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Abstract:

Room acoustics analysis and synthesis using the

Spatial Decomposition(SDM) method has beco-

me widely known and is used in applications

such as room impulse visualization and auraliza-

tion. The Ray-Space Transform Method(RSTM)

is a new framework to perform analysis and synt-

hesis of a room, and, due to the novelty of the

method many characteristics have not been stu-

died in depth. The purpose of this thesis is to

study the RSTM framework and its paramters,

and then determine its advantages and disadvan-

tages and compare it with the SDM method for

acoustical room analysis, by comparing the per-

formance on sound source estimation. The thesis

de�nes the signi�cant parameters of the RSTM

and their impact on estimation of sound sources.

The comparison of the methods is done on para-

meters which are common for each method. The

comparison �nds that in many aspects the met-

hods perform similarly, with some exceptions.

Following the comparison study, some tests on

real data is performed on the RSTM, to veri-

fy the simulations presented in earlier chapters.

Tests are done for a non-anechoic environment

using a low amount of microphones, an anechoic

chamber using the same settings as for the simu-

lations, and for a standard listening room. The

tests on real measurements show that the RSTM

performs as the simulations predicted.

The content of this report is freely available, though any publications can only happen with the accept from the

authors.
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1

Introduction

1.1 Motivation

The interest for sound-�eld analysis and synthesis has been growing for a long time, and still is.

This is true due to its importance in areas in acoustics such as: music recordings, multimedia

communications, auditorium acoustics and noise control[2][13]. The importance in these areas

stems from the fact that spatial acoustical information is very important for a human to

experience a sound �eld, and get a sensation of immersion of the sound[14]. Some of the main

challenges in capturing sound �elds concern the application of methods of sound �eld analysis

in non-laboratory conditions, where robustness to noise and interference is very important[17].

This creates a desire to explore new methods in the �eld to try and �nd something which

performs well as a general solution to sound �eld tasks, including analysis and synthesis. Using

microphone arrays to capture sound �elds is currently the norm, and multiple methods already

exist for this purpose. A novel microphone array method for sound analysis has recently been

discovered and implemented, called the "Ray Space Transform Method"(RSTM), which while

still early in its development shows promise both in sound �eld analysis and synthesis. The

motivation of the thesis is to explore the parameters and components of the method and then

compare its performance in sound �eld analysis to a contemporary widely used method, the

Spatial Decomposition Method(SDM).

1.2 Wave Field Processing

One of the classic problems in processing of acoustical signals is the estimation of acoustical

�eld representations. Microphones arrays are a common factor between many techniques used

for acoustical �eld analysis and synthesis. The process to reach this representation is called

spatial encoding or wave �eld processing and depending on the way that the �eld is represented

receives various names. Di�erent methods of the acoustic �eld processing are often divided into

categories, these being parametric, nonparametric and geometric representations. The main

di�erence seen in these is that the parametric representation works on some level of a priori

knowledge of the acoustic �eld, such as environment geometry. Often here, the analysis is carried

out by beamforming or analysis of (Time Di�erence of Arrival)TDoAs. The nonparametric

representation assumes no a priori knowledge, utilizing either plane-wave representations,

spherical-wave representations or cylindrical representations. The geometric representation uses

acoustic rays, which are found when looking at simple acoustic propagation, and carry the

acoustic information along straight lines in space. This birthed the concept of the ray space,

a domain where points represent the plane-wave components of the sound �eld. [14]

1
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1.3 Contribution of the Thesis

RSTM and SDM are both methods for sound-�eld analysis, synthesis and derived acoustic tasks

as source localization and others. While the implementation that we are analyzing for SDM

was published in 2013 [1] and has been used in several real life scenarios as can be seen for

example in articles [20] [21] [22], the actual implementation of the RSTM was published in

late 2016 [2] and have not been used in non laboratory conditions as far as we researched it.

Both techniques di�er in formulation, methodology and results as can be seen in Chapter2

and to compare them a systematic approach is necessary. This thesis aims to accomplish two

main contributions. The �rst one is to explore the RSTM performance regarding the multiple

parameters that de�nes it, and the second one is to compare RSTM and SDM for room analysis.

The metric used to accomplish these tasks is the distance and angle error present in the estimation

of acoustical events in di�erent scenarios This exploration tries to be systematic, �rst studying

the methodology and parameters in each of the methods, then performing simulations in anechoic

conditions, simulations considering di�erent possible sources of estimation errors, simulations in

reverberant conditions and �nally laboratory measurements. The purpose of having these results

is to know what is expected from both methods in di�erent scenarios and to de�ne advantages

and disadvantages between them.

1.4 Structure of this report

The report is structured in �ve chapters.

� Chapter 1 introduces the motivation to carry out this work and the main contribution of

it.

� Chapter 2 introduces the methods and presents the state of the art and theory behind

them. Additionally a study on the line detection methods used in RSTM.

� Chapter 3 introduces and carries out an analysis on the in�uence of the parameters which

are speci�c to each method.

� Chapter 4 compares the methods using parameters which are common for both methods

in order to determine the advantages and disadvantages of the RSTM compared to SDM.

� Chapter 5 carries out a study on real measured data to verify the simulated data.

� Chapter 6 concludes and discusses the results and re�ects on possibly of future works.

2



2

Theory

This chapter presents the necessary theoretical framework to understand the RSTM and SDM

methods and the simulations performed. It is composed by the next sections:

� Section 2.1 explains the RSTM formulation, the path that a signals follows with this

technique until a ray space representation is obtained and additionally two important

de�nitions for the RSTM. The plenacoustic function and the Gabor frame transform.

� Section 2.2 presents the SDM algorithm and conceptual formulation.

� Section 2.3 summarizes the objectives and products and both methods and the theoretical

similarities and di�erences between them

� As the product of RSTM is a visual representation, Section 2.5 presents three di�erent

strategies for image line detection.

� Section 2.7 presents the theory necessary, and the algorithm used to simulate the RIR in

anechoic and reverberant conditions

2.1 Introduction to the Ray Space Transform

In RSTM the estimated location is not a single number, but a matrix for a prede�ned number and

range in the ray-space (m slope, q intercept) and the similarity (energy) between the captured

acoustic �eld and shifted and modulated copies, for each frequency and for each time frame.

m

q

RaySpaceTransform: Z

freq

m

q

RaySpace

time

frame1 frame2

RaySpace

An initial framework for simulating the ray space is made to achieve a general understanding

of how the algorithm works. We delve into how a ray space is formed, which algorithms and

3
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methods are applied, and later on then attempt to explain these. The ray space algorithm, as

described in [2], uses a linear array of microphones with equal spacing, distributed along the

vertical cartesian z-plane, the locations in this axis are de�ned by:

z(l) = l ∗ d− d ∗ (l + 1)/2 (2.1)

Where z is the array holding the microphone locations in the z-plane, d is the spacing between

microphones, and l is the current microphone, l = 1, 2, 3...L. L is the number of microphones in

the array. See �gure 2.1 (a) for a visual representation of the array.

To simulate a signal received on each of these microphones, a white noise signal is produced,

wgn(ntotal, 1, 0), where ntotal is the length of the signal. To represent what the receivers `see'1

when a speaker emits the signal from a chosen position r′, a transfer function dependent on

frequency and microphone position is applied to the signal for each microphone position.

p(z, ω) = s(ω) · h(z|r′, ω) (2.2)

Where z denotes the 1-D coordinates of the individual microphones, and ω denotes the angular

frequency. s(ω) is the FFT of the generated white noise.

z

x

q0

-q0

r’ = [ x’, z’ ]

rl = [0, zl ]
rl-1 = [0, zl-1 ]

σ

(a)   (b)

Figure 2.1: (a) Microphone array and source topology. (b) Gaussian windowing over microphones.

The transfer function h(z|r′, ω) as is de�ned in [2]:

h(z|r′, ω) =
e−jω||r−r

′||/c

4π||r− r′||
(2.3)

Where c denotes the speed of sound, || · || denotes the L2 norm, r′ is the coordinates of the sound

source, and r hold the current microphone coordinates.

Having produced an approximation of sound propagation across the array from a source, we can

1Ideal conditions, no re�ections.
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start transforming the data into the ray space. A current method, as presented in [2] is shown

in the following equation:

[Z]i,w(ω) = d

L−1∑
l=0

p(zl, ω)e
− jkzlmw√

1+m2
w e−

π(zl−qi)
2

σ2 (2.4)

Here we recognize the �rst part of the equation, p(z, ω), but the two exponentials have so far

not been discussed.

The �rst exponential in the equation, e
− jkzlmw√

1+m2
w , beamforming across a chosen range of angles,

de�ned in mw = tan(Θw), w = 1, ...,W , W = m̄
2mmax

. The wavenumber, k = ω
c , represents the

frequency in the spatial domain.

The second exponential, e−
π(zl−qi)

2

σ2 , is a Gaussian weighting function, which while we iterate

over the microphone array, attenuates the signal on microphones more the further away from

the current microphone they are. A rough depiction of this is seen in 2.1(b). σ controls the

width, or standard variance of the Gaussian curve. Iterations are made across the microphones

as well as points between these on the z axis, contained in qi, i = 1, ..., I. This splits the array of

microphones into I sub-arrays of microphones.

The Z matrix of equation 2.4 then contains the ray space for the current frame2 and chosen

frequency, ω. Using the following values for each variable, �gure 2.2 shows the magnitude heatmap

of the Z matrix, visualizing the ray space.

Variable Symbol Value

Frequency ω 2π1000[Hz]

Source Location r' [3, 0][m]

Amount of microphones L 16

Microphone distance d 0.1[m]

Beamforming angle θ −70 to 70

Sub-array distance q̄i 7.5[mm]

Slope axis resolution m̄w 0.03

Gaussian window width σ 0.2[m]

Table 2.1: Parameters used in �gure 2.2

See section 3 for more insight into the variables.

2A frame is a set number of samples, i.e. it is the time component.
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Figure 2.2: The ray space for r' = [3, 0].

From the ray space, it is now possible to derive the location of the sound source. Assuming that

the analyzed frequency is present in the source and that the pattern is not distorted by other

acoustical phenomena, the sound source will show itself as a linear pattern in the ray space

de�ned by[2]

y = mx+ q (2.5)

Where x and y are coordinates in the real world, m and q are coordinates of the ray space.

Detecting a line in the ray space is challenging in itself, especially if the data representation is

noisy or contains error. Section 2.5 examines line detection in the ray space.

2.1.1 Signal Path Overview

Figure 2.3 gives a simple visual representation of the path of the sound signals received on the

array from microphone to ray space. First the signal is sampled on the microphone, whereafter it

is converted to the frequency domain by fast fourier transform. The gaussian window is applied

across the microphone array, and thus a much larger array of signals is made, containing weighted

information of multiple microphones in each element. Beamforming over a range of angles de�ned

by mw = tan(Θw)[2] is then performed. Summing over each microphone then gives us the Ray

Space, as seen in equation 2.4.

6
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p(z,w)
zL

z1
Gaussian windowing Beamforming

}
Ray Space

qm

m

q

Figure 2.3: From left to right, the signal path is �rst captured on the microphone array, in simulations
this is carried out by applying a transfer function to represent each microphone position.
Converting this to frequency we have the level at position and frequency in p(z, ω). The
gaussian windowing splits the signal in to smaller steps in position in the sub-arrays, and
these positions are then beamformed upon to achieve the ray space.

2.1.2 Short Time Fourier Transform

To make use of the short frame averaging concept in RSTM, we use short time fourier

transform(STFT) to get the frequency content of each frame. We implement this by doing FFTs

on the data contained in each frame. The e�ect of this is that in a very short time window, we

gather a lot of data from the sound �eld, which can be averaged to produce smoother heat maps.

See section 3.2.4 for more about frame averaging. Following piece of MATLAB code shows the

concept.

1 f o r j = 1 : frames

sw( j , : ) = f f t ( s t (1−N+N* j :N* j ) , Fs ) ;

3 end

Where: frames is the number of frames used,N is the length of the frame in samples, sw is s(ω),

the frequency content of the signal, st is s(t), the input time signal, j is the variable iterating

over the current frame, Fs is the sampling frequency.

No window or overlap is introduced on the STFT, since using white Gaussian noise the signal

is time invariant. If the STFT is to be used with signals that are time variant, such as music or

speech, a Hanning window with overlap is introduced, and the STFT then looks like the following

MATLAB snip.

1 f o r j = 1 : frames

sw( j , : ) = f f t ( hann ( l ength (N* j /2 − N/2 + 1 : N* j /2 + N/2) )

3 .* s t (N* j /2 − N/2 + 1 : N* j /2 + N/2) , Fs ) ;

end

Where hann is a built-in MATLAB function to generate a Hanning window with the length of

the window as the argument.

2.1.3 The Plenacoustic Function and the Ray Space Domain

The plenacoustic function is an acoustic adoption of the more well-known plenoptic function,

which is a function used in optics to describe an image in any position looking in any angle,

7
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at any point in time [26]. The plenacoustic function(PAF), introduced by Ajdler et.al. in [6] as

the sound pressure recorded at location (x,y,z) at time t, is non directional information that

can be transformed into a directional PAF, as the PAF contains phase information, but requires

multiple sampling of the sound-�eld in space. The directional plenacoustic function describes

the pressure in every direction through every point in space, it can be written as a function of

position, direction, frequency and time f(x, y, θ, ω, t)

As stated in [17], in an homogeneous medium an acoustic ray is a line co-linear with the wave

vector which acoustic radiance remain constant along it (as long as propagation losses are not

considered), being suitable to use them to parametrize the directional plenacoustic function.

The ray space transform objective, explained in 2.1 represent all the elements of the plenacoustic

function, as represents acoustics rays by time and frequency (while the position is observed from

the images), and can be considered a representation of the directional PAF.

2.1.4 Gabor Frames in the Ray Space

As explained in [27] the Gabor transform and Gabor expansion are tools to analyze and synthesize

a time signal respectively. The objective of the Gabor transform is to represent a signal in the

joint time-frequency domain and usually remove undesired features from it. In this sense it can

be stated that the Gabor transformation is similar to the Short Time Fourier Transform as it

represents the signal in the time-frequency domain. The coe�cients show the similarity between

an analysis window which is shifted in time and modulated in frequency.

The Gabor transformation is represented by the formula:

Cm,n =
L−1∑
i=0

s(i)· γ∗m,n(i) (2.6)

γm,n(i) = γ(i−m·4M) exp(2π·n·4N · i/L) (2.7)

Where:

Symbol De�nition

Cm,n Gabor coe�cients

L Time sampling points

s(i) Time signal

m Time element

n Frequency element

4M Time sampling interval

4N Frequency sampling interval

M Time sampling points

N Frequency sampling points

γm,n(i) Window function

The Ray Space uses an adaptation of the Gabor transform. It maps a time signal into a new

domain. The main di�erences between the Gabor transform and the adaptation in the Ray Space

transform are:

1. The signal is not sampled in time but in space through spatially distributed microphones.

2. The input signal is not represented in time, but in the frequency domain.

8
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3. The signal is not mapped into time-frequency domain, but into the ray-space domain

which is (m, q)εRxR. Where m y is the slope of the incident ray source-receiver and q is

the intercept with the z axis. As is shown in �gure 2.4

4. The analysis window function is a normal Gaussian distribution.

z

1

2

3

L

Ɵ

source

q1

m1=tan(Ɵ)

Figure 2.4: Source-receiver ray representation for the ray space domain.

The discrete Ray-Space transform is represented by the formula[2]

[Z]i,w(ω) = d·
L−1∑
l=0

p(zl, ω) exp(
−j· k· zl·mw√

1 +m2
w

) exp(−π(zl − qi)2/σ2) (2.8)

Where:

Symbol De�nition

[Z]i,w(ω) Ray space coe�cients

d Distance between microphones

p(zl, ω) Pressure signal for a given microphone and frequency

mw Slope element

qi Space element

k Wavelength number of the current input signal

zl Microphone position

L Space sampling points

N Frequency sampling points

exp(−Π(zl − qi)2/σ2) Gaussian window function

9
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2.2 The Spatial Decomposition Method

This section summarizes the method described article [1], as is the implementation used through

the thesis.

2.2.1 Objective

The main objective of SDM is to analyze a spatial room impulse response. The algorithm will

result in a set of image-sources, one for every analyzed time step, described by the discrete

pressure values and their corresponding locations as shown in �gure 2.5 extracted from [1] To

achieve the location component,a set of room impulse responses captured with a microphone

array, is analyzed through a least squares solution for TDOA. The pressure component that

represents the room impulse response at the center of the array, can be either selected from the

microphone array, if there is an omni-directional microphone at that position or can be formed

with the other microphones, if that is not the case.

(a) (b)

Figure 2.5: An example of the locations and amplitudes of (a) simulated image-sources and (b)
decomposed image-sources with SDM from a spatial impulse response. The area of each
�lled circle illustrates the energy of that image-source. The image-sources with the highest
energy are correctly analyzed (�gure and text extracted from [1])

2.2.2 Basic assumption and general method

As explained in [1] SDM is derived under two basic assumptions. The sound propagation direction

is the average of all the waves arriving to a microphone array at the same time and this

propagation direction is associated with the impulse response sound pressure in the geometric

center of the array. The method uses the information captured by the microphone array and

compose a spatial room impulse response noted as H(t) = {hn(t)}Nn=1 where N is the the total

number of microphones in the array and hn(t) is the signal on each microphone. Then the method

analyzes the time di�erence of arrival, TDOAs, of the spatial room impulse response, sample by

sample, to get a location referred to the center of the array. The set of locations is named DOA,

after Direction Of Arrival, and is represented in Cartesian coordinates. The pressure component

at the center of the array that represent the magnitude component of the sound, represented as

O can be predicted from the spatial room impulse response, if there it is not possible to have one
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microphone at the center of the array or simply use the captured pressure values if a microphone

at the center is available. Figure 2.6 shows a block diagram of the SDM method.

h
1(t)

h
2(t)

h
3(t)

h
N(t)

H(t)

TDOA DOA

h
center(t)?

P(t) = h
center(t)

yes

Estimate P(t)
From H(t)

no

Figure 2.6: Block diagram of the SDM method

More on Location estimation

First the TDOAs are be obtained through generalized correlation method with direct weighting

described in [24] and then each TDOA estimate is interpolated as explained in [25]. Each TDOA

for every sample, is analyzed in a short time window, of length L. The TDOAs are represented

by τ̂k being k the total number of possible pairs of microphones, the corresponding microphone

positioning di�erence vectors are noted with V . This information is used in the least squares

solution for TDOA leading to the location estimation.

Estimation of the Sound Source

As explained in 2.3 the SDM product will be the direction of arrival, in cartesian coordinates, and

the energy value for each time sample of the RIR at the center of the array. In practical terms,

in the implementation that we are using two matrices are the result of the SDM algorithm. The

�rst matrix contains all the estimated directions of arrival, DOA, and the second one contains all

the energy values at the center of the array. From this information we can estimate the position

of the sound by simply looking into the value with the highest energy, retrieving the index for it

and getting the DOA for that index as explained in �gure 2.7.
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Figure 2.7: SDM source estimation

2.3 Similarities and Di�erences Between RSTM and SDM

Similarities

1. The analysis �nal �product� is in both cases showing the location and energy over time

of the room impulse response. For SDM is represented as Cartesian coordinates plus the

magnitude of pressure at every sampling period. While for RSTM the location is not a

single number, but a linear pattern in the ray space.

2. Synthesis of the spatial impulse response can be achieved with both methods.

3. Sound Source Localization is feasible with both methods.

Di�erences

1. The input signals in RSTM need to be represented in the frequency domain �rst in order

to apply the algorithm, while in SDM the method the signal needs to be represented in

time domain.

2. The pressure values in the the RSTM are not included directly, instead is a measure of

similarity, in RSTM

3. SDM has been used in analysis and synthesis of spatial impulse responses as can be seen

in [20][20][20] and [23], RSTM has been used principally as the framework for processing

tasks like sound source �ltering and acoustic localization as can be seen in [3] and [17]

4. While SDM is a method speci�c to analysis and synthesis of spatial room impulse responses,

RSTM has been used widely in di�erent others �elds like communications and optics.
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2.4 Identifying the Local Maxima

To obtain data which line detection can process, we identify the local maxima in the ray space,

which will contain the 'ridges' of the rays in the ray space. In noisy scenarios some maxima

will also appear outside the ray, and these need to be disregarded by line detection. The local

maxima are found in the ray space by a simple comparison. A function iterates over each value

in Z(q,m), and compares it to the previous and next values in the m-axis, Z(q,m − 1) and

Z(q,m+ 1). If the value is greater than that of the value on either side of it, the index is saved

in an array. When complete, the array containing the indices of local maxima in Z along with

the matrix Z itself is sent to be processed in the RANSAC function. The following MATLAB

code snip performs this function.

f o r q i s can = 1 : l ength ( q_i )

2 f o r mwscan = 2 : l ength (m_w)−1
i f (Z( qiscan , mwscan+1) < Z( qiscan , mwscan) ) && . . .

4 (Z( qiscan , mwscan−1) < Z( qiscan , mwscan) )

Z_ransac ( ncount , 2) = q_i ( q i s can ) ;

6 Z_ransac ( ncount , 1) = m_w(mwscan) ;

ncount = ncount + 1 ;

8 end

end

10 end

Where Z is the matrix holding the ray space, qiscan and mwscan are the variables iterating

over their respective axes, Z_ransac holds the local maxima indices, and q_i and m_w are

arrays containing the indices of the axes.

2.5 Line Detection Algorithms

To obtain the source locations in the ray space, a method of �nding linear patterns is

necessary.[2][3] The source location in the ray space shows itself as a linear pattern in a heatmap.

Here the slope of the linear pattern corresponds to the real x coordinate, and the value of q at

the intersect between the linear pattern and m = 0 in the ray space corresponds to the real

y coordinate. Some known algorithms used in line detection are brie�y explained and then

evaluated in regard to its usability in the project.

The main criterion for the method is to be able to accurately recognize linear patterns when

noise is present in the point cloud generated from the local ray space maxima, i.e. a certain level

of robustness is required so that it doesn't misidentify linear patterns in the noise.

The algorithms we examine are: Least-Squares Linear Regression[8], Hough Transform[9][10],

Random Sample Consensus(RANSAC)[5]. Although the least-squares regression is not known to

be particularly robust, it is a nice reference since it is one of the more used standard methods

of line detection. The latter two, Hough Transform and RANSAC, are known as more robust

solutions to line detection.[2][3] The Hough transform is proposed as a method for line detection

in the ray space in [3]. RANSAC is proposed as an alternative in [11].
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2.5.1 Least Squares Regression

Least squares linear regression[8] is one of the most widely used methods of detecting linear

patterns. It produces a single solution as long as the system, Ax̄ = b̄, provided is consistent. The

solution is found by:

ATAx̄ = AT b̄ (2.9)

x̄ = (ATA)−1AT b̄ (2.10)

The weakness of the least squares regression arrives when the maxima provided contain outliers

which are uncorrelated with the relevant linear pattern. The least squares regression will consider

all the points provided and assume that they are part of the pattern. Without any pre-processing

of the data, if outliers are present, the least squares regression will misinterpret the data and not

estimate source location accurately.

2.5.2 Hough Transform

The Hough transform is a method of linear pattern detection in image analysis. It was developed

speci�cally to detect collinear points by transforming points in a �gure into straight lines in a

parameter space. This is usable in the ray space, since the ray space heatmap data representation

is the same as that of a picture[11][9][10]. In [11] the authors apply the Hough transform to get

the �rst approximation of multiple sources in a ray space image, where the peaks are assigned to

their corresponding sources. To achieve accurate estimation, the Hough transform requires a very

high grid density on the map of points that it creates in its parameter space. To avoid having

to produce this, the authors in [11] use the Hough transform to �nd a �rst approximation of the

source locations, where the peaks of the corresponding sources are assigned to them. After this,

linear regression is used over measurements of these peaks assigned to sources to obtain better

results than the Hough transform manages by itself.

2.5.3 RANSAC

RANSAC[5] is an iterative method to discover patterns in point cloud datasets. While it is

non-deterministic, it is a very robust method, in which the accuracy of estimation is very much

determined by the user-controlled parameters. RANSAC is meant for use in datasets where

outliers, which have no correlation with the desired pattern, are present. Through iteration

over randomly chosen datapoints, RANSAC seeks to determine which points in the cloud can

be classi�ed as 'inliers', which will shape the proposed pattern, and 'outliers', which will be

discarded and not have any e�ect on the outcome.

2.5.4 Evaluation

Linear regression can be suitable for ideal condition, where it does not have to consider points

which are not part of the relevant linear pattern(s). We seek something more robust that can

work in scenarios outside of ideal simulated conditions, and such we disregard the use of pure

linear regression. The Hough transform is closer to what we need in our simulations and for

the real data, but in the [11] the authors argue that linear regression is preferred to the Hough

transform in localization of single sources in relatively noiseless conditions. Here we �gure it
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would be preferable to have a single method of �nding source locations in all purposes, which

leaves us with RANSAC. In addition to the previous arguments, authors in [3] refer to using

Random Sample Consensus(RANSAC) as an improved concept of line detection in the ray space

compared to the Hough transform used in [11]. Based on this distinction and evaluation, this

thesis will heed the advice and use RANSAC as the only method of detecting lines and obtaining

source location coordinates from the Ray Space.

2.6 Random Sample Consensus

In this section we further explore the choice of line detection method, Random Sample Consensus.

RANSAC[5] is well suited for discovering only linear patterns, and can be con�gured to only look

for these. The user-controlled parameters are the number of iterations, the inlier threshold, and

the inlier ratio. The number of iterations de�nes how many times the algorithm will look for

inlier pairs, and include them if they uphold the other criteria. It is highly correlated with the

accuracy of the estimation, although there will be some limit where adding more iterations has

little to no e�ect. The inlier threshold decides how close the proposed point in the cloud has to

be to the line pattern for it to be considered an inlier. The inlier ratio decides how many points

in total are needed to construct a line pattern, to make sure it only recognizes something as a

line if it has atleast a number of points within it, relative to the total number of points in the

cloud[3][5].

While 'outliers' may not exist in a perfect, simulated scenario with a single source, RANSAC

should still perform adequately given a set of data with clear patterns. The advantage, then,

of adapting RANSAC to the algorithm lies in it's robustness. In the case of exploring the

performance of the RSTM beyond noiseless simulations, the robustness of detecting linear

patterns in the ray space will be crucial. RANSAC is also well suited for identifying more than

one linear pattern, by applying the algorithm to the resulting set of outliers which contains all

points in the cloud except for those making up the previous linear pattern. This can in theory

be done inde�nitely for each sampling of the sound �eld, providing su�cient resolution in the

image, and enough iterations during RANSAC to identify these.
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Outliers

Inliers

(a) (b)

(c) (d)

Figure 2.8: RANSAC line pattern detection. (a) and (b) shows datasets before RANSAC processing.
(c) and (d) show what the RANSAC sees in the pattern. Here the red dots are classi�ed
as 'outliers' and are not considered belonging to the linear pattern, while the green dots are
'inliers', which constitute the linear pattern.

Figure 2.8 shows a case of how the RANSAC method �nds linear patterns in a point cloud.

Figure 2.8 (a) shows the initial point cloud introduced to the algorithm. In (b) the algorithm has

identi�ed a linear pattern, and the points the best �t the line, the inliers, in green. These are

then logged, and removed from the set. The remaining red points, then represent the outliers,

which the algorithm deemed unin�uential on the proposed linear pattern. These can be used

as an input, see (c), to the next iteration of the algorithm, to see whether more linear patterns

exist in the dataset, beyond the �rst which was eliminated. The algorithm then repeats process

over the 'new' dataset and �nds another linear pattern (d). This can be continued until no clear

linear pattern can be found in the set. A stop criterion is necessary if the algorithm is to identify

linear patterns without supervision. The inlier ratio is used for this.

2.7 Room Impulse Response Model

The simulations presented in this report consider two scenarios regarding the Room Transfer

Function (RTF) or Green's function in which they take place. The �rst RTF considered is the

anechoic or free space model, where the generated sound�eld is unbounded by any re�ective

element. The second RTF considers a rectangular room with de�ned re�ection coe�cients for

each of the walls that bound the sound�eld. This section presents an explanation on how each

16



2.7. Room Impulse Response Model Aalborg University

of the RTFs is approximated and how the implementation is done in [16]. The equations and

theorems in the section use [16] as reference.

Wave Equation

The propagation in an homogeneous medium of the sound waves that compose a sound �eld is

explained by the wave equation 2.11

∇2p(r, t)− 1

c2

∂2p(r, t)

∂t2
= 0 (2.11)

To consider the sound �eld generated by a source in a speci�c room a source function and

boundary conditions are needed. Being s(r, t) the source function, then the wave equation results

in 2.12

∇2p(r, t)− 1

c2

∂2p(r, t)

∂t2
= −s(r, t) (2.12)

Helmholtz Equation

Lets de�ne the Fourier transform of the sound pressure

P (r;ω) =
∫
p(r, t)exp(iωt)dt = F{p(r, t)}(ω)

Applying Fourier transform to 2.12 lead to the time independent Helmholtz equation 2.13, that

can be understand as the representation of the wave equation in frequency domain, where k is

the wave number.

∇2P (r;ω) + k2P (r;ω) = S(r;ω) (2.13)

Room Transfer Function, Green's Function

Considering a unit amplitude harmonic point source at position rs = [xs, ys, zs], and being the

Kronecker delta function, δ(·) the source function becomes S(r;ω) = δ(r − rs)δ(x − xs)δ(x −
ys)δ(x− zs).

In this conditions Equation 2.13 becomes equation 2.14 in which H(r, rs;ω) is the Room Transfer

Function or Green's function

∇2H(r, rs;ω) + k2H(r, rs;ω) = δ(r− rs) (2.14)

The solution of 2.14 depends on the boundary conditions imposed by the enclosed space and the

position of the sound source. A function Ψm(r;ω) that satis�es the equation and the boundary

conditions is called an eigenfunction while each of the coe�cients that depends on the position
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of the sound source are represented by Cm(rs;ω) Subsequently a general expression for the RTF

using the eigenfunctions is 2.15

H(r, rs;ω) =

∞∑
m=0

Cm(rs;ω)Ψm(r;ω) (2.15)

The solution of equation 2.14 have a special practical importance. For any source function, the

sound pressure can be calculated if the RTF is known through equation 2.16.

P (r;ω) =

∫ ∫ ∫
υs

H(r, rs;ω)S(rs;ω)drs (2.16)

Anechoic RTF

For a point source in a space without re�ective surfaces, equation 2.14 is solved into equation

2.17

H(r, rs;ω) =
exp(−iω‖r− rs‖/c)

4π‖r− rs‖
(2.17)

Rectangular Room

Considering a rectangular room of dimensions (Lx, Ly, Lz) and perfectly re�ecting walls the

eigenfunctions, normally referred as modes, where m = (mx,my,mz) are positive integers are:

Ψm(r) = cos

(
mxπ

Lx
x

)
cos

(
myπ

Lyx
y

)
cos

(
mzxπ

Lzx
z

)
(2.18)

The solution for 2.14 for a rectangular room is 2.19

H(r, rs;ω) =
∑
mεM

Ψm(r)Ψ∗m(rs)

Λm(k2 − k2
m)

(2.19)

where M represent all the desired triplets of m and Λm is a normalization constant for the

associated eigenvector.

Implementation of the Rectangular Room Response

Allan and Berkley image method [15] allows to e�ciently compute a Finite Impulse response

(FIR) that models the acoustic channel between a source and a receiver in rectangular rooms.

The implementation of this method done in [16], page eleven. Here, a list of input and optional

parameters is also found.
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2.8 Summary

The theoretical framework for the RSTM and SDM algorithms has been presented, and will

be used to construct a simulation framework in the next chapters. A common ground for

the comparison has been introduced in section 2.3, which will be used as basis to de�ne the

performance metrics in the following chapters. Section 2.5 presents an analysis of three di�erent

line detection techniques and RANSAC has been selected as the one to be used for the RSTM

product processing. And �nally in section 2.7 the anechoic and rectangular room RTF's has been

introduced and will be used in the parameter study and comparison studies.
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3

Parameter Study

A study on the parameters of the RSTM and SDM and their e�ect on the performance of the

algorithms is made to gain a general sense of how the methods work. Although, before this can be

studied, the in�uential parameters has to be identi�ed. The following list contains the in�uential

parameters we found for each method.

� RSTM parameters

� Beamforming range
� mw resolution
� qi resolution
� Gaussian window width
� Number of frequencies analyzed
� Number of frames averaged

� RANSAC parameters

� Inlier ratio
� Number of iterations
� Distance threshold

� SDM parameters

� Maximum spacing between a pair of microphones
� Temporal Window Size
� Number of microphones
� Microphone array geometry

� Common parameters

� Number of microphones
� Microphone spacing
� Sound source distance
� Sound wave incident angle to center of array
� Microphone position error
� Number of sound sources
� Signal to noise ratio
� Microphone phase mismatch
� Sound source signal type
� Estimation in reverberant conditions

Where the RSTM and RANSAC parameters are speci�c to the RSTM, the SDM parameters

speci�c to the SDM, the common parameters are common for both methods. The common

parameters will be used as a base to create a performance comparison study between RSTM and

SDM.
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3.1 Default Parameter Settings

To be able to look into one parameter at a time, a default state1 of each of the following variables

is chosen beforehand2:

RSTM

Beamforming angle range, θ = −78◦...78◦

mw interval, m̄w = 0.03

qi interval, q̄i = 7.5 ∗ 10−3 m

Gaussian window width, σ = 0.2

Microphone spacing, d = 0.1 m

Number of frequencies analyzed, G = 1

Frequency, f = 1000Hz

Number of frames averaged, 1

Samples per frame, 192

RANSAC

Inlier ratio = 0.25

Number of iterations = 5000

Distance threshold = 0.03

SDM

Maximum spacing between a pair of microphones, dmax = 0.25[m]

Temporal Window Size, L = 70 samples at 48000[Hz] Fs

Microphone array geometry, Random

Common

Source signal type for RSTM, white Gaussian noise N (0, 1).

Source signal type for SDM, ideal dirac delta function

Source location, r = [3, 0] - source distance 3 m.

Number of microphones, L = 16

Number of sound sources, 1

Unless stated otherwise, the parameters will be as de�ned above in the remaining sections of this

chapter.

The speed of sound, c, is set to 343 m/s throughout the report

3.2 Ray Space Parameters

This section contains a study on the RSTM speci�c parameters. A block diagram in �gure 3.1

gives an overview of the ray space simulations from start to �nish. First the input signal is

generated, then it is transformed to frequency domain by STFT. Here after the acoustic transfer

1This state is based on settings from [2].
2Errors, noise and phase are zero in default state.
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function which simulates the signal coming from a simulated speaker position for each microphone

in the array. This yields p(z, ω), the pressure values at microphones for each frequency. This is the

input for the ray space transform, which produces the ray space matrix, Z(m, q). Local maxima

are found in the generated ray space, Z(m, q), and a new matrix only containing the coordinates

of the local maxima is made, Zransac(m, q), which is sent to the RANSAC block. RANSAC then

�nds linear patterns in the ray space and estimates the source coordinates, x and y in meters.

Time Signal
Generation STFT

s(t) s(ω)
 Acoustic 
 Transfer 
 Function 
h(z|r’;ω)

p(z,ω) Ray Space 
Transform

Z(m,q)
RANSAC  (x,y)

  Identify
Local Maxima

Zransac(m,q)

Figure 3.1: Block diagram showing the process of simulating the RSTM.

3.2.1 Resolution in the m-plane and Angular Beamforming Range

mw, w = 1, 2, 3...W , controls the beamforming, in that it is de�ned by the beam width angle,

θ. mw = tan(θ) [2]. The default setting is looking from -78◦ to 78◦, using an sample interval

value in mw of m̄w = 0.03. We want to explore how changing mw and m̄w, changes the source

position estimation. The parameters are tested for a source located in [2, 2], which in default

settings result in an estimation at [2.049, 2.043]. Using θ = −78◦...78◦ results in an accurate

estimation, as is seen above. Reducing it to θ = −40◦...40◦, the estimation �nds [2.463, 2.335].

Figure 3.2 shows the Ray Space generated using the two di�erent values of θ,(a) for θ = ±40◦,(b)

for θ = ±78◦, the maxima found as the blue stars, and the linear patterns these produce. The

coordinate [2, 2] arrives at an incidence angle of 45◦, and thus reducing the visible region to ±40◦

from center of array, the source is only visible to the outmost edge of the array, and reducing θ

further would render the source invisible to the array.
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Figure 3.2: (a) Ray Space, θ = ±40◦, true source location r' = [2, 2] estimation �nds [2.463, 2.335].
(b) Ray Space, θ = ±78◦, , true source location r' = [2, 2] estimation �nds [2.049, 2.043].

Increasing θ increases W , which increases the complexity of the algorithm. Having θ run at a

�eld incidence as opposed to the full range from -90◦ to 90◦ is due to tan(90) = inf, meaning W

approaches in�nity as the beamforming range approaches 90◦. And as such, going beyond the

chosen 78◦ exponentially increases W, which in turn exponentially increases complexity of the

algorithm. E.g. with a spacing of m̄w = 0.03, θ = ±78◦, W = 315, with m̄w = 0.03, θ = ±85◦,

W = 765.

Since mw directly maps the Ray Space, it is assumed that by increasing the resolution, m̄w,

decreases performance while decreasing it results in an increase in performance. Setting W to 63,

�ve times larger interval than default, and setting the source further away to [5, 5], the estimation

yields [5.307, 5.250]. With W = 1575, �ve times lower interval than default, estimation �nds

[4.892, 4.897]. With default settings, W = 315, we �nd [5.123, 5.123]. In this case it is not proven

that the performance increases with smaller interval, likely due to the default resolution being

plenty for the task given. Increasing the distance of the source to [20, 20], we estimate [6.899,

7.012] for W = 63, [20.493, 20.493] for W = 315, and [20.545, 20.588] for W = 1575.
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Figure 3.3: (a) Ray Space, W = 63 ∴ m̄w = 0.15, true source location r' = [5, 5] estimation �nds [5.307,
5.250]. (b) Ray Space, W = 315 ∴ m̄w = 0.03, true source location r' = [5, 5] estimation
�nds [5.123, 5.123]. (c) Ray Space, W = 1575 ∴ m̄w = 0.006, true source location r' = [5,
5] estimation �nds [4.892, 4.897].

Figure 3.3 shows the Ray Space generated using the three di�erent values of m̄w, (a) for

m̄w = 0.15, (b) for m̄w = 0.03, and (c) for m̄w = 0.006, source location in [20, 20]. Here it

shows that some level of resolution is necessary to estimate when sources a far from the array.

Figure 3.3(a) makes it clear that having a too low resolution makes the linear pattern in the ray

space imprecise, as the resulting estimation also shows. Using the default resolution still achieves

good estimations even at far distances, so no reason is found to increase this for simulation

purposes.

3.2.2 Resolution in the q-plane

qi, i = 1, 2, 3...I, represents the range and resolution of the Gaussian window which is applied to

each sub-array[2]. The resolution of qi, q̄i, can also be viewed as the spacing between sub-arrays.

The default state of qi is a range of ±q0, where q0 is the maximum z value of the microphone

array, zL, and a resolution, q̄i, of 10 ∗ 10−3m, I = 151. As with the mw parameter we want to

explore the e�ects on source estimation when changing resolution and range. It can be argued

that changing the range from ±q0 does not make sense since it ensures that we get all possible
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combinations within the microphone array.

Changing the sub-array spacing, on the contrary, can be used to either reduce complexity or

improve resolution, as is the case with the resolution in mw. Furthermore, the space between

sub-arrays de�ne when the observed sound has origin in the far �eld, i.e the smaller spacing,

the shorter the distance to the far �eld. Normally, considering microphone arrays, the far �eld

is de�ned to be bounded by r = 2∗∆2

λ [2][4][7], where ∆ is the length of the array, and λ is the

wavelength. Implementing the sub-array structure the requirement is lowered by using far �eld

components for each sub-array, replacing the length of the entire array, ∆, in the equation, by

the length of the sub-arrays, ∆l.

Testing for a source in [20, 20], we �nd [20.493, 20.493] using default settings. Setting q̄i =

1 ∗ 10−3m, I = 755, a �fth of the default interval value yields [20.912, 20.632]. Decreasing the

resolution �vefold, q̄i = 50 ∗ 10−3m, I ∼ 30, yields [-Inf, -Inf]. Figure 3.4 shows the Ray Space

generated using the three di�erent values of q̄i, (a) for q̄i = 50 ∗ 10−3m, (b) for q̄i = 10 ∗ 10−3m,

and (c) for q̄i = 2 ∗ 10−3m, source location in [20, 20]. It is obvious that the resolution on the q

axis is improved in the Ray Space heatmap going from �gure (a) to (c), source localization for

(b) and (c) are good, while for a low resolution in (a) it completely fails. This happens due to

the few points available for line detection is not enough data points to make a guess that is not

just a vertical line.
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Figure 3.4: (a) Ray Space, I = 755, q̄i = 50∗10−3m, true source location r' = [20, 20] estimation �nds
[20.912, 20.632]. (b) Ray Space, I = 151, q̄i = 10 ∗ 10−3m, true source location r' = [20,
20] estimation �nds [20.493, 20.493]. (c) Ray Space, I ∼ 30, q̄i = 2 ∗ 10−3m, true source
location r' = [20, 20] estimation �nds [-Inf, -Inf ].

3.2.3 Frequency

ω is the frequency analyzed in the Ray Space transform. While only one frequency is used per

generation of Ray Space(Z matrix), the product sum of resulting matrices can be used to include

the content of more frequencies. The product sum taken and used, as this is how the it is applied

in [3]. Whether or not averaging over frequencies also work, it is not delved into in this thesis.

Three Ray Spaces are produced, one with ω = 200 ∗ 2π, another with ω = 1000 ∗ 2π, and one

with ω = 4000 ∗ 2π, see �gure 3.5.
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Figure 3.5: (a) Ray Space, ω = 200 · 2π. (b) Ray Space, ω = 1000 · 2π. (c) Ray Space, ω = 4000 · 2π

In each of the three ray spaces the source estimation is accurate, although the heatmaps look

very di�erent. It is hard to visually identify the 'ridge' of maxima in the 200 Hz ray space, the

heatmap is overall more �at than those of higher frequency. This is caused by the wavelength of

the signal, since the wavelength is signi�cantly longer on the 200 Hz map, the signal will vary

less on each spatial sampling in the microphone array than the others. The 4 kHz map shows

three patterns, but only one linear pattern. The two polynomial patterns surrounding the linear

pattern is a product of spatial aliasing, which happens when: f < c
2∗d , where c is the speed

of sound, d is the spacing between microphones[19]. The ray space represents this aliasing as

non-linear patterns and as such the spatial Nyquist criterion can be safely ignored. The reason

for this is a property of the uniform linear array layout, and a further explanation of can be

read in article [11] section C. Avoiding the spatial aliasing criterion, the upper frequency limit is

de�ned by the Nyquist frequency criterion, f < Fs/2. Using data from more than one frequency

to generate a ray space ensures that the data is weighted for di�erent frequency bands. This is

helpful if the signal is very frequency speci�c.
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3.2.4 Frame Averaging

Averaging over multiple frames in ideal conditions makes no di�erence in source estimation, since

each frame would contain the same data. To gauge how averaging frames will a�ect the result

in the real world, we add noise to a single frame of the input signal of the ray space transform.

Averaging of frames is carried out by equation 3.1[2], which is the mean of each ray space frame.

1

frames

frames∑
k=1

Z(m, q, k) (3.1)

Where frames is the total number of frames averaged, Z is the ray space matrix.

Averaging over �ve frames this leaves four frames with noiseless ray space estimations and one

with added noise. White Gaussian noise with a level 6 dB lower than the signal is used for the

noisy frame. The ray space with added noise is seen in �gure 3.6(a), the ray spaces of the noiseless

frames looks as �gure 3.6(b).
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Figure 3.6: (a) Ray Space, -6 dB white Gaussian noise added. (b) Ray Space, no noise.

Averaging over the �ve frames, we obtain a ray space seen in �gure 3.7. While the noise can still

be seen, it now only accounts for a �fth of the data, and is suppressed by the noiseless frames.
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Figure 3.7: Ray space averaging �ve frames.

3.2.5 Width of the Spatial Window

As explained in section 2.1, the microphone array data is divided into subgroups and weighted

spatially through the use of a moving spatial Gaussian window[2]. As can be seen in �gure 3.8,

the width of the Gaussian window, σ, can e�ect the formation of the sub-arrays and is mainly

related with the distance between microphones.

Following observations can be stated:

1. If the Gaussian window is too wide compared to the distance between microphones, the

formed sub-arrays will almost contain the same data each time, as can be seen in �gure

3.8 (a).

2. If the Gaussian window is too narrow, compared to the distance between microphones, a

beamforming operation will not happen at all, since the weighting never will take data

from more than a single sensor, as can be seen in �gure 3.8(b).
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Figure 3.8: Gaussian window width and distance between microphones

Test Cases

To verify some the e�ects of the width of the Gaussian window, a simulation with two extreme

cases and a �ve reasonable values are evaluated. Considering the default con�guration scenario,

with the sound source at position [3, 0] and a σ of 0.01[m] (one tenth of d) and 1[m] (ten times

d), the ray spaces are in �gure 3.9. Having a too low σ shows in that much of the ray space is

without any actual acoustic data, since no maxima is found for many of the horizontal lines(or

rows of the Z matrix), resulting in only few points of interest and a very poor resolution. Having

a too high σ makes it consider almost every microphone for each iteration, generating an over�ow

of data, as well as artifacts which show themselves as nonlinear patterns of local maxima around

the actual line. We try again with σ = 0.05 and 0.2, half of d and twice d. Note that authors

in [2] use 0.2 for a microphone spacing of 0.1 m. Figure 3.10 shows these. At σ = 0.05, all lines

now have data within them, but never from more than a single microphone, and often not much

data from that microphone either. This makes itself clear in the striped pattern on the ray space,

which shows that less data is present if the microphone is only at the edge of the spatial window.

σ = 0.2, the default state, shows a much smoother ray space, with no visible problems in the

�gure.
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Figure 3.9: (a) ray space with a spatial window width of 0.01[m]. (b) ray space with a spatial window
width of 1[m]
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Figure 3.10: (a) ray space with a spatial window width of 0.05[m]. (b) ray space with a spatial window
width of 0.2[m]

To verify that the spatial window is related to the distance between microphones, we lower the

distance between microphones to d = 0.04, and reproduce the ray space in �gure 3.10 with a σ

of 0.02 and 0.08, half and double the spacing between microphones. See �gure 3.11 for these.
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Figure 3.11: (a) ray space with a spatial window width of 0.02[m]. (b) ray space with a spatial window
width of 0.08[m]

Observations

Having a spatial window width of around two times the distance between microphones seems to

provide the better looking ray spaces with clear linear patterns. The estimation of source location

is equivalent for the values tested, but this is due to the ideal simulated conditions. Increasing

σ to use information from more microphones per movement of the spatial window might prove

useful in scenarios not considered here.

3.2.6 Microphone Spacing

Along with the number of microphones in the linear array, L, the microphone spacing d de�nes

the length of the array[2][3]. In itself it also determine the resolution of microphones along the

array. Lowering d will lower the length and increase the resolution of the array and opposites for

increasing d. We here study how changing this a�ects estimation of source location.

With static L = 16, we explore the following levels of d. Articles [2][3] use d = 0.1 and 0.06

respectively, so the values chosen are based around these.

� d = 0.02

� d = 0.04

� d = 0.06

� d = 0.08

� d = 0.1

� d = 0.12

� d = 0.14

� d = 0.16

� d = 0.18

Since σ de�nes how many microphones the Gaussian window averages over, we decide to make

it scale with d in this case. Article [2] uses σ = 0.2 with d = 0.1, so here we use σ = d*2 to

make sure it covers the same amount of microphones for each trial. Table 3.1 shows the values

of d and the estimated source location. True source location r′true = [3, 0].
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d [m] r′estimated
0.02 [2.641, 0.155]

0.04 [2.834, 0.026]

0.06 [2.995, -0.036]

0.08 [2.963, -0.052]

0.10 [3.112, -0.004]

0.12 [3.092, -0.039]

0.14 [3.100, -0.039]

0.16 [3.092, -0.004]

0.18 [3.137, -0.030]

Table 3.1: Level of d versus estimated values.

At very low d, we see error in estimation. This is most likely due to lowering d roughly translates

into the source being moved further away from array, from the perspective of the array. This is

true since the lower d is, the earlier in space we enter the far �eld, see the second paragraph of

subsection 3.2.2. Not much changes in estimation beside those, but the ray spaces show some

di�erences due to the changing size of the array. Figure 3.12 presents four levels of d in the ray

space, d = 0.02, 0.06, 0.10, 0.18.
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Figure 3.12: (a) Ray space, d = 0.02. (b) Ray space, d = 0.06. (c) Ray space, d = 0.10. (d) Ray space,
d = 0.18.
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3.3 Detection of Multiple Sources in the Ray Space

The Ray Space allows for the estimation of multiple sources in every iteration [3]. This section

looks into the performance detecting two simultaneous sources in simulated ideal conditions.

Using the same signal model as in the framework for a single source, we simply add more sources

by creating more instances of p(z, w) and adding them together. These are made by multiplying

the same noise signal, s(w), to transfer functions, h(z|r′, w), with other sets of source coordinates,

r′. Setting two sources to r′1 = [2, 2] and r′2 = [2, -2]. See �gure 3.13 for a diagram showing the

source positions relative to the microphone array. We use contributions of a combined 5 points

in frequency, these being f = [500, 801, 1105, 1409, 1713]. In addition, the algorithm is averaged

over 10 frames of 192 samples. σ = 0.5 is used in place of the default setting 0.2, since it is found

during simulations that the method �nds the sources using this setting and not the default,

however this is not found to be true when estimating single sources. A deeper study into this was

not carried out as a result of deadlines. We obtain source locations at [2.119, 2.085] and [2.091,

-2.051].

x16

2

2

y

-2

r’

r’

1

2

Figure 3.13: Diagram showing the true source distances to microphone array. The �lled black circles
denote the speaker positions.

The same test is performed for sources in [4, 4] and [4, -4]. Here we estimate the locations to

lie in [4.059, 4.014] and [4.059, -4.014]. See the corresponding ray spaces in �gure 3.14 (a) and (b).
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Figure 3.14: (a) Ray Space, r′1 = [2, 2] and r′2 = [2, -2], estimations �nd r′1est = [2.119, 2.085] and
r′2est = [2.091, -2.051]. (b) Ray Space, r′1 = [4, 4] and r′2 = [4, -4], estimations �nd
r′1est = [4.059, 4.014] and r′2est = [4.059, -4.014].

We then attempt placing the sources closer to each other, with sources in [2, 1] and [2, -1].

Here we �nd [2.353, 1.142], [2.300, -1.137], see �gure 3.15 (a). A 10% o�set is seen in the �rst

dimension here, to explore further we see how it handles [2, 0.5] and [2, -0.5]. Now the method

does not recognize any linear patterns in the ray space, and as can be seen in �gure 3.15 (b), the

rays interfere with each other and are obscured.
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Figure 3.15: (a) Ray Space, r′1 = [2, 1] and r′2 = [2, -1], estimations �nd r′1est = [2.353, 1.142] and
r′2est = [2.300, -1.137]. (b) Ray Space, r′1 = [2, 0.5] and r′2 = [2, -0.5], estimations �nd
r′1est = [N/A] and r′2est = [N/A].

We then try [2, 0] and [4, 0] to see how the performance is with a source behind another. Here,

the algorithm detects a single source in [2.773, 0], roughly between the two sources. Thus it

seems if two sources are located in the same direction they are seen as a single source in between

them. The ray space in �gure 3.16 (a) shows this. The reason for this is that in the ray space the

data of the two sources seem to blend together to make one source in between them. Changing

some parameter might assist in this, but the time needed to go through them all is not available
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during this project period.

Setting three simultaneous sources in r′1 = [2, 2], r′2 = [2, -2], and r′3 = [2, 0] the algorithm

estimates locations in [2.337, 2.306], [2.183, -2.169], and [1.926, 0]. See �gure 3.16 (b) for the ray

space image.
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Figure 3.16: (a) Ray Space, r′1 = [2, 0] and r′2 = [4, 0], estimations �nd single source in r′est = [2.773,
0]. (b) Ray Space, r′1 = [2, 2], r′2 = [2, -2], and r′3 = [2, 0], estimations �nd r′1est =
[2.255, 2.230], r′2est = [2.183, -2.169], and r′3est = [1.926, 0].

Observations

Although the Ray Space RANSAC �nds the multiple sources when they are at a certain distance

from each other in the y axis, it is found that when one or more sources are signi�cantly closer

than others, the farther sources are invisible to the sound camera. It also misinterprets the sound

�eld if two equal sources are very close to each other as they in�uence each others linear patterns.

A more in depth study in to this is required to determine whether this is �xable by changing

parameters.

3.4 RANSAC Parameters

This section covers the programmable parameters of the RANSAC line detection.

While di�erent adaptations of the RANSAC algorithm has been developed to try and help with

problems such as �nding a correct inlier ratio for a dataset[12], we here only use the standard

version of the RANSAC algorithm, since it is out of scope of this thesis to go very in-depth

regarding line detection.

3.4.1 Inlier Ratio

The inlier ratio determines how high a percentage of the points in the provided dataset has to

be an inlier on the linear pattern for the algorithm to accept the line[3][5]. If the inlier ratio

criterion is not upheld, the RANSAC will not accept the proposed pattern and thus not return a

proposed line. I.e. if this criterion is not upheld, there is not an acceptable linear pattern present

in the dataset. It is important to keep this criterion strict, while not too harsh. This is true since
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if the criterion is too lenient, it may include points in the linear pattern which to not belong,

such as noise or points belonging to a separate linear pattern in the set. If the criterion is too

harsh, the algorithm might struggle to ever �nd a linear pattern, since some points belonging

to the pattern might not lie precisely on the linear pattern and thus be discarded. Figure 3.18

shows three values of inlier ratios: 0.05, 0.25 and 0.5 for a dataset.

-4 -3 -2 -1 0 1 2 3 4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

-4 -3 -2 -1 0 1 2 3 4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

-4 -3 -2 -1 0 1 2 3 4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

q

m

q

m

q

m

(a)   (b)

(c)

Figure 3.17: (a) Ray Space, inlier ratio = 0.05. (b) Ray Space, inlier ratio = 0.25. (c) Ray Space, inlier
ratio = 0.5.

It is seen that a too low inlier ratio will �nd undesirable patterns while one that is too high will

not �nd any patterns at all.

While .25 suits this dataset, the fact remains that di�erent levels of inlier ratios will �t di�erent

types of datasets. For example if a dataset is very contaminated and contains very high amounts

of outliers, the inlier ratio has to be quite low for the algorithm to accept any linear patterns

within the noise.

3.4.2 Number of Iterations

The number of iterations determines how many times the algorithm will try to �nd inlier pairs

and include them in the proposed linear pattern[3][5]. The most important factor here is to

make sure enough iterations are performed to ensure that the correct linear pattern is found.

The number required will scale with the number of local maxima input to the algorithm, which
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scales with the resolution of the q and m axes, and how much noise is present in the data. 5000

iterations are used as a default state, and since it does not signi�cantly change the time to run

the algorithm, and no cases are found where increasing the number improves the outcome of the

algorithm, this number is held constant for the time being. In the case that the RANSAC shows

signs of bad performance, the number can be increased without concern.

3.4.3 Distance Threshold

The distance threshold sets the distance limit each point has to be within a line to be considered

an inlier of it[3][5]. Simply put, increasing the distance threshold makes the algorithm consider

the linear pattern to be wider, and decreasing makes it consider it as thinner. As is true with

the inlier ratio, �nding an optimal distance threshold varies for types of datasets. If a dataset is

very contaminated, having a high distance threshold will likely make the algorithm consider large

amounts of the noise present as inliers. While if the distance threshold is too low, small variations

on the linear pattern might be enough to make the line invisible to the algorithm. Figure ref (a),

(b), and (c) show ray spaces with distance thresholds of 0.01, 0.03, 0.3 respectively.
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Figure 3.18: (a) Ray Space, distance threshold = 0.01. (b) Ray Space, distance threshold = 0.03. (c)
Ray Space, distance threshold = 0.3.

With a low threshold it is seen that the algorithm does not recognize any linear patterns, and

with very high distance threshold it �nds arbitrary patterns which simply hold as many points
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as possible while upholding the criterion.

3.5 SDM Parameters

This section contains a study on the SDM speci�c parameters. A block diagram in �gure 3.19

gives an overview of the SDM simulations from start to �nish. First the input signal is generated,

then it is transformed to frequency domain by FFT. As in the RSTM, we apply the acoustic

transfer function which simulates the signal coming from a simulated speaker position for each

microphone in the array. While this can be done never leaving the time domain, implementing the

exact same function on both methods ensure that the signal model is equivalent for the methods.

After this we have p(z, ω), the pressure values at microphones for each frequency. By IFFT we

obtain p(z, t), the time signal at each microphone. This is used as input for the SDM estimation,

which produces an array containing all possible estimated locations of the source, DOA. This is

then ordered by which estimated locations have more energy in the reference microphone, pref .

Time Signal
Generation FFT

s(t) s(ω)
 Acoustic 
 Transfer 
 Function 
h(z|r’;ω)

p(z,ω)
 (x,y)FFT  

-1 p(z,t)
   SDM

DOA-array
ordering by
energy in pref

DOA

pref

Figure 3.19: Block diagram showing the process of simulating the SDM.

An implementation of the method from one of the authors of article [1] is available for Matlab,

and will be used to study performance aspects of this method regarding the parameters that

de�nes it. In the same article some guidelines are stated about the parameters and are shown in

table 3.2

Parameter Guideline

Window Length - L Larger than 2dmaxc

Maximum microphone spacing- dmax The smaller the better

Number of microphones - N The larger the better

Geometry of the array -

Sampling Frequency -Fs The higher the better

Table 3.2: SDM parameters

From this parameters, the number of microphones will be studied in comparison with the RSTM
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as a physical parameters and the window length, L and maximum distance between two receivers,

dmax, are studied in the same test case, as one de�nes the other.

3.5.1 Geometry

The microphone array geometry used in SDM is not speci�ed in the method as in the

implementation of RSTM[2], which we are analyzing. The following statements are taken from

[1].

1. For 3-D spatial sound encoding, the minimum number of microphones is four, which are

not in the same plane. It can be inferred that for 2-D sound analysis the minimum number

is 3 complying with the condition of not being in the same line and forming a plane in the

region of interest.

2. One microphone should be ommidirectional, or is possible to approximate a virtual one.

3. The dimensions of the array should be less or equal to the dimensions of a human head.

Looking at these requirements the following four con�gurations will be used within a simulation

scenario. These four variations try to maintain the parameters discussed in table 3.2 in order to

maintain a fair comparison. The analysis window length, L, is approximately 70 samples for all

the con�gurations, and the number of microphones is sixteen for all of them, with exemption of

the rectangular array in which is seventeen. Figure 3.20 shows a representation of the geometries

used.

1. Half Wheel.

2. Random. The microphones will be distributed using a random positioning between them.

This type of con�guration is chosen because theoretically it presents advantages regarding

the aliasing problem introduced by repeated sampling spacing which leads to ghost images

of high energy due to regular grid con�gurations.[18]

3. Circular.

4. Rectangular.
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Figure 3.20: Con�gurations evaluated for SDM

Scenario

An anechoic scenario, with a ideal impulse emitted by single source is considered. Ten di�erent

positions, lying in a half circle around the origin coordinates is used for each array con�guration.

Figure 3.21
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Figure 3.21: Source positions used, one at a time
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Results

Figures 3.22 and 3.23 show the distance and angle error among the 10 considered positions.
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Figure 3.22: Mean and standard deviation for the distance estimation error for the used array
con�gurations
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Figure 3.23: Mean and standard deviation for the angle estimation error for the used array
con�gurations
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Observations

The results show that the estimation for distance and angle presents the smaller mean and

deviation error values for the random con�guration. The con�guration that performs worst is

the rectangular, in which the distance error can be up to 9 [cm] in distance and 2.6 [deg] in angle.

The other two con�gurations present performances close to the random array.

3.5.2 dmax and Temporal Window Size L

The maximum distance between any pair of microphones de�nes the recommended temporal

window length. The window length should be slightly bigger than 2dmax/c [1]. To show how these

parameters a�ect the estimation 3 con�gurations were tested. As the random array con�guration

is the one with the lower estimation error, it will be used in two enlarged versions. The �rst one

is enlarged by a factor of 4, while the second one is enlarged by a factor of 5. The implementation

used calculates the necessary window size value to comply with the described criteria. For the

sampled con�gurations the values of L are 70, 254 and 314 samples, from the smallest to the

largest array, being the dmax values 0.25[m], and 0.9[m], 1.1[m] respectively as can be seen in

�gure 3.24. The scenario explained in section 3.5.1 is used for the source position.
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Figure 3.24: (a) Original, dmax = 0.25 m. (b) 4 times original dmax = 0.9 m. (c) 5 times original
dmax = 1.1 m.

Results

The distance mean error and angle mean error among the proposed source locations are presented

in �gures 3.25 and 3.26
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Figure 3.25: Mean and standard deviation for the distance estimation error
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Figure 3.26: Mean and standard deviation for the angle estimation error

Observations

The smaller array presents the best mean estimation for the angle and distance estimation but

the values are not of great signi�cance, as they go from 2 to 1.5 [cm] for distance and 0.4 to 0.5

degrees in angle estimation. The di�erence between the standard deviation between the analyzed

con�gurations is not di�erent and don not present any important information. The real observed
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di�erence between the con�gurations is the time that the algorithm takes to process them, being

the larger one the one that takes more time to process.
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3.6 Summary

A summary of the observations made on each method speci�c parameter.

RSTM Speci�c Parameters

� [Resolution in the m-plane and Angular Beamforming Range]: The beamforming

angle range, θ, controls the angular range of which the array is able to see sources. If a

source lies just outside the range of the center microphone, it might still be visible and able

to be estimated if it lies within the beamforming range of the edges of the array. Increasing

the beamforming angle range also increases complexity, and does so more the closer you

get to grazing incidence of θ = 90◦. Having a very high angle range will result in a very

high W. Having too low resolution in the m-plane can impair the estimation especially in

sources far away, since the slope of the ray in the ray space becomes increasingly steeper

the further away the source is. If the resolution then is too low, the line shows up as a

vertical line with no slope, which results in invalid estimation. The default setting is found

to be plenty for the test cases.

� [Resolution in the q-plane]: The resolution in the q-plane de�nes the size of the sub-

arrays which are analyzed between microphones. As was the case for the m-plane, if the

resolution in the q-plane becomes too small, the algorithm will not have su�cient variation

in data points on the axis, and will result in invalid estimations if it becomes too small.

The default setting is found to be plenty for the test cases.

� [Frequency]: The frequency parameter has two aspects to it: number of frequencies

analyzed and chosen frequencies of interest. By analyzing multiple frequencies the method

will use data from more frequency ranges, which can be of assistance if the signal lies

within a certain frequency band. The frequencies used matter in the way that they de�ne

the bands of frequency one wishes to include, but spatial aliasing also becomes a point

of interest when looking at frequencies above the criterion, c
2∗d [19]. In the ray space the

spatial aliasing shows itself as nonlinear patterns, and these can be ignored provided they

do not interfere with any of the rays in the ray space. In the case of multiple sources, spatial

aliasing will likely interfere with source rays in the ray space.

� [Frame Averaging]: Frame averaging is a tool to use data from sampled datasets at

di�erent points in time. This is especially helpful if noise is present in the signal, so that a

smoother ray space can be generated from multiple noisy ray spaces, due to the variance

being averaged over frames.

� [Width of the Spatial Window]: The width of the spatial window, σ, is found to be

correlated to the microphone spacing, d. This is likely the case since σ decides how many

microphones are considered per windowing, and how heavily the microphones are weighted.

For single source estimation it is found that σ = 2∗d works well. A study was not performed

to see how it might a�ect other scenarios, but it is of interest since the optimal value might

change.

� [Microphone Spacing]: Keeping the σ = 2 ∗ d, varying the microphone spacing only

shows error in estimation when the spacing is at very low levels, around d = 0.02m. This is

due to the far �eld being entered much earlier, thus making the source seem much farther

away in the perspective of the microphone array. See the second paragraph of subsection

3.2.2 for a bit more on this.
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RANSAC Speci�c Parameters

� [Inlier Ratio]: The inlier ratio de�nes how high a percentage of the local maxima need to

be inliers for the method to accept the linear pattern. The optimal value for this will change

with the scenario. For example if lots of the local maxima are the result of noise, then the

percentage has to be low so that it actually accepts the linear pattern. The opposite is

true for data with few maxima from noise, if it is too low it might start considering �nding

acceptable linear patterns in the noise after �nding the real linear patterns.

� [Number of Iterations]: The number of iterations determines how many times the

algorithm will try to �nd inlier pairs and include them in the proposed linear pattern.

It is decided that since it does not in particular a�ect the run time of the algorithm, the

number is kept at the default state of 5000. If more are needed, the number can always be

increased without having to worry.

� [Distance Threshold]: The distance threshold determines the distance limit each point

has to be within a line to be considered an inlier. As is the case for the inlier ratio, the

optimal value for this will change with the scenario examined. If there is noise causing the

ray in the ray space to be slightly nonlinear for parts of the line, while if you look at the

ray as a whole, a linear pattern is clear, having a too low distance threshold will cause the

algorithm to reject the line. Similarly if noise is present and the distance threshold is too

high, it will start considering noise as inliers just because it is in the vicinity of the linear

pattern.

SDM Speci�c Parameters

� [Maximum spacing between a pair of microphones - dmax]: This parameter is related

with the temporal window size required. In the three versions of the random array used,

none presented a signi�cant di�erence in estimation of the source. A clear di�erence in the

processing time is observed though, as the larger arrays require larger windows sizes, so

the smaller array is preferred.

� [Temporal Window Size L]: As the smaller array is preferred, the smaller temporal

window size is also preferred. The concern that can arise from these is the representation

of low frequencies.

� [Microphone array geometry]: In the test-cases a smaller estimation error was observed

for the random array con�guration. The de�nition of the geometry of the array is a subject

of investigation itself, but the only purpose of the test-case was to observe if some geometry

performs better than the other proposed and use it.
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Comparison Study

4.1 Introduction

The objective of the chapter is to compare the performance and capabilities of the SDM and

RSTM methods applied in source localization. The input signal model will be the same for both

methods. The main parameters to be assessed are the localization error, ε, de�ned as he distance

between the estimated position r̂′ and the real position of the source r′, and the angle error, φ,

de�ned by the absolute angle di�erence between the estimated position r̂′ and source r′.

ε =
∥∥r′ − r̂′∥∥ (4.1)

φ =

∥∥∥∥atan(
r′(2)

r′(1)
)− atan(

r̂′(2)

r̂′(1)
)

∥∥∥∥ (4.2)

4.1.1 Simulation Set-up

The next tables summarize the parameters used during the simulations. The values chosen are

based on the default settings for the parameter study which are based on settings used in [2].

Beyond these, some parameters are changed in accordance with the more optimal values found

in the parameter study and the rest remain in their original state since changing them did not

improve performance. The number of frames analyzed is set to 10, to ensure some averaging is

done when working with noise. The same goes for using �ve frequencies, to use content from

frequencies across multiple ranges. The highest frequencies used here is 1713 Hz, since the

nonlinear patterns which show when aliasing occurs might obscure the data when signi�cant

noise is induced.
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Parameter Description Value

N Number of samples per frame 192

frames Number of analyzed frames 10

fs Sampling frequency 48kHz

L Microphones in the linear array 16

d Distance between the microphones 0.1 m

I Samples on the q axis 150

W Samples on the m axis 300

σ Width of the spatial window Single source, 0.2. Multiple sources, 0.5.

G Number of analyzed frequencies 5

ω Analyzed frequencies [500 801 1105 1409 1713] Hz

θ Range of the analyzed frequencies [-78◦ to 78◦]

y Input signal White Gaussian noise, 0 dBw

Table 4.1: RSTM parameters

Parameter Description Value

L Microphones in the random array 16

d Minimum distance between the microphones 0.04 m

fs Sampling frequency 48kHz

N Number of samples 1024

y Input signal Ideal impulse

Table 4.2: SDM parameters

Parameter Description Value

interNum Number of iterations 5000

thDist Distance inliers need to be to the proposed line 0.03

thInlrRatio Percentage of the total points need to be inliers 0.25

Table 4.3: RANSAC parameters

4.2 Source Distance

To determine how increasing or decreasing distance from array to source a�ects the source

position and angle estimation, the x coordinate in r' is set to di�erent values, and the position

is estimated for each method. The distances examined are:

rdist = [0.1, 0.25, 0.5, 1, 2, 3, 5, 7, 10, 13, 16, 19, 22][m]

A diagram of these relative to the microphone array is seen in �gure 4.1.
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Figure 4.1: Diagram showing the true source distances to microphone array. The �lled black circles
denote the speaker positions.

RSTM

Figure 4.2 shows the results.
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Figure 4.2: Figure showing results for increasing source distance in RSTM, x axis shows the distance
to source, y axis show the distance error, ε.

The estimation is accurate from at short ranges, at least distances down to 0.1 meters, to distances

up to 7 meters. At far distances the ability to estimate sources distance diminishes. At 10 meters

and beyond the estimation error becomes erratic and �uctuates between 0.5 and 2 meters error.

Reason for this is likely the fact that source distance is measured from the slope of the linear

pattern in the ray space. When distance increases, the slope gets steeper, and becomes harder to

50



4.2. Source Distance Aalborg University

accurately estimate, since at this point very small changes in slope lead to very large changes in

source distance. The ray space for the source at 22 meters distance in shown in �gure ref, where

the steepness of the slope can be seen. The angle estimates correctly for all distances.
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Figure 4.3: Ray space at distance 22 meters, steepness of the linear pattern makes it hard to accurately
estimate source distance.

SDM

Figure 4.4 shows the results.
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Figure 4.4: Figures showing results for increasing source distance in SDM, x axis shows the distance to
source, y axis show the distance error, ε.

The �gure shows that sources within .25 meters are not estimated correctly. The implementation

assumes far �eld conditions, thus expecting a plane wave at the array. This makes it unable to

handle sources in the near �eld. The estimations are accurate from .5 meters up to seven meters,

whereafter the distance error increases with increase of distance. The error beyond seven meters
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should to the authors best knowledge not present a magnitude so large as the observed, so it

is assumed that it is a fault in not considering the delay time of the time signal compared to

the samples analyzed. This was only realized at very late stage of the project, so no time was

available to look objectively into the cause of it in the program.

4.3 Incidence Angle

By leaving the source distance static, and only altering the angle from the center of the

microphone array to source position we �nd the relation between incident angle and estimation

performance. The source distance is kept at 3 m, while we move in steps of 10◦. Only one side is

necessary to examine, since in ideal conditions we have symmetry. Figure 4.5 shows a diagram

of the positions relative to the microphone array.

x16

3

3

y

Figure 4.5: Diagram showing the true source distances to microphone array. The �lled black circles
denote the speaker positions.
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RSTM

Incidence Angle r'true r'estimated Distance error, ε [m] Angle error, φ [◦]

0◦ [3, 0] [3.112, -0.004] 0.112 0.075 ◦

10◦ [2.954, 0.522] [2.996, 0.518] 0.042 0.205◦

20◦ [2.818, 1.029] [2.931, 1.068] 0.120 0.048◦

30◦ [2.598, 1.501] [2.638, 1.530] 0.050 0.101◦

40◦ [2.297, 1.930] [2.300, 1.930] 0.003 0.040◦

50◦ [1.928, 2.299] [1.968, 2.340] 0.057 0.075◦

60◦ [1.498, 2.599] [1.533, 2.655] 0.066 0.045◦

70◦ [1.025, 2.819] [1.050, 2.883] 0.069 0.023◦

80◦ [0.519, 2.955] N/A N/A N/A◦

90◦ [0, 3] N/A N/A N/A◦

Table 4.4: True source position values versus estimated values for speci�c angles of incidence.

It is seen in table 4.4 that the estimation performs well until we arrive at an angle beyond the

beamforming range, θ, as would be expected.

SDM

Incidence Angle r'true r'estimated Distance error, ε [m] Angle error, φ [◦]

0◦ [3, 0] [3.008,-0.039] 0.040 0.734◦

10◦ [2.954, 0.522] [2.963, 0.520] 0.009 0.074◦

20◦ [2.818, 1.029] [2.827, 1.030] 0.009 0.041◦

30◦ [2.598, 1.501] [2.601, 1.512] 0.011 0.149◦

40◦ [2.297, 1.930] [2.292, 1.949] 0.020 0.343◦

50◦ [1.928, 2.299] [1.928, 2.310] 0.011 0.135◦

60◦ [1.498, 2.599] [1.505, 2.605] 0.009 0.045◦

70◦ [1.025, 2.819] [1.033, 2.826] 0.011 0.100◦

80◦ [0.519, 2.955] [0.532, 2.961] 0.014 0.221◦

90◦ [0, 3] [0.001,3.008] 0.008 0.013◦

Table 4.5: True source position values versus estimated values for speci�c angles of incidence.

Since the SDM does not have any angular requirement, it estimates locations correctly for every

de�ned incidence angle.

Observations

It is found that while within its beamforming range, θ, the RSTM performs similarly to the

SDM. Both show low ε and φ when this is the case. The RSTM can not estimate sources outside

its beamforming range, thus the SDM outperforms it here, showing no increase in error when

the angle increases toward 90 ◦.
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4.4 Signal to Noise Ratio

This section discusses the estimation of a single source position in an anechoic simulated

environment but adding di�erent amounts of white Gaussian noise in each of the receivers.

The addition of the noise can be seen as any disturbance in the middle of the whole system.

Model of the added noise

In the frequency domain, the signal on a receiving microphone can be represented as u(ω) =

h(ω)s(ω) + v(ω). Where h(ω) represents the transfer function between the source and the

receiver on an anechoic environment, s(ω) represents the signal produced by the source and

v(ω) represents a noise signal with zero mean, de�ned variance equally distributed in all the

frequencies. This is all based on the simulation study in section V of article [2].

To de�ne the input signal to noise ratio(iSNR), we use the expression:

iSNR(ω) = |h(ω)|2φs
σv

where σs is the variance of the source and σv is the variance of the noise. Additionally we

represent iSNR in dB(20log10) for a better representation of the cases where the expression

becomes fractional.

Source Location estimation

We compare the RSTM to the SDM in source localization.

Parameter Description Value

iSNR Input signal to noise ratio [-20 to 10] dB, 1 dB step size

Monte Carlo simulations Number of realizations averaged 100 per iSNR level

r' Source position [1 0] [m]

Table 4.6: Simulation Scenario

Results

Figure 4.6 shows the amount of iSNR against the distance error, ε. The y axis has been limited

to between 0 and 2 meters, since if it was expanded to contain larger error, it would not be

possible to see the di�erences when the methods perform well.
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Figure 4.6: iSNR vs distance error.

The data in �gure 4.6 shows that both methods perform well with noise with iSNR down to -5

dB, at least. The RSTM estimations become signi�cantly worse towards -10 dB iSNR. The SDM

performs slightly better, and falls o� around -15 dB iSNR.

Observations

� When the iSNR is positive, meaning that the signal power in the receiver is higher than

the noise power. The two methods are valid. The best approximation is made by the SDM

method, followed by the RANSAC method and the regression method with a higher �oor.

� The SDM method presents the best approximation even with a lot of noise added. Only

producing invalid approximations when the iSNR is below -13[dB]

� The noise a�ects the RSTM earlier than SDM, and becomes invalid at -10dB iSNR.

� In general a very similar trend is seen comparing the RSTM found here and that found in

[2] section V. The data we �nd, however, seem to have the RSTM perform better at higher

levels of noise, even considering that we use 20log10 and in [2] 10log10 is used.

4.5 Multiple Sources

We compare the methods in estimating multiple sources to see how the methods perform in a

more di�cult task than single source estimation. To compare the two methods in estimating

multiple sources, we de�ne a region of space wherein two sources will be randomly generated for

each iteration of the Monte Carlo simulations. This space is de�ned as only being in the positive

x axis1, between 0.5 and 3.5 meters, and between -1.5 and 1.5 meters on the y axis. 100 Monte

Carlo simulations are performed on the estimation of the then hundred sets of sources generated.

The comparison variable will then be the mean distance and standard deviation between sources.

The two sources are generated separately with di�erent seeds, and are thus uncorrelated and will

not interfere with each other.

1Reason being the Ray Space only works in positive x for the con�guration used.
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RSTM

See subsection 4.1.1 for settings used in the ray space transform algorithm.

The simulation yields 63 pairs estimations of the source positions, and 37 cases of the algorithm

detecting none, or only one source. Across the 63 pairs of estimation, a mean distance of 0.211 m

to true position with a standard deviation of 0.358 is found. Thus when the algorithm succeeds

in �nding the correct amount of sources, it also fairly accurately �nds their locations. To ensure

that the number of Monte Carlo simulations is su�cient, �gure 4.7 (a) shows cumulative mean

of the distance error and standard deviation across the successful trials. Figure (b) shows the

same �gure, but with outlying results removed2.
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Figure 4.7: RSTM (a) Cumulative mean and standard deviation distance error, including outlying
results. (b) Cumulative mean and standard deviation distance error, excluding outlying
results.

Reasons as to why the algorithm does not always correctly �nd the sources is caused by the

random generation of sources. As was determined in section 3.3, if sources are very close to each

other, they in�uence the generated rays on the Ray Space, and may be represented as a combined

ray of the two speakers, not representing any of them. Figure 4.8 shows a ray space of a case

where the linear patterns are obscured.

2Results with distance error > 2 m.
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Figure 4.8: Ray space of two sources interfering with each other, rendering localization impossible.

SDM

See subsection 4.1.1 for settings used in the SDM algorithm.

The SDM Monte Carlo simulations �nd 100 pairs of source position estimations, thus none failed.

A mean error of 0.141 m is registered with standard deviation of 0.369. The SDM �nds the sources

without fail and shows very similar mean and standard deviation in estimation to the RSTM.

Figure 4.9 shows the cumulative mean and standard deviation for the SDM as �gure 4.7 does for

RSTM. Using these implementations, per estimation the SDM is much more con�dent in �nding

multiple sources.
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Figure 4.9: SDM (a) Cumulative mean and standard deviation distance error, including outlying
results. (b) Cumulative mean and standard deviation distance error, excluding outlying
results.
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4.6 Microphone Position Error

A comparison is made on estimation with error in the microphone positions to obtain insight into

the robustness of the two methods. Seeded random uniform noise is added to every microphone

in both methods during estimation of source location. The methods are then compared in how

well the estimation is performed while the microphones are shifted slightly out of position.

RSTM

To simulate microphone position error in the Ray Space, we introduce ten levels of uniform noise

with a range of ±1 mm to ±10 mm, with 1 mm spacing, to the x- and y-coordinate of each

microphone position. 100 Monte Carlo simulations are performed on each level of noise, each

estimating a speaker located in [1,0].

Figure 4.10 shows the means and standard deviance of the distance error, ε, per noise level. Noise

level 0 is estimation without noise, and levels 1 to 10 correspond to the increasing levels of noise.

While minor di�erences are seen in the di�erent noise levels, the standard deviation and mean

remains low. It can be concluded that the method is robust and works with signi�cant error in

microphone positioning.

-1 0 1 2 3 4 5 6 7 8 9 10 11
Noise Level

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

[m
]

Figure 4.10: Distance error mean and standard deviation per noise level.

SDM

The same noise is applied for SDM, here both on x and y coordinates. Figure 4.11 shows the

mean and standard deviation of the distance error estimation for each level of noise. Noise level

0 is estimation without noise, and levels 1 to 10 correspond to the increasing levels of noise. The

distance error means and standard deviations is slightly lower than that of the RSTM across the

noise levels.
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Figure 4.11: Distance error mean and standard deviation per noise level.

4.7 Microphone Phase Mismatch

When using non-phase matched microphones in the microphone array, which almost always will

be the case, slight mismatches in phase will likely occur in between the microphones. In this

section we simulate and attempt to determine the e�ect that phase di�erences in microphones

has on source estimation. We introduce the phase mismatch in simulations as a delay on the

input signal in random microphones. We then look at the distance -and angle error means and

standard deviations through Monte Carlo simulations. Di�erent amounts of delay are introduced

in di�erent numbers of microphones to get an overview of the e�ect of the phase delay, these are:

[1]: One random microphone delayed by 15 frames, corresponding to a delay of ∼0.3 ms.

[2]: Two random microphones delayed by 6 and 12 frames, corresponding to a delay of ∼0.12
ms and 0.16 ms, respectively.

[3]: Four random microphones each delayed by 3 frames, corresponding to a delay of ∼0.6 ms.

RSTM

Delay type [1]:

100 Monte Carlo simulations yield a mean distance error of 0.135 m with a standard deviation of

0.097 m. A mean angular error of 0.337◦ with a standard deviation of 0.242◦. Figure 4.12 shows

a ray space of one of the simulations, and shows how the error presents itself here.
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Figure 4.12: Ray Space, 15 frame delay at microphone number 4(z = -0.45).

The error is very visible in the ray space, but has no signi�cant impact on the estimation accu-

racy since the RANSAC line detection still easily recognizes the linear pattern.

Delay type [2]:

100 Monte Carlo simulations yield a mean distance error of 0.135 m with a standard deviation of

0.137 m. A mean angular error of 0.362◦ with a standard deviation of 0.253◦. Figure 4.13 shows

a ray space of one of the simulations, and shows how the error presents itself here.
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Figure 4.13: Ray Space, 6 frame delay at microphone number 7(z = -0.15), 12 frame delay at
microphone number 4(z = -0.45).
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As with delay type [1], the RANSAC looks past the visible error in the ray space and continuously

accurately estimates the source location. No signi�cant di�erence in estimation is found between

the two types of delays.

Delay type [2]:

100 Monte Carlo simulations yield a mean distance error of 0.135 m with a standard deviation of

0.137 m. A mean angular error of 0.362◦ with a standard deviation of 0.253◦. Figure 4.13 shows

a ray space of one of the simulations, and shows how the error presents itself here.

Delay type [3]:

100 Monte Carlo simulations yield a mean distance error of 0.498 m with a standard deviation of

0.652 m. A mean angular error of 0.006◦ with a standard deviation of 0.031◦. Here the distance

error increases signi�cantly, which is the product of more of the ray space being distorted by

mismatching. As seen in �gure 4.12 and 4.13, if the noise only appears on few microphones, the

linear pattern stays mostly intact, while if more microphones are a�ected, the line becomes more

obscured.

SDM

Delay type [1]:

100 Monte Carlo simulations yield a mean distance error of 0.237 m with a standard deviation

of 0.166 m. A mean angular error of 4.471◦ with a standard deviation of 3.205◦.

Delay type [2]:

100 Monte Carlo simulations yield a mean distance error of 0.245 m with a standard deviation

of 0.162 m. A mean angular error of 4.616◦ with a standard deviation of 3.123◦.

Delay type [3]:

100 Monte Carlo simulations yield a mean distance error of 0.174 m with a standard deviation

of 0.116 m. A mean angular error of 0.153◦ with a standard deviation of 0.066◦.

SDM produces a slightly larger angular error than the RSTM in the �rst two types of delay,

while the distance error is very close to that of the RSTM. No signi�cant di�erence in the two

types of delay are seen in the SDM either. The SDM outperforms the RSTM on delay type [3]

on distance estimation.

Observations

Both methods show robustness to di�erent types of phase mismatch. While slight larger angular

error is seen in SDM tests, neither method fails to estimate sources with the types of delay

introduced. In delay type [3], the RSTM shows increase in distance estimation, due to the

ray space linear pattern being obscured by having delay on multiple microphones. It can be

argued that delay type [1] and [2] are very large and would probably result in changing the

equipment used in the test. Nevertheless, the test shows that with even large mismatch error in

few microphones, both methods are able to estimate correctly.

4.8 Input Signal Type

The methods performance in estimating sources with di�erent types of input signals is done

in this section. This gives insight into some of the di�erent types of scenarios the methods are
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usable within.

RSTM

In this section three di�erent input signal types are tested to verify the validity of the RSTM

for them. The con�guration explained in section 3 is used primarily and any changes to it are

explained.

1. A Gaussian white random process

2. An ideal dirac delta impulse

3. A Gaussian pulse with a de�ned frequency bandwidth and length

4. A sine wave

Gaussian Noise

This simulation uses a Gaussian noise signal with a total of 1600 samples, as can be seen in �gure

4.14, is analyzed in 10 frames each with a length of 160 samples. The ray space transform of 4

frequencies ranging from 50 Hz to 1500 Hz are analyzed individually. Source location in [3, 0].

1. Length of the signal, length(y) = 1600

2. Samples by frame, N = 160

3. Frames = 10

4. Frequencies analyzed = [50 500 1000 1500]

0 200 400 600 800 1000 1200 1400 1600
Samples

-4

-3

-2

-1

0

1

2

3

4
Gaussian Noise

Figure 4.14: Gaussian noise as input.

The ray-space is presented for each frequency, alongside the location of the identi�ed peaks in

�gure 4.15. Additionally the ray space heatmap for the inter-frames and -frequencies is presented

in �gure 4.16.
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Figure 4.15: Ray space heatmaps for four frequencies, using Gaussian noise.
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Figure 4.16: Ray space heatmap, combined contribution of the four frequencies.

It can be seen that in ideal conditions, combining frequencies does not change the outcome of
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the ray space algorithm.

Dirac Delta

This simulation uses a signal of a total of 1600 samples, the dirac delta signal can be seen in

�gure 4.17.

1. Length of the signal, length(y) = 1600

2. Samples by frame, N = 160

3. Frames = 10

4. Frequencies analyzed = [50 500 1000 1500]
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Samples
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1
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Figure 4.17: Dirac delta as input.

The ray spaces for each frequency analyzed for the delta dirac pulse are in �gure REF. No

combined ray space for these are shown since it is equivalent to that of Gaussian noise.
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Figure 4.18: Ray space for four frequencies, using a dirac delta pulse.

Gaussian Pulse

A Gaussian pulse with a de�ned frequency bandwidth and length is tested and can be seen in

�gure 4.19.

1. Length of the signal, length(y) = 1600

2. Samples by frame, N = 160

3. Frames = 10

4. Frequencies analyzed = [50 500 1000 1500]

5. Central frequency = 1000 Hz

6. Bandwidth = 10
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Figure 4.19: Gaussian pulse as input.

The ray-space is presented for each frequency in �gure 4.20. No combined ray space for these are

shown since it is equivalent to that of Gaussian noise.
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Figure 4.20: Ray space for four frequencies, using a Gaussian pulse.

Sine Wave

A sine wave with frequency of 1000 Hz and length is tested and can be seen in �gure 4.21.

Following settings are used:

1. Length of the signal, length(y) = 1600

2. Samples by frame, N = 160

3. Frames = 10

4. Frequencies analyzed = [50 513.3 1006.7 1500]

5. Sine wave frequency = 1000 Hz
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Figure 4.21: Sine wave as input.

The ray-space is presented for each frequency in �gure 4.15. No combined ray space for these are

shown since it is equivalent to that of Gaussian noise.
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Figure 4.22: Rays pace for four frequencies, using a 1000 Hz sine wave.

68



4.8. Input Signal Type Aalborg University

SDM

A known limitation of SDM is that it needs an impulse as input for source localization[1], in this

section we simulate and estimate using �rst and impulse and then Gaussian white noise to show

that it does not work in the method. Source location in [3, 0].

Figure 4.23 shows a source image representation for the dirac impulsive function while �gure

4.24 shows the same for the Gaussian white noise. As can be seen on the �gures the estimation

of the source is correctly observed for the impulse a localization error of ε= 0.039 m and an angle

error of φ= 0.734 ◦. For the Gaussian noise, the method does not estimate correctly at all. At

some points of estimation it does �nd the direction of the source, but not reliably.
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Figure 4.23: DOA and energy of values up to 1/1000 of the maximum energy, dirac impulse.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
x [m]

-1

-0.5

0

0.5

1

y 
[m

]

Source Estimations
Source Location
Microphones

Figure 4.24: DOA and energy of values up to 1/1000 of the maximum energy, Gaussian noise.
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4.9 Number of Microphones

Simulations using di�erent amounts of microphones are carried out in this section to determine

how many receivers are necessary for the methods to perform adequately in the con�gurations

we use in the report. This has signi�cance since compact solutions for sound �eld analysis are

preferred.

RSTM

As was introduced earlier, the geometry of the microphone array layout used in the RSTM

is linear and spacing between microphones is equidistant. In this context its length is de�ned

by the number of microphones, L, and the distance between each of them, d. Scenarios with

di�erent number of microphones, L, using the same spacing, d, are presented. Authors in [2][3]

use con�gurations L = 16, d = 0.1 and L = 16, d = 0.06, and so we use this as our reference

point, and move from there. The following con�gurations are studied:

� L = 4, d = 0.1

� L = 6, d = 0.1

� L = 8, d = 0.1

� L = 10, d = 0.1

� L = 12, d = 0.1

� L = 14, d = 0.1

� L = 16, d = 0.1

� L = 18, d = 0.1

� L = 20, d = 0.1

Table 4.7 shows the results of the source estimations.

L restimated Distance error, ε [m] Angle error, φ [◦]

4 [5.282, -0.034] 2.282 0.374◦

6 [3.757, 0.019] 0.758 0.283◦

8 [3.507, -0.008] 0.507 0.129◦

10 [3.221, -0.010] 0.221 0.180◦

12 [3.070, 0.004] 0.071 0.069◦

14 [3.140, 0.019] 0.141 0.341◦

16 [3.112, -0.004] 0.112 0.075◦

18 [3.066, -0.016] 0.068 0.301◦

20 [2.992, -0.004] 0.009 0.082◦

Table 4.7: RSTM. Number of microphones versus estimated values.

The result improves for a while when increasing the number of microphones, but when we have

12 or more in the array, the estimation �nds the location within 15 cm, indicating that at

least for this problem 12 is enough to accurately estimate source location. The variation seen

across estimation with L = 12, 14, 16, 18, 20 can be explained by inherent noise in estimation

using the method, as �gure 4.7 in section 4.5 shows. In general it can be said that increasing the

number of microphones will increase performance, but it is a trade-o� since it increases algorithm

complexity, number of microphones needed, and array size if d is kept constant. The ray space

for L = 4, 12, 16, and 20 are seen in �gure 4.25
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Figure 4.25: (a) Ray space, L = 4. (b) Ray space, L = 12. (c) Ray space, L = 16. (d) Ray space, L =
20.

SDM

The con�guration of the SDM microphone array is random locations within -1 and 1 on both

the x and y axis, with a minimum distance of 0.04 m between each microphone. While fewer

microphones are necessary in estimation with SDM[1], we use the same numbers of microphones

as for RSTM, and estimate source locations similarly. Table 4.8 shows the results of the source

estimations.

L restimated Distance error, ε [m] Angle error, φ [◦]

4 [3.004, 0.155] 0.155 2.945◦

6 [3.008, 0.026] 0.028 0.503◦

8 [3.008, -0.036] 0.037 0.678◦

10 [3.008, -0.052] 0.052 0.982◦

12 [3.008, -0.048] 0.048 0.910◦

14 [3.008, -0.039] 0.040 0.747◦

16 [3.008, -0.039] 0.039 0.734◦

18 [3.008, -0.041] 0.041 0.774◦

20 [3.008, -0.030] 0.031 0.572◦

Table 4.8: SDM. Number of microphones versus estimated values.
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The SDM perform well even only with four microphones, which is expected since one of the

major strengths of SDM is the ability to estimate with few receivers[1]. Figure 4.26 shows the

SDM estimations for L = 4, 12, 16, and 20. The red points show where the SDM estimates the

highest points of energy.
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Figure 4.26: (a) SDM estimation, L = 4. (b) SDM estimation, L = 12. (c) SDM estimation, L = 16.
(d) SDM estimation, L = 20.

4.10 Estimation in Reverberant Conditions

The purpose of this section is to observe the performance of both methods in the estimation of

the position of a source in a reverberant rectangular room. The RIR of the room is calculated

using the implementation made by Habets in [16] of the image method developed in [15]. For the

RSTM once that the RIR time signal for each position of the microphone array are calculated,

they are convolved to an anechoic white noise signal as explained in section 2.7. In the SDM

case, the RIR signals are used directly as input of the algorithm.

Scenario

The array and source positions can be observed in �gure 4.27 The simulated room have the next

characteristics:

� Dimensions.- The dimensions are de�ned the same as the standard listening room in

Aalborg University. Which are 8x4x3 LxWxH [m]

� Beta.- The re�ection coe�cient β needs to be speci�ed for each of the walls. In these

simulations the same coe�cient is speci�ed for all the walls excepting the wall in the back

of the arrays, which β zero. A total number of three re�ection coe�cients are considered

[0 0.65 0.80]. Figure 4.29 shows an example of two time signals generated with di�erent
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re�ection coe�cients. Specifying a β of magnitude zero, generate anechoic transfer functions

and is presented a veri�cation testcase.

� Source.- A single source in the room at 3 di�erent positions is considered

� Re�ection_Order.- Only re�ections up to fourth order are considered in the simulations.

(0,0)

11

3

2

L = 8[m]

W = 4[m]

H = 3[m]

(1,0)

(0,0)

(0,-1)

(0,1)

Mic array center

(-2,0)

ᵦ
y1

=0

Figure 4.27: Scenario considered for the reverberant simulations
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Figure 4.28: (a): β = 0, (b): β = 0.85 for position 1

Results

Table 4.9 show the results for SDM, while table 4.10 show the results for RSTM

Position β

0 0.65 0.80

ε[m] φ[◦] ε[m] φ[◦] ε[m] φ[◦]

[1 0] 0.0082 0.1768 0.101 0.2575 0.101 0.2587

[1 1] 0.0082 0.1768 0.101 0.2575 0.101 0.2587

[1 -1] 0.0082 0.1768 0.101 0.2575 0.101 0.2587

Table 4.9: SDM distance and angle error for the considered positions and re�ection coe�cients
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Position β

0 0.65 0.80

ε[m] φ[◦] ε[m] φ[◦] ε[m] φ[◦]

[1 0] 0.0081 0.1064 0.0439 0.4175 0.0439 0.4175

[1 1] 0.0277 0.6134 0.0292 1.0790 0.2183 3.5020

[1 -1] 0.0756 0.3347 0.3063 4.0321 0.2993 4.5518

Table 4.10: RSTM distance and angle error for the considered positions and re�ection coe�cients

Figure 4.29 shows how the ray spaces are distorted due to contributions of the present re�ections

of the near wall to the source.
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Figure 4.29: (a): β = 0.8 position [1 -1], (b): β = 0.65 position [1 -1]

Observations

SDM shows a very low estimation error for all the positions and re�ection coe�cients speci�ed.

In the other hand RSTM shows low estimation error for positions located at angle 0 degrees but

present errors up to 30[cm] and 4.5 degrees when re�ections are present. Figure 4.2 shows the

two worst cases analyzed.
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4.11 Summary

Here we summarize the observations made on each comparison parameter.

� [Source Distance]: In varying distance on the sound source, the RSTM slightly outper-

forms the SDM by being able to see sources very close to the array, down to atleast 0.1

m, while the SDM is able to see sources from around 0.5 and further away. Both methods

start failing beyond 7 m.

� [Incidence Angle]: With locked source distance and varying signal incidence angle, the

SDM clearly outperforms RSTM, since it is not bounded in this regard and can estimate

sources from any direction. The RSTM here is limited by the fact that it is only able to

see sources in positive x coordinates, and only within a chosen beamforming angle range

relative to the center of the linear microphone array, θ. This limitation is a product of

the linear geometry of the array, adapting the method for other geometric layouts could

remove the limitation.

� [Additive Noise]: Adding di�erent levels of noise to the microphones gives insight into

how well the methods can �nd linear patterns, when signi�cant noise is present. The SDM

method performs slightly better than the RSTM when input signal to noise ratio(iSNR) is

-5 dB or higher. When nearing -10 dB iSNR, the RSTM fails and no longer completes valid

estimations. The SDM persists a bit longer, and becomes invalid when the iSNR reaches

-15 dB.

� [Multiple Sources]: Both methods perform well when two sources are located, but the

RSTM returns erroneous results when the sources are placed too close to each other in the

real world. This causes the ray space to be obscured, since the rays corresponding to each

source interfere with each other.

� [Microphone Position Error]: Introduction uniform noise in levels from U ∼ [−1mm, 1mm]

to U ∼ [−10mm, 10mm] and averaging Monte Carlo simulations of the levels, neither met-

hod shows sensitivity to changes in microphone positions. Very slight increase in standard

deviation is seen towards the higher levels of noise, but not enough to be deemed signi�cant.

� [Microphone Phase Mismatch]: Both methods perform well when one or two microp-

hone are phase mismatched. The SDM experiences slight error in angle estimation. The

delay shows itself very clearly in the ray space, and interferes the linear pattern at the

location of the delayed microphone. If many microphones are mismatched, the error in the

RSTM increases due to the interference along more of the linear pattern.

� [Input Signal Type]: Signal type is one of the major parameters in which the RSTM

excels. The SDM is limited to the use of impulse signals in sound �eld analysis, while

RSTM is able to estimate regardless of the type of signal provided. The fact that it is able

to use content from many di�erent frequencies also enables it to use very frequency speci�c

content as input signal.

� [Number of Microphones]: Increasing the number of microphones increases the perfor-

mance of either algorithm, but only to a certain point. In estimating a single source in
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noiseless conditions, with spacing constant at d = 0.1, the RSTM needs atleast 12 microp-

hones to perform well. The SDM needs only four to perform decently(ε = 0.155 m). In

more complex problems, both methods will perform better with more microphones, and in

general SDM performs well with much fewer microphones than the RSTM.

� [Estimation in Reverberant Conditions]: SDM estimations for the position and

re�ection coe�cients present very low estimation error. RSTM presents estimation error up

to 30[cm] with the default parameter settings for positions close to a wall. It can be observed

from the images produced that the linear pattern is more or less distorted depending on

the re�ection coe�cient.

4.12 Conclusions

Generally the methods perform similarly over the compared parameters. Signi�cant observations

to make between the two methods are: The SDM performs well even with very few microphones,

we �nd that it performs well down to four microphones using the random geometry. Using

a di�erent type of geometry might be better with a small number of microphones and could

make the required number even lower. On the contrary, RSTM, with the linear con�guration

used here, needs atleast 12 microphones to accurately estimate at a distance of 3 meters. Other

con�gurations of the array will likely make it perform di�erently, but none other than the linear

array con�gurations are studied here, and have not been studied in-depth in previous studies on

the method, to the best of the authors' knowledge. Another signi�cant observation is that the ray

space can work with any type of acoustic signal from the source. The SDM requires an impulse.

The RSTM is also in this con�guration limited to only estimating sources in the positive x-plane,

also limited by the beamforming range θ. The SDM can estimate sources from any direction.

The SDM also performs better on detection of multiple sources, where the RSTM in about a

third of the cases can not �nd the sources. The SDM �nds the sources for every Monte Carlo

simulation. In the two thirds that the RSTM does estimate, the methods perform similarly in

distance -and angle error.
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5

RSTM Veri�cation

A series of tests done using real microphones capturing real data is done to test the performance

of the RSTM on real data, and to verify the simulations presented in previous chapters.

5.1 Initial Test in Non-Anechoic Conditions

A test is performed using a linear array of eight microphones of the same model, captured

on a single eight channel A/D converter, which is sampled on a sound card and saved on

a PC. Figure 5.1 shows the set-up and table 5.1 provides the equipment used in the test.

Equipment List

AAU # Description Model

08718 Sine/Noise Generator B&K Type 1049

75525, 75545 - 75551 Eight 1/2-Inch Microphones G.R.A.S. 40AZ

75557, 75577 - 75583 Eight 1/4-Inch Pre-Ampli�ers G.R.A.S. 26cc

56543 Eight Channel A/D Converter Behringer Ultragain Pro-8 Digital

56553 Sound Card RME Audiolink 96 Multiset

77008 PC laptop with PCMCIA port Fujitsu Simenes Lifebook E Series

02125-08 Speaker FBT Jolly3 A

Table 5.1: Equipment used in the initial test.
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Set-Up

}d

A/D8 Sound 
Card

ADAT PCPCMCIA

  Noise
Generator

Figure 5.1: Set-up for the initial test.

The environment is not anechoic, but has reduced re�ective properties with absorptive surfaces

on the walls and carpeting on the �oor. An ideal test would be completed with a 16 microp-

hone array in anechoic conditions, but the resources to complete this is at the time of this test

unavailable. It is reasoned that performing an initial test with fewer microphones in non-ideal

conditions can bring some insight into the performance of the algorithm. Pictures in �gure 5.2

shows pictures of the environment in which the measurements were captured, with the array in

place and the other equipment removed.
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Figure 5.2: Measurement environment.

The speaker is set in position [3, 0], reference to [0, 0] which is the center of the microphone

array. Co-ordinates are represented as meters in the real world. White noise is output on the

speaker via the Noise Generator. Comparing the level of the recording to the background noise,

we obtain a signal-to-noise ratio of 33.99 dB.

To use direct signals instead of simulated signals through the signal model, we simply apply an

FFT to the signals and retrieve the values of the frequencies we are using. With a sampling rate

of fs = 48 kHz, we look at a �ve frequencies, f = [500, 801, 1105, 1409, 1713], averaging 50 frames

each of 192 samples. The remaining of settings used in the algorithm are as we use in comparison

simulations in section 4.1.1, except changing σ to 0.2, and L to 8 microphones.

Using this on the recorded signal we achieve the ray space seen in �gure 5.3.
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Figure 5.3: Ray space of measured data, source in [3, 0]. Estimation yields [3.901, -0.080].

The source is estimated in [3.901, -0.080], which produces a distance error ε = 0.905 m, and an

angle error of φ= 1.175◦. The directional estimation is correct, but some error is seen in distance

estimation.

A series of tests is carried out to see whether the angle consistently will be estimated correctly.

Same settings as for the previous test is used, but estimating single sources sources placed in [2,

0.8], [2, -0.8], [2, 1.5], and [2, -1.5]. The resulting ray spaces are seen in �gure 5.4.
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Figure 5.4: Ray spaces of measured data. (a) source in [2, 0.8], estimation �nds [3.006, 1.031]. (b)
source in [2, -0.8], estimation �nds [2.405, -0.880]. (c) source in [2, 1.5], estimation �nds
[2.405, 1.778]. (d) source in [2, -1.5], estimation �nds [1.854, -1.562].

The resulting estimations �nd:

� (a), r′ = [2, 0.8]: Estimated location in [3.006, 1.031], ε = 1.032, φ = 2.870◦

� (b), r′ = [2, -0.8]: Estimated location in [2.405, -0.880], ε = 0.413, φ = 1.704◦

� (c), r′ = [2, 1.5]: Estimated location in [2.405, 1.778], ε = 0.491, φ = 0.395◦

� (d), r′ = [2, -1.5]: Estimated location in [1.854, -1.562], ε = 0.159, φ = 3.244◦

Angle is estimated correctly for all cases, with a maximum error of just over 3◦. The error in

distance is as would be expected for a set-up using only eight microphones. This expectation stems

from section 4.9, wherein we �nd a distance error of ε = 0.507 meter using eight microphones,

estimating in ideal conditions.

5.1.1 Observations

The test serves well as veri�cation for discoveries made earlier in simulations. Section 4.9 states

that at least 12 microphones are needed for correct estimations at a 3 meter distance, so some

error on distance is to be expected using an array with only eight. The estimations in the non-

anechoic room were expected to perform worse than was the case, since many other factors come

into play when outside ideal simulations. Re�ections come into play in the estimations, although

you would expect this to o�set the angle estimation, which is not the case. Background noise is
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unlikely to a�ect the result since we found a 33.99 dB signal to noise ratio in the room. Although

this shows that the method performs corresponding to our simulations, a separate test using

a 16-microphone array is needed to further verify the simulations, to give a comparison to the

simulated data where the parameters are as equal as possible.

5.2 Anechoic Chamber Tests

The microphone array is expanded to the full size, using 16 microphones in a linear array. Tests

are performed in an anechoic chamber to get a comparison as close to the simulations as possible.

The signal is sampled on 16 G.R.A.S. 40AZ microphones with G.R.A.S. 26cc pre-amps. These

are sampled on two eight channel A/D converters, which are sent to a pc through a sound card

on USB. See table 5.2.

Equipment List

AAU # Description Model

08718 Sine/Noise Generator B&K Type 1049

75525, 75530, 75533 - 75537, Eight 1/2-Inch Microphones G.R.A.S. 40AZ
75540, 75542, 75545 - 75551

75557, 75562, 75565 - 75569, Eight 1/4-Inch Pre-Ampli�ers G.R.A.S. 26cc
75572, 75574, 75577 - 75583

56543 Eight Channel A/D Converter Behringer Ultragain Pro-8 Digital

86838 Sound Card RME Fireface

N/A PC laptop Lenovo ThinkPad E530c

02125-08 Speaker FBT Jolly3 A

Table 5.2: Equipment used in the initial test.

Set-Up

The set-up used is seen in �gure 5.13. Each speaker and its position represents a set of coordinates

in which a test is performed in the anechoic chamber.
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Figure 5.5: Set-up for the anechoic chamber tests.

Pictures of the anechoic chamber with the array set in place in �gure 5.6.

Figure 5.6: Anechoic chamber environment.

Individual estimations of source positions are carried out with the speaker at each of the
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designated positions seen in �gure 5.13. Parameters used are identical to those of section 5.1, with

the exception of using L = 16 microphones. Figure 5.14 shows the ray spaces and the estimated

positions for the �rst 'line' of speakers, positioned along the line at x = 0.75.
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Figure 5.7: Estimation of speaker positions. (a) r' = [0.75, -1.5], estimation �nds [0.76, -1.39]. (b) r'
= [0.75, 1.5], estimation �nds [0.77, 1.46]. (c) r' = [0.75, -0.75], estimation �nds [0.86,
-0.79]. (d) r' = [0.75, 0.75], estimation �nds [0.89, 0.81]. (e) r' = [0.75, 0], estimation
�nds [0.81, 0.01].

The estimations �nd:

� (a), r′ = [0.75, -1.5]: Estimated location in [0.76, -1.39], ε = 0.111, φ = 2.103◦
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� (b), r′ = [0.75, 1.5]: Estimated location in [0.77, 1.46], ε = 0.045, φ = 1.242◦

� (c), r′ = [0.75, -0.75]: Estimated location in [0.86, -0.79], ε = 0.117, φ = 2.429◦

� (d), r′ = [0.75, 0.75]: Estimated location in [0.89, 0.81], ε = 0.152, φ = 3.244◦

� (e), r′ = [0.75, 0]: Estimated location in [0.81, 0.01], ε = 0.061, φ = 0.707◦

The same procedure is done for speaker positions along the line at x = 1.5. Figure 5.8 shows the

ray spaces.
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Figure 5.8: Estimation of speaker positions. (a) r' = [1.5, -1.5], estimation �nds [1.55, -1.52]. (b) r' =
[1.5, 1.5], estimation �nds [1.67, 1.58]. (c) r' = [1.5, -0.75], estimation �nds [1.77, -0.78].
(d) r' = [1.5, 0.75], estimation �nds [1.52, 0.80]. (e) r' = [1.5, 0], estimation �nds [1.65,
0.01].
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The estimations �nd:

� (a), r′ = [1.5, -1.5]: Estimated location in [1.55, -1.52], ε = 0.054, φ = 0.560◦

� (b), r′ = [1.5, 1.5]: Estimated location in [1.67, 1.58], ε = 0.188, φ = 1.586◦

� (c), r′ = [1.5, -0.75]: Estimated location in [1.77, -0.78], ε = 0.272, φ = 2.783◦

� (d), r′ = [1.5, 0.75]: Estimated location in [1.52, 0.80], ε = 0.054, φ = 1.194◦

� (e), r′ = [1.5, 0]: Estimated location in [1.65, 0.01], ε = 0.150, φ = 0.347◦

The �nal line in x = 2.25, �gure 5.9 shows the ray spaces.
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Figure 5.9: Estimation of speaker positions. (a) r' = [2.25, -.75], estimation �nds [2.39, -0.73]. (b) r'
= [2.25, .75], estimation �nds [2.32, 0.79]. (c) r' = [2.25, 0], estimation �nds [2.33, 0.04].

The estimations �nd:

� (a), r′ = [2.25, -.75]: Estimated location in [2.39, -0.73], ε = 0.141, φ = 1.45◦

� (b), r′ = [2.25, .75]: Estimated location in [2.32, 0.79], ε = 0.081, φ = 0.370◦

� (c), r′ = [2.25, 0]: Estimated location in [2.33, 0.04], ε = 0.089, φ = 0.984◦

The RSTM estimates every location within 20 centimeters, and within an angle of 3 degrees. The

distance error varies among positions, but in general the greater angle from speaker to center of

array, the larger the error becomes. This happens due to the beamforming range of 78◦, which in

some source locations make some of the outer microphones lose line of sight to the source. This

can be seen in �gure 5.14 (a) and (b), where the ends of the ray spaces are obscured due to loss

of line of sight at microphones at the end of the array.
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Multiple Sources

To compare with the simulated performance of estimating multiple sources with the RSTM, we

place two speakers of the same model1, in positions [2, 2] and [2, -2], and white noise is output

on both of them. Same settings as for the previous test are used, with the exception that σ is

increased to 0.5, as it was in simulations for multiple sources. Figure 5.10 shows the ray space

produced.
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Figure 5.10: Estimation of multiple sources. r1' = [2, -2], r2' = [2, 2], estimation �nds [2.54, -2.42],
[2.74, 2.67].

This yields a distance error of ε = 0.676 m for r1', and ε = 0.998 m for r2. Angle error for r1' is

φ = 1.273 ◦ and for r2' it is φ = 0.741.

The speakers are moved closer to each other, to r1' = [2, -1] and r2' = [2, 1], and the test is

repeated. This yields the following ray space in �gure 5.11.

1Two of the same model as seen in 5.2 are used.
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Figure 5.11: Estimation of multiple sources. r1' = [2, -1], r2' = [2, 1], estimation �nds [2.21, -1.15],
[2.02, 0.99].

Distance error of ε = 0.258 m for r1', and ε = 0.022 m for r2. Angle error for r1' is φ= 0.926 ◦

and for r2' it is φ = 0.456 ◦.

While the estimation performs better with speakers closer to each other, it is also obvious that

more noise is present in the ray space. This follows the expectation found in simulations, where if

too close the rays would interfere with each other. Something else to be noted for the estimation

in �gure 5.11 is that initially the RANSAC did not accept linear patterns among the noise

and the distance threshold had to be increased to make it accept the slightly curved lines as

linear patterns. The fact that the estimations are better for the closer speakers is likely either

by coincidence or due to them being closer to the middle of the microphone array so that each

beamformer �nds both speakers.

5.3 Listening Room Test

Another test is carried out in a the listening room located in B4-107 at Aalborg University.

This room conforms to the IEC-268-13 standard, which de�nes the 'average living room' with a

reverberation time of approximately 0.4 seconds. The room is 7.80 meters long, which allows for

tests on a larger distance than in the anechoic chamber. Figure 5.12 shows pictures of the room

and set-up.
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Figure 5.12: The listening room.

The test serves to see how well the RSTM performs in normal, non-anechoic conditions, and to

see at how far distances the method still works properly. The same equipment is used as in the

anechoic chamber, seen in table 5.2.

Set-Up

The set-up is similar to that of the anechoic chamber as well, although we here only look at

di�erent points in distance, moving on the x axis. The �ve points measured is seen in �gure

REF, represented by the speaker symbols.

A/D Sound 
Card

ADAT PC

y

x16

USB

x=1 x=2 x=3 x=4 x=5

Figure 5.13: Set-up for the listening room tests.
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The source position is estimated for each of the �ve positions, using the same settings for

parameters for single sources in the anechoic chamber. Figure REF shows the ray spaces of

each speaker position.
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Figure 5.14: Estimation of speaker positions. (a) r' = [1, 0], estimation �nds [0.91, -0.01]. (b) r' = [2,
0], estimation �nds [1.93, 0.07]. (c) r' = [3, 0], estimation �nds [2.77, -0.07]. (d) r' =
[4, 0], estimation �nds [3.38, -0.30]. (e) r' = [5, 0], estimation �nds [3.11, 0.05].

The estimations �nd:
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� (a), r′ = [1, 0]: Estimated location in [0.91, -0.01], ε = 0.091, φ = 0.630◦

� (b), r′ = [2, 0]: Estimated location in [1.93, 0.07], ε = 0.099, φ = 2.077◦

� (c), r′ = [3, 0]: Estimated location in [2.77, -0.07], ε = 0.240, φ = 1.448◦

� (d), r′ = [4, 0]: Estimated location in [3.38, -0.30], ε = 0.689, φ = 4.421◦

� (e), r′ = [5, 0]: Estimated location in [3.11, 0.05], ε = 1.891, φ = 0.921◦

The test shows that the RSTM estimation starts failing when the distance is beyond three meters,

atleast in non-anechoic conditions. On estimating relatively near sources it performs similarly as

to in anechoic conditions, with less than 10 cm error for sources at one and two meters distance.
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6

Conclusions and Perspectivation

In this thesis we further build the knowledge base on the ray space transform method and its

performance in sound �eld analysis, by acoustic source localization. We delve into the components

of the method, discuss these, and establish the link between the components, the method itself,

and the real world. The parameter study focuses on single parameters while keeping others static.

This provides information as to how each parameter on its own a�ects the ray space and source

localization therein. To expand this study, the authors conclude that a future work studying how

changing multiple parameters can be bene�cial for certain scenarios, such as sources at very far

distances, sources behind other sources, and many simultaneous sources is of great interest.

Following the study of method speci�c parameters, we carry out a comparison of the RSTM

and a more established method in sound-�eld analysis, the spatial decomposition method. It

is found that when studied on as equal terms as found possible by the authors, the methods

perform very similar in regards to noise and measurement error, i.e. microphone position error,

noisy signals, and phase mismatch. The RSTM outperforms SDM in few of the comparisons:

Estimation of sources very close to the microphone array, and type of input signal. In the

remainder of comparison variables the SDM performs better, albeit sometimes only slightly.

These are: signal incidence angle, number of microphones, and estimation of multiple sources.

Tests are carried to verify the performance of the RSTM with actual measured data. At �rst an

initial test is carried out using less than optimal microphones1 in non-anechoic conditions. This

contributes to attain experience with the practicalities of the method, while giving insight into

the performance of the method in sub-optimal conditions. The tests show the method performing

according to what the simulations predicted using only eight microphones, see section 4.9. Angle

is found for each of the tested source locations while the distance error varies from 0.1 meter to

just over a meter. Anechoic chamber tests followed this, using the full 16 microphone array. Tests

are performed at di�erent positions in the chamber, covering 13 positions. The estimations show

that the simulated results matches those of real measured data in the anechoic chamber. Low

distance error2 and low angle error3 prove that the method works as predicted, thus verifying the

simulations. A �nal test is performed in a standard living room, conforming to the IEC-268-13

standard, using the 16 microphone array and estimating performance at di�erent distances from

source to array. These show that the RSTM perform well at least within a three meter distance

in semi-reverberant conditions. Beyond three meters, the incidence angle is still found correctly,

but the distance estimation su�ers more the further away we move.

To make the RSTM a viable alternative to SDM or other contemporary sound �eld analysis

methods, the authors conclude that a few things need improvement and/or changing4:

1Here, eight microphones is used while 16 would correspond to the amount used in simulations.
2below 20 cm for all cases
3below 3◦ for all cases
4These are based on the capabilites of the SDM in sound �eld analysis.
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� Number of microphones and/or microphone geometry. The array as it is, is a 1.5 meter

linear array, not suited for many applications since they often require compact solutions

to sound �eld analysis. This might be achieved by either optimization of the method and

algorithm, or to change the shape of the array to something more e�ective. The downside

to changing array geometry is that the mathematical aspects will change and likely grow

a lot more complex.

� Three dimensional analysis. As it is right now, the method estimates in two dimensions,

using the linear array. To achieve three dimensional estimation using the same con�guration

would require another perpendicular array to the linear array. This also comes down to

changing and optimizing array geometry.

� Estimation behind array. While not all applications need the array to be able to see sources

behind it, the feature would surely bene�t the usage of the method in applications.

� As studied in this thesis, the choosing of parameters have an in�uence on the output

images of the ray space. Depending on the acoustic scenario, and specially in complex

room geometries the selection of these parameters can be di�cult. In this sense a tuning of

this parameters through machine learning can be useful and interesting for a future study.

The previous points all regard the performance in sound �eld analysis, and while an

implementation of using RSTM in spatial �ltering and reproduction of sound �elds were outside

the scope of this thesis, carrying out a similar study on this is to the authors a very interesting

subject for future projects. In [2] and [3] the authors claim that the RSTM is very well suited

for this purpose, and it might be the area where the RSTM has its biggest potential.

93





References

[1] S. Tervo, J. Pätynen, A. Kuusinen, T. Lokki, �Spatial Decomposition Method for Room

Impulse Responses,� in Journal of the Audio Engineering Society 61(1):16-27, Jan. 2013.

[2] L. Bianchi, F. Antonacci, A. Sarti and S. Tubaro, �The Ray Space Transform: A New

Framework for Wave Field Processing,� in IEEE Transactions on Signal Processing, vol.

64, no. 21, pp. 5696-5706, Nov.1, 1 2016.

[3] D. Markovi¢, F. Antonacci, L. Bianchi, S. Tubaro and A. Sarti, �Extraction of Acoustic

Sources Through the Processing of Sound Field Maps in the Ray Space,� in IEEE/ACM

Transactions on Audio, Speech, and Language Processing, vol. 24, no. 12, pp. 2481-2494,

Dec. 2016.

[4] F. Borra, L. Bianchi, F. Antonacci, S. Tubaro and A. Sarti, �A robust data-independent

near-�eld beamformer for linear microphone arrays,� 2016 IEEE International Workshop

on Acoustic Signal Enhancement (IWAENC), Xi'an, 2016, pp. 1-5. doi: 10.1109/IWA-

ENC.2016.7602934

[5] M.A. Fischler, R.C. Bolles, �Random Sample Consensus: A Paradigm for Model Fitting with

Applications to Image Analysis and Automated Cartography,� in Communications of the

ACM, 1981:381- 395.

[6] T. Ajdler, L. Sbaiz and M. Vetterli, �The Plenacoustic Function and Its Sampling,� in IEEE

Transactions on Signal Processing, vol. 54, no. 10, pp. 3790-3804, Oct. 2006.

[7] R. A. Kennedy, T. D. Abhayapala and D. B. Ward, �Broadband near�eld beamforming using

a radial beampattern transformation,� in IEEE Transactions on Signal Processing, vol. 46,

no. 8, pp. 2147-2156, Aug 1998.

[8] O. Bretscher, �Linear Algebra with Applications�, 5th Edition, Chapter 5, Pearson 2013.

ISBN-13: 9780321946553.

[9] R. O. Duda, P. E. Hart. 1972. �Use of the Hough transformation to de-

tect lines and curves in pictures,� Commun. ACM 15, 1 (January 1972), 11-15.

DOI=http://dx.doi.org/10.1145/361237.361242

[10] Hough, P.V.C. �Method and means for recognizing complex patterns,� U.S. Patent 3069654,

Dec. 18, 1962.

[11] D. Markovi¢, F. Antonacci, A. Sarti and S. Tubaro, �Sound�eld Imaging in the Ray Space,�

in IEEE Transactions on Audio, Speech, and Language Processing, vol. 21, no. 12, pp. 2493-

2505, Dec. 2013. doi: 10.1109/TASL.2013.2274697

[12] A. Hast, J. Nysjö, A. Marchetti (2013). �Optimal RANSAC � Towards a Repeatable

Algorithm for Finding the Optimal Set,� Journal of WSCG 21 (1): 21�30.

94



References Aalborg University

[13] M. Park, B. Rafaely, �Sound-�eld analysis by plane-wave decomposition using spherical

microphone array,� The Journal of the Acoustical Society of America 118, 3094 (2005); doi:

http://dx.doi.org/10.1121/1.2063108

[14] L. Bianchi, �A uni�ed framework for acoustic scene analysis, synthesis and processing,� PhD

Thesis in Information Technology from Politecnico di Milano, Dipartimento di Elettronica,

Informazione e Bioingegneria (DEIB), 2016. http://hdl.handle.net/10589/117083.

[15] J. B. Allen, D. A. Berkley. �Image method for e�ciently simulating small-room acoustics,�

Journal of the Acoustical Society of America, vol. 65, no. 4, pp. 943�950, 1979.

[16] E. A. P. Habets, �Room impulse response generator,� Technische Univ. Eindhoven,

Eindhoven, The Netherlands, Tech. Rep., 2006.

[17] D. Markovi¢ �Plenacoustic processing in the ray space: applications to acoustic scene

modeling and analysis,� PhD Thesis in Information Technology from Politecnico di Milano,

Dipartimento di Elettronica e Informazione, 2013.

[18] Christensen, Hald. �B&K Beamforming Technical Review,� issue 1, 2004.

[19] J. Dmochowski, J. Benesty and S. A�es, �On Spatial Aliasing in Microphone Arrays,� in

IEEE Transactions on Signal Processing, vol. 57, no. 4, pp. 1383-1395, April 2009. doi:

10.1109/TSP.2008.2010596

[20] S. Tervo, J. Pätynen, N. Kaplanis, L. Morten, S. Bech, and T. Lokki , �Spatial analysis and

synthesis of car audio system and car cabin acoustics with a compact microphone array,� J.

Audio Eng. Soc. 63(11), 914�925 (2015).

[21] S. Tervo, P. Laukkanen, J. Pätynen, and T. Lokki, �Preferences of critical listening

environments among sound engineers,� J. Audio Eng. Soc. 62(5), 300�314 (2014).

[22] S. Tervo, J. Saarelma, J. Pätynen, I. Huhtakallio, and P. Laukkanen, �Spatial analysis of the

acoustics of rock clubs and nightclubs,� Proc. Inst. Acoust. 37(3), 551�558 (2015).

[23] S.V. Amengual Garí, W. Lachenmayr, E. Mommertz, �Spatial analysis and auralization of

room acoustics using a tetrahedral microphone,� Journal Acoustic Society of America. 2017

Apr;141(4):EL369

[24] C. Knapp, G. Carter, �The Generalized Correlation Method for Estimation of Time Delay,�

IEEE Trans. Acoust., Speech and Signal Proc., vol. 24, no. 4, pp. 320�327 (1976).

[25] L. Zhang, X. Wu, �On Cross Correlation Based Discrete Time Delay Estimation,� IEEE

International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 981�984

(2005).

[26] E. Adelson, J. Bergen, �The plenoptic function and the elements of early vision,� in

Computational Models of Visual Processing. Cambridge, MA: MIT Press, 1991, pp. 3�20.

[27] S. Qian, D. Chen, �Discrete Gabor transform,� IEEE Trans. Signal Process., vol. 41, no. 7,

pp. 2429�2438, Jul. 1993

95




	Titlesheet
	Table of Contents
	Introduction
	Motivation
	Wave Field Processing
	Contribution of the Thesis
	Structure of this report

	Theory
	Introduction to the Ray Space Transform
	Signal Path Overview
	Short Time Fourier Transform
	The Plenacoustic Function and the Ray Space Domain
	Gabor Frames in the Ray Space

	The Spatial Decomposition Method
	Objective
	Basic assumption and general method

	Similarities and Differences Between RSTM and SDM
	Identifying the Local Maxima
	Line Detection Algorithms
	Least Squares Regression
	Hough Transform
	RANSAC
	Evaluation

	Random Sample Consensus
	Room Impulse Response Model
	Summary

	Parameter Study
	Default Parameter Settings
	Ray Space Parameters
	Resolution in the m-plane and Angular Beamforming Range
	Resolution in the q-plane
	Frequency
	Frame Averaging
	Width of the Spatial Window
	Microphone Spacing

	Detection of Multiple Sources in the Ray Space
	RANSAC Parameters
	Inlier Ratio
	Number of Iterations
	Distance Threshold

	SDM Parameters
	Geometry
	dmax and Temporal Window Size L

	Summary

	Comparison Study
	Introduction
	Simulation Set-up

	Source Distance
	Incidence Angle
	Signal to Noise Ratio
	Multiple Sources
	Microphone Position Error
	Microphone Phase Mismatch
	Input Signal Type
	Number of Microphones
	Estimation in Reverberant Conditions
	Summary
	Conclusions

	RSTM Verification
	Initial Test in Non-Anechoic Conditions
	Observations

	Anechoic Chamber Tests
	Listening Room Test

	Conclusions and Perspectivation
	References

