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Danish abstract

Dette kandidatprojekt i matematik beskæftiger sig med grafteori, specifikt teorien
vedrørende kantfarvninger, stærke kantfarvninger og parringer samt faktoriseringer af
grafer.

Kantfarvning af en graf består i at tildele hver kant en farve, sådan at intet par af
tilstødende kanter tildeles samme farve. Selvfølgelig kan dette opnås ved at tildele en
særskilt farve til hver kant i en given graf, men ofte kan man have interesse i at benytte så
få farver som muligt.

Efter en kort introduktion til kantfarvningsterminologi, indeholder Kapitel 2 et bevis
for Vizings sætning, som angiver en generel øvre grænse for grafers kromatiske indeks,
som er det mindste antal farver, der behøves for at opnå en gyldig farvning af alle grafens
kanter.

Herefter betragtes i Kapitel 3 kantfarvninger fra et andet perspektiv, nemlig parringer.
Parringer vises at være grundlæggende forbundet med faktorer i grafer, hvorefter flere
resultater vedrørende parringer og faktorer bevises.

Dernæst skærpes begrebet kantfarvninger i Kapitel 4 til det specialtilfælde, som stærke
kantfarvninger udgør. En kantfarvning af en graf kaldes stærk, hvis der om enhver kant i
grafen gælder, at alle dennes tilstødende kanter er tildelt særskilte farver.

Det bevises, at en velkendt formodning om en øvre grænse for det stærke kromatiske
indeks vil være skarp, såfremt formodningen viser sig at være sand. Denne formodning går
i grove træk ud på, at en graf med højeste grad ∆ højst kan have stærkt kromatisk indeks
5
4∆2.

Dernæst bekræftes et særtilfælde af formodningen som kun betragter særlige todelte
grafer. Resultatet lyder, at for en todelt graf, hvori den ene delgraf har højeste grad 2, vil
det stærke kromatiske indeks højst være lig det dobbelte af grafens højeste grad.

Endelig indeholder Kapitel 5 et bevis for en sætning, som for kubiske grafer bekræfter
den omtalte formodning om en øvre grænse for det stærke kromatiske indeks.
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CHAPTER 1Introduction

Throughout the thesis, we consider simple, finite graphs unless otherwise specified. We will
occasionally need to consider directed graphs or multigraphs to gain a better understanding
of a given theory or to establish a result. When this occurs, it will be clearly noted in the
preceding text.

A thorough introduction to graph theory would be of great aid to the reader
before reading this thesis, and for this purpose the book [Gross et al., 2006] must be
recommended for its intuitive composition and clear language.

Likewise, the thesis makes liberal use of basic definitions, terminology, and notation
as it is introduced throughout the book [Gross et al., 2006]. Should another perspective
on the subject matter be desired, [Chartrand et al., 2009] provides a different, yet equally
complete treatment of chromatic graph theory.
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CHAPTER 2Edge colourings

The most famous theorem of graph theory is, undoubtedly, the Four-Colour Theorem, one
reason for its fame being its reasonably simple statement, and another reason being the
remarkable span of time from its first statement to its confirmative proof published in
[Appel et al., 1989]. The Four-Colour Theorem, in its conjectured form, asked whether it
was possible to colour the vertices of a simple, planar graph with four colours, such that
no two vertices of the same colour were connected by an edge. A notion closely related
to this question of vertex colouring is the notion of edge colouring a graph. There is no
edge-colouring theorem equivalent to the Four-Colour Theorem, but edge colouring theory
is nonetheless a rich theoretical field.

2.1 Basic edge colouring

Before we can prove any statements about edge-colouring graphs, we need to formalise
what it means to colour edges.

2.1.1 Definition ((Proper) Edge colouring):
Let G be a graph. An edge-colouring of the graph is a map c : E(G)→ S, which maps each
edge to an element of the finite set S. We refer to these elements as colours and say that an
edge e is assigned the colour c(e) in S. It is tacitly assumed that S = {1, 2, . . . , k} for some
finite integer k. This has the effect of imposing a natural order on the elements of S. An
edge colouring is called proper if no two edges joined by a single vertex are assigned the same
colour.

2.1.2 Definition (Edge colour class):
An edge colour class is defined for an edge-colouring as the set of all the edges in E(G) that
are mapped to the same colour in S.

The above definition implies that, for a given edge-colouring c : E(G) → S, at most |S|
edge colour classes can exist.

Two edges are said to be adjacent if they have a common end vertex. Similarly, two
vertices in a graph, say v and w, are said to be adjacent if there exists an edge in the graph
with v and w as its end vertices.
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2. Edge colourings

2.1.3 Definition (Edge-k-colourable):
A graph G is said to be edge k-colourable if it has a proper edge k-colouring.

If a graph has a proper edge k-colouring, it is said to be properly edge k-colourable.

2.1.4 Definition (Chromatic index):
For a graph G, the chromatic index χ′(G) is defined as the smallest integer k for which G is
properly edge k-colourable. The graph G is then said to be edge k-chromatic.

Perhaps the most immediate question arising from these definitions, is how one might
find a proper edge-colouring of a given graph. One method is contained in the following
algorithm.

Algorithm 1 Greedy edge-colouring
Input: A graph G of size m with edges listed as e1, e2, . . . , em.
Output: A proper edge-colouring c : E(G)→ S, where S = {1, 2, . . . , k}

1: for i = 1 to m do
2: Assign to ei the smallest colour not assigned to any edge adjacent to ei
3: return The edge-colouring c determined by the above assignments.

2.2 Chromatic index of bipartite graphs

A graph G is said to be bipartite if its vertex set can be partitioned into two subsets
U ⊆ V (G) and W ⊆ V (G), such that no two vertices of either subset are adjacent. That
is, the only edges in G are edges between some vertex in U and some other vertex in W .
A graph is bipartite, if and only if it does not contain any cycles of odd length. A proof of
this may be found in [Chartrand et al., 2009; Theorem 1.10, p. 40]. Bipartite graphs find
applications in the modelling of many practical problems in the areas of time scheduling
and job assignments. The chromatic index of such graphs are the focus of this section. The
section is inspired by [Gross et al., 2006; Section 9.3]

Given a graph G with edge colouring c, we say that c(e) is an incident edge-colour of v
if v is an endpoint of e. If v is not an endpoint of e, the colour c(e) is said to be an absent
edge-colour of v.

2.2.1 Definition (Chromatic incidence):
The chromatic incidence of a vertex v in a graph G is defined as the number of distinct colours
assigned by a given edge colouring c to the edges adjacent to v. It is denoted by eciv(c) to
represent the edge chromatic incidence at v with respect to the colouring c.

2.2.2 Definition (Total chromatic incidence):
The total chromatic incidence of an edge colouring c of a given graph G is defined by

eci(c) =
∑

v∈V (G)

eciv(c).
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2.2. Chromatic index of bipartite graphs

It is easily observed, that eciv(c) ≤ deg(v), since at most deg(v) colours can be assigned
to the edges adjacent to v. The following result is similarly obvious.

2.2.3 Proposition:
The graph G is properly edge coloured by the map c : E(G) → S, if and only if
eciv(c) = deg(v) for every v ∈ V (G).

Proposition 2.2.3 readily extends to the following.

2.2.4 Proposition:
The graph G is properly edge coloured by the map c : E(G)→ S, if and only if∑

v∈V (G)

eciv(c) =
∑

v∈V (G)

deg(v).

The above propositions double as lemmata for a theorem which we will later state. To
state and prove the following lemma, we first recall some definitions.

2.2.5 Definition (Eulerian circuit and eulerian graph):
An eulerian circuit of a graph G is a circuit that contains every edge of G exactly once. A
graph is said to be eulerian if every component of it contains an eulerian circuit.

The statement of the lemma and its subsequent proof follows the strategy contained in
[Gross et al., 2006; Chapter 9.4].

2.2.6 Lemma:
Let G be a connected graph that is not an odd cycle, and let G contain at least two edges.
Then G permits an edge 2-coloring such that every vertex of degree at least 2 has both colours
as incident edge-colours.

Proof:
The proof is handled by distinct cases.
Case 1:
If G is a cycle, it must be even by assumption. Assigning the colour 1 to an arbitrarily
chosen edge forces the choice of colour 2 to be assigned to the two edges adjacent to the
first one. The continued use of this argument creates a cycle of two alternating colours in
which every vertex of degree at least 2 has two incident edge-colours.
Case 2:
Let G be an eulerian graph that is not a cycle. Then it must contain an eulerian circuit
that contains a vertex of degree at least 4, since every vertex of an eulerian graph has even
degree. For a proof of this rather simple fact, see [Chartrand et al., 2009; Theorem 3.1, p.
73]. Construct an edge 2-colouring of this circuit by assigning the colour 1 to the edges
that occur as odd terms and the colour 2 to the edges that occur as even terms in the edge
sequence describing the circuit. By this construction, the colours 1 and 2 are both incident
edge-colours to every vertex in the eulerian circuit of degree at least 2. Since some vertex
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2. Edge colourings

had degree at least 4, then it occurs on the cycle as an internal vertex, implying that it will
also have both 1 and 2 as incident edge-colours.
Case 3:
Assume that G is not eulerian. Construct a new graph G̃ by adding a vertex v to
V (G) and joining v to every vertex in V (G) of odd degree by an edge. Since every
edge of a graph contributes to the degree of both endpoints, it is easy to see that∑

v∈V (G) deg(v) = 2 |E(G)|. It follows from this that every graph contains an even number
of vertices of odd degree. This implies that the degree of v is even, which again implies
that G̃ is eulerian. Since G̃ is eulerian, Case 2 above applies, and we need only argue that
the restriction of the edge colouring c to the original graph G is still an edge 2-colouring
of G that meet the requirements. This is true, since the removal of v does not restrict the
colours incident to the neighbours of v. Hence, the colours incident to any vertex adjacent
to v can have its incident colours assigned in such a way as to preserve the required
quality.

2.2.7 Definition (Kempe i − j edge-chain):
A Kempe i− j edge-chain of a graph G that has been edge coloured by c is a component of the
subgraph of G induced by all edges coloured by either i or j.

Note that an edge coloured graph can contain several Kempe i− j edge-chains.

2.2.8 Lemma:
Let c be an edge k-colouring of a graph G, such that c has the largest possible edge chromatic
incidence eci(c). Further, let v be a vertex in V (G) to whom i is an incident edge-colour at
least twice, and to which j is an absent edge-colour. Finally, denote by K the Kempe i − j
edge-chain containing v. Then, K is an odd cycle.

Proof:
Lemma 2.2.6 states that, if K is not an odd cycle, the colours i and j could be reassigned
to edges in the component K in such a way that the chromatic incidence of every vertex
in K would be at least 2. Such an altered edge-colouring c̃ would increase the chromatic
incidence of v from 1 to 2, since i contributes to eciv(c) = 1, while both i and j contribute
to the sum eciv(c̃) = 2. Additionally, every vertex in K apart from v would have at least
the same chromatic incidence with respect to c̃ as it would with respect to c. This would
contradict the assumption that c was an edge-colouring with maximal total chromatic
incidence eci(c), implying that K must be an odd cycle.

We may now state and prove the main theorem of this section, first published by Denes
König in 1916, [König, 1916].

2.2.9 Theorem:
Let G be a bipartite graph. Then χ′(G) = ∆(G).
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2.3. Vizing’s theorem

Proof:
Assume for contradiction that χ′(G) 6= ∆(G). The inequality χ′(G) ≥ ∆(G) holds since,
for any vertex v ∈ V (G), the chromatic incidence of v with respect to a proper edge
colouring, eciv(c), must be at least deg(v). This implies that χ′(G) > ∆(G).

Now, let c be an edge ∆(G)-colouring of G with maximal total chromatic incidence
eci(c). The edge colouring c is not proper, so by Proposition 2.2.3 there must be at least
one vertex v ∈ V (G) for which eciv(c) < deg(v). The pigeonhole principle implies that at
least one of the ∆(G) available colours must be incident on v at least twice, leaving the
colours of at most ∆(G)− 2 edges unaccounted for. However, there are ∆(G)− 1 colours
left with which to colour the at most ∆(G)−2 remaining edges. Lemma 2.2.8 now implies
that G contains an odd cycle, contradicting the assumption that G is bipartite. Hence, a
graph G cannot be both bipartite and obey χ′(G) 6= ∆(G).

2.3 Vizing’s theorem

While a lower bound on the chromatic index is found in ∆(G) ≤ χ′(G), we may prove a
surprisingly sharp general upper bound on the chromatic index, first proven by Vadim G.
Vizing in 1964.

2.3.1 Lemma:
Let i and j be two colours used to properly edge colour a graph G. Then every Kempe i − j
edge-chain in G is a path.

Proof:
Any vertex in a Kempe i− j edge-chain in a properly edge 2-coloured graph has degree at
most 2. By definition, a Kempe i− j edge-chain is a connected subgraph, so it must be a
path.

Note that the path described by a Kempe i − j edge-chain is not required to be open. It
may be a cycle.

2.3.2 Theorem (Vizing’s Theorem):
Let G be a graph. Then there exists a proper edge ∆(G) + 1-colouring of G.

The proof follows the strategy of [Greene, 2013].

Proof:
The theorem is proven by induction on |E(G)|. If G is a trivial graph, then the assertion
that G can be properly edge ∆(G) + 1-coloured is also trivial.

Thus, suppose that |E(G)| > 0 and that the theorem holds for any graph with fewer
than |E(G)| edges. Choose an edge e ∈ E(G) with endpoints v and v0. By assumption,
G− e can be properly edge ∆(G)-coloured, and since deg(v) ≤ ∆(G), at least one colour,
say c0, is not incident to e at v. From this, it is seen that the following conditions are met
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2. Edge colourings

for k = 0:
Statement P (k):

(i) v has k distinct neighbours labelled v0, v1, . . . , vk.
(ii) The graph G − vvk admits a proper edge ∆(G)-colouring with colours S =

{c0, . . . , c∆(G)}.
(iii) The colour c0 is absent to e at v.
(iv) For j = 1, . . . , k, the colour cj must appear on the edge vvj−1.
(v) For j = 1, . . . , k, the Kempe c0 − cj edge-chain on which v appears is a path with

endpoints v and vj .
The latter two of these conditions are vacuously met for k = 0. Since P (k) implies that
k+1 ≤ deg(v), which is again less than ∆(G), the theorem will follow by showing that P (k)

implies that either G can be properly edge ∆(G) + 1-coloured, or P (k + 1) is true. Indeed,
if no k is encountered for which G can be properly edge ∆(G)-coloured, then G can be
properly ∆(G) + 1-coloured, since (ii) implies the existence of a proper ∆(G)-colouring.

Assume that P (k) holds. Then, since deg(vk) ≤ ∆(G) and no colour has been assigned
to the edge vvk, some colour ck+1 6= ck must be absent at vk. Since this colour still belongs
to the set S = {c0, . . . , c∆(G)}, so consider the Kempe c0 − ck edge-chain that has vk as an
endpoint. We denote this chain by K.

If K does not have v as an endpoint, the colours along it may be interchanged to
produce a proper edge ∆(G) + 1-colouring of the graph G− vvk, in which c0 is absent to e
at both v and vk. Assigning c0 to the edge e with endpoints v and vk now yields the desired
colouring.

If K does, in fact, reach the vertex v, then it arrives at this vertex along some edge
vvk+1 to which the colour ck+1 has been assigned. This colour ck+1 cannot be the same
as cj for all values assumed by j = 1, . . . , k, because if it were, then K would be the
Kempe c0 − cj edge-chain with endpoints v and vj . From this it would follow that vj = vk,
implying that ck+1 = cj = ck, a contradiction in the choice of ck+1. Since ck+1 6= cj for
all values of j = 1, . . . , k, it follows that vk+1 6= vj for j = 1, . . . , k. Since the colour ck+1

remains absent at vk, the edge vvk+1 can have its colour, ck+1, reassigned to the edge vvk.
This implies that P (k + 1) holds, and the theorem follows.

Clearly, for any graph G we have either χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1.
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CHAPTER 3
Matching and factorisation

To understand a mathematical theory well, one may often benefit from the study of theories
related to it. Matchings in graphs constitutes a concept closely related to that of edge
colourings.

3.1 Matchings in graphs

Edge colouring graphs can be seen as the description of an edge colouring map c : E(G)→
S, but may also be viewed as a partitioning of the edges of a graph into independent
subsets. That is, disjoint subsets of the edge set which contain all edges to which some
single colour is assigned. Under this perspective, the study of matchings are inherently
connected to the study of edge colourings, and deserves thorough mention.

3.1.1 Definition (Matching):
A matching in a graph G is a subset M of E(G) such that no pair of edges x, y ∈ M are
adjacent.

3.1.2 Definition (Maximal matching):
A matchingM in a graphG is called maximal if it is not a proper subset of any other matching
in G.

3.1.3 Definition (Maximum matching):
A maximum matching in G is a matching M whose cardinality is maximal.

Clearly, a maximum matching is a maximal matching. A maximal matching need not be a
maximum matching, however.

One connection between matchings and proper edge colourings is displayed in the
following algorithm.
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3. Matching and factorisation

Algorithm 2 Proper edge-colouring using maximum matchings
Input: A graph G
Output: A proper edge-colouring c : E(G)→ S, where S = {1, 2, . . . , k}

1: k = 0
2: while E(G) 6= ∅ do
3: k = k + 1
4: Find a maximum matching M in G
5: for e ∈M do
6: Assign to e the colour k
7: G = G−M
8: return The edge-colouring c determined by the above assignments.

Notice that the algorithm makes no comment on how to find the required maximum
matchings, nor is the colouring guaranteed to use a minimal number of colours. It remains,
however, a proper edge colouring.

The final special case of matchings that we shall consider are the so-called perfect
matchings.

3.1.4 Definition (Perfect matching):
A matching M in a graph G is said to be perfect, if the induced graph G[M ] is a spanning
subgraph of G.

In particular, these matchings are related to the notion of graph factorisations.

3.2 Factorisations of graphs

A spanning subgraph of a graph G is also known as a factor of G. A factorisation of G is a
set of factors whose edge sets constitute a partition of the edge set E(G). A factor is called
a k-factor, if it is k-regular, while a k-factorisation is a factorisation into k-factors. From
the above terminology, it is clear that a perfect matching in a graph is a 1-factor of that
graph. If two vertices are connected by an edge in a perfect matching, the two vertices are
said to be matched.

3.3 Tutte’s 1-factor theorem

In [Tutte, 1947], William S. Tutte published a theorem that characterises the set of all
nontrivial graphs that have 1-factors. To state it, we require the following definitions.

3.3.1 Definition (Odd component):
An odd component of a graph G is a component of G that has an odd number of vertices.

The number of odd components of a graph G is denoted by oc(G).
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3.3. Tutte’s 1-factor theorem

3.3.2 Definition (Tutte’s condition):
Tutte’s condition is said to apply for a graph G if, for every subset W ⊆ V (G), it holds that
oc(G−W ) ≤ |W |.

3.3.3 Definition (Symmetric difference of graphs):
Let M and N be two spanning subgraphs of G. The symmetric difference of M and N is
denoted by M4N and defined as the spanning subgraph of G whose edge set is defined by
(E(M) ∪ E(N)) \ (E(M) ∩ E(N)).

We may now characterise all graphs that contain 1-factors.

3.3.4 Theorem (Tutte’s 1-factor Theorem):
A nontrivial graph has a 1-factor, if and only if it obeys Tutte’s condition of Definition 3.3.2.

The proof follows the strategy of [Czygrinow, 2014].

Proof:
Suppose first that G has a 1-factor M , and let W be some subset of V (G). Then every
odd component of G−W has at least one vertex matched, with respect to M , to another
vertex that must be in W , since all vertices are matched pairwise. Since the existence of
an odd component in G−W implies the existence of a vertex in W , it must be true that
oc(G−W ) ≤W .

Now suppose for contradiction that G has no 1-factor, but obeys Tutte’s condition. First,
let G̃ = G+ e by the graph constructed by adding any edge e to G. If G̃ does not have a
1-factor, then neither does G. Additionally, oc(G̃−W )) ≤ oc(G−W ), since the addition of
an edge cannot increase the number of odd components. Because of this, we may assume
that G is edge-maximal.

Construct U = {v ∈ V (G) | deg(v) = |V (G)| − 1}.
If G− U consists of disjoint complete graphs, then clearly oc(G− U) ≤ |U |. Note that

G − U may be a single complete graph. Each of the even components of G − U have a
1-factor, while, for every odd component, a matching can be found that leaves only one
vertex of G− U unmatched, since these are complete subgraphs by assumption. Each of
these unmatched vertices in G−U can be matched to a vertex in U since, by construction,
every vertex of U is connected to every other vertex of G.

It remains to be shown that the unmatched vertices of U can be perfectly matched to
construct a 1-factor of G. Since U induces a complete subgraph, it will contain a 1-factor
if an even number of vertices in U are left unmatched. Since an even number of vertices
have already been matched in G, U will have an even number of vertices, and thus a
1-factor, if |V (G)| is even. Tutte’s condition holds by assumption, and we may take W to
be empty. Then Tutte’s condition implies that G contains no odd components. Hence, G
contains only even components, and thus an even number of vertices. This implies that G
contains a 1-factor.
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3. Matching and factorisation

Now suppose that G − U does not consist entirely of disjoint complete graphs. Then
G−U must contain two non-adjacent vertices u and v such that there exists a single vertex
x adjacent to both u and v. This is true since not every component is a complete graph,
hence, at least one component must contain a shortest path between two vertices of length
at least 2. Choose two vertices on this path such that they are separated by a vertex. There
must also exist some vertex y ∈ V (G− U) that is not adjacent to x, since x was not in U .

Denote by e1 the edge between u and v, and denote by e2 the edge between x and
y. Now, neither e1 or e2 is contained in E(G), and by the assumption that G was edge-
maximal under the restriction that G did not contain a 1-factor, both G1 = G + e1 and
G2 = G+ e2 contain 1-factors, denoted M1 and M2, respectively.

Denote by F the symmetric difference M14M2. Definition 3.3.3 implies that F
contains both e1 and e2. Since every vertex in M1 and M2 has degree 1, every vertex
in F must have degree 0 or 2. Thus, every component of F is either an isolated vertex
or a vertex in a cycle. Since both M1 and M2 are 1-factors, any cycle created by taking
the symmetric difference of these matchings must have edges of alternating origin, exactly
because they are both perfect matchings, implying that any such cycle must be of even
length.

Denote by C the component of F containing e1. If C does not contain e2, then it is
easy to construct a 1-factor of the even cycle C that does not include e1, and it is equally
easy to construct a 1-factor of the even cycle that contains e2, but does not contain e1.

Suppose now that C is a cycle containing both e1 and e2. Because u, v, and x are in
the same component, there exist paths P1 connecting u to x and P2 connecting v to x. A
cycle C can be created by connecting these two paths by the edge e1, that is, C = P1e1P2.
Suppose without loss of generality that y is a vertex in the path P2, and consider the
matchings M̃1 = E(P2) ∩M1 and M̃2 = E(P1) ∩M2. Finally, with e′ denoting the edge
between x and v, set M̃ = M̃1 ∪ M̃2 ∪ e′. Now M̃ ∪ (M1 \ E(C)) constitutes a 1-factor of
G.

Petersen’s 1-factor theorem

While Tutte’s 1-factor theorem constitutes one criteria by which a graph can be
characterised as containing a 1-factor or not, several other criteria imply the existence
of factors in graphs. One example of such a result is the following.

3.3.5 Theorem (Petersen’s 1-factor theorem):
If a 3-regular graph G is bridgeless, then G has a 1-factor.

To ease reading in the following, denote by OC(G) the subgraph of G consisting exactly
of the odd components of G.

It may be easier to discern whether a given cubic graph contains a bridge than it would
be to decide whether the graph obeys Tutte’s condition.

11
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Proof:
By Theorem 3.3.4, we need only argue that a graph being bridgeless and 3-regular
implies that it obeys Tutte’s condition as in Definition 3.3.2. Choose some arbitrary subset
W ⊆ V (G), and denote by k the number of edges joining any vertex in W to any vertex
in OC(G−W ). Since G is 3-regular, we must have k ≤ 3 |W |, because it generally holds
that no more than ∆(G) edges could join any vertex in W to any vertex in G −W , and,
certainly, any vertex in OC(G−W ). For any component H of OC(G−W ), denote by kH
the number of edges between a vertex in H and a vertex in the set W . This constitutes a
single summand in the sum ∑

H⊆OC(G−W )

kH = k.

The sum of all vertex degrees in the odd component H is equal to 3 |V (H)| − kH . It is
well-known that the degree sum of a graph is an even number, and since H was taken
as an odd component, the number |V (H)| is odd, hence 3 |V (H)| is also odd. Because
3 |V (H)| − kH was even, it follows from the above that kH must be odd.

Since G contains no bridges, kH is at least 2 for every odd component H chosen in
OC(G−W ). Since kH must be odd, we have kH ≥ 3. This implies that

3oc(G−W ) ≤
∑

H⊆OC(G−W )

kH = k ≤ 3 |W | .

This further implies that oc(G−W ) ≤ |W | for any subset W ⊆ V (G), also known as Tutte’s
condition of Definition 3.3.2.

As a corollary of Petersen’s 1-factor theorem, every bridgeless 3-regular graph must also
have a 2-factor, namely the edge-complement of the 1-factor guaranteed to exist by the
theorem.

3.4 Basic flow theory as a technical tool

The purpose of this section is to provide results on the existence of certain matchings and
factors in particular graphs. However, our approach to proving these results require the
use of an alternative perspective on the concept of matching. We turn our attention to the
theory of flows in directed graphs. The following definitions and results are immediately
necessary throughout the chapter, and are quoted from [Gross et al., 2006; Chapter 13] to
recall notation and introduce terminology. A more thorough treatment of the subject may
be found in the referenced chapter.

Consider a digraph G on at least two distinguished vertices s and t, respectively called
the source and the sink of the digraph G. Assign to each arc e a nonnegative real number,
a so-called capacity, denoted by cap(e), of the edge e. Such a digraph is called a network.
Let W and U be subsets of V (G). We denote by (W,U) the set of arcs that begin in a vertex
of W and end in a vertex of U . Denote by E+(v) and E−(v) the set of arcs that begin,
respectively end, in the vertex v. Now, a flow on G is defined as a mapping f : E(G)→ R+

that obeys two conditions:

12



3. Matching and factorisation

• f(e) ≤ cap(e) for every arc e ∈ E(G)

•
∑

e∈E+(v) f(e) =
∑

e∈E−(v) f(e) for every vertex v ∈ V (G) that is neither a source
nor sink of G.

The source, s, of G obeys that
∑

e∈E+(s) f(e) ≥
∑

e∈E−(s) f(e), while the sink, t, obeys
that

∑
e∈E+(t) f(e) ≤

∑
e∈E−(t) f(e). The value of a flow f on a network G is denoted by

val(f) and defined by

val(f) =
∑

e∈E+(s)

f(e)−
∑

e∈E−(s)

f(e).

A maximum flow fmax in a network G is a flow which obeys val(fmax) ≥ val(f) for
every other flow f in the network G. Finding such a maximum flow has obvious practical
applications, and one well-known algorithm for finding a maximum flow is the Ford-
Fulkerson algorithm. A popular and efficient modification of this algorithm is known as
the Edmonds-Karp algorithm. A thorough treatment of both algorithms may be found in
[Cormen et al., 2009; Chapter 26]. We state without proof the fact that a maximum flow in
a network of integer capacities must also have an integer value. Finally, a cut in a network
G is an arc set (Vs, Vt) constructed such that Vs and Vt form a partition of V (G), where
s ∈ Vs and t ∈ Vt. The capacity of a cut (Vs, Vt), denoted cap((Vs, Vt)), is given by the sum
of the capacities of the arcs in the set (Vs, Vt). That is, cap((Vs, Vt)) =

∑
e∈(Vs,Vt)

cap(e). A
minimum cut (Vs, Vt)min in a network G is a cut whose value is minimal among all other
cuts of G.

We now state, without proof, the famed Max-flow Min-cut Theorem before moving on
to results on the existence of factors of certain graphs.

3.4.1 Theorem (Max-flow Min-cut Theorem):
Given a network G, the value of a maximum flow is equal to the capacity of a minimum cut.
That is,

val(fmax) = cap((Vs, Vt)min).

3.5 Hall’s theorem

Consider first a bipartite graph G with its vertex set V (G) partitioned into the sets X and
Y . Construct a digraph, G̃ whose vertex set is V (G̃) = V (G) ∪ {s, t}, where s and t in the
following will be referred to as the source, respectively the sink, of G̃. The arc set of G̃ is
constructed as follows:
For each edge between a vertex in X and one in Y , orient the edge such that it begins
at the vertex in X and ends at the vertex in Y . Now join each vertex of X to the source
s by an arc that ends at the vertex located in X, and join each vertex of Y to the sink
t by an arc ending at the sink t. Finally, assign to each arc e ∈ E(G̃) the capacity 1.
Finding a maximum matching in the graph G now amounts to the problem of finding a
maximum flow in the constructed digraph G̃. A proof of the above statement is aided by
the following.
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3.5. Hall’s theorem

3.5.1 Proposition (Correspondence between flows and matchings):
Let G be a bipartite graph, and let G̃ be a digraph constructed as in the above text. Then there
is a one-to-one correspondence between the integral flows of G̃ and the matchings in G.

Proof:
First, let f be an integer flow in the digraph G̃, with G̃ constructed as above using G. Since
the capacity of every arc e ∈ E(G̃) is 1, the contribution of that arc to the value of the
flow is either 0 or 1. Denote by M the set of arcs e in G̃ for which f(e) = 1. Since every
arc in G̃ has capacity 1, the flow property of f can only be preserved if at most one arc is
directed away from any given vertex in X, and a similar argument applies to the vertices
of Y . That is, at most one arc can end in a vertex of Y . Hence, the set M constitutes a
matching in G.

Consider a bipartite graph G with a matching M . Construct from G a digraph G̃ as
described above, and define the function f : E(e)→ {0, 1} by the following rule:

f(e) =


1 if the arc e corresponds to an edge e′ ∈M

1 if the arc e is adjacent to an edge e′ ∈M

0 otherwise.

Consider a vertex v ∈ G, and assume without loss of generality that v ∈ X. Since M is
a matching, at most one edge of M is adjacent to v. The first case of the definition of f
ensures that the arc corresponding to this edge contribues the value 1 to the flow. Further,
since v ∈ X, a unique arc will begin in s and end in v. The second case of the definition of
f ensures that this arc is also assigned the value 1. Since all other arcs in G̃ are assigned
the value 0, the flow property is preserved, and f is seen to be a flow in G̃.

3.5.2 Corollary (Maximum flows and maximum matchings correspond):
LetG be a bipartite graph with a matchingM , and let f be a flow in the digraph G̃ constructed
as above using G. Then the value of the flow f , val(f), is equal to |M |, and f is a maximum
flow if and only if M is a maximum matching.

The proof of this corollary follows directly from Proposition 3.5.1. Having thus established
the correspondence between matchings and flows, we turn our attention to a particular
kind of matching.

3.5.3 Definition (Saturating matching):
A matching M in a bipartite graph G with vertex partition V (G) = X ∪ Y is said to be an
X-saturating or Y -saturating matching, if every vertex of X, respectively Y , is the end of an
edge e ∈M .

Note that any saturating matching in G must be a maximum matching, since no edge
adjacent to a vertex of the saturated subset of V (G) can be added to the matching.

Consider a bipartite graph G with vertex partition V (G) = X ∪ Y , and let W be a
subset of X. In the following, we denote by N(W ) the neighbourhood of the vertex set
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W , in the sense that N(W ) is the subset of Y containing exactly those vertices who are
adjacent to at least one vertex in W . The following result was first published in [Hall,
1935].

3.5.4 Theorem (Hall’s Theorem for Bipartite Graphs):
Let G be a bipartite graph with vertex partition V (G) = X ∪ Y . The graph G has an X-
saturating matching, if and only if it obeys Hall’s condition, that is, if for every subset W of
X, the inequality |W | ≤ |N(W )| holds.

The proof of the theorem follows the strategy shown in [Gross et al., 2006; Section 13.4].

Proof:
Let M be an X-saturating matching in G, and let W be an arbitrarily chosen subset of X.
Then each vertex of W is matched to a single vertex of Y , implying that |W | ≤ |N(W )|.

Now let G be a bipartite graph that obeys Hall’s condition. Using G, construct the
digraph G̃ as described in Section 3.5. By Corollary 3.5.2, an X-saturating matching in
G corresponds to a maximum flow f in G̃ with the value val(f) = |X|. By the Max-flow
Min-cut theorem referenced in the beginning of this chapter, Theorem 3.4.1, the flow f

can be shown to be a maximum flow if a minimum s-t cut can be shown to have capacity
|X|.

One such cut of capacity |X| would be ({s}, X ∪ Y ∪ {t}), so we need only show that
any other s-t cut of G̃ has at least capacity |X|. Denote by (Vs, Vt) an s-t cut in G̃, and set
W = Vs ∩X. The cut (Vs, Vt) may now be represented by the union of three disjoint cuts:

(Vs, Vt) = ({s}, Vt ∩X) ∪ (W,Vt ∩ Y ) ∪ (Vs ∩ Y, {t}).

Since every arc of G̃ has capacity 1, we have that

cap((Vs, Vt)) = |({s}, Vt ∩X)|+ |(W,Vt ∩ Y )|+ |(Vs ∩ Y, {t})| ,

where the addition of the cardinalities is due to the arc subsets being disjoint. By the
construction of G̃, we also have that

|({s}, Vt ∩X)|+ |(W,Vt ∩ Y )|+ |(Vs ∩ Y, {t})| = |X \W |+ |(W,Vt ∩ Y )|+ |Vs ∩ Y | .

By the definition of N(W ), we now have

X \W + |(W,Vt ∩ Y )|+ |Vs ∩ Y | ≥ |X \W |+ |Vt ∩N(W )|+ |Vs ∩ Y | .

It is also true that |Vt ∩N(W )| = |N(W )| − |Vs ∩N(W )|, and since N(W ) ⊆ Y , we must
also have that

|X \W |+ |Vt ∩N(W )|+ |Vs ∩ Y | ≥ |X \W |+ |N(W )| − |Vs ∩ Y |+ |Vs ∩ Y |

= |X \W |+ |N(W )| .

Finally, by the assumption that G obeyed Hall’s condition, we have that |X \W | +

|N(W )| ≥ |X \W | + |W |, which is certainly equal to |X|. Hence, the capacity of an
artbitrarily chosen s-t cut in G̃ is at least |X|, completing the proof that Hall’s condition
guarantees the existence of an X-saturating matching.
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Returning now to the object of interest in Section 3.2, we give two results on factorisation
whose proofs rely on Hall’s Theorem, 3.5.4.

3.5.5 Theorem (König’s 1-factorisation Theorem):
A nontrivial r-regular bipartite graph G has a 1-factorisation.

Proof:
Suppose that G has vertex partition V (G) = X ∪ Y , and let W be a subset of X. Since G
is r-regular, we have that r |W | edges join vertices in W to vertices in Y . At most r edges
can be incident on any single vertex of Y , so by the pigeonhole principle, the inequality

|N(W )| ≥
⌈
r |W |
r

⌉
= |W |

holds. This is Hall’s condition as described in Theorem 3.5.4. Hence, the graph G has an
X-saturating matching. Since G is regular, we have that |X| = |Y |, which implies that a
saturating matching, necessarily also a maximum matching, constitutes a 1-factor of G.
Deleting the edges contained in such a 1-factor leaves behind an (r − 1)-regular bipartite
graph to which similar arguments apply, whereupon the result follows by induction.

3.5.6 Theorem (Petersen’s 2-factorisation Theorem):
Every r-regular graph G has a 2-factorisation if r is even.

Proof:
The graphG can be considered to be connected, since a factorisation of a graph requires the
factorisation of each of its components. Let G be such a connected graph on vertices listed
as v1, v2, . . . , vn, and assume that G is r-regular, with r being an even natural number.
Then G must contain an eulerian circuit, here denoted by C. Define a bipartite graph
H with vertex partition V (H) = U ∪ W , where the vertices of U and W are denoted
by u1, u2, . . . , un and w1, w2, . . . , wn, respectively. Specifically, construct H such that the
vertex partition of V (H) = U ∪W obeys the condition that ui is adjacent to wj if the
eulerian circuit C contains the edge between vi and vj .

Now, the bipartite graph H is r
2 -regular, since the eulerian circuit C enters and leaves

each vertex in G a combined number of r times. The above theorem, Theorem 3.5.5,
now grants us the existence of a 1-factor of H. By construction, the edge joining ui to
wj corresponds to the edge joining vi and vj , which, taken with the fact that each vertex
appears only once in the set of vertices connected by the 1-factor of H, implies that the
edges in G corresponding to the edges in the 1-factor of H constitute a 2-factor of G.

Finally, deleting the edges of this 2-factor of G from G leaves behind a (2r− 2)-regular
graph, and similar arguments apply to this reduced graph. Then, by induction, the result
follows.

As we have now treated results on edge colourings, matchings, and factorisations, we
turn our attention to a more narrow notion of edge colouring in the following chapter.
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CHAPTER 4Strong edge colouring

A strengthening of the definition of a proper edge colouring is the notion of a strong edge
colouring.

4.0.1 Definition (Strong edge colouring):
A proper edge colouring of a graph G is called a strong edge colouring if no edge e ∈ E(G) is
adjacent to two edges of the same colour.

It is seen from the definition that, given a strong edge colouring of some graph G, every
path in G of length 3 must be edge coloured with three distinct colours.

4.0.2 Definition (Strong chromatic index):
The strong chromatic index of a graph G is the least integer k for which G is strongly edge
k-colourable. The strong chromatic index of a graph G is denoted s′(G).

Naturally, it would be interesting to bound the strong chromatic index of graphs in as
general a way as possible. Before specifying any such bound, we introduce the terminology
that an edge e1 = xy in a graph G is joined to another edge e2 = vw if any of the following
edges exist in E(G): xv, xw, yv, or yw.

4.0.3 Proposition:
Let G be a graph. Then the strong chromatic index of G obeys

s′(G) ≤ 2∆(G)2 − 2∆(G) + 1.

Proof:
Modify Algorithm 2.1 so that, at the i’th iteration of step 2, instead of assigning to ei the
least colour that is not assigned to any adjacent edges, the algorithm should assign to ei
the least colour that is not assigned to any edges joined to ei. This obviously produces a
strong edge colouring. Since at the i’th iteration of step 2, the edge ei can have at most
2∆(G)− 2 adjacent vertices, and since each of these vertices may be incident with at most
∆(G) edges, we have that 2∆(G)2 − 2∆(G) colours are sufficient to strongly colour the
graph G− ei, implying that 2∆(G)2 − 2∆(G) + 1 colours are sufficient to strongly colour
G.
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According to [Faudree et al., 1989], a general bound was conjectured by Paul Erdős and
Jaroslav Nesetril at a seminar in Prague in 1985.

4.0.4 Conjecture:
Let G be a graph. Then

s′(G) ≤

5
4∆(G)2 if ∆(G) is even
5
4∆(G)2 − 2∆(G)−1

4 if ∆(G) is odd.

We show why this bound is the least possible.

4.0.5 Proposition:
Let ∆(G) be a natural number. Then there exists a graph G such that

s′(G) =

5
4∆(G)2 if ∆(G) is even
5
4∆2 + 1−2∆

4 if ∆(G) is odd.

Graphs that achieve this bound are constructed using a strategy outlined in [Dębski, 2015;
Section 2.3].

Proof:
Assume that ∆ is an even natural number. We construct G such that ∆(G) = ∆, and such
that s′(G) = 5

4∆(G)2. Let

V (G) = {(i, j) | i ∈ {1, 2, 3, 4, 5}, j ∈ {1, 2, . . . , ∆

2
}}.

Let v1 = (i1, j1) and v2 = (i2, j2) be two vertices in V (G). Connect these by an edge if
i1 ≡ i2 ± 1 mod 5. From this, it is seen that G is ∆-regular. To show that G constructed
in this fashion obeys s′(G) = 5

4∆(G)2, we show that |E(G)| = 5
4∆(G)2, and that no two

vertices exist such that the shortest path between them contains three edges. If this is the
case, then s′(G) = |E(G)|. The ∆-regular graph G contains 5∆

2 vertices, which implies
that the degree sum is of the graph is given by 5

4∆2. Every edge contributes to this degree
sum twice, so dividing the degree sum by 2 equals to the number of edges: 5

4∆(G)2.
To see that s′(G) = |E(G)|, assume that the shortest path between two vertices, say

v1 = (i1, j1) and v4 = (i4, j4), has length 3. This would imply the existence of two
additional vertices, say v2 = (i2, j2) and v3 = (i3, j3), such that i1, i2, i3, i4 all pairwise obey
the congruence in ≡ in+1 ± 1 mod 5, while at the same time obeying the incongruences
in 6≡ in+2 ± 1 mod 5 and in 6≡ in+3 ± 1 mod 5 This is clearly impossible, so there is no
shortest path of length 3 between any two vertices of V (G).

Now assume that ∆ is an odd natural number. We construct G′ with respect to
∆(G′) = ∆ and s′(G′) = 5

4∆2 + 1−2∆
4 , using the graph constructed with respect to the even

number ∆− 1. Construct this graph as above, and add to V (G) the vertices v1,2 and v3,4,
that is, V (G′) = V (G)∪ {v1,2, v3,4}. Connect the vertices v1,2 and v3,4 by an edge, and add
to E(G) every edge on the form (v1,2, (1, j)), (v1,2, (2, j)), (v3,4, (3, j)), and (v3,4, (4, j)).
This constructs E(G′).
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4. Strong edge colouring

By the attributes of G, we need only show that the graph G′ constructed in this fashion
obeys |E(G′)| = 5

4∆2 + 1−2∆
4 , and that the shortest path between any two vertices of

G′ remains at most of length 2. The latter fact is the most immediate. Indeed, choose
some vertex v ∈ V (G′). If v is not adjacent to v1,2 or v3,4, then v must be on the form
(0, j). Regardless of the value of j, both v1,2 and v3,4 are adjacent to a vertex that is again
adjacent to v, implying the existence of a shortest path of length 2.

The edge set E(G′) contains the edges in E(G) along with the 2(∆− 1) + 1 = 2∆− 1

edges added to construct E(G′). By the construction of G, this is equal to

5

4
(∆− 1)2 + 2∆− 1 =

5

4
∆2 +

1− 2∆

4
.

4.1 The strong chromatic index of bipartite graphs

The strong chromatic index of bipartite graphs is a special case of Conjecture 4.0.4. Faudree
et al. conjectured in [Faudree et al., 1989] that any bipartite graphG obeys s′(G) ≤ ∆(G)2.
It can be shown that s′(Kn,n) = n2, implying that the conjectured bound, if true, would also
be sharp. Four years later, [Steger et al., 1993] proved the conjectured result for ∆(G) ≤ 3

and gave their own version of the conjecture which stated that, given a bipartite graph G
with vertex partition V (G) = X ∪ Y , the strong chromatic index of G would satisfy the
bound s′(G) ≤ ∆(X)∆(Y ), with ∆(X) and ∆(Y ) naturally denoting the maximal degree
of any vertex in X, respectively Y . This was affirmed by [Nakprasit, 2008] for the case of
∆(X) = 2. We give the proof of this result here. Note that the case of ∆(X) = 1 is trivial,
since ∆(Y ) colours would suffice.

4.1.1 Theorem:
Let G be a bipartite graph with vertex partition V (G) = X ∪ Y , and assume that ∆(X) = 2.
To ease notation, we denote by ∆ the maximal degree among vertices of Y . Then

s′(G) ≤ 2∆.

Proof:
Let G be a bipartite graph with vertex partition V (G) = X ∪ Y and let ∆(X) = 2. We may
assume that δ(X) = 2. Let x ∈ X have degree 1. Then the edge joining x to some vertex
y ∈ Y can be removed from G, and G − xy can still be colored using at most 2(∆ − 1)

colours. This leaves an additional colour available to be assigned to the edge xy, so we
may assume that deg(x) = 2 for any vertex x ∈ X.

The proof relies on manipulation of an array of dimensions |Y | × ∆, from here on
denoted A, containing edges of E(G). Index each row by an element of Y and insert in
each column of the row corresponding to, say, yi, those edges which are adjacent to the
vertex yi. Clearly, if deg(yi) < ∆, at least one entry of the i’th row corresponding to yi will
be empty. Exchanging two edges in the same row or moving an edge from one column
in its given row to another column, will not change the association between the vertices
and the rows. We now introduce the terminology that a vertex in X is good if both of its
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incident edges are in the same column, and call the same vertex bad whenever this is not
the case.

Now, exchange and move edges in A until the number of good vertices is maximal, and
observe the following claim.

Claim: If a vertex v ∈ X is bad, there exists a cycle C in G obeying the following:

(i) v ∈ C

(ii) |C|2 is odd

(iii) All vertices of C ∩X other than v are good ones

(iv) All edges incident to the vertices of C ∩X are contained in two columns of A.

Proof: Assume that x is a bad vertex of degree 2 and denote by e1 and e2 its incident edges.
We may assume without loss of generality, that e1 is in column 1 and e2 is in column 2 of
the array A. If no edge occupies the first column of the row in which e2 lies, the edge e2

may be moved here. Hence, we assume that an edge e3 is contained in the first column of
the row that contains e1. Now, if e3 is incident to a bad vertex, the edges e2 and e3 may
be exchanged to produce one good vertex without incurring another bad one. Hence, we
may assume that e3 is incident to a good vertex, say v. Denote by e4 the other edge that is
incident to v. This implies that e4 is in the same column as e3, that is, the first column.

If there is no edge in the second column of the row containing e4, then e4 may be
moved to the second column. Hence, we may suppose that an edge e5 occupies this second
column of the same row that e4 occupies. If e5 is incident to a bad vertex, the exchange
operation may be employed to swap e2 with e3, and e4 with e5. Once again, this constructs
at least one more good vertex and creates no additional bad ones. Repeating the argument
as before, we may again assume the existence of an edge e6 that is incident to the same
good vertex as e5. Since both e5 and e6 are incident to a good vertex, they occupy the same
column, that is, the second column. Now e1e2e3e4e5 forms a path by the construction of
the array A and the implied goodness of the connected vertices.

The cycle C mentioned in the statement of the claim can now be constructed. Since G
is finite, the above arguments cannot be repeated indefinitely. This implies the existence
of an edge et such that the path e1e2 · · · et cannot be extended any further by the same
arguments. Now, as above, e2i and e2i+1 are incident to the same good vertex, while ej
and ej+1 are in the same column for every j. Since the argument constructing the path
terminates at et, this edge must be incident to e1. We can write t = 2k+ 2 for some integer
k, and by the above, e1e2 · · · e2k+2 must constitute a cycle, C. �

A cycle C constructed in this way is called vicious. By the above arguments, each bad
vertex corresponds to exactly one vicious cycle. By the construction of vicious cycles, these
are pairwise disjoint, so we can consider the edge colouring of these independently. Define
a colouring c : E(G)→ S by c : e 7→ (i, j) if e is an edge located in the j’th column of the
array A. Naturally, i may be either 1 or 2, and the assignment is decided as follows:

When colouring vicious cycles:
If e is incident to some bad vertex x, then i = 1. For each vertex y ∈ C ∩ Y that is not
adjacent to x, we assign to the incident edges of y in C the first colour coordinate i = 1.
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4. Strong edge colouring

For each good vertex in the cycle C, and to every vertex adjacent to x, different colours
are assigned to the edges connecting these.

When colouring the remainder of E(G):
After colouring vicious cycles, only good vertices remain in G. For every edge incident to
such vertices, the first coordinate of its colour may be chosen arbitrarily.

What remains is to show that the colouring constructed in this fashion is a strong edge
2∆-colouring of G. We begin by showing that the described edge colouring is proper.
Suppose that e and ẽ are two edges incident to the same vertex in Y or to a bad vertex
in X. Then, by the above construction, e and ẽ are moved to different columns, implying
that the second coordinates of c(e) and c(ẽ) differ. If, on the other hand, e and ẽ are both
incident to a good vertex of X, then c(e) and c(ẽ) have distinct first coordinates. This is an
immediate consequence of the described colour assignments.

It remains to be shown that this proper edge colouring is also a strong edge colouring
of G. Let e = (x, y) and e′ = (x′, y′) be two edges that constitute a matching in G, where
the edges e and e′ are not joined by any single edge of G. Further, assume that x, x′ ∈ X
and y, y′ ∈ Y . Assume without loss of generality that (x, y′) is an edge in E(G). If the
edges e and e′ are stored in distinct columns of the array A, then the second coordinates of
c(e) and c(e′) also differ. If, on the other hand, e and e′ are stored in the same column, the
existence of the edge (x, y′) implies that (x, y′) and e′ are in distinct columns of A. This
implies that x is a bad vertex and that (x, y′) is an edge in the vicious cycle corresponding
to x. Then, by the construction of c, the first coordinates of c(e) and c(e′) must differ. This
implies that c is a strong edge 2∆-colouring.

4.2 The strong chromatic index of planar graphs

Planar graphs are a class of graphs whose strong chromatic index is quite easy to present
a different bound on. The section is inspired by [Hudák et al., 2013], who attributes the
original result to [Faudree et al., 1990].

4.2.1 Proposition (Strong chromatic index of planar graphs):
Let G be a planar graph. Then

s′(G) ≤ 4∆(G) + 4.

Proof:
By Vizing’s Theorem, Theorem 2.3.2, the graph G is ∆(G) + 1-edge colourable. Let c be
an edge colouring of G and denote by Ai ⊂ E(G) the edge colour class Ai = {e ∈ E(G) |
c(e) = i}. Further, denote by G(Ai) the graph G in which every edge contained in Ai is
contracted. Note that edges in G that are joined by an edge in Ai will be adjacent in the
contracted graph G(Ai). Edge contraction does not change the planarity of G, so when
G is assumed to be planar, the graph G(Ai) will also be planar for any edge colour class
Ai. Since G(Ai) is planar, the celebrated Four-Colour Theorem published in [Appel et al.,
1989] implies that the graph G(Ai) can be properly vertex coloured using four colours,
irrespective of the choice of Ai.
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4.2. The strong chromatic index of planar graphs

Every vertex corresponding to an edge in E(G), that is adjacent to a pair of edges in Ai,
is assigned a distinct colour among the four colours needed to colour the vertices of G(Ai).
Vertex colouring the at most χ′(G) graphs on the form G(Ai), where i ∈ {1, 2, . . . , χ′(G)},
yields a strong edge colouring of G using at most 4(∆(G) + 1) = 4∆(G) + 4 colours.

The general language of Conjecture 4.0.4 has seen few meaningful attacks. One,
however, dates back to 1990, and is covered in the following chapter.
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CHAPTER 5The strong chromatic index of cubic
graphs

In 1990, Lars D. Andersen confirmed the statement of Conjecture 4.0.4 for the case of
∆(G) = 3. The result was published in [Andersen, 1992], and while the treatment in
the original publication focuses heavily on the construction of a linear-time algorithm
for strongly edge 10-colouring cubic graphs, it is the purpose of this chapter to present
the proof of the more simple fact that, for a graph G, it is true that ∆(G) = 3 implies
s′(G) ≤ 10.

While we are not preoccupied with the running time of the algorithm proposed in the
article, we will still rely on some of its defining properties as theoretical tools. Specifically,
many of our results are proven constructively by the use of some proposed algorithm.
Despite this, we still follow [Andersen, 1992].

Throughout the chapter, we broaden our previous definition of graph to possibly
include multiple edges between vertex pairs.

5.1 Preliminaries

Given an edge e in some graph G, define N(e) as the set of edges in G that are either
adjacent to e or joined to e by a path of two edges. For a cubic graph G, we would naturally
have N(e) ≤ 12 for any e ∈ E(G). Denote by F (e) the set of colours assigned to any edge
contained in the set N(e). Clearly, we have F (e) ≤ N(e) ≤ 12 for any edge e in a graph
where ∆(G) ≤ 3.

Throughout the chapter, we modify the usual terminology of an algorithm being greedy.
Instead, we call an edge-colouring algorithm greedy as long as it operates sequentially
with respect to some ordering of E(G) such that, whenever it encounters an edge e, any
colour not in F (e) can be arbitrarily chosen, and at least one such colour will always be
available to be assigned to e. This ensures that the algorithm never has to retrace its steps
and possibly re-assign a different colour to an already coloured edge, and in this sense, it
is greedy. Constructing an ordering of E(G) that guarantees that a sequential algorithm
produces a satisfying strong edge colouring, however, proves difficult.

We also require the following notion of a distance class. Choose some vertex v in a
connected graph G. Denote by Di the i’th distance class of v, defined by the set of vertices
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5.2. Vertices of degree less than 3

connected to v by a shortest path of length i, with i = 1, 2, . . . . Then every vertex of Di+1

is adjacent to at least one vertex of Di.
For any edge e ∈ E(G) and vertex v ∈ V (G), denote by d(e) the shortest distance

between v and an end-vertex of e. We call an ordering of the edges in E(G) compatible
with the distance classes of v if an edge e only comes before ẽ when d(e) ≤ d(ẽ).

5.1.1 Lemma:
Let G be a graph with ∆(G) ≤ 3 and let v ∈ V (G). A greedy edge colouring algorithm
that colours the edges of E(G) in the reverse order of an edge ordering compatible with the
distance classes of v will produce a partial strong edge 10-colouring that can only leave edges
incident to v uncoloured.

Proof:
Let e ∈ E(G) be any edge that is not incident to v. Then the end vertices of e will be in
the distance classes Dd(e) and Dd(e)−1. A greedy algorithm colouring the edges of G in
the reverse of an order compatible with the distance classes of v, will not have assigned
a colour to the edges of Dd(e)−1 at the point of assigning a colour to e. This implies that
|F (e)| ≤ 9, which must leave a colour available to be assigned to e.

This short lemma actually grants us considerable power of reduction. In the following
results, we will often reduce a strong edge colouring problem to only consider some local
neighbourhood of a particular vertex.

5.2 Vertices of degree less than 3

5.2.1 Lemma:
Let G be a connected graph with ∆(G) ≤ 3. If there exists v ∈ V (G) of degree 1, then there
exists a greedy edge colouring algorithm that strongly edge-colours G using at most 10 colours.

Proof:
Let v be a vertex of degree 1 and consider an ordering of E(G) compatible with the
distance classes of v. Colour the edges in the reverse of this order. By Lemma 5.1.1, only
the edge e incident to v may be left uncoloured. But by the construction of G, we have
that |N(e)| ≤ 6, so surely, |F (e)| ≤ 6, leaving at least 4 colours available to be assigned to
e.

5.2.2 Lemma:
Let G be a connected graph with ∆(G) ≤ 3. If there exists v ∈ V (G) of degree 2, then there
exists a greedy edge colouring algorithm that strongly edge-colours G using at most 10 colours.

Proof:
As in the proof of the previous lemma, consider the vertex v ∈ V (G) of degree 2, and
denote by e and e′ the edges incident to v, with e being ordered before e′. Colouring the
edges in the reverse order, we have again by Lemma 5.1.1 that |F (e′)| ≤ 9 and |F (e)| ≤ 8.
In both cases, this leaves a colour available to be assigned to the edge in question.
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5. The strong chromatic index of cubic graphs

5.3 Graphs containing n-gons with n ≤ 5

We define an n-gon as a circuit graph on n vertices. To say that a graph contains an n-gon
is to say that it contains a circuit graph on n vertices as a subgraph.

5.3.1 Lemma (Graphs containing multiple edges):
Let G be a connected graph with ∆(G) ≤ 3. If G contains a multiple edge, that is, a 2-gon,
then there exists a greedy edge colouring algorithm that strongly edge-colours G using at most
10 colours.

Proof:
Let v be a vertex incident with a multiple edge. Order the edges of E(G) in a way
compatible with the distance classes of v, and colour the edges in the reverse of this order.
Again we have by Lemma 5.1.1 that if e and e′ are the two multiple edges incident to v
that constitute a 2-gon, we may colour the first, say e, because |F (e)| ≤ 6, and the second,
say e′, because we will have |F (e′)| ≤ 7 after colouring e.

5.3.2 Lemma:
Let G be a connected graph with ∆(G) ≤ 3. If G contains a 3-gon, then there exists a greedy
edge colouring algorithm that strongly edge-colours G using at most 10 colours.

Proof:
Let v be a vertex in a 3-gon of G. By Lemma 5.2.2, we are done if deg(v) = 2, so we may
assume that deg(v) = 3.

If we choose an ordering of E(G) compatible with the distance classes of v, such that
the edges incident to v, say e1, e2, and e3, are the first ones with respect to the order. If
we colour the edges in the reverse of this order as in the previous lemma, we will have
|F (e3)| ≤ 9, |F (e2)| ≤ 8, and |F (e1)| ≤ 9. This leaves a colour available to assign to each
edge at the necessary stage of the algorithm.

As we expand the results to also apply for graphs containing n-gons where n ≥ 4, we need
to also introduce the notion that an edge-colouring algorithm can be greedy except for k
edges. This property is said to apply to a greedy edge-colouring algorithm that produces a
partial strong edge-colouring of G which colours at least |E(G)| − k edges, leaving at most
k edges uncoloured.

5.3.3 Lemma:
Let G be a connected graph with ∆(G) ≤ 3. If G contains a 4-gon, then it may be strongly
edge 10-coloured by some edge-colouring algorithm that is greedy except for 8 edges.

Proof:
Denote by C a 4-gon in a graph G, and denote by v1, v2, v3, and v4 the consecutive vertices
appearing in G. Lemma 5.2.2 tells us that we are done if any of these have degree 2, so we
assume that none of them do. If any pair of the listed vertices are additionally joined by
an edge that is not adjacent to any other vertex of the 4-gon C, Lemmata 5.3.1 and 5.3.2
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5.3. Graphs containing n-gons with n ≤ 5

ensure that the result also holds. Hence, we assume that neither of these two conditions
are met, allowing us to denote by fi the edge incident to vi that is not part of the 4-gon
C. Further, we denote by ei the edge between vertices vi and vi+1, with e4 being the edge
between v4 and v1.

For each index i ∈ {1, 2, 3, 4}, denote by wi the end vertex of fi that is not vi.
It follows from Lemmata 5.2.1 and 5.2.2 that the reduced graph G − V (C) can be

strongly edge 10-coloured by a greedy algorithm, since removing the 4-gon C from G

would leave each vertex wi with degree at most 2, with each component of G − V (C)

containing a vertex on the form wi.
Because of this, we may denote by U the set {e1, e2, e3, e4, f1, f2, f3, f4} and assume

the existence of a partial strong edge 10-colouring of G− U . We have only to argue that
these eight edges can be assigned colours without incurring the need for an 11’th colour
in order to preserve the strong edge colouring of G.

By construction of G and the above assumptions, we must have |F (fi)| ≤ 6 and
|F (ei)| ≤ 4 for i ∈ {1, 2, 3, 4}.

Denote by A(e) the edges available for assignment to the edge e. Then |A(fi)| = 4 and
|A(ei)| = 6 for i ∈ {1, 2, 3, 4}.

If we can assign to each edge contained in U a distinct colour among the 10 available
ones, we have done nothing to violate the condition that the proper 10-edge colouring
should be strong. If this is not possible, that is, if some two edges of U must be assigned
the same colour, then Theorem 3.5.4 implies the existence of a nonempty subset W of U
for which it holds that ∣∣∣∣∣ ⋃

e∈W
A(e)

∣∣∣∣∣ < |W | .
We already know that |A(e)| ≥ 4 for any e ∈ U , so we must have |W | ≥ 5. If this is

true, then the set W contains at least one edge ei, given that there are only four distinct
edges on the form fi in the set U . Since, for every edge ei, it holds that |ei| ≥ 6, we must
have |W | ≥ 7.

This leaves us with only three cases to consider.
Case 1:

∣∣⋃
e∈W A(e)

∣∣ = 6:
If W = U , then w1 and w3 are distinct and not adjacent, and so are w2 and w4. This is
because either equality between the two pairs of vertices would imply that |A(e1)| ≥ 7 for
the case of w1 and w3, or |A(e2)| ≥ 7 for the case of w2 and w4. If either vertex pair were
pairwise adjacent, we would have |A(e1) ∪A(e2)| ≥ 7 for the case of w1 and w3, with a
similar argument showing that w2 and w4 cannot be adjacent. If a multiple edge joins
either pair, Lemma 5.3.1 applies.

This leaves the following number of available colours:

|A(f1) ∩A(f3)| ≥ 2

|A(f2) ∩A(f4)| ≥ 2.

In either case, we take the intersection of two sets of cardinality 4, the union of which can
at most contain 6 elements. Because of this, we may assign one colour to f1 and another
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5. The strong chromatic index of cubic graphs

to f3, and likewise for the edges f2 and f4. This removes at most two elements from A(ei)

for i ∈ {1, 2, 3, 4}, so each edge on the form ei can be coloured with a distinct colour.

Case 2:
∣∣⋃

e∈W A(e)
∣∣ = 6, W 6= U , |W | = 7:

Assume that W contains both f1 and f3. The above arguments imply that a single colour
can be assigned to both edges. Now the remaining edges of U can still be assigned distinct
colours, as both A(f2) and A(f4) contain at least three elements. This leaves at least 5

colours in any set of the form A(ei), permitting the assignment of a distinct colour to each
edge on the form ei. Finally, the single edge contained in U but not in W may be assigned
any of the colours that do no appear in

⋃
e∈W A(e).

Case 3:
∣∣⋃

e∈W A(e)
∣∣ = 7:

If this is the case, we need only consider W = U . Suppose that w1 = w3. Now, assuming
w2 = w4 would imply that |F (e1)| ≤ 2, leaving the set A(e1) with at least 8 distinct
elements. This cannot be true, so we cannot have both equalities simultaneously.

Hence, assume without loss of generality that w2 6= w4. If w2 and w4 were adjacent,
we would have the inequality |A(e1) ∪A(e3)| ≥ 8, another contradiction. As in the first
case, if they are joined by a multiple edge, we apply Lemma 5.3.1.

The final possible subcase is that all four vertices are distinct, with both pairs w1 and
w3, and w2 and w4 being adjacent. This would imply that either a multiple edge connects
one of the two pairs, or we would have

|A(e1) ∪A(e2) ∪A(e3) ∪A(e4)| ≥ 8,

constituting yet another contradiction in the assumed cardinality of
⋃

e∈W A(e). We
may assume that w1 and w3 is the vertex pair that is not adjacent. Since we have
|A(f1) ∩A(f3)| ≥ 3, both edges can be assigned the same colour. This leaves at least
3 colours available for assignment to the edges f2 and f4, yet again leaving at least 5

colours available to be assigned to edges on the form ei. From this it follows that the
remaining six edges contained in U can be given distinct colours after first assigning to f1

and f3 the same one.

This can only fail if the union of all remaining sets of the form A(e) contains 5 elements.
However, if this equality were obtained, then w2 and w4 must be distinct and non-adjacent
vertices, implying that the edges f2 and f4 can be coloured using the same colour without
violating the strong edge 10-colouring of G that we wanted. In doing so, we are left with
4 available colours with which to colour the four edges e1, e2, e3, and e4.

5.3.4 Lemma:
Let G be a connected graph with ∆(G) ≤ 3. If G contains a 5-gon, then it may be strongly
edge 10-coloured by some edge-colouring algorithm that is greedy except for 10 edges.

The strategy of the following proof is remarkably similar to that of the previous one. The
details, however, differ enough to make the proof nontrivial.
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5.3. Graphs containing n-gons with n ≤ 5

Proof:
Let G be a graph with ∆(G) ≤ 3, and let G contain a 5-gon denoted C. Consecutively
denote the vertices of C by v1, v2, v3, v4, and v5, with the edges between these denoted by
ei = eiei+1 for i ∈ {1, 2, 3, 4}, and the edge e5 connecting the vertices v5 and v1. As in the
proof of the above lemma, we apply Lemma 5.2.2 in case any of these vertices have degree
2, or Lemmata 5.3.1 and 5.3.2 if any pair of vertices in C are joined by an edge not in the
circuit described by C.

Hence, we may once again assume that no such internal edge of the 5-gon exists, and
again denote by f1, f2, f3, f4, and f5 the edges outside of C that are incident to v1, v2, v3, v4,
and v5, respectively. Again as in the proof of the above lemma, denote for i ∈ {1, 2, 3, 4, 5}
by wi the endpoint of edge fi that is not vi.

If these are not all distinct, they imply the existence of a 3-gon or 4-gon in C, causing
Lemmata 5.3.2 and 5.3.3 to apply. Hence, we assume that all five vertices on the form wi

are distinct.
By Lemmata 5.2.1 and 5.2.2, we may greedily strongly edge 10-colour G − V (C),

since every vertex in the set {w1, w2, w3, w4, w5} has degree 2 in G − U , and since each
component of G− U contains at least one vertex in {w1, w2, w3, w4, w5}.

Hence, we consider a partial strong edge 10-colouring of G − V (C), leaving only the
subset of E(G) denoted by U = {e1, e2, e3, e4, e5, f1, f2, f3, f4, f5} as yet uncoloured.

By construction of G, we have both |F (fi)| ≤ 6 and |F (ei)| ≤ 4 for every i ∈
{1, 2, 3, 4, 5}, implying both |A(fi)| ≥ 4 and |A(ei)| ≥ 6 for i ∈ {1, 2, 3, 4, 5}, where A(e) is
once again understood to be the set of colours left available for assignment to the edge e,
without violating any properties of the strong edge 10-colouring that we wish to construct.

If each edge in U can have assigned to it a distinct colour among the 10 available, we
are done.

Assume that this is not possible. We apply Theorem 3.5.4, which implies the existence
of some nonempty subset W of U for which∣∣∣∣∣ ⋃

e∈W
A(e)

∣∣∣∣∣ < |W | .
The least value of |A(e)| for any edge e ∈ U is 4, so we must have |W | ≥ 5. If |W | = 5,

then W must contain all edges fi with i ∈ {1, 2, 3, 4, 5}, as the union with any set A(ei)

would force W to contain at least six elements. For ease of reading in the following, we
name the colours contained in A(fi) as {a, b, c, d}. This imposes no immediate ordering
on them, but none is required in the proof.

No vertices on the form wi are adjacent, since this would imply that the edge fi

corresponding to wi would have at least 5 colours available for assignment. Additionally,
by construction of G, we have A(fi) ⊆ A(ei) for every i ∈ {1, 2, 3, 4, 5}. This allows us to
make the following assignments:
• a is assigned to f1 and f3

• b is assigned to f2 and e4

• c is assigned to f4 and e1

• d is assigned to f5 and e2
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5. The strong chromatic index of cubic graphs

We only need to assign colours to e3 and e5. However, we have used the four colours
a, b, c, and d, and for each ei, we had six available colours, that is, |A(ei)| ≥ 6 for
i ∈ {1, 2, 3, 4, 5}. Because this would finish the proof, we assume in the following that
A(fi) ≥ 5 for i ∈ {1, 2, 3, 4, 5}.

Now we must have |W | ≥ 6, implying that W contains some edge on the form ei,
further implying that |W | ≥ 7.

Throughout the remainder of the proof, we alleviate notation by introducing x =∣∣⋃
e∈W A(e)

∣∣.
If x ≤ 8, the edge pair fi and ei+2 are neither adjacent nor joined, hence they may be

assigned the same colour. Such an edge pair will be referred to as a pair of opposite edges.
For each such pair contained in W , both have at least 10− x colours available, where

10 − x ≥ 2. By Hall’s Condition contained in Theorem 3.5.4, we have |W | > x, with W

containing at least (x+ 1)− 5 = x− 4 ≥ 2 pairs of opposite edges.
We now show that two such pairs can always have two colours assigned in a pairwise

fashion, leaving three colours still available to be assigned to the remaining three edges
on the form fi. Since Theorem 3.5.4 implied the existence of at least two pairs of opposite
edges in W , we may always choose two such pairs and assign to them each a colour,
say a and b. Assume that this leaves the colours c and d available for assignment to the
remaining edges on the form fi.

Denote by ã some colour distinct from all four colours a, b, c, and d. The set A(fj) must
contain some such ã for some j ∈ {1, 2, 3, 4, 5}, because the union

⋃5
i=1A(fi) was assumed

to contain at least five elements.
Choose two pairs of opposite edges contained in the set W and assign to the edges of

one pair the colour a before assigning the colour b to the other edge pair. Having done
this, we modify our choice of pairs in the following way:
• If x = 6, the colour ã must be contained in the set A(ej+2), implying that ã is

available for assignment to one pair.
• If x = 7 or x = 8, one remaining edge on the form fi belongs to a pair of opposite

edges in W . Removing the colour assigned to fj and ej+2 before colouring the
remaining opposite edge pair yields the configuration necessary for colouring two
opposite edge pairs.

Having thus extracted four edges from U and coloured them without violating the
properties demanded of the edge colouring, we need to assign colours to the remaining
six edges of U . If it is possible to assign distinct colours to all of them, we are done.

Hence, assume that it is not. Then we once again return to an implication of Theorem
3.5.4. Denote by Ã(e) the set of edges available for assignment to the edge e, and denote
by W̃ some subset of the remaining six edges in U which obeys the condition that∣∣∣∣∣∣

⋃
e∈W̃

Ã(e)

∣∣∣∣∣∣ <
∣∣∣W̃ ∣∣∣ .

We must have
∣∣∣W̃ ∣∣∣ ≥ 4, implying that W̃ contains an edge on the form ei, again implying

that W̃ contains five or six elements. This implies that W̃ contains at least two opposite
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5.4. Graphs containing edge cuts of cardinality less than 4

edge pairs.

Case 1:
∣∣∣⋃e∈W̃ Ã(e)

∣∣∣ = 4:

Whenever this holds true, each pair of opposite edges in W̃ has two colours available for
their assignment. Colouring two such pairs with distinct colours leaves, as argued above,
a colour available for assignment to whichever edge on the form fi that still remains to be
coloured.

Case 2:
∣∣∣⋃e∈W̃ Ã(e)

∣∣∣ = 5:

If this is true, W̃ contains all remaining uncoloured edges of G. It is still the case that
each opposite edge pair of W̃ can have a distinct colour assigned to both edges, and the
two edges on the form fi that are left uncoloured by this procedure both have at least two
colours available for assignment, that is, we still have A(fi) ≥ 2 for the uncoloured edges
fi. The configuration is finally resolved by assigning a distinct colour to each remaining
edge of U . If this is not possible, each opposite edge pair can be assigned a single colour,
freeing one up.

The final case we must consider is when
∣∣⋃

e∈W A(e)
∣∣ = 9. When this occurs, each

opposite edge pair of W has at least one colour available for assignment to both edges of
the pair. We have argued that one such pair may be coloured in a way that leaves four
colours free for assignment to whichever edges on the form fi remain uncoloured. Having
assigned to an opposite edge pair one such colour, we may attempt to assign distinct
colours to the remaining eight edges.

If this proves impossible, Theorem 3.5.4 again implies the existence of some subset W ′

of E(G) for which it holds that ∣∣∣∣∣ ⋃
e∈W ′

Ã(e)

∣∣∣∣∣ < ∣∣W ′∣∣ ,
with W ′ containing either 6, 7, or 8 edges. An argument similar to the ones made above
once again leads us to conclude that when there are still uncoloured edges, they can either
be assigned distinct colours, or Theorem 3.5.4 implies that at least one opposite edge pair
can be coloured in such a way as to leave distinct colours available for the remaining edges
on the form fi.

5.4 Graphs containing edge cuts of cardinality less than 4

Having now established the result for graphs containing n-gons with n ≤ 5, we turn our
attention to graphs that contain edge cuts of small cardinality. We define an edge cut of a
graph G as a subset P of E(G) such that G− P = G1 ∪G2, with G1 and G2 being disjoint
subgraphs of G. Note the possible clash in terminology here: The definition of an edge cut
often includes the condition that both disjoint subgraphs must be connected. We impose
no such condition on the subgraphs G1 and G2 of G.

We also introduce the term bigreedy except for k edges to apply to a greedy algorithm
which independently and greedily colours two disjoint subgraphs G1 and G2 of a graph,
G, before permuting the colours assigned to one of these subgraphs, colouring G in this
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5. The strong chromatic index of cubic graphs

fashion, and finally colouring or re-colouring at most k edges to obtain the desired strong
edge-colouring of G. If an algorithm is bigreedy except for 0 edges, we will just call it
bigreedy. Considering G as the union of an empty graph with G itself shows that an
algorithm which is greedy except for k edges is also bigreedy except for k edges.

5.4.1 Lemma:
Let G be a connected graph with ∆(G) ≤ 3. If G contains a bridge, then there exists a bigreedy
edge colouring algorithm that strongly edge-colours G using at most 10 colours.

Proof:
Let e ∈ E(G) be a bridge with end vertices v1 and v2. Denote the components of G− e by
G1 and G2, with v1 ∈ V (G1). Lemmata 5.2.1 and 5.2.2 shows that both G1 and G2 can
be strongly edge 10-coloured, and, moreover, that G̃1 = G1 ∪ {v2, e} can be strongly edge
10-coloured. If necessary, permute the colours assigned to each colour class of G2 so that
the colour assigned to e ∈ V (G̃1) occurs nowhere in the set N(e) ∩G2, and such that no
colours assigned to edges incident to v1 ∈ V (G1) are incident to v2 ∈ V (G2). This yields a
strong edge 10-colouring of G.

5.4.2 Lemma:
Let G be a connected graph with ∆(G) ≤ 3. If G contains an edge cut consisting of 2 edges,
then there exists a bigreedy edge colouring algorithm that strongly edge-colours G using at
most 10 colours.

Proof:
Assume that an edge cut of G contains two edges, e1 and e2, and denote by x1, x2 and
y1, y2 the end vertices of e1 and e2, respectively. Since {e1, e2} constitutes an edge cut, the
graph G− {e1, e2} consists of disjoint graphs, say G1 and G2 containing the vertices x1, x2

and y1, y2, respectively.
Now construct G̃1 = G1 + {e1, e2, x2, y2} and strongly edge 10-colour G̃1. This is

possible by Lemma 5.2.2.
Denote by a and b the two distinct colours assigned to e1 and e2, respectively. Further,

denote by c1 and c2 the incident edge colours of x1, and by d1 and d2 the incident edge
colours of y1. Certainly, neither a nor b is identical to any of these four colours.

Now construct G̃2 using G2 by adding a vertex, say z, that is adjacent to both x2 and
y2. Since z now has degree 2, we may again colour the graph G̃2 greedily using the same
colours used to colour G̃1.

By substituting the colour of the edge assigned to the edge between z and x2 and the
edge between z and y2 with a and b, respectively, we may also ensure that none of the 4

incident colours to x2 and y2 occur among the set of colours {a, b, c1, c2, d1, d2}. We may
use as many as 10 colours, so this is clearly feasible.

Combining the colouring thus obtained of both G̃1 and G2 constitutes a strong edge
10-colouring of G.

Having established s′(G) ≤ 10 for any cubic graph G containing edge cuts of size 1 or 2,
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we turn our attention to edge cuts of size 3. We call such an edge cut trivial if it consists of
every edge adjacent to a single vertex, and non-trivial if this is not the case.

5.4.3 Lemma:
Let G be a connected graph with ∆(G) ≤ 3. If G contains a non-trivial edge cut consisting
of 3 edges, then a strong edge 10-colouring of G may be constructed by an algorithm that is
bigreedy except for 3 edges.

Proof:
Let U = {e1, e2, e3} be a non-trivial edge cut of G and denote by u1, u2, v1, v2, and w1, w2

the end vertices of e1, e2, and e3, respectively. Since U is a cut, we have that G−U consists
of two disjoint graphs. We denote by G1 the one containing u1, v1, w1, and by G2 the one
containing u2, v2, w2.

If any of these vertices are not distinct, an edge could be removed from U without
violating the condition that it was an edge cut of G, implying by Lemma 5.4.2 that G is
strongly edge 10-colourable. Hence, assume that the six vertices are all distinct. We also
assume that every end vertex of an edge in U has degree 3 in G, since Lemmata 5.2.1
or 5.2.2 would otherwise imply the existence of a strong edge 10-colouring of G. Finally,
we may assume that neither G1 nor G2 is a 3-gon, as this would imply the strong edge
10-colourability of G by 5.3.2. This implies that if a path contains exactly the vertices
u1, v1, w1 or u2, v2, w2, then G would contain an edge cut containing exactly the edges
between the pairwise endpoints of these two paths. Because of this, at least one pair of
vertices among u1, v1, w1 and u2, v2, w2 in either graph of G1 and G2 must be nonadjacent.
Assume without loss of generality that u1 is not adjacent to v1, and that u2 is not adjacent
to v2. However, denote by f1 an edge between u1 and v1, and similarly denote by f2 an
edge between u2 and v2.

Now strongly edge-colour the graphs G̃1 = G1 + f1 and G̃2 = G2 + f2 with the same
set of 10 colours. Since w1 and w2 both have degree 2 in G̃1 and G̃2, respectively, Lemma
5.2.2 tells us that this is possible by initiating a greedy edge-colouring algorithm with the
vertices w1 and w2, respectively.

If, in the process of obtaining such a strong edge 10-colouring, we do not assign any
colours to the edges incident to u1 or v1, it must be due to the fact that e3 constituted a
bridge of G. Had this been the case, Lemma 5.4.1 would tell us that G could be strongly
edge 10-coloured. Hence, we assume that this is not the case.

Denote by a the colour assigned to f1, and denote by c a colour distinct from a that is
not an incident edge colour of u1, while still being available for assignment to any edge
adjacent to w1. At least one such colour exists by the proof of Lemma 5.2.2. Further,
denote by b1 and b2 the two incident edge-colours of u1 when considered in the graph
G1, and denote by b3 and c or b3 and b4 the two incident edge-colours of v1. Whichever
pair of colours to consider depends on whether or not the colour c is an incident edge-
colour of v1, which again will depend on the order imposed on E(G1) before initiating the
edge-colouring algorithm.

Under these assumptions, we have that the six colours a, b1, b2, b3, b4, and c are distinct.
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Note, however, that we may only need to consider the five distinct colours a, b1, b2, b3, and
c.

To consider a set of at most 10 edge-colours, we name the at most 4 remaining colours
contained in the colour set S in the following way:

S = {a, b1, b2, b3, b4, c, d1, d2, d3, d4}.

In the colouring of G̃2 that we obtained earlier, we denote the colour of f2 by a and assign
the colour name c to some colour that is available for w2, and which it not an edge colour
incident to v2. Further, denote by d1 and d2 or d1 and c the colours that are edge incident
to u2 in G2, depending on whether or not an incident edge of u2 has been assigned the
colour c in the previously obtained colouring of G2. Finally, denote the edge incident
colours of v2 with d3 and d4.

Our objective now is to construct a colouring of G using the established strong edge
10-colourings of G1 and G2. The obvious way of doing this is to assign to e1, e2, and e3 the
colours a, a, and c, respectively. Whenever this is impossible, it is so because the colour a
is an incident edge colour of both w1 in G1 and w2 in G2. We consider the two possible
colourings of G for which this occurs.

Case 1: The colour a is an incident edge colour of either w1 or w2:
Suppose that two colours x and y are incident edge colours of w1 and w2, with both of
them distinct from the colour a. If x = bi and y = bj for some i, j ∈ {1, 2, 3, 4}, rename
the colours assigned to edges in G2 by swapping the names of bi and bj with those of the
two remaining colours bk and bl, where l and k must both be distinct from i and j. If, on
the other hand, x = di and y = dj , again change the names of colours assigned to edges
of G2 by interchanging the pair of colours di, dj with the remaining pair of colours, dk, dl.
As before, we have that both i and j are distinct from both k and l. The remaining option
is for x to be equal to a colour on the form bi, while y is equal to a colour on the form dj .
If this happens, we simply swap bi assigned to edges in G2 with a distinct colour bk, and
swap dj with some other colour on the form dl.

Now, if the two edge colours incident to w1 are denoted by x and y, with the incident
edge colours of w2 being denoted by x and z, we suppose that y is distinct from z, and that
x is distinct from the colour a that was assigned to both e1 and e2. If x is equal to a colour
on the form bi or dj , swap the names of colours assigned to edges of G2, so that x = bi is
renamed as some other colour bk which is distinct from x, y, and z, or alternatively, such
that x = dj is renamed as some other colour dl that is distinct from x, y, and z.

Case 2: The colour a is an incident edge colour of both w1 and w2:
If this happens, denote by y the other incident edge colour of w1, and similarly denote by
z the other incident edge colour of w2. Considering the edge colouring of G1, choose some
colour d that is available for assignment to incident edges of v1, and which is also distinct
from a, y, and c. This forces d to be in the set {b1, b2, d2, d3, d4}, and we may assume that
d is equal to either b1 or d4.

Considering now the edge colouring of G2, let x be a colour available for assignment
to incident edges of u2, where x is distinct from z, a, and c. As above, this again lets
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us assume that x coincides with b1 or d4. This leaves us with four possible cases, to be
considered as subcases of the second case, in which a is an incident edge colour of both
w1 and w2.

Case 2.1: d = b1 and x = b1:
Considering the colouring of G2, swap the names of a and b1. Prior to the swap, b1 was
available for assignment to incident edges of u2, and this property is transferred to colour a
by the interchange. Similarly, the colour b1 is available for assignment to incident edges of
v2 after the swap between a and b1. Additionally, c is available for assignment to incident
edges of w2 as c is distinct from both a and b1. Assign to e1 the colour a, assign to e2

the colour b1, and assign to e3 the colour c. This does indeed constitute a strong edge
10-colouring of G, unless y = z, in which case we swap the names of z and bj , where j is
neither i nor 1, if z were equal to some colour on the form bi. If, on the other hand, z were
equal to some colour on the form dk, we swap the colour z with any other colour on the
form dl, with l distinct from k.

Case 2.2: d = b1 and x = d4:
Consider again the colouring obtained of G2. Swap the names of d4 and b1. The incident
edge of w2 with the colour z may now have to have another colour assigned. To rectify the
situation, set z̃ equal to z if a change is unnecessary, and let z̃ be equal to d4 if a change is
necessary. In either case, z̃ must be distinct from b1.

Swap the names of the colours a and b1, and assign to e1 the colour a before assigning
to e2 the colour b1 and the colour c to the edge e3. We have only violated the properties of
a strong edge 10-colouring if y is now equal to z̃, but if z̃ is equal to a colour on the form
bi, we may swap the names of z̃ with any other colour bj , where j is distinct from both
i and 1. If, on the other hand, colour z̃ is equal to dk for some k, we swap the name of
z̃ with the name of some colour on the form dl, where we only demand that l be distinct
from k.

Case 2.3: d = d4 and x = b1:
Considering the colouring ofG2, swap the names of d4 and b1. Again denote by z̃ whichever
colour that is now assigned to the one previously coloured with z. That is, z̃ can be equal
to either z or b1, but must be distinct from d4.

Now assign to e1 the colour a, to e2 the colour d4, and to e3 the colour c. The only
problem arises if y = z̃, but if z̃ is equal to some colour on the form bi with i 6= 2, then we
swap the name of z̃ with the name of b2, or if z̃ is equal to b2, interchange the names of z̃
and b3. Finally, if z̃ is equal to some colour described by dk for some k, then we may swap
z̃ with any colour dl, where l is neither k nor 4.

Case 2.4: d = d4 and x = d4:
In this final case, we once again consider only the colouring obtained for G2. We swap the
names of colours between a and d4, and assign to e1 the colour a before assigning to e2

the colour d4 and to e3 the colour c.

If we should happen to encounter a colour z that is identical to y, then if z is equal
to some colour on the form bi, we swap the name of z with bj for some j distinct from i.
Alternatively, if z is equal to dk for some index k, we swap the name of z with dl with any
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l distinct from both k and 4.

Whatever case or subcase thereof we encounter, we can thus always construct a strong
edge 10-colouring of G using first a bigreedy algorithm before manually assigning or
possibly reassigning colours to at most 3 edges of G.

5.5 Graphs containing no n-gons with n ≤ 5

With the previous results, Lemmata 5.3.1, 5.3.2, 5.3.3, and 5.3.4 established, we turn
our attention to graphs that contain none of the characteristic substructures contained in
the referenced lemmata. That is, we consider in this section only connected cubic graphs
containing no smaller n-gons than 6-gons, unless specifically noted otherwise.

Let G be exactly such a graph and let x be a vertex of G. Let the vertices adjacent to
x be the three distinct vertices u, v, and w. Further, denote by u1 and u2 the two other
vertices adjacent to u, and similarly, denote by v1 and v2 and w1 and w2 the vertices
adjacent to v and w, respectively. Since G contains no n-gon for n ≤ 5, all of the vertices
here described must be distinct, and further, the vertices u1, u2, v1, v2, w1, w2 must all be
pairwise independent, that is, none of them are pairwise adjacent.

In the pursuit of a strong edge 10-colouring of G, we successively colour the edges uu1,
vv1 and ww1 with one colour, before colouring the edges uu2, vv2 and ww2 with another
colour.

Now denote by q1 and q2 the two vertices other than w that are adjacent to w2, and
consider the following sequence of edges represented by their end vertices:

s0 = xw, xv, xu,ww2, w2q1.

Let s be a sequence of uncoloured edges in G constructed by the following criteria. The
sequence s is initiated by the edges in s0, and for any edge e ∈ s \ s0, at least three edges
in N(e) must precede it in the sequence s. Finally, construct s to be edge-maximal under
these conditions.

5.5.1 Lemma:
If the sequence s, as constructed above, contains all edges of G left uncoloured by a partial
strong edge-colouring, then a strong edge 10-colouring can be obtained by colouring the edges
of s \ s0 greedily in the reverse order, possibly re-assigning a colour to the edge ww1, before
colouring the edges of s0 greedily in reverse order.

Proof:
Greedily colouring the edges of G in the reverse ordering imposed by the sequence s

implies that, for any edge e of s \ s0, we have |F (e)| ≤ 9, so |A(e)| ≥ 1, leaving a colour
available to assign to e.

If a colour is still available for the edge encountered between vertices w2 and q1, we
proceed without any problem. Indeed, by the construction of s, we will always have
a colour available. Assume then, that no colour is available for the edge w2q1. Then
|F (w2q1)| = 10, and all edges of N(w2q1) have been assigned distinct colours. Whichever
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colour has been assigned to the edge ww1, we remove it and assign it instead to the edge
w2q1. Following this, ww1 is once again coloured. This can be done without violating the
need for a strong edge 10-colouring, as we have |F (ww1)| ≤ 8. In doing this, we may
proceed to re-assign colours to the edges of s0 in the reverse of the order imposed by the
sequence s, as we will always have at least one such colour available.

In the following, let H be the subgraph of G induced by the uncoloured edges of G
that are not contained in s. Assume in the following that H 6= ∅. Were this not the case,
Lemma 5.5.1 would apply.

5.5.2 Lemma:
With the subgraph H of G and the edge sequence s constructed as above, it holds that no two
vertices of H are connected by a single edge contained in s.

Proof:
For edges contained in s0, the result is trivial. Suppose then that the result does not hold
for an edge between vertices yy′ contained in the sequence s \ s0. Because both vertices y
and y′ by assumption will belong to H, there must be two uncoloured edges, say zy and
z′y′, not contained in s. However, by the construction of s, at least three edges of N(yy′)

must be contained in s, and at least one of the two sets N(zy) and N(z′y′) must contain
two of these. Assume without loss of generality that N(zy) contains such two edges. Since
N(zy) also contains yy′, it contains at least 3 edges of the sequence s, implying that it could
be added to s, contradicting the edge-maximal property by which s was constructed.

5.5.3 Lemma:
Denote by F = (G−H,G) the subset of edges in G with one end vertex in H and another end
vertex inG−H. Then any edge in the set F is incident with one of the vertices u1, u2, v1, v2, w1,
and no other vertices than u and v are incident with two edges in F .

Proof:
A pre-coloured edge will be incident with some vertex in the set {u1, u2, v1, v2, w1}, so
choose instead some uncoloured edge e with end vertices g in G − H and h in H. By
construction of H, we have that e occurs on the sequence s with some uncoloured edge
between h and h′ that is not in s. Hence, by construction of s, there must be an edge
incident to g that is not in the sequence s. This shows that g has an incident edge that is
already coloured. Since we assumed that g could not be u, v, or w, then g must be identical
to some element in the set {u1, u2, v1, v2, w1}.

To show that u and v are the only vertices which may be incident to more than one
edge in F , we begin by assuming that some vertex z belonging to the set {u1, u2, v1, v2, w1}
is incident with two edges of F . If any of these two edges are already coloured, we must
have z ∈ H, implying that some uncoloured edge of F joins z to another vertex z̃ ∈ G−H.
This would again imply that all incident edges of z̃ would be contained in the sequence s,
a contradiction in the assumption that the third incident edge of z would not be contained
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in s. Hence, the two uncoloured edges of z, here denoted by e1 and e2, must be contained
in F . Then no incident edge of z is contained in H, implaying that z itself must be a vertex
of G−H. Since we have that neither e1 nor e2 are contained in s0, we may assume without
restriction that e1 is ordered before e2 in the edge-maximal sequence s.

However, this would mean that three edges in the set N(e1) appears before e1 in the
sequence s. Considering one such edge of N(e1) along with the edges e1 and e2 shows that
all three edges with an end-vertex distinct from z of either e1 or e2 must be in the sequence
s, contradicting our previous assumption that both e1 and e2 must be edges contained in
F .

Since w cannot be incident with two edges of F either, we are done if we can show
that no vertex z that is not contained in {u1, u2, v1, v2, w1} can be incident with two edges
in F .

Were this the case, both incident edges of z contained in F would join the vertex z to
some vertex in the set {u1, u2, v1, v2, w1}, implying that z should be a vertex of H. If this
were true, the sequence s would not be edge-maximal, as it could be extended to contain
whatever third edge that was incident to z.

We now introduce the term small cut to describe any non-trivial edge-cut of a graph
that contains 1, 2, or 3 edges.

5.5.4 Lemma:
Either the graphG contains a small cut, or it may be described by one of the fifteen illustrations
included in Appendix A.

Proof:
If the edge set F constructed as in the above contains fewer than four elements, it is a
small cut. Hence, we assume that |F | ≥ 4, implying that F contains either 4 or 5 elements.

Case 1: Edges uu1 and uu2 are both contained in F

If this configuration occurs, the graph H + {u, u1, u2} is joined to the remainder of the
graph only by the edge set F and the single edge between x and u. Hence, a small cut exists
unless F contains five edges that are incident with v1, v2, and w1, beyond the edge joining
u to u1 and the edge joining u to u2. If this is the case, we can exclude the possibility that
vv1, vv2, or ww1 belongs to F , as this would imply the existence of a small cut that would
separate the remainder of the graph from the subgraph G − (H + {x, u, v, v1, v2, w, w1}).
The only possible remaining configuration in which F contains the edges uu1 and uu2, and
where G does not contain a small cut, is depicted here:
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H G′

u1

u2

y3

y4

z2

w2

y1

y2

z1

u

v1

v2

x

v w

w1

Figure 1. Case 1.

Because of this, we may now and for the remainder of the proof assume that F does
not contain both uu1 and uu2, with a symmetrical argument showing that F cannot at the
same time contain both vv1 and vv2.

Cases 2 and 3: Edges uu1 and vv1 are both contained in F

When this configuration arises, we have that u2 or v2 is incident to some edge contained in
F . We suppose without loss of generality that u2 is incident to some edge in F , and denote
this edge by its end vertices u2t2. If F also contains v2, the graph G contains a small cut
whenever w1 is not incident with some edge in F that is not ww1. This would result in the
following case:

H G′

u1

t2

v1

y2

z2

w2

t1

y1

z1

u

u2

v

v2

x

w

w1

Figure 2. Case 2.

If, on the other hand, v2 is not an incident edge of any edge in F , then w1 must be
incident to an edge in F that is not ww1. If this is the case, we observe the third case:

38



5. The strong chromatic index of cubic graphs

H G′

u1

t2

v1

z2

w2

t1

v2

z1

u

u2

v

x w

w1

Figure 3. Case 3.

In the following, we assume that only one edge uu1 of the set {uu1, uu2, vv1, vv2} is
contained in F .

Cases 4, 5, and 6: Edges uu1 and ww1 are both contained in F

If F also contains ww1, then F must also contain edges incident to at least two of
the vertices u2, v1, v2. If edges of F are incident with all three vertices, we obtain this
description of G:

H G′

u1

t2

y3

y4

w1

t1

y1

y2

w2

u

u2

v1

v2

x v

w

Figure 4. Case 4.

If no edge of F is incident to u2, we conclude that it must be possible to depict G like
this:
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H G′

u1

y3

y4

w1

u2

y1

y2

w2

u

v1

v2

x

v

w

Figure 5. Case 5.

If, on the other hand, the set F contains no edges incident with v1 or v2, we are left
with the following in the case of v1:

H G′

u1

t2

y2

w1

t1

v1

y1

w2

u

u2

x

v

v2

w

Figure 6. Case 6.

A similar description would be possible if F did not contain any edges incident with
v2.

Cases 7, 8, 9, and 10: Edges uu1 is in F , while ww1 is not in F

If F contains exactly five elements, we can describe G as such:

40



5. The strong chromatic index of cubic graphs

H G′

u1

t2

y3

y4

z2

w2

t1

y1

y2

z1

u

u2

v1

v2

x

v

w

w1

Figure 7. Case 7.

Alternatively, F contains four elements. When this happens, three possible descriptions
of G arise when u2, w1, or v1 or v2 are not incident to any edge in F . These are listed
respectively as the following figures, with only the case of v1 not being incident to an edge
of F :

H G′

u1

y3

y4

z2

w2

u2

y1

y2

z1

u

v1

v2

x

v

w

w1

Figure 8. Case 8.

H G′

u1

t2

y3

y4

w

t1

y1

y2

u

u2

v1

v2

x

v

Figure 9. Case 9.
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H G′

u1

t2

y2

z2

w2

t1

v1

y1

z1

u

u2

x

v

v2

w

w1

Figure 10. Case 10.

A description similar to that of the case when v1 is not incident to any edge in F would
apply if v2 were the vertex not incident to any edge found in F . The description of G
would be similar to that of Figure 10.

Cases 11 and 12: Edge ww1 is in F , while uu1 is not
When F contains exactly five elements, we arrive at this configuration:

H G′

t3

t4

y3

y4

w1

t1

t2

y1

y2

w2

u
u1

u2

v1

v2

x

v

w

Figure 11. Case 11.

If this is not the case, F must contain only four elements. We can assume that u1 is the
vertex not incident to any edge of F , giving us the following description of G:
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H G′

t2

y3

y4

w1

u1

t1

y1

y2

w2

u

u2

v1

v2

x

v

w

Figure 12. Case 12.

Cases 13, 14, and 15: No edges of F have already been coloured
Two cases here, when |F | = 5, we have Case 13 as pictured here:

H G′

t3

t4

y3

y4

z2

w2

t1

t2

y1

y2

z1

u

u1

u2

v1

v2

x

v

w

w1

Figure 13. Case 13.

If, on the other hand, |F | = 4, we have only two asymmetrical distinct cases remaining:
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H G′

t3

t4

y3

y4

w

t1

t2

y1

y2

u

u1

u2

v1

v2

x

v

Figure 14. Case 14.

H G′

t2

y3

y4

z2

w2

u1

t1

y1

y2

z1

u

u2

v1

v2

x

v

w

w1

Figure 15. Case 15.

Having this exhausted the distinct compositions of the set F , we consider the proof
complete.

5.6 The main result

The process of reducing a general problem to a finite set of distinct problem instances is
no new strategy. To take one example, the strategy was also employed in the proof of
the Four-Colour Theorem contained in [Appel et al., 1989]. While the fifteen cases of
Lemma 5.5.4 may seem cumbersome to manually verify, it is still quite preferable to the
1476 distinct configurations encountered in the proof of the Four-Colour Theorem.

5.6.1 Theorem:
Let G be a graph with ∆(G) ≤ 3. Then a strong edge 10-colouring of G can be produced by
an edge-colouring algorithm that is bigreedy except for 21 edges.

Proof:
If G contains a vertex of degree 1 or 2, Lemmata 5.2.1 and 5.2.2 tells us that we are done.
Hence, assume that every vertex has degree 3.

If G contains a multiple edge pair between two vertices, or indeed a 3-gon, 4-gon, or
5-gon, Lemmata 5.3.1, 5.3.2, 5.3.3, and 5.3.4 again implies that we are done. Hence,
assume that G contains no n-gon with n ≤ 5.

If G contains a small cut, Lemmata 5.4.1, 5.4.2, and 5.4.3 again shows us that we are
done.

Finally, Lemmata 5.5.1 through 5.5.4 establish the convenient fact that only fifteen
distinct descriptions are possible for a cubic graph that is assumed to possess none of the
previously mentioned properties. Hence, we will have proven the result if we can show
how to strongly edge 10-colour the edge set of all fifteen distinct cases. We refer to the
graph construction and notation described throughout Section 5.5, specifically referring to
the cases in the order that they are described in Lemma 5.5.4.
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Case 1:
In this case, the four vertices w, y1, y2, and z1 are all distinct, and so we may construct a
graph Gg = G′ + g, where g is some vertex adjacent to vertices w2, y1, and y2. Then, z1

will have degree 2 in Gg, and by Lemma 5.2.2, we can strongly edge 10-colour Gg. Denote
by a and b the colours assigned to edges gy1 and gy2, respectively. Then, if a is not an
incident edge colour of z1, the colour c distinct from both a and b must be incident to z.

In similar fashion, construct the graph Hg = H + {u, h, uu1, uu2}, and let h be a vertex
adjacent to y3, y4, and y. Again, Hg may be strongly edge 10-coloured because u has
degree 2.

Procedurally rename colours assigned to edges of Hg in such a way as to colour the
edge hy4 with a and hy3 with b. Further, ensure that if a is not an incident edge colour of
z2, then the colour c must be.

Now, a strong edge 10-colouring of G may be obtained by choosing the colour
assignments to Gg and Hg and applying them to the edges of G′ and H + {u, uu1, uu2},
discarding the colours assigned to incident edges of g and h in Gg and Hg, respectively.
We are not done, since we still need to assign the colour a to edges v1y1, v2y4, and xw,
assign the colour b to edges v2y2 and v1y3, and assigning colours greedily to the remaining
edges in the following sequential order:

w1z1, w1z2, ww2, ww1, xu, xv, xv1, xv2.

Every edge e of this sequence will have a colour available at the time of assignment, since
we have either coloured at most nine edges of the set N(e) or because we have repeated
the colour assigned to some edge of N(e) sufficiently often to leave it available. The
algorithm is bigreedy on Gg and Hg, and leaves at most 13 edges uncoloured at the time
of greedy termination.

Throughout the remaining cases, we assume that graphs constructed as Gg and Hg are
both connected. Were they not, G would contain a small cut, in which case we would be
done, as we have already argued.

Case 2:
Assume that the four vertices w2, t1, y1, and z1 are all distinct. Were some pair of these
vertices identical, G would contain a small cut, a contradiction in our assumptions.
Construct a subgraph Hg = H + {u1z2, t2y2}, and strongly edge 10-colour this greedily.
Denote by a and b the colours that occur at z2 in H. Here, b is chosen as some colour that
is not an incident edge colour of u1. Denote by c and d two distinct colours, both distinct
from a and b, such that either b or c is an incident edge colour of t2 in H, while at the
same time either b or d is an incident edge colour of y2 in H.

Construct Gg = G′ + {t1y1}, and strongly edge 10-colour Gg. Name these colours such
that both a and b are incident edge colours of z1, and such that either b or c is an incident
edge colour of t1 in G′, while either b or d is an incident edge colour of y1, also in G′.

Now, we can strongly edge 10-colour G by considering the colourings assigned to H
and G′ and assigning to ux the colour b before greedily colouring the remaining edges in
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the following sequential order:

t2u2, t1u2, uu1, uu2, v2y2, v2y1, vv1, vv2, xv, xw,ww2, w1z1, w1z2, ww1.

Case 3:
Here, we again assume vertices to be distinct in order to avoid constructing a small cut.
These are w2, t1, v2, and z1. Were they not so, we could construct a small cut by considering
t1 = z1.

Construct again Hg, this time by adding some vertex h to H before adding the three
edges hu1, hv1, and hz2. This may be strongly edge 10-coloured greedily, and we choose
colour names such that hu1 is assigned the colour a, while hv1 is assigned the colour b.
Let some colour c be distinct from both a and b, and let c be such that either a or c is an
incident edge colour of t2. Further, let d, another colour distinct from both a, b, and c, be
an incident edge colour of z2 in H.

Construct Gg = G′ + {w2v2} and strongly edge 10-colour Gg greedily. Here, name or
rename colours such that the edge w2v2 has been assigned the colour a, with a distinct
colour b chosen to not be incident to v2 or z1, or indeed any vertices adjacent to z1. Then,
let c be some colour, also distinct from both a and b, such that either a or c is an incident
edge colour of t1, and let d be another colour distinct from both a and c, such that either
a or d is an incident edge colour of z1. By construction, we have that d is distinct from b,
hence we can consider the colourings of H and G′ thus obtained in order to strongly edge
10-colour G. We assign to uu1, ww2, and vv2 the colour a, and assign to vv1 and w1z1 the
colour b. Finally, we greedily colour the remaining edges of G with respect to the following
order:

w1z2, ww1, u2t2, u2t1, uu2, xu, xv, xw.

Case 4:
Again we assume the uniqueness of four vertices, given that we would otherwise obtain a
small cut of G. In this case, we consider t1, y1, y2, w2 as distinct. Construct Hg by adding
the vertex h to H before adding these three edges: hy3, hy4, hw1. Now, strongly edge
10-colour Hg such that hy3 is assigned the colour a, such that hy4 is assigned the colour b
which is distinct from a, and such that c is some colour distinct from both a and b where it
holds that either a or c is an incident edge colour of u1, while a fourth colour, d, is distinct
from c and an incident edge colour of w1 in H.

Construct Gg by adding to G′ the vertex g and the edges gy1, gy2, and gw2. Now,
strongly edge 10-colour Gg and assign or possibly reassign names to the employed colours,
such that gy1 is assigned the colour b, while gy2 is assigned the colour a. Further, name or
possibly rename the employed colours so that c is some colour incident to t1 if and only if
a is not an incident edge colour of t1. Further, let d be a colour distinct from c that is an
incident edge colour of w2 in G′.

We may now colour G by using the colour assignments obtained in the colourings of G′

and H, before assigning to v1y3, v2y2, and xw the colour a, and assigning to v1y1 and v2y4

the colour b. Finally, we are left with edges which we may greedily colour with respect to
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the following order:

ww1, ww2, u2t2, u2t1, uu1, uu1, xu, vv1, vv2, xv.

Case 5:
Here, the vertices u2, y1, y2, w2 are all distinct, so we construct Hg from H by adding the
vertex h and the edges hy3, hy4, and hw1. We can now strongly edge 10-colour Hg such
that hy3 is assigned the colour a, such that hy4 is assigned the colour b, and such that c
is a colour distinct from both a and b that c or a is an incident edge colour of u1. Finally,
denote by d some colour distinct from c and let d be an incident edge colour of w1 in H.

Similarly, construct Gg by adding to G′ the vertex g before adding the three edges
gy1, gy2, and gw2. Here, similarly to the above, we assign the colour b to gy1, the colour a
to gy2, and the colour a or c to an incident edge of u2, with d finally being assigned to w2

in G′. Now, we need only perform the following assignments: assign colour a to v1y3, v2y2,

and xw, colour b to v1y1 and v2y4, before greedily colouring the remaining edges in the
following order:

ww1, ww2, uu1, uu2, xu, vv1, vv2, xv.

Case 6:
The construction of a strong edge 10-colouring of this graph is similar to that of Case 3

with the vertex v interchanged with w.
Case 7:

For this configuration, any number of the following equalities may occur: t1 = y1, t1 =

y2, t1 = z1, y1 = z1, or y2 = z1. Assume without loss of generality that when any two of
the equalities are met, t1 is equal to either y1 or y2, while z1 is equal to the other vertex
among y1 and y2. Then, G′ may also be assumed to take the shape of a path containing
only the vertices t1, w2, and z1 in that order, since G would otherwise contain a small cut.
If any two of these three vertices on the path G′ are one and the same, we would have a
vertex of degree 1, in which case a single colour would suffice to colour G′.

Several symmetrical cases arise, but we simply strongly edge 10-colour one of them.
Construct Hg by adding to H the vertex h and the edges hu1, hy3, and hy4. This may
be strongly edge 10-coloured, which we proceed to do with the following colour names:
Colour a is assigned to hy3, colour b is assigned to hy4, and if either colour is an incident
edge colour of t2, we may assume that only colour a is. Then, let c be some colour distinct
from a and assign c to an incident edge of z2 if a is not already an incident edge colour of
z2. Further, let d be some colour distinct from both a, b, and c, such that d is an incident
edge colour of t2 if a is not.

Now construct Gg from G′ by adding the vertex g to G′ before further adding the edges
gy1, gy2, and gz1 if z1 is distinct from both y1 and y2. Strongly edge 10-colour Gg, choosing
colour names such that b is assigned to gy1 and a is assigned to gy2. Additionally, let d be
some colour distinct from both a and b, such that d is an incident edge colour of t1 in G′ if
a is not. Finally, if z1 is not equal to either t1 or y2, let c be some colour distinct from d that
is an incident edge colour of z1 in G′. If z1 were equal to y1, and d was an incident edge
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colour of z1, then that particular edge would have to be reassigned a colour c, distinct
from both a, b, and d. This would be readily possible since at least four colours would be
available for assignment to any edge incident to a vertex of degree 1. Additionally, if z1

were equal to y1, and z1 were adjacent to t1, we would have constructed a small cut of G,
so we may in the following assume that the edge to which colour d was assigned can be
recoloured without any effect on the edge colour incidence of d on t1.

We can now construct a strong edge 10-colouring of G by taking the colours assigned
to edges of G′ and H, assigning to edges v1y3, v2y2 the colour a, and to edges v2y4, v1y1 the
colour b, before finally assigning colours greedily to the remaining edges in the following
order:

w1z1, w1z2, ww1, ww1, u2t2, u2t1, uu1, uu2, xw, vv1, vv2, xv.

The sequence consists of 17 edges to be coloured after the termination of the bigreedy
algorithm.

Case 8:
We may encounter that z1 equals y1 or y2. We are essentially in a situation identical to
that of Case 4, only where H and G′ have switched places. Since we could allow for t2 to
coincide with y3 or y4 in Case 4, symmetrical arguments tell us that we are done.

Case 9:
This is equivalent to Case 1, where we again must swap the subgraph G′ with the subgraph
H that has had the vertex u and the edges uu1 and uu2 added. In the arguments
establishing the existence of a strong edge 10-colour of the graph in Case 1, we could
allow for t1 to coincide with y1 or y2, but doing so would create a small cut of G, so we
have sufficiently argued in Case 1 for the strong edge 10-colourability of the graphs that
this case contains.

Case 10:
Here, we may observe any of the following equalities: t1 = y1, t1 = z1, and y1 = z1. If
none of the equalities are attained, we have reduced the configuration to that of Case 2

with H and G′ swapped, implying that we are done.

Hence, assume that one of the equalities are attained. Since the first and second
equality result in symmetrical descriptions of graphs, we need only consider the first and
third equality being attained. Assume that t1 = y1. Then we can colour H with a greedy
algorithm to obtain a strong edge 10-colouring. Name the colours assigned to E(H) such
that a and b are incident edge colours of z2, letting c be some colour distinct from both a
and b such that b or c is an incident edge colour of t2.

Now construct Gg = G′ + {v1z1}. Colour Gg greedily to obtain a strong edge 10-
colouring, naming the assigned colours in such a way as to ensure that a and b are incident
edge colours of z1, while b is not an incident edge colour of v1. Then, reassign colours
such that c is an incident edge colour of t1. Assign to the edge xv in G the colour b and
greedily colour the remaining edges in the following order:

vv1, v2y2, vv2, t1v2, t1u2, u2t2, uu1, uu2, ux, xw,ww2, w1z2, w1z1, ww1.
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If, on the other hand, we proceed with the assumption that y1 coincides with z1, we
can greedily colour H and assign colour names to obtain a and b as incident edge colours
of t2, while letting b or c be an incident edge colour of y2. Now, greedily colour G′ with
the edge t1w2 added to obtain a strong edge 10-colouring of this graph. Name or rename
colours to obtain a and b as incident edge colours of t1 in G′, with b being an absent edge
colour of w2. Then, ensure that the incident edge colour of y1 is named c. Finally, we
colour G by considering the colours assigned to edges of G′ and H, assigning the colour b
to xw, before greedily colouring the remaining edges in the following order:

ww2, w1z2, ww1, w1y1, y1v2, v2y2, vv1, vv2, vx, xu, uu1, u2t2, u2t1, uu2.

Case 11:
Here, we must consider one of t1 and t2 as potentially coinciding with one of y1 and y2. If
two pairs both coincide, the subgraph G′ is a path graph, and as such, vertex w2 in G′ will
have degree 2.

Construct Hg by adding to H the vertex h and the edges hy3, hy4, and hw1. Colour Hg

greedily to obtain a strong edge 10-colouring of Hg. Assign to hy3 the colour a, assign to
hy4 the colour b, and denote by c some colour distinct from both a and b that is an incident
edge colour of t4 if a is not. Finally, let d be a colour distinct from c, such that d is an
incident edge colour of w1 in H.

Construct Gg by adding to G′ the vertex g and the edges gy1, gy2, and gw2. Colour Gg

greedily to obtain a strong edge 10-colouring, and name the assigned colours such that gy1

is coloured by b, such that gy2 is coloured by a, and such that c, a colour distinct from both
a and b, is an incident edge colour of t2 in G′ if a is not. Finally, let d be a colour distinct
from c that is an incident edge colour of w2 in G′.

Consider the edge colourings of H and G′ as partial colourings of G, and assign to
edges v1y3, v2y2, and xw the colour a, before assigning to edges v1y1 and v2y4 the colour
b. Finally, colour the remaining edges of G greedily with respect to the following order:

u1t1, u1t3, u2t2, u2t4, uu1, uu2, ww2, ww1, xu, xv, vv1, vv2.

This single construction covers every possible combination of equalities in the vertex pairs
y1, y2 and t1, t2.

Case 12:
We have already argued that this description of G should be strongly edge 10-colourable
in Case 8.

Case 13:
Here we consider the possibilities that t1 or t2 coincide with one of y1, y2, or z1, that z1

coincides with y1 or y2, or the case where several of these equalities occur simultaneously.
If three vertices coincide, we have a small cut of G, so we assume to the contrary that no
three vertices coincide. Then, without loss of generality, we may assume that z1 and t2

are distinct, and argue for this case in a way that confirms the existence of a strong edge
10-colouring of G in any symmetrical case.

We begin by constructing Gg by adding to G′ a vertex g and the edges gw2, gwy1, gy2,
and z1t2. Obtain a strong edge 10-colouring of Gg using a greedy algorithm, and denote
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by a the colour assigned to gy2, denote by b the colour assigned to gy1, and let c and d be
two colours distinct from both a and b such that d is an incident edge colour of z1 in G′ if
a is not, and such that c is an incident edge colour of t2 in G′ if a is not. The colours c and
d may be chosen since both z1 and t2 are vertices of degree 2 in G′, and if one of them has
degree 1 in G′, the edge incident to that vertex of degree 1 can be coloured by at least four
distinct colours. This was argued in the proof of Lemma 5.2.1.

Now construct Hg by adding to H one vertex h and the edges hy3, hy4, and hz2. Obtain
a strong edge 10-colouring of Hg by a greedy algorithm and assign colour names such that
hy3 is assigned the colour a, such that hy4 is assigned the colour b, and such that c is a
colour distinct from both a and b such that a or c is an incident edge colour of t4 in H.
Finally, choose some colour d distinct from c, such that d is an incident edge colour of z2

in H.
A partial edge 10-colouring ofGmay be obtained by considering the colours assigned to

edges of G′ and H, before assigning the colour a to the edges v1y3, v2y2, and xw, assigning
the colour b to the edges v1y1 and v2y4, and finally colouring the remaining edges greedily
with respect to the following order:

w1z1, w1z2, ww2, ww1, u2t2, u2t4, u1t1, u1t3, uu1, uu2, ux, vv1, vv2, xv.

This is the case that incurs the highest number of edges for which our bigreedy algorithm
is excempt. Indeed, after the bigreedy algorithm has terminated, we still need to colour or
recolour 21 edges.

Case 14:
Here, we consider only that t1 or t2 might coincide with y1 or y2. If two vertex pairs
coincide, G′ is a path graph containing only two edges, so we assume that no two vertex
pairs coincide. Without loss of generality, we may assume that the equality thus attained
is t1 = y2. Similar arguments apply to every other possible configuration.

Construct Hg by adding to H a vertex h and the edges ht4, hy3, and hy4. Greedily
obtain a strong edge 10-colouring of Hg, such that colour a is assigned to hy4, such that
colour b is assigned to hy3, and such that c is a colour distinct from both a and b, where c
is an incident edge colour of t3 if a is not. Finally, denote by d some colour distinct from c

that is an incident edge colour of t4 in H.
Now construct Gg by adding to G′ a vertex g and the edges gy1 and gy2. If t2 and y2

do not coincide, add the edge gt2 to G′ to finish the construction of Gg. Obtain a strong
edge 10-colouring of Gg with a greedy algorithm, naming colours such that a is assigned
to gy1, such that b is assigned to gy2, and such that a or c is an incident edge colour of t1
in G′. Finally, ensure that d is an incident edge colour of t2 in G′.

We obtain a strong edge 10-colouring of G by considering the colours assigned to edges
of G′ and H, assigning to v2y4, v1y1, and uu2 the colour a, assigning to v1y3 and v2y2 the
colour b, before finally colouring the remaining edges greedily in the following order:

u2t2, u2t4, u1t1, u1t3, uu1, ux, xw, vv1, vv2, xv.

Case 15:
Here we have to consider the vertex t1 coinciding with y1, y2, or z1, and the vertex z1
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coinciding with y1 or y2. If three such vertices coincide, G contains a small cut, so we
assume that at most two pairs coincide.

Construct Hg by adding to H a vertex h and the edges hy3, hy4, and hz2. Obtain a
strong edge 10-colouring of Hg by a greedy algorithm, naming colours to ensure that
colour a is assigned to hy4, that colour b is assigned to hy3, that c is a colour distinct from
a and b such that a or c is an incident edge colour of t2, and such that d is a colour distinct
from c such that d is an incident edge colour of z2 in H.

Now construct Gg by adding to G the vertex g and the edges gw2, gy1, and gy2. Further,
if t1 does not coincide with z1, add to G′ the edge t1z1 to finish constructing Gg. Obtain
a strong edge 10-colouring of Gg using a greedy algorithm and ensure that colour a is
assigned to gy1, that colour b is assigned to gy2, and that d and c are two colours such that
a or c is an incident edge colour of t1 in G′, while a or d is an incident edge colour of z1 in
G′.

Obtain a strong edge 10-colouring of G by considering the colours assigned to edges of
G′ and H, assigning to edges v1y1, v2y4, and xw the colour a, assigning to edges v1y3 and
v2y2 the colour b, before finally colouring the remaining edges greedily with respect to the
following order:

w1z2, w1z1, ww2, ww1, u2t1, u2t2, uu1, uu2, ux, vv1, vv2, xv

As we have now constructed a strong edge 10-colouring of G for the fifteen possible
descriptions of a connected, cubic graph that contains no n-gon for n ≤ 5, the proof is
finished.

Taking ∆ = 3 in the statement of Conjecture 4.0.4 shows that Theorem 5.6.1 confirms
the conjecture for the case of graphs with ∆(G) = 3.
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CHAPTER 6Potential future efforts

Having confirmed the statement of Conjecture 4.0.4 with ∆(G) = 3, it would be interesting
to see what strategy might confirm the conjecture for ∆(G) = 4, if indeed the conjecture is
even true for ∆(G) = 4. Obviously, we need only find one integer for which the conjectured
bound does not hold to show that the conjecture fails, but we choose to be optimistic in
our speculation, and suggest that a strategy similar to that of [Andersen, 1992] could
prove fruitful in confirming Conjecture 4.0.4. Quite like the fashion in which the author
of that article confirmed the conjecture for ∆(G) = 3, it may be possible to find some
relatively small integer k where, for every integer less than or equal to k, the confirmation
of Conjecture 4.0.4 is tedious and must be handled by individual cases, but for every
integer greater than k, the conjecture would be confirmed by relying on smaller problem
instances.

These smaller problem instances might themselves require considerable work, because,
as we have seen, even the smallest non-trivial case required quite a bit of manual
verification and construction. With recent progress in processing speeds of computers,
it may at that point be prudent to attempt a brute-force electronical approach, if the
problem of confirming Conjecture 4.0.4 for ∆(G) = 4, 5, . . . could be reduced to a finite
set of distinct configurations. Whatever the case, the conjecture remains open at the time
of writing.

There would appear to be some progress on the problem of confirming or denying the
conjectured bound of s′(G) ≤ ∆(X)∆(Y ) on the strong chromatic index of a bipartite
graph G with vertex partition V (G) = X ∪ Y . The result of [Nakprasit, 2008] was
published as recently as 2008. As a measure of progress towards a confirmation of the
general bipartite bound, it is not very different from the work contained in [Andersen,
1992]. Indeed, if we choose again to speculate optimistically, then a confirmation of the
conjecture could come from first confirming the case for ∆(X) = 3, ∆(X) = 4, and so on,
up to some fixed integer k, after which a general solution would build on the previously
established results. We already have confirmation in the case of ∆(X) = 2.
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APPENDIX A
Descriptions of G in Lemma 5.5.4
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Figure 5. Case 5.
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Figure 10. Case 10.
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	Indholdsfortegnelse
	Introduction
	Edge colourings
	Basic edge colouring
	Chromatic index of bipartite graphs
	Vizing's theorem

	Matching and factorisation
	Matchings in graphs
	Factorisations of graphs
	Tutte's 1-factor theorem
	Basic flow theory as a technical tool
	Hall's theorem

	Strong edge colouring
	The strong chromatic index of bipartite graphs
	The strong chromatic index of planar graphs

	The strong chromatic index of cubic graphs
	Preliminaries
	Vertices of degree less than 3
	Graphs containing n-gons with n 5
	Graphs containing edge cuts of cardinality less than 4
	Graphs containing no n-gons with n 5
	The main result

	Potential future efforts
	Bibliography
	Appendiks
	Descriptions of G in Lemma 5.5.4

