
Department of Computer Science
IT Design and Application Development

Selma Lagerlöfs Vej 300
DK-9220 Aalborg East
http://www.cs.aau.dk/

PROJECT INFORMATION

Title
Developing a Software Metrics Dashboard

Supporting Multi-Team Agile Software Development

Project Period
Spring Semester 2017

Project Group
is1021f17

Participant(s)
Ivo Hendriks, Dan Meakin & Frederik Frode Nygart

Supervisor(s)
Peter Axel Nielsen

Page Count
25

Date of Completion
June 7, 2017

ABSTRACT

Increasing numbers of software development organisations are

using agile methodologies, due to their perceived bene�ts when

compared with more traditional software development meth-

ods. Managing the use of such methods within multiple team

environments can be challenging. In this paper, we present the

results of a study into the usefulness of software metrics within

a multiple team agile software development, and their useful-

ness in aiding such a development when presented within a

dashboard. Based on Van de Ven’s principles of Engaged Schol-

arship and Hevner’s framework for Design Science in IS, we

undertook an iterative prototype development and evaluation

study. The evaluation was undertaken with agile practitioners

at one Danish software development organisation. The ana-

lysis of our evaluation sessions yielded fourteen �ndings, each

of which related to the e�ectiveness of the dashboards and

metrics contained within the prototype. We discussed these

�ndings in relation to existing literature on metrics, dashboards

and agile software development, identifying key metrics and

design considerations for dashboards in multi-team agile devel-

opment. We also contribute the artifact instantiation resulting

from our design process, namely our �nal prototype. Finally,

suggestions for possible future work in further development

and evaluation of the prototype are presented.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the authors.

http://www.cs.aau.dk/


Summary

In this paper, we explored the usefulness of software metrics and dashboards incorpor-

ating them within agile software developments involving multiple agile teams (‘multi-

team agile development’). Increasing numbers of software development organisations

are using agile methodologies due to their perceived bene�ts compared with more tradi-

tional software development methods. In a previous case study on this topic, we found

that managing the use of such methods within multi-team agile development can be

challenging. In this paper, we present the results of a study into which software met-

rics are useful within a multi-team agile development, and how these can be combined

in a dashboard to aid such a development.

Following Van de Ven’s principles of Engaged Scholarship, which encourages re-

searchers to cooperate with practitioners and conduct research that is relevant to prac-

tice, we conducted this study with the involvement of a number of agile practitioners.

All of them were engaged in agile software development at a software development

organisation in Denmark. To guide our research process, we used the Information Sys-

tems Research Framework of Hevner et al. Starting from a business need or problem,

this this framework supports �nding answers to that problem through interactively

designing, building and evaluation of a design artifact.

Three build-and-evaluate loops were completed in the duration of this study. Each

of those had a speci�c goal: understanding which tools may support multi-team agile

development, and the ability of a metrics dashboard tool to provide this support; un-

derstanding which metrics and visualisations are of use in supporting multi-team agile

development; and understanding which combinations and juxtapositions of metrics and

visualisations are useful. In order to gain the required understanding, during each iter-

ation one or more prototypes were created. These were evaluated with practitioners.

We used two methods to evaluate our prototypes: semi-structured interviews in the

�rst two iterations; and usefulness testing for the �nal iteration. This method is similar

to usability testing insofar that users are asked to perform certain preconceived tasks

with the prototype system, but instead of uncovering interface problems, this aimed at

gaining insight into the usefulness of the system: to what extent can the prototype’s

functionality assist the interviewee in accomplishing a particular task.

The prototype created during our third and �nal iteration contained the metrics that

had been found most useful in previous sessions. These were combined on four them-

atic dashboards: Product Tracking; Product Quality; Agile Maturity; and Development

Health. Each dashboard contained information on two levels. On the project level a

single key visualised metric conveying information about the product or project was

displayed, together with a number of tra�c light indicators illustrating the perform-

ance or status of individual teams. These indicators provided access to the team level,

on which a number of metrics relating to individual teams were visualised. A top level

dashboard containing a high-level indicator for each of the themes was created to unify

ii



the thematic dashboards.

Analysis of our evaluation sessions uncovered fourteen �ndings relating to the pro-

totype dashboards and the elements contained in them. We discuss these �ndings in

relation to existing literature on metrics, dashboards and agile software development.

Our study con�rmed the usefulness of a number of existing standard agile software

metrics, and the applicability of a standard classi�cation scheme to some agile software

metrics, and it identi�ed a number of new agile metrics. We con�rmed a number of

reasons to use agile metrics, and identi�ed one new reason. We identi�ed a number of

desirable attributes possessed by a useful dashboard aiding multi-team agile develop-

ment, and discovered that the information needs of individuals within agile software

development do not vary between roles represented in our study. A �nal contribution is

the artifact instantiation resulting from our design process, namely our �nal prototype,

encapsulating the knowledge gained during the course of this study.

Future research may involve the evaluation of our prototype by researchers or prac-

titioners within a di�erent organisations undertaking multi-team agile development. It

may include the development of the prototype to work with real data from such a de-

velopment. Additionally, further research may be undertaken into the ‘new’ metrics

identi�ed within this study.

iii



Developing a Software Metrics Dashboard

Supporting Multi-Team Agile Software Development

Ivo Hendriks, Dan Meakin & Frederik Frode Nygart

7th June 2017

Abstract

Increasing numbers of software development organisations are using agile methodologies, due to their perceived bene�ts

when compared with more traditional software development methods. Managing the use of such methods within multiple

team environments can be challenging. In this paper, we present the results of a study into the usefulness of software metrics

within a multiple team agile software development, and their usefulness in aiding such a development when presented within

a dashboard. Based on Van de Ven’s principles of Engaged Scholarship and Hevner’s framework for Design Science in IS, we

undertook an iterative prototype development and evaluation study. The evaluation was undertaken with agile practitioners

at one Danish software development organisation. The analysis of our evaluation sessions yielded fourteen �ndings, each of

which related to the e�ectiveness of the dashboards and metrics contained within the prototype. We discussed these �ndings

in relation to existing literature on metrics, dashboards and agile software development, identifying key metrics and design

considerations for dashboards in multi-team agile development. We also contribute the artifact instantiation resulting from

our design process, namely our �nal prototype. Finally, suggestions for possible future work in further development and

evaluation of the prototype are presented.

1 Introduction

In recent years, the number of companies using agile soft-

ware development methodologies has been steadily increas-

ing. In 2016, a majority of software development companies

indicated that they used such methodologies (Sheehan, 2016,

p. 4). Implementation of agile methodologies can be challen-

ging in large organisations where there are a greater number

of dependencies between teams, requiring formal coordin-

ation between them (Dikert et al., 2016; Waardenburg and

Vliet, 2013).

We previously conducted a case study into the challenges

that arise within the process of transformation from using

traditional software development methods to using agile

software development methods within a large organisation

(Hendriks et al., 2017). Amongst other things, we found

that the transformation process was highly challenging and

required substantial method tailoring (Hendriks et al., 2017,

pp. 13–14); that there was often tension between existing

practices and newly introduced agile practices (Hendriks

et al., 2017, p. 14); and the purpose and value of the agile ap-

proach was not always well communicated (Hendriks et al.,

2017, pp. 14–16).

The challenges in our previous study can be related to

two themes: managing and working within a software de-

velopment spanning multiple teams and the availability of

information to support this. Where multiple teams work

together on a single project, coordination of these teams

and information on their software development activities is

required. It is crucial that di�erent stakeholders in the de-

velopment process have such information, and an e�ective

means of providing this to stakeholders is through the use

of software metrics.

Much has been written on software metrics over several

decades (see e.g. Fenton, 1991; Grady, 1992; Kerzner, 2013).

Software metrics are an essential part of a good software

development process (Fenton and Bieman, 2014, p. 3). Agile

practitioners regularly use a small number of metrics such as

burndown, velocity and build status (Kupiainen et al., 2015,

p. 144). Despite the importance of software metrics, compar-

atively little has been written about their use within agile

software development, beyond those previously mentioned.

We wished to examine which software metrics might be

valuable within the management of an agile software devel-

opment involving several agile teams (hereafter, a ‘multi-

team agile development’), and how metrics could be used

to address some of the challenges faced within such a de-

velopment. Our aim was to develop a software prototype

to allow us to examine the usefulness of particular metrics,

and to display these within a dashboard to provide more

comprehensive information on the software development,

and particular aspects of it.

Based on the foregoing, we sought to answer the follow-

ing research question:

1



Which software metrics are useful within a multi-team agile

development and how can they be usefully combined in a

dashboard to aid such a development?

This paper is structured as follows. In Section 2, we

provide an overview of relevant research in agile soft-

ware development, software metrics, and their visualisation.

In Section 3, we describe our research method for this study.

In Section 4, we provide a full description of the prototype

we develop in this exercise. In Section 5, we analyse our

�ndings from our prototype evaluation sessions with inter-

viewees. In Section 6, we discuss the implications of our

�ndings. In Section 7, we conclude this paper with a brief

summary of our results and proposals for future research.

2 Related research
In this section, we provide an overview of relevant research

relating to agile software development, software metrics,

and dashboards. Firstly, we describe some of the key con-

cepts within agile software development and its use in de-

velopments involving multiple teams. Then, we explain

software metrics and their use within agile software devel-

opment. Finally, we describe dashboards and key concepts

relating to them.

2.1 Agile software development
Agile software development is a model of software devel-

opment based upon the notion of ‘agility’. Agility has been

de�ned as:

the continual readiness of a [. . .] [software development]

method to rapidly or inherently create change, proactively

or reactively embrace change, and learn from change while

contributing to perceived customer value (economy, qual-

ity, and simplicity), through its collective components and

relationships with its environment (Conboy, 2009, p. 340).

For a practice to be agile it must re�ect the approach to

change within the de�nition of agility; must not reduce

perceived customer value; and must be usable quickly and

inexpensively (Conboy, 2009, p. 341).

Several agile software development methodologies have

been developed, notably Extreme Programming (XP) (Beck

and Andres, 2004) and Scrum (Schwaber and Beedle, 2002).

Both place an emphasis on iterative development in short

cycles to permit feedback and change to the software (Beck

and Andres, 2004; Schwaber and Beedle, 2002, p. 50). They

also envisage development taking place within small, self-

organising teams. Notably, there is a focus on oral, informal

communication and working software code rather than ex-

tensive written documentation (Beck and Andres, 2004; Som-

merville, 2016).

Agile software development has generally been con-

sidered a model best suited to single team software develop-

ment projects (Boehm and Turner, 2005, p. 28). Despite this,

in recent years companies have been increasingly adopting

agile development methodologies, which will involve their

use in larger developments with multiple teams (Hendriks

et al., 2017, pp. 2–3; Cockburn and Highsmith, 2001, p. 133).

Changing from traditional to agile software development

methods is often challenging for these organisations (Som-

merville, 2016). Challenges related to method tailoring, and

learning and understanding of agile values, and the exist-

ence of new roles in agile software development (Dikert

et al., 2016, p. 95; Hendriks et al., 2017, p. 8).

The role of the Project Manager requires particular con-

sideration within agile software development (Hendriks et

al., 2017). In Scrum, for example, self-organising teams

are responsible for managing the e�ort required to develop

software as described by backlog tasks, with prioritisation

of these tasks exclusively determined by Product Owners

(Schwaber and Beedle, 2002, pp. 8,19). The role of the Project

Manager is not addressed in Scrum or XP, the two domin-

ant agile methodologies. Project Managers within agile

development have a facilitative rather than directive role, fo-

cusing on removing impediments to e�ective development

(Waardenburg and Vliet, 2013, p. 1261; Hendriks et al., 2017,

p. 15).

The extent to which an agile team is experienced in prac-

tice use can be described using the framework of Wang et al.

(2012). The framework provides a basis for understanding

experience in practice use. This framework includes six

stages, ranging from initiation—where a match between

agile practice and its application environment is identi�ed,

and infusion—representing deeply customised use (Wang

et al., 2012).

2.2 Software metrics
Software metrics is a term which refers to the activities in-

volved in measurement of some aspect of software, and its

development process (Fenton and Neil, 1999, p. 149; Fenton

and Bieman, 2014, p. 17). Measurement involves the use of

numbers or symbols to describe attributes of entities in the

real world according to clearly de�ned rules (Fenton, 1994,

p. 199).

Fenton and Bieman (2014) provide a framework for un-

derstanding and developing metrics to inform on the de-

velopment process. The authors describe a number of ‘en-

tities’ together with ‘attributes’ which may be measured

(Fenton and Bieman, 2014, pp. 87–99). E�ective measure-

ment requires an empirical relation between entities based

on particular attributes, and this empirical relation must be

capable of being mapped to a numerical relation (Fenton,

1994, p. 200). An appropriate scale must selected for a partic-

ular metric, with implications for the type of analysis which

can be undertaken based on this selection (Fenton, 1994,

p. 201).

Di�erent roles in the software development process use

metrics for di�erent purposes. Metrics are used by man-

agement to gain information on process, cost, productivity,

quality and customer satisfaction, while developers use met-

rics to track requirements, defects and delivery goals (Fenton

2



and Bieman, 2014, p. 16).

Re�ecting the distinctive approach of agile software de-

velopment (when compared to traditional, plan-driven ap-

proaches), metrics use in agile software development di�ers

from that in traditional software development. Many of the

entities proposed by Fenton and Bieman (2014)—such as

requirements, designs and associated entities—are clearly a

poor �t to the interleaved, iterative approach of agile devel-

opment (Sommerville, 2016).

Software metrics in agile development should align with

the goals of agile software development (Lew, 2016, p. 53).

Good agile metrics will a�rm and reinforce agile principles

(Hartmann and Dymond, 2006, pp. 1–2). People are almost

never measured; metrics instead target the product under

development and the development process. Measurement ef-

fort is directed mostly towards implementation, testing, and

the whole development cycle, with requirements engineer-

ing, speci�cation and design seldom measured (Kupiainen

et al., 2015, p. 157).

Agile teams commonly use a variety of metrics, includ-

ing those such as defect counts and customer satisfaction

which may be equally applicable to plan-driven software

development (Kupiainen et al., 2015, p. 158). Velocity, for ex-

ample, presents a way to measure productivity and predict

the quantity of work which can be completed in the current

iteration. It is used for the prioritisation of content for a

given iteration, and in planning releases involving devel-

opment occurring over multiple iterations (Bumbary, 2016).

Other metrics used in agile development include remaining

e�ort, project completion rate, e�ort spent on rework versus

new tasks, earned business value and total e�ort estimation

(Javdani et al., 2012, pp. 128-130). There are several reasons

why agile teams use metrics: sprint and project planning

and progress tracking; understanding and improving qual-

ity; �xing software process problems; and motivating people

(Kupiainen et al., 2015, p. 157).

2.3 Dashboards
A dashboard is a data driven tool designed to support the

making of decisions (Yigitbasioglu and Velcu, 2012, p. 42).

Information is presented using symbolic representations of

the physical reality. Concretely, the most important inform-

ation is displayed on a single-screen display (Yigitbasioglu

and Velcu, 2012, p. 44). Decisions are made based on the

functionality of the system, the environment in which the

decision is being made, and the problem solving skills of the

decision maker (Yigitbasioglu and Velcu, 2012, p. 43). The

user should be able to explore areas requiring corrective

action, with decisions made in order to achieve some indi-

vidual or organisational objective (Yigitbasioglu and Velcu,

2012, p. 44).

Interactivity is a key part of the dashboard. Features such

as ‘drill-down’ and ‘drill-up’ functionality and a �exibility

in presentation format are useful in allowing the user to ob-

tain further detail on particular information (Yigitbasioglu

and Velcu, 2012, p. 48). However, excessive functionality

is undesirable as this can distract the user (Tokola et al.,

2016, p. 620). It is important to consider the appropriate

level of functionality and detail such that there is no risk of

‘information overload’ (Yigitbasioglu and Velcu, 2012, p. 48).

Besides the amount of information represented on the

dashboard, other characteristics in�uence whether a dash-

board ful�ls its purpose. It is recommended to use repetitive

and uniform patterns to reduce visual complexity; bright

colours should be used sparingly, except where they are

required to direct attention to an element that needs imme-

diate attention (Yigitbasioglu and Velcu, 2012, pp. 45–46,52).

Complex data on dashboards is usually presented through

tables and graphs. The former are preferable when the goal

is to extract speci�c values from a dataset, whereas graphs

are a better �t for tasks that require identifying and un-

derstanding of relationships (Yigitbasioglu and Velcu, 2012,

p. 49). For displaying limited amounts of data, metaphorical

indicators can be used. Single numbers can be appropriately

visualised through gauges and meters, whilst tra�c lights

are an immediately recognisable option when the inform-

ation can be condensed to three states (Staron et al., 2014,

pp. 215–216).

The condensed nature of information presented on a

dashboard makes it a useful instrument for managers for

whom the information presented is crucial, as well as more

casual users, who �nd dashboards to conform to the way

they want to want to consume information (Eckerson, 2010,

pp. 76–77). This does not mean, however, that di�erent or-

ganisational roles bene�t from using the same dashboard.

Eckerson (2010, pp. 100-105) distinguishes three types of

dashboards: operational, used to control operations; tactical,

for optimising processes; and strategic, aimed at managing

strategy. These dashboards are primarily used by operations

sta�, management and analysts and executives respectively.

The interest of these roles is not statically tied to one dash-

board though: middle management for example also use

operational and strategic dashboards when managing ‘up’

or ‘down’ in the organisational hierarchy (Eckerson, 2010,

p. 103).

3 Research Method

We adopted prototype design and evaluation as our re-

search method for this study. Our approach is rooted in

literature concerning the relationship between academia

and practice—‘engaged scholarship’—representing a collab-

oration with practitioners, rather than trying to produce

knowledge that’s useful for them (Van de Ven, 2007, pp. 7–

10). Four forms of engaged scholarship are identi�ed, with

prototype design and evaluation falling within the two ‘to

design/control’ quadrants (Van de Ven, 2007, pp. 26–27).

The aims of this study lie on the border between between

design and evaluation research (also referred to as design

science research) and action/intervention research. Though

our goals and interests matched those of action research

insofar as we are working with one organisation, the lack of

3



opportunities for intervention—a concept crucial to action

research—pointed towards design science research.

Hevner et al. (2004) provide a framework for design sci-

ence research within Information Systems (IS). Design sci-

ence in the IS discipline takes a business need or problem as

a starting point (Hevner et al., 2004). Solving this problem

requires design, a concept encapsulating both the design

process and the artifact resulting from that process (Hevner

et al., 2004, p. 78). A successful artifact instantiation demon-

strates feasibility of both the design process and the designed

product itself (Hevner et al., 2004, p. 84).

The process of designing a successful artifact involves

a two-phase approach in which two research paradigms

are used side by side: behavioural science is used to ensure

rigour and truth, supporting the development and justi�ca-

tion of theories that help explain phenomena related to the

identi�ed business need (Hevner et al., 2004, p. 79). Design

science, on the other hand, provides relevance and utility,

through the creation and evaluation of artifacts designed

to meet the identi�ed business need (Hevner et al., 2004,

pp. 79–80). These two phases are executed iteratively in a

build-and-evaluate loop—a sequence in which an informed

artifact is produced, evaluated and improved upon (Hevner

et al., 2004, p. 76).

3.1 Research design
Our study seeks to understand the usefulness of software

metrics within multi-team agile software development, and

to understand how they can be combined within a dashboard.

We wished to investigate this through iterative prototype

design and evaluation.

The build-and-evaluate loop required in the creation of a

successful artifact is manifest in the iterations of this study.

Our research process involved three iterations. For each

iteration, we set a particular goal aimed at improving our

understanding of a potential solution to the problem under-

lying our research. We developed one or more prototypes

during each iteration, each of which was evaluated with

a number of practitioners. The three iterations and their

characteristics are outlined in Table 1. Each successive iter-

ation built on the knowledge obtained in the previous, and

was grounded in the evaluation of a prototype to obtain the

required knowledge. Three iterations were undertaken as

this allowed us to examine one speci�c aspect of our subject-

matter: general concepts; speci�c metrics; and agile metrics

dashboards.

We employed two di�erent evaluation methods: inter-

view, and usefulness testing. For the sake of consistency,

throughout this paper we refer to those individuals particip-

ating in evaluation sessions as ‘interviewees’. In the case of

interview, we undertook semi-structured interviews with

a number of potential metrics users to understand either

something about the usefulness of metrics. During inter-

views, we displayed prototypes to the interviewee and asked

for feedback on what was being displayed. The interviewee

did not interact with these prototypes during interview.

Usefulness testing is how we term the evaluations we

conducted where an interviewee interacts with a prototype

to determine if it is ‘capable of being used advantageously’

(F. D. Davis, 1989, p. 320). It is similar to usability testing,

which:

involves representative users attempting representative

tasks in representative environments, on early prototypes

of computer interfaces (Lazar et al., 2010, p. 252).

However, we were interested in the usefulness of the

prototype—to what extent could the prototype’s function-

ality assists the interviewee in accomplishing a particular

task—rather than questions of interaction with the interface.

To address possible issues concerning interaction with the

prototype, we provided advance guidance as to navigation

and usage of the prototype and asked interviewees to say

if they had di�culties in this regard. Each interviewee was

given an identical small number of tasks to complete. As a

dashboard requires the user’s interpretation to be inform-

ative and useful, there was no right or wrong way to solve

these tasks. This meant that rather than gathering quantit-

ative measurements such as task completion and number

of errors, our experiment focused on acquiring qualitative

data—most importantly the reasoning and thoughts behind

the considerations of the user in solving the task.

Qualitative methods are often criticised for a perceived

lack of rigour. Three factors determine the rigour of qual-

itative usefulness testing: credibility, that is whether the

test measures usefulness as perceived by the user; transfer-

ability, that is if the test environment mirrors its intended

production environment; and dependability, how reliable

test results are (Hughes, 1999, p. 493). For the testing in

this study, credibility was provided through the use of a

think-aloud protocol, which ‘may be the single most valu-

able usability engineering method’ (Hughes, 1999, p. 493).

Transferability was enhanced by testing the prototypes with

actual prospective users, in a familiar (work) environment,

using hardware comparable to the hardware used within

the organisation. We increased dependability by alternating

between us who led the session, as suggested by Hughes

(1999).

3.2 Prototype designs
A prototype is a simpli�ed version of a particular system

created to help evaluate that system (Mathiassen et al., 2000,

p. 33). The requirements of each prototype were based on

what we wished to evaluate in a particular iteration. Spe-

ci�c characteristics were then further speci�ed using the

‘fundamental prototyping principle’ (Lim et al., 2008). The

goal of prototyping according to this principle is

�nding the manifestation that in its simplest form, �lters

the qualities in which designers are interested, without dis-

torting the understanding of the whole (Lim et al., 2008,

p. 2).

Lim et al. (2008) describe prototypes in terms of his ‘ana-

tomy of prototypes’. The anatomy of prototypes contains

4



Table 1: Research iterations.

Iteration 1 Iteration 2 Iteration 3

Description Exploration of general metrics/-

dashboards concepts

Development & testing of metrics

& visualisations

Development & testing of a dash-

board

Goal Understand which tools may sup-

port multi-team agile develop-

ment; the ability of a metrics dash-

board tool to provide this support.

Understand which metrics are of

use in supporting an agile trans-

formation; understand which

visualisations are useful in illus-

trating these metrics.

Understand how a dashboard

combining useful metrics can aid

in multi-team agile development.

Evaluation method Interview Interview Usefulness testing

Result Identi�cation of a metrics dash-

board as a concept to develop in

the next iteration.

Identi�cation of a subset of use-

ful metrics to take forward into

development of a dashboard.

A dashboard useful within multi-

team agile development.

Table 2: Prototype dimensions. After Lim et al. (2008), A. M. Davis (1992) and A. M. Davis (1995).

Dimension Prototypes 1a, 1b & 1c
(Iteration 1)

Prototype 2
(Iteration 2)

Prototype 3
(Iteration 3)

Filtering dimensions

Appearance Diverging, uninformed and ad-hoc

representation of possible product

Detailed representation of metrics,

minimal representation of inter-

face elements

Detailed representation of dash-

boards minimal representation of

interface elements

Data Absent or hard-coded Limited data store to allow for pop-

ulation of visualisations

Realistic data model populated

with test data

Functionality Viewing and limited modi�cation

of data to illustrate intended func-

tionality

Viewing, modi�cation and switch-

ing between individual metrics

Viewing, modi�cation and switch-

ing between related groups of met-

rics and indicators

Interactivity Linear walkthrough Functional user interface—as far as

data and functionality constraints

permitted

Fully functional user interface—as

far as data and functionality con-

straints permitted

Spatial structure Diverging, but complete represent-

ation of possible product

Non-hierarchic, non-relational

presentation of metrics

Combined representation of re-

lated metrics and indicators

Manifestation dimensions

Material Computerised drawings & HTML

web pages

Javascript web application using

React & Redux libraries

Javascript web application using

React & Redux libraries

Resolution Overall limited representation of

possible system

Performance and representation of

individual metrics resembling in-

tended product, limited functional-

ity and interface

Performance, architecture and

functionality resembling intended

product, limited interface

Scope Shallow representation of whole

system functionality

Full representation of limited func-

tionality

Full representation of full system

functionality

5



two dimensions: �ltering, corresponding to which aspects

of design idea will be represented in a prototype; and mani-

festation, aspects of a design idea the designer must con-

sider in the exploration and re�nement of the design (Lim

et al., 2008, p. 11). The authors distinguish �ve �ltering di-

mensions: appearance, data, functionality, interactivity and

spatial structure—the arrangement of and relation between

interface elements (Lim et al., 2008, p. 11). Three mani-

festation dimensions are described: material, or medium;

resolution, or �delity, the level of detail of what is mani-

fest; and scope, the range of what is manifest (Lim et al.,

2008, p. 11). Table 2 fully describes each of our prototypes

in terms of these dimensions. The reader should refer to

both this table, and Table 1 to understand the nature of each

prototype, the purpose for developing each and the outcome

of so doing.

Prototypes 1a, 1b & 1c The �rst prototypes were de-

veloped during the �rst iteration. Three prototypes were

developed for this iteration, each representing a di�erent

type of tool which may support a multi-team agile develop-

ment. We evaluated all of these prototypes and then focused

our evaluation on the metrics dashboard prototype. This

permitted a focus on the concept of a metrics tool and ac-

quire a general understanding of our interviewees’ interest

in software metrics.

Prototype 2 The second prototype focused on examining

software metrics as they may be used at DanFin. A new

prototype was developed containing a number of di�erent

metrics and visualisations of these. This allowed us to exam-

ine the usefulness of these metrics and visualisations with

interviewees. It also provided a speci�c understanding both

of the metrics in use at DanFin, and those which may be

useful there, together with an understanding of how they

may be e�ectively visualised.

Prototype 3 The �nal prototype focused on placing the

most useful metrics into context within a dashboard. The

previous prototype was developed further, reusing the met-

rics where they were desired for further evaluation, creating

dashboards containing these metrics. The result of our pro-

totype development is described at Section 4. This prototype

provided us with knowledge on useful dashboards and the

metrics contained therein.

3.3 Data collection

This study took place during March, April and May 2017,

with practitioners involved in the agile software develop-

ment process at a large �nancial institution in Denmark,

DanFin (not its real name). Data were collected at a series of

evaluation sessions. Information on participants is in Table 4.

Each evaluation session was conducted face-to-face, with

the exception of one session which took place over Skype,

and took between 45 and 75 minutes. Audio was recorded,

and contemporaneous notes were taken at each session.

Following each session, the audio was transcribed.

The evaluation sessions involved either interview or use-

fulness testing, as described above. During usefulness test-

ing, interviewees were asked to complete the following

tasks:

1. Evaluate the quality of the product under develop-

ment.

2. How is development of product progressing? And

how are di�erent teams contributing?

3. Provide an agile maturity assessment for this project,

and for team Beta.

4. Make an assessment of morale for both the whole

project, and for team Lambda.

5. Assess the product and its development process.

Where do you see challenges or success stories?

Which metrics would you action?

3.4 Data analysis

For the evaluation sessions in the �rst and third itera-

tions, each transcript was coded. This involved identify-

ing researcher-denoted concepts or themes arising from the

prototype evaluation (Lazar et al., 2010, p. 291). Comments

relating to a particular topic were then grouped. Analysis

was undertaken within each iteration. The results of each

analysis session were used to inform decisions on what

should be examined in the iteration to follow.

In the �rst iteration, we coded comments relating to

the general usefulness of metrics or dashboards, and other

general comments relating to the subject-matter of the pro-

totypes. In the second iteration, the transcript was broken

into sections, each relating to one metric. The text of each

section was summarised and tabulated. In the third iteration,

we coded comments concerning the usefulness of metrics

and dashboards, and those relating to the ability of the in-

terviewee to complete the tasks set for them. The latter was

central to our usefulness evaluation.

4 Prototype Description
Within this section, we describe the �nal prototype res-

ulting from development over a series of iterations as ex-

plained in Section 3. The prototype can be accessed at https:

//goo.gl/931E3D; its source code at https://goo.gl/PGv1N5.

Screenshots from the prototype can be found in Appendix A.

4.1 Prototype structure

The prototype takes the form of a top level dashboard

containing four ‘thematic’ dashboards, that is dashboards

providing information relating to a particular aspect of agile

software development. Fig. 1 illustrates the prototype’s

structure. The top level and thematic dashboards are indi-

vidually described in Section 4.2. The themes were derived

6

https://goo.gl/931E3D
https://goo.gl/931E3D
https://goo.gl/PGv1N5


Figure 1: Flowchart.

from an understanding of DanFin’s approach to agile soft-

ware development, from the metrics con�rmed to be of value

to interviewees in earlier iterations, and from knowledge of

agile software development generally. Each thematic dash-

board provides a project level overview, and a team level

overview. These are described in more detail, below.

The metrics used within this prototype are listed

in Table 3.

4.2 Dashboards

Top level dashboard This dashboard, illustrated below,

informs users about how well the agile development pro-

cess is doing by the use of four indicator elements. It also

serves as navigation layer where each sub-dashboard can

be drilled-down into to get further details about the di�er-

ent areas. Indicators summarise the information available

within each thematic dashboard.

Product Tracking This dashboard, illustrated below,

provides information about development progress focused

upon scheduled and anticipated delivery of a product re-

lease.

This dashboard contains the following metrics:

• Release Burnup;

• Sprint Burndown;

• Velocity;

• Happiness; and

• Satisfaction.

Product Quality This dashboard provides information

about the quality of the software being developed. It is fo-

cused upon measuring defects, both at present and over

time. This dashboard contains the following metrics:

• Defects Over Time; and

• Code Ownership.

Agile Maturity This dashboard provides information

about the maturity in agile methodology and practice use

of a project and the teams working within it. It contains the

following metrics:

• Team Maturity;

• Velocity Trend;

• Burndown Trend;

• Code Ownership;

• Sprint Interference; and

• Practices.

7



Table 3: List of metrics included within prototype.

Metric Description

Burndown Trend Overlays multiple sprint burndown trend lines to provide an overview of a series of sprints for one Scrum team.

Code Ownership Illustrates the number of di�erent team members making a contribution to di�erent modules within the

codebase.

Defects Over Time Displays cumulative unresolved defects over a particular time period, categorised into criticality levels 1–5.

Happiness Illustrates a team’s self-assessed happiness level on a scale from 1–5.

Practices Provides an overview of the maturity of a team’s adoption of individuals agile practices using a scale adopted

from Wang et al. (2012).

Release Burnup Illustrates progress towards a scheduled release by displaying cumulative completed story points & total release

scope, with an option to display per-team contribution.

Satisfaction Illustrates a team’s self-assessed satisfaction with a number of attributes of the development process (e.g.

technical, management). Measured using a scale from 1-5.

Sprint Burndown Displays a Scrum team’s per-day completion of story points during one sprint.

Sprint Interference Illustrates time in half-days spent by a Scrum team on tasks not contained within the sprint backlog, broken

down into interference categories (e.g. bug �xing, unscheduled meetings).

Team Maturity Displays a summarised per-team maturity assessment for all teams within a development.

Velocity Illustrates the story points a Scrum team committed to complete during a sprint alongside the actual number of

completed points.

Velocity Trend Summarises the velocity of a team over the period of several sprints, including average velocity and completion

rate.

Development Health This dashboard is concerned with

the ‘health’ of a project and the morale of the teams involved

in it. The team level dashboard is illustrated below.

This dashboard contains the following metrics:

• Happiness; and

• Satisfaction.

4.3 Design choices

The prototype is based on a number of speci�c design

choices made during development. These choices were

made based upon knowledge obtained from literature and de-

veloped throughout evaluation sessions with interviewees.

4.3.1 Architecture

The following architectural features are present within the

prototype:

Metric data model The prototype re�ects as closely as

possible the form and content of software metric data which

would be obtained from a real multi-team agile development.

It is based upon a data model which realistically represents

the entities found in the software development process. This

model is illustrated at Fig. 2. Each metric uses a subset of the

data contained within the data model described above. The

Sprint Burndown and Velocity metrics, for example, both

use the same sets of sprints and user stories to illustrate the

completion of tasks by teams involved in the development;

each metric simply transforms the raw data in the required

manner to display that metric.

Test data is located within a state container All test

data is contained within a state container. This means that

the prototype has one source for all data used in creat-

ing dashboards and metrics, which allows the prototype

to mimic access to external data: instead of making a call

to an external service holding software metrics data, the

prototype makes a call to the state container. The use of

alternative data within the prototype is straightforward.

Substituting new data requires a change to be made in this

one location alone.

Modular, dynamic visualisations The prototype is

highly modular. Each dashboard and metric is an individual

component which takes a dataset in a standardised format,

and the component renders an indicator or chart based solely

on this data. The metrics are totally decoupled from the data

8



Figure 2: Prototype data model.

0..*

1

0..*

1

0..* 0..* 0..* 0..*

1

0..*

1

0..*

1 0..* 0..1 1..*

Team

Defect Repository

Happiness Practices Satisfaction TimeBreakdown

Release

UserStorySprint

The classes associ-

ated to Team here rep-

resent self-reported,

manual data.

The classes associ-

ated to Team here rep-

resent self-reported,

manual data.

The classes associated

to Team here repres-

ent automatic metric

data.

The classes associated

to Team here repres-

ent automatic metric

data.

model, allowing them to be reused without alteration. They

are designed to easily work with data from the state con-

tainer.

4.3.2 Functionality

The following functionality is contained within the proto-

type:

Dashboards display project level & team level inform-
ation Each thematic dashboard provides a project level

view and a team level view. This allows users to view in-

formation pertaining to the software development project

from two consistent vantage points. At team level, the dash-

board provides information on one agile team, with the user

able to select di�erent teams at this level. At project level,

the dashboard provides information about the development

as a whole, or aggregated information about all teams parti-

cipating in the development.

Partially interactive metrics Metrics within the proto-

type are partially interactive. Where multiple groups of

data are contained within a metric, such as multiple satis-

faction criteria with the Satisfaction metric, groups can be

hidden and made visible by the user. This permits a limited

level of interaction, allowing the user to focus on relevant

information.

5 Analysis
In the following section, we describe and analyse the res-

ults of our prototype evaluation. Our �ndings are summar-

ised in Table 6. Table 4 lists the individuals with whom

we conducted evaluation sessions, together with the itera-

tions in which these sessions took place. Table 5 describes

the di�erent roles listed in Table 4. Where we quote from

interviewees, we use a code such as ‘SM1:it3’ to indicate

which interviewee is quoted (‘SM1’, in this example) and the

iteration during which that evaluation session took place

(iteration 3, in this example).

Table 4: Interviewees & participation.

Interviewee Role Iteration

1 2 3

AC Agile Coach X X X

AL Agile Leader X X

PM1 Project Manager X X

PM2 Project Manager X

SM1 Scrum Master X X

SM2 Scrum Master X

SM3 Scrum Master X

5.1 Overview

Evaluation sessions yielded a number of �ndings in rela-

tion to the overall structure of the prototype, to common

elements in the prototype, and in relation to the main dash-

board.

5.1.1 Dashboards are useful, but the main
dashboard required more detail (1)

Dashboards supported the use of metrics at DanFin, provid-

ing an easily accessible overview of these:

I think it’s great to have that overview and [. . .] [to have]

that in a central way (AC:it1).

The breakdown between the thematic dashboards was

found to be useful by all interviewees. Interviewees com-

mented on the lack of detail on the main dashboard. The

9



Table 5: Interviewee roles.

Role Description

Agile Coach Responsible for training teams on agile and Scrum and making maturity assessments for those teams. Involved

in identifying impediments to e�ective agile software development and discussing these with management.

Agile Leader Responsible for the composition and general performance of agile teams allocated to them. Involved in hiring,

�ring & managing team members, but don’t engage in day-to-day team operations.

Project Manager Responsible for delivery and quality of one or more development projects. Also assigned one or more teams for

which they served as an Agile Leader.

Scrum Master Responsible for the Scrum process at team level. Ensure that team members follow Scrum practices, and o�er

explanation on them where needed. Responsible, with their team, for tailoring the Scrum process to the teams

wishes and organisational culture.

red-yellow-green indicators did not convey enough inform-

ation to provide a useful overview of the information con-

tained within the thematic dashboards. One interviewee

commented on this and suggested an improvement:

My �rst impression was why don’t we have something be-

low to show what is behind[?] [. . .] [W]hen you call it a

dashboard I expect information on the dashboard, not just

options. [. . .] [Take] some of the central charts and do like a

miniature version of that, where I can quickly see if there is

something interesting behind. (AC:it3)

Furthermore, it was not clear to the interviewees that the

indicators on the main dashboard were, in fact, indicators.

None of our interviewees understood until prompted that

the main dashboard contained four indicators, each relating

to one thematic dashboard.

Thus, the dashboards within the prototype were found

to be useful, but the main dashboard lacked su�cient detail.

5.1.2 Red-yellow-green indicators provide an
immediate overview, but lack clarity (2)

Red-yellow-green indicators (hereafter, ‘indicators’) were

used within the thematic dashboards to provide an immedi-

ate summarised indication to the user of a particular piece of

information about the development. These indicators were

recognised by one interviewee as being useful to indicate

which teams were currently requiring speci�c attention:

I really would like if this tool could give me some kind of

indication of which teams is it interesting to drill into and

have a look at (AC:it1).

Interviewees generally found these indicators useful and

e�ective in providing an immediate overview of an import-

ant piece of information. They allowed interviewees to

understand quickly where attention may be required due to

possible problems in the development process. One inter-

viewee commented that:

I would assume that the yellow ones and the red ones are

the teams to look out for [. . .] So I would go look into [detail

on why there is a problem] [. . .] (SM3:it3).

On one thematic dashboard, we embedded arrows within

the indicators to explicitly illustrate change trends. These

indicators were also found to be useful by the interviewees.

Interviewees commented that it was unclear to them

how a judgement was made on whether the indicator was

red, yellow or green. Several interviewees noted that they

wished to know the time period for the indicator where it

was based upon a trend. Speci�cally, these interviewees

wished to know whether the period was when the team was

still newly formed, something not clear from the indicator:

[Is it] looking [. . .] [at] the trend for the last 3 sprints or is

just since last sprint[?] [. . .] I would need some information

and some knowledge about that (AC:it3).

The time period can in�uence whether an interviewee would

consider a team’s performance satisfactory:

So whenever you, in the �rst [few sprints] [. . .] you’re trying

out [. . .] new stu�. And after that then usually you’ll be

stable after several sprints. [. . .] I wouldn’t be disappoin-

ted in a team if they are just trying to be agile doing this,

because all of the methods are new [. . .] (SM3:it3).

One interviewee expressed the view that the indicator

within the product quality dashboard was simply incorrect:

I would say that, as long as you have criticality 5 issues,

you can’t be green. Because that’s a critical issue and it’s—

you’re not going anywhere with that code. (PM1:it3)

Thus, the indicators provided a useful, quick summary

of important information but did not re�ect the assessment

interviewees would make of the status of the development

in every case.

5.2 Development Health

Evaluation sessions yielded a number of �ndings in relation

to the usefulness of the development health dashboard, and

the metric visualisations contained within this.

10



Table 6: Findings.

Category No. Description Section

Overview

1 Dashboards are useful, but the main dashboard required more detail. 5.1.1

2 Red-yellow-green indicators provide an immediate overview, but lack clarity. 5.1.2

Development

Health

3 Development Health dashboard did not provide users with useful information at project level. 5.2.1

4 Happiness is a key metric in assessing agile development. 5.2.2

5 Satisfaction is a useful metric, though the Satisfaction criteria were questioned. 5.2.3

6 The relationship between Happiness & Satisfaction is unclear 5.2.4

Agile

Maturity

7 Assessment of Agile Maturity is a team level, not a project level activity. 5.3.1

8 Practice assimilation levels are an important indicator of maturity. 5.3.2

9 Sprint Interference is a useful metric, but what constitutes interference is unclear. 5.3.3

10 Code Ownership’s value in assessing agile maturity is low. 5.3.4

Product

Tracking

11 Product Tracking dashboard gives a useful overview on the project level, but not on the team

level.

5.4.1

12 Velocity and Sprint Burndown metrics useful together. 5.4.2

Product

Quality

13 Product Quality dashboard is useful for assessing quality on project and team levels, but might

not give a complete insight into it.

5.5.1

14 Code Ownership’s relation with quality is unclear. 5.5.2

5.2.1 Development health dashboard did not
provide users with useful information at
project level (3)

Interviewees were unimpressed by the information provided

by the development health dashboard at the project level. At

this level, information concerning health of individual teams

was aggregated in a combined average (mean). Interviewees

commented that Average Happiness did not convey useful

information about the status of the development itself, or of

teams within it.

One interviewee commented:

If I could �lter out di�erent teams that would be good. Be-

cause [. . .] [within the Average Happiness visualisation] I

have a nice 2.5 to 3, but I don’t know if I have 2 teams which

are 4.5, 2 teams which are 1. That makes a nice average but,

big trouble (PM1:it3).

Another interviewee was confused by the Average Hap-

piness chart being positioned next to per-team indicators.

This interviewee thought that the dashboard would be more

useful if the Average Happiness chart was removed entirely:

‘I would just remove the Happiness’ (SM1:it3).

It was suggested that the notion of development health,

rather than team health, was not meaningful as this inform-

ation is only capable of being considered at the level of the

team:

This Average Happiness is really di�cult because [. . .] I’d

be a lot more interested in what’s going on in the teams.

Because that’s where the dynamics are. That’s where you

can [. . .] make a di�erence. (PM1:it3)

Thus, the development health dashboard—and it’s pro-

ject level focus—was not useful to users of the prototype in

making an assessment of the health of development. Devel-

opment health within the prototype was only meaningful

in relation to the team, not the project.

5.2.2 Happiness is a key metric in assessing agile
development (4)

Interviewees viewed the Happiness metric as very import-

ant in assessing the status of an agile development. DanFin

used a Happiness metric prior to our study. Happiness, ac-

cording to one interviewee, is concerned with measuring

the opportunity the team gets to work on tasks that they

wish to work on. It is useful for discussing which things are

going well, and which are going badly at a particular point

in time. Its value is in stimulating those discussions:

I focus on the last sprint: how happy were you with regard

to stories, people, [etc.] [. . .] And then we discuss what it

takes to get us higher. And that, I think that makes good

sense to people [. . .] because it’s a way of getting to say

what’s bugging everyone. (SM1:it1)

When making assessments of team health, all inter-

viewees considered the team’s happiness. Interviewees were

able to easily obtain an understanding of a team’s current

happiness, as well as trends over a period. One interviewee

commented that it was important to be aware of teams’ hap-

piness, even if they were successfully delivering software:

[Y]ou look at the team and team members’ well-being [hap-

piness], you have to do that, even though you’re reaching

deadlines. That has nothing to do with that. You would still

have to see how are the team doing[. . .] (PM2:it3)

Happiness was linked to other aspects of the develop-

ment process by di�erent interviewees, suggesting that the

metric provided an insight into more than whether or not a

team and its members were happy. One interviewee connec-

ted Happiness to the ability of the team to deliver, noting

11



that a failure to complete the committed story points for a

sprint and Happiness may be linked:

[S]omething happened in March, I can see: they were not

very happy. But actually that was when they [. . .] didn’t

complete all the story points they committed. Maybe there’s

a relation to that[. . .] (SM3:it3).

Another interviewee suggested that Happiness (together

with Satisfaction) had a broad impact on all aspects of de-

velopment:

I mean that, if we go in and �x and give some attention to

some of the things they are not satis�ed with—the technical

and the requirements and we target also their work Happi-

ness so that they actually get to a state where they enjoy

working—they will most likely increase every parameter on

the board actually (AC:it3).

In addition to the thematic dashboards in which it ap-

pears, Happiness may be useful in assessing the agile matur-

ity of a team. One interviewee commented that Happiness

was important in understanding a team’s agile maturity:

[Within agile maturity] I would like to see the Happiness

as well, because here’s only about velocity and burndown

and sprints and code ownership, and that’s okay but if we’re

very high on that one then we’re very unhappy in the team,

I would be worried. (SM3:it3)

Happiness was found to be a widely used and useful

metric. Interviewees considered it was connected to many

di�erent aspects of the development process and did more

than inform solely on Happiness.

5.2.3 Satisfaction is a useful metric, though the
Satisfaction criteria were questioned (5)

Interviewees expressed positive views about the Satisfac-

tion metric. They liked the idea of teams being able to track

speci�c attributes of the development process and assign

a subjective rating to them. Some interviewees re�ected

that the categories represented topics often discussed in

the sprint retrospective; thus, this related to information

discussed but not currently captured by DanFin. The Satis-

faction metric provided a good overview of the team. One

interviewee commented on the e�ectiveness of Satisfaction

in portraying her team:

I think this is a good picture of our team. [. . .] This is kind of

like, it could be interpreted as noise from the outside, things

you can’t control yourself (SM1:it3).

The meaning of the Satisfaction metric was not under-

stood in the same manner by all interviewees. Some viewed

it as representing something akin to the happiness of the

team broken down into speci�c topics. Others viewed it as

representing impediments facing the team in relation to spe-

ci�c aspects of the development. One speci�c interviewee

would use this metric as the basis for discussion between

the interviewee and the team, aimed at removing any of

these barriers, commenting:

When you see a Satisfaction graph that [. . .] [drops] from

3.5 to somewhere between 1.5 and 2.5, then you have an

issue. There’s something here that’s not going in the right

direction. [. . .] I would use this as a basis for dialogue with

the team (PM1:it3).

The di�ering interpretations between interviewees indic-

ate a possible inconsistency in use across teams were this

metric used in development. It could be di�cult to compare

teams’ Satisfaction where the teams understand Satisfaction

in di�erent ways.

A number of interviewees commented on the speci�c

Satisfaction criteria measured and displayed within the met-

ric. One interviewee suggested that they should be open to

change:

Maybe if you could choose some other kinds of [. . .] [cri-

teria] I don’t think it should be this every time. And they

could change over time. (AL:it2)

Several other interviewees expressed similar views. One in-

terviewee expressed the view that he did not wish for there

to be a greater number of criteria displayed in the metric,

only for the speci�c criteria to be changeable; the number

chosen was appropriate.

Satisfaction was evidently useful to the interviewees,

though there was a di�erence of opinion in whether the

chosen criteria were correct, and whether these should be

subject to change by users.

5.2.4 The relationship between Happiness &
Satisfaction is unclear (6)

Interviewees recognised that Happiness and Satisfaction

were related metrics, given their proximity within the De-

velopment Health dashboard and the similar meanings of

‘Happiness’ and ‘Satisfaction’. However, interviewees had

di�ering views on the nature and strength of that relation-

ship. One interviewee thought it would be desirable to

understand a team’s Happiness through the use of the Satis-

faction metric. This was not, however, something he con-

sidered would be possible:

If I am trying to �nd out why they are being more happy

[. . .] I can’t �nd the answer [. . .] with this Satisfaction chart.

[. . .] I would like to look at this Satisfaction chart to explain

that. But maybe you can’t use it to do that (AL:it3).

Another interviewee considered that the two were re-

lated, and that addressing unsatisfactory areas within the

development would improve an already-high Happiness:

If they are truthful about their Happiness then they are in

good spirit. There is no question that there something [relat-

ing to Satisfaction] that is annoying them, and that should

be look[ed] [. . .] into [to see] if there is something that can

be done there. That would actually help the team (AC:it3).

A further interviewee noted that, in practice, her team was

generally quite happy in spite of the existence of imped-

iments. These impediments might manifest themselves

within the Satisfaction metric, were it in practical use:

[The team is] actually pretty satis�ed even though we have

a lot of impediments because we do very good teamwork.

12



(SM3:it3)

This interviewee thus does not recognise a strong relation-

ship between the two metrics; this re�ects the general lack of

clarity amongst interviewees as to the relationship between

these two metrics.

The lack of clarity in the relationship between these two

metrics could make it challenging for users to draw conclu-

sions from a dashboard involving both of them. In spite of

this, interviewees were able to make judgements using these

metrics. Thus, clari�cation of this relationship is desirable

but not immediately necessary.

5.3 Agile Maturity

We have made a number of �ndings in relation to the Agile

Maturity dashboard, and the metrics contained within it.

5.3.1 Assessment of Agile Maturity is a team level,
not a project level activity (7)

The Agile Maturity dashboard contained a number of met-

rics aimed at assessing the agile maturity at both project

and team level. A majority of interviewees utilised the dash-

board to obtain a detailed understanding of the performance

of the team. When asked to assess the challenges one team

faced, an interviewee explained:

I would say that actually it looks like they are doing a fairly

good job, there [is] room for improvement, and they’re ac-

tually working with improvement, and that is the [. . .] most

important thing [. . .]. [M]aybe there is something that indic-

ates that it might be time for them to look at the technical

practices in the foreseeable future. Otherwise that might hit

them hard very soon (AC:it3).

When asked directly whether the prototype permitted a

team level agile maturity assessment to be undertaken, one

interviewee replied:

I have a reasonably good understanding of what’s happening

in Team Beta. And why they’re in trouble (PM1:it3).

Another interviewee however emphasised the limitations of

a maturity assessment based on the information presented

on the dashboard. In a real-life environment this information

would be combined with other measures and observations:

[I]t would be a small overview of the assessment, it can be

detailed, but that’s not needed here, and if this was a team

[with which] I had interaction [. . .], then it could be a lot

more detailed and this could be put into a context to support

di�erent observations (AC:it3).

The project level, indicating a condensed overview of

agile maturity for individual teams involved in a project’s

development, proved less informative. Interviewees found

the task of assessing agile maturity on this level to be chal-

lenging. Though most interviewees were able to identify

teams that needed attention based on the information on the

dashboard, interviewees clicked through to speci�c teams

almost immediately. One interviewee suggested that a com-

bined maturity assessment for all teams working on a project

might simply not be meaningful:

I think that the team level is the right level, and not [. . .] the

whole project, because the next time you have another team

in the project and you should look at this team. Not together

with all the other teams, you should look at it separately.

(AC:it3)

The team level was therefore useful, allowing all inter-

viewees to successfully complete an agile maturity assess-

ment for individual teams. However, the project level was

found less useful.

5.3.2 Practice assimilation levels are an important
indicator of maturity (8)

All interviewees agreed on the importance of having inform-

ation on the maturity of teams’ use of agile practices. The

Practices metric—and its measurement scale—was liked by

a majority of interviewees. One interviewee explained why

she valued this metric over more traditional agile metrics

such as Velocity:

[W]hen you’re talking to teams they say ‘oh, yeah, we have

a stable velocity and...’, yeah yeah yeah, but you’re not doing

stories, work, or base your work on business value (SM1:it3).

Another interviewee stated how he would use the Practices

metric:

Well this is [. . .] an important way for me to have a look at

how we’re doing on our agile principles. [. . .] [W]hat do

we need to improve? Then I would prepare activities based

upon this (PM1:it3).

This metric appears to aid in the learning and improvement

of teams.

Some interviewees expressed views on how the metric

could be improved. One interviewee gave one example of

an additional practice which could be added:

[When assessing agile maturity] I would look at [. . .] the

de�nition of ready and de�nition of done. You don’t have

de�nition of ready [in your prototype] (SM3:it3).

Another concerned the designation of a number of practices

as ‘key’ practices, which could be emphasised in assessing

the progress of a team towards agile maturity:

[I]t would be great to be able to see, right, we have decided

in the coming sprints or �ve sprints or something like that,

we will look at this area and see if we can improve that

(PM1:it3).

The same interviewee suggested that each team’s scores on

these key practices could be a more meaningful alternative

to the aggregated maturity scores at the project level in the

dashboard.

All interviewees thus agreed on the usefulness of meas-

uring a team’s maturity in their use of agile practices. The

Practices metric appears to permit a focus on learning and

facilitates the improvement of teams.

13



5.3.3 Sprint Interference is a useful metric, but
what constitutes interference is unclear (9)

All interviewees agreed on the value of tracking time spent

on non-sprint tasks during sprints and being able to have

an overview of this. Interviewees felt it important to under-

stand the time spent on these tasks, as it allowed them to

understand where time was being spent during a sprint, and

thus whether time was being spent in the desired way.

Interviewees disagreed, however, on which tasks should

be classi�ed as interference. Time spent on unscheduled

meetings and miscellaneous non-sprint tasks were generally

accepted to be interference. Two interviewees suggested

the latter could be used for capturing the e�ects of scope

change during a sprint, with one stating:

You can either say that our sprint goal is locked so we won’t

do it, but usually when you go to a Product Owner say-

ing ‘this is reality so we take it in’ [. . .] [Through tracking

non-sprint tasks] you could of course explain why [. . .] you

didn’t make your sprint goal (SM3:it3).

Two interviewees considered that e�ort spent on redu-

cing technical debt or refactoring did not constitute interfer-

ence, as those activities are tied into development of stories

from the sprint backlog. Another interviewee considered

bug �xing not to be interference for the same reason. Team

members working on backlog tasks outside the sprint’s

scope was considered normal practice by one interviewee,

and should not be measured by this metric.

Thus, the usefulness of tracking e�ort spent on non-

sprint tasks was generally accepted. Some of the speci�c

activities measured by this metric were not, however, gen-

erally viewed as constituting interference.

5.3.4 Code Ownership’s value in assessing agile
maturity is low (10)

The Code Ownership metric was not found to be useful in

assessing agile maturity. Half of the interviewees did not

use the metric in making an agile maturity assessment, and

only two discussed its potential use. One of the interviewees

who did elaborate on the use of this metric considered it an

indicator for how team members are working together:

So it is about working close together, and pair programming

or whatever is not really working, it could be improved, [. . .]

and I would talk to the team about how are you actually

working together on this, could we share more knowledge[?]

(PM2:it3)

Another interviewee also saw it as an indicator, but

stressed the fact that its value would be highly dependant

on contextual factors, such as code structure and applied

practices. The same interviewee referred to this metric in

relation to the overall value of the prototype dashboard,

hinting at its usefulness in a broader context:

[W]hat I have here is a great support [. . .] Code Ownership

is something that I couldn’t get directly from the teams by

talking to them, and they’re not really available anywhere

else (AC:it3).

However, this interviewee did not explain how the metric

could be used in making an agile maturity assessment.

Thus, whilst there might be a relation between agile

maturity and Code Ownership, this relationship—and the

ability to use Code Ownership as part of an agile maturity

assessment—was not widely recognised or understood.

5.4 Product Tracking

In this section we describe �ndings made in relation to

the Product Tracking dashboard. The Happiness and Sat-

isfaction metrics contained within the team level Product

Tracking dashboard are discussed in Section 5.2.

5.4.1 Product Tracking dashboard gives a useful
overview on the project level, but not on the
team level (11)

Interviewees considered the Product Tracking dashboard to

give useful insights into development progress on the pro-

ject level. All interviewees were able to use the information

on the dashboards to gain an insight into how development

was progressing and elaborate on how di�erent teams were

performing. One interviewee explained his interpretation

of the information displayed:

Best case, if we progress as we are at the moment, then on

5th May we will have our delivery in place. Worst case [. . .]

on the 15th. [. . .] I can also see how much di�erent teams

[. . .] have delivered. [. . .] And if I look at Lambda [. . .] [,]

it’s a team that’s improving over time, doing more [. . .] than

what they expected initially (PM1:it3).

One Scrum Master valued the dashboard’s straightfor-

ward illustration of the relation between scope change and

delivery date. The two Project Managers appreciated the

clear best and worst case delivery window it provided. The

indicators on the dashboard, providing information on team

stability and delivery, were generally liked, as they provided

a quick insight into which of the teams needed immediate

attention.

At the team level, interviewees were able to understand

how teams were performing, but struggled to relate the

teams’ development e�ort to the whole project. This was

attributed to the relative nature of stories points as a unit of

measurement:

[W]hat I can see here is that [. . .] they are almost doing their

commitments[.] [. . .] [B]ut what I can’t see is [. . .] what

they are doing, how much is that. Because we are doing

relative estimates [.] (AL:it3)

A possible solution for this problem was proposed by three

interviewees: this consisted of adding an indicator for each

sprint indicating whether the sprint goal had been achieved.

The Product Tracking dashboard at the project level was

thus found to provide useful information on the develop-

ment status of the whole product. Interviewees found it

more di�cult, however, to obtain a useful overview of a

team’s status and contribution the development project.

14



5.4.2 Velocity and Sprint Burndown metrics useful
together (12)

The Velocity and Sprint Burndown metrics were considered

useful measurements of team performance by the majority

interviewees. These were seen as closely related metrics,

and were frequently used together. One interviewee ob-

served:

[V]elocity [indicates] they’ve not been meeting their tar-

gets, [. . .] which causes issues with regards to the Sprint

Burndown. (PM1:it3)

Both metrics were used to make an assessment of a team’s

ability to estimate their work capacity for one sprint. The

Velocity metric could additionally provide insight in stability

of a team’s delivery, with one interviewee explaining:

[S]o [. . .] I can see that actually are they able to work toward

a sprint commitment and get there. [. . .] [I] can see on the

burndown if they’re actually working with [it] and getting

progress or if they are just �at lining in the beginning and

then just hurrying up to get something done on the last day.

And can see on the Velocity, is that stable or is it �uctuat-

ing? Are they consistently not meeting their commitment?

(AC:it3)

Another interviewee monitored the Sprint Burndown metric

on a daily basis at a previous workplace, and wished it was

currently available at DanFin:

I miss it here in DanFin because I’m used to having a dash-

board, and I’m used to having all of these measurements. I

was used to going through the burndown on every morning

meeting [at] the IT company I came from (SM3:it3).

There was some criticism of the usefulness of these met-

rics. One interviewee considered information about indi-

vidual sprints to be less valuable than the end goal. Another

considered that the Sprint Burndown metric was not as valu-

able as having a sprint goal and ensuring that agile practices

were followed:

I don’t think [. . .] it was really useful, [not] [. . .] when you

have a sprint goal, [. . .] and you do good dailies the team

looks at (SM2:it2).

While one Project Manager stressed the importance of

having access to these detailed metrics, an- other Project

Manager considered information about individual sprints

to be of less value to her:

[A]s a Project Manager I don’t really care about the di�er-

ent sprints, what’s important to me is [. . .] this end goal

(PM2:it3).

Thus, most interviewees agreed on the usefulness of one

or both of the Velocity and Sprint Burndown metrics, most

thought these metrics valuable for assessing teams’ perform-

ance in the development process.

5.5 Product Quality

We made a number of �ndings in relation to the product

quality and the metrics contained within it. These are de-

scribed below.

5.5.1 Product Quality dashboard is useful for
assessing quality on project and team levels,
but might not give a complete insight into it
(13)

The Product Quality dashboard contained a number of met-

rics relating to product quality, both on the product level

as on the team level. Interviewees used the information

displayed in the dashboard to gain an understanding of the

quality of the product under development. One interviewee

explained his interpretation of this:

[I] would have said there were a lot of defects if it was in

production. [. . .] [F]or me it seems that they are still in the

start of the project, because they still have a pretty constant

level of defects in each criticality I think. [. . .] [I]t seems

like they are not trying to solve the problem. They are just

developing new stu� (AL:it3).

On the project level, the main metric displayed Defects

Over Time, broken down in a one to �ve criticality scale.

This metric was generally viewed as important and useful:

I care about the defects as a Project Manager, then I need

to get the defects out of the way, get through all of the test

cases, [and] then I’m good. (PM1:it3)

The ability to break down defects per team on the team

dashboard was equally appreciated by interviewees:

[It is] very useful to look into the di�erent teams, because I

can see we need to do something in order to raise quality in

this �rst team [. . .] (PM2:it3).

While the nature of the Defects Over Time metric was

generally not considered problematic, half of the inter-

viewees felt it was di�cult to interpret arti�cial data without

any context:

I don’t have anything to compare this... I have no experience

from other projects, how many critical defects do we have

in other projects at this time (AL:it3).

A more fundamental issue was raised by another inter-

viewee. He stated that the number of defects would primar-

ily inform him on a possible lack of quality. To gain an

insight into the presence of quality, he would require in-

formation from a statistical code analysis system in use at

DanFin, that provides measurements on code complexity,

test coverage and average class size.

Thus, the Product Quality dashboard was useful to in-

terviewees at both project and team level. It did, however,

require more context for e�ective use, and may be unable

to provide an insight into the presence of quality, only its

absence.

5.5.2 Code Ownership’s relation with quality is
unclear (14)

A majority of interviewees agreed that having multiple de-

velopers contribute to a certain part of the product code

15



usually leads to an increase of quality. Most interviewees

however found it di�cult to see a direct and clear relation

between the Code Ownership metric and Product Quality

dashboard.

One interviewee explained that under speci�c circum-

stances, Code Ownership could be informative on quality:

[There] could be [such a relationship]. Because, if the team

is doing something that is shared or split across multiple

repositories [. . .] [,] if they then have really low shared code

ownership [. . .] [,] that might be something that has a sub-

stantial impact on the quality. But it doesn’t say anything

in itself. You have to combine it with all the background

knowledge of the team and what they’re doing (AC:it3).

Another, however, rejected the idea of such a relationship

altogether:

In my mind [quality] is not related to Code Ownership. I

could be related to so many other things (SM1:it3).

Thus, whilst some interviewees were able to recognise

the value of information about Code Ownership, its ability

to inform on product quality is unclear. Interviewees recog-

nised that Code Ownership had a bearing on quality, but in

this context it was ultimately uninformative.

6 Discussion

To answer our research question, in this section we discuss

our �ndings as presented in Section 5 as they relate to ex-

isting literature. Our research question, as stated above,

is:

Which software metrics are useful within a multi-team agile

development and how can they be usefully combined in a

dashboard to aid such a development?

Several topics emerge from the analysis which contribute

to answering our research question. Speci�cally, we discuss

the metrics which were particularly valuable; the implica-

tions of our �ndings in relation to dashboards supporting

multi-team agile development; and use of the prototype by

individuals with di�erent roles in such a development.

6.1 Key metrics

The metrics literature identi�es a number of metrics which

are regularly used in agile software development, and con-

sidered important. These include velocity, e�ort estim-

ate, defect count and defect trend (Kupiainen et al., 2015,

p. 155). We found in this study that the Velocity and Sprint

Burndown metrics—the latter being a means of estimating

e�ort—were useful (Finding 12). We also found that our

Defects metric was of value (Finding 13), this incorporat-

ing both a defect count and a defect trend over time. Our

�ndings thus con�rm the usefulness of a number of metrics

identi�ed in literature as being regularly used within agile

software development.

Software metrics are often categorised and described

using the classi�cation scheme of Fenton (1994) (see, e.g.

Kupiainen et al., 2015; Gómez et al., 2006). Team and person-

nel are both mentioned as entities for measurement within

this scheme, possessing attributes such as productivity and

experience (Fenton, 1994; Fenton and Bieman, 2014). Exper-

ience in agile software development can be equated with

the level of assimilation for a given set of agile practices;

this can be measured in a rigorous manner (Wang et al.,

2012). We found that the Practices metric (Finding 8) was

very useful in permitting an assessment of the agile matur-

ity of a team. It is suggested in our �nding that this metric

would allow users of it to make a meaningful assessment of

how agile a team actually is, rather than simply whether a

team is using nominally agile practices. This metric is not

explicitly mentioned in the metrics literature, though it can

be seen that it is a means of measuring the experience of

an agile team; it measures an attribute of a named entity of

Fenton’s. Our �ndings in this regard thus con�rm that the

classi�cation of metrics in Fenton (1994) holds in relation to

this new metric. As a metric not currently identi�ed in the

literature, however, our �ndings add to current knowledge

by identifying a novel metric speci�cally applicable to agile

software development.

A number of di�erent reasons for using metrics within

agile software development are identi�ed in the metrics lit-

erature (Kupiainen et al., 2015, p. 150). Generally, metrics

used within agile software development should support agile

principles (Hartmann and Dymond, 2006). Agility (in soft-

ware development) means focusing on embracing change

and learning from it; this should be supported by the use

of agile practices (Conboy, 2009, p. 340). We found two

metrics to be the most useful within this study: those meas-

uring the Happiness and Satisfaction of the team (Finding

4 & 5). These metrics were universally viewed as provid-

ing a substantial amount of useful information on an agile

team. These metrics are, however, entirely unrepresented in

the literature. They do not �t easily into the classi�cation

scheme of Fenton (1994), as described above; nor do they �t

the reasons for using metrics from Kupiainen et al. (2015).

Happiness and Satisfaction relate not to the measurement

of teams or personnel per se, but to the views of teams in

relation to their working environment. Users identi�ed a

change in happiness or satisfaction as being indicative of

changes in the development environment that might not

be otherwise identi�ed, and took decisions based on this

knowledge. The centrality of change within agile software

development requires the knowledge of the existence of such

a change, so that it can be learned from. These metrics con-

vey information which facilitates the learning from change

so central to agility. Thus, the existence and usefulness of

these metrics adds to existing knowledge by identifying two

previously unidenti�ed metrics, and by identifying a new

reason for metrics use within agile software development,

namely to understand, and thus learn from, change within

the development process.

16



6.2 Dashboard design

A dashboard should display a single page containing limited

information (Yigitbasioglu and Velcu, 2012, p. 44). It should

contain a degree of interactive functionality to accommod-

ate the need for more detailed information. The appropriate

level of functionality should be considered in light of the

purpose of the dashboard and the quantity of information re-

quired for that purpose (Yigitbasioglu and Velcu, 2012, p. 48).

One of the more common functional features is ‘drill-down’

and ‘drill-up’ functionality, which allows dashboard users

to acquire more detailed information about a particular ele-

ment within the dashboard (Yigitbasioglu and Velcu, 2012,

pp. 47–48). Our �ndings show that users found that detailed

information is necessary for making decisions. Indicators

where used within a dashboard must be accompanied by

the ability to obtain detailed information (Finding 1 & 2).

Even though there was a di�erence of opinion as to the

most valuable level of detail for di�erent dashboards, users

found it useful to access di�erent levels of detail to obtain

required information (Findings 3, 7, 11 & 13). This is sug-

gestive of a need for di�erent levels of detail of information

within a dashboard aiding multi-team agile development.

We have been unable to identify any literature on this spe-

ci�c point. Thus, our �ndings in this regard represents a

new contribution.

It is important that information presented by a dashboard

is relevant to the user and focuses on key measurements

(Yigitbasioglu and Velcu, 2012, p. 48). A �exible representa-

tion can be bene�cial in improving relevance of a dashboard

to the user (Yigitbasioglu and Velcu, 2012, p. 52). During

our research we found that users have di�erent information

needs. There were di�erences of opinion between users as

to which metrics and visualisations were useful within a

dashboard (Findings 10, 12 & 14), and as to what speci�c

data were useful within metrics and visualisations (Find-

ings 5, 8 & 9). This suggests a need to provide options to

users to omit or alter dashboard contents to best suit their

information needs. Flexible representation is therefore a

desirable functional feature in the design of a dashboard for

agile development. Thus, we con�rm the usefulness of a

�exible representation of dashboards as presented in literat-

ure. Further, the desirability of �exible representation in a

dashboard aiding multi-team agile development represents

a new contribution to knowledge on agile dashboard design.

Five major reasons for using metrics in agile software

development are distinguished by Kupiainen et al. (2015):

sprint and project planning, sprint and project progress

tracking, understanding and improving quality, �xing soft-

ware process problems, and motivating people. These reas-

ons were however derived by the authors from measurement

goals of individual metrics, and therefore not validated in

practice. Our prototype contained four di�erent themes

around each of which a dashboard was created: Product

Tracking, Product Quality, Agile Maturity, and Develop-

ment Health. These themes arose from our iterative pro-

totype development process, emerging from the purposes

for which metrics were considered useful during evaluation.

Thus, each theme may be considered to relate to one reason

or purpose for using the dashboard based upon it. Prac-

titioners found the themes to represent useful groupings

of dashboard functionality (Finding 1). There is a relation-

ship between our themes and the reasons in Kupiainen et

al. (2015). Product Quality relates to understanding and

improving quality; Product Tracking relates to sprint and

project progress tracking; and Agile Maturity relates to �x-

ing software process problems. Development Health does

not relate to any of the reasons found in literature. However,

as this theme contains only the Happiness and Satisfaction

metrics, the reason for this is explained in Section 6.1 in

the discussion on these metrics. Thus, three of our four

themes correspond to three of the reasons for using metrics

in agile software development. Therefore, this partially con-

�rms and validates in practice the literature relating to the

reasons one would use software metrics in agile software

development.

6.3 Roles & dashboard usage
Metrics literature commonly makes a sharp distinction

between the information requirements of management, de-

velopers and other operational sta� (Fenton and Bieman,

2014, pp. 14–16; Eckerson, 2010, p. 103). In agile software de-

velopment, however, the distinction between di�erent roles

in the development process is much less apparent, as agile

teams themselves, and not management, are responsible for

managing the teams’ processes and deliveries (Schwaber

and Beedle, 2002, pp. 8,19). Project Managers are suggested

to take on a facilitative, rather than directive role in agile

environments (Waardenburg and Vliet, 2013, p. 1261). Our

�ndings indicate that interviewees, irrespective of their role

in the development processes, made similar assessments

of the value of elements of the prototype. This was appar-

ent for example in the high value placed on the Practices

and Happiness metrics, which was shared by Scrum Mas-

ters, Project Managers and the Agile Coach (Finding 4 &

8). Some metrics were found useful by di�erent roles for

di�erent reasons, as was the case with the Release Burnup

metric (Finding 11). A Scrum Master valued this metric

for the insight it provided into the consequences of scope

change, whereas a Project Manager found the expected re-

lease date useful. Where diverging opinions on usefulness

existed, such as for the Sprint Burndown and Velocity met-

rics, di�erent opinions could not be related to the roles of

the interviewees (Finding 12). The common values placed

on di�erent metrics indicates that, despite undertaking dif-

ferent roles, individuals within agile software development

have largely the same information requirements. These can

be related to their responsibilities and interests as described

by agile literature. This �nding modi�es the current know-

ledge concerning software metrics insofar as it relates to

agile software development, as di�erent roles within this

environment have the same informational needs. This is in

accordance with the agile software development literature.

17



6.4 Limitations

Our study took place over a relatively short period (March to

May 2017). It built on a previous case study at one software

development organisation, and involved the evaluation of

prototypes at that same organisation. As with any study un-

dertaken solely within one organisation, our �ndings may

be inapplicable outside of the context of this organisation.

However, DanFin appears to have adopted many standard

agile practices, and thus we expect our results to have more

general applicability to other, similar environments.

The short duration of the study had an impact on the

number of iterations we were able to complete. Metrics were

evaluated in each iteration, however dashboards were only

evaluated in the �nal iteration. Ideally we would have under-

taken a further iteration to iterate on its design and evaluate

dashboards in more detail. This was mitigated, however,

by having a comparatively large number of interviewees

in the �nal iteration which we intended to result in a more

thorough evaluation of the �nal prototype.

Selection of participants was dependent on the willing-

ness of individuals to participate in our study. It is possible

that our participants were not representative of practition-

ers at DanFin, or of agile practitioners generally. Further-

more, we only had one participant who was an Agile Coach,

one who was a Agile Leader, and no Product Owner or De-

veloper. Our �ndings were consistent across participants;

as they were involved in di�erent teams and projects, it

is unlikely that the participants were consistently unrep-

resentative of agile practitioners. The Scrum Master is, to

some extent, able to represent the views of Developers as

they work closely with them to resolve impediments and

promote agile processes.

Our prototype used test data rather than real data

throughout our study. As such, our �ndings may not be

re�ective of a real-world evaluation of our prototypes. The

test data was instantiated within a complete data model,

however, and intended to re�ect what might be encountered

in the real world. It is unlikely that the test data were so

di�erent from real data that they substantially a�ected our

�ndings.

The Happiness and Satisfaction metrics, as described

in Section 6.1, may not use an appropriate scale. The numer-

ical values used in the Happiness and Satisfaction metrics

are not absolute measurements, but are closer to ordinal

values (Fenton, 1994). The scale might be improved by using

very dissatis�ed through to very satis�ed, with intermedi-

ate values between. As such, it may be that the Happiness

and Satisfaction metrics do not meet the requirements for

software metric Fenton describes. However, interviewees

were accustomed to using these scales as Happiness was

previously in use at DanFin. Thus, it appears that the scales

were understood and the metrics found useful in any case.

7 Conclusion
This paper presents the �ndings of our prototype develop-

ment and evaluation study. Our study provides an insight

for both practitioners and researchers into the software met-

rics useful within a multi-team agile development. It also

supports combining these in a dashboard to assist with un-

derstanding the status of such a development, and making

decisions in relation to it. We identify several contributions

arising from this study.

In relation to software metrics our study con�rms the

usefulness of standard agile software metrics already in use.

It con�rms the applicability of the classi�cation scheme of

Fenton (1994) to some agile software metrics. We have iden-

ti�ed several novel metrics not present within the literature:

Practices, Happiness and Satisfaction. Further, the latter

two of these practices do not �t within the aforementioned

classi�cation scheme, representing we believe a new type of

software metric. We con�rm a number of reasons for using

metrics within agile software development. We also identify

a new reason for so doing: to understand and learn from

change within the software development environment.

In relation to dashboards, this study con�rms the useful-

ness of having a �exible representation of a dashboard to

enable it to be customised based on the needs of the indi-

vidual user. This desirability for a �exible representation is

new knowledge as it relates to agile software development

dashboards. We also �nd that users of an agile software de-

velopment dashboard require to have access to information

at varying levels of detail for such a dashboard to be useful.

This study also modi�es current understanding of the

need to provide di�erent dashboard information to di�erent

stakeholders. We �nd that the information needs of indi-

viduals within multi-team agile development do not vary

between roles represented in our study.

A �nal contribution is the artifact instantiation resulting

from our design process, namely our �nal prototype, en-

capsulating the knowledge gained during the course of this

study.

This study indicates a number of areas for future research.

We conducted this study at an organisation that tailored

agile development methodologies to their speci�c require-

ments. Further research may involve similar such studies in

organisations using di�erent agile development methodo-

logies and practices, to ascertain whether our �ndings are

applicable more broadly than our case.

Our prototype represents a purposeful starting point for

further development by practitioners wishing to support

their own agile development processes or researchers aiming

to further investigate the information needs of a multi-team

agile software development. A future study may evaluate

our prototype within a di�erent organisation with a wider

range of interviewees.

Whilst we used test data during our study, our proto-

type is capable of operation with ‘real’ data. Valuable fu-

ture research would include conducting a study using our

prototype populated with real data from within a working

18



multi-team agile software development, to test whether our

�ndings hold under these conditions.

On the level of individual metrics, the high value practi-

tioners attributed to the Happiness and Satisfaction metrics

is noteworthy. It is unclear to us the extent to which either of

these metrics are measured in other organisations. Further

research could also involve introducing these metrics to or-

ganisations that have no previous experience with this type

of measurement to establish whether experience in�uences

valuations of these metrics.

References

Beck, Kent and Cynthia Andres (2004). Extreme Program-
ming Explained: Embrace Change, 2nd Edition. 2nd edition.

Boston, MA: Addison-Wesley. 224 pp. isbn: 978-0-321-

27865-4.

Boehm, B. and R. Turner (2005). ‘Management Challenges

to Implementing Agile Processes in Traditional Develop-

ment Organizations’. In: IEEE Software 22.5, pp. 30–39.

issn: 0740-7459.

Bumbary, Karen M (2016). ‘Using Velocity, Acceleration, and

Jerk to Manage Agile Schedule Risk’. In: Information Sys-
tems Engineering (ICISE), 2016 International Conference
on. IEEE, pp. 73–80.

Cockburn, Alistair and Jim Highsmith (2001). ‘Agile Soft-

ware Development: The People Factor’. In: Computer
34.11, pp. 131–133. issn: 0018-9162.

Conboy, Kieran (2009). ‘Agility from �rst principles: Re-

constructing the concept of agility in information sys-

tems development’. In: Information Systems Research 20.3,

pp. 329–354.

Davis, Alan M (1992). ‘Operational Prototyping: A New De-

velopment Approach’. In: IEEE Software 9.5, pp. 70–78.

– (1995). ‘Software prototyping’. In: Advances in computers
40, pp. 39–63.

Davis, Fred D (1989). ‘Perceived usefulness, perceived ease

of use, and user acceptance of information technology’.

In: MIS quarterly, pp. 319–340.

Dikert, Kim, Maria Paasivaara and Casper Lassenius (2016).

‘Challenges and success factors for large-scale agile trans-

formations: A systematic literature review’. In: Journal
of Systems and Software 119, pp. 87–108. issn: 0164-1212.

Eckerson, Wayne W. (2010). Performance Dashboards: Meas-
uring, Monitoring, and Managing Your Business. 2 edition.

New York: Wiley. 336 pp. isbn: 978-0-470-58983-0.

Fenton, Norman (1991). Software Metrics: A Rigorous Ap-
proach. London, UK, UK: Chapman & Hall, Ltd. isbn:

978-0-442-31355-5.

– (1994). ‘Software measurement: a necessary scienti�c

basis’. In: IEEE Transactions on Software Engineering 20.3,

pp. 199–206. issn: 0098-5589.

Fenton, Norman and James Bieman (2014). Software metrics:
a rigorous and practical approach. Third. CRC Press.

Fenton, Norman and Martin Neil (1999). ‘Software metrics:

successes, failures and new directions’. In: Journal of Sys-
tems and Software 47.2, pp. 149–157.

Gómez, Oswaldo et al. (2006). ‘A systematic review measure-

ment in software engineering: state-of-the-art in meas-

ures’. In: International Conference on Software and Data
Technologies. Springer, pp. 165–176.

Grady, Robert B. (1992). Practical Software Metrics for Project
Management and Process Improvement. Englewood Cli�s,

NJ: Prentice Hall. 282 pp. isbn: 978-0-13-720384-0.

Hartmann, D. and R. Dymond (2006). ‘Appropriate agile

measurement: using metrics and diagnostics to deliver

business value’. In: AGILE 2006 (AGILE’06). AGILE 2006

(AGILE’06), 6 pp.–134. doi: 10.1109/AGILE.2006.17.

Hendriks, Ivo et al. (2017). ‘Understanding the Challenges of

a Large-Scale Agile Transformation’. Aalborg, Denmark.

Hevner, Alan et al. (2004). ‘Design Science in Information

Systems Research’. In: MIS Quarterly 28.1.

Hughes, Michael (1999). ‘Rigor in Usability Testing’. In: Tech-
nical Communication: Journal of the Society for Technical
Communication 46.4, pp. 488–94. issn: 0049-3155.

Javdani, Taghi et al. (2012). ‘On the Current Measurement

Practices in Agile Software Development’. In: Interna-
tional Journal of Computer Science Issues (IJCSI); Mahe-
bourg 9.4, pp. 127–133. issn: 1694-0814.

Kerzner, Harold (2013). Project Management Metrics, KPIs,
and Dashboards: A Guide toMeasuring andMonitoring Pro-
ject Performance. 2 edition. Hoboken, New Jersey: Wiley.

448 pp. isbn: 978-1-118-52466-4.

Kupiainen, Eetu, Mika V. Mäntylä and Juha Itkonen (2015).

‘Using metrics in Agile and Lean Software Development

– A systematic literature review of industrial studies’.

In: Information and Software Technology 62, pp. 143–163.

issn: 0950-5849. url: http://www.sciencedirect.com/

science/article/pii/S095058491500035X.

Lazar, J., J. H. Feng and H. Hochheiser (2010). Research Meth-
ods in Human-Computer Interaction. John Wiley & Sons

Ltd. isbn: 978-0-470-72337-1.

Lew, Philip (2016). ‘Agile Testing Metrics: Quality Before

Velocity’. In: Software Quality Professional Magazine 18.3.

Lim, Youn-Kyung, Erik Stolterman and Josh Tenenberg

(2008). ‘The anatomy of prototypes: Prototypes as �lters,

prototypes as manifestations of design ideas’. In: ACM
Transactions on Computer-Human Interaction (TOCHI)
15.2, p. 7.

Mathiassen, Lars et al. (2000). Object-Oriented Analysis &
Design. Aalborg, Denmark: Marko. 443 pp. isbn: 978-8-

777-51150-9.

Schwaber, Ken and Mike Beedle (2002). Agile Software De-
velopment with Scrum. Upper Saddle River, NJ: Prentice

Hall. isbn: 978-0132074896.

Sheehan, Megan (2016). State of lifecycle management: jour-
ney towards quality. Hewlett Packard Enterprise Com-

munity.

Sommerville, Ian (2016). Software Engineering. Tenth Edition.

Pearson. isbn: 978-1-292-09613-1.

19

https://doi.org/10.1109/AGILE.2006.17
http://www.sciencedirect.com/science/article/pii/S095058491500035X
http://www.sciencedirect.com/science/article/pii/S095058491500035X


Staron, Miroslaw et al. (2014). ‘Dashboards for continuous

monitoring of quality for software product under devel-

opment’. In: Relating System Quality and Software Ar-
chitecture. Ed. by Ivan Mistrik et al. Morgan Kaufmann

Publishers.

Tokola, Henri et al. (2016). ‘Designing Manufacturing Dash-

boards on the Basis of a Key Performance Indicator Sur-

vey’. In: Procedia CIRP 57, pp. 619–624.

Van de Ven, Andrew H. (2007). Engaged Scholarship: A Guide
for Organizational and Social Research. 1 edition. Oxford ;

New York: Oxford University Press. 344 pp. isbn: 978-0-

19-922630-6.

Waardenburg, Guus van and Hans van Vliet (2013). ‘When

agile meets the enterprise’. In: Information and Software
Technology 55.12, pp. 2154–2171. issn: 0950-5849.

Wang, Xiaofeng, Kieran Conboy and Minna Pikkarainen

(2012). ‘Assimilation of agile practices in use’. In: Inform-
ation Systems Journal 22. issn: 1365-2575.

Yigitbasioglu, Ogan M and Oana Velcu (2012). ‘A review of

dashboards in performance management: Implications

for design and research’. In: International Journal of Ac-
counting Information Systems 13.1, pp. 41–59.

20



A Prototype Screenshots

Figure 3: Top level dashboard.

Figure 4: Product Tracking dashboard (project level).

21



Figure 5: Product Tracking dashboard (team level).

Figure 6: Product Quality dashboard (project level).

22



Figure 7: Product Quality dashboard (team level).

Figure 8: Agile Maturity dashboard (project level).

23



Figure 9: Agile Maturity dashboard (team level).

24



Figure 10: Development Health dashboard (project level).

Figure 11: Development Health dashboard (team level).

25


	Aalborg University Title Page
	Introduction
	Related research
	Agile software development
	Software metrics
	Dashboards

	Research Method
	Research design
	Prototype designs
	Data collection
	Data analysis

	Prototype Description
	Prototype structure
	Dashboards
	Design choices
	Architecture
	Functionality


	Analysis
	Overview
	Dashboards are useful, but the main dashboard required more detail (1)
	Red-yellow-green indicators provide an immediate overview, but lack clarity (2)

	Development Health
	Development health dashboard did not provide users with useful information at project level (3)
	Happiness is a key metric in assessing agile development (4)
	Satisfaction is a useful metric, though the Satisfaction criteria were questioned (5)
	The relationship between Happiness & Satisfaction is unclear (6)

	Agile Maturity
	Assessment of Agile Maturity is a team level, not a project level activity (7)
	Practice assimilation levels are an important indicator of maturity (8)
	Sprint Interference is a useful metric, but what constitutes interference is unclear (9)
	Code Ownership's value in assessing agile maturity is low (10)

	Product Tracking
	Product Tracking dashboard gives a useful overview on the project level, but not on the team level (11)
	Velocity and Sprint Burndown metrics useful together (12)

	Product Quality
	Product Quality dashboard is useful for assessing quality on project and team levels, but might not give a complete insight into it (13)
	Code Ownership's relation with quality is unclear (14)


	Discussion
	Key metrics
	Dashboard design
	Roles & dashboard usage
	Limitations

	Conclusion
	Prototype Screenshots

