices should be considered.

5



CHAPTER 1. INTRODUCTION

1.4 Organization of the_esis
_is thesis studies the problem deûned above by investigating the characteristics of
industrial networks that are important to the construction of network slices, and ana-
lyzes potential strategies for slicing industrial networks at the protocol level. Further-
more, it examines how this can be done in a way that provides suõcient end-to-end
guarantees. In order to construct network slices in an automated fashion, an abstrac-
tion framework for describing industrial networks is deûned and a heuristic based
algorithm for constructing end-to-end network sliceswith strict guarantees to latency
and reliability is proposed and evaluated.

_e report is organized as follows; Chapter 2 provides an overview of the state-of-
the-art in the ûeld of network slicing, and reviews enabling technologies and notable
proposed architectures. Chapter 3 introduces deterministic and stochastic network
calculus, a potential tool for analyzing end-to-end delays in computer networks, and
discusses possible uses of the calculus in the context of network slicing. A number of
industrial communication protocols are examined in Chapter 4, and possible strate-
gies for slicing them, andmethods for analyzing end-to-end properties are discussed
inChapter 5. Chapter 6 introduces abstraction frameworks for describing physical in-
dustrial networks and network slice requirements in a genericway that can be used for
allocating network slices. With basis in these frameworks, an algorithm for allocating
communication resources for network slices is presented and evaluated in Chapter 7.
Finally, the ûndings are summarized and discussed in Chapter 8, and Chapter 9 con-
cludes the thesis.
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2 Background and RelatedWork
Network slicing has recently been studied extensively in the context of 5G cellular
networks where the need of being able to serve heterogeneous use-cases within the
same network has given rise to interest in the topic. Furthermore, recent advances in
virtualization and so�ware deûned networking havemade the realization of network
slicing accessible.

_emost signiûcant related concepts and enabling technologies for network slicing
are illustrated in Figure 2.1. _is chapter provides a brief overview of these subjects and
review the current state-of-the-art. Furthermore, it examines some recent so�ware
initiatives that aim to realize network slicing.

2.1 So�ware Deûned Networking
SDN separates the forwarding of packets in a network (the data plane) from the spec-
iûcation of how packets should be forwarded (the control plane) [16–19]. _is may in-
clude conûguring of queues, and, to some extend, traõc shapers. Furthermore, SDN
introduces (centralized) programmability of the control plane so that the forwarding,
queues, etc. can be conûgured using anAPI. _isway, SDN is an enabling technology
for network slicing since it allows a controller tomanage routing between theVNFs in
the network [20]. An SDN enabled switch may itself be aVNF, or a piece of dedicated
hardware.

2.2 Hardware Virtualization
Virtualization refers to the mapping between abstract resources at the same abstrac-
tion level [21, 22]. For instance, virtual memory provides amapping from a continu-
ous memory address space to non-continuous memory segments. _e virtual mem-
ory space is represented in the same way as the non-continuous memory segments,
namely as addressable memory. Similarly, hardware virtualization refers to the pro-
cess of mapping the abstract platform provided by the physical hardware to one or
more (virtual) abstract hardware platforms that allow for running so�ware.
Virtualization of hardware has gained popularity in cloud computing, where it en-

ables the possibility to execute multiple virtual machines one the same physical ma-
chine while providing high isolation between the virtual machines. _e virtual ma-

Enabling technologies

Network Slicing

Network Function
Virtualization

So�ware Deûned
Networking

Hardware
Virtualization

Figure 2.1: Enabling technologies for network slicing.
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Figure 2.2: Virtualization architectures.

chines are typically executed by a hypervisor, which schedules andmaintains the vir-
tual machines [22]. A hypervisor can either run directly on the hardware (type 1 hy-
pervisor), or be executed in an operating system (type 2), as illustrated in Figures 2.2a
and 2.2b. In both cases, the hypervisor provides an interface to the virtual machine
equivalent to that provided by a physical machine. Type 1 hypervisors are typically
more eõcient than type 2 hypervisors, and can provide higher security and reliability.
For these reasons, type 1 hypervisors are typically used in server and cloud environ-
ments, while type 2 hypervisors mainly are used in client systems.
An alternative to hypervisors is containers (Figure 2.2c), which allow virtual ma-

chines to be executed within a host operating system. In this setting, the virtual ma-
chines share the system libraries and other services provided by the host such as the
network interfaces and the ûle system [23]. _erefore, containers aremore lightweight
constructs, but provides less isolation compared to hypervisors.
While typical VNFs do not have hard deadlines, the desire to bring virtualization

to time-critical systems, such as industrial control systems adds several requirements
to the method of virtualization [24–26]. Since traditional virtual machines are o�en
constructed to provide a good average performance,much work has been focused on
allowing virtualization of so� real-time systems, i.e. systems where missed deadlines
lead to degraded service but not complete system failures as in hard real-time sys-
tems [26]. So� real-time schedulers have been proposed for the Xen hypervisor [27–
29] which signiûcantly improve the number of met deadlines. For instance, the RT-
Xen scheduler presented in [28], is able to meet all deadlines of a set of periodic tasks
while maintaining a utilization of 78%, whereas the default Xen scheduler (credit)
misses 10% deadlines at a utilization of 22%.
Current virtualization architectures are, however, not well suited for hard real-time

systems [3, 25, 26]. In [25] it is argued that although there are good reasons for vir-
tualizing embedded systems, it requires signiûcant changes to the virtualization and

8



2 .3 NFV-MANO IMPLEMENTATIONS

operating system technologies to fully achieve the beneûts of virtualization. Speciû-
cally, it is highlighted that the hypervisors are black boxes from an application point
of view, which limits the possibility to interact with the scheduler. Furthermore, since
current hypervisors are designed to run an operating system, they provide a complex
interface which puts demands on the complexity of the client so�ware. _is, in turn,
makes it diõcult to ensure ultra-high reliability of the client and limits the system
predictability [3]. Several hypervisors for embedded systems have been proposed in
literature, which are o�en very lightweight and aim to be deterministic [30, 31]. How-
ever, virtualizationmay introduce increased variance ofmemory access times, etc. due
tomultiplexing,whichmakes it more diõcult to verify that deadlines can bemet [32].
_is is particularly true when the other guests running on the physical machine are
unknown which is o�en the case in cloud environments.

2.2.1 Network Function Virtualization

NFV refers to the virtualization of functions, typically routing, traõc shaping or com-
putation capabilities, which are executed in a network in order to provide a service.
AlthoughNFV and SDN are similar in the sense that they both introduce programma-
bility of the control plane in a network, SDN targets the handling of packetswhileNFV
decouples network functions from specialized hardware [33]. Furthermore, SDN does
not necessarily imply virtualization while this is themain principle of NFV. NFV has
been heavily studied in the context of 5G and future cellular networkswhere it is provi-
sioned to introduce �exibility, increase reliability and scalability, and to be an enabler
for network slicing and hence the support of heterogeneous user requirements [12–
14].

Possible architectures of NFV are studied in [33] which also includes a discussion
of challenges, related concepts such as Virtual Network Embedding (VNE), and an
overview of standardization activities. _e European Telecommunications Standards
Institute (ETSI) deûnes a NFV architectural framework consisting of a NFV Infras-
tructure (NFVI), Virtualized Network Functions (VNFs), a Operations Support Sys-
tems and Business Support Systems plane (OSS/BSS), and a NFV-MANO plane as
depicted in Figure 2.3 [34]. _eOSS/BSS plane refers to an operator, which is respon-
sible for creating and managing the network including VNFs. _e individual VNFs
aremanaged by an Element Management System (EMS) and interact with virtual re-
sources in theNFVI. Lastly, theNFV-MANOplane is responsible for constructing and
managing the network, and interfaces all planes in the architecture.

_e ETSI further deûnes the concepts of VNF Forwarding Graphs (VNF-FG), de-
scribing the connectivity betweenVNFs, and aVNF Set, describingVNFswhere con-
nectivity does not matter. To this extend, a network service is a forwarding graph of
network functions. It is emphasized that the forwarding graphs may be nested. For
instance, a network service may use a service which can be independently described
by another forwarding graph. In Figure 2.3 the VNF-FG is part of the Service, VNF
and Infrastructure Description, and is considered to be a relatively static.

2.3 NFV-MANO Implementations
Several open source NFV-MANO implementations are currently being developed,
most notably Open SourceMANO [35, 36] and OPEN-O [37]. Open SourceMANO

9
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Figure 4: NFV reference architectural framework 

The following clauses give an overview of the functional blocks in the architectural framework. 

7.2.2 Virtualised Network Function (VNF) 
A VNF is a virtualisation of a network function in a legacy non-virtualised network. Examples of NFs are 3GPP™ 
Evolved Packet Core (EPC) [i.2] network elements, e.g. Mobility Management Entity (MME), Serving Gateway 
(SGW), Packet Data Network Gateway (PGW); elements in a home network, e.g. Residential Gateway (RGW); and 
conventional network functions, e.g. Dynamic Host Configuration Protocol (DHCP) servers, firewalls, etc. 
GS NFV 001 [3] provides a list of use cases and examples of target network functions (NFs) for virtualisation. 

Functional behaviour and state of a NF are largely independent of whether the NF is virtualised or not. The functional 
behaviour and the external operational interfaces of a PNF and a VNF are expected to be the same. 

A VNF can be composed of multiple internal components. For example, one VNF can be deployed over multiple VMs, 
where each VM hosts a single component of the VNF. However, in other cases, the whole VNF can be deployed in a 
single VM as well. Detailed implementation methods are outside the scope of the present document. 

7.2.3 Element Management System (EMS) 
The Element Management System performs the typical management functionality for one or several VNFs. 

Figure 2.3: ETSI NFV architectural framework (from [34]).

aims toprovide aproduction ready reference implementation of the ETSINFV-MANO
architecture, and is hosted by the ETSI and supported by several vendors. Further-
more, the project is used as a way to evaluate how the ETSI architecture works in
practice, and hence provides feedback to the standardization process. _e goal of
OPEN-O is to provide orchestration of end-to-end services over any network, and
while it is compliant with the ETSI NFV architecture, it targets amuch wider range of
networks. OPEN-O is hosted by _e Linux Foundation and is also supported by sev-
eral telecommunication vendors. Both projects are built upon several existing open
source projects such as OpenStack [38] for virtual infrastructuremanagement,Open-
Daylight [39] andONOS [40] for SDN control. While both Open SourceMANO and
OPEN-O are interesting in the context of realizing network slicing and provide tools
for monitoring end-to-end network characteristics, they do not attempt to answer the
question of how network slices should be created, or how many resources to allocate
to individual network slices.

Several other projects aim to realize NFV,most notably OPNFV [41], which facili-
tates the developmentofopen sourceprojectswhich canbeused forVNF._eultimate
goal of OPNFV is to construct an open reference platform for NFV.
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3 Network Calculus
Whilemany technologies facilitate the instantiation of network slices, the task of de-
cidingwhich resources to allocate so that certain end-to-end properties are achieved is
notwell studied, in particular not in the context of industrial systems. While the strict
latency requirements in industrial networks have traditionally been handled by de-
terministicmaster/slave communication protocols, introducing NFV and cloud com-
puting is likely to introduce switched Ethernet and queuing based technologies in the
network aswell. Providing end-to-endQoS and analyzing end-to-end latency in queu-
ing networks has been investigated for several decades, and several frameworks such
as queuing theory and network calculus have been proposed. While queuing theory
relies on Markov models and allows for probabilistic latency bounds, it is o�en not
practical to use for analyzing networks with distributions that are not memoryless.
_erefore, unless a memoryless distribution models the system well, queuing theory
o�en introduces a high degree of uncertainty about the obtained results. Network cal-
culus, on the other hand, allows for obtaining latency bounds in networkswith awide
range of deterministic or stochastic arrivals. However, this comes at the cost of conser-
vative bounds and results in low network utilization. Nevertheless, since safety is o�en
a concern in industrial networks and conservative requirements are strongly favored
over uncertainty, network calculus is more likely to provide a useful framework.

_is chapter provides an overview of deterministic and stochastic network calculus,
which allows for obtainingworst-case bounds in deterministic networks and stochas-
tic bounds in stochastic networks, respectively. _e content is based on the guide by
Fidler& Rizk [42]. It ûrst introduces deterministic network calculus and then extends
it to a stochastic setting. Finally, it discusses the uses and limitations of the frame-
works.

3.1 Deterministic Network Calculus
Deterministic network calculus considers deterministic arrival and service processes.
_ese are described as discrete cumulative functions A(t) ≥ 0 and S(t) ≥ 0, respec-
tively. A(t) describes the number of bytes that have arrived in the interval [0, t]. Sim-
ilarly, S(t) is the service that has been oòered by the system, also speciûed in bytes.
For convenience we deûne A(τ, t) = A(t) − A(τ) and S(τ, t) = S(t) − S(τ). Aõne
arrival and service curves are the most commonly used functions and are written on
the form [43]

A(t) = [σAt + ρA]+, (3.1)

where [x]+ = max(x , 0). Such an arrival curve sends ρA bytes in a burst but no more
than σA bytes/second in the long run. Hence, A(t) represents a traõc �ow which
has passed through a leaky bucket with a token rate σA and token buòer of size ρA.
Similarly for service curves we have

S(t) = [σSt − ρS]+. (3.2)

_e aõne curve is o�en used as an upper bound on linear and sub-linear arrival curves
and as a lower bound for linear and super-linear service curves.

_e cumulative departures of a system are denoted by D(t). Let τ∗ denote the be-
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ginning of the last busy period. _en D(τ∗) = A(τ∗). Since the system is busy in the
interval [τ∗, t], the number of departures since time τ∗ is exactly S(τ∗, t), fromwhich
it follows that

D(t) = A(τ∗) + S(τ∗, t). (3.3)

Since τ∗ is not generally known, one can obtain a bound on D(t)

D(t) ≥ min
τ∈[0,t]

{A(τ) + S(τ, t)} . (3.4)

However, the number of departures in [τ, t] is bounded by the service, D(t) ≤ D(τ)+
S(τ, t), and hence D(t) ≤ A(τ) + S(τ, t). It follows that there is equality in (3.4) and
we obtain

D(t) = min
τ∈[0,t]

{A(τ) + S(τ, t)} . (3.5)

_is operation is o�en denoted by the operator ⊗ so that D(t) = A⊗ S(t). It is
straightforward to show that the operator is associative and as a consequence allows
the service rateof n tandem servers tobe represented as S(τ, t) = S1⊗ S2⊗ . . .⊗ Sn(τ, t).
In particular, by causality

S1⊗ S2(τ, t) = min
ν∈[τ,t]

{S1(τ, ν) + S2(ν, t)} . (3.6)

Note that if A(t) and S(t) provide upper and lower bounds on the arrival and service
processes, respectively, then the departures are bounded by [44]

D(t) ≤ max
τ≥0

{A(t + τ) + S(τ)} . (3.7)

For aõne bounded A(t) and S(t) in (3.1) and (3.2), this yields

D(t) ≤ σAt + ρA +
σAρS

σS
, (3.8)

which is again an aõne bounded arrival process, but with the burst increased by
(σAρS)/σS.

_e backlog, i.e. the number of bytes that is buòered or in transmission, is given by

B(t) = A(t) − D(t). (3.9)

It follows that

B(t) ≤ min
τ∈[0,t]

{A(τ) − A(τ) − S(τ, t)}

≤ min
τ∈[0,t]

{A(τ, t) − S(τ, t)} . (3.10)

Assuming ûrst-come-ûrst-served scheduling, the waiting time is given by

W(t) = min{w ≥ 0 ∶ A(t) − D(t +w) ≤ 0} . (3.11)

Insertion of (3.5) gives

W(t) = min{w ≥ 0 ∶ A(t) − min
τ∈[0,t]

{A(τ) + S(τ, t +w)} ≤ 0} (3.12)

12
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Figure 3.1: Graphical representation of the waiting time bound in deterministic network calculus.

from which we can form the bound

W(t) = min{w ≥ 0 ∶ A(t) − min
τ∈[0,t]

{A(τ) + S(τ, t +w)} ≤ 0}

= min{w ≥ 0 ∶ A(t) + max
τ∈[0,t]

{−A(τ) − S(τ, t +w)} ≤ 0}

= min{w ≥ 0 ∶ max
τ∈[0,t]

{A(τ, t) − S(τ, t +w)} ≤ 0} . (3.13)

For aõne bounded arrival and service curves, the waiting time reduces to [43]

W(t) ≤ ρS + ρA
σS

. (3.14)

_e waiting time bound is illustrated in Figure 3.1 where arrivals and service are pe-
riodic. Concretely, A(t) = 5⌊t⌋ + 5 and S(t) = 15⌊t/3⌋ − 5. A′(t) and S′(t) denote
the aõne bounds which may be used to simplify the analysis. D′(t) denotes the cor-
responding departure bound of the server. Notice that the waiting time bound are
higher when the aõne bounded functions are used.

If two aõne bounded arrival curvesA1(t) = [σA1 t+ρA1]+ andA2(t) = [σA2 t+ρA2]+
arrive to the same aõne bounded server S(t), but At(t) is prioritized higher than
A2(t), then the service le� for A2(t) is given as [43]

Slo(t) ≥ [(σS − σA1)t − ρS − ρA]+ , (3.15)

while A1(t) is served by the entire service given by S(t).

3.2 Stochastic Network Calculus
_is section extends the deterministic network calculus described in previous section
to include stochastic processes. In stochastic network calculus, the bounds are prob-
abilistic. _at is, they provide bounds on the percentiles of the distributions involved,
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such aswaiting times. It ûrst introduces stochastic arrival and service curves, and then
describe how waiting time bounds can be obtained.

3.2.1 Stochastic Arrival Curves

_is section extends the deterministic arrival curves described in previous section to
include stochastic processes. A natural way to extend the deterministic aõne arrival
curves in (3.1) is to provide a probabilisticmodel of the form

Pr (A(τ, t) > ρA(t − τ) + bA) ≤ єA, (3.16)

where ρA > 0. For the purpose of studying stochastic network calculus, we consider
the class of curves which have Exponentially Bounded Burstiness (EBB):

Pr (A(τ, t) > ρA(t − τ) + bA) ≤ αAe−θbA , (3.17)

where αA ≥ 0 and θ ≥ 0. _is class of processes includesPoisson processes andMarko-
vian on/oò processes.

It is o�en more convenient to describe the distributions as their Moment Generat-
ing Functions (MGFs) due to the property that the MGF of a linear combination of
independent random variables X = ∑i aiXi is given by the product of their moment
generating functions MX(θ) = ∏i MX i(aiθ). _e MGF of a random variable Y is
deûned as

MY(θ) = E[eθY], (3.18)

where θ ≥ 0. Similar to the aõne arrival curve bound in (3.17), we deûne the class of
processes for which their MGFs are bounded by an exponential aõne function

E[eθA(τ,t)] ≤ eθ(ρA(t−τ)+σA), (3.19)

where ρA > 0 and σA ≥ 0 are functions of θ. It turns out that processes in this class
also belong to EBB. _is can be shown using the Chernoò bound:

Pr (X > x) ≤ e−θxE[eθX]. (3.20)

Applying the Chernoò bound to Pr (A(τ, t) > ρA(t − τ) + bA)) one obtains

Pr (A(τ, t) > ρA(t − τ) + bA) ≤ e−θ(ρA(t−τ)+bA)E[eθA(τ,t)]

≤ e−θ(ρA(t−τ)+bA)eθ(ρA(t−τ)+σA)

= eθσA e−θbA . (3.21)

Hence, processes satisfying (3.19) are EBB with parameters αA = eθσA .

Unfortunately, the form(3.17) cannot be used to obtain bounds on the backlog using
(3.10), since the τ that maximizes the expression is a random variable. _erefore, we
use the following expression instead of (3.17):

Pr (∃A(τ, t) > ρ′A(t − τ) + bA) ≤ α′Ae−θbA , (3.22)

where the introduction of ρ′A insteadof ρA becomes clear shortly. Toûnd an expression
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for α′A we ûrst use the union bound to get

Pr (∃A(τ, t) > ρ′A(t − τ) + bA) ≤
t
∑
τ=0

Pr (A(τ, t) > ρ′A(t − τ) + bA) . (3.23)

By deûning ρ′A = ρA+δ with δ > 0 (which is still a valid bound)we have ρ′A(t−τ)+b =
ρA(t − τ) + δ(t − τ) + bA. By using (3.21) we get

t
∑
τ=0

Pr (A(τ, t) > ρ′A(t − τ) + bA) ≤
t
∑
τ=0
eθσA e−θδ(t−τ)e−θbA

= eθσA e−θbA
t
∑
τ=0
e−θδ(t−τ)

≤ eθσA e−θbA
t
∑
τ=0
e−θδt . (3.24)

Letting t →∞ toobtain a steady-state bound the sum becomes a converging geometric
series:

eθσA e−θbA
t
∑
τ=0
e−θδt ≤ eθσA e−θbA

∞
∑
τ=0
e−θδt

= e
θσA e−θbA
1 − e−θδ

. (3.25)

Hence α′A is

α′A = eθσA
1 − e−θδ

. (3.26)

For convenience we denote the bound є′A = α′Ae−θbA , i.e.

є′A = eθσA
1 − e−θδ

e−θbA . (3.27)

3.2.2 Stochastic Service Curves

Wemay aswelldeûne ExponentiallyBoundedFluctuations (EBF) service curveswhich
follow the same idea as EBB:

Pr (S(τ, t) < ρS(t − τ) − bS) ≤ αSe−θbS , (3.28)

and similar deûne theMGF

E[e−θS(τ,t)] ≤ e−θ(ρS(t−τ)−σS). (3.29)

From the Chernoò bound this is bounded by

Pr (S(τ, t) < ρS(t − τ) − bS) ≤ eθ(ρS(t−τ)−bS)E[e−θS(τ,t)]

≤ eθρS t−θρSτ−θbS e−θ(ρS(t−τ)−σS)

= eθρS t−θρSτ−θbS−θρS t+θρSτ+θσS

= eθσS e−θbS . (3.30)
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Following the same procedure as for arrival curves, but letting ρ′S = ρS − δ, δ > 0 one
obtains

Pr (∃S(τ, t) < ρ′S(t − τ) − bS) ≤
eθσS e−θbS
1 − e−θδ

, (3.31)

and hence

α′S =
eθσS

1 − e−θδ
. (3.32)

Finally, we let

є′S =
eθσS

1 − e−θδ
e−θbS . (3.33)

_e stability criterion of the system can be derived by the deûnitions of arrival and
service processes. In the deterministic case, the system is stable when

lim
t→∞

A(t)
S(t)

< 1. (3.34)

In the stochastic case the criterion is equivalent but with the use of expectation

lim
t→∞

E[A(t)]
E[S(t)]

< 1. (3.35)

For EBB and EBF processes the expected value is obtained by setting θ = 1 in the
MGFs:

1 > lim
t→∞

ρ′At + bA
ρ′St + bS

=
ρ′A
ρ′S

. (3.36)

Using ρ′A = ρA + δ and ρ′S = ρS − δ we further have

ρA + δ < ρS − δ

δ < ρS − ρA
2

, (3.37)

where δ > 0, ρS > 0, and ρA > 0.

3.2.3 Backlog andWaiting Times

_is section describes how to obtain bounds on the backlog and waiting time. For
simplicity, only single server models are considered since any network can be reduced
to a single server. _is property is further described in Section 3.2.8. Consider arrival
and service curve samples which satisfy the inequalities

A(τ, t) ≤ ρ′A(t − τ) + bA, (3.38a)
S(τ, t) ≥ ρ′S(t − τ) − bS, (3.38b)

16



3 .2 STOCHASTIC NETWORK CALCULUS

where t > 0. _e backlog follows from (3.10) as

B(t) ≤ max
τ∈[0,t]

{A(τ, t − S(τ, t)}

≤ max
τ∈[0,t]

{ρ′A(t − τ) + bA − [ρ′S(t − τ) − bS]+} . (3.39)

To ease the notation we deûne

b = max
τ∈[0,t]

{ρ′A(t − τ) + bA − [ρ′S(t − τ) − bS]+} . (3.40)

b is ûnite in a stable systemwhereA(τ, t) < S(τ, t). In this case, b attains itsmaximum
value at themaximum τ forwhich ρ′(t−τ)−bS ≤ 0. It follows that this is exactly when
ρ′S(t − τ) − bS = 0, i.e. τ = t − bS/ρ′S. By substituting into (3.40) we obtain

b = ρ′A (t − t + bS
ρ′S

) + bA

= bA + bS
ρ′A
ρ′S

= bA + bS
ρA + δ
ρS − δ

. (3.41)

Recall that in a stochastic setting, the conditions (3.38a) and (3.38b) may fail with
probability bounded by є′A and є′S, respectively. By the union bound the backlog tail is
bounded by

Pr (B(t) > b) ≤ є′A + є′S. (3.42)

One may obtain bounds in the waiting time in a similar way. Recall that in the
deterministic case the waiting time is deûned as

W(t) = min{w ≥ 0 ∶ max
τ∈[0,t]

{A(τ, t) − S(τ, t +w)} ≤ 0} . (3.43)

Using conditions (3.38a) and (3.38b) we have

A(τ, t) − S(τ, t +w) ≤ ρ′A(t − τ) + bA − [ρ′S(t +w − τ) − bS]+, (3.44)

which attains its minimum when τ = t. _is yields

ρ′A(t − τ) + bA − [ρ′S(t +w − τ) − bS]+∣
τ=t

= bA − [ρ′Sw − bS]+. (3.45)

Since bA is non-negative, the values of w ≥ 0 which satisfy that bA − [ρ′Sw − bS]+ ≤ 0
are given by ρ′Sw − bS ≤ bA. It follows that

w ≤ bA + bS
ρ′S

= bA + bS
ρS − δ

. (3.46)

Following the same argument as for the backlog bound the tail bound on the waiting
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time is
Pr(W(t) > bA + bS

ρS − δ
) ≤ є′A + є′S. (3.47)

In some cases onemay have a ûxed є′ = є′A + є′S and seek the waiting time w which
can be guaranteed with probability at least є′. Letting є′A = є′S = є′/2 one obtains
(considering єA)

є′

2
= eθσA

1 − e−θδ
e−θbA

⇕

ln(є
′

2
) = θσA − ln (1 − e−θδ) − θbA

⇕

θbA = θσA − ln(є
′

2
) − ln (1 − e−θδ)

⇕

bA = σA −
1
θ
(ln(є

′

2
) + ln (1 − e−θδ)) . (3.48)

_e same procedure can be used for єS to obtain

bS = σS −
1
θ
(ln(є

′

2
) + ln (1 − e−θδ)) . (3.49)

3.2.4 Constant Rate Server

In reality, many servers provide a deterministic, constant service rate. _ese include
for instance switched Ethernet where the service rate represents the serialization pro-
cess. _e constant rate server needs to be treated explicitly, since it has єS = 0.

Let c denote the rate of the server and d the time oòset until the service starts. _is
gives

S(τ, t) = c(t − τ) − d , (3.50)

i.e. ρ′S = c and bS = d. From (3.41) and (3.46) it follows that

b = bA + d
ρ′A
c
, (3.51)

w = bA + d
c

. (3.52)

Following the approach in [42] and setting δ = c − ρA and using that є′ = єA one
obtains

bA = σA −
1
θ
(ln (є′) + ln (1 − e−θ(c−ρA)) . (3.53)

3.2.5 Arrival Processes

Several arrival processes in the EBF class can be derived. In this section we consider
two widely used processes: Poisson processes andMarkovian On/Oò processes.
Arrivals with exponentially distributed inter-arrival times result in an arrival pro-
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cess N(t) which is Poisson distributed with mean inter-arrival time λ−1

N(t) ∼ Poisson(λt). (3.54)

_eMGF for a Poisson random variable is [45]

MN(t)(θ , t) = eλt(e
θ−1). (3.55)

Assuming constant packet size s we have the arrival curve

A(t) = sN(t) (3.56)

with MGF
MA(θ , t) = MN(t)(sθ , t). (3.57)

It follows that

ρA = λ(eθs − 1)
θ

, (3.58)

σA = 0, (3.59)

for θ > 0.

For packet sizes which follow an exponential distribution with mean s the arrival
process is

A(t) =
N(t)
∑
k=1

Xk , (3.60)

where Xk ∼ exp(s−1). _eMGF for Xk is [42]

MX(θ) =
1

1 − θs
. (3.61)

Since A(t) is a sum of random variables theMGF of A(t) is the product of theMGFs
of Xk ,

MA(θ , t) = E [MX(θ)N(t)]

= E [eln(MX(θ)N(t))]
= E [eln(MX(θ))N(t)] . (3.62)

By the deûnition of aMGFwehave thatMA(θ , t) = MN(t) (ln (MX (θ)) , t). Inserting
into (3.55) gives

MA(θ , t) = eλt(e
ln(MX(θ))−1)

= eλt(MX(θ)−1)

= eλt(
1

1−θs−1)

= e
θsλt
1−θs . (3.63)
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Figure 3.2:Markovian On/Oò process.

It follows that

ρA =
sλ

1 − θs
, (3.64)

σA = 0, (3.65)

for 0 ≥ θ < 1/s.

Although Poisson traõc are o�en used for analysis of networks, many applica-
tions tend to send data in bursts. One traõc model which captures bursty arrivals
is the (discrete-time) Markovian On/Oò process depicted in Figure 3.2. AMarkovian
On/Oò process contains an On and an Oò state. In the On state (state 1), the process
generates traõc with a constant rate r, while no traõc is generated in the Oò state
(state 2). Transitions from the On state to the Oò state, and from the Oò to the On
state, occur with probability p12 and p21, respectively. _e mean arrival rate is given
by ponr where

pon =
p12

p12 + p21
. (3.66)

Processes with the samemean arrival rate can have various degrees of burstiness. _e
burstiness can be characterized by the quantity T = p−112 + p−121 which is low when the
system o�en changes state and high when the time between state transitions is high.
Realizations ofMarkovOn/Oò processes with equal mean rates and various values of
T are shown in Figure 3.3.

_eMarkovian On/Oò process belongs to the class of EBB arrival curves with pa-
rameters σA = 0 and

ρA = 1
θ
ln

⎛
⎜
⎝

p11 + p22eθr +
√

(p11 + p22eθr)
2 − 4 (p11 + p22 − 1) eθr

2

⎞
⎟
⎠
, (3.67)

where p11 = 1 − p12 and p22 = 1 − p21 [42].

3.2.6 Aggregate Flows

To simplify the analysis of a network, it is o�en desirable to combine multiple �ows
into a single �ow. Stochastic network calculus provides a way to aggregate �ows even
when the �ows have diòerent arrival curves. Consider the aggregate arrival curve of
M �ows given by

Aagg(τ, t) =
M
∑
i=1
Ai(τ, t) (3.68)
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Figure 3.3: Realization of Markovian On/Oò processes with ûxed rate r = 0.15 and pon = 1/600 for
various burstiness parameters T .

which has moment generating function

E [eθAagg(τ,t)] = E [eθ(∑
M
i=1 A i(τ,t))]

= E [
M
∏
i=1
eθA i(τ,t)] . (3.69)

Assuming independence between the �ows and using the aõneMGF bound we have

E [eθAagg(τ,t)] =
M
∏
i=1
E [eθA i(τ,t)]

≤
M
∏
i=1
eθ(ρAi (t−τ)+σAi )

= eθ(∑
M
i=1(ρAi (t−τ)+σAi )). (3.70)

It follows that Aagg(τ, t) also belongs to the group of EBB arrivals with parameters

ρagg =
M
∑
i=1

ρAi , (3.71a)

σagg =
M
∑
i=1

σAi . (3.71b)

3.2.7 Scheduling

Multiple �ows arriving to the same server are scheduled according to some discipline,
e.g. ûrst-come-ûrst-served, round-robin, or a priority scheduling. In stochastic net-
work calculus, a worst-case scheduling discipline is considered by assuming that all
other �ows are scheduled before the �ow of interest. We consider two �ows arriving
to the server: cross �ow and through �ow. We are interested in obtaining the backlog
and waiting time experienced by the through �ow. In casemore than two �ows arrive
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to the serverwe obtain the cross �ow as the aggregate �ow of cross traõc. Let Acr(τ, t)
denote the cross �ow and Ath(τ, t) denote the through �ow so that the cumulative ar-
rivals are given by A(t) = Acr(τ, t) + Ath(τ, t) and the cumulative departures are
D(t) = Dcr(τ, t) + Dth(τ, t).

Let τ∗ denote the beginning of the last busy period and consider a t ≥ τ∗. During
the time from τ∗ to t, at most S(τ∗, t) bytes can depart from the server. Furthermore,
since the queue is empty at time τ∗ the number of departured bytes is equal to the
number of arrivals, i.e. D(τ∗) = A(τ∗). It follows that

D(t) = A(τ∗) + S(τ∗, t)
⇕

Dcr(t) + Dth(t) = Acr(τ∗) + Ath(τ) + S(τ∗, t)
⇕

Dth(t) = Ath(τ∗) + S(τ∗, t) − (Dcr(t) − Acr(τ∗)). (3.72)

Since Dcr(t) ≤ Acr(t) we have the lower bound

Dth(t) ≥ Ath(τ∗) + S(τ∗, t) − (Acr(t) − Acr(τ∗))
⇕

Dth(t) ≥ Ath(τ∗) + [S(τ∗, t) − Acr(τ∗, t)]+
⇕

Dth(t) ≥ min
τ∈[0,t]

{Ath(τ) + [S(τ, t) − Acr(τ, t)]+} . (3.73)

Notice that this expression does not depend on how Acr(τ, t) and Ath(τ, t) are sched-
uled, but rather provides aminimum of the number of departures.

From (3.5) it follows that the quantity [S(τ, t) − Acr(τ, t)]+ is a service curve. De-
ûne the quantity as the le�over service for Ath(t) denoted Slo = [S(τ, t) − Acr(τ, t)]+.
We then have

E [e−θSlo(τ,t)] = E [e−θ[S(τ,t)−Acr(τ,t)]+]
≤ E [e−θS(τ,t)+θAcr(τ,t)] . (3.74)

Assuming independence between S(τ, t) andAcr(τ, t)wehave E [e−θS(τ,t)+θAcr(τ,t)] =
E [e−θS(τ,t)] E [eθAcr(τ,t)]. For aõne server MGF envelope with ρS and σS the le�over
service also has aõneMGF envelope given by

E [e−θSlo(τ,t)] ≤ e−θ(ρS(t−τ)−σS)eθ(ρAcr(t−τ)+σAcr)

= e−θ((ρS−ρAcr)(t−τ)−(σS+σAcr)). (3.75)

_at is, the le�over service Slo(t) has aõneMGF envelope parameterized by

ρlo = ρS − ρAcr , (3.76a)
σlo = σS + σAcr . (3.76b)

Note that if S(t) is a constant rate server and Acr and Ath are independent, then Slo(t)
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also has є′ = 0 [46] with waiting time bound given by

b =
σA + σlo − 1

θ (ln (є′) + ln (1 − e−θ(ρlo−ρA)))
ρlo

. (3.77)

3.2.8 Equivalent Servers
A network of multiple servers can be reduced to a single server which is equivalent
to the entire network from the view of a certain �ow. _is allows the above derived
methods to be used for analyzing entire networks and not only single server systems.
From deterministic network calculuswe have that a systemof two servers S1(t) and

S2(t) may be represented as S(τ, t) = S1⊗ S2(τ, t). It follows that theMGF of S(t) is
given by

E [e−θS(τ,t)] = E [e−θ(S1⊗ S2)(τ,t)]

= E [e−θ(minν∈[τ ,t]{S1(τ,ν)+S2(ν,t)})] . (3.78)

By replacing minν∈[τ,t]{⋅} with the sum ∑ν∈[τ,t]{⋅} and assuming independence be-
tween the servers we obtain an upper bound

E [e−θS(τ,t)] ≤
t
∑
ν=τ
E [e−θS1(τ,ν)] E [e−θS2(ν,t)] . (3.79)

Assuming that the service processes are stationary and hence only depends on the
time diòerence, (3.79) is equivalent to the convolution between theMGFs

E [e−θS(τ,t)] ≤
t−τ
∑
ν=0
E [e−θS1(ν)] E [e−θS2(t−τ−ν)]

=
t−τ
∑
ν=0

MS1(−θ , ν)MS2(−θ , t − τ − ν)

= MS1 ∗MS2(−θ , t − τ), (3.80)

wherewe have used the shorthand notation MS(θ , t) = E [eθS(t)]. It follows by recur-
sion that theMGF of n tandem servers is

MS(−θ , t) ≤ MS1 ∗MS2 . . . MS3(−θ , t). (3.81)

For serviceswhich obey aõneMGF envelopes is can be shown that the tandem servers
can be reduced to a single server with ρS = mini ρS i and σS = ∑i σS i [42]. _is result
is consistent the common intuition about bottlenecks in computer networks.

3.3 Uses and Limitations of Network Calculus
Network calculus provides a framework for analyzing waiting times in networks. De-
terministic network calculus is intuitive to use, but is limited to deterministic arrival
and service processes. Furthermore, it is based onworst-case assumptionswhichmay
in many cases be too strict.

Stochasticnetwork calculus extendsdeterministicnetwork calculus to include stochas-
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Server
r
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Figure 3.4: Example queue consisting of a single server, 10 Markovian On/Oò cross �ows (Acr), and 1
Poisson �ow of interest (Ap).
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Figure 3.5:Waiting time bounds and simulation in a system with Poisson arrivals and Markov On/Oò
cross traõc.

tic arrival and/or service processes. A natural question that arises is how good the
bounds obtained by the framework are, and how the framework compares to other
frameworks such as queuing theory and deterministic network calculus. To answer
this, we consider two examples. First, we consider a network equivalent to the one
considered in [42, Section IIIA]which illustrates the usefulness of stochastic network
calculus. We consider a queue depicted in Figure 3.4 consisting of a single constant
rate server with rate c = 1. We are interested in the waiting time percentile deûned by
Pr(W(t) > w) < є experienced by a Poisson �ow Ap with λ = 0.25 and packets of size
1. Besides the Poisson �ow, 10 independent Markov On/Oò �ows are also sharing the
server (indicated as a single �ow Acr). Each On/Oò �ow sends packets of size r = 0.15
in the On state and has amean rate of ponr = 0.025. _e free parameters θ and δ are
optimized using Ipopt [47] to provide the best bound.

_e bounds are calculated by ûrst calculating an aggregate �ow of theOn/Oò �ows,
and then calculating the le�over service from the server. _is is then used as the server
process for the Poisson �ow.

Simulation results and network calculus bounds are shown in Figure 3.5 for various
burstiness values T of the On/Oò �ows. _e vertical bars on the simulation points
are 95% conûdence intervals. We obtain bounds using stochastic network calculus by
two methods: (1) treating le�over service as a regular EBB server which has nonzero
violation probability єlo, and (2) by using the result from [46] shown in (3.77) stating
that єlo = 0. _e former method is equivalent to themethod used in [42] and provides
equivalent results. However, the latter method provides much better bounds on the
waiting time since it makes use of the fact that the service is deterministic.

It is worth noting that if the above scenario was to be analyzed using queuing the-
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ory, it would require a Markov chain with states for each On/Oò �ow. Furthermore,
capturing the fact that the On/Oò processes generate a constant rate in the On state
requires the use of a discrete Markov chain which leads to a very complex transition
matrix. Likewise, analyzing the scenario using deterministic network calculus would
lead to high overprovisioning since the arrival processes, in theory, may produce an
arbitrary high amount of traõc. Hence, in order to obtain useful results from deter-
ministic network calculus, one would have to introduce traõc shapers to the network
which may not be feasible or desired in practice.

However, stochastic network calculus also has its limitations. For instance, it does
not handle periodic arrivals very well since such an arrival process does not ût well
into the category of aõneMGF envelopes. To show this, we consider the same queue
as before, but this time letting Ap be a periodic arrival process which generates 1 byte
with period 1, and Acr be a Poisson arrival process which generates 1 byte with rate
λ = 0.5. Both arrival processes are served by the server with a constant rate r = 2. To
model the periodic arrival process using stochastic network calculus, we use the fact
that theMGF of a source generating r bytes with period τ and uniform phase is given
by [48, 49]

eθ(r⌊
t
τ ⌋+

1
θ ln(1+( t

τ−⌊
t
τ ⌋)(e

θr−1))), (3.82)

which is upper bounded by the aõneMGF

eθ(
r
τ t+r), (3.83)

i.e. ρA = r/τ and σ = r. However, the diòerence between the process described by this
bound and the periodic process is that arrivals following this approximation aremore
likely to arrive to an idle server since they do not arrive in bulks. _is reduces the over-
allwaiting time experienced by the arrivals as illustrated in Figure 3.6which shows the
bounds obtained from stochastic network calculus (SNC) alongwith bounds obtained
by simulation (sim). While the aõne approximation provides an upper bound for the
small percentiles it does not capture the tail of the waiting time distribution well. _e
reason is that while the aõne approximation provides a bound on all moments, it is
not a bound on the shape of the distribution. _e speciûc scenario could possibly be
better characterized using queuing theory by modelling the system as a discrete-time
Markov chain indexed by the periodicity of the arrivals. Furthermore, this would re-
sult in an exact representation of the waiting time distribution. However, a queuing
theoretic approach would be limited to the case where the cross traõc is Poisson dis-
tributed, and to a single queue since the departure distribution may be diõcult to
characterize. Finally, we could attempt to model the scenario using deterministic net-
work calculus. Since both the periodic arrival process and the server are deterministic,
only the Poisson �ow causes diõculties similar to those in the previous scenario.

To summarize, deterministic and stochastic network calculus provides a framework
for obtaining bounds onwaiting times in networkswith deterministic of stochastic ar-
rivals and servers. Deterministic network calculus supports any bounded arrival and
server processes, but are aõne bounded processes simpliûes the calculations. Stochas-
tic network calculus supports a wide range of stochastic arrival processes which may
not be possible or straightforward tomodel using e.g. queuing theory or deterministic
network calculus. Furthermore, it allows for combining diòerent arrival processes in
the same network, which can be particularly diõcult in queuing theory. However, it
cannot be applied for arrival or service processes which are deterministic and bursty,
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Figure 3.6: Comparison between waiting time bounds obtained from stochastic network calculus using
an aõneMGF envelope approximation, and a simulated exact system.

such as periodic arrivals. Such processes are better modelled using queuing theory
and deterministic network calculus. However, one class of networks which remains
diõcult to analyze is networks consisting of a mixture of stochastic and determinis-
tic processes, since stochastic processes are diõcult to model deterministically, and
deterministic processes may be troublesome to model stochastically.
Both deterministic and stochastic network calculus can be used to analyze end-to-

end properties of network slices in Industry 4.0. While deterministic network calcu-
lus targets worst-case analysis and hence is suitable for applications with very strict
requirements, stochastic network calculus allows for relaxing this requirement in sce-
narios where worst-case analysis is too strict. However, the fact that stochastic net-
work calculus is limited to analysis of stochastic arrival processes constraints the types
of networks in which it can be applied. Speciûcally, since industrial communication
technologies o�en rely on determinism, stochastic network calculusmay be inapplica-
ble to analyzing networkswhere these protocols are predominant. On the other hand,
deterministic network calculus may be unsuitable for analyzing cloud networks with
many �ows and a high degree of multiplexing. Since both types of networks are ex-
pected in Industry 4.0, both frameworks are likely to be useful in diòerent parts of the
network.
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4 Industrial Communication
Technologies

Industry 4.0 deployments are likely to consist of both industrial communication tech-
nologies and packet switched networks. Since the operating principles of the com-
munication technologies are important in order to analyze end-to-end network slice
properties, understanding the characteristics of industrial networks is required. Fur-
thermore, due to the network complexity in Industry 4.0 and the conservatism of the
manufacturing industry, it is likely that the transition to a complete Industry 4.0 de-
ployment will take several decades. _erefore, the protocols that are currently in use
in industrial networks are likely to be part of an Industry 4.0 network as well, and
hence need to be supported in the construction of network slices. _is chapter pro-
vides an overview of somewidely used communication technologies used in industrial
systems.
As depicted in Figure 4.1, an industrial communication network typically follows

the hierarchical structure [50]. In the top of the hierarchy is the plant levelwhich pro-
vides a plant-wide network which may also be connected to an external infrastruc-
ture such as the Internet. _e plant level typically includes general purpose hardware
and cloud computing resources which can be used by the devices at the cell level, or
even by components at the device level. _e cell level contains control units and de-
vices which control master-slave networks, and the device level includes devices such
as actuators, input/output devices, sensors, etc. _e communication technologies on
the plant level typically consist of high capacity links which provide a best-eòort ser-
vice. However, it may also contain links that allow for strict queuing disciplines and
hence provide a certain guarantees. _e cell level may contain both deterministic and
non-deterministic links. For instance, the communication between controllers may
be deterministic while the connectivity to the plant level may be based on switched
Ethernet or similar technologies. Finally, the communication between the cell level
and the device level is likely to be deterministic since the applications at this level may
require very low latency (sub-millisecond) and very high reliability, which is typically
realized using pre-allocated cyclicmaster-slave protocols.

_e remainderof this chapter examines theoverall operating principlesof twowidely
used industrial communication technologieswhich mainly operate in the cell and de-
vice levels of the hierarchy. Furthermore, it brie�y discusses an ongoing work in the
ûeld of deterministic and predictable networks which may be applicable at the plant

Plant level

Cell level

Device level

Figure 4.1:Hierarchical architecture of industrial network.
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Figure 4.2: Cycle structure of Sercos III.

level. Although numerous industrial communication technologies exist, the consid-
ered protocols are based on some common operating principles which are shared by
most protocols used for low latency and high reliability industrial networks.

4.1 Sercos III
Sercos III [51] is an 100 Mbit/s Ethernet based industrial communication protocol
which is designed for device level applications such as communication between a con-
troller and actuators, etc. following a master-slave operation scheme. Sercos III sup-
ports ring topologies, and is typically deployed in a double ring to provide redundancy.
_e slave devices in the ring use cut-through connectors so that the physical Ethernet
layer forms a bus between the slaves and themaster.
Communication in Sercos III occurs in cycles which consist of a Real-Time (RT)

channel followed by a Uniûed Communication (UC) channel separated in time (Fig-
ure 4.2). _eRT channel carries Sercos III telegramswhich are formatted as the regular
IEEE 802.3 frames with EtherType 0x88CD. _e channel consists of 1–4 Master Data
Telegrams (MDTs)which contain data from themaster to the slaves, and 1–4Acknowl-
edge Telegrams (ATs)which contain data from slaves to themaster, or between slaves.
Both MDTs and ATs are broadcasted by the master, but ATs are ûlled by the slaves.
_eMDT and AT Ethernet frames contain a regular Ethernet header and frame check
sequence trailer as illustrated in Figure 4.3. _e frame payload is a 6 bytes MDT or
AT header followed by service channels and real-time data. _e service channels take
up 6 bytes per slave, and are used for Sercos III speciûc communication which is not
forwarded to the application layer. In case multipleMDT or AT frames are used, the
service channels may be split across all frames. Following the service channels are the
real-time data divided into connections which follow the publish/subscribe pattern.
Each connection occupies 2 bytes for a header followed by a variable number of bytes
for application data. Hence, given the Ethernet payload size of 1500 bytes, NMDT

conn MDT
connections and NAT

conn AT connections, the following inequalities must be satisûed

NMDT
conn

∑
n=1

2 + sMDT
n ≤ (1500 − 6)NMDT

frames − 6Nslaves, (4.1)

NAT
conn

∑
n=1

2 + sAT
n ≤ (1500 − 6)NAT

frames − 6Nslaves, (4.2)

where sMDT
j and sAT

j are the amount of application data used by connection j (bytes)
forMDT and AT, respectively, NMDT

frames and NAT
frames are the number ofMDT/AT frames,

and Nslaves is the number of slaves.
_eUC channel is used for non-Sercos Ethernet frames, such as regular IP packets,
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Ethernet Header
22 bytes

Sercos III Header
6 bytes

Sercos III Data
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SVC 1
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SVC 2
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. . . Conn. 1 Conn. 2 Conn. 3 . . .

Conn. header
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Conn. data

Figure 4.3: Sercos III frame structure.

andmay be transmitted by both master and slave devices. _eUC channel is handled
as best-eòort, and packetsmay be stored by the Sercos devices before being forwarded.
_e duration of theUC channel is determined by the cycle time and the size of the RT
channel. _e cycle time can either be 31.25 µs, 62.50 µs, 125 µs, or multiples of 250 µs
up to 65ms.

4.2 EtherCAT
EtherCAT (Ethernet forControlAutomationTechnology) [52] is, like Sercos III, based
on 100Mbit/sEthernet and introduces severalmodiûcations to regularEthernet. Ether-
CATdeûnes twoprotocols: EtherCATDeviceProtocol (EDP) andEtherCATAutoma-
tion Protocol (EAP). EDP is used for master/slave communication andmainly targets
hard real-time applications such as closed-loop control systems. EAP both supports
cyclic transmissions (so� real-time) and acyclic transmissions, and is used for plant-
wide communication, e.g. between controllers and for human machine interfaces. As
alreadymentionedwe limit the focus to hard real-time protocols and hence only con-
sider EDP.

_e operation of EDP is similar to that of Sercos III. Ethernet frames are gener-
ated by themaster device while slaves are allowed to ûll the payload. Although com-
munication with EDP does not have to be periodic, it is typically used this way [52].
However, contrary to Sercos III, EDP does not allow regular Ethernet packets to be
delivered to the slaves. Each Ethernet frame contains one or more datagrams which
contain a header that includes addressing, and speciûes whether slaves are allowed to
read and/or write the datagram. Addressing in EDP can either be direct or logical.
In direct addressing, the slave address is speciûed in the datagram whereas in logical
addressing, a piece of data is assigned an address in a logical memory space. By using
the abstraction of a logical memory space, the EDP protocol can be considered a dis-
tributedmemory spacewheremultiple users can to read orwrite. _isway, themaster
can address multiple slaves in one datagram.
EDP can also be used for acyclic communication using a special mailbox datagram.

A mailbox allows for tunneling other protocols through EtherCAT, including CAN
and regular Ethernet frames. While the mailbox mechanism allows for acyclic com-
munication, slots for mailboxes must be allocated in the cycle. Packets which are tun-
neled through mailboxes may be queued and are not guaranteed to be transmitted in
the following cycle.
EDP frames consist of the regular Ethernet header, followed by a 2 bytes Ether-

CAT header and the datagrams (Figure 4.4). Each datagram consists of a datagram
header (10 bytes), a conûgurable, but ûxed, number of data bytes and a 2 bytes work-
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Figure 4.4: EDP frame structure. _e mailbox frame is only used when other protocols are tunneled
through EtherCAT.

ing counter (used to verify success of read/write operations). In case amailbox is used,
the datagram data ûeld is divided into a 6 bytes mailbox header, 2-4 bytes command
ûeld (depending on the type ofmailbox), and a variable amount ofmailbox data. _e
cycle time is determined by the master device, which is also allowed to use various
periods for various datagrams of traõc. _erefore, two consecutive cycles do not nec-
essarily address the same devices.
Although EDP devices can be connected to form a variety of topologies, including

line, ring and star networks, the wiring between physical Ethernet ports in an Ether-
CAT device causes the devices always to be connected in a line topology. _erefore,
slaves can only communicate to slaves located a�er the transmitting device on the line.
If a slave needs to send data to a slave located before the transmitting device, the data
must be forwarded by themaster device. In both cases, the transmission must be ini-
tialized by themaster device which has to allocate the datagram in the frame.

4.3 Deterministic and Time-Sensitive Networking (DetNet/TSN)
Due to an increasing demand on very low latency and high reliability in Ethernet
based networks, several initiatives have been started to enable this. _ese technologies
are very interesting and relevant as enablers for connecting industrial devices to the
cloud and enabling real-time cloud computing. Two notable initiatives in this ûeld are
the IETF Deterministic Networking (DetNet) [53] which is a general architecture for
deterministic network technologies, and the IEEE 802.1 Time-Sensitive Networking
(TSN) [54], which brings several deterministic elements to switched Ethernet.

_e IETF DetNet aims at providing assured end-to-end latency by reserving re-
sources such as bandwidth and buòer space for speciûc �ows. Furthermore, DetNet
introduces synchronized packet forwarding and static end-to-end routes possiblywith
redundant paths. While IETF DetNet mainly focuses on the nodes in a network and
theoverall control plane, the focusof 802.1TSNis toprovide aphysical layerprotcol for
realizing deterministic and/or very low latency communication using Ethernet. 802.1
TSN consists of several standards which are not necessarily all required for enabling
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4.4 COMPARISON

Sercos III EtherCAT DetNet/TSN

Technology 100 Mbit
Ethernet

100 Mbit
Ethernet

Mega/Gigabit
Ethernet

Overall structure Cyclic
master/slave

Cyclic
master/slave

Switched

Cyclic structure Deterministic
followed by non-
deterministic

Deterministic
and non-
deterministic in
same frame

-

Cycle time Constant Variable
(controlled by
master device)

-

Topology Line, ring Line, ring, tree,
star (realized as
line)

Tree, star

Master/slavemethod Master-to-slave
in one frame,
slave-to-
slave/slave-to-
master in
another frame

Master-to-slave
and
slave-to-master
in same frame

-

Handling of Non-RT Transmitted like
regular Ethernet
in allocated space

Tunneled Transmitted in
allocated space

Table 4.1: Comparison of the three industrial communication protocols.

deterministic and low latency communication. Current standards include preemp-
tion of Ethernet frames to prevent high-priority packets to be blocked by low-priority
packets, as well as time-aware scheduling of queues. Although both EITF DetNet and
802.1 TSN are in the early phases of development, they allow for a great simpliûcation
in the analysis of end-to-end guarantees since elements, such as head-of-line blocking,
can be safely ignored. Furthermore, it motivates for a priority queuing based scheme
in the plant-wide network.

4.4 Comparison
A comparison of themain characteristics of the three communication technologies is
given in Table 4.1.
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5 Slicing Industrial Networks
_is chapter considers the task of slicing industrial networks from a low-layer perspec-
tive, namely how the communication resources provided by the industrial protocols
can be divided into multiple slices. Although network slices may be constructed from
physically isolatedmedia, it is generally desired to share amedium between multiple
slices in order toutilize the resources eõciently. However, this introducesmultiplexing
between network slices, and themultiplexing scheme strongly in�uences the guaran-
tees that can be provided to the application, as well as the level of isolation between
the slices. First, diòerent multiplexing schemes that can be applied on top of cyclic
industrial protocols are considered, with focus on Sercos III and EtherCAT presented
in the previous chapter. _en, two example scenarios are deûned which are used to
analyze the impact of diòerentmultiplexing schemes on the latency and reliability, and
to investigate how end-to-end properties can be obtained.

5.1 Multiplexing in Industrial Communication Technologies
A trivialway to allocate network slices over industrial protocols is to statically allocate
a number of resources in every cycle for each slice. However, although this provides
complete isolation between the slices, it is likely to result in very low utilization of the
links since some network slices may not transmit data very o�en. Furthermore, since
the resource allocation typically cannot be reconûguredwithout restarting the system,
allocating resources to each slice signiûcantly limits the scalability of the slices. In-
stead, onemay look into multiplexing the resources between slices. Since resources in
industrial protocols typically are notmultiplexed, in particularly not for real-time traf-
ûc, there is a need for constructing an access layer above the protocol which controls
the multiplexing of resources. In this section, various approaches for multiplexing
resources in industrial communication protocols are discussed based on the overall
structures of Sercos III and EtherCAT, but with more general applications.
Although both Sercos III and EtherCAT already provide resource multiplexing in

the UC channel and by the use of mailboxes, these functionalities are not well suited
for real-time communication since nodes may store frames for several cycles before
forwarding them. Instead, onemust use the reserved real-time resources if low latency
is a strict requirement, and possibly implement multiplexing schemes on top of these.

One approach is to introduce a slave gateway which has a certain number of allo-
cated resources that can be multiplexed by the gateway (Figure 5.1a). For instance, a
wireless transceiver could act as a slave device in the industrial network and at the
same time as a gateway for a number of wireless devices. _is approach provides high
�exibility since themultiplexing decision is moved to the application layer, but intro-
duces a forwarding delay which may violate the strictest requirements. Furthermore,
the number of resources which can be allocatedmay be limited, e.g. as is the case for
the number of MDT/AT frames in Sercos III. Depending on the stochastic proper-
ties of the arrivals and the application requirements, this scheme may also result in
resources being unused in most cycles.
Another approach is to allow multiple slaves to use the same resources. In case

a slave writes to a resource which has already been written to, the existing data in
the resource is overwritten (replaced) by the new data (Figure 5.1b). _is may result
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Figure 5.1: Two methods of cyclic resourcemultiplexing.

in service degradation of the application that has its data overwritten during periods
with bursty arrivals, but causes a low overhead since no resources are reserved for the
gateway arrivals. However, the approach poses some topological challenges. Due to
the double ring topology in Sercos III, the master node is likely to receive diòerent
frames from each ring. In that case the master has to choose which frame to use.
In EtherCAT, the line topology causes the order of the nodes to deûne how nodes
are prioritized, i.e. nodes closer to the end of the line are less likely to have its data
overwritten.

Lastly, a combination of the two above methods is also possible, where multiple
slaves share the same resources following a contention-based statistical multiplexing
scheme. _is approach does not require the use of a gateway, and provides �exibility
and allows for relatively high utilization of the resources since they aremultiplexed by
many applications.

5.2 Single-Cell Network
In order to analyze the impact of multiplexing between diòerent network slices we
consider the network depicted in Figure 5.2 representing a cell in a factory produc-
ing personalized medicine. _e network comprises a master controller, a pipetting
machine mounted on a robotic arm that dispenses drug substances, and a weighing
scale which measures the actual amount of dispensed drug. Furthermore, the net-
work contains a wireless transceiver which receives measurements from sensors lo-
cated around the cell, and is connected to a HID device which allows an operator to
supervise themanufacturing process. Besides the pipettingmachine and the scale, the
wireless transceiver and theHIDdevice act as Sercos slaves. _e individual sensors are
not Sercos slaves but are connected to the network through the wireless transceiver.
_e corresponding traõc requirements are listed inTable 5.1,whereM2S ismaster-to-
slave and S2M is slave-to-master. _emaster device contains a closed-loop controller
of the pipetting machine which requires periodic communication from themaster to
the pipetting machine, and from the pipetting machine to themaster. We assume that
the pipettingmachine has six degrees of freedom (moving parts and pipettes) and that
each of these requires an exchange of 128 bytes. _e scale requires a transmission of
256 bytes every 10 milliseconds. A number of wireless sensors are placed around the
cell to provide general data about the process, the environment, etc. We assume that
the sensor traõc is event based (e.g. triggered by changes in the environment) so that
the inter-arrival times are well modelled by an exponential distribution. Each sensor
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Figure 5.2:_e scenario considered in the case study.

Application Direction Type Period Size Cycle time PER

Master control M2S Periodic 1 ms 6 ⋅ 128 B1 1 ms 10−6

Master control S2M Periodic 1 ms 6 ⋅ 128 B1 1 ms 10−6

Scale S2M Periodic 10 ms 256 B1 10 ms 10−9
Wireless sensor S2M Poisson 0.1 s–1 hour 32 B1 1 ms 10−9
HID stream M2S Periodic 20 ms 20 kB2 10 ms 10−2

Table 5.1: Traõc requirements in the scenario considered in the case study. Cycle times and PERs are
maximum values.

reading occupies 128 bytes and we consider mean reporting rates of 0.1 second up to
1 hour. Since the sensor reportings are rare and may be power constrained, the re-
quired Packet Error Rate (PER) is very low, 10−9. Furthermore, since a reading may
trigger changes in the system, the latency requirement is also very strict. _eHID de-
vice receives a video streamwith frames periodically transmitted by themaster device.
Due to compression, etc., the size of each frame follows an exponential distribution.
A good user experience requires a relatively low latency (10 ms) but the PER is not
critical (10−2). _roughout the analysis we assume that the PER of the Sercos III link
is RL = 1 − 10−11.
For the purpose of analyzing the in�uence ofmultiplexing between network slices

on the ability to satisfy the requirements, two network slice allocationswhich are based
on diòerent approaches are considered. We study the case where individual network
slices are allocated to each requirement, but allow for resourcemultiplexing between
the slices. In the ûrst approach, a number of shared resources are allocated in each
cycle for sporadic traõc. In the second approach, no resources are allocated for the
sporadic traõc, but it is allowed to overwrite the cyclic traõc at the cost of reduced re-
liability of the cyclic traõc. In both caseswe compare the utilization to the probability
that the requirements are fulûlled.

5.2.1 Conservative Slicing
We ûrst consider a conservative network slice allocation where resources are reserved
for all �ows except theHID streamwhich is served in theUC channel. A cycle time of
1 ms is assumed since this is themost strict cycle time requirement given by the appli-

1Deterministic.
2Exponentially distributed.
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cations. Whether the application requirements are satisûed depends on the random
factors in the system. Since the wireless sensor reportings arrive according to a Pois-
son process, the number of instantaneous reportings in�uences whether they can be
delivered within 1 ms. In particular, ifmore reportings arrive than there are allocated
resources, then only some of them can be transferredwithin the cycle time of 1 ms. On
the other hand, allocating many resources leads to a low utilization due to infrequent
transmissions. _erefore, this network slicing scheme poses a trade-oò between the
utilization and the rate of sensor reportings for which the the reliability requirements
can be satisûed. _e total amount of payload data in theMDT frames is

L′MDT = 9 ⋅ 6
°
SVC

+6(128 + 2).
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Master control

(5.1)

Similarly, the number of payload bytes in the AT frames is given by

L′AT = 9 ⋅ 6
°
SVC

+Nsensor_conn(128 + 2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Wireless sensors

+ 256 + 2
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

Scale

+6(128 + 2),
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Master control

(5.2)

whereNsensor_conn is the number of Sercos III connections allocated forwireless sensor
traõc. To simplify the analysis,we assume that Sercos III connections can be perfectly
packed in the Ethernet frames. Under this assumption, the total amount ofMDT and
AT bytes on the wire, including 26 + 6 bytes of overhead per Ethernet frame, is given
by

LMDT = (26 + 6) ⌈
L′MDT
1494

⌉ + L′MDT, (5.3)

LAT = (26 + 6) ⌈
L′AT
1494

⌉ + L′AT, (5.4)

where ⌈x⌉ denotes the smallest integer greater than or equal to x. Because Sercos III is
based on 100Mbit/s Ethernet, the number of bytes that can be transferred during one
cycle (1 ms) is 12.5 kB. Ignoring inter-frame gaps, the amount of data available in the
UC channel is

LUC = 12500 − LMDT − LAT. (5.5)

_e number of connections to reserve for wireless sensor traõc, Nsensor_conn, de-
pends on the number of sensors and the reliability requirement. Assuming sensor re-
portings are triggered independently, the aggregate number of reportings is also Pois-
son distributed with rate λA = Nsensorsλs where Nsensors is the number of sensors and
λs is the rate of individual sensor reportings relative to the cycle time. _e reliability
of a reporting is given by the complementary of the probability that a slot is available
for transmission and the Sercos transmission succeeds:

Rsensor = 1 − (1 − Pr(slot unavailable)) (1 − 10−11) . (5.6)

To satisfy the reliability constraint,wemust have Rsensor ≥ 1−10−9. _e probability that
a slot is unavailable is equivalent to the probability that more reportings are generated
than the number of reserved connections, i.e. Pr(A(t) > Nsensor_conn) where A(t) is
the number of reports generated between cycles t−1 and t. It follows from the Poisson
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distribution that

Pr(A(t) > Nsensor_conn) = 1 − e−λA
Nsensor_conn

∑
i=0

λi
A
i!

. (5.7)

Suppose that the minimum Nsensor_conn that causes the requirement to be satisûed is
allocated. In most cycles, the resources will be unused since the rate of sensor trans-
missions is very low compared to the cycle time. _is is illustrated in Figure 5.3a for
four diòerent reporting rates. Evenwith a very high number of sensors or a high trans-
mission rate the utilization is very low. In industrial systems, where the resources per
cycle are very limited, this may have a signiûcant impact on the scalability of a system.

_e impact of the overhead can also be illustrated by considering the HID stream.
As the number of connections required to serve the wireless sensors increases, the
number of resources in the UC channel decreases, and so do the probability of satis-
fying the latency requirement of the HID stream. _e HID stream generates frames
periodically of exponentially distributed size and has a latency requirement of at most
of 10 ms (10 cycles). Since it is o�en desired to transmit only the most recent frame,
we assume that frames do not queue. Instead, we seek the probability that a frame re-
quires more than 10 cycles to be transmitted, or equivalently, that the size of a frame,
including Ethernet overhead, is greater than 10LUC bytes. Assuming that LUC is evenly
divisible by the length of an Ethernet frame, the required bytes to transmit are given
by

L = 26 ⌈ L′

1500
⌉ + L′, (5.8)

where L′ is the number of application bytes to transfer and L is the required bytes on
thewire including overhead. Wemay obtain a simple bound on L by using ⌈x⌉ ≤ x+ 1:

L ≤ L′ ( 26
1500

+ 1) + 26. (5.9)

Since the exponential distribution is closed under scaling, the probability that L ex-
ceeds 10LUC is less than to the probability that L′ exceeds (1500/1526)(10LUC − 26).
_e failure probability is hence given by

Pr(L > 10LUC) ≤ e−(
1500
1526 )(10LUC−26)λF , (5.10)

where 1/λF = 20000 is the mean frame size. _e failure probability is illustrated in
Figure 5.3b. As the number of sensors increases, the probability of satisfying the la-
tency requirement of the HID stream decreases. _e lower bound on the stream fail-
ure probability represents the case where no resources are allocated for the wireless
sensors. Taking the low utilization into account, it is desirable to search for a better
multiplexing scheme that allows the latency requirement to be satisûed for a higher
number of sensors.

5.2.2 Slice Overwriting

Motivated by the results in the previous section,we now consider an allocation of net-
work slices which has signiûcantly higher utilization. In this scheme, network slices
are allowed to overwrite resources allocated to other network slices at the cost of re-
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Figure 5.3:Utilization andHID stream failure probability in scenario 1.

ducing the reliability of the overwritten slice. Speciûcally, the wireless sensors can
overwrite the connections of themaster control network slice. Since themaster con-
trol only requires a reliability of 1 − 10−6, it can tolerate more errors than the Sercos
III technology introduces. _is can exploited to transmit sensor data without having
to reserve resources in every cycle. We assume that a wireless sensor reporting over-
writes a random (uniformly distributed) connection in the master control network
slice. Since the access to the Sercos III link is performed by the wireless receiver, we
assume that no collisions occur, i.e. two sensors do not attempt to overwrite the same
connection.
Consider a connection Ck in themaster control slice and let A(t) denote the num-

ber of sensor reportings to be transmitted in cycle t. _e probability that connection
Ck is overwritten by a sensor reporting in cycle t, denoted Ck(t) is given by

Pr(Ck(t)) = Pr(Ck(t) ∣ A(t))Pr(A(t)). (5.11)

As theoverwritten connections are chosen according to auniformdistribution,Pr(Ck(t) ∣
A(t)) is the probability that Ck belongs to a random subset of size A(t) of the total N
connections:

Pr(Ck(t) ∣ A(t)) =
⎧⎪⎪⎨⎪⎪⎩

A(t)
N A(t) ≤ N ,

1 otherwise.
(5.12)

Marginalizing over the Poisson distributed A(t) we have

Pr (Ck(t)) =
∞
∑
n=0

Pr (Ck(t) ∣ A(t))Pr (A(t))

=
N
∑
n=0

Pr(Ck(t) ∣ A(t))Pr (A(t)) +
∞
∑

n=N+1
Pr (A(t))

=
N
∑
n=0

λn
Ae−λAn
n!N

+
∞
∑

n=N+1

λn
s e−λA

n!

=
N
∑
n=0

λn
s e−λAn
n!N

+
∞
∑
n=0

λn
s e−λA

n!
−

N
∑
n=0

λn
s e−λA

n!
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Figure 5.4: Transmission failure probabilities in case of slice overwriting.

=
N
∑
n=0

λn
s e−λA

n!
( n
N
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∞
∑
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n!
)

=
N
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n=0
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N
− 1) + e−λA eλA

=
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∑
n=0

λn
s e−λA

n!
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N
− 1) + 1. (5.13)

Since the master control transmission using connection Ck is successful if the con-
nection is not overwritten and the Sercos frame is not lost, the new PER of themaster
control slice is then given by

PERMC = 1 − (1 − Pr(Ck(t)))RL

= 1 + RL
N
∑
n=0

λn
Ae−λA

n!
( n
N
− 1) . (5.14)

_e number ofmaster control connections in each cycle is limited to N , and therefore
there is a risk that more sensor reportings arrive than there are connections. _is is
equivalent to (5.7) in the conservative slicing approach with Nsensor_conn = N .

Using the values N = 6 and RL = 1 − 10−11 as deûned above, the master control
transmission error and the sensor reporting error is shown in Figures 5.4a and 5.4b.
In these results, it should be taken into account that the number of resources le� for
the UC channel is independent of the number of sensors, and hence the HID stream
requirements are always satisûed. Furthermore, no additional overhead is introduced
and the utilization in the RT channel remains high. _e allocation, however, does
for most cases not satisfy the reliability requirements for PERMC. _erefore, it may
be necessary to reserve some resources for alarms while allowing the master control
connections to be overwritten when needed, and hence reach a compromise between
reliability and utilization.
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Figure 5.5:_e scenario with connectivity between N cells and the cloud.

5.3 Cloud Connectivity
_e network described in the previous section is now extended to include N identical
cell networkswhich are all connected to the cloud through a single 1 GbitEthernet link
(Figure 5.5). Furthermore, this link is sharedwith other applicationswhich collectively
generate cross traõc consisting of packets of 1500 byteswith exponentially distributed
inter-arrival times. Suppose that the sensor reportings from the wireless sensors and
the weighing scale need to be sent to the cloud for further processing and storage. We
assume that the end-to-end delay for the wireless reportings must be below 5ms and
the scale measurements below 20 ms, and that the constraints must be satisûed with
reliability at least 1 − 10−6. Both classes of traõc arrive to themaster device at speciûc
time instances according to the cycle time of the cell networks (i.e. in bursts). How-
ever, the number of alarm reportings in each cycle is random, and scalemeasurements
only arrive every ten cycles. For simplicity, we ignore the propagation delay since it
is constant and trivial to include, and we assume that buòers are suõciently large to
prevent packet loss. Nevertheless, it is important to notice that the propagation delay
may be signiûcant in larger networks due to the low latency requirements.
Before analyzing end-to-end guarantees in this particular scenario, we state some

general observations which may provide some insight into the overall constraints in
the system. Consider a traõc �ow F from a source to a destination which has an
end-to-end delay D = ∑i∈F Di where Di is the delay introduced by link i includ-
ing queuing. Suppose we have a requirement to the end-to-end delay stating that
Pr(D > D′) ≤ є for some D′ and є. Assuming that the delays along the path Di
are independent, the probability density function of D is given the convolution of the
distribution functions for the individual links

pD(t) = pD1 ∗ pD2 ∗ . . . ∗ pDN (t). (5.15)

We are unlikely to obtain a closed-form expression of the density function pD(t) un-
less we constraint pD i(t) to have a certain form. However, this is likely to lead to
large inaccuracies in themodel, and it may even be diõcult to determine whether the
model is conservative or optimistic compared to the actual delay distribution. Fur-
thermore, even pD i(t) may not be straightforward to obtain without strong assump-
tions on the system since it depends on the traõc characteristics in the link. Instead,
an apparent approach is to use analyze the problem using Stochastic Network Calcu-
lus (SNC). However, as described in Section 3.3 it is not trivial to model the periodic
traõc and service in the Sercos link. Alternatively, we could model the system using
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deterministic network calculus. However, in that case we cannot model probabilistic
multiplexing and hence we need to allocate resources to each wireless sensor which
results in a very low utilization of the Sercos link. _is in not feasible in practice since
the resources in the Sercos link are very limited.

We may instead model each sub-network independently. In general, we assume
that sub-network i (comprising one or more links) guarantees a certain delay D′i with
reliability Ri , i.e. Pr(Di > D′i) ≤ 1 − Ri . Under the assumption of independent link
delays, the end-to-end requirement is fulûlled if ∑i∈F D′i ≤ D′ and 1 −∏i∈F Ri ≤ є.
Furthermore, wemay state that this is a conservative requirement since 1−∏i∈F Ri ≤
є is a suõcient but not a necessary condition for the total delay D to be below D′
with the desired reliability. For instance, we may have two links for which we know
certain delay bounds, say, Pr(D1 > 10) ≤ 10−9 and Pr(D2 > 10) ≤ 10−9, an end-to-
end requirement of, say, Pr(D > 50) ≤ 10−9 may still be satisûed even though the
product of link reliabilities is less than required. However, we cannot guarantee this
based on the knowledge of the system. From the observation above it follows that a
necessary condition for satisfying the requirement (assuming no redundant paths) is
that the reliability of each link is at least 1 − є. While this may seem trivial, it provides
a fundamental limit to the reliability that can be provided in a system without parallel
paths.

In the scenario under consideration we divide the network into two sub-networks:
the Sercos links and the switched Ethernet links, subsequently referred to as cell and
backend network, respectively. To proceed the analysis, we assume that we have a cell
network allocation which satisûes the requirements listed in Table 5.1. For the scale
traõc which requires an end-to-end guarantee of Pr(D > 20 ms) ≤ 10−6, it follows
that the requirement to the backend network is

Pr(D > 20 − 10 ms) ≤ 1 − 1 − 10−6

1 − 10−9
= 9.99 ⋅ 10−7. (5.16)

Similarly, for the alarm traõc we have the backend requirement

Pr(D > 5 − 1 ms) ≤ 9.99 ⋅ 10−7. (5.17)

To provide guarantees in the backend network we may either use stochastic network
calculus or deterministic network calculus. Since the arrivals in this scenario are gen-
erated periodically following the cycle times of the Sercos links, the arrival process is
not well modelled by stochastic network calculus. Instead, the arrivals from the cell
network may be modelled using deterministic network calculus. However, we may
not immediately be able to model the Poisson cross traõc. To cope with this, wemay
either be able obtain some bound on the arrival process, or we may require a higher
priority to the deterministic traõc so that the Poisson �ow does not in�uence the
real-time traõc. Depending on the application, providing an upper bound may not
be straightforward in practice, at least not without some degree of uncertainty or a
high overprovisioning factor. Alternatively, an upper bound may be enforced by ap-
plying traõc shapers, e.g. a token bucket, to the arrival process. In this scenario, since
we do not have any requirements for the Poisson �ow, we consider the ûrst method
and assume that the traõc from the cells is queued with higher priority than the Pois-
son �ow. Speciûcally, we consider a scenario where the switch has three prioritized
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queues. Furthermore, to simplify the analysis, we assume thatDetNet/TSN is used so
that there is support for packet preemption in the switch. We further assume that the
preemption is instantaneous and that it does not introduce additional overhead.

We model the periodic arrivals from each cell as aõne functions which provide
upper bounds on the arrivals. Since the scalemeasurements generate 256 bytes every
10 ms, the arrival rate including 26 bytes Ethernet header is bounded by 3

Asc(t) = 282 ⌊ t
10

⌋ + 282

≤ 282 t
10
+ 282. (5.18)

We can obtain a similar bound on the arrival process of thewireless alarms. Although
the alarms are generated following a Poisson distribution, but the cell network limits
the eòective arrival rate. _erefore, we consider the worst-case arrival and assume
that N slots are available for the alarms in each cycle so that at most 128N bytes arrive.
Assuming that each alarm is encapsulated in its own Ethernet frame it follows that the
arrival process is bounded by

Aal(t) ≤ 154Nt + 154N . (5.19)

_e service curve is deûned as a constant rate server which can serve 1 Gbit/s (125
kB/ms):

S(t) = 125 ⋅ 103t. (5.20)

We initially assume that the arrivals from scalemeasurements and from alarms share
the same queue in the switch (highest priority). _e aggregate arrival to the switch is
given by

A(t) ≤ c (282
10

+ 154N) t + c(282 + 154N), (5.21)

where c is the number of cells. Since these arrivals are higher prioritized than the cross
traõc, we can eòectively ignore the impact of the cross traõc andmay readily obtain
a bound on the delay using deterministic network calculus as

W(t) ≤ c(282 + 154N)
125 ⋅ 103 . (5.22)

_is is illustrated in Figure 5.6. Figure 5.6a shows the worst-case delay from themas-
ter device to the cloud in a scenario with c = 10 cells, while Figure 5.6b shows the
scenario with 1000 sensors but various numbers of cells. In both cases, it is clear that
a signiûcant number of sensors and a high number of cells can be served by the same
link given that the traõc has highest priority.

We now consider the case where the traõc from the wireless alarms is prioritized
higher than the scale measurements, while the Poisson cross traõc is still served by

3Depending on the network infrastructure, additional overheadmay be needed, e.g. due to IP. However,
to simplify the scenario we only consider Ethernet.
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Figure 5.6:Maximum delay from cell master to cloud.

the lowest priority queue. _e waiting time bound on the wireless alarms are given by

Wal(t) ≤
c154N
125 ⋅ 103 . (5.23)

_e resulting le�over service available for the scalemeasurements is

Slo(t) ≥ (125 ⋅ 103 − c154N)t − c154N , (5.24)

which yields the following waiting time bound

Wsc(t) ≤
c(282 + 154N)

125 ⋅ 103 − c154N
. (5.25)

_is is illustrated in Figure 5.7 where the impact of the alarm traõc on the scale traf-
ûc is evident. When the number of alarm arrivals reaches a certain point, the cell
traõc increases exponentially due to the fact that alarm traõc occupies almost the
entire service. However, the alarm traõc is completely isolated from the scale traõc,
which ensures that its end-to-end characteristics can be determined independently of
the scale traõc. Furthermore, the maximum delay experienced by the alarm traõc
is lower than in the case with a single shared queue since the alarm traõc is served
before the scale traõc.
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6 Abstract Network Representation
While the analysis in the previous chapter shows how end-to-end properties can be
obtained in an industrial network consisting of Sercos III and Ethernet, it is desired
to decouple the analysis from the physical technologies in order to support hetero-
geneous networks. _is chapter deûnes an abstract description of physical networks
which is used in the process of constructing network slices, or speciûcally, to allocate
network resources to provide a certain functionality with end-to-end guarantees. Fur-
thermore, a description of corresponding network slice requirements is deûned. _e
purpose of the descriptions is to hide the physical hardware and technologies from
the NFV-MANO mechanism so that it, to a certain extent, is technology indepen-
dent. However, before introducing the abstract descriptions, we formally deûne what
we mean by an abstract description, as well as which operations that can be done in
the abstract domain, based on the work presented in [21, 55, 56].

We are interested in a certain abstract representation of some physical object, in this
case a computer network. _is representation may be a graph, a queuing model, etc.
Depending on the abstract representation, wemay be able to do operations in the ab-
stract domain. For instance, we could add an edge to the graph or increase the service
rate of a queuing model. Such an operation results in a new representation in the ab-
stract domain, namely a new graph or a new queuing model. O�en, operations in the
abstract domain represent an operation in the physical domain. Adding an edge to the
graph may represent the operation of adding a new physical link between two nodes,
and increasing the service ratemay represent an increase in the clock rate of a server.
If the abstract representation provides a good description of the physical object, then
the operation in the abstract domain should be closely related to the corresponding
operation in the physical domain.

To describe this relation formally, we consider the model depicted in Figure 6.1a
where an object that exists in the physical domain P is denoted by p ∈ P , and the
abstract domainM comprises of all abstract objects m ∈ M. Furthermore, we let
mp denote the abstract representation of the physical object p. An operation in the
abstract domain is represented by themapping C ∶M →M and an operation in the
physical domain by H ∶ P → P . Finally, the representation relation R ∶ P → M
denotes themapping from a physical object to an abstract representation.

If an operation in the abstract domain mp → m′
p describes the corresponding phys-

ical operation p → p′ accurately, then the abstract representation of the new physical
object should be “close” to the abstract representation resulting from the operation.
_e abstract evolution is said to commute if ∥m′

p − R(p′)∥ ≤ є for some norm ∥ ⋅ ∥.
If a set of objects and evolutions commute under the same representation, then mp is
said to be a faithful representation of p for the evolutions C(mp) and H(p). Having a
faithful representation allows us to “trust” the abstract representation.

_e inverse representation relation, e.g. the mapping from an abstract represen-
tation to a physical domain, is called instantiation and denoted by R̃ ∶ M → P . If
such amapping exists, then an object in the abstract domain may instantiate itself in
the physical domain. For instance, a queuing model of a network may be instanti-
ated at the physical level by applying a speciûc conûguration to the physical objects.
However, while a mapping from the physical domain to the abstract domain always
exists, instantiation is not always possible. For example,wemay not be able to connect
two nodes, even though adding an edge to a graph in the abstract domain is a simple
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(a) _e deûnition of abstract representa-
tions considered in this chapter.

Physical network

Logical

Queuing model

R1 R̃1

R2 R̃2
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(b) A physical object canhavemultiple ab-
stract representations.

Figure 6.1: Graphical representation of the an abstraction.

operation.
A physical object can have multiple representations in the abstract domain which

allow for diòerent operations. As illustrated in Figure 6.1b, a network may have a
logical representationwhich is used for conûguring the physical nodes, and a queuing
modelwhich allows for performing mathematical operations. In such a system it may
not be possible to instantiate a physical object directly from the queuing model, but
instead the queuing model must ûrst be mapped to the logical representation which
allows instantiation in the physical domain.

To complete the deûnition of an abstraction, we deûne the relation between ab-
straction and virtualization. In this contextwe refer to “real resources” and “virtual re-
sources”, and say that virtualization is themapping between real and virtual resources.
Note that real resources are not physical resources, but refer to representations that
represent physical resources. On the contrary, virtual resources do not represent phys-
ical resources, and so, amapping from physical resources to virtual resources may not
exist. A requirement for themapping to be a virtualization is that the virtual resources
are represented in the same way as the real resources. In other words, the virtualiza-
tionmappingmust be between objects at the same representation level. Speciûcally, let
R ⊆M′ and V ⊆M′ denote the real and virtual resources, respectively, at some rep-
resentation layerM′ ⊆M. We deûne a virtualization as amapping f ∶ V →R ∪ {t},
where t is a special symbol indicating that a real resource for the corresponding vir-
tual resource does not exist. In a computer network, a graph representation may be
virtualized into a new graph, where nodes are connected in a diòerent way.

6.1 Physical Network Representation
Based on the abstraction framework deûned above, an abstract representation of in-
dustrial networkswhich can be used by theNFV-MANOmechanism is deûned. How-
ever, since theNFV-MANOmechanismhasmany functions, it is unlikely that a single
representation is suitable for all functions. Several frameworks for describing physi-
cal networks exist, notably the set of attributes deûned by theMetro Ethernet Forum
(MEF) [57],which is aimed at describing the end-to-end Ethernet service provided by
a network service provider. _is includes themean and percentiles of the frame delay
distribution, frame loss probabilities, data rate, etc. However, while the MEF Ether-
net services attributes provide a uniûed way of specifying the service provided by an
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Figure 6.2:_e abstraction model considered for the physical network.

Ethernet service provider, its limitation to regular Ethernet makes it inapplicable for
industrial Ethernet based protocols. Furthermore, due to themany parameters of in-
dustrial Ethernet protocols, such as cycle times, resource allocation, etc., an industrial
Ethernet link cannot be considered as a black box which provides a certain service,
but the individual resources need to be described.
As stated earlier, we seek a representation that can be used by the NFV-MANO

mechanism to allocate end-to-endnetwork resources required toprovide a given func-
tionality. Furthermore, the focus is on determining which resources to allocate, but
not how to instantiate an allocation. _erefore, the representation presented in this
section has the simple purpose of describing the resources that the network makes
available for the NFV-MANO. For convenience, we refer to this representation as the
resource representation.

_e overall abstraction hierarchy is illustrated in Figure 6.2,where the resource rep-
resentation is the highest abstraction layer, and provides a technology independent
representation of resources in the network. Below the resource representation is the
logical representationwhere conûguration of the physical components such as queues,
hypervisors, etc. is done. Hence, the logical representation is technology and vendor
speciûc. While the theNFV-MANO in principle could operate with the logical repre-
sentation, thiswould be inconvenient since the logical layer consists ofmany diòerent
representations. Formally specifying the logical representation is outside the scope of
this report, but its existence and the fact that a logical representation can be used for
instantiation in the physical domain is important.

Since the resource representation describes a network, it is natural to represent it
as a graph. Moreover, as a physical link may provide several services, such as a real-
time service and a non-real-time service, or multiple queue priorities, the network
forms a directed multigraph where each edge represents a certain service provided
by a link. We denote the graph G = (V , E , b) where V is the set of vertices (nodes)
and E is the set of edges (links). _e edges map to source and target vertices through
b ∶ E → {(u, v) ∶ u, v ∈ V}. An example of this representation is shown in Figure 6.3
where the physical network inFigure 6.3a is represented as amultigraph inFigure 6.3b.
_e Industrial Ethernet within each cell is represented in the resource representation
as a complete graph interconnecting all the nodes that it connects. _e edge line type
indicates that the edges have diòerent characteristics. For instance, the link in the
cell provides real-time and non-real-time services, and the connection between the
switch node and the cloud node has three queues with diòerent priorities. Note that
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(a)
(b)

Figure 6.3:_e relation between physical (a) and resource (b) network representations.

we for simplicity have used bidirectional edges in this example, although the directed
multigraph G contains unidirectional edges.

In the following sectionswe deûne the characteristics of the edges and vertices in the
multigraph, respectively,wherewe refer to the edges as resource links and the vertices
as resource nodes.

6.2 Resource Nodes
_e resource nodes describe the servers, switches, etc., in the network which provide
resources in the formofprocessing, storage, orhardware dependent functionality such
as a base station for wireless connectivity. Although there are many parameters that
are important to determine whether a given functionality can be deployed on a node,
we only consider a subset consisting of most important for the allocation of network
slices. We deûne a resource nodeN j ∈ V as the set of characteristics N j = (H j ,C j , R j),
where H j denotes hardware capabilities, C j is the node capacity, and R j is the node
failure rate. In the following sections we deûne these characteristics in turn.

6.2.1 Hardware Capabilities
Some nodes may contain hardware that enables certain functionality. _is includes
wireless transceivers, the capability of acting as master in amaster-slave network/bus,
etc. We do not deûne the speciûc hardware capabilities since these are very application
dependent andmay be treated equivalently as binary constraints by theNFV-MANO
mechanism. We assume that a node may either support a given functionality or not,
and hence it can be represented as a binary symbol, so that H j = {H(1)

j ,H
(2)
j , . . . ,H(K)

j }
where

H(k)
j =

⎧⎪⎪⎨⎪⎪⎩

1 node j has hardware capability k,
0 otherwise.

(6.1)

6.2.2 Node Capacities
A node has a certain capacity with respect to processing, memory, network buòer
sizes, memory bandwidth, storage etc. Although all these capacities are important to
take into account in a deployment, only processing and memory resources are con-
sidered in this representation since they are deemedmost important.

_e processing capacity of a node can be speciûed from several parameters, includ-
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ing instructions per second, clock frequency, number of CPUs. However, the actual
performance depends on several other parameters such as architecture, instruction
set, CPU cache size, etc. For this reason, processing resources in cloud computing are
o�en speciûed in terms of virtualCPUs,where a virtualCPU has clearly deûned prop-
erties. We adapt this approach to our abstractionmodel, and specify the node process-
ing capacity as the number of virtual CPUs available on a node. We assume that a the
requirements in terms of virtualCPUs are known for a givenVNF. Such requirements
may be determined by benchmark testing VNFs on machines that provide equivalent
virtual CPUs. Since a physical nodemay be shared among multiple virtual machines
the actual processing resources are in�uenced by the load of the other machines. We
assume that this impact is handled by proper scheduling between the virtual machine
and by reasonable provisioning of resources.

In addition to processing resources, a node capacity is also deûned by the available
memory. Contrary to the CPUs, we assume that memory is reserved to an application
and hence not shared among several virtual machines.
Formally, we specify the node capacity as C j = (Ccpuj ,Cmem

j ) where Ccpuj ∈ N≥0 is
the number of virtual CPUs and Cmem

j ∈ N≥0 is the total nodememory in bytes.

6.2.3 Node Reliability

A node may fail due to aging hardware, memory or data corruptions, so�ware bugs,
etc. In reliability engineering systems are o�en described in terms of reliability and
availability. Reliability refers to the probability that the system does not fail within a
certain time period, and availability is the probability that a system is functioning at
a certain time instant [58]. For hardware components, reliability is o�en assumed to
follow a bathtub shaped reliability curve where the risk of failure is high in the begin-
ning (the so-called burn-in period), then decreases and ûnally increases again (due
to wear-out). _is characteristic does not hold for so�ware, which is more likely to
follow a constant failure probability, with increased failure rates in the time following
an update [58].

Here,we jointly considerhardware and so�ware failures, andwe refer to any of them
as node failures. Notice that node failures do not include failures of virtual network
functions but only failures related to the service provided by nodes. Furthermore, we
assume that a node is tested suõciently so that we can ignore the burn-in period and
that the failure rate is constant, i.e. the reliability function follows an exponential dis-
tribution with constant rate R j. Lastly, following the arguments in [59, 60] we assume
that nodes fail independently and that failures do not propagate through the network.

6.3 Resource Links
Links in the resource representation describe the characteristics and resources as-
sociated with physical links. Since cyclic/deterministic and acyclic protocols diòer
fundamentally, we distinguish between the two types in the resource representation.
Cyclic protocols provide a cyclic structure with reserved resources and a ûxed data
rate, and hence also a guaranteedworst-case delay. In contrast, acyclic protocols, such
as switched Ethernet, are o�en multiplexed and introduce queuing and possibly ran-
dom access mechanisms which cause stochastic delays. _erefore, it is much more
diõcult to provide strong guarantees with regard to end-to-end delays when acyclic
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protocols are used since they depend on all traõc �ows sharing the link. Furthermore,
describing cyclic protocols stochastically is likely to lead to unnecessary overprovi-
sioning of resources in order to satisfy the application requirements. Distinguishing
between cyclic and acyclic protocols in the resource representation allows us to utilize
both the cyclic and acyclic resources eõciently. From a formal point of view,we divide
the set of edges E into two disjoint sets E = Ec ∪ Eac where Ec denote the cyclic links
and Eac are the acyclic links.

However, cyclic and acyclic links share some common properties. Since a physical
link may be modelled as several resource links, for instance if the link technology
contains multiple classes of traõc or represents a bus, several resource links may be
multiplexed and subject to aggregate constraints. Todescribe this, anumber of disjoint
setsM j ⊆ E are deûned, each containing links that are multiplexed. _at is, if two
links share the same resources, then they are contained in the same set. We assume
that all links are contained in some multiplexing set (possibly with cardinality one),
i.e

⋃
j
M j = E . (6.2)

Cyclic links contained in the same multiplexing set share the same resources in each
cycle while acyclic links share the same data rate. _is is elaborated in the following
sections.

6.3.1 Cyclic Resource Links

_e resources provided by a cyclic link may be described by the cycle time and the
amount of resources available to applications within each cycle. Since reconûguring
these parameters o�en requires a restart of the system, it is assumed that resources are
ûxed. However, in a deployment intended for network slicing, some resources may be
reserved speciûcally for network slices, and available for the NFV-MANO.

_eNFV-MANOmechanism can decidewhether the available resources should be
reserved for speciûc network slices, or multiplexed between network slices, e.g. using
themultiplexing schemes described in Section 5.1.
Communication over a link may fail, e.g. due to a momentary high level of noise,

interference, synchronization problems, etc. While some communication protocols
may attempt to increase link reliability by implementing retransmission strategies, we
deûne the reliability of a deterministic resource link as the probability that a transmis-
sion fails, independently of whether retransmission strategies are implemented. _is
is motivated by the fact that some applications cannot tolerate high transmission fail-
ure rates, and that the network slicing process should be independent of the transport
layer protocols. To simplify the representation, it is assumed that transmission failures
are independent so that a single probability is suõcient to characterize the reliability.

_e last link characteristic that is included in the description is the link delay,which
is deûned to be the sum of the propagation delay and serialization delay. Since queu-
ing depends on the traõc allocated to the link, this quantity is not included in the
description.
Formally, the characteristics of a cyclic resource link Lcj ∈ Ec is deûned by the or-

dered set Lcj = (ccj , scj , r j , l j) where ccj denotes the cycle time (in seconds), scj is the
number of resources (in bytes) available in each cycle, r j is the transmission reliability,
and l j is the delay in the link (in seconds). To allow for multiplexing across cyclic re-
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source links, all resource links belonging to the same physical link must be contained
in the samemultiplexing setMi .

6.3.2 Acyclic Resource Links

Acyclic resource links do, contrary to cyclic resource links, not provide a determin-
istic cyclic structure. Instead, data transmitted over an acyclic link are queued, and
transmitted when the medium is free. In this representation, acyclic resource links
characterized by the data rate alongwith a link delay and a reliability. Similar to cyclic
traõc, several acyclic resource links may share the same physical link where the indi-
vidual links are scheduled access to the shared medium. Although one can imagine
several types of schedulers, we limit the representation to priority based schedulers.
_e priority of edge j is deûned by the attribute є j so that link j is served before link k
if and only if єacj < єack and link Lacj and Lack are contained in the samemultiplexing set
Mi .
Formally, we describe an acyclic resource link Lacj ∈ Eac by Lacj = (sacj , єacj , r j , l j)

where sacj is the data rate of the link (bytes/sec.), єacj is the queue priority, and r j and l j
are the transmission reliability and link delay deûned as for cyclic links.

6.4 Application Request Representation
Besides a description of the physical network, theNFV-MANOmechanism also needs
a description of application requirements in order to construct network slices. _is
section introduces a representation similar to the resource representation of a physical
network, but for describing requirements to network slices. _e ETSI has a speciûca-
tion for a detailed high level framework for describing complete virtual networks in
terms of VNFs and virtual links [61]. _e framework allows for specifying require-
ments to the underlying physical hardware, including QoS, latency, etc., and is in-
tended as an application level input to the NFV-MANO mechanism. However, its
high detail level makes it complex and inconvenient to include in an algorithm.
A network slice consists of communication resources, a set of NFs, and resources

to run these functions. Hence, an application request should contain suõcient infor-
mation for the NFV-MANO to identify where the desired NFs can be instantiated, as
well as the amount of communication resources to allocate. In the ETSI NFV repre-
sentation [61], application requirements are represented as forwarding graphs, i.e. a
graph consisting of interconnectedNFs. Each node in the graph describes aNF along
with its requirements with respect to processing, memory, etc., while edges describe
the traõc characteristics and requirements to latency, reliability, etc. _is approach is
followed in the description presented here, adopted to comply with the resource rep-
resentation. Speciûcally, an application request is a directed forwarding (multi-)graph
F̂ = (V̂ , Ê , b̂) with vertices V̂ , edges Ê and b̂ ∶ Ê → {(u, v) ∶ u, v ∈ V̂}. _e hat nota-
tion is used to distinguish application requests from the notation used in the resource
representation.

6.4.1 Application Nodes

Following the description of representation nodes, a node requirement N̂ j ∈ V̂ is de-
scribed by N̂ j = (Ĥ j , Ĉ j , R̂ j). Ĥ j = {Ĥ(1)

j , Ĥ
(2)
j , . . . , Ĥ(K)

j } are hardware requirements
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so that Ĥ(i)
j = 1 if hardware capability i is required. Ĉ j = (Ĉcpuj , Ĉmem

j ) is the required
node capacity, and R̂ j is the requiredmaximum failure rate.

6.4.2 Application Links
Application links describe the connectivity between application nodes. Industrial ap-
plications o�en transmit packets with a ûxed size and rate, while other applications
may provide a more sporadic pattern, and essentially produce an unlimited amount
of traõc, e.g. in case of wireless sensors which may only be limited by the capacity of
the wireless channel. _erefore, we divide application links into links which are rate
limited and links where the traõc arrival bounds are stochastic.

Rate limited applications are assumed to have a cumulative arrival function that is
bounded by an aõne function A(t) ≤ σ̂ jt + ρ̂ j. A link requirement is then described
by L̂aj = (σ̂ j , ρ̂ j , r̂ j , l̂ j), where r̂ j and l̂ j are the end-to-end reliability and delay require-
ments, respectively.

Stochastically bounded traõc arrivals are described by L̂s
j = (Ŵj , r̂ j , l̂ j , ŝ j), where

Ŵj(x , τ) is a cumulative distribution function (CDF) of the number of packets gen-
erated during a period of τ seconds, and Ŵ−1

j (x , τ) is the corresponding inverse CDF.
It is assumed that a packet has a ûxed (maximum) size of ŝ j bytes.

6.5 Summary of Notation
In this sectionwe restate the notation introduced above for clarity. _e resource repre-
sentation is deûned by the directedmultigraph G = (V , Ec, Eac, b) where V is the set
of resource nodes, Ec and Ec are the disjoint sets of cyclic and acyclic resource links,
respectively, and b ∶ Ec ∪ Eac → {(u, v) ∶ u, v ∈ V}. Each resource node N j ∈ V is
described by N j = (H j ,C j , R j). A cyclic link Lcj ∈ Ec is described by Lcj = (ccj , scj , r j , l j)
while an acyclic link Lacj ∈ Eac is described by Lacj = (sacj , єacj , r j , l j). _e elements and
their corresponding types are listed in Table 6.1.
Application requests are, as listed in Table 6.2, described by a forwarding graph

F̂ = (V̂ , Êa, Ês, b̂) with application nodes V̂ and aõne edges with aõne and stochas-
tically bounded arrivals Êa and Ês, respectively. An application node N̂ j ∈ V̂ is de-
scribed by N̂ j = (Ĥ j , Ĉ j , R̂ j) where each set element is a requirement corresponding
to the resource node representation. A link Êa with aõne bounded arrivals are de-
scribed by L̂aj = (σ̂ j , ρ̂ j , r̂ j , l̂ j) and a link Ês with stochastically bounded arrivals by
L̂s

j = (Ŵj , r̂ j , l̂ j , ŝ j).

51



CHAPTER 6 . ABSTRACT NETWORK REPRESENTATION

Parameter Deûnition Description

Resource Graph
G G = (V , Ec, Eac, b), Ec ∩ Eac = ∅ Resource graph.
V V = {N1,N2, . . . ,N∣V ∣} Set of resource nodes.
Ec Ec = {Lc1 , Lc2, . . . , Lc∣Ec ∣} Set of cyclic resource links.
Eac Eac = {Lac1 , Lac2 , . . . , Lac∣Eac ∣} Set of acyclic resource links.

b b ∶ Ec ∪ Eac → {(u, v) ∶ u, v ∈ V} Mapping from links to source
and destination nodes.

Resource Nodes
N j N j = (H j ,C j , R j), j = 1, . . . , ∣V ∣ Resource node.
H j H j = {H(1)

j ,H
(2)
j , . . . ,H(K)

j } Node hardware capabilities.

H(i)
j H(i)

j ∈ {0, 1} Indication of whether node j
has hardware capability i.

C j C j = (Ccpuj ,Cmem
j ) Node capacity.

Ccpuj Ccpuj ∈ N≥0 Virtual CPUs.
Cmem

j Cmem
j ∈ N≥0 Memory (bytes).

R j R j ∈ [0, 1] Failure rate (exponential dist.).
Resource Links

M j ⋃ j M j = E , j = 1, . . . , J Multiplexing set.

Lcj Lcj = (ccj , scj , r j , l j), j = 1, . . . , ∣Ec∣ Cyclic resource link descrip-
tion.

ccj ccj ∈ R≥0 Cycle time (seconds).
scj scj ∈ N≥0 Resources per cycle (bytes).
r j r j ∈ [0, 1] Transmission reliability.
l j l j ∈ R≥0 Transmission delay (seconds).

Lacj Lacj = (sacj , єacj , r j , l j), j = 1, . . . , ∣Eac∣ Acyclic resource link descrip-
tion.

sacj sacj ∈ N≥0 Data rate (bytes/sec.).
єacj єacj ∈ N≥0 Queue priority.

Table 6.1:Notation used in the resource representation of a physical network.
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Parameter Deûnition Description

Forwarding Graph
F̂ F̂ = (V̂ , Êa, Ês, b̂), Êa ∩ Ês = ∅ Forwarding graph.
V̂ V̂ = {N̂1, N̂2, . . . , N̂∣V̂ ∣} Set of application nodes.

Êa Êa = {L̂a1 , L̂a2, . . . , L̂a∣Êa ∣}
Set of aõne bounded ap-
plication links.

Ês Ês = {L̂s
1 , L̂s

2, . . . , L̂s
∣Ês ∣}

Set of stochastic bounded
application links.

b̂ b̂ ∶ Êa ∪ Ês → {(u, v) ∶ u, v ∈ V̂}
Mapping from links to
source and destination
nodes.

Application Nodes
N̂ j N̂ j = (Ĥ j , Ĉ j , R̂ j), j = 1, . . . , ∣V̂ ∣ Application node.

Ĥ j Ĥ j = {Ĥ(1)
j , Ĥ

(2)
j , . . . , Ĥ(K)

j } Node hardware require-
ments.

Ĥ(i)
j Ĥ(i)

j ∈ {0, 1}
Indication of whether
node j requires hardware
capability i.

Ĉ j Ĉ j = (Ĉcpuj , Ĉmem
j ) Node capacity require-

ments.
Ĉcpuj Ĉcpuj ∈ N≥0 Virtual CPUs.
Ĉmem

j Ĉmem
j ∈ N≥0 Memory (bytes).

R̂ j R̂ j ∈ [0, 1] Maximum failure rate
(exponential dist.).

Application Links

L̂aj L̂aj = (σ̂ j , ρ̂ j , r̂ j , l̂ j), j = 1, . . . , ∣Êa∣ Aõne bounded applica-
tion link description.

σ̂ j σ̂ j ∈ R≥0 Rate bound.
ρ̂ j ρ̂ j ∈ R≥0 Burst bound.
r̂ j r̂ j ∈ [0, 1] Transmission reliability.

l̂ j l̂ j ∈ R≥0
Transmission delay (sec-
onds).

L̂s
j L̂s

j = (Ŵj , r̂ j , l̂ j), j = 1, . . . , ∣Ês∣
Stochastically bounded
application link descrip-
tion.

Ŵj Ŵj(x , τ) = Pr(packets in τ seconds ≤ x) CDF of packets generated
in τ seconds.

ŝ j ŝ j ∈ N≥0 Maximum packet size.

Table 6.2:Notation used in the application request representation.
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7 An Algorithmic Approach to Network
Slice Construction

Based on the analysis of industrial networks and the abstraction models presented in
the previous chapter, this chapter studies algorithms for constructing network slices.
While construction ofnetwork slices is part of theNFVOrchestrator in the ETSINFV-
MANO reference model, the current implementations of the NFV-MANO mecha-
nisms covered in Section 2.3 do not target dynamic and autonomous creation of net-
work slices, but require an operator tomanually deûne the network slice to be created,
alongwith the required resources. A�er the creation of a network slice, the end-to-end
performance can be validated by generating traõc while collecting network statistics.
However, in an industrial network with very strict latency guarantees, it is diõcult to
assess the performance using traõc generators, due to the high impact of rare events.
Instead, the lateny guaranteesmust be taken into account at the time the network slice
is constructed.

_e purpose of the algorithm proposed here is to map an application request for-
warding graph onto a physical network, as well as calculating the new state (capacity,
etc.) of the network. _e input to the algorithm is a forwarding graph and the phys-
ical network, represented as described in the previous chapter. _e output is a new
resource representation of the new physical network state, as well as a description of
the constructed allocation of the forwarding graph. Furthermore, it is possible that a
forwarding graph cannot be mapped onto the physical network. In this case, the al-
gorithm should report this. However, before deûning the algorithm, we ûrst give an
overview of related work in the ûeld of network virtualization.

7.1 Relation to Virtual Network Embedding

_e idea of virtualizing computer networks and dividing a network into isolated slices
has been around for several years as away toprovide�exibility in thenetwork, e.g. [62–
64]. In this context, algorithms for allocating communication and computation re-
sources in a network have been considered several times in the literature. _e de-
ployment of virtual network functions and communication resources is similar to the
VNE problem which refers to the task of mapping a set of virtual network requests,
each consisting of virtual nodes and links, to a physical network [65, 66]. In VNE,
the physical network is typicallymodelled as a graph where the nodes and edges have
certain characteristics and constraints such as propagation delay, capacity or compu-
tational resources. Likewise, a virtual network request is a graph where the edges and
nodes are subject to constraints such as maximum propagation delay, reliability or
physical location [66]. It has been shown that the VNE problem is NP-hard [66] and
hence much literature seeks approximation algorithms and heuristics for solving the
problem. _ese algorithms may be designed to facilitate changes in the network (i.e.
dynamic embedding) or tolerate failures in the network [66]. Other objectives include
minimizing the cost of using the physical network or minimizing the energy usage.
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7.1.1 Heuristic Techniques

Heuristic and metaheuristic algorithms search for solutions which are good, but not
necesarily optimal. Heuristic methods for solving the VNE problem are typically di-
vided into node allocation and edge allocation since these problems are simpler to
solve individually. Simulated annealing is used to solve the the VNE problem (al-
though referred to as the network testbed mapping problem) in [67] where the total
link bandwidth isminimized. _e solution space is explored by randomlymoving vir-
tual nodes in the network and then connect the nodes by shortest path. In [68] the
authors consider a simple instance of the problemwhere edges and nodes have certain
capacities speciûed as the number of overlays they can support. _ey consider con-
tinuously arriving requests and ûrst solve the placement problem using the heuristic
of placing the nodes onto the physical nodeswhich have both low computational load
and low load on their adjacent edges. In a second step the virtual nodes are connected
by the shortest path.

_e solution presented in [69] uses a greedy node and link mapping where nodes
are placed at the physical nodes with most free resources. _e nodes are a�erwards
connected by the shortest path which satisûes the link requirements. Furthermore,
links which are allowed to be split across multiple paths are embedded iteratively as a
multi-commodity �ow problem. _ey show that path splitting allows formuch higher
utilization of the network.

In [70] the node placement problem is described as a Markov Decision Process
where an arriving request for l nodes is mapped to physical nodes through l actions.
Only the ûnal action leading to a successful embedding yields a non-zero reward. In
order to calculate the reward, the agent must perform link mapping between the allo-
cated nodes. Hence, in principle all possible actions must be evaluated to calculate the
reward. To reduce the complexity of the problem, the authors use Monte Carlo Tree
Search to randomly explore the search space. _e proposedmethod leads to a high ac-
ceptance ratio of arriving requests at the cost of increased processing time. However,
it has the advantage that the time spent on exploring the search space is a parameter
to the algorithm.

7.1.2 Integer Programming and Relaxation Techniques

VNE can also be formulated as a mixed integer program. Although sophisticated al-
gorithms for solving these programs exist, such as branch-and-bound and branch-
and-cut methods, mixed integer programs are in general NP-hard and hence exact
algorithms do not scale to larger problems. Nevertheless, integer programs are useful
for studying problems at small scale and for ûnding heuristics. For instance, energy-
aware VNE is studied in [71] by formulating amixed integer program which is solved
exactly to provide both insight into the involved trade-oòs, and a boundwhich can be
used for studying heuristic algorithms.
Furthermore,mixed integer programs can be used as a starting point for construct-

ing approximation algorithms by relaxing the integer constraints. _is way, a new
optimization problem is deûned which can be solved eõciently. However, the solu-
tion to the relaxed problem is not necessarily an optimal or feasible solution to the
initial problem. Instead, it is anticipated that it is close to the optimal (or at least a
near-optimal) solution in the solution space, and that a near-optimal feasible solution
can be obtained by proper rounding of the variables [72]. One advantage of integer
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relaxation techniques is that they can jointly solve the node placement and edge allo-
cation problems [66]. Moreover, it is straightforward to include additional (convex)
constraints to the integer program, and the objective can be chosen almost arbitrarily
as long as it is convex. Another advantage of integer relaxation techniques is that itmay
be possible to formally derive a bound on the closeness of the approximate solution.

Depending on the problem, the relaxed problem may have a solution which is very
far from the solution to the initial problem, and it may be diõcult to ûnd a valid and
good rounding procedure [72]. Nevertheless, in caseno rounding can be found, the re-
laxed problem provides a bound on the optimal solution to the initial problem, which
is useful when evaluating approximations or heuristics.

Two algorithms based on integer programming relaxation based on deterministic
and random rounding are presented in [73], where the authors consider continuously
arriving virtual network requests and attempt tomaximize the acceptance ratio of new
requests. In [74] an integer linear program is constructed for solving the VNE prob-
lem while providing spare capacity between nodes to increase reliability. A greedy
approach to solving the problem is presented which still provides the desired spare
capacity.

7.1.3 Delay-Aware Techniques

_e approachesmentioned abovemainly considers capacity related constraints. How-
ever, in some scenarios, in particular in industrial networks, latencymay also be of in-
terest. Including latency constraints to theVNE problem is nontrivial and depends on
the technologies used in the physical network. Some physical networks may provide
latency guarantees, in which case including latency constraints are straightforward,
but in other cases the network includes buòering or prioritization, which complicates
the latencymodel. Speciûcally, in such case the amount of latency depends on the traf-
ûc characteristics which are typically random and nonlinear, and cannot be captured
by the concept of capacity. _erefore, the literature on VNE with delay constraints
is limited. In [75] transmission and processing delays are treated as constants asso-
ciated to each edge and node. A technique which uses queuing theory to estimate
the average latency is proposed in [76]. Speciûcally, they consider M/M/1 queues and
estimate the utilization as the fraction between allocated and available link capacity
and the service time as the mean packet length divided by link capacity. _e authors
do not attempt to solve the VNE problem with the proposed delay function, and this
may not be straightforward since it requires optimizing over a non-linear function
with integer constraints. Furthermore, themean latency as well as the assumption on
Poisson arrivals and exponential service timemay not be suõcient for latency-critical
systems. _e same approach is taken in [77] where the resulting delay function is ap-
proximated by a piecewise linear function to simplify the problem description. _ey
use the proposed function to formulate a convex optimization problem which cal-
culates the amount of data to send through diòerent paths in the network, but do not
consider the placement of network functions. In [78] the delays in a network aremod-
elled as Jackson queuing networks and an algorithm for embedding virtual networks
under latency constraints is proposed. However, like the previous work they assume
exponential arrivals and service, and only themean latency.
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7.2 Challenges in the Industrial Domain
While theVNE problem is very similar, and perhaps even identical, to the problem of
mapping a forwarding graph onto a physical network, there are some important limi-
tations of the current approaches. For instance, the resources in the physical networks
and the forwarding graphs are described by “capacities”which refer to an abstractmea-
sure. For instance, an edge in the physical has a certain capacity, and an edge in the
forwarding graph requires/occupies a certain capacity. While a capacitymeasuremay
be suitable for describing communication resources in some cases, it does not take
traõc patterns into account, and hence is not suitable for applications that require
strict latency guarantees.
A problem with the delay-aware techniques is the traõc is assumed to be Poisson

distributed. While this may be reasonable when many �ows are multiplexed on the
same link, it does not provide a goodmodel for traõc close to the edge of a network.
More importantly, a Poissonmodel is very likely to underestimate the burstiness of the
arrivals, which means that the calculated delay underestimates the actual experienced
delay. Furthermore, the deterministic industrial protocols are not very well modelled
by M/M/1 queues.

_e reason why latency constraints are diõcult to include in the VNE problem is
that while latency is additive (the end-to-end latency is the sum of latencies at each
link), the queuing delay depends on how traõc arrives to the queue. _e traõc arrival
depends again on the previous traversed queues as well as the application generating
the traõc. Hence, all paths have to be evaluated in order to ûnd the pathwith shortest
delay. Moreover, the output of a queue depends on the other traõc sharing the queue.
_ismeans that there is limited amount of isolation in the system since the guarantees
given to a �ow which has already been allocated will be in�uenced by any new �ows
allocated to the same queue.

7.3 Algorithm Development
Based on the observations discussed in the previous section, this section constructs
a heuristic based algorithm for allocating network slices which provide strict latency
guarantees. _e algorithm is based on the overall conclusions from the analysis in
Section 5.3. Speciûcally, the cell network and the backend network are analyzed sep-
arately, and while the cell network allows for probabilistic arrivals, the delays in the
backendnetwork ismodelled using deterministicnetwork calculus and hence requires
aõne bounded arrivals. To limit the scope of the algorithm, we make the following
assumptions:

Assumption 1: VNFs have already been allocated. We assume that the locations of
VNFs are ûxed so that the task is to allocate communication resources. While
this assumption means that the VNFs cannot be placed to facilitate the allo-
cation of communication resources, it is motivated by the fact that most VNE
algorithms are divided into node placement and communication resource allo-
cation.

Assumption 2: Cell network nodes have degree one and form an independent set.
_e communication resource allocation algorithm assumes that each cell node
only has one linkwhich connects the node to the backend network, and this link
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is a cyclic resource link. _is means that communication between cell devices
is not possible.

Assumption 3: Backend network nodes are connected by acyclic resource links. To
analyze the cell network and the backend network separately, the backend net-
work must not contain cyclic resource links.

Assumption 4: Backend traõc is upper bounded. We assume that communica-
tion requirementsbetween twobackendnodes in the forwarding graph are spec-
iûed as an aõne functionwhich provides an upper bound on the generated traf-
ûc.

Assumption 5:Multiplexed acyclic resource links are capacity constrained. Since
the queuing delay experienced by a �ow depends on all other �ows sharing the
same queue, it is impossible to provide end-to-end latency guarantees unless
the arrival to each queue is bounded. We assume that the ingress queue to link
j has a predeûned constraint to the aggregate arrival rate so that ρaggj ≤ Γacj and
σaggj ≤ Σacj .

Assumption 2 allows the algorithm to be divided a cell network allocation and a
backend allocation. As shown in Algorithm 1, the cell network allocation is executed
ûrst, and based on the guarantees provided by the cell network, the forwarding graph
is reduced to only include the backend network. Specûcally, the cell nodes are re-
placed by their adjacent backend nodes, and the delay and reliability requirements are
updated according to the delay and reliability introduced in the cell network. Lastly,
an upper bound on the arrival rate is calculated based on the number of resources al-
located in each cycle at the cell network. Resources are then allocated in the reduced
backend network, and ûnally the reduced forwarding graph is expanded again to in-
clude the cell network.

Algorithm 1 Resource allocation algorithm.
1: procedure Allocation(G,F̂)
2: G , F̂ = CellAllocation(G , F̂) or fail
3: F̂′ = ReduceForwardingGraph(F̂)
4: G , F̂′ = BackendAllocation(G , F̂′) or fail
5: F̂ = ExpandForwardingGraph(F , F̂′)
6: return (G , F̂)
7: end procedure

7.3.1 Cell Network Allocation
_e cell network allocation algorithm (Algorithm 2) allocates cyclic resources in the
cell network. It does so by considering the edges in the forwarding graph which have
a cell node as an endpoint, and then allocate the resources at the edge connecting the
cell node to the backend node. By assumption 2, there is only one such edge. _e
edge is allocated by the AllocSingleEdge procedure which calculates the number
of resources needed to provide the required reliability. If the resources are available,
then the resulting reliability is stored in the forwarding graph edge as f .r′ and the
path and delay are stored in f .p′ and f .d′, respectively. Finally, the capacity is of the
resource link ssce is reduced.
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Algorithm 2 Cell network resource allocation algorithm.
1: procedure CellAllocation(G,F̂) ▷ Resource graph G, forwarding graph F
2: for f ∈ F̂ .Ê do ▷ For each edge in forwarding graph
3: u = F̂ .̂b( f ).u ▷ Source node
4: if u ∈ G .Ec then ▷ If edge connects a cell node
5: e = G .b−1(u, ⋅) ▷ u is only connected to one edge, e, (assumption 2)
6: AllocSingleEdge(G,e, f ) or fail
7: return (G , F̂)
8: end procedure
9: procedure AllocSingleEdge(G,e, f ) ▷ Resource link e, application edge f
10: r = ⌈Ŵ−1

f (̂r f )⌉ ⋅ ŝ f ▷ Number of bytes to allocate
11: if sce < r then
12: fail ▷ Not suõcient resources
13: f .r′ = Ŵf (r) ▷ Resulting reliability
14: f .p′ = {e} ▷ Set edge as initial path
15: f .d′ = lce ▷ Set delay
16: sce = sce − r ▷ Calculate remaining resources
17: end procedure

7.3.2 Backend Network Allocation
A�er resources have been allocated in the cell network and the forwarding graph has
been reduced to only include backend network requirements, the backend network
resources can be allocated. As shown in Algorithm 3, the overall heuristic in this al-
location is to allocate resources along the path between two nodes in the forwarding
graph with lowest delay. If the path with lowest delay satisûes the delay and reliability
requirements, then a network slice satisfying the requirements can be allocated along
the path. _e FindPath procedure calculates three properties of the path from u to
v: _e delay, denoted v .d, the reliability, v .r and the predecessor edge v .π. _e path
from u to v can be obtained by recursively following the predecessor edges until the
source node u is reached. _is is done by the ExtractPath procedure. A�er the path
has been found, the path attributes are stored in f and the capacity required at each
edge is subtracted from the representation graph G.

Algorithm 3 Backend network resource allocation algorithm.
1: procedure BackendAllocation(G,F̂) ▷ Resource graph G, forwarding graph F
2: for f ∈ F̂ .Ê do ▷ For each edge in forwarding graph
3: u, v = F̂ .̂b( f ) ▷ Source and destination nodes
4: G′ = (G .V ,G .Eac ,∅, b) ▷ Construct new graph without cyclic edges
5: FindPath(G , f , u, v) ▷ Calculate path from u to v
6: if v .d > d̂ f or v .r > r̂ f then
7: fail ▷ Not fulûlling delay and reliability requirements
8: f .d′ = f .d′ + v .d ▷ Add delay
9: f .r′ = f .r′ ⋅ v .r ▷ Resulting reliability
10: p = ExtractPath(G′ , u, v) ▷ Extract path from predecessor list
11: f .p′ = f .p′ ∪ p ▷ Add backend path to total path
12: G = SubtractPathCapacity(G , u, v) ▷ Calculate residual capacity
13: return (G , F̂)
14: end procedure
15: procedure ExtractPath(u, v) ▷ Source node u, destination node v
16: if u = v then
17: return {u}
18: else
19: p = {v}∪ ExtractPath(u, v .π)
20: return p
21: end procedure

However, as discussed previously, the queuing delay at each node depends on the
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nodes that have previously been traversed in the path, which complicates the search
for the path with lowest delay using shortest path algorithms. Nevertheless, shortest
path algorithms can still be used to provide a good heuristic for ûnding a short path
through the network.
Consider a �ow with aõne bounded arrival curve A(t) = σ t + ρ. _e minimum

service experienced by the �ow on link Lacn is given by the le�over service from queues
on the same link with higher priority, and the �ows sharing the same queue. Let J
denote the set of edges multiplexed with edge Lacn , i.e.

J = {Lack ∈M j ∀ j ∣ Lacn ∈M j}. (7.1)

Since the burst at each edge is limited by Γacj (assumption 5), the le�over burst given
from the edges inJ is the sumof Γacj over the edgeswith equal or higher priority than
Lacn

ρlo
n = ∑

j∈J ∶єacj ≤є
ac
n

Γacj . (7.2)

Since the �ow on link Lacn is included in Γacn the worst-case le�over burst given to the
�ow is

ρlo = ρlo
n − ρ. (7.3)

_e le�over service from the edges in J is similarly given by

σ lo
n = ∑

j∈J
Σacj − ∑

j∈J ∶єacj ≤є
ac
n

Σacj

= ∑
j∈J ∶єacj >є

ac
n

Σacj , (7.4)

and the le�over service given to the �ow on link Lacn is

σ lo = σ lo
n + σ , (7.5)

where σ is the capacity occupied by the �ow. _e worst-case queuing delay experi-
enced at edge Lacn is then given by

dq
n =

ρlo + ρ
σ lo

= ρlo
n

σ lo
n + σ

. (7.6)

It follows that σ is the only �ow-dependent parameter of dq
n. Nevertheless, it is re-

quired to keep track of both ρ and σ since they determine the capacity that the �ow
occupies as well as the output �ow. _e output �ow of the queue is parameterized by

ρ∗ = ρ + σρlo

σ lo , (7.7)

σ∗ = σ . (7.8)

_e analysis above provides an important requirement to the shortest path algo-
rithm that should be used for ûnding a path through the network. Since the analysis
strongly relies on the fact that each queue do not occupy more service than the al-
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located capacity for the queue, it must be able to take the capacity constraints into
account. As the arrival parameters ρ and σ change through the path, the capacity
required at node n is unknown until the path 1, 2, . . . , n − 1 is ûxed. One algorithm
that allows for taking the capcity constraints into account is Dijkstra’s shortest path
algorithm [79]. _e reason for this is thatDijkstra’s algorithm never investigates edges
from vertices with an undetermined shortest path. In other words, the length of an
edge k → l is only evaluated if the shortest path from the source node to k is known.
Consequently, the shortest path up to the edge being considered is ûxed, and hence
the output �ow is known. Note thatDijkstra’s algorithm only is guaranteed to ûnd the
shortest path when edge lengths are independent, which is not the case for the queu-
ing delays as described above. However, it provides a good heuristic for ûnding a path
with a low delay.

_e FindPath procedure based on Dijkstra’s algorithm is shown in Algorithm 4,
and consists of three procedures. _e FindPath procedure is equivalent to the regu-
lar procedure in Dijkstra’s algorithm as described in [79], with the addition that the
algorithm is terminated as soon as the destination vertex is reached, and does not
continue until the shortest paths to all nodes have been found. _e Relax procedure
is called when a new shortest path to a vertex, u, has been found, and updates the
distance to the vertices adjacent to u. Compared to the regular Relax procedure in
Dijkstra’s algorithm, this procedure also updates the reliability and arrival model as-
sociatedwith the new shortest path so that this information is propagated through the
graph. Finally, the Dist procedure simply calculates the delay experienced along an
edge based on the arrival model as described above. If an edge has insuõcient capacity
for a �ow, then the distance is set to inûnity. Note that it is assumed that ρlo

e and σ lo
e

have been pre-calculated based on (7.2) and (7.4).

7.4 Algorithm Evaluation
To evaluate the performance of the presented algorithm, a scenario comprising 10 cells
and a backend network is considered (Figure 7.1). Each cell network consists of 5 cell
devices which are all connected to the cell master node (c1-c10). Hence, the network
contains a total of 68 nodes. _e connection between the cell devices and the cell mas-
ter is cyclic with period 1 ms, and each cell device has 512 bytes available for network
slices. All parameters are listed in Table 7.1.
Each backend node contains a number of prioritized queues N . It is assumed that

each node in the backend network has a buòer capacity of 220 bytes, which are allo-
cated to the individual queues exponentially so that the queue with priority n ∈ [1,N]
receives 0.5N−n+1220 bytes. _e allocated buòer size deûnes the queue burst capacity
Γacj . Furthermore, the prioritization queues equally share the available data rate so that
Σacj = 112.5 ⋅ 106/N .

_e algorithm is evaluated by randomly generating forwarding graphs and mon-
itoring the number of forwarding graphs that can be mapped successfully onto the
physical network. Forwarding graphs are generated by randomly selecting a cell node,
and then doing a random walk by randomly selecting the next node in the backend
network. _e forwarding graph is completed a�er L ∼ Uniform(2, 5) steps, and hence
the ûnal forwarding graph contains the cell node and between 2 and 5 backend nodes.
_e requirements to the edges in the forwarding graph are generated according to the
parameters listed in Table 7.1.
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Algorithm 4 FindPath procedure.
1: procedure FindPath(G , f , u, v) ▷ Resource graph G, application edge f , source and destination nodes u, v
2: for v ∈ G .V do ▷ For each vertex in G
3: v .π = NIL ▷ Initialize predecessor
4: v .d =∞ ▷ Initialize distance list
5: u.d = 0 ▷ Distance to source
6: u.σ = σ̂ f ▷ Initial σ
7: u.ρ = ρ̂ f ▷ Initial ρ
8: Q = G .V ▷ Initialize vertex list
9: while Q ≠ ∅ do
10: u =ExtractMin(Q) ▷ Extract vertex with shortest distance to source
11: if u = v then ▷ Destination found
12: terminate
13: for e ∈ G.Adj[u] do ▷ For each edge adjacent to u
14: k = dst(e) ▷ Destination node
15: Relax(G , u, k, e) ▷ Update distances
16: end procedure
17: procedure Relax(G , u, k, e) ▷ Resource graph G, edge e connecting u and k
18: d′ = Dist(G , u, k, e) ▷ Distance to k through e
19: if k.d > u.d + d′ then ▷ New shortest path from u to k
20: k.d = u.d + d′ ▷ Update distance
21: k.r = u.r ⋅ race ▷ Update reliability
22: k.π = e ▷ Update predecessor edge

23: k.ρ = e .ρ + e .σ(ρlo
e −e .ρ)

σ lo
e +e .σ ▷ Update arrival model

24: k.σ = e .σ
25: end procedure
26: procedure Dist(G , u, k, e) ▷ Resource graph G, edge e connecting u to k
27: if Γace < u.ρ or Σace < u.σ then
28: return∞ ▷ Not enough capacity

29: dq
e =

ρlo
e

σ lo
e +u .σ

▷Worst-case queuing delay

30: return dq
e + lace ▷ Delay including transmission time

31: end procedure

c1 c5 c6 c10

b1 b2

b3 b4

b5

b6

b7b8

⋯ ⋯

5 cells 5 cells

Figure 7.1:_e network considered in the algorithm evaluation.
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Parameter Value

Network
Data per cell device 512 bytes/cycle
Cycle time 1 ms
Backend data rate 125 ⋅ 106 bytes/s
Link PER 10−11
Edge transmission delay 100 ns
Backend transmission delay 500 ns
Total buòer size 2.020 bytes
Number of queues per link (N) 3,5,10,20 bytes
Queue n burst/buòer capacity (Γacj ) 2.020 ⋅ 0.5N−n+1 bytes
Queue rate capacity (Σacj ) 125 ⋅ 106/N bytes

Forwarding Graph
Number of backend nodes Uniform(2, 5)
Cell device packet distribution Poisson
Size of cell device packets Uniform(8, 128)
Rate of cell device packets Uniform(10−3, 100) packets/s
Backend traõc ρ parameter 1500 bytes
Backend traõc σ parameter Uniform(1500, 106) bytes/s
Maximum PER Uniform(10−9, 10−2)
Maximum delay Uniform(5−3, 0.1) s

Table 7.1: Parameters used in the algorithm evaluation.

_e resulting cumulative number of acceptances are shown in Figure 7.2a for a vari-
ous number of queues. _e results are obtained by generating 1000 forwarding graphs
(1000 evolutions), and mapping them onto the network. If the mapping succeeds,
then the capacity of the network is reduced accordingly in the following evolutions.
_e experiment is repeated 100 times and the average number of acceptances at a given
evolution is calculated. Initially,most of the forwarding graphs are accepted, but as the
number of evolutions increases, the number of accepted forwarding graphs decreases
due to the lower capacity in the network. Furthermore, the ûgure reveals a trade-oò
between the number of queues and the number of accepted forwarding graphs. Specif-
ically, the scenario with 10 queues per link performs best, while the scenarios with 3
and 100 queues perform worst. _is is further illustrated in Figure 7.2b which shows
the acceptance ratios for the diòerent number of queues a�er 1000 evolutions. _e rea-
son for this trade-oò is that the total amount of buòer capacity allocated to the queues
is the same, and hence linkswith a high number of queues containsmany queueswith
low capacity which cannot servemany �ows, if any. On the other hand, linkswith few
queues cannot guarantee very low latencies. Hence, the system is delay limited when
the number of queues is low and capacity limited when the number of queues is high.
Figure 7.2c shows the reason for forwarding graph rejections for the case with 10

queues. Initially, the rejections are due to requirements that cannot be satisûed, but as
the number of evolutions increases, a higher percentage of the rejections are caused
by capacity limits. Furthermore, as shown in Figure 7.2d the capacity limit is mainly
caused by the cell network,while the edges in the backend network (Σace and Γace ) have
much available capacity. _erefore, improving the cell network allocation, e.g. using
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Figure 7.2: Algorithm evaluation results. (a) Cumulative acceptance vs. evolutions for diòerent number
of queues N . _e grey dashed line indicates the casewhere all forwarding graphs are accepted.
(b)Acceptance ratio a�er 1000 evolutions. (c) Percentage of rejections caused by capacity and
requirement violations for N = 10. (d)Normalizedmean capacity of the edges in the network.
Σac
e and Γace are calculated from backend edges while sce is the cell edge capacity.

themultiplexing schemes considered in Section 5.1, is likely to increase the number of
forwarding graphs that can bemapped onto the network.
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8 Discussion
_is report concerns network slicing as an enabler for the various and dynamically
changing network requirements expected in Industry 4.0. It investigates network cal-
culus as a potential method for analyzing end-to-end properties in heterogeneous net-
works, and considers various strategies for slicing industrial communication proto-
cols. Furthermore, it deûnes an abstract representation of industrial networks which
allows for decoupling the allocation of network slices from the underlying technolo-
gies. Based on this abstraction model, an algorithm that demonstrates how network
calculus can be used for constructing network slices with end-to-end latency and re-
liability guarantees is proposed.

8.1 End-to-End Analysis
A fundamental challenge of providing network slices in Industry 4.0 is the analysis
of end-to-end properties in the networks. While the strict latency requirements in
industrial networks have traditionally been handled by the use of deterministicmas-
ter/slave communication protocols, Industry 4.0 is likely to introduce switched Ether-
net and queuing based technologies, e.g. as ameans to connect themanufacturing cells
to the cloud. Although providing end-to-end QoS and analyzing end-to-end latency
in switched networks have been investigated for several decades, themethods are of-
ten based on strong assumption and subject to a high degree of uncertainty, or very
conservative. In the context of industrial networks, where safety is o�en a concern,
conservative requirements are strongly favored over uncertainty. We study determin-
istic and stochastic network calculus as frameworks for obtaining bounds on the end-
to-end delays in queuing networks. While deterministic network calculus is limited
to analyzing worst-case delays in networks where upper and lower bounds on arrivals
and servers are known, stochasticnetwork calculus provides bounds on the percentiles
of the delay distributions in networks with a wide range of random arrivals. However,
industrial networks contain a mixture of both random and deterministic traõc, and
this signiûcantly complicates the analysis. In particular, in order to use deterministic
network calculus, an upper bound on the arrivals must be deûned which may not be
possible for random processes, while it is nontrivial to describe deterministic arrivals,
such as cyclic traõc, using stochastic network calculus. _e speciûc scenario of in-
terest determines whether one framework is more suitable than the other. _e cyclic
traõc dominating industrial communication technologies motivate for using deter-
ministic network calculus in the cell networks, while stochastic network calculus is
suitable in cloud networkswith a high degree of statistical multiplexing and aggregate
�ows.

However,while deterministic and stochasticnetwork calculusprovide simple frame-
works for analyzing end-to-end properties of a network, they are for several reasons
not ideal. For instance, it can be very diõcult to deûne bounds on the �ows, especially
if they are generated by high-layer applications and protocols. Furthermore, many
high-layer protocols, most notably TCP, provides feedback between the sender and
receiver, which in�uences the arrival rate of the application. While this may not be
a big problem in current industrial networks with cyclic traõc and small amounts of
data, it poses a challenge if the strict latency requirements extend to backend or cloud
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networks where transport layer protocols are predominant.

8.2 Slicing Industrial Protocols
While switched networks are likely to be used for the backend network, the edge of
industrial networks comprises communication technologies that are speciûc for in-
dustrial networks and designed to provide very high reliability with reserved data slots
and deterministic latency guarantees. However, data slots reserved to individual slaves
provide limited �exibility, andwith an increased number of devices and the introduc-
tion ofwireless technologies and dynamically changing end-to-end requirements, the
ability to do multiplexing in the industrial edge network is required to maintain high
utilization. _is report considers two approaches for applying resource multiplexing
to industrial communication technologies: By introducing a gateway and by allowing
users to overwrite data from other users. In the gatewaymultiplexing scheme, a gate-
way has a number of reserved data slots which are shared by the users of the gateway.
_is scheme is simple to realize, but requires a gateway which is not always practical
andmay decrease the system reliability. However, in case of e.g. wireless sensorswhich
transmit data randomly, thewireless receiver could act as a gateway to avoid reserving
resources for each of the individual sensors. In the other multiplexing scheme, the de-
vices are allowed to overwrite certain data slots which are allocated for other devices
(i.e. replace the content). For instance, a device which sends error reportings very
rarely but requires very high reliability could be allowed to overwrite cyclic control
traõc. Since this scheme does not require reservation of resources, but it comes at the
cost of decreased reliability of the overwritten application, it is a very eõcient way of
handling rare arrivals. Another use case of this multiplexing scheme could be to use
overwriting for random access signaling, where devices, e.g. a�er being moved, can
trigger the creation of a dedicated network slice. _is would remove the need for re-
serving resources for this purpose, and hence increase the utilization of the network,
but comes at the cost of a decreased isolation level. _e overwriting scheme may be
challenging to implement in practice since the communication resources in industrial
protocols typically are supposed to be isolated, and hence overwriting resources may
trigger a failure detection mechanism. Furthermore, the behaviour depends on the
order in which packets pass through the network, which constraints which resources
that a device can overwrite.

8.3 Abstract Representation
Since industrial networks may comprise many diòerent technologies, realizing net-
work slicing requires an abstract representation of the physical network that can be
used in the process of constructing slices and allocating the required resources in the
network. To this end, the representation needs to cover both computation and com-
munication resources. _ere aremany parameters that need to be taken into account
in order to determinewhether aVNF can be deployed on amachine, and an adequate
representation is likely to become very comprehensive, as is the case for the ETSI spec-
iûcation [61]. While such a representation is required to validate that a VNF can be
instantiated on a node, constructing a slice allocation algorithm that can handle such
a complex representation with a very high number of constraints is very challenging.
_erefore, there is a need for a simpler representation which captures the most im-
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portant requirements, and can be used as input to an algorithm. _is report deûnes
an abstract representation of a physical networkwhich attempts to solve this problem,
with focus on the characteristics that are speciûc to industrial networks. _e represen-
tation consists of a directedmultigraph where vertices represent physical devices and
servers, and edges represent communication technologies with certain characteristics
such as cycle time, data rate, etc. Compared to the speciûcation from ETSI [61] which
deûnes link parameters such asdelay anddata rate, the representation presented in this
report does not consider links as black boxes, but rather allows for analyzing queuing
properties based on the traõc that is allocated to the links. _is is required to prop-
erly describe the characteristics of industrial communication technologies, and allows
for a higher degree of freedom when allocating communication resources. However,
while the representation may contain the parameters that intuitively seem most im-
portant, deûning a good representation requires an iterative approach which includes
instantiation on actual physical systems. In particular, it is not suõcient to verify that
the representation works well in an allocation algorithm, but also that it captures a
suõcient level of detail to facilitate a deployment of the network functions. Hence,
the representation presented in this report is only the initial step towards deûning a
good and adequate representation.

8.4 Slice Construction Algorithm
To illustrate how network calculus and the deûned abstraction model can be used to
construct network slices, a heuristic-based algorithm for slicing an industrial network
is presented. It is assumed that VNFs have already been placed in the network, and
hence the task is to interconnect the VNFs and the edge devices according to a for-
warding graph in such away that the requirements to the communication are fulûlled.
_e allocation algorithm is divided into two steps: Allocating cell network resources
and allocating backend network resources. Cell network resources are allocated by
reserving the minimum number of resources required to satisfy the given reliability
constraint, while the algorithm attempts to allocate backend network resources along
the path that minimizes the delay. However, since the experienced queuing delay de-
pends on the arrival pattern at each queue, which in turn depends on the previously
traversed queues in the path, ûnding the optimal shortest path is hard. Instead, the al-
gorithm usesDijkstra’s shortest path algorithm as a heuristic for ûnding the pathwith
minimum delay. However, since the recurrence relation that Dijkstra’s algorithm ex-
ploits does not hold for this scenario, it cannot be guaranteed that the optimal path is
found. _is alsomeans that the algorithm is not guaranteed to ûnd a path that satisûes
the requirements, even if such a path exists in the network.
An evaluation of the proposed algorithm reveals an interesting trade-oò between

the number of queues used per link, and the number of forwarding graphs that can be
accepted. In particular,when a link has few queues, it is diõcult to provide suõciently
low latency, while with a high number of queues the capacity of each queue becomes
the limiting factor. _erefore, the ideal number of queues depends on the burstiness
of the arrivals and the delay requirements. Furthermore, the edge network turns out
to be the bottleneck in the considered scenario. While this depends on the speciûc
traõc characteristics used in the evaluation, it suggests that the number of forwarding
graphs that can be accepted could be signiûcantly increased by improving the edge
allocation. _is could be done by applying diòerent multiplexing schemes, such as
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allowing for resource overwriting.
_e algorithm and the physical network have many parameters which may in�u-

ence the performance and the results. _ese parameters are not well explored in this
report, and amore thorough evaluation is needed to understand how these impact the
performance of the algorithm and the characteristics of the resulting network slice al-
locations. While the algorithm has many assumptions, it demonstrates how network
calculus can be integrated into an algorithm for constructing network sliceswith end-
to-end latency and reliability guarantees. However, it can be improved in severalways.
First, network slices are allocated tominimize the delay between two nodeswhichmay
result in a slice that provides amuch lower delay than needed. _is occupies capacity
that could be used by applications that need the low latency. A better approach would
be to allocate a slice which guarantees the highest possible delay while satisfying the
requirement. However, this is not straightforward to do since the end-to-end delay of
a path is unknown until the destination node has been reached. Another thing that
could be considered is the placement of nodes. Since joint optimization is likely to
result in a higher acceptance ratio sincemore degrees of freedom are exploited. How-
ever, a static allocation may be suõcient for some functionality, such as caches, which
can be statically deployed close to the edge of the network.
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9 Conclusion
_is report investigates end-to-end network slicing for Industry 4.0,which introduces
wireless communications, cloud computing, virtualization, and other emerging infor-
mation and communication technologies to industrial manufacturing systems. Net-
work slicing refers to the process of slicing a physical network into sub-networks with
certain characteristics such as ultra low latency or high data rate, and has been inves-
tigated in the context of 5G cellular systems as a technology for supporting heteroge-
neous application requirements. _e applications in Industry 4.0 are expected to have
similar heterogeneous requirements to the network, and hence network slicing is also
a enabler in this context.
An important part of providing end-to-end network slices is to analyze end-to-end

properties in a network. We show that deterministic and stochastic network calculus
provide frameworks for analyzingworst-case and probabilistic bounds on end-to-end
latencies in queuing networks, respectively, as long as the traõc does not contain a
mixture of deterministic and stochastic arrival processes. Since industrial commu-
nication technologies o�en impose determinism, deterministic network calculus is
an applicable framework for analyzing end-to-end guarantees close to the cells, while
stochastic network calculus is suitable for cloud networks with a high degree of sta-
tistical multiplexing and aggregate �ows. We also propose three slicing schemes for
cyclic industrial communication technologies that facilitate non-deterministic traõc.
Each scheme provides diòerent characteristics in terms of utilization, reliability and
isolation, and allows for satisfying heterogeneous application requirements while ef-
fectively utilizing the communication resources.

_e introduction of wireless communication means that the end-to-end require-
ments are likely to change over time. Considering the strict end-to-end requirements,
it is desired to adapt the network slices to new situations as fast as possible. _erefore,
another signiûcantpart of slicing industrial networks is to automatically constructnet-
work slices that satisfy the given end-to-end requirements. In this thesis, we deûne a
simple abstract representation for describing physical industrial networks, which can
be used as input to a slicing algorithm. Furthermore, we construct a basic algorithm
that demonstrates how network slices with strict end-to-end guarantees can be cre-
ated based on the abstract representation and deterministic network calculus. While
the algorithm is based on several assumptions and requires a more thorough perfor-
mance evaluation, it demonstrates how the construction of network slices with very
strict end-to-end requirements can be automated. Finally, it reveals an interesting
trade-oò between the number of accepted network slice requests and the number of
queues used in a link, suggesting that the optimal number of queues depends on the
characteristics of the traõc and delay requirements.
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