
SUMMARY

The use of routing services has become wide-spread and are
used by both companies and private consumers. Routing is
a key feature of popular services such as Google Maps and
Bing Maps.

Vehicle routing algorithms rely on weighted graph rep-
resentations of road networks, where an edge represents a
road segment. In such graphs the weight of an edge is the
cost, e.g. travel time or fuel consumption, associated with
traversing the edge. The quality of a route suggested by a
vehicle routing algorithm therefore depends on the accuracy
of the edge weights.

GPS devices are cheap and collecting large quantities of
vehicle trajectory data has therefore become inexpensive. As
a result, several models have been devised to assign time-
varying weights to edges or paths in road networks based
on GPS trajectories.

Models for assigning time-varying weights in road net-
works can broadly be categorized as aggregation models,
which provide estimations of cost distributions for edges or
routes based on aggregates of GPS trajectories, and paramet-
ric models which fit a function to the feature representations
of road segments or routes.

Aggregation models require a sufficient amount of data
to provide an accurate estimation and therefore discard GPS
trajectories if the number of GPS trajectories is below a
threshold, i.e. there are too few GPS trajectories to provide
an accurate estimate.

Parametric models are based on machine learning al-
gorithms and rely on abstract feature representations of
road segments or routes. Their estimations are therefore not
limited to only road segments or routes with a sufficient
number of GPS observations. The drawback is that

GPS observations are not used in the estimate beyond
the training phase, even if an aggregate of the observations
could provide a better estimate.

In general, much of the effort in deploying machine
learning algorithms is spent on labor-intensive feature en-
gineering: the design of preprocessing and data transfor-
mation pipelines. As a result, feature learning has gained
traction within the machine intelligence community and
has demonstrated empirical success in both industry and
academia. Learned features may replace or supplement en-
gineered features of existing parametric models, potentially
increasing both accuracy and ease of deployment.

In this paper, we make two contributions that comple-
ment existing weight estimation models for road networks.

First, we devise a general framework for cost estimation
in road networks. The framework updates a prior weight
estimate based on available observations and thus bridges
the gap between aggregation models and parametric mod-
els. The update procedure is based on Bayesian statistics
and can be performed in constant time by storing just the
number of observations and their mean.

We evaluate the cost estimation framework on a travel
time estimation task where a prior estimate of an edge-
interval pair is provided by a linear cost estimation model.
The cost estimation framework decrease the MAPE by
7.43% (1.37 percentage points) using 100% of the training
set. Much of the improvement is gained with just 20% of the

training data, however, which decreases MAPE by 6.78%
(1.38 percentage points). Although we have only considered
updates of cost estimates for edge-interval pairs in this
paper, it can in principle be extended to cost estimation of
paths in general, and continuous time by sampling observa-
tions within some interval surrounding a point in time.

Second, we adapt feature learning techniques from the
domain of natural language processing to learn features of
edges in weighted graph representations of road networks.
Our feature learning framework, road2vec, overcomes the
problem of geodesically distant edges never co-occurring
by capturing an abstract representation of an edge’s sur-
roundings based on its simple graph label. In addition to our
general cost estimation framework, we present road2vec, an
adaption feature learning techniques from the domain of
language modelling, which learn representations of edges
and edge descriptors (a representation of an edge’s labels in
our experiments).

We replace the engineered features of linear cost esti-
mation baseline model with feature representations learned
using road2vec and evaluate them both on a travel time
estimation task. Using the learned feature representations
reduces the MAPE by 7.54% (1.39 percentage points). In
addition, the learned feature representations are very robust;
reducing the training data from 100% to 20% increases
the MAPE by just 1.0% (0.17 percentage points). Using
the learned feature representations with a linear model in
conjunction with the general cost estimation framework
yields the most accurate model with a MAPE of 16.41%: a
9.39% (1.70 percentage points) lower MAPE than a baseline
aggregation model and a 10.99% (2.03 percentage points)
lower MAPE than a baseline parametric model. After pa-
rameter tuning, the learned feature representations for the
model are learned in under 10 minutes using a road network
of 115977 road segments, without any need for domain
knowledge.

We also investigate the learned feature representations
capability to capture structural similarity in road networks
by using K-means clustering to find meaningful clusters on
the road network of Northern Jutland, Denmark. The qual-
ity of the clusters are measured using Calinski-Harabasz
Index and produce both coherent and well-separated clus-
ters. Visualizing the clusters on the road network of North-
ern Jutland revealed several clusters containing structurally
similar road segments, such as a cluster for important
main roads in large towns, a cluster containing motorway
segments, and a cluster containing roads through the town
center of smaller towns.

The general cost estimation framework and the feature
learning framework, road2vec, may be combined. With
linear model MAPE is reduced by 9.39% (1.70 percentage
points) and 10.99% (2.03 percentage points) compared to
two baseline models.

1

Improving Cost Estimation Models with
Estimation Updates and road2vec: a Feature

Learning Framework for Road Networks
Martin Fruensgaard & Tobias Skovgaard Jepsen

{mfruen12, tjeps12}@student.aau.dk
Aalborg University

F

Abstract—The use of routing services has become wide-spread and
are used by both companies and private consumers. Vehicle routing
algorithms rely on weighted graph representations of road networks,
where an edge represents a road segment and the weight of an edge
is the cost associated with traversing the edge, e.g. a travel time. The
quality of a route suggested by a vehicle routing algorithm therefore
depends on the accuracy of the edge weights. As a result, several
models have been devised to assign time-varying weights to edges
or paths in road networks based on Global Positioning System (GPS)
trajectories.

We make two distinct contributions in this paper. First, we describe a
general cost estimation framework which updates a prior cost estimate
of an cost estimation model based on GPS observations. Second, we
propose a feature learning framework, road2vec, which adapt feature
learning techniques from language modelling to learn representations
of edges which can be used to not only train cost estimation models, but
also capture structural similarity of road segments in road networks.

The general cost estimation framework and road2vec used sepa-
rately reduces the estimation error of a baseline model by 7.43% and
7.54%, respectively, on a travel time estimation task. When used in
conjunction, the estimation error is reduced by 9.39%.

1 INTRODUCTION

The use of routing services has become wide-spread and are
used by both companies and private consumers. Routing is
a key feature of popular services such as Google Maps [1]
and Bing Maps [2].

Vehicle routing algorithms rely on weighted graph rep-
resentations of road networks, where an edge represents a
road segment [3], as illustrated by Fig. 1. In such graphs the
weight of an edge is the cost, e.g. travel time or fuel con-
sumption, associated with traversing the edge. The quality
of a route suggested by a vehicle routing algorithm therefore
depends on the accuracy of the edge weights.

GPS devices are cheap and collecting large quantities of
vehicle trajectory data has therefore become inexpensive [4,
3]. As a result, several models have been devised to assign
time-varying weights to edges or paths in road networks
based on GPS trajectories [5, 6, 7, 8, 3, 9].

v3

v1
v2

v4 v5

v6

v7

Road 2

Road 1

Road 3

(a) Road Network.
v3

v2v1 v4 v5

v6

v7

(b) Graph Representation.

Fig. 1: Example of a road network (a) and its graph repre-
sentation (b).

2

1.1 Weight Assignment Models
Models for assigning time-varying weights in road net-
works can broadly be categorized as aggregation models [8,
10, 9, 5], which provide estimations of cost distributions for
edges or routes based on aggregates of GPS trajectories, and
parametric models [6, 11, 7, 12] which fit a function to the
feature representations of road segments or routes.

The estimated cost distributions of aggregation models
approaches the population distribution as the number of
GPS observations recorded from a road segment or route
goes towards infinity. Given sufficient data, the aggregation
models can therefore provide the most accurate estimates.
Aggregation models are inherently data reliant and their
cost distribution estimations are limited to road segments
or routes for which there are sufficient data which is not
always available. Thus they are severely affected by data
sparsity. In addition, aggregation models discard data if the
number of observations is below a certain threshold [8, 10,
5, 9]. Existing aggregation models rely on various strategies
to overcome the data sparsity problem, such as

• simple, but naive, cost distribution estimations based
on speed limit and length, and computationally ex-
pensive convolution of cost distributions [8, 10],

• using observations from temporally close time inter-
vals and similar road segments [5], and

• estimating cost distributions of origin-destination
pairs [9] rather than road segments or routes. This
reduces the data sparsity problem, since there are
O(|2E |) possible routes, but just O(|V |2) possible
origin-destination pairs where V is the number of
vertices and E ⊆ V ×V is the set of edges in a graph
representation of a road network.

Parametric models are based on machine learning algo-
rithms [6, 11, 7, 12] and rely on abstract feature represen-
tations of road segments or routes. Their estimations are
therefore not limited to only road segments or routes with
a sufficient number of GPS observations. The drawback is
that GPS observations are not used in the estimate beyond
the training phase, even if an aggregate of the observations
could provide a better estimate. Additionally, the perfor-
mance of parametric models is strongly connected to the
feature representation of road segments and routes.

In general, much of the effort in deploying machine
learning algorithms is spent on labor-intensive feature en-
gineering: the design of preprocessing and data transfor-
mation pipelines [13, 14]. As a result, feature learning has
gained traction within the machine intelligence community
and has demonstrated empirical success in both indus-
try and academia [13, 15]. Learned features may replace
or supplement engineered features of existing parametric
models, potentially increasing both accuracy and ease of
deployment.

1.2 Feature Learning in Graphs
To the best of our knowledge, there is no published work on
feature learning of road segments or routes in road networks
specifically, but several feature learning methods for graphs
have recently emerged driven by advancements in feature
learning in the domain of language modelling [14, 16, 17,

18]. The basic premise of these methods is that words which
often co-occur with the same words in sentences, within a
window of size c, are similar and will be embedded closely
in a vector space which serves as the data representation
of that word [16]. The notion of words is very flexible and
may refer to both nodes and edges in graphs. The notion
of sentence is strongly connected to the notion of similarity
and sentence construction is therefore task-specific [14].

DeepWalk [16] was first to generalize feature learning of
words to feature learning of nodes. They use nodes as words
and generate sentences from random walks in graphs.

Like DeepWalk, node2vec [14] uses nodes as words, but
generates sentences using a biased random walk which
also takes into account the weights of edges; the higher
the weight, the more likely the walk will travel along that
edge. The biased random walk is parametrized, s.t. it can be
adjusted to behave more like a breadth-first search, a depth-
first search, or something inbetween.

Content-Enhanced Network Embedding (CENE) [17] ex-
pands upon DeepWalk and node2vec in the social network
setting where some nodes have associated text content.
This allows them to optimize a joint objective function
based on both structural similarity and content similarity.
Consequently, nodes that are similar both in terms of co-
occurrence in sentences and in terms of their content will
have similar data representations.

The above approaches claim to be applicable to graphs
in general, but assume that similar nodes can be reached
by traversing few edges and, in the case of node2vec, that
these edges will have large weights. This assumption may
be reasonable in social networks, but is inadequate in road
networks for a number of reasons.

First, although road networks display spatial autocor-
relation of the traversal cost across a road segment [11,
7], this tends to be conditional on characteristics of the
road segment and its structural role [6]. For instance, we
would not expect the traversal cost per unit of length of a
motorway exit to resemble that of its connected motorway.

Second, geodesically distant1 road segments may be sim-
ilar, but DeepWalk, CENE, and node2vec generate sentences
based on topology. As a result, road segments with a larger
geodesic distance than the context size cannot co-occur, even
if they are similar, and will therefore not be given similar
feature representations.

1.3 Contributions
In this work, we make two contributions that complement
existing weight estimation models for road networks.

First, we devise a general framework for cost estimation
in road networks. The framework updates a prior weight
estimate based on available observations and thus bridges
the gap between aggregation models and parametric mod-
els. The update procedure is based on Bayesian statistics
and can be performed in constant time by storing just the
number of observations and their mean.

Second, we adapt feature learning techniques from the
domain of natural language processing to learn features of
edges in weighted graph representations of road networks.

1. The geodesic distance between two nodes is the length of the path
between them which contains the fewest edges.

3

Our feature learning framework, road2vec, overcomes the
problem of geodesically distant edges never co-occurring by
capturing an abstract representation of an edge’s surround-
ings based on its simple graph label. Training a simple linear
model with the learned features display superior estimation
accuracy and greater robustness to data sparsity than the
baseline methods on the task of travel time estimation of
trips. In addition, they are capable of finding structural
similarity on road networks.

The general cost estimation framework and road2vec
used separately reduces the estimation error of a linear
baseline model by 7.43% and 7.54%, respectively, on a travel
time estimation task described in Section 6. When used in
conjunction, the estimation error is reduced by 9.39%.

The rest of the paper is arranged as follows. In Section 3
we describe how we model road networks and trips. In
Section 4 we describe the general framework for cost estima-
tion. In Section 5 we present our framework road2vec, and
how it adapts feature learning methods from the domain
of language modelling to the domain of road networks. In
Section 6 we evaluate the general cost estimation framework
and the feature representations learned using road2vec on a
travel time estimation task. In Section 7 we cluster based
on the learned feature representations of edges to find
structural similarity in road networks. Finally, we close with
our conclusion in Section 8 and future work in Section 9.

2 RELATED WORK

To the best of our knowledge, there is no published work
which uses GPS observations to update cost distribution es-
timates. The most closely related work to our cost estimation
framework is therefore the general approach to Bayesian es-
timation of the mean on which our framework is based [19].
Our cost estimation framework is complementary to the
existing weight assignment models discussed in Section 1.1.

The cost estimation framework complements aggrega-
tion models when the amount of GPS observations is below
the threshold. In that case, such models default to simple
estimates based on the speed limit and length of a segment
and discard any available GPS observations. Our framework
allows this simple estimate to be updated based on the avail-
able observations and thus enables aggregation models to
take advantage of the available data, rather than discarding
it.

Parametric models fit a function which is unlikely to be
representative of any single road segment or route, but best
describes all the road segments or routes in the training set
as a whole. Our general framework complements paramet-
ric models by adjusting their estimate of a road segment
or route based on its recorded observations. Effectively, this
allows parametric models to inherit a property of aggre-
gation models: estimated cost distributions approach the
population distribution as the number of GPS observations
recorded from a road segment or route goes towards infinity.

Existing feature learning techniques [16, 14, 17] for
graphs have been discussed in Section 1.2. They all share the
limitation that nodes can only co-occur in sentences if their
geodesic distance is smaller or equal to the context size. Our
feature learning approach adresses this issue by construct-
ing sentences for each edge in the network in which the

words are descriptors: abstract representations of the edge
and nearby edges that are independent of the road network
topology. During feature learning a neighborhood (analogue
to a sentence) is sampled for each edge and during training
on the neighborhood the edge is given as an extra context
word. This produces an identical feature representation of
edges if the same neighborhoods are sampled for them.

Another departure from existing feature learning tech-
niques for graphs is our choice of architecture. We use the
Distributed Memory Model of Paragraph Vectors (PVDM)
architecture, an extension of the Continuous Bag of Words
(CBOW) architecture [20], which learns feature represen-
tations of words and paragraphs jointly. In the case of
our feature learning framework, feature representations are
learned for both the edge descriptors (words) and the edges
(paragraphs). PVDM predicts a word given its surrounding
words and the sentence, paragraph, or document it occurs
in [20]. Conversely, existing feature learning techniques are
based on the SkipGram architecture [16, 14, 17], which
predict the surrounding words given the middle word. In
both cases, the probability of a word is computed using the
softmax function [21, 20].

The reason for the difference in architecture is that
PVDM displays superior performance to its SkipGram
based counterpart for learning representations of para-
graphs [20]; edges in our case. The PVDM architecture
has the advantage of being much faster to train than the
SkipGram architecture due to its smaller output layer [21],
but in general the superior feature learning architecture in
terms of accuracy depends on the task [21].

The faster training speed in combined with the small
number of distinct descriptors used as words, makes our
feature learning framework faster than existing feature
learning techniques for graphs given the same corpus size.
In addition, existing feature learning techniques approxi-
mate the softmax function when computing the probability
of a word [16, 14, 17], but the small number of distinct
descriptors used as words in our feature learning frame-
work makes exact computation of the softmax feasible and
improves the quality of the learned feature representations.

The most closely related feature learning technique for
graphs, is CENE [17]. CENE incorporates textual content
associated with nodes in social networks into their feature
representation learning [17]. Similarly, the labels of edges
in road networks can be incorporated into our feature rep-
resentation learning approach as edge descriptors. Our ap-
proach to incorporating information associated with nodes
or edges differs from CENE’s, however. CENE [17] construct
a graph containing both regular nodes and content nodes
resulting in an augmented network consisting of node-
node edges and node-content edges. They optimize a joint
objective function based on both structural similarity and
content similarity. This is done by including both regular
nodes and content nodes in the corpus and representing
content nodes as a combination, e.g. an average, of sepa-
rately learned word representations representing words in
the text content [17].

Our approach is similar to CENE in the sense that
content in the form of edge descriptors may be included
in the corpus as words, however, edges are not. Instead,
the edge a neighborhood of descriptors is sampled from is

4

included in the context. In addition, we do not train feature
representations of the descriptors separately, but jointly, and
thus learn feature representations of both edge descriptors
and edges.

3 PRELIMINARIES

3.1 Modelling Spatio-Temporal Road Networks
In this section, we model how spatio-temporal road net-
works as a graph.

Definition 3.1. A road network is a weighted directed graph
G = (V,E, T, L, l, w), where V i.e. a set of vertices,E ⊆ V×V
is a set of edges, T is a continuous time domain containing all
times of day, L is a set of labelling functions that maps labels
to edges, l : E → R+ is a function mapping the length of each
edge, and w : E×T → R+ assigns time-varying weights to all
edges.

Roads in a road network are divided into segments. A
vertex vi ∈ V represents an intersection between segments
or the end of a road.

An edge (v1, v2) ∈ E represents a directed segment
which allows travel from v1 to v2, as shown by Fig. 1. It
is important to model segments as directed edges to repre-
sent driven directions and since otherwise one-directional
segments, such as the segment going from v3 to v2 in Fig. 1,
could not be represented.

The set of label functions L, depends on the map being
used. In this project we use the map from OpenStreetMap
(OSM) [22] and the city zones from PlansystemDK [23] to
derive the label functions category, limit, city, regulateds,
and regulatedt.

category(e) returns the road category of edge e
which is either "motorway", "motorway link", "expressway",
"highway", "main road", or "connecting road". See Table 9
for the mapping of OSM categories to these categories.
limit(e) returns the speed limit of edge e. city(e) returns
whether an edge e is within a city zone or not. regulateds(e)
and regulatedt(e) returns whether the source intersection vs
or target intersection vt, respectively, is regulated by traffic
lights for an edge e = (vs, vt).

In road networks there is a natural flow of traffic from
one edge to another, in which case we say they are connected.

Definition 3.2. An edge (v1, v2) is connected to another edge
(v2, v3) if v1 6= v3, i.e. they have an intersection or end of
segment in common and are not different directions of the same
bidirectional segment.

For example, edge (v1, v2) in Fig. 1b is connected to
(v2, v3), but (v1, v2) is not connected to (v2, v1).

It is often useful to work on road networks with a
discretized time domain where T is divided into intervals.
We refer to this as a discretized road network. Let an interval
from time a ∈ T up to, but excluding time b ∈ T , be denoted
as

[a; b) = {t|t ∈ T ∧ a ≤ t < b}
Definition 3.3. Given a road network G = (V,E, T, L, l, w),
its discretized road network is a weighted directed graph G =
(V,E, T, L, l, w)15, where Tg is a set of intervals starting from
midnight of size g and the granularity g ∈ R+ is in minutes. I.e.
T15 = {[0:00; 0:15), · · · , [23:45; 0:00)}

3.2 Trips and Edge Traversal Costs
Trips are derived from GPS observations. A GPS trajectory
gpsTr = (gps1, . . . gpsn) is a sequence of GPS observations
where a GPS observation gpsi = (loc, t, cost ′) specifies the
location loc and the normalized cost cost ′, e.g. a recorded
speed or fuel consumption per kilometer, of a vehicle at
time t ∈ T . The GPS observations of a GPS trajectory are
map-matched and pre-processed s.t. a gpsi = (loc, t, cost ′)
in a GPS trajectory is mapped to an edge record edgei =
(e, t, cost ′). This yields edge trajectories of the form

edgeTr = ((e1, t1, cost ′1), . . . , (en, tn, cost ′n))

Finally, we map edge trajectories to trips. Depending
on the frequency of the GPS observations, an edge record
may occur several times consecutively in the edge records
of an edge trajectory. Given a sequence of k edge records
(e, ti, cost ′i), . . . , (e, tk, cost ′k) for the same edge, e, in an
edge trajectory

edgeTr = ((e1, t1, cost ′1) . . . , (ei, ti, cost ′i), . . . ,

(ei, tk, cost ′k), . . . , (en, tn, cost ′n))
(1)

We map such sequences in edge trajectories to 3-tuples
(ei, ti, cost i) where cost is the arithmetic mean of the costs
cost ′j for i ≤ j ≤ k. The 3-tuples are inserted into a trip
s.t. the trip preserves the order of the edges in the edge
trajectory. I.e., the edge trajectory in Eq. (1) is turned into a
trip

trip = ((e1, t1, cost1) . . . , (e, ti, cost i), . . . , (en, tn, costn))
(2)

Definition 3.4. Given a road network G = (V,E, T, L, l, w),
a trip observed in G is a sequence of triples (e, t, cost), where
e = (v1, v2) ∈ E, t ∈ T is the time of arrival on edge e and
cost ∈ R+ is the normalized cost of traversing the edge computed
as the mean normalized cost of the GPS observations matched to
edge e.

We denote the set of all observed trips in a road network
G = (V,E, T, L, l, w) asOG. It is often useful to refer to only
trips crossing a particular edge e ∈ E during an interval
I ⊂ T . For this purpose we use

OG(e, I) = {(e, t, cost)|(e, t, cost) ∈ OG ∧ t ∈ T} (3)

or simply OG(e) if I = T , i.e. all trips that cross edge e.

4 GENERAL FRAMEWORK FOR COST ESTIMATION
IN ROAD NETWORKS

In this section, we present a general framework for cost
estimation in road networks. The framework updates a
cost estimate of an edge-interval pair using observations
from the edge-interval pair. The framework works with
any cost estimation model, both aggregation models and
parametric models. Aggregation models already base their
estimates on observations, however. We therefore expect the
framework to be most valuable for parametric models, since
the framework allows parametric cost estimation models
to inherit a desirable property of aggregation models: the
updated cost estimate of a parametric model approaches
the population mean as the number of observations goes
toward infinity.

5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 50 100 150 200

Pr
ob

ab
ili

ty
D

en
si

ty

Normalized Travel Time (km/h)

Density Histogram
Gaussian Probability Density Function

Fig. 2: The distribution of observed travel times normalized
segment length of 1886 trips across a motorway segment
represented as a density histogram of the relative frequency
the travel times and the probability density function of its
Gaussian approximation with mean 101.04 and variance
15.382.

A simple way of normalizing travel time to compare
edge-intervals is to compute an expected speed. Given a
road network Gg = (V,E, Tg, L, l, w), the speed across an
edge e ∈ E during interval I ∈ Tg is

speed(e, I) =
l(e)

cost(e, I)
(4)

where cost(e, I) is an expected travel time across edge e
during interval I .

Travel time distributions are in general very complex
and does not follow standard distributions, such as the
Gaussian distribution [8]. However, when normalized ac-
cording to Eq. (4), the distribution of travel times across an
edge e during a 15 minute interval I does not deviate signif-
icantly (p ≤ 0.05) from a Gaussian distribution (see Fig. 2)
for 70% of edge-intervals in the Danish road network [6]
using the Shapiro–Wilk normality test [24] on each edge-
interval. We therefore assume that the underlying distribu-
tion of the normalized cost to traverse any edge-interval
pair is Gaussian, where the mean cost of the distribution
is interpreted as the normalized cost estimate for the edge-
interval, and base our framework on Bayesian estimation of
the mean [19].

To update the estimate of an edge-interval pair (e, I), the
framework requires the following parameters

• A prior (normalized) cost estimate cost0 which
serves as an initial mean of the cost distribution of
(e, I),

• an expected variance σ2
0 of the mean which reflects

the uncertainty of cost0, and
• an expected variance σ2 of the cost distribution of the

edge-interval which reflects the observation noise.

All the parameters may differ for each edge-interval and
may be found analytically, considered a (hyper)parameter
or estimated by estimation models.

cost0 σ2
0

cost σ2

o1 . . . on

Fig. 3: Illustration of the conditional dependencies of the
framework for cost estimation.

Fig. 3 gives an overview of the framework. The likeli-
hood of the observations oi for 1 ≤ i ≤ n is dependent
on the mean of the distribution, cost , from which they are
sampled and the variance of that distribution, σ2. The mean,
cost , in turn depends on the prior cost estimate, cost0, and
the expected variance of the mean, σ2

0 .

4.1 Bayesian Estimation of the Cost
We now formalize the cost estimation framework illustrated
in Fig. 3.

The goal is to compute the posterior distribution of the
mean cost of an edge-interval pair (e, I) given the observed
trips OG(e, I). Using Bayes’ theorem, this is computed as

P(cost | OG(e, I)) = αP(cost)P(OG(e, I) | cost) (5)

where α is a normalization constant.
Since the underlying distribution is assumed to be Gaus-

sian, the likelihood of the observations is [19]

P(OG(e, I) | cost) =P(OG(e, I) | cost , σ2)

=
∏

(e,t,c)∈OG(e,I)

P(c | cost , σ2) (6)

The prior probability distribution of cost is unknown
and is therefore estimated as [19]

P(cost) ∝ P(cost | cost0, σ
2
0) (7)

Combining Eqs. (5) to (7), yields

P(cost | OG(e, I)) ∝
P(cost | cost0, σ

2
0)

∏
(e,t,c)∈OG(e,I)

P(c | cost , σ2) (8)

which is a product of two Gaussian distributions and is thus
itself a Gaussian distribution [19], and can be written as [19]

P(cost | OG(e, I)) ∝ N(cost | costn, σ
2
n) (9)

where n = |OG(e, I)| is the number of obs
The parameters for N(cost | costn, σ

2
n) are computed as

σ2
n =

(
n

σ2
+

1

σ2
0

)−1
and

costn = σ2
n

(
cost0
σ2
0

+

∑
(e,t,c)∈OG(e,I) c

σ2

)
where costn is the updated estimate. In our experiments we
store the number of observations n and the observation
mean and compute the updated estimate in constant time.

6

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

60 80 100 120 140

Pr
ob

ab
ili

ty
D

en
si

ty

Normalized Travel Time (km/h)

Observation Density Histogram
Prior Estimate

Update with 10 Observations
Update with 100 Observations

Fig. 4: Gaussian distributions estimating the density his-
togram representation of the distribution of observed travel
times with means cost0, cost10, and cost100, where cost0,
σ2
0 = 52, and σ2 = 15.382.

We demonstrate the framework in Fig. 4, by updating
a prior estimate of the edge-interval shown in Fig. 2. The
prior estimate cost0 = 110 equals the speed limit on the
edge. As the figure shows, the updated estimate gradually
approximates the distribution mean as more observations
are used to update the estimate. We refer to Fig. 34 in
Appendix J for further information on how the variance of
the mean σ2

0 , the observation variance σ2, and the number
of observations n affect the updated estimate costn.

In our discussion of the framework, we have focused on
updating the estimate based on the distribution of individ-
ual edge-intervals, but it can in principle also be used for
paths or routes in the road network.

5 FEATURE LEARNING IN ROAD NETWORKS

In this section, we describe how we adapt feature learning
techniques from natural language modelling to learn feature
representations of edges representing road segments in road
networks.

Learned feature representations of edges may be used
directly by existing parametric models for cost estimation
in road networks [6, 11, 7, 12], but may also be used to
find structural similarity in road networks. As an example,
consider the TSNE [25] projection of the learned feature
representations of edges in Fig. 5 which produced the
best clusters for the structural similarity task in Section 7.
The black cluster primarily consists of motorway segments,
whereas the red cluster are important main roads through
the city centers of large towns.

In the following, we first review the related backround
from the language modelling domain.

5.1 Neural Language Models

Traditionally, the goal of language models is to estimate
the likelihood of a sequence of words occurring in a
corpus [16]. More formally, given a sequence of training

−20

−15

−10

−5

0

5

10

15

−20 −15 −10 −5 0 5 10 15 20

Fig. 5: 2-dimensional TSNE projection of learned feature
representations of edges.

words (w1, · · · , wT), the objective is to maximize the like-
lihood of a word given the n previous words, i.e. P(wt |
wt−1, . . . , wt−n).

Words have traditionally been represented using a one-
hot encoding [21]. In a one-hot encoding, all the words in
the vocabulary wi ∈ V are enumerated s.t. 1 ≤ i ≤ |V|.
The one-hot encoding of a word wi ∈ V is a 1 × V row
vector xi = (x1, . . . , x|v|) where some xi = 1 and the
remaining values are 0. The intuition is that each unique
word is represented by a unique vector, see Fig. 6 for an
illustration.

One-hot encodings are discrete and contains no notion
of similarity which limits their predictive power [21]. Recent
work in natural language processing has therefore focused
on using probabilistic neural networks to learn continuous
feature representations of words [21, 20] from their one-hot
encodings. These models use the notion of context, typically
defined as a fixed number of previous and future words
surrounding a target word in a sentence [21]. We shall
discuss one such model in Section 5.2.

5.2 Distributed Memory Model of Paragraph Vectors

1 We base our feature learning framework on the Dis-
tributed Memory Model of Paragraph Vectors (PVDM) neu-
ral network architecture, which is designed to learn feature
representations of both words and collections of words, such
as paragraphs, jointly [20].

PVDM is an extension of the well-known CBOW ar-
chitecture [21, 20]. CBOW predicts a word based on its
context: the c previous and future words in a sentence [20].
As an example, consider the sentence illustrated in Fig. 6.
In the CBOW architecture the word "a" is predicted based
on its context. If the context size c = 2, the context of "a"
is ("This", "is", "short", "sentence"). Formally, CBOW maxi-
mizes

1

T

T−c∑
t=c

log(P(wt | wt−c, . . . , wt−1, wt+1, . . . , wt+c)) (10)

where c is the size of the context.

7

This is a short sentence

1

0

0

0

0

w1

0

1

0

0

0

w2

0

0

1

0

0

w3

0

0

0

1

0

w4

0

0

0

0

1

w5

Fig. 6: The sentence "This is a short sentence" with each
word wi for 1 ≤ i ≤ 5 represented as its one-hot encoding.

PVDM extends the CBOW model by providing which
word collection (e.g. a paragraph) as extra context informa-
tion, reflecting the intuition that the probability of a word
is dependent on the topic of the word collection in which
it occurred [20]. For instance, we expect the word "apple"
to be more likely to occur in a cooking book, than in a
computer science book. When predicting a word, PVDM
therefore not only considers the surrounding words, but
also the collection from which the word originates. As
an example, consider again prediction of the word a in
the sentence illustrated by Fig. 6. Suppose the sentence
occurs in two different paragraphs, p1 and p2. If the con-
text size c = 2, the context of "a" in paragraph p1 is
(p1, "This", "is", "short", "sentence") and the context of "a"
in paragraph p2 is (p2, "This", "is", "short", "sentence"). For-
mally, PVDM maximizes

1

T

T−c∑
t=c

log(P(wt | pt, wt−c, . . . , wt−1, wt+1, . . . , wt+c)) (11)

where pt is the paragraph of word wt.
In the following, we first describe how the feature

representations are learned in the PVDM architecture, and
then how the posterior probability of a word, e.g. P(wt |
pt, wt−c, . . . , wt−1, wt+1, . . . , wt+c) in Eq. (11), is computed.

5.2.1 Feature Representations of Words and Paragraphs

Fig. 7 illustrates the PVDM architecture. Let Vand P denote
the set of all words and the set of all paragraphs occurring
in a text corpus, respectively. Each context word wi is given
as a one-hot encoded 1 × |V| vector xi at the input layer
along with one-hot encoded 1 × |P | vector xpi representing
the context paragraph pi the context words originate from.
The context words have a shared weight |V| × d matrix WI

connecting the input layer to the (hidden) embedding layer
containing d neurons, whereas the paragraph has its own
|P | × d weight matrix WP connecting it to the embedding
layer.

Since each word wi ∈ V is represented as a one-hot
encoded vector, wi corresponds to the ith row in WI , i.e.
WI
i,∗ = xiWI . Similarly, a paragraph pi ∈ P corresponds

to the ith row in WP , i.e. WP
i,∗ = xpiWP . During training,

PVDM adjusts the weight matrices WI and WP are updated
(along with WO) to maximize the objective function in

Eq. (11). In our experiments in Section 6 we train both
WP ’s and WI ’s vectors the same way as Le and Mikolov
[20], using stochastic gradient descent where the gradient
is obtained via backpropagation. After training, the ith row
in WI and WP is therefore a learned feature representation
of word wi ∈ V and paragraph pi ∈ P , respectively.
If two paragraphs contain the nearly the same text their
learned feature representations will be similar. Likewise, if
words often co-occur with the same words and in similar
paragraphs, their learned feature representations will be
similar.

5.2.2 Computing Word Probability
The input to the hidden layer in Fig. 7 is the feature repre-
sentations of the context words and the context paragraph
and the values at the hidden layer is the average of the input
feature representations [20].

Let f Iw denote the feature representation of a word
w ∈ V, and let fPp denote the feature representation
of a paragraph p ∈ P . Formally, given context words
(wt−c, . . . , wt−1, wt+1, . . . , wt+c) from a paragraph pt, the
values at the hidden layer are [26, 20]

h =
1

1 + 2c

(
fPpt +

∑
−c≤i≤c,i6=0

f Iwt−i

)
(12)

As illustrated by Fig. 7, there is a different d×|V|matrix
WO representing the connections between the hidden layer
and the output layer. Using these weights, a score ui is
computed for each word wi ∈ V in the output layer as [26]

ui = hWO
∗,i (13)

where WO
∗,i is the ith column of matrix WO . Finally, the

output layer illustrated in Fig. 7 computes the posterior
probability of each word wi ∈ V using the softmax func-
tion [20]:

P(wi | pt, wt−c, . . . , wt−1, wt+1, . . . , wt+c) =

exp(ui)∑|V|
−c≤i≤c,i6=0 exp(ut+i)

(14)

The denominator of Eq. (14) scales linearly with the size
of the vocabulary, usually tens of thousands of words [21,
20]. When training on large text corpora containing millions
of words, exact computation of the softmax becomes in-
tractable and therefore it is typically approximated [21, 20].
Approximation is unnecessary in our approach to feature
learning of edges, described in Section 7.3, since the vocab-
ulary contains just a few houndred words and is therefore
much smaller than that of typical text corpora from the
language modelling domain.

5.3 road2vec

In this section we introduce our feature learning framework
road2vec which learn feature representations of edges rep-
resenting road segments in road networks. The framework
is an adaption of the PVDM architecture. In language mod-
elling, the context is dependent on the text corpus, such as a
collection of documents. A challenge is therefore to generate
a meaningful corpus for road networks.

8

pt

x1

x2c

WO

..
.
..
.

Wp

..
.
..
.

WI

..
.
..
.

WI
..
.

Input Embedding Output

Fig. 7: An illustration of the PVDM architecture. Note that the matrix WI is duplicated for each word in the context, s.t.
each row yields a feature representation of each word in the vocabulary.

Intuitively, a road segment may be described by its
surrounding segments. For instance, a road segment is likely
in a city if surrounding segments are in a city. We therefore
model an edge as a neighborhood containing surrounding
edges analogue to a paragraph containing a collection of
words. The notion neighborhood is not limited to immediate
neighbors and we discuss neighborhood sampling strategies
in Section 5.3.1.

The word representation of each edge in a neighborhood
cannot be distinct for each edge, since this would limit co-
occurence by topology similar to existing feature learning
technique for graphs, as discussed in Section 1.2. We there-
fore assign a descriptor to each edge in the neighborhood
which acts as an intermediate feature representation. The
intuition is that edges which generate neighborhoods with
the same edge descriptors, will be given the same learned
feature representation.

The function δ : E → Σ assigns descriptors to edges
from a set of descriptors Σ. The descriptor of an edge must
be discrete s.t. it can be represented as a word, and topolog-
ically independent s.t. geodesically distant but similar edges
may be given theo same descriptor. To ensure topological
independence, we expect |Σ| � |E| s.t. each edge e ∈ E
in the neighborhood is not mapped to a distinct descriptor
allowing edges across the road network to have similar
neighborhoods.

We generate a corpus of edge neighborhoods s.t. each
edge has at least one neighborhood with vocabulary V⊆ Σ
and paragraphs P = E. From the perspective of language
modelling, an edge is analogue to a paragraph and a word
is analogue to a descriptor. Thus we can rewrite Eq. (11) to

1

T

T−c∑
t=c

log(P(eδi | e, eδi−c, . . . , eδi−1, eδi+1, . . . , e
δ
i+c)) (15)

where eδi = δ(ei).

In our experiments in Section 6 and Section 7, we simply
use the labels of an edge as its descriptor, i.e. δ = L. In this
case a descriptor (or word) is of an edge e is of the form

{category(e), limit(e), city(e), regulateds(e), regulatedt(e)}

e.g. {"motorway", 110, false, false, false}.
Using either of the corpus generation strategy described

in Section 5.3.1, the corpus contains |P | = 215009 edges and
|V| = 214 in our structural similarity experiment described
in Section 7.

5.3.1 Corpus Generation Strategies
We consider two corpus generation strategies: k-Neighbors
and k-Routes.

5.3.1.1 k-Neighbors
k-Neighbors is a simple corpus generation strategy based
on the idea that an edge is described by its surroundings. To
represent an edge e ∈ E, the k-Neighbors corpus generation
strategy therefore samples the set of all edges within a
geodesic distance of k for k ≥ 1 from e in random order
before mapping them to their descriptors. We denote the k
distance neighborhood of edge e as Nk

e . For k = 1,

N1
e = {e′ | e′ ∈ E, e and e’ are connected} ∪ {e}

otherwise, for k > 1,

Nk
e =

{e′ | e′ ∈ Nk−1
e , e′′ ∈ E, e’ and e” are connected} ∪Nk−1

e

The sampling is illustrated in Fig. 8 for edge e4 and k = 1,
where edges e ∈ N1

e4 are represented as solid lines.
In practice, the order of the edges in the neighborhood

is important and multiple neighborhoods may therefore
be sampled from the same edge, but in different order.
The complete k-Neighbors corpus generations strategy is
outlined in Algorithm 1. At Line 4 the neighborhood is

9

v3

v2

e1

v1

e2

e3

v4
e4

e5

v5
e6

e7

v6

e8

v7

e9

Fig. 8: All edges within a geodesical distance of k = 1 from
e4 represented as solid lines.

samples and then shuffled to ensure random order at Line 5.
At Line 6 the edges are mapped to their descriptors before
being added to the set of sentences used to represent the
edge e at Line 7. The procedure is repeated n times, sam-
pling a total of n neighbourhoods in different order. We refer
to Fig. 23 in Appendix B for a detailed illustration of the k-
Neighbors corpus generation strategy.

Algorithm 1 The k-Neighbors Corpus Generation Strategy.

Require: A time-dependent graph G = (V,E, T, L, l, w),
an edge e ∈ E to sample a sentence for, a distance to
neighbors d, number of sentences to sample n

1: function k-NEIGHBORS(e , n)
2: N← ∅
3: repeat n times
4: neighbors ← Nk

e

5: Shuffle(neighbors)
6: neighbors ← {δ(e) | e ∈ neighbors}
7: N← N∪ {neighbors}
8: return N

5.3.1.2 k-Routes
The k-Routes corpus generation strategy is based on vehicle
behaviour. For each edge, the possible routes or paths across
it are sampled as neighborhoods of the edge. As such
it is inherently ordered, as opposed to the unordered k-
Neighbors strategy.

Let e1 → e2 denote that e1 is connected to e2. We use the
notation e1

n−→ ed+1 = e1 → e2 → · · · → en+1 to denote that
e1 is transitively connected to ed+1 through n intersections.
A route e1

d−→ en+1 is equivalent to an ordered multi-set
{e1, . . . , en+1}.

We denote a route across an edge e with k previous and
following edges as

es−k
k−→ es

k−→ es+k = {es−k, . . . , es, . . . , es+k}

resulting in a 2k + 1 length route. For each edge e ∈ E, we
collect the set of all such routes Rk

es s.t.

Rk
e =

⋃
e′∈E

⋃
e′′∈E

{e′ k−→ e
k−→ e′′}

We can construct Rk
e by concatenating all combinations

of routes of length k ending in e and routes starting from e,
s.t. the concatenation of routes e′ k−→ e and e

k−→ e′′ yields
the route e′ k−→ e

k−→ e′′. We use a depth-first search to find

• the routes of length k starting from e, i.e. all routes
of the form e

k−→ e′ for all e′ ∈ E, and
• the routes of length k e, i.e. all routes of the form

e′
k−→ e for all e′′ ∈ E.

This results in a time complexity of O(2|E|conk+1) where
con is the maixmum number of connected edges of any edge
in the road network. Analytically, we have found con = 9 in
the road network of Northern Jutland used in our structural
similary experiments in Section 7, but on average each edge
is connected to just 3.38 edges.

Fig. 9 illustrates the different routes of k-routes of length
2k + 1 across e4 for k = 1. Observe that the k-Neighbors
and k-Routes collect the same edges. In fact, Nk

e =
⋃
r∈Rk

e
r.

The k-Routes differs by limiting the possibilities of co-
occurrence. For instance, the descriptors of edges e1, e5 and
e6 can co-occur when using k-Neighbors (see Fig. 8), but
cannot using k-Routes.

The complete k-Routes corpus generation strategy is
outlined in Algorithm 2. The loop at Line 3 iterates through
all routes in Rk

e and maps each edge in each route to its
descript at Line 4, before adding it to the set of mapped
routes R. Finally, R is returned at Line 6. We refer to Fig. 24
in Appendix B for a detailed illustration of the k-Routes
corpus generation strategy.

Algorithm 2 The k-Routes Corpus Generation Strategy.

Require: A time-dependent graphG = (V,E, T, L, l, w), an
edge e ∈ E, and a route length parameter k.

1: function k-ROUTES(e)
2: R← ∅
3: for each route ∈ Rk

e do
4: routeδ ← {δ(e) | e ∈ route}
5: R ← R ∪ routeδ

6: return R

6 TRAVEL TIME ESTIMATION

In this section we evaluate the general framework described
in Section 4 and our feature learning approach described in
Section 5 on the task of travel time estimation of trips. We
evaluate the performance of travel time prediction models
using Mean Absolute Percentage Error (MAPE) [27], defined
as

MAPE =
100%

n

n∑
i=1

|ai − pi
ai

| (16)

where n is the number of instances in the test set, ai is the
actual travel time of trip i and pi is the predicted travel time
given by a travel time estimation model.

The models under evaluation are all designed to estimate
an expected speed across individual edge-interval pairs in
the road network. These estimates are denormalized to a

10

v3

v2

e1

v1

e2

e3

v4
e4

e5

v5
e6

e7

v6

e8

v7

e9

(a)

v3

v2

e1

v1

e2

e3

v4
e4

e5

v5
e6

e7

v6

e8

v7

e9

(b)
v3

v2

e1

v1

e2

e3

v4
e4

e5

v5
e6

e7

v6

e8

v7

e9

(c)

v3

v2

e1

v1

e2

e3

v4
e4

e5

v5
e6

e7

v6

e8

v7

e9

(d)

Fig. 9: An illustration of the k-Routes sampling strategy from edge e4 with k = 1.

travel time. Given a road network G = (V,E, T, L, l, w), w
is therefore defined as

w(e, t) =
l

costn
(17)

where costn is the speed estimate of (e, t) provided by
a model, in accordance with the notation of our general
framework, see Section 4. If the model is not used with the
framework the number of observations n = 0.

After denormalization, the prediction is performed by
summing of the individual travel time estimations of edges
in a trip. This procedure is illustrated in Algorithm 3. The
time-dependent weight function w of the road network G
is supplied by a trained cost estimation model. At each
iteration, the traversal cost of the current edge in the trip
ei at time tc is updated. tc is initially set to the begin-
ning of the trip at Line 2 and is incremented based on
the predicted travel time at each iteration at Line 6. For
instance, if tc = 8:19 and w(ei, tc) equals 5 minutes, tc is
incremented s.t. tc = 8:24 at the next iteration. Note that
the prediction is based only on the start time of the trip and
the edges traversed, simulating the conditions of travel time
estimation during routing.

6.1 Dataset
We conduct our experiments on a dataset of 29411 trips
primarily from Northern Jutland provided by Andersen
et al. [4]. The trips are mapmatched to an OSM map of
the main road network of Denmark, which covers the road
segment categories found in Table 9 in Appendix E. These
categories covers 14.33% of the total segments. The trips

Algorithm 3 The procedure for estimating a trip as a sum of
edge-time predictions.

Require: A road network G = (V,E, T, L, l, w) where
w is supplied by a cost estimation model, a set
of trips Og recorded in G, and a trip trip =
((e1, t1, cost1), . . . , (en, tn, costn)) ∈ OG.

1: function TRIPPREDICTION(trip)
2: tc ← t1
3: trip_cost ← 0
4: for i = 1 to n do
5: trip_cost ← trip_cost + w(ei, tc)
6: Increment tc by w(ei, tc)

7: return trip_cost

Set No. of Trips

Training 17708 (60%)
Validation 2930 (10%)
Test 8773 (30%)

Total 29411 (100%)

TABLE 1: The distribution of trips in our dataset.

used therefore cover only the road segments in the OSM
map used. We use 60%, and 30% of the trips for the training
and test set, respectively; the remaining 10% of the trips are
set aside as a validation set to tune model hyperparameters.
The number of trips in the training, validation, and test sets
can be found in Table 1.

11

Category σ2

"Motorway" 12.092

"Motorway Link" 9.512

"Expressway" 8.422

"Highway" 7.712

"Main Road" 6.922

"Connecting Road" 6.802

TABLE 2: The value of σ2 depending on road category
used in the evaluation of the general framework for cost
estimation.

6.2 Baselines
We evaluate against two baseline models.

ExpandingSearch: The ExpandingSearch algorithm de-
scribed in Appendix D which is an aggregation model. It
is designed to predict an expected speed of an edge-interval
using 15 minute intervals [5].

LIN-ENG: The linear regression model using the en-
gineered features as described in Appendix C. As with
ExpandingSearch, LIN-ENG also predict for edge-intervals
using 15 minute intervals [6].

For ExpandingSearch we use the best parameters for
the minimum number of trips m = 10 and k = 1 for
the spatially k-nearest search based on evaluation of all
combinations of m ∈ {1, 2, 3, 4, 5, 10, 20, 50} and k ∈
{1, 2, 3, 4, 5, 10, 20, 50, 100, 200, 300, 400, 500, 1000}.

The LIN-ENG model is trained using the Huber loss
function [28] (described in Appendix H) and optimized
with Limited-Memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) [29] (described in Appendix K) for a maximum of
5000 iterations with early termination if the loss does not im-
prove more than 10−5. We use ε = 2.5 in the Huber loss, and
step size λ = 0.0001 for L-BFGS optimization. The choice
of these parameters is based on evaluation on the validation
set with all combinations of ε ∈ {2.0, 2.25, 2.5, 2.75, 3.0} and
λ ∈ {0.01, 0.001, 0.0001, 0.00001}.

6.3 Evaluation of the General Framework
In this section, we investigate how the general framework
may improve an existing estimation model. We therefore
apply the general framework to the LIN-ENG model, s.t.
LIN-ENG provides a prior cost estimate cost0, which is
subsequently updated based on observations in the training
set. We refer to this model as LIN-ENG-OBS.

We choose the expected variance of the mean σ2
0 =

8.0 based on evaluation on the validation set with 100%
of the training data using different values of σ2

0 ∈
{12, 32, 52, 82, 122, 152} on the validation set. We set the ex-
pected observation variance σ2 depending on road category
s.t. σ2 is the mean variance of all edge-interval pairs in the
training set with at least two trips across them. The values
of σ2 depending on category is shown in Table 2.

The results are shown in Fig. 10 using different per-
centages of the training set for prediction. As seen from
the figure, ExpandingSearch keeps improving when given
more training data, but has a significant increase in error
when just 20% of the training data is used. Although LIN-
ENG does not have this error increase, LIN-ENG does not
necessarily improve with more data and in fact deteriorates

16

18

20

22

24

20 40 60 80 100

M
A

PE

Training Data (%)

ES
LIN-ENG

LIN-ENG-OBS

Fig. 10: The MAPE for the LIN-ENG, LIN-ENG-OBS and Ex-
pandingSearch models on the test set when using different
percentages of the training data.

when increasing the training data used from 40% to 60% or
80%. This is due to the initial weight function w0 described
Section C.3, which is used during feature construction. w0

frequently inserts network averages into the contextual fea-
tures [6] and therefore introduces a lot of noise in the feature
representation. Consequently, there are more outliers in the
training set which leads to overfitting, as reflected by Fig. 10.

Although we have chosen the variance of the mean σ2
0

and observation variance σ2
0 in a very simple manner, the

general framework reduces the error of LIN-ENG as shown
on Fig. 10. Using the general framework to update the
estimations of LIN-ENG has two desirable effects:

1) estimation accuracy is increased s.t. the Mean Abso-
lute Percentage Error (MAPE) is decreased by 7.43%
percent (1.37 percentage points) with 100% of the
training data, and

2) it smoothens the error curve s.t. more data increases
estimation accuracy.

Even with just 20% of the training data, the general frame-
work reduces the error by 6.78% (1.38 percentage points).
Given that the update of the general framework is per-
formed in constant time, it may provide a cheap perfor-
mance increase to existing estimation models.

6.4 Evaluation of the Learned Features

We consider 4 permutations of learned features: the k-
Routes and the k-Neighbours corpus generation strategies
both with and without the edge in the context to evaluate
the effect of adding it. Excluding the edge in the context
is equivalent to the CBOW architecture, described in Ap-
pendix A, and only feature representations of descriptors
is performed. Since no feature representation of edge is
learned if the edge is omitted from the context, an edge
is instead represented by the learned representation of its
descriptor.

Initial experiments with the k-Neighbours corpus gener-
ation strategy both with and without the edge as context
showed that it performed significantly worse than both

12

baselines on the validation set and exhibited very high
variance due to the random sampling of the neighborhood.
The experiments in this section therefore includes only the
k-Routes corpus generation strategy with and without the
source edge context.

6.4.1 Models

We consider two linear models trained using learned feature
representations: LIN-EMB and LIN-EMB-EDGE. LIN-EMB
represents an edge by the learned feature representation of
its descriptor. LIN-EMB-EDGE represents an edge using the
learned feature representation of the edge.

Like LIN-ENG, both LIN-EMB and LIN-EMB-EDGE are
trained using the Huber loss function [28] (see Appendix H)
and optimized with L-BFGS [29] (see Appendix K). We use
early termination if the loss does not improve more than
10−5 during L-BFGS optimization.

All different combinations of parameters considered for
tuning of both LIN-EMB and LIN-EMB can be found in
Appendix I. Here we describe the parameters chosen based
on evaluation on the validation set using 100% of the
training set.

LIN-EMB: The feature representations of LIN-EMB is
learned by using stochastich gradient descent to update the
weights of a CBOW network, using the k-Routes corpus
generation strategy. For feature learning, we use parameters
k = 3, 100 iterations, learning rate 0.001, a context size
c = 1, and a hidden layer size of 400. For subsequent linear
regression we use the Huber loss function with ε = 1.1,
and 5000 iterations and step size of 0.0001 for L-BFGS
optimization.

LIN-EMB-EDGE: The feature representations of LIN-
EMB-EDGE is learned by using stochastich gradient descent
to update the weights the network, similar to the feature
representation used in LIN-EMB, but now for a PVDM
network. Again, the k-Routes corpus generation strategy is
used. For feature learning, we use parameters k = 1, 25 iter-
ations, learning rate 0.1, context size parameter c = 3, and
a hidden layer size of 400. For subsequent linear regression
we again use the Huber loss function with ε = 1.1, and 5000
iterations and step size of 0.0001 for L-BFGS optimization.

6.4.2 Results

Fig. 11 shows a comparison of the engineered and learned
features when used with a linear estimation model. The
figure shows that representing an edge by the learned fea-
ture representation of its descriptor (LIN-EMB) is superior
to using the feature representation of the edge (LIN-EMB-
EDGE) in a linear model. The edge source context does
not sufficiently describe the differences between each edge
and is in fact inferior to the engineered features. LIN-EMB
is superior to LIN-ENG, however, and thus the learned
feature representation of edge descriptors is superior to
the engineered features based on domain knowledge. In
addition, the learned feature representations are very robust
and barely decrease with less training data.

We investigated if the concatenation of the feature repre-
sentations could potentially decrease error in a linear model.
The model yielded a MAPE of 17.57% on the validation set
when using 100% of the training set, which is approximately

16

18

20

22

24

20 40 60 80 100

M
A

PE

Training Data (%)

LIN-ENG
LIN-EMB-EDGE

LIN-EMB

Fig. 11: A comparison of the engineered features of LIN-
ENG against the learned features with and without the edge
context.

the same as LIN-EMB on the validation set. The concatena-
tion therefore does not appear to decrease error significantly
from this initial experiment.

We speculate that the cause of the LIN-EMB-EDGE poor
performance is due to the simple linear model used. We
therefore performed an explorative experiment where a
neural network is trained to estimate edge-interval costs
using a single hidden layer of size 302. The median MAPE
of 5 runs on the test set is 17.24% when using 100% of the
training set and 24.47% when using just 20% of the training
set. Although it approximates the error of LIN-EMB, the
model is less robust to data sparsity. Summing or averaging
the edge descriptor and edge representations in subsequent
experiments did not improve the error significantly.

6.5 Updating the Learned Features using the General
Framework

In this section we evaluate the effect of combining learned
features with the general framework by making the LIN-
EMB model provide a prior cost estimate to the framework.
We refer to this model as LIN-EMB-OBS.

We choose σ2
0 = 4.0 based on evaluation on the vali-

dation set with 100% of the training data using different
values of σ2

0 ∈ {12, 32, 42, 52, 82, 122, 152}. As with LIN-
ENG-OBS in Section 6.3, we set σ2 depending on road
category according to Table 2.

The results are shown in Fig. 12. Using the general frame-
work with LIN-EMB decreases MAPE at all percentages of
training data, and by 3.73% at 100% of the training data (0.63
percentage points). Additionally, LIN-EMB-OBS performs,
relative to LIN-EMB, better with more training data.

6.6 In-Depth Model Analysis
In this section we give a more in-depth analysis of the
ExpandingSearch, LIN-ENG-OBS, and LIN-EMB-OBS mod-
els. Fig. 13 gives an overview of the estimation error of
all models for different training data percentages. In the
following we analyse how the ExpandingSearch, LIN-ENG-
OBS, and LIN-EMB-OBS models perform depending on trip
duration, trip category and at different times of day.

13

16

16.5

17

17.5

18

20 40 60 80 100

M
A

PE

Training Data (%)

LIN-EMB
LIN-EMB-OBS

Fig. 12: A comparison of the learned features with and
without the general framework.

16

18

20

22

24

20 40 60 80 100

M
A

PE

Training Data (%)

LIN-EMB
ES

LIN-ENG
LIN-ENG-OBS
LIN-EMB-OBS

Fig. 13: A comparison of all models.

6.6.1 Trip Categorization
We divide the trips into four mutually exclusive categories:
City, Municipality, Region, and Country.

City: City trips start and end within the same city.
Municipality: Trips, that are not city trips, which start

and end within the same municipality.
Region: Trips, that are not municipality trips, which start

and end within the same Danish administrative region.
Country: Trips that do not belong to any of the other

categories, and therefore start and end within the country of
Denmark.

The distribution of trips in the test set across the trip
categories can be seen in Table 3. As the table shows, more
than half of the trips are municipaliy trips.

6.6.2 Error by Trip Category
The purpose of this section is to give a broad overview of
how each model performs depending on trip category and
time of day. A more fine-grained analysis is presented in
Section 6.6.3.

Table 4 show a comparison of ExpandingSearch, LIN-
ENG-OBS, and LIN-EMB-OBS for the different trip cate-
gories for all times of the day. LIN-EMB-OBS achieve a

Category No. of trips

City 1845 (21.0%)
Municipality 4838 (55.1%)
Region 1654 (18.9%)
Country 436 (5.0%)

Total 8773 (100%)

TABLE 3: Distribution of trips in the test set across the trip
categories.

Category

Model City Municipality Region Country

ExpandingSearch 21.31 19.98 11.35 9.30
LIN-ENG-OBS 21.13 18.48 10.60 8.50
LIN-EMB-OBS 20.66 17.32 10.89 9.04

TABLE 4: MAPE of ExpandingSearch, LIN-ENG-OBS and
LIN-EMB-OBS for all trips categories.

lower MAPE in the city and municipality trips categories,
whereas LIN-ENG-OBS has a lower MAPE in the country
and region categories. The greatest difference between the
three models can be seen in the municipality category, where
LIN-EMB-OBS achieves a MAPE of 17.32% which is 1.16
percentage points lower than LIN-ENG-OBS and 2.66 per-
centage points lower than ExpandingSearch.

We discretize the time of day into 5 intervals to examine
how the MAPE for trips in each category is related to
the time of day they are begun. The intervals [7:30; 8:15)
and [15:30; 16:30) are peak hour intervals, and the inter-
vals [8:15; 15:30), [16:30; 22:00), and [22:00; 7:30) are off-peak
hours. These intervals are reasonable time discretizations
given the area we have data from, but more detailed plots
of error as a function of trip start time can be found in .

The trend from Table 4 continues within each time inter-
val; LIN-EMB-OBS is best at city and municipality trips and
LIN-ENG-OBS at region and country trips, and the largest
difference between the models occurs for municipality trips.
As an example, we show the MAPE for each category in the
interval [7:30; 8:15) in Table 5 the LIN-EMB-OBS. There are
two exceptions to this trend:

• LIN-EMB-OBS and LIN-ENG-OBS score the same in
country category between [15:30; 16:30) as shown in
Table 6, and

• ExpandingSearch scores the highest of all the mod-
els in the city and region categories for interval
[22:00; 07:30).

The latter is caused by a skew in the training data. As illus-
trated by Fig. 14, the majority of the trips in the training set
begin in the interval [4:30; 22:30). LIN-ENG-OBS and LIN-
EMB-OBS are therefore better fitted to this interval. Contrary
to the linear models, ExpandingSearch relies on aggregation
of observations and is therefore not affected by skews in the
training data. In addition, there is less congestion during the
night than mid day and therefore defaulting to use the speed
limit for estimation may be reasonably accurate. Tables for
[8:15; 15:30) and [16:30; 22:00) can be found in Appendix G.

14

0

5000

10000

15000

20000

25000

00:00
01:30

03:00
04:30

06:00
07:30

09:00
10:30

12:00
13:30

15:00
16:30

18:00
19:30

21:00
22:30

23:45

N
o.

of
O

bs
er

va
ti

on
s

Time of Day (HH:MM 24-hour clock)

Fig. 14: No. of observations as a function of the time of the
day with a time granularity of 15 min.

Category

Model City Municipality Region Country

ExpandingSearch 23.90 21.19 11.53 6.96
LIN-ENG-OBS 23.16 19.49 11.11 6.11
LIN-EMB-OBS 22.66 19.10 11.72 7.08

TABLE 5: MAPE of ExpandingSearch, LIN-ENG-OBS and
LIN-EMB-OBS for all trips categories between 07:30-08:15.

6.6.3 Error by Time of Day
Fig. 15 illustrates the MAPE of each model for each hour
of the day. LIN-ENG-OBS and LIN-EMB-OBS has between
[2:00; 4:00) compared to ExpandingSearch due to the skew
in the training data discussed in Section 6.6.2. As Fig. 15
illustrates, LIN-EMB-OBS performs the best of the models
at the hours with most trip data i.e. between [6:00; 22:00).
The same tendency can also be seen in Fig. 16. The figure
illustrates the MAPE of each trip for each model as a
function of the trips start time of the day. LIN-EMB-OBS
generally estimates less varying than the other 2 models
between [6:00; 22:00). Another version of the graph in Fig. 16
without scaling of the y-axis can be found in Appendix G.

Category

Model City Municipality Region Country

ExpandingSearch 20.53 21.40 9.86 9.08
LIN-ENG-OBS 20.47 19.87 9.23 8.23
LIN-EMB-OBS 20.21 19.31 9.66 8.23

TABLE 6: MAPE of ExpandingSearch, LIN-ENG-OBS and
LIN-EMB-OBS for all trips categories between 15:30-16:30.

Category

Model City Municipality Region Country

ExpandingSearch 19.58 15.56 11.19 8.58
LIN-ENG-OBS 21.04 15.24 11.24 7.98
LIN-EMB-OBS 20.28 14.95 11.45 8.43

TABLE 7: MAPE of ExpandingSearch, LIN-ENG-OBS and
LIN-EMB-OBS for all trip categories between 22:00-07:30.

10

15

20

25

30

35

40

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

M
A

PE

Clock (HH 24-hour clock)

LIN-ENG-OBS
LIN-EMB-OBS

ES

Fig. 15: MAPE as a function of the time of a day, for all trips.
The MAPE is calculated for each 1 hour interval during the
day.

6.6.4 Error by Trip Duration

Fig. 17 illustrates MAPE as a function of municipality trip’s
duration for the three models LIN-EMB-OBS, LIN-ENG-
OBS and ExpandingSearch. LIN-EMB-OBS estimates more
accurate at shorter duration trips than both of the baselines
and LIN-ENG-OBS more accurate than ExpandingSearch.
LIN-EMB-OBS and LIN-ENG-OBS are both comparable
at trips longer than 2 minutes. Observe, that Expand-
ingSearch’s estimates are in general more varying compared
to the other two models. Plots for the remaining categories
can be found in Appendix G.

6.6.5 Summary

LIN-EMB-OBS displays superior performance at all train-
ing data percentages when using all the test data. In our
analysis of the models error for specific trip categories
independent of time of day, LIN-EMB-OBS achieves the
lowest error in the city and municipality categories and
LIN-ENG-OBS in the region and country categories. Ex-
pandingSearch performs better than the LIN-ENG-OBS and
LIN-EMB-OBS models during the night when the amount
of data is low, despite being an aggregation model. This is
likely attributed to less congestion during the night than
mid day and therefore defaulting to use the speed limit
as the estimate may be reasonably accurate. LIN-EMB-OBS
achieved the highest MAPE in the two largest categories:
city and municipality. LIN-ENG-OBS achieved the highest
MAPE in the two remaining categories: region and country.

6.7 Computation Time Comparison

In addition to the error of the models, we investigate the
computation time of the different models on 20% and 100%
of the training data.

The estimation update incurred by the general frame-
work has constant cost and therefore there is no significant
difference in computation time for LIN-ENG and LIN-ENG-
OBS, but the computation time displays high variance since
the number of iterations required for convergence during

15

0

10

20

30

40

50

60

70

80

90

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

00:00

M
A

PE

Start Time (HH:MM 24-hour clock)

ES
Running mean over previous 10 points

(a) ExpandingSearch

0

10

20

30

40

50

60

70

80

90

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

00:00

M
A

PE

Trip Start Time (HH:MM 24-hour clock)

LIN-EMB-OBS
Running mean over previous 10 points

(b) LIN-EMB-OBS

0

10

20

30

40

50

60

70

80

90

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

00:00

M
A

PE

Trip Start Time (HH:MM 24-hour clock)

LIN-ENG-OBS
Running mean over previous 10 points

(c) LIN-ENG-OBS

Fig. 16: MAPE of each trip for the three models Expand-
ingSearch, LIN-EMB-OBS and LIN-ENG-OBS depending on
trips start time, with y-axis (MAPE) maxed at 90.

0

20

40

60

80

100

120

00:00
00:05

00:10
00:15

00:20
00:25

00:30
00:35

00:40
00:45

00:50

M
A

PE

Trip Duration (H:M)

ES
Running mean over previous 10 points

(a) ExpandingSearch.

0

20

40

60

80

100

120

00:00
00:05

00:10
00:15

00:20
00:25

00:30
00:35

00:40
00:45

00:50

M
A

PE

Trip Duration (H:M)

LIN-ENG-OBS
Running mean over previous 10 points

(b) LIN-EMB-OBS.

0

20

40

60

80

100

120

00:00
00:05

00:10
00:15

00:20
00:25

00:30
00:35

00:40
00:45

00:50

M
A

PE

Trip Duration (H:M)

LIN-EMB-OBS
Running mean over previous 10 points

(c) LIN-EMB-OBS.

Fig. 17: MAPE as a function of the duration of municipality
trips for the three models ExpandingSearch, LIN-EMB-OBS
and LIN-ENG-OBS.

16

L-BFGS optimization varies. We therefore report the mean
and standard deviation for 10 runs of LIN-ENG-OBS.

The spatial k-nearest search in the ExpandingSearch
model is delegated to a remote spatio-temporal database for
ease of implementation. An edge prediction using k-nearest
takes an arithmetic mean of 0.22 seconds. The arithmetic
mean of edges per trip in our test set is 43 with a standard
deviation of 46.79. Worst case, k-nearest needs to run two
times per edge, that is, for each predicate and therefore
takes (0.22 ∗ 46.49) ∗ 2 = 20.58 seconds for the average
trip. This incurs a significant overhead in network transfer
and therefore the computation time of the spatial k-nearest
search is not included in prediction time.

We measure the computation time required to perform
various parts of the experiments process for the various
models when using 20% and 100% of the training data.
Preprocessing includes preparing the dataset and transform-
ing edge intervals to features. For LIN-EMB it also includes
training the embedding.

6.7.1 Results

As shown in Table 8, the ExpandingSearch algorithm has
both the least amount of preprocessing time and training
time. Preprocessing consists of constructing the in-memory
graph representation for prediction later on and the model
has no training time since it is an aggregation models. Al-
most all computation time is therefore spent on prediction,
which increases by 41.06% when decreasing the training
data from 100% to 20%.

The LIN-ENG and LIN-EMB-OBS are both parametric
models and therefore require more time spent on prepro-
cessing and training, as evident from Table 8. In both cases,
the increase in preprocessing time is due to the construction
of the feature representations of the training set. Curiously,
both the preprocessing and feature learning of LIN-EMB
takes longer on average and displays larger variance when
using 20% of the training data as opposed to 100%. This
is contrary to LIN-ENG-OBS where the preprocessing time
increases with the amount of data, as we would expect,
and the variance is largely the same. We attribute this
discrepancy to other processes being run in parallel, when
measuring the preprocessing time of LIN-EMB using 20%
of the training data thus affecting the measurement in CPU
time, e.g. due to more CPU cache misses.

As shown in Table 8, LIN-ENG-OBS and LIN-EMB both
spent considerably less time on prediction than Expand-
ingSearch, but LIN-EMB is also considerably faster than
LIN-ENG-OBS. We attribute this difference in prediction
time to the on-the-fly feature representation construction
required when necessary to when summing up the predic-
tions. In the case of LIN-ENG, the constructing the features
requires several lookups into an in-memory representation
of the road network for on-the-fly feature construction,
whereas the learned feature representation requires just two
lookups, one for to construct the time feature and one to
retrieve the learned embedding. The difference in prediction
time of LIN-ENG-OBS using 20% and 100% of the training
data is due to the way zero observations are represented and
handled in our experimential framework.

6.7.2 Summary
Both the LIN-ENG-OBS and LIN-EMB models require more
time spent on preprocessing and subsequent training. Once
trained these models can be stored, however, and thus the
time required to answer routing requests is expressed by
their prediction time. In this regard, the ExpandingSearch is
inferior to LIN-ENG-OBS and LIN-EMB, since it is several
times slower at prediction time. In addition, the prediction
time of ExpandingSearch increases as the size of the training
set decreases, since the first search strategies are more likely
to fail. Although Table 8 shows that LIN-ENG-OBS has the
shortest total time, most of the total time spent by LIN-EMB
is spent on preprocessing, learning, and training which can
be done once. LIN-EMB is several times faster than LIN-
ENG-OBS at prediction time, but this is likely attributed
to the implementation of the on-the-fly feature construction
process in our experimential framework , since it could in
principle be cached in the same manner that the learned
feature presentations used in LIN-EMB are cached.

7 STRUCTURAL SIMILARITY OF EDGES

In addition to the travel time estimation experiment de-
scribed in Section 6, we investigate the capability of the
learned feature to capture structural similarity. We do this
by performing K-means clustering [30] (see Appendix L) on
the learned feature representations of edges. The hypothesis
is that edges which have similar roles in the road network
will appear in the same cluster.

We evaluate the clustering based on both cluster valida-
tion metrics and visual inspection of the clusters mapped to
the OSM map.

7.1 Dataset

The travel time estimation experiment described in Section 6
is limited to trips on the most important road segment
categories, described in Section 6.1, and due to memory
constraints, feature learning is also based on just these
road segments. In then structural similarity we remove the
restriction on road segment categories, but restrict the road
network to Northern Jutland, Denmark, which includes the
categories found in Table 10 in Appendix F. We learning
feature representations of edges and their descriptors based
on the OSM road network of Northern Jutland.

7.2 Cluster Validation Metrics

Cluster validation metrics are measures for the quality of
a cluster. The Calinski-Harabasz Index (CHI) [31] is an
internal cluster validation metric which has been shown
to be superior for choosing the number of clusters across
different datasets compared to other interval validation
metrics [32]. We therefore choose the number of clusters
K ∈ {8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40} for the K-means
clustering which yields the high CHI.

We use CHI to choose the number of clusters, where
CHI measures the ratio between cluster cohesion and cluster
separation where a higher CHI is better [31]. Cluster cohesion
is measured in terms of Within-Cluster Sum of Squares
(WCSS) and cluster separation in terms of Between-Cluster

17

Model Training Data Time Spent (seconds)

Preprocessing (Feature Learning) Training Predicting Total

ExpandingSearch 20% 2.54 0 13510.78 13513.32
100% 13.89 0 7962.98 7976.87

LIN-ENG-OBS 20% 302.77± 9.66 2086.04± 530.80 1227.71± 30.68 3616.53± 547.16
100% 960.73± 12.97 2121.24± 951.09 991.63± 12.76 4073.60± 960.41

LIN-EMB
20% 669.84± 170.73 (619.84) 4001.95± 126.84 166.86± 4.67 4838.67± 346.14

100% 521.55± 10.49 (354.93) 16634.71± 10.49 167.84± 3.64 17324.11± 24.64

TABLE 8: Computation time in seconds for different parts of the prediction process using 20% and 100% of the training
data.

Sum of Squares (BCSS). We therefore first define these
metrics.

Given a set of K clusters C = {C1, . . . , CK}, the WCSS
is defined as [31]

WCSS =
K∑
k=1

∑
xk∈Ck

||xk − µk||2 (18)

where || is euclidean distance, xk ∈ Ck is the learned feature
representation of an edge ek ∈ E and µk = 1

|Ck|
∑

xk∈Ck
xk

is the centroid of cluster Ck. WCSS is related to variance,
since it is a weighted sum of cluster variance.

The BCSS is defined as [31]

BCSS =
K∑
k=1

|Ck| · ||µk − µ||2 (19)

where µ = 1
|C|
∑

x∈C x is the mean of all learned feature

representations x ∈ C =
⋃K
k=1 Ck of edges e ∈ E.

Finally, the CHI is defined in terms of WCSS and BCSS
as [31]

CHI =
BCSS

K − 1

/
WCSS

N −K
(20)

where N = |
⋃K
k=1 Ck|.

7.3 Feature Representations
The number of distinct descriptors (214) and edges (215009)
in the dataset is similar to that of the road network used in
Section 6 (225 descriptors and 204778 edges). We therefore
reuse the parameters (Section I.2) for learning the represen-
tations using the k-Routes corpus generation strategy and
including the source edge contex.

We consider 3 feature representations of edges for clus-
tering.

DESCRIPTOR: The feature representation of an edge
is the learned feature representation of its descriptor. This
naturally implies that edges can be described by their de-
scriptor alone and that edges with the same descriptor are
identical.

EDGE: The feature representation of an edge is its dis-
tinct feature representation.

EDGE+DESCRIPTOR: The feature representation of an
edge is the sum of its EDGE and DESCRIPTOR repre-
sentation. Similar to the DESCRIPTOR representation, the
EDGE+DESCRIPTOR representation implies that edges are
similar if they have the same descriptor, but can be differen-
tiated due the contribution of the EDGE representation.

7.4 Analysis

The EDGE representation alone creates clusters that are not
cohesive or well-separated, an although the clusters appear
to capture some meaning, they are very noisy. We therefore
forego further analysis of clustering using the EDGE repre-
sentation.

7.4.1 Cluster Quality
Fig. 18 shows the CHI depending on the number of clusters.
The CHI when using just the learned feature representation
of a descriptor is erratic and appears to decrease as the
number of clusters increase. When using the concatenation
of the feature representations the CHI smoothly increases
as the number of clusters increase. This suggests that using
the concatenation can generate higher quality clusters than
simply the feature representation of the descriptor.

Plots for cluster cohesion (WCSS) and separation (BCSS)
can be seen on Fig. 35 in Appendix M.

7.4.2 Cluster Visualisation
We choose K = 35 for clustering with DESCRIPTOR repre-
sentations and K = 40 for clustering EDGE+DESCRIPTOR
representations based on the CHI score shown in Fig. 18.
We refer to this clustering as EDGE+DESCRIPTOR-40. Al-
though K = 12 has the highest CHI for clustering with
DESCRIPTOR representations, no meaningful clusters were
found during visual inspection. We therefore chooseK = 35
instead, the best cluster separation (see Appendix M), and
has more meaningful clusters upon visual inspection than
K = 12. We refer to this clustering as DESCRIPTOR-35.

Each of the clusters in DESCRIPTOR-35 and
EDGE+DESCRIPTOR-40 was inspected and we found
similar clusters using both representations. The following
categories of road segments clusters in one or few clusters,
we associate a color with each of these clusters:

Black motorways
Blue highways connecting provinces on the island of

Vendsyssel
Red the main roads through the city of Aalborg
Yellow roads going through city centers of smaller

towns only found by EDGE+DESCRIPTOR-40
Cyan residential road segments

7.4.2.1 Alborg
Fig. 19 visualizes the clustering of road segments in the
center of Aalborg along with the E45 motorway north of the
fjord. The main roads through the city center, e.g. Vesterbro,

18

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

90000

5 10 15 20 25 30 35 40

C
H

I

Number of Clusters

(a) Descriptor

0

2× 107

4× 107

6× 107

8× 107

1× 108

1.2× 108

1.4× 108

1.6× 108

1.8× 108

5 10 15 20 25 30 35 40

C
H

I

Number of Clusters

(b) Edge + Descriptor

Fig. 18: The CHI depending on the number of clusters using (a) the learned feature representation of an edge’s descriptor
(b) the concatenation of the learned feature representations of an edge and its descriptor.

are in the same cluster as the motorways for DESCRIPTOR-
35 and are therefore highlighted with black. In contrast,
EDGE+DESCRIPTOR-40 puts these into separate clusters,
with the exception of motorway segments close to cities. The
clusters appear virtually identical otherwise, with residen-
tial road segments giving access to houses being in separate
clusters. Although most of the residential road segments
(cyan) are placed within a single cluster, a few are contained
in other clusters. In total, they are spread across 2 clusters for
DESCRIPTOR-35 and 3 clusters for EDGE+DESCRIPTOR-
40 although there is no readily apparent difference between
the road segments.

7.4.2.2 Vendsyssel
Fig. 20 shows the clustering on most of Vendsyssel. Notice
again that motorway segments close to cities are grouped
with the main roads through the center of Aalborg, such
as the last part of the E45 motorway leading into Frederik-
shavn on the eastern coast and most of E39 north of Hjørring
(at the center top of the figure) leading up to Hirtshals (not
shown). The blue highways far from coasts are generally
within one large cluster for both DESCRIPTOR-35 and
EDGE+DESCRIPTOR-40 with few exceptions. Highways
close to coasts are in different, smaller clusters: 1 other for
DESCRIPTOR-35 and 3 others for EDGE+DESCRIPTOR-40.
DESCRIPTOR-35 clusters some of the highways with mo-
torway segments, such as the highway connecting Løkken
to Hjørring on the western coast and the highway going
southwest out of the illustration from Aabybro.

7.4.2.3 Small Towns
The EDGE+DESCRIPTOR-40 clustering identifies a cluster
unlike any found in DESCRIPTOR-35. The Yellow cluster
shown on Fig. 21 contains roads which go through smaller
towns, giving acess to residential areas. These road seg-
ments therefore appear to have the same role in the road
network. As can be seen on the figure, road segments
belonging to the same cluster can also be found in Aalborg
where they play a similar role. More figures can be found in
Fig. 40 in Appendix N.

7.4.3 Summary
The EDGE+DESCRIPTOR representation appears to capture
more meaningful clusters than DESCRIPTOR both in terms
of CHI and based on visual inspection where main roads
going through city centers are distinct from motorways
connecting larger cities. We primarily attribute this to the
DESCRIPTOR representation rather than the noisy EDGE
representation, which indicates that edges with the same
descriptor are closely related and that this relation is not
accounted for in the EDGE representation.

The DESCRIPTOR representation in particular appears
to reveal a pitfall of our feature learning approach since
we would not intuitively expect motorways, highways, and
main roads to be similar. The EDGE-DESCRIPTOR repre-
sentation displays the problem to a lesser extent, but still
clusters motorway segments and main roads through cities
together. The motorways close to cities co-occur with the
same descriptors as main roads in cities and thus yields
similar feature representations.

8 CONCLUSION

Routing algorithms rely on weighted graph representations
of road networks, but finding accurate weights for edges
or paths is not trivial. A number of weight assignment
models have therefore been proposed which can broadly be
categorised as aggregation models, which use aggregation
of GPS observations for estimation, and parametric models,
which fit a function to the feature representations of edges
and paths. This paper makes two main contributions which
can be used to improve estimation accuracy of both para-
metric and aggregation models: a general cost estimation
framework and road2vec, a framework for learning feature
representations of road segments in road networks.

8.1 General Cost Estimation Framework
Our general cost estimation framework is based in Bayesian
statistics and updates a prior cost estimate of an edge-
interval pair provided by a cost estimation model. The

19

(a) DESCRIPTOR-35

(b) EDGE+DESCRIPTOR-40

Fig. 19: Cluster visualization of the center of Aalborg and the E45 motorway going out from the city using (a) DESCRIPTOR-
35 and (b) EDGE+DESCRIPTOR-40.

20

(a) DESCRIPTOR-35

(b) EDGE+DESCRIPTOR-40

Fig. 20: Cluster visualization of most of Vendsyssel along with the city of Aalborg south of the fjord using (a) DESCRIPTOR-
35 and (b) EDGE+DESCRIPTOR-40.

21

(a) Voerså (b) Aalborg

Fig. 21: Cluster visualization of (a) the small town of Voerså and (b) the eastern outskirts of Aalborg.

framework uses any available observations of an edge-
interval pair to update a cost estimate of the edge-interval
pair provided by any given cost estimation model. The
observations are assumed to follow a Gaussian distribution,
and the update can be performed in constant time. The
framework allows parametric cost estimation models to
inherit a property of aggregation models: the updated cost
estimate of a parametric model approaches the population
mean as the number of observations goes towards infinity.

We evaluate the cost estimation framework on a travel
time estimation task where a prior estimate of an edge-
interval pair is provided by a linear cost estimation model.
The cost estimation framework decrease the MAPE by
7.43% (1.37 percentage points) using 100% of the training
set. Much of the improvement is gained with just 20% of the
training data, however, which decreases MAPE by 6.78%
(1.38 percentage points). Although we have only considered
updates of cost estimates for edge-interval pairs in this
paper, it can in principle be extended to cost estimation of
paths in general, and continuous time by sampling observa-
tions within some interval surrounding a point in time.

8.2 road2vec

In addition to our general cost estimation framework, we
present road2vec, an adaption feature learning techniques
from the domain of language modelling, which learn repre-
sentations of edges and edge descriptors (a representation
of an edge’s labels in our experiments). We replace the
engineered features of linear cost estimation baseline model
with feature representations learned using road2vec and
evaluate them both on a travel time estimation task. Using
the learned feature representations reduces the MAPE by
7.54% (1.39 percentage points). In addition, the learned
feature representations are very robust; reducing the train-
ing data from 100% to 20% increases the MAPE by just
1.0% (0.17 percentage points). Using the learned feature
representations with a linear model in conjunction with the
general cost estimation framework yields the most accurate
model with a MAPE of 16.41%: a 9.39% (1.70 percentage

points) lower MAPE than a baseline aggregation model
and a 10.99% (2.03 percentage points) lower MAPE than
a baseline parametric model. After tuning, the learned fea-
ture representations for the model are learned in under 10
minutes, without any need for domain knowledge.

We also investigate the learned feature representations
capability to capture structural similarity in road networks
by using K-means clustering to find meaningful clusters on
the road network of Northern Jutland, Denmark. The qual-
ity of the clusters are measured using Calinski-Harabasz
Index (CHI) and produce both coherent and well-separated
clusters. Visualizing the clusters on the road network of
Northern Jutland revealed several clusters containing struc-
turally similar road segments, such as a cluster for im-
portant main roads in large towns, a cluster containing
motorway segments, and a cluster containing roads through
the town center of smaller towns. The clusters still contains
some noise, however: motorway segments near cities are
clustered with segments of important main roads in large
towns even though they display no apparent similarity.
This is likely because spatially close edges will generate
similar neighborhoods and thus be given similar feature
representations.

The learned feature representation of edges alone proved
inadequate in both the travel time estimation task and struc-
tural similarity task. The learned feature representations of
edges are evaluated using a non-linear model. Although
the non-linear model makes the feature representations of
edges competitive with the feature representation of the
edge descriptors using 100% of the dataset, the feature rep-
resentation is not as robust to data sparsity. In the travel time
estimation task using the learned feature representation of
an edge descriptor as the feature representation is superior,
and their concatenation does not appear to lead to a decrease
in estimation error with a linear model.

Representing an edge as a combination of its learned fea-
ture representation and the feature representation of its edge
descriptor proved superior in the structural similarity task.
The combined representation yielded better cluster cohesion
and separation than using either the edge representation

22

or edge descriptor representation in isolation and found
more meaningful clusters. The closest competitor is the edge
descriptor representation. This suggests that the inherent
similarity between edge descriptors is not captured by the
learned edge representation and its expressivity in isolation
is therefore limited.

9 FUTURE WORK

A natural extension to the general cost estimation frame-
work is to update the cost estimation of an edge-interval
pair not only based on its own observations, but also that of
adjacent edges or intervals. In a sense, this would resemble
the ExpandingSearch algorithm, the baseline aggregation
model used in our experiments.

The k-Routes corpus generation strategy for road2vec
proved the most reliable and the most accurate on the
travel time estimation task. It is therefore compelling to
utilize the trips in the training set for corpus generation
in some sense. The challenge is that not all edges or edge
descriptors are guaranteed to occur in a training trip and
they can therefore not be used in a straight-forward manner
to generate representations of all edges in a road network.

Another important aspect of corpus generation is the
choice of descriptor, but it is not clear what constitutes a
good descriptor beyond the basic requirements that they
must be discrete, topologically independent, and not be
distinct for each edge in a road network. Further research
in this direction is therefore of interest.

In our adaption of the PVDM architecture to feature
learning in road networks, we use edges as the analogy to
paragraphs. The feature representation of an edge therefore
captures distinguishing characteristics local to the edge,
as demonstrated by the results of the structural similarity
task. In the same manner, using a region as the analogy to
paragraphs will yield feature representations which capture
the distinguishing characteristics of a region. Using such a
representation of a region may allow a regression model to
account for regional differences in traffic, such as different
peak hours.

Finally, classification techniques from the language mod-
elling domain, such as word averages [20], may also prove
applicable to the road network domain. Using an average of
learned edge representation may be used to represent any
path or route in a road network.

23

APPENDIX A
CONTINUOUS BAG OF WORDS

This section contains a description of the Continuous Bag
of Words (CBOW) architecture for learning of feature rep-
resentations of words. The PVDM described in Section 5.2
is an extension of the CBOW model and there is therefore
a significant amount of overlap between this section and
Section 5.2. We have however included it for documentation
purposes, since the CBOW model is used in the travel time
experiment of Section 6.

CBOW is a well-known neural network architecture
for learning feature representations of words [20]. CBOW
predicts a word based on its context: the c previous and
future words in a sentence [20]. As an example, consider the
sentence illustrated in Fig. 6. In the CBOW architecture the
middle word "a" is predicted based on its context. If c = 2
the context of "a" is ("This", "is", "short", "sentence").

Fig. 22 illustrates the CBOW architecture. Each context
word wi is represented as a one-hot encoding xi or 1 ≤ i ≤
2c. Therefore each context word requires as many neurons in
the input layer as there are words in the vocabulary V. The
hidden layer size is set to the desired dimensionality d of the
learned feature representations. Finally, the output layer has
a neuron for each word in the vocabulary. The connections
between the input layer and the embedding are represented
by a |V| × d matrix WI . Similarly, the connections between
the embedding layer and the output layer are represented
by a d × |V| matrix WO . The feature representation of a
word wi is the ith row in WI .

Formally, CBOW maximizes

1

T

T−c∑
t=c

log(P(wt | wt−c, . . . , wt−1, wt+1, . . . , wt+c)) (21)

where c is the size of the context.
The values of the neurons in the neural network layers in

the CBOW architecture can be written as a matrix product.
Let xi denote the one-hot encoding of word wi ∈ Vas a 1×
|V| row vector xi = (x1, . . . , x|V|) where xi = 1 and xj = 0

if j 6= i. Let WI be the V× d weight matrix connecting a
context word in the input layer to the embedding layer with
d neurons. The feature representation of wi is then xi(WI)T

which is equivalent to the ith row of WI denoted as [26]

(vIw1
)T = xi(WI)T (22)

The representation of the context words at the hidden
layer is simply an average of the vectors in the context [26].

h =
1

2c
(WI)T (x1 + x2 + · · ·+ x2c)

=
1

2c
((vIw1

)T + (vIw2
)T + · · ·+ (vIw2c

)T)
(23)

where 2c is the number of words in the context.
Let WO be the d × V weight matrix connecting the

embedding layer to the output layer. A score uj for each
word wj ∈ V can be calculated as [26]

uj = (vowj
)Th (24)

where vowj
is the jth column of matrix WO.

Finally, the probability of a word at the output layer
can be computed by applying the softmax function to the
scores [26]. Formally,

P(wt | wt−c, . . . , wt−1, wt+1, . . . , wt+c) =

exp(ut)∑|V|
−c≤i≤c,i6=0 exp(ut+i)

(25)

APPENDIX B
CORPUS GENERATION STRATEGIES EXAMPLES

An illustration of the k-Neighbor and k-Routes strategies
are shown in Fig. 23 and Fig. 24

APPENDIX C
LINEAR MODEL FOR TRAVEL TIME ESTIMATION

Fruensgaard et al. [6] engineer a set of features for the
purpose of training a linear regression model to estimate
travel times for edges in a road networks to be used as
weights. The model outperformed an existing baseline [6].
These features represent edge-interval pairs, rather than
individual edges, to support uni-variate models. In this sec-
tion, we describe the representation of these features, which
we categorize as either intrinsic or relational, borrowing the
terminology from Neville and Jensen [33].

C.1 Intrinsic Features
Intrinsic features refer to characteristics of an edge-interval
pair in isolation. The intrinsic features of an edge-interval
pair is a combination of the intrinsic features of the edge
and the interval.

The intrinsic features of an edge are in our case synony-
mous its labels. As in previous work [6], map data from
OSM [22] and PlansystemDK [23] is used to derive features
of an edge from its corresponding road segment. These
features are

• the category of a road segment,
• the speed limit of a road segment,
• whether or not the road segment is within a city zone,

and
• whether or not the road segment is connected to an

intersection regulated by traffic lights.

The category of an edge is simply represented as a one-
hot encoding indicating which of the 6 categories see Para-
graph C.4.1.2 an edge is classified. This representation con-
veys that there is no definition of closeness between two
categories, i.e. main road is not more similar to a highway
than a motorway is. Since an edge has exactly one category,
the sum of these values is always one.

The speed limit is simply its integer value, but may be
missing. In that case, we use a substitute speed limit derived
from other attributes of the edge, based on OSM recommen-
dations [34]. Whether the edge is within a city zone or not
is represented by a single value of either 0 (not within a
city zone) or 1 (within a city zone). The representation of
whether an edge is connected to an intersection regulated
by traffic lights used to be represented similarly (by a single

24

x1

x2

x2c

WO

..
.
..
.

WI

..
.
..
.

WI

..
.
..
.

WI
..
.

Input Embedding Output

Fig. 22: An illustration of the CBOW architecture. Note that the matrix WI is duplicated for each word in the context, s.t.
each row yields a unique feature representation of each word in the vocabulary.

(True, True, motorway link, 60, False)Words: (False, True, motorway, 110, False) (True, False, motorway, 130, False) (False, False, motorway, 130, False) (False, False highway, 80, True)

Shuffle

"(False, True, motorway, 110, False),Sentence : (True, False, motorway, 130, False), (False, False, motorway, 130, False), (False, False highway, 80, True), (True, True, motorway link, 60, False)"

v3

v2

e1

v1

e2

e3

v4
e4

e5

v5
e6

e7

v6

e8

v7

e9

eδ1

eδ3 eδ4
eδ6 eδ8

Fig. 23: An illustration of the mapping from graph to a sentence using the k-Neighbors sampling strategy for edge e4 with
a k = 1. The labels of a word/descriptor are (has traffic light begin, has traffic light end, category, speedlimit, within city).
The words are shuffled before the sentence construction.

value, 0 or 1), but instead we now represent it as two values;
one for each end of the edge. This allows us to distinguish
which end of the segment that is connected to a traffic light
regulated intersection.

Intervals are enumerated sequentially from 0 to g − 1,
where g is the number of intervals the time of day has
been split into, indicating the number of intervals since
midnight. Previously, an interval was simply represented
by its enumeration [6]. This representation is inherently
linear, however it cannot represent that 11 PM and 1 AM
are equally distant from midnight; that is, the distance
function from midnight is not symmetric. This representation
may also be used with a continuous, rather than discrete
representation of time by substituting g with the number
of hours per day and i with hours since midnight, e.g. 2.1.

Fig. 25 shows that using this feature representation of time,
the Euclidean distance from midnight is symmetric around
midday (12).

C.2 Relational Features

A relational feature summarize characteristics of related
edge-intervals, in this case edge-intervals that are spatially
adjacent, i.e. edge-intervals of a connected edge with the
same interval, or temporally adjacent, i.e. edge-interval on the
same edge with a different interval.

The expectation is that the speed of an edge-interval
pair (e, I) is correlated with that of its spatially adjacent
edge-interval pairs, given they are reasonably similar. For
instance, if e represents a motorway and a connected edge

25

v3

v2

e1

v1

e2

e3

v4
e4

e5

v5
e6

e7

v6

e8

v7

e9

"(True, True, motorway link, 60, False),Sentence: (True, False, motorway, 130, False), (False, False highway, 80, True)"

eδ1

eδ4
eδ8

(a)

v3

v2

e1

v1

e2

e3

v4
e4

e5

v5
e6

e7

v6

e8

v7

e9

"(True, True, motorway link, 60, False),Sentence: (True, False, motorway, 130, False), (False, False, motorway, 130, False)"

eδ1

eδ4

eδ6

(b)

v3

v2

e1

v1

e2

e3

v4
e4

e5

v5
e6

e7

v6

e8

v7

e9

"(False, True, motorway, 110, False),Sentence: (True, False, motorway, 130, False), (False, False, motorway, 130, False)"

eδ3 eδ4

eδ6

(c)

v3

v2

e1

v1

e2

e3

v4
e4

e5

v5
e6

e7

v6

e8

v7

e9

"(False, True, motorway, 110, False),Sentence: (True, False, motorway, 130, False), (False, False highway, 80, True)"

eδ3 eδ4
eδ8

(d)

Fig. 24: An illustration of the mapping from graph to sentences using the k-Routes sampling strategy for edge e4 with a
k = 1. The labels of a word/descriptor are (has traffic light begin, has traffic light end, category, speedlimit, within city).

26

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 3 6 9 12 15 18 21 24

Eu
cl

id
ea

n
D

is
ta

nc
e

fr
om

M
id

ni
gh

t

No. of Intervals since Midnight

Fig. 25: Euclidean distance from the representation of mid-
night for different 1 hour intervals.

e′ represents a turnoff, (e, I) and (e′, I) are not expected
to be similar. The speed of similar spatially adjacent edge-
intervals is summarized in the spatial context.

The relational feature which summarizes the speed of
spatially adjacent edge-interval pairs is referred to as the
spatial context.

Definition C.1. Given an unweighted road network G=(V, E, T,
L, l , w), an initial weight function w0, a similarity measure
Definition C.1, and a similarity threshold ω, the spatial context of
(e, I) defined as

SpatialContext(e, I, sim) =

〈{w0(e′, I)|e′ ∈ E ∧ sim((e, I), (e′, I)) ≥ ω}〉 (26)

where sim : E × T × E × T → R+ is a similarity measure.

The initial weight function w0 referred to in Defini-
tion C.1 is an initial estimate of w. The initial weight
function used in this work is from our previous work [6] and
assigns an initial weight to an edge-interval pair (e, I) based
trajectories crossing the (e, I) if available and otherwise uses
network averages depending on its labels and the interval
I . We refer to Section C.3 for details.

The relational feature which summarizes the speed of
temporally adjacent edge-interval pairs is referred to as the
temporal context.

Definition C.2. Given a discretized road network Gg =
(V,E, Tg, L, l, w), an initial weight function w0 the temporal
context is a set

TemporalContext(e, I) =

{w0(e, I ′)|(e, I ′) ∈ E × Tg \ {I}} (27)

We have made two modifications to Definition C.2 com-
pared to previous work. First, the temporal context was
previously defined with a size parameter, but parameter
tuning showed higher values of this parameter (up to g) are
always better. Second, given a large enough size parameter
≥ g, an edge-interval pair (e, I) the temporal context could
contain w0(e, I). Due to the choice of w0 (see Section C.3),
which is based on trajectories from the training set, the value

of w0(e, I) was always an aggregate of the trajectories found
in the training set and would lead to overfitting.

C.3 The Initial Weight Function

In this section we describe the initial weight function w0

used for computing the spatial and temporal context (see
Section C.2) first defined in our previous work [6]. Although
the weight function is the same, this section is a complete
rewrite of the original description.

The initial weight function uses aggregates of decreas-
ingly relevant trips in the road network. We therefore define
the initial weight function in terms of a network average
function.

Given a discretized graph Gg = (V,E, Tg, L, l, w), let
the mean of an edge e across a set of intervals I ⊆ Tg be
computed as

edge_meanGg

OGg
(e,I) =〈{

〈{cost | (e, t, cost) ∈ O′G(e, I)}〉 | I ∈ I

}〉
such that each interval is weighted evenly in the mean.

Definition C.3. A network average function for a set of trips O
observed in a discretized road network Gg = (V,E, Tg, L, l, w)
is a function

avg
Gg

OGg
(E′,I) = 〈{edge_mean(e,I) | e′ ∈ E′}〉

where e ∈ E, I⊆ Tg , and E′ ⊆ E.

Note that avgGg

OGg
(E′,I) is undefined if no there are no

trips for any edge e ∈ E′ within any of the intervals I ∈ I.
The most relevant trips of an edge is those that have

been observed on it, but such trips are not guaranteed to
exist, i.e. OG(e) = ∅. We therefore define two suitable sets
on which to perform network averages. We first consider the
set Ee1 ⊆ E, which is the set of edges which has the same
category, speed limit, and city zone labels as e ∈ E.

Ee1 =

e′
∣∣∣∣∣∣∣∣

e′ ∈ E,
l(e) = (c, l, tstart, tend, z),

l(e′) = (c, l, t′start, t
′
end, z)

Next, we consider a slightly less restrictive set Ee2 ⊆ E,

which is the set of edges with the same speed limit and city
zone labels as e ∈ E.

Ee2 =

e′
∣∣∣∣∣∣∣∣

e′ ∈ E,
L(e) = (c, l, tstart, tend, z),

L(e′) = (c′, l, t′start, t
′
end, z)

We can now define the initial weight function.

27

Definition C.4. Given a distrectized road network Gg =
(V,E, Tg, L, l, w) and a set of observed trips OG, the initial
weight function w0 is defined as

w0(e, I) =

avgGOG
({e}, {I}) if avgGOG

({e}, {I}) is defined
avgGOG

({e}, Tg) else if avgGOG
({e}, Tg) is defined

avgGOG
(Ee1 , {I}) else if avgGOG

(Ee1 , {I}) is defined
avgGOG

(Ee2 , {I}) else if avgGOG
(Ee2 , {I}) is defined

limit(e) otherwise

When using w0 to assign an initial weight to an edge e
for an interval I , the intution is that the most relevant trips
are those recorded on e during I , then those recorded on
e throughout the day, then trips from edges similar to e.
Finally, if all else fails, the speed limit of e is simply used,
which ensures that w0 is complete, i.e. it can assign a weight
to any edge and interval.

C.4 Feature Representations

This section describes the vector representations of the
intrinsic and relational features and is largely the same as
in [6] with only minor rewrites. We have included it here for
completeness.

C.4.1 Intrinsic Features
An edge-interval in our graph has the following intrinsic
features:

1) Category - String
2) Speed Limit - Integer
3) Traffic Signal - Boolean
4) Within City - Boolean

C.4.1.1 Category
The categories we consider are the following (OSM type
mapping shown in Table 9):

• motorway
• motorway link
• expressway
• highway
• main road
• connecting road

We represent the category feature as a binary vector of
length six, where each binary value, 0 or 1 represents
membership to a category. This representation conveys that
there is no definition of closeness between two categories,
i.e. we cannot say that a main road is more similar to a
highway than a motorway is. Since an edge has exactly one
category, the sum of these values is always one.

Formally the feature representation of a category is

φc(e, t) =

(1, 0, 0, 0, 0, 0) if e.category is motorway

(0, 1, 0, 0, 0, 0) if e.category is motorway link

(0, 0, 1, 0, 0, 0) if e.category is expressway

(0, 0, 0, 1, 0, 0) if e.category is highway

(0, 0, 0, 0, 1, 0) if e.category is main road

(0, 0, 0, 0, 0, 1) if e.category is connected road

C.4.1.2 Speed Limit
The set of speed limits consists of all possible 13 speed
limits: U , 15, 20, 30, 40, 45, 50, 60, 70, 80, 90, 110, and
130, where U indicates an unknown speed limit. Speed limit
is given in km h−1. We use the OSM [34] rules encoded in
SPEEDLIMIT on Line 1 to 5 function in Algorithm 4 to assign
a speed limit in case of an unknown speed limits, yielding 12
unique speed limits. We encode the speed limit as a vector
of length one containing a single integer value, the speed
limit.

C.4.1.3 Traffic Signal and Within a City Zone
We include features to represent that a traffic signal is within
10 meters of an entire edge and whether the segment is
within a city zone. We represent each of these values as a
binary vector of length one with a binary value of 1 or 0. We
define

φts(e, t) =

{
1 if traffic_signal(e)

0 otherwise
(28)

and

φwc(e, t) =

{
1 if e.within_city(e)

0 otherwise
(29)

C.4.2 Relational Features
In this section we describe the relational features which are
based on connected edges and adjacent intervals. We focus
on the temporal and spatial context of an edge-interval,
which we define below. The relational features we have
chosen for this work are motivated by the correlations found
in Fruensgaard et al. [6].

C.4.2.1 Temporal and Spatial Context
The temporal context is based on the fact that traffic from
one point in time flows into the next and the correlation
between time intervals found in [6].

We define the temporal context as

Definition C.5. Given an edge-interval (e, t) and the i-adjacent
intervals to t (ti,p, . . . , t1,p, t1,s, . . . , ti,s) where p is the prede-
cessor and s is the successor, which are the previous and following
intervals respectively,

context iT (w0 , e, t) =(w0 (e, ti,p), . . . ,w0 (e, t1 ,p),

w0 (e, t1 ,s) . . . ,w0 (e, ti,s))

where w0 is a complete weight function.

The challenge is that we do not have an accurate com-
plete weight function. We therefore instead use an estimate
of the complete weight function instead. We will describe
how we compute this estimate in Section C.1.

In [6] there is a strong correlation between the speeds
of connected edges. We therefore encode the speeds of con-
nected edges as the spatial context of an edge-interval pair.
The spatial context for an edge-interval pair (e, t) ∈ E×T is
a singleton given by

Definition C.6.

contextpredS (w0 , e, t) = (
∑
e′∈E′

w0(e′, t)

|E′|
)

where pred : E × E → {true, false} is a predicate function, w0

is a total weight function, and E′ = {e′ ∈ E|pred(e, e′) = true}

28

In other words, we calculate the arithmetic mean of
speed at time t of all connected edges that fulfill the predi-
cate pred . The predicate function allows some flexibility for
the spatial context. We may for instance only consider edges
e′ connected to e with the same road category and speed
limit. As with the the temporal context, w0 is not given.

APPENDIX D
THE EXPANDINGSEARCH ALGORITHM

In this section we describe the ExpandingSearch algorithm
by al. [5] shown in Algorithm 4. The algorithm takes as input
an edge-interval (e, t) ∈ E × Tg and returns the cost of
traversing edge e at time t. ExpandingSearch assume high
spatial and temporal autocorrelation in the road network.
The first part of this section gives a description of the
algorithm, followed by a thorough explanation.

Algorithm 4 The ExpandingSearch algorithm.

Require: A time-dependent graph G = (V,E, T, L, l, w), a
target edge e ∈ E to find a cost for, an interval t ∈ Tg
where time granularity g ∈ R+, an integer k ∈ N+ used
for KNearest, two predicates pred1, pred2 : E × E →
{true, false} and a minimum number of trips m ∈ N+

Ensure: A weight assignment for (e, t) ∈ E × Tg
1: function EXPANDINGSEARCH(e , t)
2: i← 0
3: repeat
4: i← i+ 1
5: until nil 6= STRATEGY(i, e, t)
6: return STRATEGY(i, e, t) · length(e)

1: function STRATEGY(i, e, t)
2: if i = 1 then return TEMPORAL(e, t)
3: else if i = 2 then return CONNECTED(e, pred1)
4: else if i = 3 then return KNEAREST(e, pred1 , k)
5: else if i = 4 then return CONNECTED(e, pred2)
6: else if i = 5 then return KNEAREST(e, pred2 , k)
7: else return SPEEDLIMIT(e)

1: function SPEEDLIMIT(e)
2: if speed_limit(e) 6= 0 then return speed_limit(e)
3: else if within_city(e) then return 50
4: else if category(e) = "motorway" then return 130
5: else return 80

D.1 Description
ExpandingSearch invokes, in predefined order, six different
strategies until one returns a cost of (e, t). The first strategy
searches for temporally close trips, if the strategy fails, the
search is expanded to search for spatially close trips. In
case all previous strategies fail, the algorithms will return
a predefined cost based on e’s .

D.2 ExpandingSearch Explained
On Lines 3 to 5, the algorithm calls one strategy after another
until a speed of (e, t) is returned, such that the cost of (e, t)
can be inferred.

The function STRATEGY represents an implicit distance
metric or search area from the edge e to some trips. Each

strategy outlined in function STRATEGY considers trips
across increasing distance. In other words, there is no ex-
plicit distance metric; it is implied by the ordering of the
strategies and their execution.

The first strategy TEMPORAL is invoked on Line 2 in
Strategy , and is shown in detail in Algorithm 5. TEMPORAL
performs a temporal search on the specified edge e. At
Line 2 the current interval to search I is initially set to t.
At Line 5 the function

get_trips(e, I) =

{trip | trip = (e, t, cost) ∈ OG(e) ∧ t ∈ I} (30)

is invoked, returning all trips that has occurred over the
given edge e during the given interval I . If the returned
number of trips is greater than or equal to m, then the mean
cost of the trips inm is returned. This mean cost is computed
as

trip_mean(e, trips) =

1

|trips|
∑

trip∈trips

∑
(e,t,cost)∈trip

length(e)

cost
(31)

on Line 8. If the number of trips is belowm, then the interval
is expanded on Lines 9 to 11.

Algorithm 5 The temporal search strategy invoked by the
ExpandingSearch algorithm.

1: function TEMPORAL(e, t)
2: I ← t
3: trips ← ∅
4: repeat
5: trips ← get_trips(e, I)
6: start ← I .start ; end ← I .end
7: if |trips| ≥ m then
8: return trip_mean(trips)

9: start ← predecessor(I)
10: end ← successor(I)
11: I ← [start; end)
12: until I .end < I .start
13: return nil

The temporal search fails if less than m trips have
occurred on the edge. In that case, the algorithm expands
the search spatially by searching for trips on nearby similar
edges. The spatially search is invoked by calling either
CONNECTED or KNEAREST at Lines 3 to 6 in STRATEGY of
Algorithm 4. The functions are called with one of the two
globally specified predicates pred1 or pred2 where pred1
is expected to be more strict than pred2. KNEAREST and
CONNECTED are both defined in Algorithm 6.

The CONNECTED function finds all edges connected to e
with at least m trips across that fulfil the predicate pred at
Line 2, by calling function

get_connected_edges(e,m, pred) ={
e′|e′ ∈ E ∧ connected(e, e′)∧
|Oe| ≥ m ∧ pred(e, e′)

}
(32)

29

If any connected edges are found, the mean speed of the
edges is calculated and returned at Lines Line 4 and Line 6
according to function

edge_mean(E′) =
1

|E′|
∑
e∈E′

trip_mean(e,OG(e)) (33)

If any trips has occurred on edge e, i.e. |Oe| > 0, these are
included in the mean at Line 4.

KNEAREST is identical to CONNECTED, except instead of
storing connected edges in E′ at Line 9, the k spatially near-
est edges with at least m trips that fulfil the input predicate
pred. These are returned by the function get_k_nearest are.

Algorithm 6 The spatial search strategies invoked by the
ExpandingSearch algorithm.

1: function CONNECTED(e, pred)
2: E′ ← get_connected_edges(e,m, pred)
3: if |E′| > 0 ∧ |Oe| > 0 then
4: return edge_mean(E′ ∪ {e})
5: else if |E′| > 0 ∧ |Oe| = 0 then
6: return edge_mean(E′)
7: else return nil
8: function KNEAREST(e, pred)
9: E′ ← get_k_nearest(k, e,m, pred)

10: if |E′| > 0 ∧ |Oe| > 0 then
11: return edge_mean(E′ ∪ {e})
12: else if |E′| > 0 ∧ |Oe| = 0 then
13: return edge_mean(E′)
14: else return nil

We extend the ExpandingSearch algorithm slightly in
Algorithm 4 by adding the function Speedlimit , s.t. it
defaults to the speed limit of the edge e if m trips are not
found by the preceding steps. This can happen

• if the number of trips across edge e is smaller than m
and

• there are no connected or nearby edges withm across
them who fulfil the pred1 or pred2 .

Defaulting to the speed limit ensures that the Expand-
ingSearch algorithm is complete; i.e. it can assign a weight
to any edge-interval.

The speed limit may also be missing, however. We there-
fore assign a speed limit according to the recommendations
of OpenStreetMap [22], as encoded in function SPEEDLIMIT
in Algorithm Algorithm 4.

APPENDIX E
OSM TYPES

Table 9 shows the mapping between road types and the
corresponding type in OSM.

APPENDIX F
ALL OSM CATEGORIES FOR NORTHERN JUTLAND

Table 10 shows all road segment categories for Northern
Jutland.

Segment Type OSM Type

Motorway motorway

Motorway Links motorway_link

Expressway trunk
trunk_link

Main Road primary
primary_link

Highway secondary
secondary_link

Connecting Road tertiary
tertiary_link

TABLE 9: The mapping between road types and the corre-
sponding type in OSM.

Segment Type

service
primary link
tertiary link
motorway link
unpaved
trunk link
primary
secondary
unclassified
residential
trunk
track
living street
tertiary
secondary link
road
motorway

TABLE 10: All road segment categories for Northern Jut-
land.

APPENDIX G
COMPARISON OF ALL MODELS EKSTRA TABLES
AND GRAPHS

This section includes Table 11, Table 12, Fig. 26, Fig. 27,
Fig. 28, Fig. 29 and Fig. 30.

Category

Model City Municipality Region Country

ExpandingSearch 21.48 20.27 11.03 8.79
LIN-ENG-OBS 21.20 18.96 9.83 8.57
LIN-EMB-OBS 21.08 17.30 10.21 8.78

TABLE 11: MAPE of ExpandingSearch, LIN-ENG-OBS and
LIN-EMB-OBS for all trips categories between 08:15-15:30.

Category

Model City Municipality Region Country

ExpandingSearch 21.59 20.68 12.71 10.87
LIN-ENG-OBS 20.99 18.29 12.17 8.97
LIN-EMB-OBS 19.96 17.32 12.23 10.32

TABLE 12: MAPE of ExpandingSearch, LIN-ENG-OBS and
LIN-EMB-OBS for all trips categories between 16:30-22:00.

30

0

10

20

30

40

50

60

70

80

00:00
00:02

00:04
00:06

00:08
00:10

00:12
00:14

00:16
00:18

00:20
00:22

00:24

M
A

PE

Trip Duration (H:M)

ES
Running mean over previous 10 points

(a) ExpandingSearch.

0

10

20

30

40

50

60

70

80

00:00
00:02

00:04
00:06

00:08
00:10

00:12
00:14

00:16
00:18

00:20
00:22

00:24

M
A

PE

Trip Duration (H:M)

LIN-ENG-OBS
Running mean over previous 10 points

(b) LIN-ENG-OBS.

0

10

20

30

40

50

60

70

80

00:00
00:02

00:04
00:06

00:08
00:10

00:12
00:14

00:16
00:18

00:20
00:22

00:24

M
A

PE

Trip Duration (H:M)

LIN-EMB-OBS
Running mean over previous 10 points

(c) LIN-EMB-OBS.

Fig. 26: MAPE as a function of the duration of city trips
for the three models ExpandingSearch, LIN-EMB-OBS and
LIN-ENG-OBS.

0

5

10

15

20

25

30

35

40

00:00
00:30

01:00
01:30

02:00
02:30

03:00
03:30

M
A

PE

Trip Duration (H:M)

ES
Running mean over previous 10 points

(a) ExpandingSearch.

0

5

10

15

20

25

30

35

40

00:00
00:30

01:00
01:30

02:00
02:30

03:00
03:30

M
A

PE

Trip Duration (H:M)

LIN-ENG-OBS
Running mean over previous 10 points

(b) LIN-ENG-OBS.

0

5

10

15

20

25

30

35

40

00:00
00:30

01:00
01:30

02:00
02:30

03:00
03:30

M
A

PE

Trip Duration (H:M)

LIN-EMB-OBS
Running mean over previous 10 points

(c) LIN-EMB-OBS.

Fig. 27: MAPE as a function of the duration of country trips
for the three models ExpandingSearch, LIN-EMB-OBS and
LIN-ENG-OBS.

31

0

10

20

30

40

50

60

70

80

90

00:00
00:10

00:20
00:30

00:40
00:50

01:00
01:10

01:20
01:30

01:40

M
A

PE

Trip Duration (H:M)

ES
Running mean over previous 10 points

(a) ExpandingSearch.

0

10

20

30

40

50

60

70

80

90

00:00
00:10

00:20
00:30

00:40
00:50

01:00
01:10

01:20
01:30

01:40

M
A

PE

Trip Duration (H:M)

LIN-ENG-OBS
Running mean over previous 10 points

(b) LIN-ENG-OBS.

0

10

20

30

40

50

60

70

80

90

00:00
00:10

00:20
00:30

00:40
00:50

01:00
01:10

01:20
01:30

01:40

M
A

PE

Trip Duration (H:M)

LIN-EMB-OBS
Running mean over previous 10 points

(c) LIN-EMB-OBS.

Fig. 28: MAPE as a function of the duration of region trips
for the three models ExpandingSearch, LIN-EMB-OBS and
LIN-ENG-OBS.

0

20

40

60

80

100

00:00
00:30

01:00
01:30

02:00
02:30

03:00
03:30

M
A

PE

Trip Duration (H:M)

ES
Running mean over previous 10 points

(a) ExpandingSearch.

0

20

40

60

80

100

00:00
00:30

01:00
01:30

02:00
02:30

03:00
03:30

M
A

PE

Trip Duration (H:M)

LIN-ENG-OBS
Running mean over previous 10 points

(b) LIN-EMB-OBS.

0

20

40

60

80

100

00:00
00:30

01:00
01:30

02:00
02:30

03:00
03:30

M
A

PE

Trip Duration (H:M)

LIN-EMB-OBS
Running mean over previous 10 points

(c) LIN-EMB-OBS.

Fig. 29: MAPE as a function of the duration of trips in all
trips categories for the three models ExpandingSearch, LIN-
EMB-OBS and LIN-ENG-OBS.

32

0

100

200

300

400

500

600

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

00:00

M
A

PE

Start Time (HH:MM 24-hour clock)

ES
Running mean over previous 10 points

(a) ExpandingSearch

0

50

100

150

200

250

300

350

400

450

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

00:00

M
A

PE

Start Time (HH:MM 24-hour clock)

LIN-EMB-OBS
Running mean over previous 10 points

(b) LIN-EMB-OBS

0

50

100

150

200

250

300

350

400

450

00:00
02:00

04:00
06:00

08:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

00:00

M
A

PE

Start Time (HH:MM 24-hour clock)

LIN-ENG-OBS
Running mean over previous 10 points

(c) LIN-ENG-OBS

Fig. 30: MAPE of each trip for the three models Expand-
ingSearch, LIN-EMB-OBS and LIN-ENG-OBS depending on
trips start time.

APPENDIX H
THE HUBER LOSS FUNCTION

The Huber loss function is designed to be robust to out-
liers [28]. Formally, it is defined as

Lε =

{
1
2 |y − f(x)| if |y − f(x)| ≤ ε
ε(|y − f(x)| − 1

2ε
2)

(34)

where y is the target value of a training instance and f(x)
is predicted value. Observe that if the absolute difference
between the target value and the predicted value |y − f(x)|
exceeds epsilon, the function uses linear loss rather than
squared loss. Thus the loss is less affected by outliers in the
training, giving them less weight during model training.

APPENDIX I
PARAMETER TUNING

We use MAPE to determine the quality of the parameters,
where a lower MAPE means higher quality parameters.

I.1 LIN-EMB
We initially ran an exhaustive parameter tuning, trying all
unique combinations of the following parameters

• Iterations ∈ {1, 5, 10, 20, 40, 100, 1000, 5000}
• |h| ∈ {10, 50, 100, 200, 300, 400, 500}
• Learning rate ∈ {0.1, 0.001, 0.0001, 0.00001}
• Context(c) ∈ {1, 2, 3, 4}
• Distance(k) ∈ {1, 2, 3, 4}

yielding

• Iterations ∈ {100}
• |h| ∈ {200}
• Learning rate ∈ {0.001}
• Context(c) ∈ {1}
• Distance(k) ∈ {3}

as the ones with lowest MAPE.
We tested for k > 6 as we where limited to a server with

32GB RAM. d = 5 cost ≈ 10, 6GB RAM and d = 6 > 32GB.
We illustrate the impact of |h|, Distance and Window by

using the best parameters, shown above, and then change
one parameter at the time on the validation set. This is
shown in Fig. 31, Fig. 32 and Fig. 33.

I.1.1 Huber
We initially ran an exhaustive parameter tuning, trying all
unique combinations of the following parameters

• Epsilon ∈ {1, 1.00001, 1.0001, 1.001, 1.01,
1.1, 1.2, 1.3, 1.4, 1.5, 2, 3, 4, 5}

• Iterations ∈ {25, 100, 250, 500, 1000, 5000}
• Alpha ∈ {0.0000001, 0.000001, 0.00001, 0.0001,

0.001, 0.1}

yielding

• Epsilon ∈ {1.1}
• Iterations ∈ {5000}
• Alpha ∈ {0.0001}

as the ones with lowest MAPE.

33

16

18

20

22

24

10 50 100 200 300 400 500

M
A

PE

|h|

k-Routes

Fig. 31: Mape of k-Routes using increasing |h| size, the
rest of the parameters are as follow Iterations = 100,
learning rate = 0.001, Context = 1, Distance = 3.

16

18

20

22

24

1 2 3 4

M
A

PE

Distance

k-Routes

Fig. 32: Mape of k-Routes using increasing Distance size,
the rest of the parameters are as follow Iterations = 100,
learning rate = 0.001, Context = 1, |h| = 200.

16

18

20

22

24

1 2 3

M
A

PE

Window

k-Routes

Fig. 33: Mape of k-Routes using increasing Context size,
the rest of the parameters are as follow Iterations = 100,
learning rate = 0.001, Distance = 3, |h| = 200.

I.2 LIN-EMB-EDGE

We initially ran an exhaustive parameter tuning, trying all
unique combinations of the following parameters

• Iterations ∈ {1, 5, 10, 20, 25, 40, 50, 100, 1000}
• |h| ∈ {200, 400, 500, 600, 700, 1000}
• Learning rate ∈ {0.1, 0.05, 0.001, 0.0001, 0.0000, 0.00001}
• Context(c) ∈ {1, 3, 5, 10}
• Distance(k) ∈ {1, 3, 5}

yielding

• Iterations ∈ {25}
• |h| ∈ {400}
• Learning rate ∈ {0.1}
• Context(c) ∈ {3}
• Distance(k) ∈ {1}

as the ones with lowest MAPE.
We tested for k > 6 as we where limited to a server with

32GB RAM. d = 5 cost ≈ 10, 6GB RAM and d = 6 > 32GB.

I.2.1 Huber

We initially ran an exhaustive parameter tuning, trying all
unique combinations of the following parameters

• Epsilon ∈ {1, 1.00001, 1.0001, 1.001, 1.01,
1.1, 1.2, 1.3, 1.4, 1.5, 2, 3, 4, 5}

• Iterations ∈ {25, 100, 250, 500, 1000, 5000}
• Alpha ∈ {0.0000001, 0.000001, 0.00001, 0.0001,

0.001, 0.1}

yielding

• Epsilon ∈ {1.1}
• Iterations ∈ {5000}
• Alpha ∈ {0.0001}

as the ones with lowest MAPE.

APPENDIX J
EFFECT OF THE PARAMETERS ON THE UPDATED
ESTIMATE

This appendix supplements Section 4 by demonstrating
how the variance of the mean σ2

0 , the observation variance
σ2, and the number of observations n affect the updated
estimate costn.

Fig. 34 shows how a prior (normalized) cost estimate
of the distribution shown in Fig. 2 is updated. The prior
cost estimate is simply the speed limit of the edge, i.e.
cost0 = 110. Fig. 34a shows that the prior estimate dom-
inates with low n, since the updated estimate is based on
very few observations and is thus less reliable. Similary,
Fig. 34b shows that the prior estimate dominates if the faith
in the estimate is very high, i.e. the estimation variance
is low. Conversely, if the observation variance σ2 is low
we have more faith in the observations, as illustrated by
Fig. 34c, and require only a few observations to approximate
the mean cost of the observations.

34

101

102

103

104

105

106

107

108

109

110

0 50 100 150 200 250 300

co
st
n

n

(a) costn as a function of n with σ2
0 = 52 and σ2 = 15.382.

101

102

103

104

105

106

107

108

109

110

0 50 100 150 200 250 300 350 400

co
st
n

σ2
0

(b) costn as a function of σ2
0 with n = 10 and σ2 = 15.382.

101

102

103

104

105

106

107

108

109

110

0 500 1000 1500 2000 2500 3000 3500 4000

co
st
n

σ2
0

(c) costn as a function of σ2 with n = 10 and σ2
0 = 52.

Fig. 34: The effect of (a) the number of observations n, (b) the estimation variance σ2
0 , and (c) the observation variance σ2

on the updated cost estimate of costn of the edge-interval shown in Fig. 2 with a prior cost estimate cost0 = 110.

APPENDIX K
THE LIMITED MEMORY
BROYDEN–FLETCHER–GOLDFARB–SHANNO
ALGORITHM

The Limited-Memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) algorithm is an optimization method which ap-
proximates the inverse Hessian matrix used in Newton’s
method[29, 35]. We therefore first give a brief primer on
Newton’s method.

K.1 Newton’s Method
Newton’s method iteratively constructs a parameter vector
xi for a function f from an initial guess x0 that converges
towards a local optimum x∗ where the gradient f ′(x∗) =
0 [35]. In the context of learning a cost estimation model,
the function f is the loss across the training set.

Given a function f : Rn → R,

xi+1 = xi − λ[Hf(xi)]
−1∇f(xi), i ≥ 0 (35)

where λ ∈ (0, 1] is the step size, Hf is the Hessian matrix of
f , and ∇f is the gradient of f . x0 is an initial guess at the
optimal parameters.

The Hessian matrix is a n×n square matrix containing all
second-order partial derivatives of f s.t. Hfi,j = ∂2f

∂xi∂xj
[35].

Thus it is a matrix of functions and intended to be eval-
uated. A second-order partial derivative is the derivative
with regards to 2 variables, treating remaining variables as
constants.

The gradient is the generalization of the derivative to
multiple dimensions and points in the direction of the
greatest increase. The gradient of a function f((x1, . . . , xn))
is

∇f = (
∂f

∂x1
, . . .

∂f

∂xn
) (36)

K.1.1 Example

Let us consider a small example. Let f((x1, x2, x3)) = x1 +
x22 + x33, xi = (1, 2, 3), and λ = 1. We now compute xi+1

according to Eq. (35).
The Hessian matrix of f is

Hf =

 0 1 + 2x2 1 + 3x23
1 + 2x2 2 2x2 + 3x23
1 + 3x23 2x2 + 3x23 6x3

35

and Hf evaluated with regards to the parameters xi =
(1, 2, 3) is

Hf(xi) =

 0 5 28
5 2 31
28 31 18

and its inverse is

[Hf(xi)]
1 =

−0.139 0.117 0.015
0.117 −0.118 0.021
0.015 0.021 −0.004

The gradient of f is ∇f = (1, 2x2, 3x

2
3) and ∇f(xi) =

(1, 4, 27). We can now compute xi+1 as

xi+1 =(1, 2, 3)ᵀ − [Hf((1, 2, 3))]−1(1, 4, 27)ᵀ

=(0.27, 1.79, 3.02)
(37)

K.2 Approximation of the Hessian

The direction of the update [Hf(xi)]
−1∇f(xi) is expen-

sive to compute because the dimensionality the inverse
Hessian of f is the number of model parameters [35].
The L-BFGS algorithm is a specialization of the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) estimation.

The update at iteration i is stored as si = xi+1 − xi and
yi = ∇f(xi+1)−∇f(xi).

Broyden–Fletcher–Goldfarb–Shanno (BFGS) iteratively
updates the Hessian H of f as [29, 35]

Hi+1 =Hi +
sis

ᵀ
i

yᵀ
i si

[
sis

ᵀ
i

yᵀ
i si

+ 1]− 1

yᵀ
i si

[siy
ᵀ
i Hi + Hiyis

ᵀ
i]

=(I− pisiy
ᵀ
i)T (I− piyis

ᵀ
i) + pisis

ᵀ
i

=Vᵀ
i HiVi + pisis

ᵀ
i

(38)

where pi = 1
yᵀ
i si

Expanding the recursion of Eq. (38) yields [29]

Hi+1 =Vᵀ
i . . .V

ᵀ
0HiV0 . . .Vi

...
+ Vᵀ

i pi−1si−1s
ᵀ
i−1Vᵀ

i

+ pisis
ᵀ
i

(39)

Rather than considering all updates from 0 to i, L-BFGS
uses only the m previous updates. Therefore, for i > m,
Eq. (39) becomes [29]

Hi+1 =Vᵀ
i . . .V

ᵀ
i−m+1HiVi−m+1 . . .Vi

...
+ Vᵀ

i pi−1si−1s
ᵀ
i−1Vᵀ

i

+ pisis
ᵀ
i

(40)

APPENDIX L
K-MEANS CLUSTERING

The K-means algorithm partitions a set of observations
x1, . . . ,xn into a set ofK clusters C= {C1, . . . , CK}, where
n ≤ K , s.t. each observation is in exactly one cluster [30, 36].
Formally, the goal is to minimize the Within-Cluster Sum
of Squares (WCSS) [30, 36], described in Section 7.2. This

objective cannot be minimized directly and is therefore in-
stead minimized using an iterative update algorithm which
converges to a local minima, as follows [36]:

Initialize: PickK observations at random to use as initial
clusters means (or centroids) µk for 1 ≤ k ≤ K .

Assign: Assign each observation xi for 1 ≤ i ≤ n to the
nearest cluster s.t. xi ∈ Ck if Ck = arg minCk∈C ||xi − µk||.
Update: Recalculate the cluster means

µk =
1

|Ck|
∑
x∈Ck

x (41)

The Assign and Update steps are repeated until a maxi-
mum number of iterations have been reached or the clusters
have reached convergence [36], i.e. the position of any
cluster mean does not change within some tolerance level.

APPENDIX M
CLUSTER COHESION AND SEPARATION

This appendix is supplementary to Section 7 and contains
information about cluster cohesion in terms of WCSS and
cluster separation in terms of BCSS. Fig. 35 shows the WCSS,
BCSS, and CHI depending on the number of clusters.

APPENDIX N
ADDITIONAL CLUSTER VISUALISATIONS

This appendix supplements the cluster visualisations in
Section 7.4.2.

Figs. 36 and 37 show a broad view of the clusters
generated by DESCRIPTOR-35 and EDGE+DESCRIPTOR-
40, respectively.

Figs. 38 and 39 shows the clustering on the entirety of
Aalborg.

Fig. 40 show the clustering of several smaller towns in
Northern Jutland where the road segments belonging to the
yellow cluster appear to fulfil a similar role as road segments
on the eastern outskirts of Aalborg.

36

3

4

5

6

7

8

9

10

11

12

13

5 10 15 20 25 30 35 40

W
C

SS

Number of Clusters

(a) Descriptor

0

5000

10000

15000

20000

25000

30000

35000

5 10 15 20 25 30 35 40

W
C

SS

Number of Clusters

(b) Edge + Descriptor

26

27

28

29

30

31

32

33

34

35

36

5 10 15 20 25 30 35 40

BC
SS

Number of Clusters

(c) Descriptor

910000

915000

920000

925000

930000

935000

940000

945000

950000

5 10 15 20 25 30 35 40

BC
SS

Number of Clusters

(d) Edge + Descriptor

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

90000

5 10 15 20 25 30 35 40

C
H

I

Number of Clusters

(e) Descriptor

0

2× 107

4× 107

6× 107

8× 107

1× 108

1.2× 108

1.4× 108

1.6× 108

1.8× 108

5 10 15 20 25 30 35 40

C
H

I

Number of Clusters

(f) Edge + Descriptor

Fig. 35: WCSS, BCSS, and CHI depending on the number of clusters for the experiment described in Section 7.

37

Fi
g.

36
:A

br
oa

d
vi

ew
sh

ow
in

g
th

e
cl

us
te

rs
of

ro
ad

se
gm

en
ts

in
N

or
th

er
n

Ju
tl

an
d

ge
ne

ra
te

d
by

D
ES

C
R

IP
TO

R
-3

5
.

38

Fi
g.

37
:A

br
oa

d
vi

ew
sh

ow
in

g
th

e
cl

us
te

rs
of

ro
ad

se
gm

en
ts

in
N

or
th

er
n

Ju
tl

an
d

ge
ne

ra
te

d
by

ED
G

E+
D

ES
C

R
IP

TO
R

-4
0.

39

Fi
g.

38
:V

is
ua

lis
at

io
ns

of
cl

us
te

rs
in

A
al

bo
rg

ge
ne

ra
te

d
by

D
ES

C
R

IP
TO

R
-3

5
.

40

Fi
g.

39
:V

is
ua

lis
at

io
ns

of
cl

us
te

rs
in

A
al

bo
rg

ge
ne

ra
te

d
by

ED
G

E+
D

ES
C

R
IP

TO
R

-4
0.

41

(a) Brønderslev (b) Hirtshals

(c) Sæby (d) Farstrup

(e) Voerså (f) Eastern Outskirts of Aalborg

Fig. 40: Cluster visualisation of (a, b, c) medium sized towns, (d, e) small towns (f) the eastern outskirts of Aalborg.

REFERENCES 42

REFERENCES

[1] https://www.google.dk/maps. Accessed: 2017-05-6.
[2] https://www.bing.com/maps. Accessed: 2017-05-6.
[3] Bin Yang, Manohar Kaul, and Christian S Jensen.

“Using incomplete information for complete weight
annotation of road networks”. In: IEEE Transactions on
Knowledge and Data Engineering 26.5 (2014), pp. 1267–
1279.

[4] Ove Andersen et al. “An Advanced Data Warehouse
for Integrating Large Sets of GPS Data”. In: Proceedings
of the 17th International Workshop on Data Warehousing
and OLAP. ACM. 2014, pp. 13–22.

[5] Torp et. al. “The ExpandingSearch Algorithm”.
[6] Martin Fruensgaard et al. “Speed Prediction in Road

Networks under Conditions of Data Sparsity”. Project
from pre-specialization. Jan. 2017.

[7] Jiangchuan Zheng and Lionel M Ni. “Time-
Dependent Trajectory Regression on Road Networks
via Multi-Task Learning.” In: AAAI. 2013.

[8] Jian Dai et al. “Efficient and accurate path cost es-
timation using trajectory data”. In: arXiv preprint
arXiv:1510.02886 (2015).

[9] Jing Yuan et al. “T-drive: driving directions based on
taxi trajectories”. In: Proceedings of the 18th SIGSPA-
TIAL International conference on advances in geographic
information systems. ACM. 2010, pp. 99–108.

[10] Jilin Hu et al. “Enabling time-dependent uncertain
eco-weights for road networks”. In: GeoInformatica
21.1 (2017), pp. 57–88. ISSN: 1573-7624. DOI: 10.1007/
s10707-016-0272-z. URL: http://dx.doi.org/10.1007/
s10707-016-0272-z.

[11] Tsuyoshi Idé and Masashi Sugiyama. “Trajectory Re-
gression on Road Networks.” In: AAAI. 2011.

[12] Tsuyoshi Idé and Sei Kato. “Travel-time prediction
using Gaussian process regression: A trajectory-based
approach”. In: Proceedings of the 2009 SIAM Interna-
tional Conference on Data Mining. SIAM. 2009, pp. 1185–
1196.

[13] Yoshua Bengio, Aaron Courville, and Pascal Vincent.
“Representation learning: A review and new perspec-
tives”. In: IEEE transactions on pattern analysis and
machine intelligence 35.8 (2013), pp. 1798–1828.

[14] Aditya Grover and Jure Leskovec. “Node2Vec: Scal-
able Feature Learning for Networks”. In: Proceedings
of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’16.
San Francisco, California, USA: ACM, 2016, pp. 855–
864. ISBN: 978-1-4503-4232-2. DOI: 10 .1145/2939672 .
2939754. URL: http://doi.acm.org/10.1145/2939672.
2939754.

[15] Li Deng. “A tutorial survey of architectures, algo-
rithms, and applications for deep learning”. In: AP-
SIPA Transactions on Signal and Information Processing 3
(2014), e2.

[16] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
“DeepWalk: Online Learning of Social Representa-
tions”. In: Proceedings of the 20th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining. KDD ’14. New York, New York, USA: ACM,
2014, pp. 701–710. ISBN: 978-1-4503-2956-9. DOI: 10 .

1145/2623330.2623732. URL: http://doi.acm.org/10.
1145/2623330.2623732.

[17] Xiaofei Sun et al. “A General Framework for Content-
enhanced Network Representation Learning”. In:
CoRR abs/1610.02906 (2016). URL: http://arxiv.org/
abs/1610.02906.

[18] Annamalai Narayanan et al. “subgraph2vec: Learn-
ing Distributed Representations of Rooted Sub-graphs
from Large Graphs”. In: CoRR abs/1606.08928 (2016).
URL: http://arxiv.org/abs/1606.08928.

[19] Kevin P Murphy. “Conjugate Bayesian analysis of the
Gaussian distribution”. In: def 1.2σ2 (2007), p. 16.

[20] Quoc Le and Tomas Mikolov. “Distributed Represen-
tations of Sentences and Documents”. In: Proceedings
of the 31st International Conference on Machine Learn-
ing (ICML-14). Ed. by Tony Jebara and Eric P. Xing.
JMLR Workshop and Conference Proceedings, 2014,
pp. 1188–1196. URL: http ://jmlr.org/proceedings/
papers/v32/le14.pdf.

[21] Tomas Mikolov et al. “Efficient estimation of word
representations in vector space”. In: arXiv preprint
arXiv:1301.3781 (2013).

[22] OpenStreetMap. URL: http : / / www. openstreetmap .
org/.

[23] PlansystemDK. URL: https : / / erhvervsstyrelsen . dk /
plansystemdk.

[24] Nornadiah Mohd Razali, Yap Bee Wah, et al. “Power
comparisons of shapiro-wilk, kolmogorov-smirnov,
lilliefors and anderson-darling tests”. In: Journal of
statistical modeling and analytics 2.1 (2011), pp. 21–33.

[25] Laurens van der Maaten. “Accelerating t-SNE using
Tree-Based Algorithms”. In: Journal of Machine Learn-
ing Research 15 (2014), pp. 3221–3245. URL: http : / /
jmlr.org/papers/v15/vandermaaten14a.html.

[26] Xin Rong. “word2vec parameter learning explained”.
In: arXiv preprint arXiv:1411.2738 (2014).

[27] DG Mayer and DG Butler. “Statistical validation”. In:
Ecological modelling 68.1-2 (1993), pp. 21–32.

[28] Jerome Friedman, Trevor Hastie, and Robert Tibshi-
rani. The elements of statistical learning. Vol. 1. Springer
series in statistics Springer, Berlin, 2001, p. 349.

[29] Jorge Nocedal. “Updating quasi-Newton matrices
with limited storage”. In: Mathematics of computation
35.151 (1980), pp. 773–782.

[30] James MacQueen et al. “Some methods for classifi-
cation and analysis of multivariate observations”. In:
Proceedings of the fifth Berkeley symposium on mathemat-
ical statistics and probability. Vol. 1. 14. Oakland, CA,
USA. 1967, pp. 281–297.

[31] Tadeusz Caliński and Jerzy Harabasz. “A dendrite
method for cluster analysis”. In: Communications in
Statistics-theory and Methods 3.1 (1974), pp. 1–27.

[32] Glenn W Milligan and Martha C Cooper. “An exam-
ination of procedures for determining the number of
clusters in a data set”. In: Psychometrika 50.2 (1985),
pp. 159–179.

[33] Jennifer Neville and David D. Jensen. “Iterative Clas-
sification in Relational Data”. In: Proceedings of the
Workshop on Learning Statistical Models from Relational
Data, Seventeenth National Conference on Artificial Intelli-

43

gence. Ed. by Lise Getoor and David D. Jensen. Austin,
TX: AAAI Press, Menlo Park, CA, 2000, pp. 42–49.

[34] Denmark. URL: http://wiki.openstreetmap.org/wiki/
OSM_tags_for_routing/Maxspeed#Denmark.

[35] Joseph-Frédéric Bonnans et al. Numerical optimization:
theoretical and practical aspects. Springer Science & Busi-
ness Media, 2006, pp. 51–52, 55.

[36] Greg Hamerly and Charles Elkan. “Alternatives to
the k-means algorithm that find better clusterings”.
In: Proceedings of the eleventh international conference
on Information and knowledge management. ACM. 2002,
pp. 600–607.

