
Timbre modification using
deep learning

Master thesis

Mattia Paterna

Aalborg University Copenhagen
Sound and Music Computing

Copyright c© Aalborg University 2017

This document has been designed in LATEX. All the scripts have been implemented in
Python programming language. IPython and Jupyter Notebook have been used to sketch part
of the experimental setup. The simulations have been run in the HPC cluster at the DCC
computing center, Danmarks Tekniske Universitet.

Sound and Music Computing
Aalborg University Copenhagen

http://www.aau.dk

Title:
Timbre modification using
deep learning

Theme:
Master thesis

Project Period:
Spring Semester 2017

Project Group:
IX

Participant(s):
Mattia Paterna

Supervisor(s):
Hendrik Purwins

Copies: 1

Page Numbers: 53

Date of Completion:
June 15, 2017

Abstract:

This thesis introduces timbre trans-
formations by means of deep learn-
ing. A set of convolutional autoen-
coders is created to deal with the task.
Each structure uses convolutional lay-
ers as building blocks. First, a shal-
low architecture is used to perform
the reconstruction of a series of pi-
ano notes and infer a set of opti-
mal hyperparameters for the building
blocks. Later, several architectures are
deployed and compared in the attempt
of transforming an input sound into
a target sound. Doing so, two wind
instrument sets are used. The input
and the output of the deep structure
are log-magnitude spectra of the au-
dio signals. The Griffin-Lim algorithm
is used for reconstructing phase in-
formation and generate an audio out-
put using the outcome of the autoen-
coder. Results show that the convo-
lutional autoencoder performs a fair
job in the timbre transformation, espe-
cially when techniques, such as resid-
ual learning and dilation, are imple-
mented. Moreover, constraints, such
as sparsity, and regularisation helps in
retrieving an optimal latent represen-
tation of the spectra.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Lyd og Musik
Aalborg Universitet København

http://www.aau.dk

Titel:
Timbre modification using
deep learning

Tema:
Master Thesis

Projektperiode:
Efterårssemestret 2017

Projektgruppe:
IX

Deltager(e):
Mattia Paterna

Vejleder(e):
Hendrik Purwins

Oplagstal: 1

Sidetal: 53

Afleveringsdato:
15. juni 2017

Abstract:

This thesis introduces timbre transfor-
mations by means of deep learning.
A set of convolutional autoencoders
is created to deal with the task. Each
structure uses convolutional layers as
building blocks. First, a shallow archi-
tecture is used to perform the recon-
struction of a series of piano notes
and infer a set of optimal hyperpa-
rameters for the building blocks. La-
ter, several architectures are deploy-
ed and compared in the attempt of
transforming an input sound into a
target sound. Doing so, two wind in-
strument sets are used. The input and
the output of the deep structure are
log-magnitude spectra of the audio
signals. The Griffin-Lim algorithm is
used for reconstructing phase infor-
mation and generate an audio output
using the outcome of the autoenco-
der. Results show that the convolutio-
nal autoencoder performs a fair job in
the timbre transformation, especially
when techniques, such as residual lear-
ning and dilation, are implemented.
Moreover, constraints, such as sparsity,
and regularisation helps in retrieving
an optimal latent representation of the
spectra.

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse) må kun ske efter aftale med

forfatterne.

http://www.aau.dk

Contents

Preface ix

Acknowledgement xi

1 Introduction 1
1.1 Representations in music . 2

1.1.1 Mid-level representations . 2
1.1.2 Multiscale architectures . 2
1.1.3 Deep learning for music content analysis 3

1.2 Music generation . 3
1.2.1 The use of statistical models 3
1.2.2 The use of deep learning . 4

1.3 Objectives . 4
1.4 Outline . 5

2 Theoretical background 7
2.1 Deep architectures . 7
2.2 The autoencoder paradigm . 8

2.2.1 Definition . 9
2.2.2 Network constraints . 9
2.2.3 Sparse autoencoders . 10

2.3 Autoencoder neural networks . 10
2.3.1 Single-layer autoencoders . 11
2.3.2 Sparsity . 12
2.3.3 Other constraints . 13

2.4 Convolutional autoencoders . 13
2.4.1 Convolutional neural networks 13

2.4.1.1 Convolution layer . 14
2.4.1.2 Pooling layer . 14
2.4.1.3 Parameters . 15

2.4.2 Convolutional autoencoders 16

vii

viii Contents

2.4.2.1 Definition . 16
2.4.2.2 Loss function and gradient descent 17

3 Experimental setup 19
3.1 Overview . 19

3.1.1 The reconstruction task . 19
3.1.2 The transformation task . 20

3.2 Models . 20
3.2.1 Design choices . 21

3.2.1.1 Initialisation . 21
3.2.1.2 Constraints . 22
3.2.1.3 Regularisation . 22
3.2.1.4 Receptive field . 23
3.2.1.5 Activation function 23
3.2.1.6 Loss function . 24
3.2.1.7 Learning rate methods 24

3.2.2 The architectures . 25
3.3 Experiments . 27

3.3.1 Datasets . 27
3.3.2 Infrastructure . 30
3.3.3 Training . 30

3.4 Results and discussion . 31
3.4.1 The reconstruction task . 33
3.4.2 The transformation task . 35
3.4.3 Further discussion on results 38

4 Conclusion 41

A Reconstructed log-magnitude spectra 43
A.1 The reconstruction task . 43
A.2 The transformation task . 45

Bibliography 49

Preface

This master thesis has been prepared in partial fulfilment of the requirement for
the Master thesis in Sound and Music Computing, 4th semester in the Academic
year 2016-2017

Aalborg University, June 15, 2017

Mattia Paterna
<mpater15@student.aau.dk>

ix

Acknowledgement

I spent almost four months in doing this thesis, and some people deserve my
gratitude. Some helped me in my technical issues, others helped me in keeping
the sanity and in my everyday issues.

I would like to thank Corey Kereliuk, whom I met in Copenhagen at the very
beginning and helped me in refining the very first draft of my idea. I would also
like Paolo Galeone, who replied to many mails of mine with great details and
exchanging knowledge about autoencoders that literally enlightened me.

Many thanks I give to Carmine-Emanuele Cella, who I’ve been pleased to know
for some years. He pushed me further down this way and he helped me in learning
how to think. His talks have been always valuable. Thanks to Hendrik Purwins,
my supervisor, whom I spent almost one and a half year of supervision with.
Undoubtedly, he has been the most important figure in my master and encouraged
me in this steep way to the mathematical side of the music.

My thanks should I also give to DTU Computing Center and Sebastian Borchert,
who carefully replied to my mails and helped me in running Tensorflow using the
GPU clusters.

And then, I give my thanks to my friends, and classmates. Thank you to my ex
workmates, who became good friends. Matteo, Adam, Devid. I spent lots of time,
and lots of laughs with you. Thanks to Paolo and Roberta, who silently stood and
listened to anything. I love your company.

And finally, my parents and my Gyulyuzar. To my parents: although you are
quite far, your Sunday Skype made me feel home. If I’m here, it’s undoubtedly
because you always supported me. And to my Gyulyuzar: it’s been beautiful and
crazy working together on our theses, but now we shall rest a bit. You encourage
me, no matter what. And when I wake up and see you, whatever the issue, I know
that it will be a good day. I love you Gyulyuzar, I love you all.

And just a little dedication to my beloved dog, who I could not see once more
in these two years and I could not unfortunately see for some time.

You are my sister and I love you. Ciao piccolina.

xi

Chapter 1

Introduction

In the last decades, the use of interactive computer music systems has lead to
performances in which musical notations and numerical representations of music
can be directly converted to audio outcomes [39, 46]. Later, statistical models have
proved to be able to merge both the processes of analysis and synthesis of music
[12] and to interact with human performers in real time, learning from them [2].

Consequently, new ways of representing music, and audio, have emerged [36],
in which properties of sounds, such as timbre and pitch, are generalised in the
concept of features. Such representations aimed to be hierarchical and to exhibit a
multiscale approach [15, 43]. In other words, they take into account several proper-
ties of sound which span through different levels of abstraction.

With the recent breakthrough of deep learning [28, 27], neural networks have
been widely deployed for musical tasks, such as annotation [8] and generation [17].
Generative models have proved to successfully cope with the composition of mean-
ingful musical structures from symbolic input [37, 10]. In the very recent time,
another breakthrough appeared, with the introduction of a deep neural network
that is capable of end-to-end audio generation [44]. At the same time, Google
Brain has dedicated an entire project for the deployment of machine learning in
the compelling creation of music1.

Given the premise, a further exploration of neural network techniques for the
generation of audio excerpts sounds particularly interesting. The generation in-
creases in its interest, as the output of the generation is driven by the input musical
characteristics. This thesis aims to give a contribution to this field.

In this chapter, I point out the importance of the representation in music through
the latest advances in the field of Music Information Retrieval. Furthermore, I out-
line some of the recent techniques used for music generation. Then, I show how
representation and generation can be merged in a deep learning paradigm and,
from this, I state the research question for the thesis.

1https://magenta.tensorflow.org/

1

2 Chapter 1. Introduction

1.1 Representations in music

The need for representing music relates to early times, where no audio recording
technology existed to recall music over temporal and spatial restriction. Thus,
the creation of the musical score as a formal language [41] to depict a musical
piece encoded in a high dimensionality [34]. The computer era has made possible
the invention of various form of representation, among which MIDI is the most
common symbolic representation. Nowadays, such representations are essential
for any kind of musical generative system that makes use of computers.

There can be several ways of defining the properties of music, ranging from
specific to abstract representations in technical systems, such as computers. Vinet
introduced a distinction that goes further the traditional complementary way of
representing music through a signal and symbolic representations, adding a phys-
ical and a knowledge representation [55]. Particularly, the latter has driven the last
development in the field of Music Information Retrieval (MIR).

If considered stacked together, these representations span the whole processing
of musical information by the brain, where the symbolic and the knowledge rep-
resentation refer namely to the inference of musical features, e.g. pitch and scales,
and the cognitive aspect, i.e. the creation of a formal language that carries out the
description of musical phenomena [55].

1.1.1 Mid-level representations

However, converting audio signal to symbolic representations still lacks of accu-
racy. The concept of mid-level representations has been depicted in [18] to miti-
gate this gap and can be seen as a fixed mixture of both signal and symbolic level.
In other words, the focus is on simple concepts that are more abstract than those
related to a signal representation, such as the sinusoid. Mid-level representations
can take place in the full network of representations described in [55], being these
simple concepts in between the constraints imposed by lower and high levels.

1.1.2 Multiscale architectures

Recent developments in the MIR research have showed an increased interest in
multiscale architectures [23], since music exhibits structures on many different
time scales [15]. Indeed, if using frame-level features, i.e. extracted from short-
time windows, no temporal information is retained. It can be therefore beneficial
combine both low and high level aspect in a unique framework. Researcher have
already explored them [15, 10], and some work shows architectures that are both
deep and multiscale [36].

1.2. Music generation 3

1.1.3 Deep learning for music content analysis

Recently, deep learning approaches have become of interest for feature learning
and representation on audio classification tasks in supervised [43] and unsuper-
vised [36] fashion. Kereliuk et al. [32] use deep learning for music genre recog-
nition, since it is naturally suited to learn relevant abstractions for music content
analysis. The key here is to build deep models that are capable of representing
data at multiple level of abstraction, and to learn itself such representations. The
layers in the deep learning model forms a hierarchy, where the innermost layer be
the most abstract representation of the input data [14].

Representation learning The idea of moving from hand-crafted features to au-
tomatic feature learning is the key concept of representation learning [21]. In [31]
the use of feature learning in MIR tasks have been advocated firstly, together with
deep models. According to Goodfellow [21], learned representations yield to bet-
ter performance minimising the human intervention. Furthermore, deep learning
may solve the problem of extracting high-level features building them out of sim-
pler and low-level representation. Hence, the reason for using a representation
learning algorithm, such as the autoencoder.

1.2 Music generation

The last decades have seen an extensive application of computers in the generation
and processing of musical content. An analytic model is usually followed by a syn-
thetic model. In the middle, sound processing algorithms take place, depending
on the aimed modifications, e.g. pitch shifting. The phase vocoder [16] is one of the
most common techniques. However, computational methods for complex musical
tasks, such as style imitation or audio continuation, have been far more difficult than
initially imagined, leading to their replacement by hand-crafted algorithm [12].

1.2.1 The use of statistical models

In [12], Conklin stated that statistical model can be deployed for such complex
tasks. Statistical models are created, which assign a probability to the musical
objects considered, say notes or excerpts. In this scenario, generating music is equal
to sampling from such models. In other words, statistical models provide the
conditional probability distribution over a series of musical objects. In the case of
machine improvisation, the distribution over a sequence of preceding events is then
used for generating new sequences or computing the probability of a given one [2].

Markov models have been widely used for accomplishing the process of mu-
sic generation [45, 37, 2, 10]. While the Continuator [45] and OMax [2] worked

4 Chapter 1. Introduction

with MIDI sequences inside their architectures2, in [37] and [10] audio events are
directly processed and recombined in a generation of a new sequence. Particu-
larly, the latter works show how audio events can be grouped by similarities using
techniques, such as hierarchical clustering and Gaussian mixture models, that are
applied to audio features specifically extracted from the original audio.

1.2.2 The use of deep learning

In recent years, many attempts have been done in using deep learning techniques
for music generation. In [8], symbolic sequences of polyphonic music are modelled
and generated. Particularly, the use of recurrent neural networks (RNN) have proved
successful in generating sequences of notes and chords. Google Brain devoted an
entire research project to advance the state-of-art in the deployment of machine
learning in music, named Magenta. One of its most successful application has
been a RNN that generates music from MIDI input sequences3. However, the
representation is still limited to a high-dimensional level. Furthermore, RNNs
showed much difficult to be trained.

Convolutional neural synthesizer Wavenet [44] has emerged last year, gaining
the state-of-art performance in text-to-speech task. The peculiarity of such a model
reside in the choice of using dilated convolutional neural networks only (no RNN is
required) and raw audio waveforms as input, returning an audio waveform as out-
put. A new breakthrough in the panorama of music generation has been achieved
on May, 18th with the release of an instrument4, which allows for sound morph-
ing among several audio samples using Neural Audio Synthesis (NSynth) [19]. In
other words, it takes several audio samples and gives the player the opportunity to
create custom timbres modulating the amount of those selected sounds. Undoubt-
edly, this is quite a brand new synthetic model, which also works by finding an
optimal latent representation of the original audio.

Hence, NSynth demonstrates that the analysis and the synthesis part can be
merged together in a deep models where audio features are learnt directly by the
network5.

1.3 Objectives

On the basis of what I previously pointed out, in this thesis I aim to demon-
strate that it is feasible for a deep learning model to generate target output

2Although, Assayag et al. developed a version of the system that is capable of working with
monophonic acoustic instruments: Ofon.

3https://magenta.tensorflow.org/2016/06/10/recurrent-neural-network-generation-tutorial
4https://magenta.tensorflow.org/nsynth-instrument
5To be more precise, [19] and [44] make use of external conditioning to achieve the best results.

1.4. Outline 5

sounds, which are others than the sounds given as inputs to the model. Such
a task appears different than the other tasks yet successfully deployed by means of
WaveNet-based systems.

As a matter of fact, the NSynth application mentioned previously performs
morphing among compressed representations of sounds, but it does not directly map
the content of a given input sound to a targeted output sound. In other words,
the network is trained to reconstruct an input sound at its best and the morph-
ing is obtained by interpolating similar representations of different sounds at the
innermost layer of the model. Conversely, I aim to create a model that, given an
input sound, may successfully modify its characteristics and produce a different
outcome.

To cope with limits of time and complexity, I concentrate on the timbre transfor-
mation between an input sound and a desired sound, namely a target. With the use
of convolutional autoencoders, I aim to a reconstruction of the target sound, given the
input sound. Given the nature of this task, the autoencoder should be capable of
learning features from the input sound. Moreover, it should map such features in
order to achieve the desired transformation.

This end-to-end learning of timbre transformation makes use of log-magnitude
spectra as inputs for the autoencoder. Being a magnitude spectrum a time-frequency
representation, they retain much of the audio original information and, at the same
time, can be considered as sound images. Doing so, I expect that the use of con-
volutional neural networks be favourable to the task since much of their advance
has interested the field of computer vision. On the other hand, I have to deal with
the loss of phase information when moving from the signal representation. This
implies the use of an algorithm for reconstructing the phase when moving back to
audio.

Finally, I aim to the generation of an arrangement based on such an input
sound, that is a new musical object with specific musical characteristics, of which
the timbre is one. This generation is therefore content-based, and requires the com-
prehension of all the multiple levels of representations that define the input. Given
the promising works described in the foregoing chapter, I argue that a deep struc-
ture can extract information enough to create a content-dependent arrangement.

1.4 Outline

In this chapter, I outlined the premises which this thesis relies on, stating the re-
search question this thesis addresses.

In chapter 2, I provide an in-depth description of the theoretical background
that I used in this work. Particular emphasis is given on the autoencoder paradigm
and on its deployment together with neural networks.

In chapter 3, I outline the experimental framework used in this thesis. I give

6 Chapter 1. Introduction

a description of the architectures, explaining and motivating the choice of tech-
niques, such as non-linearities, learning rate methods and optimisation. I then describe
the experiment and give detail about the training specifics. I finally provide results
and discuss the main outcomes. During the discussion, I unfold them using the
theory and literature provided.

In chapter 4, I give a conclusion to this thesis showing the impact of the results
in the field of research and reflecting on possible limitations that I encountered
during this work, and on the further development of the topic.

Chapter 2

Theoretical background

This chapter aims to provide a theoretical explanation of some of the techniques
implemented in this work, describing deep architectures and narrows down to a
particular set of them, the convolutional autoencoders.

2.1 Deep architectures

This work mostly concentrates on the use of deep architectures. As described
in [5] a deep architecture allows for the composition of non-linearities, which can
optimally describe complex functions.

Traditionally, a distinction is made between shallow and deep architectures. A
shallow architecture presents only two levels of data-dependent computational el-
ements [5], i.e. there are no intermediate stages between the input and the output1.
The main problem that lies in a shallow architecture is the inefficiency in terms of
computational units, i.e. the pieces used to represent the input. In other words,
the representation can require a number of pieces that grows exponentially with
the complexity of the input function, thus leading to the problem of the curse of
dimensionality.

On the other hand, a deep architecture is made of several layers stacked on top
of each other [38] in a way such that the output of one layer is used as the input
of the successive one. Each layer is generally associated with a non-linearity, i.e. a
mathematical function that is able to display a wide range of variations of the input
function [6]. The term variations here is meant to describe all the set of variables
that can be observed from the input and that are often related by unknown statistical
relationship [6], being the input to the learning system a high-dimensional entity.
Thus, one of the major aims of deep architectures is to discover such relationships
with little human effort, or none if possible.

1Although in [6] a definition of shallow is generalised to a whole bunch of learning algorithms
with a number of levels between 1 and 3.

7

8 Chapter 2. Theoretical background

The complexity lies in the number of possible intermediate representations that
span between the raw input, e.g. pixels of an image, and the feature that has to be
inferred from it, e.g. a category. Advancing from one representation to the other
the level of abstraction rises, that is the connection to the input gets remote. In a
deep architecture, a given input is represented at multiple levels of abstraction in
which features at a higher level rely on the composition of lower level features.
In other words, feature hierarchies are learnt automatically and the mapping from
the input to the output is directly inferred from data with no human hand-crafted
features dependency [6].

Deep architectures are not a novel concept in the field of neural network, since
the belief of an efficient modelling of complex relationship by means of the compo-
sition of several levels of non linearity has prospected almost 30 years ago [26]. A
recent revival of interest is due to the discovery of approaches [27, 28, 5] that could
end the issue of learning deep structure parameters. Among them, the autoencoder
is one of such successful approaches.

2.2 The autoencoder paradigm

The idea of autoencoders has been circulating in the field of neural network for
decades [21]. The appearance of autoencoders dates back to 1980s to address the
problem of backpropagation without a teacher [3]. From this, autoencoders have
provided one of the fundamental paradigm in the field of unsupervised learning.

Traditionally, autoencoders have proved to successfully perform dimensional-
ity reduction tasks [28, 52]. Particularly, in DeMers’ seminal work [13] a method
for creating non-linear encoder-decoder structures is presented as a non-linear coun-
terpart of the Principal Component Analysis. In a sense, the need for deep, i.e.
multi-layer, autoencoders came in an early stage to improve yet existing classic
dimensionality reduction techniques. A quite common practice results in training
the autoencoder and discard the decoder part, so to have a structure capable of
build a new dataset with a lower dimensionality.

A first proposal on autoencoder-based deep architectures has been made in [5]
with the purpose of facilitating the training of the deep architectures described
in 2.1. After the breakthrough of Hinton et al. [27] which gave researchers a
first successful method to train deep neural network, new algorithms for deep
architecture were proposed with respect to the idea of training the intermediate level
using unsupervised learning [6]. In this context, autoencoders have been mainly used
to initialise deep supervised feedforward neural network for specific tasks, such as
regression and classification [53, 5] to increase the performance stability.

2.2. The autoencoder paradigm 9

Figure 2.1: The general structure of an autoencoder, mapping an input x to an output through an
internal representation, or code. Image from [21].

2.2.1 Definition

In [57], an autoencoder is described as

a network [that] uses a set of recognition weights to convert an input vector into a code
vector [and] then uses a set of generative weights to convert the code vector into an
approximate reconstruction of the input vector.

In other words, a first stage maps the input to a lower-dimensional space (the
encoder) and a second stage expand the code in the attempt to reproduce the orig-
inal data (the decoder). The code vector is generally the result of the innermost
layer, which is often referred as the bottleneck layer because of its reduced number
of units. Several architectures can be used to build an autoencoder, thus leading to
a more general definition of an encoder-decoder paradigm [38, 54].

More formally, an autoencoder typically consists of two parts: an encoder func-
tion h = f (x) and a decoder function that performs the reconstruction r = g(h) of a
given input x ∈ Rd. The internal representation h contains the code, i.e. the latent
representation of the raw input. Figure 2.1 shows a general structure.

2.2.2 Network constraints

At a first glance, an autoencoder seems to learn the set g(f (x)), that means it
learns an approximation of the identity function. One way of making the model be
unable to learn the copy is to place constraints on the network. The model is thus
forced to learn which aspects to prioritise and therefore learn useful properties of
data, which allow for a proper reconstruction of it.

Hidden unit limitation The simplest yet effective limitation of an autoencoder is
to constrain the bottleneck layer h to have smaller dimension than the input. Such an
autoencoder is called undercomplete. Conversely, an overcomplete autoencoder lets
the hidden code be at least not smaller than the input [21]. This way, the network
is forced to learn a compressed representation of the input such that the algorithm
can discover patterns and correlations within the input features. The theoretical

10 Chapter 2. Theoretical background

scenario is an autoencoder with a one-dimensional code i learnt from each training
example xi and a decoder that maps back to the specific values. The learning
process occurs by minimising a loss function

L(x, g(f (x)) (2.1)

where g(f (x)) is penalised for being dissimilar from the input x [21].

Regularisation If the encoder and decoder have a large number of units no useful
about data structure is learnt [21]. That applies also to overcomplete autoencoders.
However, a method exists which gives the autoencoder the ability to learn infor-
mation although no strict limit to the model capacity is imposed. Such a method
is called regularisation and leads to the regularised autoencoders.

Such autoencoders make use of a loss function that allows the model to have
properties, such as the sparsity of the representation.

2.2.3 Sparse autoencoders

A sparse autoencoder is basically an autoencoder whose training criterion involves
a so-called sparsity penalty on the latent representation Ω(h) added to the recon-
struction error given by the loss function:

L(x, g(h)) + Ω(h) (2.2)

where h = f (x) is the encoder and g(h) is the decoder output.

2.3 Autoencoder neural networks

Because of the non-linearities and the feedworfard layer-wise structure, it is com-
mon for the encoder and decoder to be parametric functions, such as neural net-
works. Doing so, they can be differentiable with respect to a distance function (the
mean squared error, for instance), so that the parameters of the encoding/decoding
functions can optimally minimise the reconstruction loss function using traditional
neural network techniques, such as gradient descent.

Given the premise, an autoencoder neural network can be defined as an unsu-
pervised learning algorithm that makes use of backpropagation algorithm and set
the target (output) be equal to the input [42]. The simplest autoencoder neural
network has a MLP-like (multi-layer perceptron) structure, with the difference that
the output of the autoencoder has the same cardinality of the input.

This leads to a further definition of the autoencoder model, e.g. [38, 54]. The
encoder is the transformation of the input vector x into a latent representation using
a deterministic mapping fθ(x) followed by a non-linearity:

2.3. Autoencoder neural networks 11

h = fθ(x) = σ(Wx + b) (2.3)

where σ is the non-linearity and the parameter set is θ = (W,b). The matrix W
is defined as the set of dxd′ weights and b is generally a d’-dimensional vector of
biases.

The code provided in the innermost layer is then mapped back to a reconstruc-
tion vector r by a reverse mapping gθ′(h):

r = gθ′(h) = σ2(W’h + b’) (2.4)

where the mapping gθ′(h) is referred to as the decoder, the non-linearity may be
optional and the parameter set it θ′ = (W,b). If we stack the equations all together,
a formula for a standard autoencoder can be defined:

f (x) = σ2(b’ + W’σ(b + Wx)) (2.5)

The two parameter sets are sometimes constrained to be W ′ = WT, that means
the weight matrices are tied. Doing so, both functions are sharing the same
weights. If starting with random and tied weights in the two networks, they can
be trained together [28]. During the training, a specific code hi is created for each
training pattern xi and then the code is mapped to the specific reconstruction ri.
The parameters are optimised by means of an appropriate loss function that is
minimised over the unlabeled training set {x1, x2, ..., xn} [38, 42]. The required
gradients are obtained by means of the chain rule to backpropagate through the
decoder first, and the encoder then [28].

2.3.1 Single-layer autoencoders

The simplest architectures for autoencoders require just a single hidden layer be-
tween the data and the code and are called shallow autoencoders. In short, the
total number of layers in the neural network are three, which are symmetrical with
respect to the hidden one. As mentioned before, such feedforward forms recall
closely the multi-layer perceptron (MLP) [38] (fig. 2.2). This is the essential struc-
ture of a deep learning model and is basically a mathematical function that maps
an input to an output [21], being this function a composition of many simpler func-
tions. Each of those simple functions provides a representation of the input. The
mapping defined by the feedforward neural network is y = f (x; θ). The aim of
the network is to learn optimal values of the parameter set θ so to yield to the best
function approximation and minimise the loss function.

12 Chapter 2. Theoretical background

Figure 2.2: The MLP structure. Single-layer autoencoders are very similar except for the output layer,
which has same dimensionality of the input. Image from [21].

2.3.2 Sparsity

Sparse representations have received much attention recently. The key is to impose
on the autoencoder different constraints than that of a tight capacity [54]. That
allows even for overcomplete structures. Some motivations for which to adopt
sparse representations include a loosely brain-inspired neural activity, where most
of the neurons are inactive.

If we think an autoencoder layer to be made of several units, i.e. the neurons,
each unit has its associated activation value. Therefore, the sparsity constraint forces
the code to have only few non-zero units while most of them are zero most of the
time2 [9]. More formally, if the average activation of a single unit is calculated:

Ω̂j =
1
n

n

∑
i=1

ajxi (2.6)

where aj is the activation of the hidden unit j over the training set {x1, x2, ..., xn},
and a sparsity parameter Ω is set, the sparsity constraint:

Ω̂j = Ω (2.7)

keeps most of the hidden unit activation near to 0. To practically achieve this, a
sparsity penalty is added as depicted in 2.2.3. As well explained in [42], the penalty
term is often based on the concept of Kullback-Leibler (KL) divergence. For this
case two distributions are considered, the former with mean Ω and the latter with
mean Ω̂j. Such a built penalty function has the property that KL(Ω ‖ Ω̂j) ≈ 0
when the means equal each other.

Moreover, a coefficient β is sometimes added to control the weight of the sparse
penalty, thus its influence on the loss function. The equation can be rewritten as

L(x, g(h)) + βΩ(h)KL(Ω ‖ Ω̂j) (2.8)

2The assumption is that a sigmoid activation function is used, or a ReLU. If a tanh activation
function is used, the neuron happens to be inactive if its output value is close to -1.

2.4. Convolutional autoencoders 13

where both the loss function and Ω̂j depend on the parameter set θ′ = W,b.

2.3.3 Other constraints

As described previously in this section, if the hidden layer has large capacity the
autoencoder may easily learn the identity function. To avoid this, a tied autoen-
coder can be used, which has the formula

f (x) = σ2(b’ + WTσ(b + Wx)) (2.9)

and eliminates several degree of freedom in the autoencoder.
Additionally, a recent technique called dropout [49] has proved to give improve-

ments. Dropout is a stochastic regularisation technique that applies to the activa-
tion functions. It basically drops units randomly from the neural network during the
training, along with incoming and outcoming connections, preventing units from
co-adapting too much. A fixed probability can be chosen. Furthermore, it can be
seen as a technique to improve the sparsity property of the network. Dropout pre-
vents overfitting and, due to the random nature of the process, it also leads to a
combination of thinned neural network architectures [49], which are sampled and
trained.

2.4 Convolutional autoencoders

2.4.1 Convolutional neural networks

Convolutional neural networks (CNNs) are a specialised kind of feedworward net-
work [21] whose use is intensely deployed in the field of computer vision since the
advent of AlexNet [35]. CNNs are very efficient in processing grid-like data, such
as time series3 and images. The name itself explains their main feature, i.e. they
perform convolution instead of general matrix multiplication in their layers.

The use of convolution in deep learning can find a dual reason, namely an ease
in the computation process of a convolutional layer compared to a dense one and
its capacity to filter a part of the input signal and return a function of it. That
is, convolutional networks exhibits sparse connectivity [21] by making the filters
much smaller than the input. The kernel size reduction gives in turn detection of
local features, i.e. that depend on subregions of the input [7]. This reduces memory
requirements and improve computational efficiency [21].

CNNs are hierarchical models whose architecture consists of three basic build-
ing blocks, as shown in fig. 2.3: convolution layer, non-linearity and pooling layer
[38]. The convolution operation incorporates in the neural network the concepts

3A time series can be considered as a 1D grid of samples, instead of pixels [21].

14 Chapter 2. Theoretical background

Figure 2.3: The building blocks of a CNN layer. Two sets of terminology have been used, the former
referring to a convolutional network as the sum of convolution, non-linearity and pooling, while the
latter referring to a sum of simple layers. Image from [21].

of local receptive fields and weight sharing, while the pooling operation involves sub-
sampling [7]. That is because all the units in a specific feature map share the same
weight values specified in the kernel.

2.4.1.1 Convolution layer

The first building block performs convolution to produce a set of linear activations,
which flow through the chosen non-linear activation function. The combination of
this two blocks is referred to as the detector stage [21]. The result is an output
representing a feature detected in different locations of the image. In other words,
the unit will react if recognising a feature represented by a particular filter in a
local portion of the input. This is performed for several filters, resulting in several
feature maps, each represented by a specific set of weights.

The activation of the feature maps will not be changed if the input is shifted,
for instance. This provides a shift-invariant property to the convolutional layer [7].

2.4.1.2 Pooling layer

The output of the convolutional layer forms the input of the pooling layer. Basi-
cally, it just replaces the output of the convolution layer with a statistic that sums
nearby outputs returning only one value. The summary statistic can pick the largest
value (max-pooling) or perform an average (L2 pooling) with the addition of a scal-
ing adaptive weight [7]. The purpose of this process is to add invariance to small
translations and distortions of the input [7, 21], making the feature map quite

2.4. Convolutional autoencoders 15

insensitive to small changes. In other words, since the hidden representation be-
comes translation-invariant, it is capable of an improved selectivity as the unit is
fired when a strong correspondence between the feature and the input field over a
region of interest is obtained. Each of these representation will be a distinct input
channel [29] for the next convolutional layer.

2.4.1.3 Parameters

A discrete convolution has some additional parameters that may be set specifically
depending on the addressed task.

Stride The stride determines the distance between the boundaries of the receptive
fields of nearby units [29]. As an example, it refers to the number of pixels to
skip when performing the successive convolution step in an image. Doing so, the
receptive fields can be either consecutive or overlapped. A large stride leads to
fewer units in the set of linear activation.

Receptive field The choice of the receptive field is also crucial for a meaningful
feature map. In [35] a 11x11 with stride 4 receptive fields are deployed, while
in [48] overlapped 3x3 receptive fields are used throughout the whole net (with
stride 1). Moreover, [48] suggests the deployment of 1 x 1 convolutional layers in
a very deep convolutional network to increase the non-linearity decision without
affecting the receptive field, i.e. it is just a linear projection onto a space of same
dimensionality with the addition of a non-linear function.

Zero padding The concept of padding comes from the fundamentals of audio
signal processing. In [58] this technique is used to increase the frequency resolution
for spectrum analysis. In short, a bunch of zeros are added to a windowed signal
in order to apply a Fast Fourier Transform (FFT) whose size M is larger than the
size of the window N. An analogous is deployed in the convolutional networks in
order to control the kernel width and the size of the output independently [21]. If
zero padding was not possible, the kernel would be forced to convolve only with
subregions that entirely contain it. Conversely, if the input is zero padded the
spatial extent of the network will not be shrinked at each stage.

The most common zero-padding techniques applied to CNNs allow a valid con-
volution [21], where no zero padding is used whatsoever, and a same convolution,
where the zero padding is used, so that the spatial resolution is preserved after the
convolution [48].

Lastly, the number of weights in a convolutional layer is smaller compared to
a fully-connected one, e.g. the MLP. This is due to the use of such local receptive

16 Chapter 2. Theoretical background

fields, which imposes the constraint that the weights be tied. In other words, the
elements of a kernel are not used once, but they are applied at every position of the
input instead. This returns in decreased storage requirements and more efficient
convolutions [21].

2.4.2 Convolutional autoencoders

An autoencoder only made of fully-connected layers is not able to describe spatial
properties of a multidimensional input, for instance an image. They also introduce
redundancy since all the network spans the entire input [38], i.e. it learns global
features.

Conversely, convolutional autoencoders (CAEs) make use of the convolution
operator to share every set of weights at all position in the input, making the
features be local.

2.4.2.1 Definition

The convolutional autoencoder architecture is similar to the one described in 2.3
with the main difference that the weights, i.e. the kernel matrix, are shared [38].
The latent representation of the k-th feature map for a input x is

hk(x) = σ(bk + Wk ∗ x) (2.10)

where σ is the activation function, ∗ denotes the convolution operation and the
feature map k has parameter set θ = W, b with a unique bias for a whole map.
The input x here is considered mono-channel, i.e. it is not a volume. Examples of
mono-channel inputs are greyscale images and spectrograms.

As for a convolutional network, a CAE may have several kernels that are con-
volved with the input to specialise on different features on the whole input [38].
Therefore, the resulting hidden layer has the formula

H(x) = ∑
k∈H

σ(bk + Wk ∗ x) (2.11)

where H identifies the group of feature maps. The number of filter is referred
as to a hyper-parameter to be tuned in the definition of the convolutional layer.
Every convolution is wrapped by a non-linear activation function σ in a way such
that during the training, the network learns to represent the input by combining
non-linearities.

CAEs are fully convolutional networks, therefore they are capable of recon-
structing the input by using convolution. The reconstruction is given by

r(h) = σ(∑
k∈H

b′k + W’k ∗ hk) (2.12)

2.4. Convolutional autoencoders 17

where a single bias b′ spans the whole channel. The spatial resolution of the
latent map is determined by applying a specific set of parameters, as explained in
2.4.1.3.

Since the number of parameters does not depend on the size of the input, CAEs
are able to scale to high-dimensional inputs since each feature map always requires
the same amount of weights and biases [38].

2.4.2.2 Loss function and gradient descent

Having the input and output dimensions equal to each other, it is possible to min-
imise a loss function that relates them, such as the mean square error (MSE):

L(θ) =
1

2n

n

∑
i=1

(xi − ri)
2 (2.13)

where x represents the input vector and r the reconstruction. As for a standard
network, the backpropagation algorithm is applied to compute the gradient with
respect to the parameter set θ. The weights are then updated using, for instance,
gradient descent (SGD) [7]

w(τ+1) = wτ − η∇L(θ) (2.14)

where the parameter η is the learning rate and it is set to be a small positive
value, i.e. η > 0.

In gradient descent, the weight parameters are iteratively updated in the di-
rection of the negative gradient (hence the minus) of the loss function in order to
minimise the objective. After an update, the gradient is re-evaluated with respect
to the w vector and the process is repeated until a minimum is reached [7].

An online version of the gradient descent has proved useful when training neu-
ral networks on large datasets [7]. Unlike gradient descent, the gradient at each
iteration is not computed on the whole dataset, but a single data point is processed
at a time. Doing so, such a process is less memory expensive and may converge
faster because of the efficient redundancy handling. This is called stochastic gradi-
ent descent.

Chapter 3

Experimental setup

This chapter provides the description of the structures deployed in this work, to-
gether with the configurations of their hyperparameters. I motivate the choice of
the learning rate method and the model settings. Finally, I compare and discuss
the results of the predictions for the different models.

3.1 Overview

Two models have been tested for two different tasks, namely the reconstruction of
a given log-magnitude spectra and the transformation of an input single note given a
target single note. A general overview for both tasks is given below. Further details
about the technicalities of the dataset creation are provided later in the chapter.

3.1.1 The reconstruction task

As baseline for arguing that the autoencoder be able to learn and extract a latent
representation of the input, a reconstruction task has been configured. Doing so, I
created a custom dataset of roughly 4.000 log-magnitude spectra of duration 1 sec
from the MusicNet [51] dataset of classical recordings1.

However, after several training processes with architectures of different depth
poorly accurate results had been achieved. Therefore, I decided to use spectra
of limited complexity to cope with this task. Recording of single piano notes have
been chosen, which are freely provided by the Electronic Music Studios of University
of Iowa2. Such samples cover the whole range of the instrument, together with four
different dynamic ranges (pp, mf, f, ff) in an overall number of 192 samples. I then

1http://homes.cs.washington.edu/ thickstn/musicnet.html
2http://theremin.music.uiowa.edu/MIS.html for further details regarding recording and instru-

ment specifics.

19

20 Chapter 3. Experimental setup

deployed the yet made dataset with architectures of increased depth to minimise
the reconstruction error.

3.1.2 The transformation task

The task described above is not of particular interest, given that in [19] the same
task has been achieved with a similar structure. However, it can be seen as a way
of finding the optimal set of hyperparameters for convolutional layers. These are
then used as building blocks for more complex tasks with a similar input, such as
the log-magnitude spectrum of an audio segment.

In this thesis, I attempted to actuate sound transformations. I chose to concen-
trate on timbre transformation, that is the perceived sound quality of a sound in-
dependent of pitch and loudness. Thus, timbre may be referred as a characteristic
for distinguishing different types of sound production, and different instruments.

It is therefore possible to set an input sound for the architecture and, as output,
a sound other than the input. The latter is called target sound, which is the timbre
the architecture aims to reproduce. For the sake of simplicity, two small sets of
two instrument single notes, a flute and a Bb clarinet have been chosen, each of
them containing the same number of notes (37 in total), ranging the same interval
(from B3 to G6) and with the same dynamic range, that is ff. Both sets have been
arranged in a way such that for a specific note of the input sound corresponds the
same note of the target sound.

Note on the terms The use of the terms parameters and hyperparameters follows the
terminology given in [4]. The term parameters refers to the weights and their update
with respect to the analytic gradient, thus the values within the architecture. The
term hyperparameters refers both to the bells and whistles [4] involved in the learning
algorithms for deep learning and to the different option that a layer exhibits, such
as learning rate methods, initialisation techniques, constraints and batch size.

3.2 Models

All the networks deployed in the experimental setup are convolutional autoencoder
(see chapter 2 for further theoretical details). In order to match the architecture
with the required task, different configurations have been realised, which differ
mainly in the number of convolutional layers used both for the encoding and the
decoding part, and in their displacement (e.g. parallel branches, use of pooling
layers etc.).

I built the architecture using the Keras library [11], which is a high-level library
for Deep Learning that runs on top of Google Brain’s TensorFlow [1]. The key
concept in both interfaces is modularity: a model is seen as a series of modules,

3.2. Models 21

that is the nodes. Each node has its own input and output (ranging from zero to
multiple) and represents the instance for an operation to be computed. The sum
of all nodes gives a graph, in which values in shape of tensors flow along. The
graph represents the whole dataflow computation which takes place inside the
architecture. The computation makes use of CPU or external GPU accelerators
when possible. Finally, the use of such interfaces in open-source programming
language, such as Python or C++, allows for accessing more and more increasing
open-source community

3.2.1 Design choices

Such models share some common overall design choices for sizing the architecture
and choosing the hyperparameters for the layers and the learning process.

3.2.1.1 Initialisation

As a general rule of thumbs, the weights should be initialised as small non-zero
values to avoid the undesirable case where the network does not learn. A crucial
point is that the network should not explode during the backpropagation process,
that is the neuron being saturated because of an initial too large weight. However,
the weights should not be identically zero and, in a more general sense, they should
be random and unique. That is because equal weights will be updated by the same
gradient, thus there is no source of asymmetry [4].

The concept of symmetry breaking, together with the one of variance calibration,
are important for a successful learning process. The recommended heuristic is to
initialise the weights as a random sampling from a standard Gaussian distribution
and scale them according to the square root of the fan-in, i.e. the number of inputs
to a hidden unit3, as described in the work of Glorot et al [20]. This, particularly,
should help the gradient to flow at a faster rate.

I used the initialisation derived from the work of He et al. [25], which is specifi-
cally suggested for ReLU neurons in a feedforward network. In short, the variance
of the network should be 2.0/n, where n be the number of input units in the weight
tensor.

3In a CNN, the number of fan-in has to take into account the number of features maps (the filters)
together with the receptive field. The formula to compute this value is:
fan_in = feature_maps * receptive_field_height * receptive_field_width.
(source: http://deeplearning.net/tutorial/lenet.html, last visited May, 26th.)

22 Chapter 3. Experimental setup

3.2.1.2 Constraints

As described in 2.3.2, I implemented a sparsity constraint as an independent Keras
regulariser class4. The parameters are set according [42], that is Ω be 0.01 and β

be 0.5. Equation 2.8 in 2.3.2 describes the constraint. The use of a sparsity-induced
penalty is suggested in [4] and is applied in deep belief network for specific audio
tasks in [36].

Moreover, the introduction of dropout before the convolution layer complements
the other methods. For further details see 2.3.3 In the experiments, I set the rate,
e.g. the percentage of the neurons being excluded in the sampling neural network,
being smaller than the value suggested in [35, 49] (0.1− 0.2 in range [0, 1] instead of
0.5). The experiment showed that a larger amount of dropout rate let the structures
quite inefficient when training, that is the network does not converge and the loss
function is far from being minimised.

The use of dropout seems particularly necessary because of the limited train-
ing data. As explained in [49], such a technique may control to some extent the
tendency of a convolutional autoencoder to easily learn the identity function espe-
cially if small kernels are set.

3.2.1.3 Regularisation

Regularisation is a way of penalising some measure of complexity of the model.
Together with the constraints, regularisation techniques may prevent overfitting.
That is, we force the model to assume a particular set of parameters using added
penalties. The concept of regularisation should be intended as a way to take over
every single weight, while the sparsity is conversely applied to the whole network
and concerns the values after the non-linearities.

I therefore used the L2 regularisation, which is perhaps the most common in
the neural networks. It can be implemented by adding one more penalty factor
to the objective function, which is the squared magnitude of all the parameters. In
other words, a term 1

2 λw2 is added for the set of weights, where λ be the regu-
larisation strength (and, in practice, the parameter to change when implementing
such a technique in a library, such as TensorFlow or Keras). The term 1

2 serves as
a normalisation so that the gradient of this term with respect to the parameter w
is simply λw instead of 2λw. The L2 regularisation can be interpreted as a way of
favouring smooth and diffuse weight vectors penalising non-homogeneous values.
From this, the network will tend to use all of its inputs.

The superiority of L2 over L1 depends whether the task is to extract explicit
features selection, since L1 makes the weight vector become sparse during the

4Keras has its own regulariser as well as the Kullbach-Leibler divergence function, but does not
bring itself the concept of sparsity.

3.2. Models 23

optimisation. Later in 3.4, L2 has proved to help in minimising the reconstruction
error function better than L1 for the reconstruction task.

3.2.1.4 Receptive field

In 2.4.1.3 I addressed the importance in the choice of the receptive field. I chose in
this project small spatial filter mostly of size 3x3 and 5x5. Intuitively, small filters
allows for extracting more powerful features of the input with a relatively small
parameter cost. If stacking several convolutional layer made of tiny kernels, the
latent representation will also take advantage of the repetition of non-linearities.
A drawback in such a design choice can be the demand for more constraints, as
pointed out before, and a larger amount of memory to compute the backpropaga-
tion.

Such small filters, in conjunction with unit stride and zero padding (see 2.4.1.3
for details), make the convolutional layer retain the size of the input so that only the
pooling layers will be in charge of downsampling the spatial dimensions. More-
over, the use of zero padding permits that the information at the edges of the input
be kept for longer time.

Finally, as motivated later in 3.2.2, I used dilated convolutions with several di-
lation factors in the effort to improve and expand the receptive field maintaining
small kernels.

3.2.1.5 Activation function

As a general suggestion, the activation function should be chosen depending on
the range of the target values. In other words, if an activation function has a range
of [0,1], such as the sigmoid, all the target values should lie within that range.

As deployed in [19], I used Rectified Linear Units (ReLUs) for each layer in each
structure5. The choice reflects several advantages of using such a non-linearity and
“is essential for state-of-the-art neural network” [25].

First, the results of Krizhevsky et al. in the ImageNet seminal paper [35] show
that ReLus accelerate the convergence of stochastic gradient descent. Second, ReLU
takes a single value of the convolution and performs the function f (x) = max(0, x).
That means, very inexpensive operations are involved if compared with the ex-
ponential of the sigmoid and it can be implemented as thresholding a matrix of
activation values to zero.

Moreover, as the computation of the input log-magnitude spectra forces all the
values be non-negative because of the log(x + 1), I expect the target values be non-
negative. Therefore, I did not deployed the Leaky ReLU as [19], which allows for
small negative values above a fixed value α. In this case, the choice of ReLU is

5Although they have used an improved version as explained below.

24 Chapter 3. Experimental setup

also convenient since it does not require input normalisation in the avoidance of
saturation.

On the other hand, ReLU shows some fragility during the training, especially
if the learning rate is high such that the weight update will not permit for a spe-
cific unit to be fired on another datapoint. LeakyReLU and the parametric ReLU
(PReLU) introduced in [25] attempts to fix the problem allowing for a slope in the
negative region, which can be a parameter of the neuron.

Finally, the choice of rectifying non-linearities, such as ReLU has a strong im-
pact on the sparsity obtained and has proved to be successful [4].

3.2.1.6 Loss function

As explained in 2.3.2, the objective function is made by a regularisation loss part
and a data loss part. In 2.4.2.2, I introduced the mean squared error as a measure
to be minimised during the training process. In short, the data loss measures how
much the reconstruction differs from the given network input.

When training using mini-batches, the loss is evaluated on individual batches
during the forward pass, thus the squared error for an autoencoder prediction for
a batch of examples is the squared average of the error for each example, which is
computed across all dimensions. As a general advice, the loss function is increasing
as the regularisation strength are increased.

Moreover, a relationship can be found between the loss function behaviour and
the batch size. A common heuristic is to avoid too noisy functions increasing the
batch size (the lower the batch size, the more noise can be noticed).

Such a loss function is suggested in [54] and in [21] as a way of penalising the
output for being dissimilar from the input.

3.2.1.7 Learning rate methods

The learning rate undoubtedly plays a crucial point in a successful training. The
learning rate, often referred as α, is hyperparameter of the optimisation technique
for parameters update. In short, the backpropagation algorithm computes the
analytic gradient and then such gradients are used to perform parameter updates
given a specific optimisation technique, such as stochastic gradient descent (SGD)
or Adam.

Optimisation techniques As described in 2.4.2.2, SGD is the simplest form of
update. I initially used a modified form of the vanilla SGD, which includes the
Nesterov Momentum6. I then made use of Adam [33], which has the great advantage
to be adaptive. Both are algorithms for first-order gradient-based optimisation, with

6The theory behind the Nesterov accelerated gradient (NAG) is beyond the scope of the writing.
Further details can be found in Sutskever’s PhD dissertation [50].

3.2. Models 25

the former manipulating the learning rate globally and for all the parameters and
the latter adapting the learning rate in a per-parameter way. The utilised value in
this work are the recommended ones in the [33] (ε = 10−8, β1 = 0.9, β2 = 0.999, α =

10−3).

Rate annealing, or rate decay The learning rate can be interpreted as a way of
controlling the amount of energy in the system given by the gradients. Too much
energy leads in the weight vectors bouncing unable to settle down into deeper part
in the loss function. Conversely, if the learning rate is too low, so will be the
learning process and the system will not reach further minima.

A common heuristic is to anneal the learning rate over time, i.e. to make it
decay at the right pace. Different type of implementing the learning rate decay
are possible, such as step decay and exponential decay. The SGD implements the
former, while Adam the latter.

3.2.2 The architectures

I deployed two main architectures in this project. As said before, both of them
make use of convolutional autoencoders as building blocks, with the main differences
between such structures lying in the depth and in the use of advanced techniques,
such as dilation [56] and residual framework [24]. The way these techniques have
been implemented slightly differ from the original proposals. For instance, in [24]
He suggests the use of a shortcut connection approximately every two layer of
weights. As shown later in figures, four different basic structures have been tested
in training processes, which present different combinations of residual connections
and dilation within the convolutional layers. Here is a short description:

• a shallow convolutional autoencoder is used for the reconstruction task. That
is, only a hidden convolutional layer takes place between the input and the
output layer without the hidden layer being reshaped by means of max-
pooling operation. In other words, all the layers share the same dimensions.
As explained later in 3.3, increased levels of depth have been implemented
and tested, leading to a stacked convolutional autoencoder, in the attempt to
minimise the reconstruction error. No residual connections or use of dilation
is involved in such a structure, which is shown in figure 3.1.

• a shallow convolutional autoencoder with residual connections in the encod-
ing part is used in the very first part of the transformation task to assess
whether it may help in the task deployment. Results show that a signifi-
cant improvement in minimising the reconstruction error is achieved when
implementing shortcut connections in the encoding part .Figure 3.3 shows the
structure.

26 Chapter 3. Experimental setup

Figure 3.1: The shallow convolutional autoencoder structure.

• a shallow convolutional autoencoder that makes use of dilation is also used in
the transformation task. Dilation has proved to help in accounting for multi-
scale information [56] and for this specific case it is used to get an insight
of the time-frequency representations given different timescale and frequency
range. The use of dilation is deployed both in the encoding and in the decoding
part. The basic structure is depicted in figure 3.2.

• finally, a convolutional autoencoder that makes use of residual connections
and dilation factors is used for the transformation task. The residual con-
nection takes place in the encoding part, while the dilation is involved in
both parts. Moreover, a max-pooling layer is used to add invariance to small
translations (see 2.4.1.2 for details) and the encoding part presents two con-
volutional autoencoder to benefit of a more powerful reconstruction. The
structure is shown in figure 3.4

The use of residual connections The concept of deep residual learning [24] has
emerged in the last couple of years leading to a new de-facto state-of-art for image
classification. In the work of He et al., the use of residual learning is motivated by
the difficulty of training deeper and deeper neural network. In short, deep models
lead to higher training error [24].

To apply the concept of residual network, shortcut connections need to be intro-
duced in the structure. The shortcut connections simply perform identity mapping
(i.e. a linear activation function), and their outputs are added to the outputs of the
stacked layers after the non-linearity [24]. Identity shortcut connections add nei-
ther extra parameter nor computational complexity since they can easily be seen
as convolution with unity filters (1x1) initialised to 1. After the adding operation,

3.3. Experiments 27

Figure 3.2: The shallow convolutional autoencoder with dilation factors.

a new non-linearity (in this case ReLU) is triggered, as shown in figure 3.3.

The use of dilation Dilated convolutions support exponential expansion of the
receptive field maintaining the same resolution [56]. The use of dilation makes
sense in the context of creating a multi-scale representation of the same input with-
out the need for analysing rescaled version.

Moreover, musical sounds can be described as made of two distinct parts, the
former characterised by the main modes of vibrations (e.g. harmonics and over-
tones) and the latter that contains non-sinusoidal energy components and pertur-
bations due to the excitation process (often referred as residual noise) [47]. It also
has to be considered that the temporal envelope of the sound largely contributes in
the timbre recognition [30]. That means, the architecture should attempt to extract
as much of temporal information as possible for a better timbre transformation.

3.3 Experiments

3.3.1 Datasets

As said earlier in the chapter, the experiments make use of two different sets of
data according to the task. To accomplish the reconstruction task, a piano sets of
192 notes has been used, while for the transformation task two sets of 37 notes
each of flute and clarinet have been deployed.

28 Chapter 3. Experimental setup

Figure 3.3: The shallow convolutional autoencoder with residual connections for the encoding part.

The choice of such sets reflects the aim of finding some baseline for the exper-
imental setup. A piano note has a clear transient followed by a release part and,
given its percussive nature, it stabilises its harmonic content in a quite fast pace7.

On the other hand, I chose flute and clarinet because of some common charac-
teristics. First, they belong to the same family of instruments, that is the woodwinds.
Second, they share a similar range (D4-C7 for the flute and E3-C7 for the clarinet8

Third, they share similar way of producing sound. Nevertheless, the stream of
air is directly focused inside the flute cylindrical tube, while in the clarinet air is
focused into a mouthpiece which then causes the reed to vibrate.

From audio file to spectra All the notes come in .aif audio file format. The pas-
sage from such a format to log-magnitude spectra has been deployed creating a
script in Python that makes use of the librosa library [40] for the audio processing
computations.

First, the Short-Time Fourier Transform (STFT) is computed on the audio file
downsampled to 22kHz. Then, the log-magnitude spectra of the complex spectrum is
computed using the formula log(|S|+ 1), where |S| be the module of the spectrum.
To get the best results, I used a FFT size of 1024 with 50% of overlap.

The choice of adding 1 is for numerical optimisation. As it turns out for single

7However, the very beginning of the tone may result quite problematic if not so accurate phase
information is used.

8of which the lower register until C4, that is the chalumeau register, has been discarded because of
its particular sound qualities.

3.3. Experiments 29

Figure 3.4: The convolutional autoencoder with dilation factors and residual connection in the encod-
ing part. This structure has proved to be the most successful in the transformation part. Experiments
involve the use of increased depth and different number of filters. The two parallel dilation blocks
allows different receptive fields over the same input.

30 Chapter 3. Experimental setup

note spectra to have most of their values close to zero, when taking the logarithm of
a very small value some underflow issue may be experienced9. Using this formula a
non-negative real-valued is guaranteed, which is optimal when using an activation
function, such as ReLU. Moreover, it is also useful in order to avoid any nan value
that undermines the correct computation of the stochastic gradient descent.

Finally, the spectra are stacked in a tensor of [training_data x freq_bins x
timesteps] dimension, which is successively used during the training process.

3.3.2 Infrastructure

Such deep structures demands for machines with high computational power, way
beyond the normal capabilities of personal laptops. Deep learning involves huge
amount of matrix multiplications, convolutions and other operations which can be
massively parallelised and thus sped up on GPUs. Indeed, a GPU architecture can
fetch much more memory at once being bandwidth optimised.

Therefore, to cope with the need of prolonged computations, I accessed the
DCC (DTU Computing Centre)10, which provides several configurations (i.e. nodes)
of stacked GPUs.

3.3.3 Training

Figure 3.5 shows the schema for the experiments. As the transformation task is the
one with more emphasis on, several training with different models and hyperpa-
rameters have been devoted to it. As mentioned above, the reconstruction task is
meant to provide the optimal set of hyperparameters11.

In the reconstruction task, 4 convolutional autoencoders of increased depth both
for the encoding and the decoding part are fed with the piano set. All these models
use a learning rate of 1e-3 with decay rate of 1e-6 and are trained with Adam
optimiser. Particularly, the shallow model has been trained with different batch size
values (4,8) and with different kernel regularisation methods (L1, L2). The number
of channels for each convolutional layer is 256, each of size (3,3). The models with
increased depth have been trained in a layer-wise fashion [54, 5], i.e. only one layer
is trained at a time. After the layer training, a new layer is stacked on top of it. The
weights for the trained layer are kept, while the decoding part is newly trained.
The transformation task moves from the shallow model depicted in 3.1 (it performed
better, as described later in 3.4) and deploys 3 new models that make use of dilated
convolution and/or residual connections.

9The term underflow refers to the problem of performing an operation that leads to a number that
is smaller than the smallest magnitude non-zero number.

10http://www.hpc.dtu.dk/
11Herein, the terms structure, network and models are interchangeable, as well as the terms filters,

channels and kernels.

3.4. Results and discussion 31

The dilated convolutional autoencoder is a shallow network which has 256 chan-
nels in the hidden layer. Each filter can be either of size (3,3) with dilation (2,1),
or size (5,5) with dilation (4,2). Moreover, the model has been trained using batch
sizes of 2 and 4. The residual convolutional autoencoder is also a shallow network,
in which the shorcut connection adds the first convolutional layer to the identity
mapping of the input, leading to the code (see 3.3 for details). This model has 256
channels of size (3,3). The two aforementioned models use a learning rate of 1e-
3 with decay rate of 1e-6 and are trained with sthochastic gradient descent with
Adam optimiser.

Finally, the last model combines both dilation and residual connections. It has
been trained with different batch size values (2, 4), channels per convolutional layer
(64, 128, 256 and 512). The size of the channels, together with their dilation factor
are the same as the previous models. All the models use learning rates ranging
from 1e-4 to 1e-6 with decay rates ranging from 1e-6 to 1e-8.

All the models in the experiments have been trained using approximately 85%
of the amount of datapoints in the dataset as training part, and 15% as a validation
part. They also have been trained for 100 epochs each.

In order to provide an audio outcome of both the reconstruction and the trans-
formation, the outcomes of such models are used to performs inverse (iSTFT), to-
gether with the reconstructed phase information using a well established iterative
technique [22]. In short, the Griffin-Lim algorithm iterates through the STST-iSTFT
in order to provide more and more accurate phase information given a magnitude
spectrum. The phase estimates vector is initially set to random values in range
[−π, π] and is updated with newer estimates of the angle of the complex part at
each new STFT. I set a number of 100 iterations for the algorithm, with the STFT
and the iSTFT using the parameters given in 3.3.1.

3.4 Results and discussion

I provide both graphical and supplemental audio examples since magnitude spec-
trograms are sometimes hard to evaluate and, although they may appear quite
similar to the eye, they can correspond to completely different audio excerpt given
the many aspect of an audio file embedded in such a representation. Moreover, the
audio examples12 give a good insight on the effectiveness of the phase reconstruc-
tion. A list of the images for the reconstructed spectra can be found in Appendix
A. Table 3.1 shows the results.

12The audio reconstruction, the plots and the spectra can be found
in the folder results in my Github repository for this master thesis:
https://github.com/inspiralpatterns/master/tree/master/SMC%2010

32 Chapter 3. Experimental setup

Figure 3.5: Schema of the experiments for both tasks.

Model Loss Reconstruction error

Reconstruction
shallow (batch=4) 5.232e-3 3.215e-4
shallow (batch=8) 4.47e-3 2.043e-4

2 layer deep 8.756e-3 5.237e-4
3 layer deep 1.339e-2 1.418e-3
shallow+l1 7.759e-1 1.424e-3

Transformation
base 2.028e-1 4.697e-2

2 layer deep 1.062e-1 4.876e-2
3 layer deep 1.379e-1 5.292e-2

dilated 2.199e-1 4.698e-2
w/residual 2.022 5.210e-2

dil+res 1.355 3.417e-2
2 layer deep 3.505 3.825e-2

Table 3.1: Results for the tasks. It can be noticed how the use of dilation together with residual
connection helps improving the model performance and stability. As a matter of fact, both models
involving such techniques show the best results. However, it can be noticed how the validation
loss values are relatively high compared to the baseline model. This may lead to a longer training
process for fine-tuning the parameters. It is also worth noticing that both the validation loss and the
reconstruction error values are larger for the transformation task, representing the increased level of
complexity. Each value represents the mean over the last 10 epochs.

3.4. Results and discussion 33

Figure 3.6: Comparison of the reconstruction error for the models in the reconstruction task. The
figure shows how the error for the validation task increases as the depth of the model increases. The
number 256 and 512 refer to the number of channel in the level of depth, e.g. the model 3 layer deep
has 256 channels in the first two layers, and 512 in the third. The y axis value are in log scale.

Figure 3.8 and 3.10 show the best results for each task. From the experiments,
the single hidden layer convolutional autoencoder (figure 3.1) seems performing a
better reconstruction (see figure 3.6 for a comparison between the models), while
the convolutional autoencoder with dilation and residual connections depicted in
figure 3.4 is capable of a fair transformation between the two instrument timbres.

3.4.1 The reconstruction task

At a first glance, figure 3.7 shows the learning rate of 1e-3 be optimal for the single
hidden layer model (figure 3.1) since the learning process exhibits an exponential
form shape13. However, the validation loss function shows some undesirable peaky
behaviour, which may call for an increased batch size. Furthermore, I trained the
model using a batch size of size 8, i.e. double as much the previous training. Figure
3.8 shows little improvement, as the validation loss function exhibits similar peaks.
It is also worth noticing how the learning process requires more iterations to lower
and stabilise as the batch size is increasing.

Being the gap between the training and validation error relatively small, the
model seems having low overfitting14. However, in both training processes the
reconstruction error for the training and the validation set moves upwards over
the last iterations. This may be explained by two possible scenarios.

In the former, the few amount of data is responsible for it. Given the dimen-

13All plots have y axis values in the log scale
14In the evaluation of the results, the course notes for Stanford CS231 class taught by Andrej

Karpathy have proved really useful. The link to the note referring to this specific argument is
http://cs231n.github.io/neural-networks-3/loss, page visited on May, 23rd

34 Chapter 3. Experimental setup

Figure 3.7: Measures for the shallow convolutional autoencoder for the reconstruction task with batch
size of 4. The y axis value are in log scale.

sions of the piano sets (180 notes for training and 12 for validation), this option
may justify such a behaviour. Moreover, the differences in the dimensions (time vs
frequency15) of a representation such as the spectrogram, make more difficult the
use of augmentation techniques, such as rotation, flipping or shearing, be applied16.

In the latter, the reduced capacity of the model leads to the reconstruction error
being not able to lower at consecutive iterations. This accounts for a model im-
provement, which is built on the shallow convolutional autoencoder. As described
in 3.3.3, up to 4 convolutional layers17 have been stacked in a way such that a new
training process used the previous weights, so that only the new layers be trained
by scratch and the model be effectively trained. The idea is to mimic the structure
described in [19], which yields to fair results in the reconstruction of a single tone.

As shown in figure 3.6, at each new stacked convolutional layer the values for
the reconstruction error slightly increase. The model is 4 layers deep with 2 layers
having 256 channels and the deepest layers having 512 channel. Similar behaviour
is presented when increasing the depth in the transformation task. I tackle this
issue later in 3.4.3.

Finally, I trained the shallow model using L1 regularisation. Figure 3.9 shows
that such a regularisation does not help in minimising the reconstruction error
function. Indeed, the function seems not decreasing over the iterations. If analysing
the loss function for the model with L1 regularisation, a steep slope at the very be-

15Observation inspired from Sander Dieleman’s blog.
Here the blog entry: http://benanne.github.io/2014/08/05/spotify-cnns.html

16Here for an example of improved performance of deep learning using brightness augmentation:
goo.gl/UTmhzZ (shortened link), page visited on May, 28th.

17The term layer is intended as the whole process of convolution + max-pooling, that is technically
split in two consecutive layers.

3.4. Results and discussion 35

Figure 3.8: Measures for the shallow convolutional autoencoder for the reconstruction task using an
increased batch size of 8. The y axis value are in log scale.
It is interesting to notice how the values for the reconstruction errors at the end of the iterations
slightly move upwards.

ginning of the training can be noticed, which is followed by a relatively stable
curve. As pointed out before, both the loss and the reconstruction functions might
be a sign of a too high learning rate if L1 regularisation is used.

Another interpretation lies in the choice of L1 with other constraints, such as
dropout and sparsity. If working with penalties that make the hidden units partly
inactive during the learning process, the network will have only fewer non-zero
activation values. L2 regularisation works in a way such that large values are
punished because of the square operation. Conversely, L1 allows for sparse values
and this may result in an even more sparse layer. Moreover, since L1 does not really
penalise large values 18, they may be allowed during the parameter update with
the consequence of such value not be used anymore during the training, hence the
decreased performance.

3.4.2 The transformation task

Figure 3.10 shows the validation reconstruction error for the models described in
3.2.2. It can be noticed how the model that makes use both of residual connection
and dilation (see 3.4 achieved the best result in minimising the error, obtaining
roughly a 30% relative improvement on the task.

18If considering the vectors a = (0.5, 0.5) and b = (−1, 0), the L1 norm is ‖ a1 ‖= |0.5|+ |0.5| = 1
and ‖ b1 ‖= | − 1| + |0| = 1, while the L2 norm is ‖ a2 ‖=

√
0.52 + 0.52 = 1/

√
2 and ‖ b2 ‖=√

(−1)2 + 02 = 1. The two vectors are equivalent for the L1 norm, but different with respect to the
L2 norm. Therefore, the L2 norm will penalise more vector b.
(source: https://goo.gl/gMPSCh (shortened url), page visited May,27th.

36 Chapter 3. Experimental setup

Figure 3.9: Validation reconstruction error for the models with L1 and L2 regularisation. Both the
model with L2 regularisation performs a fair job in minimising the error, while the L1 regularisation
is not capable of lower it. The y axis value are in log scale.

Two observations are of much importance. First of all, the learning rate for this
model (and for the baseline models with either residual connection or dilation) had
to be lowered to 1e-4. A motivation for this can be found in figure 3.11. When using
the optimal learning rate of the reconstruction task, the validation reconstruction
error exhibits a quite large jump around 30 epochs and is not able to converge then.
That may be a piece of evidence that such a learning rate be too high and it does
not lead to a good optimisation. Conversely, the models with lowered learning rate
seem capable of constantly decreasing the reconstruction error, and in a smoother
way.

Secondly, the reconstruction error function for the model with the best result
still exhibits the same peaky behaviour encountered in the reconstruction technique.
However, increasing the batch size has not been possible for this model, since
every try encountered memory allocation problem with the process being aborted
by the infrastructure. This can be due mainly to the increased amount of memory
required when using dilation and residual. To give an example, each convolutional
layer in the model in figure 3.4 needs 3 parallel paths, of which two for the dilation
plus one to make the shortcut connection possible. That is, roughly sixfold need
for memory if compared with the baseline.

Moreover, it is also possible noticing how the chosen learning rate seems op-
timal for the task. However, figure 3.10 shows that the model could benefit from
a scheduler for the learning rate, such as the one described in [19], sec. 2.3. For
the model in figure 3.3, I lowered the learning rate from 1e-4 to 1e-5 and the de-
cay rate from 1e-6 to 1e-9. This adjustment has proved to be beneficial for the
reconstruction error function, as it constantly decreased over all the iterations.

Finally, it is also worth noticing how the use of residual connection mitigates

3.4. Results and discussion 37

Figure 3.10: Comparison validation reconstruction error for different tested models in the transfor-
mation task. The y axis value are in log scale.

the effects of the small amount of data used in the training processes shown in
figure 3.8, whereas the only use of dilation does not help. However, figure 3.10
shows how the dilation may help in speeding up the optimisation since it takes
almost double as much the time for the model with only residual connections to
get to the same reconstruction error for the validation set. Moreover, it is worth
using dilation of different values in conjunction with 0-dilated filters, provided by
the shortcut connection, to better merge spatial information. From this, the urge to
include both techniques to increase the model capacity.

Figure 3.11: Comparison between three different models for the transformation task. The baseline
autoencoder with 256 channels was trained with learning rate of 1e-3 while the other with learning
rate lowered to 1e-4. As consequence, the latter learning rate has proved to be optimal for this task,
avoiding the bouncing behaviour of the validation reconstruction error for the baseline model. The y
axis value are in log scale.

38 Chapter 3. Experimental setup

Figure 3.12: Comparison of validation reconstruction error for the baseline with increased depth in
the transformation task. The y axis value are in log scale.

Figure 3.13: Comparison of validation reconstruction error for the full model with increased depth
in the transformation task. Here full refers to the use of both residual and dilation in the network.
However, the deeper the model the larger the reconstruction error. The y axis value are in log scale.

3.4.3 Further discussion on results

Figures 3.6, 3.12 and 3.13 show a common behaviour: all the models share a de-
creasing in the validation reconstruction error function as the depth of the structure
is increasing. A corresponding decreasing in the model performance can be no-
ticed both if plotting the reconstructed spectrograms (Appendix A contains the
plot of reconstructed spectra for each model deployed in each task) and if listening
to the audio excerpts.

As a first remark, it can be noticed how an increased depth leads to a recon-
struction error function which does not move upwards. This may be used as a
proof that the shallow models may be improved in its capacity. However, none of

3.4. Results and discussion 39

them for the deep models achieves values as good as the validation function ones
for the shallow model. If inspecting the spectrogram plots, it is worth pointing out
how depth introduces a blurred character, thus reconstructed audio from deeper
models tends to sound more as a series of burst of coloured noise, rather then
single notes. A clear tendency in this scenario is that low fundamental frequency
notes (e.g. A2) gets more blurred, and more distorted. This is probably due to
the displacement of the harmonics, which are closer to each other than in a high-
frequency note. As consequence, the whole phase reconstruction process is biased,
leading to poor reconstructions.

As a second remark, the values in the reconstructed spectrograms are undoubt-
edly squashed close to zero. As an example, the initial matrix of piano notes in
range [0, 2.5] is crushed in the output matrix in range [0., 0.025]. Moreover, both
the audio excerpt and the spectrograms are dissimilar at all, resulting in a severe
distortion of the original information.

A motivation may reside in the choice of non-linearity together with the L2
regularisation. If we take a look closer, the L2 may force the value being smaller
and smaller, while the ReLU acts as a linear mapping in the positive domain. Since
only non-negative values lie in the input, this may lead to this behaviour. Never-
theless, L1 regularisation does not help in allowing for larger parameters. There
could be several ways of coping with such an issue. As first attempt, the learn-
ing rate could be lowered at each new layer insertion. Unfortunately, if running
a training process for 50 epochs with learning rate of respectively 1e-4, 1e-5 and
1e-6, the reconstruction error for both the training and the validation set does not
decrease. That means, the learning rate is too small and the network does not
learn. In addition, for the last value the loss function is not able to converge.

Another way could be to apply preprocessing to the dataset. For instance,
zero-centering the data and allowing for the layer output to take small negative
value using an activation function, such as leaky ReLU, may help in preserving
the original range (Engel et al. applied successfully leaky ReLU to their baseline
autoencoder in [19]). Another way could be to reduce the amount of sparsity,
although it can lead to the network to learn the identity function and simply copy
the input.

If inspecting in the model deployed for the transformation task, the influence
of this behaviour on the validation reconstruction error function seems mitigated.
Two possible reason may explain such a reduced influence. First of all, the use of
residual connections allows for a stronger preservation of the input range (the input
is summed to the post non-linearity layer outputs). Secondly, merge operations
are applied after parallel dilated convolution, which retain the maximum values
over all the feature maps. Their combination may prevent the loss of range in
the output. Nonetheless, if listening the recordings a noisy component is added
making the notes with lower fundamental frequency a bit undistinguished in their

40 Chapter 3. Experimental setup

pitch and timbre contour.

Chapter 4

Conclusion

In this thesis, I aimed to create the meaningful basis for the generation of audio
excerpt given an audio input signal. In the attempt to do so, I deployed a series of
convolutional autoencoders that take log-magnitude spectra as input. Such neural
networks have been tested on two different tasks: reconstruction and transformation.
With the former, I tuned the parameter of the building blocks, namely the convo-
lutional layers. In the latter, I applied such parameter and I refined the structure,
introducing recent techniques, such as residual learning and dilation, to cope with
the increased complexity of the task.

I then used the resulting output spectra to get an estimate of the original phase
information by means of the Griffin-Lim algorithm, and eventually generate an
audio excerpt entirely build on non-original information. Results show a fair job of
the convolutional autoencoder for both tasks, with emphasis on the latter where
the introduced techniques led to a significant improvement in the reconstruction
error, and in the quality of the generated audio.

At the end of this work, the objectives of the thesis have not been successfully
achieved. That said, the work exhibits decent results in the yet-born field of neural
synthesis, which had its first breakthrough with WaveNet last year. At the time of
writing, a first concrete musical application with Nsynth1 has emerged for only
some weeks.

I still have no proof that an arrangement based on an input sound can be cre-
ated using deep learning techniques. However, it has been demonstrated that such
techniques may be capable of learning sound transformations, which is one of the
numerous aspects that the aims of this thesis involve.

Several limitations in this work may have significantly constrained the quality
of my results and need to be addressed into detail.

1Here for the Google’s magenta blog entry: https://magenta.tensorflow.org/nsynth

41

42 Chapter 4. Conclusion

Deep learning, and particularly its musical application, is a field of research
that has recently experienced a vast growth. That means, it has been evolving at
a fast pace and sometimes may lack of theoretical foundation for decisions, such
as the choice of the architecture and the hyperparameters for the model deployed.
The broad choice in literature may provide with heuristics, but in many instances
they refer to particular tasks involving a specific field, such as the one of computer
vision. Furthermore, deep learning brings time and resource limitations. Training
networks may require days, and some experiments may be bounded because of
computational constraints, as in the case of this work. Lastly, such an active field
of research brings implicitly many alternatives, which are worth being examined.

Nonetheless, I believe that this work contains results that may be used as a
promising starting point for a further investigation. Currently, the Magenta team
has been dealing with similar tasks and the effectiveness of its structure has been
undoubtedly demonstrated, as referred in the 1.2.2.

However, the bases are quite different. With Nsynth, the Magenta team aims to
give a contribution that moves from the traditional hard-tuned synthesizer paradigm
to one which gives intuitively controls over timbre and sound manipulation. That
is, the neural synthesizer is given the main task to reconstruct and interpolate even-
tually between the samples, creating new sounds. I differently aim to the use of
neural networks for a re-arrangement paradigm using yet existing sounds.

Finally, broader research must be carried out to achieve a quality that may
lead to any practical application. First, the quality of the reconstruction needs
significant improvements, thus the need for testing new techniques for phase re-
construction. The phase reconstruction is however affected by the quality of the
spectra reconstruction, which has to increase. The urge to create a more powerful
model is of much importance as well.

At the end of this work I believe that a combination of classical audio signal
processing techniques and deep learning techniques should be deployed when
dealing with the numerous characteristics of a temporal sequence. Perhaps long
time could pass before a concrete musical application be possible. Nevertheless, I
strongly believe that it is worth applying machine intelligence to allow new way of
expressiveness of which the performer could benefit.

Appendix A

Reconstructed log-magnitude spec-
tra

In this appendix, I include all the images of the reconstructed spectra. The images
are divided according to the task, either reconstruction or transformation. For each
task, I show the original spectrum, that is the result of the computed Short-Time
Fourier Transform over the original audio file, and the reconstructions for each de-
ployed model. Moreover, the transformation task shows a target spectrum, that is
the sound whose timbre the transformation aims for.

A.1 The reconstruction task

Figure A.1: The log-magnitude spectrum for the original audio sample (a sequence of piano notes).

43

44 Appendix A. Reconstructed log-magnitude spectra

Figure A.2: The log-magnitude spectrum for the reconstruction using a shallow convolutional au-
toencoder.

Figure A.3: The log-magnitude spectrum for the reconstruction using a convolutional autoencoder 2
layer deep both for the encoding and the decoding.

Figure A.4: The log-magnitude spectrum for the reconstruction using a convolutional autoencoder
3 layer deep both for the encoding and the decoding. It is noticeable how the magnitude range is
decreasing and the notes get blurred in their contour.

A.2. The transformation task 45

A.2 The transformation task

Figure A.5: The log-magnitude spectrum for the original audio sample (a sequence of flute notes).

Figure A.6: The log-magnitude spectrum for the target audio sample (a sequence of clarinet notes).

Figure A.7: The log-magnitude spectrum for the transformation using the baseline convolutional
autoencoder depicted in the reconstruction task.

46 Appendix A. Reconstructed log-magnitude spectra

Figure A.8: The log-magnitude spectrum for the transformation using the baseline convolutional
autoencoder 2 layers deep both for the encoding and the decoding.

Figure A.9: The log-magnitude spectrum for the transformation using the baseline convolutional
autoencoder 3 layers deep both for the encoding and the decoding. It is worth noticing how the note
contours get blurred, the vibrato is no longer present but the harmonic displacement still resembles
the one of the flute sequence.

Figure A.10: The log-magnitude spectrum for the transformation using the dilated convolutional au-
toencoder. The note contours do not differ much from the baseline result, but the original magnitude
scale is better preserved.

A.2. The transformation task 47

Figure A.11: The log-magnitude spectrum for the transformation using the dilated convolutional
autoencoder with residual connections.

Figure A.12: The log-magnitude spectrum for the transformation using the dilated convolutional
autoencoder with residual connections 2 layers deep both for the encoding and the decoding. It is
interesting how the use of residual connections seem saving both the magnitude scale and preventing
the note contours from being blurred as much as in the baseline model. I can therefore assert that
such techniques improve the overall performance, leading to a fair timbre transformation. This image
finally shows the best result for the task.

Bibliography

[1] Martín Abadi et al. “Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems”. In: arXiv preprint arXiv:1603.04467 (2016).

[2] Gérard Assayag et al. “Omax brothers: a dynamic yopology of agents for
improvization learning”. In: Proceedings of the 1st ACM workshop on Audio and
music computing multimedia. ACM. 2006, pp. 125–132.

[3] Pierre Baldi. “Autoencoders, unsupervised learning, and deep architectures.”
In: ICML unsupervised and transfer learning 27.37-50 (2012), p. 1.

[4] Yoshua Bengio. “Practical recommendations for gradient-based training of
deep architectures”. In: Neural networks: Tricks of the trade. Springer, 2012,
pp. 437–478.

[5] Yoshua Bengio et al. “Greedy layer-wise training of deep networks”. In: Ad-
vances in neural information processing systems 19 (2007), p. 153.

[6] Yoshua Bengio et al. “Learning deep architectures for AI”. In: Foundations
and trends R© in Machine Learning 2.1 (2009), pp. 1–127.

[7] Christopher M Bishop. “Pattern recognition”. In: Machine Learning 128 (2006),
pp. 1–58.

[8] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. “Mod-
eling temporal dependencies in high-dimensional sequences: Application to
polyphonic music generation and transcription”. In: arXiv preprint arXiv:1206.6392
(2012).

[9] Y-lan Boureau, Yann L Cun, et al. “Sparse feature learning for deep belief net-
works”. In: Advances in neural information processing systems. 2008, pp. 1185–
1192.

[10] Carmine-Emanuele Cella. “Sound-types: a new framework for symbolic sound
analysis and synthesis.” In: ICMC. 2011.

[11] François Chollet. Keras. 2015.

[12] Darrell Conklin. “Music generation from statistical models”. In: London:
AISB Societ, 2003.

49

50 Bibliography

[13] David DeMers and GW Cottrell. “n–linear dimensionality reduction”. In:
Adv. Neural Inform. Process. Sys 5 (1993), pp. 580–587.

[14] Sander Dieleman. “Learning feature hierarchies for musical audio signals”.
PhD thesis. Ghent University, 2015.

[15] Sander Dieleman and Benjamin Schrauwen. “Multiscale approaches to music
audio feature learning”. In: 14th International Society for Music Information Re-
trieval Conference (ISMIR-2013). Pontifícia Universidade Católica do Paraná.
2013, pp. 116–121.

[16] Mark Dolson. “The phase vocoder: A tutorial”. In: Computer Music Journal
10.4 (1986), pp. 14–27.

[17] Douglas Eck and Juergen Schmidhuber. “A first look at music composition
using lstm recurrent neural networks”. In: Istituto Dalle Molle Di Studi Sull
Intelligenza Artificiale 103 (2002).

[18] Daniel Patrick Whittlesey Ellis and David Felix Rosenthal. Mid-level represen-
tations for computational auditory scene analysis. Perceptual Computing Section,
Media Laboratory, Massachusetts Institute of Technology, 1995.

[19] Jesse Engel et al. “Neural Audio Synthesis of Musical Notes with WaveNet
Autoencoders”. In: arXiv preprint arXiv:1704.01279 (2017).

[20] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks.” In: Aistats. Vol. 9. 2010, pp. 249–256.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
Press, 2016.

[22] Daniel Griffin and Jae Lim. “Signal estimation from modified short-time
Fourier transform”. In: IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing 32.2 (1984), pp. 236–243.

[23] Philippe Hamel, Yoshua Bengio, and Douglas Eck. “Building Musically-relevant
Audio Features through Multiple Timescale Representations.” In: ISMIR.
2012, pp. 553–558.

[24] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016,
pp. 770–778.

[25] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1026–1034.

[26] Geoffrey E Hinton. “Connectionist learning procedures”. In: Artificial intelli-
gence 40.1-3 (1989), pp. 185–234.

Bibliography 51

[27] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast learning
algorithm for deep belief nets”. In: Neural computation 18.7 (2006), pp. 1527–
1554.

[28] Geoffrey E Hinton and Ruslan R Salakhutdinov. “Reducing the dimensional-
ity of data with neural networks”. In: science 313.5786 (2006), pp. 504–507.

[29] Geoffrey E Hinton et al. “Improving neural networks by preventing co-adaptation
of feature detectors”. In: arXiv preprint arXiv:1207.0580 (2012).

[30] Adrianus JM Houtsma. “Pitch and timbre: Definition, meaning and use”. In:
Journal of New Music Research 26.2 (1997), pp. 104–115.

[31] Eric J Humphrey, Juan Pablo Bello, and Yann LeCun. “Moving Beyond Fea-
ture Design: Deep Architectures and Automatic Feature Learning in Music
Informatics.” In: ISMIR. Citeseer. 2012, pp. 403–408.

[32] Corey Kereliuk, Bob L Sturm, and Jan Larsen. “Deep learning and music
adversaries”. In: IEEE Transactions on Multimedia 17.11 (2015), pp. 2059–2071.

[33] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[34] Tetsuro Kitahara. “Mid-level representations of musical audio signals for mu-
sic information retrieval”. In: Advances in Music Information Retrieval. Springer,
2010, pp. 65–91.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet clas-
sification with deep convolutional neural networks”. In: Advances in neural
information processing systems. 2012, pp. 1097–1105.

[36] Honglak Lee et al. “Unsupervised feature learning for audio classification
using convolutional deep belief networks”. In: Advances in neural information
processing systems. 2009, pp. 1096–1104.

[37] Marco Marchini and Hendrik Purwins. “Unsupervised generation of percus-
sion sound sequences from a sound example”. In: Sound and Music Computing
Conference. Vol. 220. 2010.

[38] Jonathan Masci et al. “Stacked convolutional auto-encoders for hierarchi-
cal feature extraction”. In: Artificial Neural Networks and Machine Learning–
ICANN 2011 (2011), pp. 52–59.

[39] Max V Mathews et al. The technology of computer music. Vol. 5. 6. MIT press
Cambridge, 1969.

[40] Brian McFee et al. “librosa: Audio and music signal analysis in python”. In:
Proceedings of the 14th python in science conference. 2015.

[41] Meinard Müller. Information retrieval for music and motion. Vol. 2. Springer,
2007.

52 Bibliography

[42] Andrew Ng. “Sparse autoencoder”. In: CS294A Lecture notes 72.2011 (2011),
pp. 1–19.

[43] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. “Deep
content-based music recommendation”. In: Advances in neural information pro-
cessing systems. 2013, pp. 2643–2651.

[44] Aäron van den Oord et al. “Wavenet: A generative model for raw audio”. In:
CoRR abs/1609.03499 (2016).

[45] Francois Pachet. “The continuator: Musical interaction with style”. In: Journal
of New Music Research 32.3 (2003), pp. 333–341.

[46] Jean-Claude Risset and Scott Van Duyne. “Real-time performance interaction
with a computer-controlled acoustic piano”. In: Computer music journal 20.1
(1996), pp. 62–75.

[47] Curtis Roads et al. Musical signal processing. Routledge, 2013.

[48] Karen Simonyan and Andrew Zisserman. “Very deep convolutional net-
works for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[49] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks
from overfitting.” In: Journal of Machine Learning Research 15.1 (2014), pp. 1929–
1958.

[50] Ilya Sutskever. “Training recurrent neural networks”. PhD thesis. University
of Toronto, 2013.

[51] John Thickstun, Zaid Harchaoui, and Sham Kakade. “Learning Features of
Music from Scratch”. In: arXiv preprint arXiv:1611.09827 (2016).

[52] Laurens Van Der Maaten, Eric Postma, and Jaap Van den Herik. “Dimen-
sionality reduction: a comparative”. In: J Mach Learn Res 10 (2009), pp. 66–
71.

[53] Pascal Vincent et al. “Extracting and composing robust features with de-
noising autoencoders”. In: Proceedings of the 25th international conference on
Machine learning. ACM. 2008, pp. 1096–1103.

[54] Pascal Vincent et al. “Stacked denoising autoencoders: Learning useful rep-
resentations in a deep network with a local denoising criterion”. In: Journal
of Machine Learning Research 11.Dec (2010), pp. 3371–3408.

[55] Hugues Vinet. “The representation levels of music information”. In: Interna-
tional Symposium on Computer Music Modeling and Retrieval. Springer. 2003,
pp. 193–209.

[56] Fisher Yu and Vladlen Koltun. “Multi-scale context aggregation by dilated
convolutions”. In: arXiv preprint arXiv:1511.07122 (2015).

Bibliography 53

[57] Richard S Zemel. “Autoencoders, minimum description length and Helmholtz
free energy”. In: NIPS. 1994.

[58] U Zölder. DAFX: Digital Audio Effects. 2002.

	Front page
	English title page
	Danish title page
	Contents
	Preface
	Acknowledgement
	Introduction
	Representations in music
	Mid-level representations
	Multiscale architectures
	Deep learning for music content analysis

	Music generation
	The use of statistical models
	The use of deep learning

	Objectives
	Outline

	Theoretical background
	Deep architectures
	The autoencoder paradigm
	Definition
	Network constraints
	Sparse autoencoders

	Autoencoder neural networks
	Single-layer autoencoders
	Sparsity
	Other constraints

	Convolutional autoencoders
	Convolutional neural networks
	Convolution layer
	Pooling layer
	Parameters

	Convolutional autoencoders
	Definition
	Loss function and gradient descent

	Experimental setup
	Overview
	The reconstruction task
	The transformation task

	Models
	Design choices
	Initialisation
	Constraints
	Regularisation
	Receptive field
	Activation function
	Loss function
	Learning rate methods

	The architectures

	Experiments
	Datasets
	Infrastructure
	Training

	Results and discussion
	The reconstruction task
	The transformation task
	Further discussion on results

	Conclusion
	Reconstructed log-magnitude spectra
	The reconstruction task
	The transformation task

	Bibliography

