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Introduction

On 28th of July 2010, the United Nations General Assembly accepted Resolution
64/292 (United Nations 2010), whereas the basic right to clean and accessible water
and sanitation is not arguable in the fulfillment of the other human rights. There-
fore they called upon the member states and international organizations to provide
sufficial funds, capacity building and technology to all, but mainly developing,
countries to cover regions where these are not accessible. This resolution was
made bearing in mind the United Nations Millennium Declaration (2000) whereas
the ratio of population suffering the inaccessity of clean water and sanitation is to
be halved by 2015.

Although the Declaration reached its goal as reported in the Progress on sani-
tation and drinking water (WHO/UNICEF 2015), new problems have surfaced. As
of 2015, the poor people have the least access to clean water and sanitary facilities,
while they were the target of the Resolution. That neccessitates cheaper and more
widely accessible methods of wastewater cleaning and sanitation techniques while
utilising environmentally sustainable solutions.

As for the wastewater technologies, many different methods are known and
commercialized. The most widely used is the conventional activated sludge pro-
cess (CAS) (Frost & Sullivan 2016), which is able to function with relatively small
operational costs. Despite its big share in wastewater treatment, new methods are
raising to take its place, with the membrane bioreactors (briefly, MBR systems)
showing the biggest growth (Research and Markets 2015, Frost & Sullivan 2016).
MBR systems offer higher quality effluent with smaller reactor volume, smaller
environmental burden, and less sludge production without the need of secondary
clarification or tertiary steps (as sand filtration) but at elevated installation and op-
erational costs (Melin et al. 2006). These systems also offer removal of bacteria in
the case of microfiltration (MF), and most viruses in case of ultrafiltration (UF) by
size exclusion (Melin et al. 2006).

The MBR configuration can either consist of submerged membranes or mem-
branes outside of the bioreactor, on an external circulation as seen on Fig. 1.1. In
both cases, influent must be pre-treated in order to prevent damages and clogging
of membranes by non-soluble solids. That may be done by sedimentation and
by meshes with small grid distance, consequently. The membranes are installed
within the bioreactor (submerged MBR) or are placed externally (side-stream MBR
configuration). Pressure difference makes the contaminated water flow through
the membranes and produce permeate. Another important factor in an MBR sys-
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Introduction

Figure 1.1: The two possible configuration of MBR systems: a) submerged MBR, b) side-stream MBR
configuration. (Melin et al. 2006)

tem is the aeration which is done to provide oxygen to the biomass inside the
bioreactor. In submerged MBR configuration it also scours the membrane surfaces
thus preventing build-up of dense cake. Based on the membrane setup, further
classification is possible to dead-end and cross-flow filtration. In dead-end filtra-
tion, water flow is orthogonal to the membrane surface, while in cross-flow it is
tangential.The latter gained popularity primarily because of the slower cake for-
mation as solids collected on membrane surface are washed away with unfiltered
water (Melin et al. 2006). In dead-end filtration, the cake can be removed by other
physical means, mostly by backflushing.

Fouling of the MBR system is one of the main causes of its elevated operational
and maintenance costs (Drews 2010). Resistance originating from cake formation
is often referred to as reversible resistance. On a longer term, materials adsorbed
into the membrane pores increase the system’s resistance to flow, thus maintenance
cleanings are inevitable. That kind of fouling is coined as residual fouling which
can be removed by chemically enhanced backflushing (maintenance cleanings). Of
the same origin, some adsorbed materials remain even after maintenance cleanings,
but can be removed by various types of chemical cleanings. This type of fouling is
referred to as irreversible fouling. Finally, some contaminants can not be removed
by any means from the system, increasing its resistance to flow permanently. This
is referred to as irrecoverable fouling, and determines the overall lifetime of the
membrane.

Materials causing fouling in the MBR system can be classified into three main
categories: inorganic, organic, and biological contaminants (Wang et al. 2014). Inor-
ganic fouling is caused by metal oxides and salts. Organic fouling consists of many
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kinds of carbon-based substances without regard of origin. Organic contaminants
of antropogenic origin can be for example grease, oil, and surfactants, but also
residues of medicaments’ active ingredients. Organic contaminants of biological
origin can be proteins, polysaccharides, and humic substances. Biofouling is based
on the formation of compounds (biofilms) and metabolysm of microorganisms on
the membrane surface.

In spite of the ongoing heavy research on membrane bioreactors and the amount
of experimental data collected, complete understanding and control of processes
inside an MBR system remain elusive. Currently, plant design and operation is
mainly based on empirical methods rather than theoretical models (Drews 2010).
Application of such methods prevents direct comparison between different setups,
and makes improvements hard to extend to other configurations. Therefore im-
provements on the current theoretical view are in great demand. Better under-
standing of short-term and long-term processes is crucial in reduction of installa-
tion, maintenance, and operational costs.

While reversible fouling is being actively researched (Hu et al. 2017, Yang et al.
2017, Zouboulis et al. 2017), irreversible and irrecoverable fouling is a less preferred
topic of articles. That may be attributed due to their slow increase over time over-
shadowed by reversible fouling, thus data about their value at a given time is not
readily available for analysis(Huyskens et al. 2008). More accurate understanding
of how the resistance increases over time, especially due to irreversible resistance
is therefore could prove essential in further development.

This thesis tackles the problem of prediction of irreversible resistance over time
in MBR systems, aiming for a better theoretical understanding of such facilities
with support of practical data. This is done by analysis of data from a pilot-scale
submerged MBR setup with constant pressure applied.
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Data processing

2.1 Data source

Data have been collected by the contribution of Renseanlaeg Vest, Aalborg, which
utilized a submerged MBR setup with constant pressure. The original file con-
sisted of the following data columns: time (Unix time, seconds), flow rate ( J )
[l/h], concentration of foulants in contaminated water ( c ) [mg/dm3], temperature
of contaminated water ( T ) [◦C], oxygen concentration [mg/l], denitrification tank
level [cm], and water column height level [cm]. Using this data, the density (Tanaka
et al. 2001) and dynamic viscosity (Kestin et al. 1978) of contaminated water have
been calculated, disregarding the effect of dissolved contaminants. The transmem-
brane pressure ( TMP ) [Pa] was determined from the water column height level
as seen in eq. 2.1.

TMP = h ∗ g ∗ ρ (2.1)

The total resistance to flow (Rtot) was also calculated for each data point, using
the Darcy law [source], as seen in eq. 2.2.

Rtot =
TMP
µ ∗ J

(2.2)

2.2 Analysis and filtering of acquired data

In order to examine the irreversible and irrecoverable resistance changes, data must
be collected from a long time interval as their absolute value changes slowly over
time (Huyskens et al. 2008). Thus the monitoring of the total resistance is required
for successful modeling. As seen on Fig. 2.1, the Rtot(t) function on a big scale
shows no apprehensible change on long term, the data looks fuzzy and random.

That prevents the direct usage of data in further analysis as fitting of any model
on this data set would either show really wide error intervals or would not even
converge. Looking into detail on Fig. 2.2, the individual filtering-flushing cycles
appear where resistance changes periodically which highlights part of the problem:
the backflush and the initial part of a cycle is not part of the current investigation
as they do not depend on the fouling of the membrane.

A self-made analytical program was utilized in order to filter out these intervals
and the statistical noise of data. The theoretical background used in the program
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2.2. Analysis and filtering of acquired data Data processing

Figure 2.1: The entirety of data, approximately 1 year’s worth of data points.

Figure 2.2: The total resistance of the MBR system over time, a small chunk (2 hours 10 minutes) of
raw data.
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Data processing 2.3. The statistical-analytical program

is detailed in section 2.3. Finally, data of interest have been narrowed down to
smaller segments where the resistance of the membrane increased more or less
steadily. Unfortunately, in certain cases, long intervals of data had to be discarded
because of possible instrumental failure or interventions. The remaining parts have
also been separated as dictated by the dates of chemical cleaning of filters. These
are handled as separate data sets during the analysis.

2.3 The statistical-analytical program

The main purpose of the current program was to reduce noise, and to remove ir-
revelant data like backflush from the main data body. The properties of this data
set had to be taken into account while developing the statistical method: the aver-
age increases or decreases as time passes, and a single MBR cycle has considerable
changes in flow rate (and this way, resistance) but it does not possess many data
points. While the first problem can be addressed by a moving average of ’n’ values,
the latter one requires this moving average to not use too high ’n’. This problem
is unique, and required special application of statistical tools. It was solved by
using ’n + 1’ moving averages, where each average was calculated using ’n’ values
around the investigated one without including it as shown in the following exam-
ple. That was done to prevent shifting of average towards the examined value.

First, ’n’ data values was taken, before and after the investigated value:

d1, d2, d3, . . . dn, D, dn+1, dn+2, . . . d2n

where dx denotes a data value, and D denotes the investigated value. Then
’n + 1’ number of averages was defined:

〈d1, n〉 =
d1 + d2 + d3 + . . . + dn

n
,

〈d2, n〉 =
d2 + d3 + d4 + . . . + dn + dn+1

n
,

and so on until 〈dn+1, n〉:

〈dn+1, n〉 =
dn+1 + dn+2 + dn+3 + . . . + d2n

n

The respective standard deviations for each average were calculated:

SDk,n+1 =

√
∑i < k+n

i=k (di − 〈di,n〉)2

n− 1
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2.3. The statistical-analytical program Data processing

Figure 2.3: Comparison of raw (red) and filtered data (green). Most of raw data was cropped.

where k∈ R | 0 < k < n + 1.
In case the value of interest was within a certain ’m’ (m∈ R | m > 0) times

standard deviation of at least one of the respective averages, and that average
does not include any negative value, it was be regarded as a representative value
of the cycle. Filtering was done based on the total resistance values. The value
’m = 0.0001’ and ’n = 6’ was chosen to leave about 0.02% of the original data, thus
cutting off outliers but leaving enough for statistical purposes and fitting. As seen
on Fig. 2.3, with these settings, the data is considerably smoother and contain a
negligible amount of outliers. The effect of changing the ’m’ while keeping the ’n’
constant, and vica versa, can be seen on Fig. 2.4.
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Data processing 2.3. The statistical-analytical program

Figure 2.4: Filtering based on total membrane resistance using different filtering parameters. The ’n’
length of the averaging interval can be varied but the filtering efficiency does not show significant
change while 1 < n < 19. Meanwhile, ’m’ is roughly linearly proportional to amount of filtered data.
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Exponential models

3.1 First order exponential model

The need for modeling of resistance from adsorbed material in an MBR system was
present since Darcy’s law was established. Early examples (Aimar 1987, Carrère
et al. 2001) utilized an exponential function to simulate the base resistance change
over time. That method is also applied in later articles (Juang et al. 2008a,b). There-
fore using this model is a natural choice as a first approach.

Based on the Darcy’s law, the resistance to flow can be expressed:

R =
TMP
µ ∗ J

(3.1)

and according to (Huyskens et al. 2008), R can be further expressed as:

R = Rm + Rrev + Rirrev + Rirrec . . . (3.2)

As detailed by (Huyskens et al. 2008), the different resistance types may be
regarded as independent from eachother. That allows the development of different
models for each of the different resistance types.

Irreversible and irrecoverable fouling is based on adsorption of foulants to
membrane pores (Judd & Simon 2015). Resistance from adsorption onto the mem-
brane surface was found to be time dependant (Aimar 1987). The same can be
concluded about resistance originating from absorption of contaminants into the
membrane volume if the particle size is negligible compared to the diameter of
pores. In either case, the resulting resistance decrease from foulants was described
by the following equation (based on the Langmuir model):

Ra = Ra,ss ∗ (1− exp (−b ∗ t)) (3.3)

where Ra,ss (maximal resistance from adsorption) and b (membrane and feed
solution dependent constant) are fitted parameters. In the following section, the
fitting is based on that equation, disregarding other parameters (like temperature,
concentration of foulants, etc).

13



3.2. Fitting of first order exponential model to available data Exponential models

3.2 Fitting of first order exponential model to available data

Based on eq. 3.3, fitting was done on three different sections of data. Transforming
the equation to a better suited form for fitting:

y = Ra,ss ∗ (1− exp (−b ∗ x)) (3.4)

where y denotes the resistance of the system at a given time, and x is the time
stamp for a given resistance. To reduce error of fitting, the resistance and time
values were reduced both to start from zero and to not reach excessively high
values.

In order to model the ability to predict the date where a certain resistance
value is reached in a real MBR setup, the model based on eq. 3.4 was fitted (using
Matlab) to the first resistance values available in the data set. In each step, a new
data point, following the previous ones in terms of time, was added to the initial
cluster of data points, and a new model was fitted. Repeating this procedure led
to a set of fitted parameters which were logged in a file. At the same time, a
limiting resistance value was chosen by hand (Rlim), whose time stamp (tlim) was
also noted. That resistance value was regarded as the maximal resistance that
very MBR system can reach (from this type of fouling) before turning inefficient in
terms of operational costs. Using the previously fitted parameters and eq. 3.3, the
time needed to reach the given resistance value was calculated (tpr). Comparing
this procedurally predicted time and the tR can give a feedback on usefulness
of this model. Unfortunately, despite fitting this function successfully on data
in each and every case, actual value for tpr was returned by the fitted functions
only in exceptional cases (0-7 in different data sets). Despite this, the goodness of
fit indicators do not show particularly bad fitting; the R-square varies between 0.8
and 0.99 throughout all data sets as seen on Fig. 3.1. Other goodness of fit statistics
were also calculated for later comparison (see section 3.6).

As the exponential model is far from being able to predict future resistance
values reliably in an industrial setup, the necessity of another, better model was
realized.

14



Exponential models 3.3. Stretched exponential model

Figure 3.1: R-square values gathered from fitting of first order exponential model to growing data
sets. Differently colored dots denominate different data sets.

3.3 Stretched exponential model

As known from colloidics and nanoscience, all liquids and solids seek to minimize
their own surface energy. In the case of liquids, this is done by spontaneously
changing their shape while solids are unable to do so. That leads to adsorption
of other materials on the surface of the latter. In equilibrial conditions, Langmuir
model is a reliable description of this process, but as seen in the previous section, it
can not be utilized in this case. As detailed in (Snopok 2014), when something other
than the actual adsorption of the material on a surface is the time-determining step,
non-exponential kinetics may occur. Based on his model, eq. 3.3 must be corrected
by addition of another fitted variable: an exponent inside the exponential function.

Ra = Ra,ss ∗
(

1− exp
(
− (b ∗ t)β

))
(3.5)

The notations are the same as in 3.3. The value of β may change according to
the diffusion speed of adsorbeants; at β = 1, the diffusion remains normal, while
lower values show an anomalous case of subdiffusion (Ramsden 1992, Snopok
2014). Higher values of β give feedback about superdiffusion, but this is the rarer
case (Snopok 2014).

3.4 Fitting of stretched exponential model

Similarly to section 3.2, eq. 3.5 is written up with the notations used for fitting:

y = Ra,ss ∗
(

1− exp
(
− (b ∗ x)β

))
(3.6)

where y denotes the resistance from sorption, x denotes time since the start
of the cycle, and Ra,ss, b, β denotes fitted parameters. The procedure was the

15



3.4. Fitting of stretched exponential model Exponential models

Figure 3.2: Comparison of predictive accuracy of the stretched exponential model with three different
data sets (different colors). The three differently colored horizontal lines denote the corresponding
tpr that should be approached by the estimation values of the same color.

same as in section 3.2; numerous models were fitted to model a real MBR setup.
Constriction of beginning values of parameters for fitting was inevitable in this
session as certain value pairs of b and d are not apprehensible and the fitting of the
function stops prematurely.

This time, the functions fitted did return values for tpr, although often long
time intervals are missing. Comparison of tlim and tpr can be seen on Fig. 3.2.

Values returned form this function still do not allow early prediction of the end
of the filtering process, but tend towards the actual tlim. Comparing the goodness
of fit statistics with those from the fitting of first order exponential, this model
gives a better description of data over time as expected. Typical R-square values
are above 0.97, with the exception of the first data set where they are between 0.85
– 0.90. Degrees of freedom adjusted R-square shows that introduction of a new
fitted parameter is justifiable, as seen on Fig. 3.3.

Furthermore, the sum of squares due to error (SSE) and the root mean squared
error (RMSE) values from this model are also lower on a long term than those
from the first order exponential model confirming the better adaptibility of the
model on the current MBR setup’s changing environment. Despite a better fit, that
model is also unable to properly model the resistance changes to help prediction
of future trends; also it is not able to accurately predict the end time point of a
cycle even when getting close to it, rendering this model also of limited use. On
another note, both exponential models assume the existance of one single Ra,ss

value, while this is subject to environmental changes. These models may be good
for modeling of resistance from sorption in small or laboratory scale where the
temperature, concentration of foulants, quality of foulants, TMP, etc. is controlled
carefully, but lose their efficiency in an industrial setup. A model is needed where
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Exponential models 3.4. Fitting of stretched exponential model

Figure 3.3: Comparison of the two exponential models using degrees of freedom adjusted R-square
values. At start, almost no difference can be observed between the two functions, but later the
stretched exponential model clearly has a better performance.

these parameters are also taken into account, thus negating this problem.
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The adsorption-based non-exponential
model

Although the first order exponential and the stretched exponential model for the
resistance from sorption offers a certain degree of versatility, it is subject to changes
in environmental values in the MBR system thus losing its capability to predict
resistance changes accurately. These models also do not give much hindsight as to
what is happening during membrane fouling.

Based on the Darcy-Weisbach (Sharp et al. 2002) and Darcy’s law (Jørgensen
et al. 2012), development of a new model was attempted to predict the changes
in membrane resistance over time. This model, based on adsorption inside pores,
takes into account multiple parameters possibly varying over time, such as temper-
ature, flow rate, transmembrane pressure, and concentration of foulants. It is pre-
sumed that the diameter of particles fouling the membrane is neglegible compared
to the pore diameter (which severly limits applications). Complete and partial pore
blocking is dismissed.

First of all, the adsorbed mass of foulants over time can be defined as:

mad =
∫ t

0
rads dt (4.1)

where a possible definition for rads:

rads = J ∗ (cin − cout) (4.2)

Adsorption of foulants results in decreased pore diameter; if the adsorption is
consistent throughout the pore walls and pores tend to have the same approximate
diameter:

〈Dcs〉 =
(

1− mad

mcap

)1/2

∗ 〈D〉 (4.3)

The latter assumption was based on the phenomenon of the balanced fouling of
pores described Yoon (2015). Pore shapes were presumed to be roughly round. A
direct link between adsorbed mass of foulants and pore diameter was presumed by
the assumption of homogeneous adsorption of contaminants of different quality on
the pore walls, their negligible size compared to the pore diameter, and the density
of adsorbed foulants being constant. In this case, the volume of the adsorbed layer
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The adsorption-based non-exponential model

is linearly proportional to the mass of it, without partial or complete blocking of
the pore by any particle. If the pore is regarded as a cylinder, the sludge inside
it will be shaped as a coaxial cylinder. The volume of such hollow shape can be
described as the following:

Vad =
L ∗ π

4
∗
(
〈D〉2 − 〈Dcs〉2

)
(4.4)

The overall volume of the pore:

Vlim =
L ∗ π

4
∗ 〈D〉2 (4.5)

Their ratio:

Vad

Vlim
=

(
〈D〉2 − 〈Dcs〉2

)
〈D〉2

= 1− 〈Dcs〉2

〈D〉2
(4.6)

Rearranging to express Dcs:

〈Dcs〉 =
(

1− Vad

Vcap

)1/2

∗ 〈D〉 (4.7)

As the density of the of the adsorbed foulants remain constant, eq. 4.7 and eq.
4.3 is equivalent.

According to the Darcy-Weisbach law, the following pressure loss appears for
each pore as the contaminated water flows through it:

pp

L
= fD ∗

ρ

2
∗
〈
vp
〉2

〈Dcs〉
(4.8)

or, as in the current notations:

TMP
Am ∗ α ∗ L

= fD ∗
ρ

2
∗ J2

(Am ∗ α)2 ∗ π2∗〈Dcs〉4
42 ∗ 〈Dcs〉

(4.9)

which shows:

TMP =
8 ∗ f D ∗ ρ ∗ L ∗ J2

Am ∗ α ∗ π2 ∗ 〈Dcs〉5
(4.10)

After rearrangement of eq. 4.10 in order to get J, in case of a TMP-constant
setup:

J =

√
TMP ∗ Am ∗ α ∗ π2 ∗ 〈Dcs〉5

8 ∗ fD ∗ ρ ∗ L
(4.11)
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Substitution of eq. 4.3 into eq. 4.11:

J =

√√√√√TMP ∗ Am ∗ α ∗ π2 ∗
[(

1− mad
mcap

)1/2
∗ 〈D〉

]5

8 ∗ fD ∗ ρ ∗ L
(4.12)

J =

(
TMP ∗ Am ∗ α ∗ π2 ∗ 〈D〉5

8 ∗ fD ∗ ρ ∗ L

)1/2

∗
(

1− mad

mcap

)5/4

(4.13)

The Darcy’s law can be utilized to calculate the membrane resistance from the
flow rate:

R =
TMP
µ ∗ J

(4.14)

Using eq. 4.13:

R =
TMP

µ ∗
(

TMP∗Am∗α∗π2∗〈D〉5
8∗ fD∗ρ∗L

)1/2 ∗
(

1− mad

mcap

)−5/4

(4.15)

or, in its rearranged form:

R =

(
fD ∗ ρ ∗ TMP

µ2 ∗ C
)1/2

∗ 1

(1− a)5/4 (4.16)

where

C =
8 ∗ L

Am ∗ α ∗ π2 ∗ 〈D〉5
(4.17)

is a membrane-dependent constant, and

a =
mad(t)
mcap

=

∫ t
0 rads dt

mcap
=
∫ t

0

rads

mcap
dt =

∫ t

0
r f dt (4.18)

is the ratio of the adsorbed material inside the membrane pores and the overall
adsorbant capacity, both in terms of mass. It can also be interpreted as the integral
of the fouling rate over time.

On a side note, at t = 0, according to eq. 4.18, a0 = 0, and the second term of eq.
4.16 is removed; thus an approximation to the resistance of the virgin membrane
is given in an MBR system with constant TMP.
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4.1 Prediction of tpr

According to eq. 4.16, the resistance of an MBR system can be calculated if a
handful of other variables are known. If R0 denotes the resistance of the membrane
at t0 = 0, the following can be shown based on eq. 4.16

R0

R1
=

(
fD,0 ∗ ρ0 ∗ TMP0 ∗ µ2

1

fD,1 ∗ ρ1 ∗ TMP1 ∗ µ2
0

)1/2

∗ (1− a1)
5/4

(1− a0)
5/4 (4.19)

At t0 = 0, the adsorption of contaminants have not been started, thus rendering
mad (t0) = 0. This way, a0 = 0 according to eq. 4.18, and the following can be
denoted:

R0

R1
=

(
fD,0 ∗ ρ0 ∗ TMP0 ∗ µ2

1

fD,1 ∗ ρ1 ∗ TMP1 ∗ µ2
0

)1/2

∗ (1− a1)
5/4 (4.20)

In a real MBR setup, the resistances are monitored constantly, as this is the eas-
iest measure of how the filtering process is progressing. Rearranging to calculate
a1:

a1 = 1− 5
4

√
R2

0 ∗ fD,1 ∗ ρ1 ∗ TMP1 ∗ µ2
0

R2
1 ∗ fD,0 ∗ ρ0 ∗ TMP0 ∗ µ2

1
(4.21)

As seen in eq. 4.21, all variables can be monitored in the MBR system and a1

can be calculated using this approach. This process can be reversed with an Rlim
resistance, where Rlim is the limit of cost-efficient operation of a given MBR system.
Using R0, the corresponding alim can also be determined:

alim = 1− 5
4

√
R2

0 ∗ fD,lim ∗ ρlim ∗ TMPlim ∗ µ2
0

R2
lim ∗ fD,0 ∗ ρ0 ∗ TMP0 ∗ µ2

lim
(4.22)

The environmental variables fD,lim, ρlim, µlim may be assumed to stay constant
after their last measured value. As for TMPlim, in constant pressure setup, it should
remain constant throughout the whole process.

At the same time, using eq. 4.18, ax can also be expressed as:

alim =
∫ tlim

0
r f (t)dt =

∫ tlim

t1

r f (t)dt +
∫ t1

0
r f (t)dt (4.23)

By definition in eq. 4.18: ∫ t1

0
r f (t)dt = a1 (4.24)

Expressing the unknown part of the integral:
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∫ tlim

t1

r f (t) dt = alim − a1 (4.25)

As the value of the integral can be calculated, the only question that remains
is the value of tlim at which the Rlim is reached by the MBR system. This can only
be resolved by the precise estimation of r f after the t1 time. The efficiency of this
prediction effects the difference between the tpr foretold by this model and the
actual tlim at which Rlim is reached. However, an approximation of r f is needed to
further advance.

As defined by eq. 4.18, the r f can be determined with rads and mcap. By defini-
tion, mcap is constant, while rads depends on the overall flux through the membrane
pores and the concentration of contaminants entering the membrane with this wa-
ter (eq. 4.2). But the calculation rads is problematic as it is dependent on the flow
rate through the membrane pores and the concentration of contaminants entering
the membrane with this water (eq. 4.2). As shown in eq. 4.13, the flux depends
from a handful of other variables; and the concentration of contaminants enter-
ing the membrane is effected by the diameter of pores and foulants as a result of
size exclusion (Zhang et al. 2016). While it is possible to incorporate these effects
in an improved theoretical approach, the measurements needed for such theory
requires costly instruments. At the same time, for some environmental variables
such as the concentration of contaminants in different size ranges in the same sam-
ple, completing measurements could be impossible in the strict time limits dictated
by a practical aspect. Therefore direct monitoring and calculation of r f could also
prove elusive in not controlled experiments. Furthermore, the inclusion of multi-
ple different conditions make possible applications narrow for this model. Some
effects, like complete and partial blocking of pores by particles is completely dis-
missed. While these may also be included in the theory, measurement of accurate
concentration of particles in different size ranges, in the same solution, remains
a problem, as mentioned above. That renders further theoretical improvements
hardly useful in the current conditions.

Using purely theoretical models did not prove successful: they have proven to
be either too simple to be able to model such a complicated system as the MBR, or
became too complicated to be used in a not precisely controlled, industrial envi-
ronment. In the following section, an effort is made to create an empirical method
whose sole purpose is to predict when will such a system reach a certain prede-
fined resistance value.
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Empirical model

As the theoretical models did not prove to be successful or practically plausible so-
lutions in the current situation, a simple empirical method was developed instead.
The key was simplicity: as the only task is to predict how much time is needed
to reach a predefined resistance, no environmental variables must be taken into
account. The rate of resistance increase over a long time period can be defined as:

rinc =
R− R0

t− t0
(5.1)

The future rate of resistance increase is not known, but for the sake of simplicity,
its value is regarded to be constant for the rest of the filtering process. This rate
can be used to approximate how much time is needed to reach the Rlim from the
current resistance:

tpr =
Rlim − R

rinc
+ t (5.2)

Despite its apparent overly simple fashion, the method seems to work really
well even on the most varying data. First, every single data point has an assigned
tpr, unlike the exponential models. Moreover, these are not prone to change as
abruptly as the exponential models after an initial time period has passed, as seen
on Fig. 5.1.

Figure 5.1: Estimated tpr values returned by the empirical method. Differently colored dots denom-
inate different data sets.
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Based on the three data sets, the following was found: despite not predicting
the endtime immediately well, the accuracy improves over time, its deviation from
tlim decreasing to 5-6% of it by the 75% of the time passed 5.1. In a practical
sense, date of necessary intervention was estimated 10-12 days prior with ±2 days
accuracy in a 42 days long cycle. Also worth noting that this prediction usually
underestimates the time still needed, which may also help to further clarify the
exact date.

Although promising, further investigation of this method with many other data
sets with different MBR setups is unavoidable to certify its usefulness and give a
better overview on the accuracy of prediction in different situations. Even in such
cases, the results can not be compared between different plants. At this point, there
is neither a reliable and clear way to statistically tell when predictions are accurate
enough to base off planning of later interventions in the MBR system, nor is there
enough data sets for such an investigation.

The main advantages of this method are its speed and ease of use. As only a
single mathematical operation is done, the result is returned in matters of millisec-
onds, while curve fitting may take 1-30 seconds, depending on data set size and
complexity of the function. While this is not significant in live screening where the
speed of data acquisition is slower than that of regression analysis, analysis of ear-
lier data sets may take much more time even if automatized. Fitting of theoretical
models may also need further data processing aside from data filtering, may need
manual setting of initial values, and in case of exponential models, may not even
return any plausible results. The current method is robust: it is not dependent on
the actual MBR system setup, and with each data point, it will always return a new
value for tpr. It also works procedurally: when a new resistance value is accessible,
it generates a new tpr without taking into account the previous values. The latter
negates the distorting effect of outliers. Finally, as no variables are used other than
the resistance to flow, versatile application is possible without the need to install
additional instruments othen than those measuring the flow rate and TMP in the
system. The main drawback of the method is its empirical base: as an empiri-
cal method, it does not take other environmental changes into account, and any
abrupt artifical interventions into the system’s workings or natural occurrances in
the MBR system like abrupt temperature, contaminant concentration, etc. changes
may offset the prediction efficiency for a while significantly. As such, it takes time
for this model to adapt to sudden interruptions which decreases this method’s
value.
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Conclusion

The current thesis investigated multiple models to simulate the resistance changes
in an MBR system. That was done in order to predict the time left until a limiting
value of resistance is reached. Data was taken from a submerged membrane biore-
actor, and data filtration to remove outliers and not relevant data was based on
standard deviation from the moving average of data points. Variables who play a
limiting role in filtering efficiency were set to leave about 0.02% of data points after
filtering in order to return enough, but not too much data for fitting. Testing of
possible models consisted of a simulation of a real MBR system setup, where data
set size increased over time, and so did amount of available data for fitting. The
goal of model fitting was to predict how much time must pass until the resistance
from sorption in the MBR system reach a predetermined value. Model usefulness
was measured by accuracy of prediction.

First, a first order exponential model was investigated which is a commonly
used method to describe the resistance originating from sorption into and onto the
membrane. Despite giving a good description of data, the model was unusable to
predict future resistance values as its limiting value rarely reached the predeter-
mined one, thus the model mostly did not return any value to examine.

A stretched exponential increase was also investigated with the same condi-
tions. The model described data better according to goodness of fit indicators, and
also returned data for analysis, but the predictions were not accurate, sometimes
still did not have any result, and were prone to change rapidly.

That lead to development of a new detailed model, taking all environmental
factors into account in the prediction process. The model efficiency was not evalu-
ated because of unavailability of certain type data for the calculations in the used
data sets. Those data types also require measurements that are currently not feasi-
ble with current the analytical equipment. It has been deduced that while simple
models can easily describe data, their predictive value is low; and the attempted
description with a more sophisticated theory require too complex measurements
for its input data. Thus these model’s application may be severely limited in not
controlled situations.

Finally, an empirical method was applied where the time left until reaching
given resistance value is calculated by using the long term average increase in re-
sistance. This method was much more exact and robust than all previous ones
in the examined data sets. All data points had an assigned predicted value. In
all data sets, at 75% of time passed (where 100% is the time to be predicted) the
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returned values are within the ±5% error bound of the endpoint. Applying this
model proved to be easier and much less time consuming than fitting of either
exponential models, allowing scrutiny of multiple data sets in a matter of a few
seconds. While the small number and the variety of data sets did not allow more
in-detail analysis of the predictive value of this model, it seems more useful in in-
dustrial environments to predict future dates of necessary interventions, compared
to previously used models. A serious drawback of the procedure is its empirical
base. As such, sudden changes iniate only belated answer using this method, and
do not give a feedback about the nature of the problem occurred.

28



Further perspectives

The predictive capabilities of different theoretical models and an empirical method
in terms of long term resistance increase in an MBR system was investigated in this
thesis. While many short term effects also influence the resistance, these were out
of the scope of this project. Improvement on existing models of long term fouling
is necessary in order to increase efficiency of MBR systems to which this thesis can
hopefully contribute.

A generic problem faced in fitting was the shift experienced with the value of
the steady-state value of resistance from sorption. In order to give a better compar-
ison of models used and increase these model’s accuracy, determining this constant
is necessary, but not part of the current thesis. Currently, the only procedure for
estimation is to fit the function discussed in section 3.1, while not much hindsight
is given about the factors influencing this value.

According to the limited amount of data sets provided, it was found that the
resistance increase from sorption can be described better by a stretched exponential
model than the currently used first order exponential model. Such a result suggests
the existance of strange kinetics (Snopok 2014), where the speed of contaminant
sorption into and onto the membrane changes over time. Further comparison of
these two models may be important as the value of β (see 3.3) gives feedback about
the rate-determinant step in the sorption process.

An attempt was made to create a new theoretical model based on adsorption of
contaminants inside the pores of the membrane. While the model was not applied
to practical data, and does not include partial and complete blocking of pores, it
may serve as a base for further research. Under the appropriate conditions the
theory may be put under test.

Finally, an empirical method was found to be able to predict the time needed to
reach a predetermined resistance value. Unfortunately, its empirical base does not
allow direct comparison between different MBR setups and does not give a hint
about factors determining the rate of long term resistance increase. As such, that
method remains sensible to sudden changes in MBR system, as its accuracy drops
in such cases. Development may be undergone in this direction too; in such case a
better estimation to resistance increase must be given in order to make an empirical
method react faster to the altered environment and keep its accuracy high.
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