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Personalized Navigation:
Context-Based Preference Mining Using TensorFlow

Popular navigation systems such as Google Maps, Bing Maps, and Garmin can
provide impersonal navigation suggestions based on general cost functions e.g. path
or most economical path. In this paper, we explore whether a driver can benefit
from getting more personalized navigation suggestions. To explore the possibilities
of personalized navigation we construct and present a framework to find personal
preferences for routing and adjust pathfinding costs of new routes accordingly. The
project is a continuation of our previous work in this area.
The framework infers a driver’s preferences based on their previously driven trips.

Instead of having the driver manually define his preferences we automatically detect
driving preferences using road features from OpenStreetMap and speed information
provided by Aalborg University. We consider features such as distance, duration,
traffic lights, tunnels, and bridges. The preference towards each feature is found by
comparing the driven route to alternative routes between the same start and end
location.
To mitigate scalability issues with the number of system users, we propose a

solution that approximates a fixed number of isolated preferences that each trip is
then assigned to. As the assignment of trips to a preference might alter the preference
itself, we implement an iterative clustering-based expectation-maximization approach
to find the optimal isolated preferences. Using the isolated preferences, our framework
learns to identify the isolated preference to use in a new setting based on its context.
To validate the applicability of our framework, we perform several experiments

based on synthetic data before testing it with real-world data. We validate that the
framework can correctly identify the true preference of a driver, given that it exists.
We also test how much data is needed to get within acceptable precision of the true
preference. Finally, we test the method on a large real-world dataset and compare
the results to two baseline methods, shortest and fastest route, and find that we only
slightly outperform the fastest route.



Preface

This paper is based on previous work by the same authors which was in collaboration
with Lynge Poulsgaard, Philip Sørensen, and Henrik Ullerichs [1]. However, the
primary purpose in this paper is to incorporate different contexts into a personalized
navigation system. Moreover, the dataset used in this paper is newer and more
comprehensive.
Section 1 has been rewritten to describe the new primary purpose and Section 2

has undergone some revision, as the focus turns towards context-based personalized
navigation. Section 3 has undergone major revision. Section 4, which was Section 6
in [1], has been rewritten. Sections 5 and 6 are completely new. The Appendix is
new and solely based on the foundation of this project.
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Abstract

Existing navigation systems provide route suggestions
with very limited room for customization or personal-
ization, and if present, must be configured manually by
the user. We propose a context-based personalized nav-
igation framework capable of performing personal route
suggestion based on a preference towards certain road
features, with the preference inferred from previously
driven trips.
The framework infers a small set of unique driving

preferences, and use contextual information to learn
personal preference choice in the given context. This
allows for generalization of preferences, fast learning,
and good scalability while allowing for context-based
personalization within the globally optimal preference
set.
Training data stems from the ITS project and after

filtering consists of 958 thousand driven routes mainly
in North Jutland, Denmark from 458 drivers. We also
use a speedmap of North Jutland provided by Aal-
borg University to infer speed information about roads.
Lastly, OpenStreetMap is used to extract appropriate
road features and construct a graph structure used for
pathfinding.
After training with a large real-world dataset, our

framework can propose personal route suggestions for
future navigation trips with an average Jaccard dis-
tance of 0.48 when compared to the actual driven route
preferred by the driver. The framework is trained using
a combination of clustering and classification imple-
mented in TensorFlow. The preferences are learned by
comparing driven routes to alternative routes.

1 Introduction

Today’s leading navigation services do not take the
users’ preferences into account when performing route
suggestions, but instead provide impersonal routes be-
tween two locations with the routes affected only by
simple contexts (e.g. traffic and time of day). Drivers
could benefit from a more tailored route that matches
their preferences.

As an example, a driver that tends to avoid tunnels,
either in general or in specific contexts, would benefit
from a navigation service based on personal driving

Figure 1: Four real-world routes having the same source
and target. The one preferred by a driver might depend
on several contexts (e.g. time of day and weather).

preferences, as it could learn such preferences, adjust
pathfinding costs accordingly, and suggest alternative
routes with fewer tunnels. In this paper, the concept
“shortest path” has a more general meaning than just
shortest distance, namely the cheapest/lowest cost of a
path.
Comprehensive research has been published in the

field of personalized navigation systems [2, 3, 4, 5, 6].
Most of this research is concerned with extracting per-
sonal driving preferences from GPS records using vari-
ous machine learning techniques. However, these stud-
ies mainly examine the driving preferences without any
contextual information such as weather or time infor-
mation.
In this paper, we present a framework for providing

contextual personalized routing based on the concept
of driver preference towards certain road features, with
the preference learned from the driver’s previous trips.
In addition, we introduce the concept of a context.

The context of a trip is the time of day, day of week,
weather, etc., that may influence how a driver decides
on a route. This can either be due to the road features
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changing (e.g. rush hour), or due to the preferences
changing at different times (e.g. a preference for larger
roads when it is snowing).

In [1], a preference is defined as a vector with a weight
for each road feature and determines the cost of travers-
ing a road segment. These road features are static, i.e.
the features of the road segment never change. In this
paper, we extend this definition to include dynamic fea-
tures which change based on the context, e.g. estimated
road segment speed which changes over time.
Furthermore, we extend the personal navigation

framework presented in [1] to include clustering. As-
sembling trips with similar preferences into clusters
allows for faster shortest path computation and instead
of encapsulating a unique driving preference for each
driver we try to obtain driving preferences for a group
of drivers.

As seen in Figure 1 a single driver might choose differ-
ent routes between the same two locations depending on
the current context of their situation. In the example,
the routes call for different preferences, with some (red,
green, brown) preferring motorways and longer routes
to different degrees and others (blue) having a higher
preference towards shorter, but slower, routes.

The contributions of this work are as follows:

– We present the idea of personal preference vec-
tors from Klokkervoll et al. [1] and extend it with
contextual classification.

– We utilize clustering to improve the run time and
scalability of the framework and to better accommo-
date new users with few driven routes by bootstrap-
ping them with the preferences of similar drivers.

– We present several experiments for evaluating the
usefulness of such a framework.

The paper is structured as follows: Section 2 outlines
the related work in this problem area, Section 3 formal-
izes the modeling of the problem presented in this paper,
and Section 4 explains the concept of personalization.
In Section 5 we describe our dataset and present the
different experiments we conduct.

2 Related Work

To the best of our knowledge only one other article, [7]
by Yang et al., has previously examined context-based
personalized navigation. However, the field of personal-
ized navigation have been comprehensively examined
by several researchers.

In this section, we will give an overview of the existing
work in each category: Personalized navigation and
context-based navigation.

2.1 Personalized Navigation
Delling et al. [2] delve into the realm of personalized
navigation while utilizing GPUs for machine learning.
The machine learning techniques used are: Local search
(a basic stochastic coordinate descent), perturbation

and specialized sampling. Delling et al. use a rather
simple quality score where they essentially compare
the shortest Euclidean length between each observed
GPS record with a computed shortest path (from the
source to the target). If, for instance, half of the GPS
records is within the distance threshold the computed
shortest path would get a quality score of 0.5, they
utilize their framework using a threshold distance of 10
meters. We differ from this paper by utilizing another
personalization method as well as clustering.
Funke et al. [3] presents a framework for deducing

individual driving preferences utilizing a linear program-
ming (LP) formulation combined with an effective short-
est path algorithm, namely customizable contraction
hierarchies, which we also utilize in this paper. Funke
et al. defines the term preferential feasibility to describe
if a set of paths can be exactly described with a prefer-
ence vector (weight vector) α. The LP-formulation is
defined by the road features of any alternative path and
therefore requires one to enumerate over all alternative
paths from the source to the target, for which there
are typically exponentially many. To overcome this
challenge, Funke et al. improves the LP-formulation
by starting with a few constraints, finding a solution,
and the iterating by using that solution to provide new
constraints. This LP-formulation uses hard constraints,
i.e. it will find a preference that exactly matches the
route. Instead, we use soft constraints and a gradient
descent optimization method. These soft constraints al-
low routes that approximates the true route in the case
where the true route is preferentially infeasible. The
dataset used by Funke et al. is exclusively synthetically
generated. In an experiment, Funke et al. achieves 0-2%
difference in road segments between the ground truth
routes and the routes of the inferred preference vector.
Using CCH for shortest path calculation improved the
run time with 2 orders of magnitude.

Letchner et al. [4] present a system, TRIP, able to do
personalized routing based on data from the Seattle mu-
nicipally. They present the first ever framework based
on real data gathered from 109 cars using 8 GPS devices
installed for a two-week period in each car, which is
similar to the format of our data. A novel contribution
at the time was the time-dependent speeds in the road
network inferred from the observed GPS records. The
presented solution uses a cost function based on the in-
efficiency ratio, which is the ratio between the route at
a given time and the actual driven route for each route.
This inefficiency ratio is applied, per driver, to all road
segments that the driver has used and can be described
as a measure of how much additional travel time a
driver is willing to use to travel on these road segments,
or how preferred they are to the driver. Letchner et al.
define a cost measure using this ratio so that the cost
for roads with a low ratio is also low. This cost measure
is somewhat similar to our approach, however we find a
specific preference value, similar to the inefficiency ratio,
for each considered feature, where Letchner et al. only
apply their ratio to the travel time. Another distinction
is that their ratio if found using simple averaging over
all observed GPS records for a single driver, whereas
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we utilize machine learning to find suitable parameters.
Dai et al. [5] recommend personalized routes by exam-

ining big trajectory data (more than 50,000 taxis from
Beijing). They use Hidden Markov Models to learn
individual preference vectors to define users driving
preferences, like the framework presented in this paper
also learns personalized preference vectors. However,
they only consider three different preference features:
travel time, distance, and fuel consumption, whereas
our framework takes 12 features into account. To deter-
mine the probability of a user driving on a distinct edge,
the authors implemented the PageRank method on a
dual graph representation of the road network, some-
what similar to the line graph representation described
in Section 3.3.
Balteanu et al. [6] explain how to compute shortest

paths in OSM with respect to a specific preference dis-
tribution. They model these preferences as pairwise
trade-offs between different cost factors, e.g. path dis-
tance vs. number of traffic signals. Using skyline routes
(Pareto-optimal routes) they can derive the personal
optimal path between two points in the road-network
when given a personal preference gradient for the trade-
off pair. Balteanu et al. only describe their proposed
framework handling one trade-off pair (two cost factors)
at one time as their main contribution was instead to
efficiently find the skyline routes needed by the method.
They also had to resort to experimenting with synthetic
preference distributions as their trajectory data was
anonymized. In contrast, we will be examining multiple
cost factors instead of only two. We will also be testing
the real-world applicability of our framework by using
personal trajectory data in addition to synthetic data.

2.2 Context-Based Navigation

Yang et al. [7] examines context-aware personalized
routing, where the context, e.g. travel distance, travel
time and fuel consumption, of each trajectory is consid-
ered. Like [6], their work is also based on skyline routes.
Yang et al. present a weighed Jaccard similarity for
comparison of routes based on the distance of a route,
whereas we utilize a more general Jaccard distance that
only compares sets of road segments. Yang et al. use a
data-first approach to identify the contexts considered
by each driver by clustering trips with similar efficiency
ratios: a concept capturing the importance of each fea-
ture with respect to the feature-optimal route. We also
cluster trips, but based on their apparent preference
towards road features when compared to alternative
routes with the same start and end location. In contrast,
we predefine what constitutes a context in order to use
it for predicting the preference for unknown trips.

3 Modeling Road Networks

In this section, the modeling of road networks, trips, and
features is explained. An overview over key notations
can be seen in Table 1. Section 3.1 describes potential
features in road networks. Section 3.2 explains how to

model the road network using a graph structure with
features on vertices, arcs, and pairs of consecutive arcs.
Section 3.3 details how the graph structure is simplified
using a line graph in order to only have features on
graph arcs.

Sym. Description

v Vertex
a Arc: a = (v1, v2)
t Turn: t = (a1, a2)
r Route: r = (t1, t2, · · · )
r.s Start arc of a route: r = ((r.s, a), · · · )
r.e End arc of a route: r = (· · · , (a, r.e))
τ Trip: τ = (r, context)
f Feature function
ut Feature vector of turn t
x Feature vector of route
X Feature matrix for multiple routes
y Actual feature vector
Y Actual feature matrix for multiple routes
β Preference vector
βτ Preference vector for τ
0ij Zero matrix with dimensions i× j
γ Cluster assignment vector
L Loss function

Table 1: Notation.

3.1 Road Network Features

Several features in road networks influence how people
navigate them. Some features describe intersections (e.g.
traffic signals). Other features describe road segments
(e.g. length and road-type) or pairs of consecutive road
segments (e.g. turns and transitions between road-
types). Some of these features are static (e.g. segment
length and road type), while other features are dynamic
and changes depending on some context (e.g. segment
duration depends on the time of day).

3.2 Graph Representation

In order to model all the different features concerning
road networks we use the notion of a directed graph
G = (V,A), consisting of vertices V and arcs A where
A = {(vi, vj) | vi, vj ∈ V }. Each vertex v ∈ V describes
either a shared point between two road segments (e.g.
an intersection) or a dead end of a road segment. Each
arc a ∈ A describes a directional road segment, i.e. a
one-directional road segment is represented by a single
directed arc in the graph and a bi-directional road
segment is represented by two directed arcs in opposite
direction of each other. The vertices of G can also
contain all the intersection features of the road network,
while the arcs can contain all the segment features.
However, two problems arise in this graph model: First,
features covering consecutive arcs cannot be represented
directly in the graph structure but requires a separate
lookup table. Second, path-finding algorithms must
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be modified to work with graphs containing features,
and thus weights, on more than just the arcs. To get
around these problems we instead use the line graph
representation of the graph defined by Winter [8, 9]
which allows for all the features to be placed on the
arcs in the graph structure.

3.3 Line Graph Representation
The directed line graph L(G) = (A, T ) of a directed
graph G consists of arcs A and turns T defined as
T = {(aij , ajk) | aij ∈ A ∧ ajk ∈ A}. The line graph
L(G)models transitions between road segments through
a shared intersection. Each turn t ∈ T from L(G) thus
represents a length-two path in G. An example of
a directed graph and the corresponding directed line
graph can be seen in Figure 2.
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Figure 2: Example of a directed graph G (grey) of ver-
tices and arcs, and its directed line graph L(G) (black)
of arcs and turns.

The purpose of using a line graph of a road network is
to model all road features (features of intersections, road
segments, and pairs of consecutive road segments) using
only turns in the line graph. Each turn tijk connecting
the arc aij to ajk through the vertex vj contains the
features of the arc aij , the vertex vj , and the features of
the consecutive arc pair (aij , ajk). A small illustration
of a single turn is seen in Figure 3.

vj
ajk

aij
tijk

vi

vk

Figure 3: Example of a single turn tijk.

With a line graph representation of the road network,
we can define a route r to be sequence of consecutive
turns r = (t1, t2, · · · , tn) from L(G). As an effect of
this redefinition, the features of the last road segment
in the trip are not considered, as the last turn tn only
contains the features of the second to last road segment

(aij in Figure 3), the second to last intersection (nj in
Figure 3), and the turn onto the last road segment (tijk
in Figure 3). However, ignoring the last road segment
does not influence the model as all possible routes must
include the last road segment, and with the preference
towards all features assumed linear, the exclusion of
the last road segment’s features has the same impact
on all routes ending in that segment.
Each turn t contains a set of features which val-

ues we will represent using a feature vector ut =
(f1, f2, · · · , fn) where n is the number of features in
the road network and fi is the value of the i’th feature
or 0 if the feature is not present in the turn. To hold
all the features in the feature vector, they must all be
represented using only numerical values.

4 Personalization

In this section, concepts and methods related to person-
alized preference are explained. The overall architecture
of our framework can be seen in Figure 4. The frame-
work is composed of two major components: prefer-
ence inference, in which we find the preference vectors
for each trip, and preference modeling, in which we
build a model to predict the preference vector based on
the context of the trip.

In Section 4.1 we formalize the concept and notation
of personal preference. Section 4.2 lays the foundation
for preference inference and Section 4.3 presents a per-
formant method based on clustering. Section 4.4 briefly
describes how we normalize the route features to over-
come feature imbalance. Section 4.5 describes methods
used to initialize the clusters. Section 4.6 explains how
we implemented preference modeling using a neural
network classifier.

4.1 Personal Preference

Personalization is achieved by assigning a personal pref-
erence towards each road feature. Using these pref-
erences, the costs of each turn in the line graph can
be calculated, making the shortest route between two
road segments a personal optimal path according to
the preferences. In other words, using the road features
and their preference reduces the personalization rout-
ing problem to the shortest path problem. The only
remaining problem then becomes learning the personal
preferences associated with each driver. Furthermore,
our previous results in [1] shows that every driver has
several different sets of preferences that explain their
behavior, extending the problem to learning all the
different preferences and choosing the right one when
planning future trips.

We model personal preference for d features using a
preference vector β of size d where βi is the preference
towards the i’th feature. The cost of a feature vector
x is defined as the sum of its elements each multiplied
with the corresponding preference from β:

Cost(x,β) = x · β (1)
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OpenStreetMap Speedmap ITSDanmark Weather Information

Graph feature extraction Route feature extraction Context extraction

Feature normalization Preference inference Preference modeling

Cluster preferences Cluster assignments Cluster predictor

Figure 4: Framework overview. Arrows represent flow of data and rectangles represent processes. Inputs are
located in top and outputs are located in the bottom.

The strictly linear definition of the cost function
allows for easy aggregation of feature vectors as
Cost(x1,β)+Cost(x2,β) = Cost(x1+x2,β), allow-
ing the calculation of the cost of a single turn, sequences
of turns, and whole trips.

4.2 Learning Preferences

A trip τ is defined as the tuple (r, context), where r is
the route driven and the context defines information
about the driver, time, and weather. τ.r is a member
of the set of routes that connects the arc r.s to the
arc r.e defined as Rse = {(t1, t2, · · · , tn) | ti ∈ T ∧ t1 =
s ∧ tn = e ∧ ti = (a, b) ∧ ti+1 = (b, c)}, where T is the
set of turns in the line graph L(G). A preference vector
βτ that exactly explains the trip τ from s to e is a
preference vector such that ∀r ∈ Rse(Cost(xr,βτ ) ≥
Cost(xτ ,βτ )), where xr is the feature vector for r
and xτ is the feature vector for τ . xr is defined as
xr =

∑n
i=1 ui, where n is the number of turns in r and

ui is the feature vector for turn i.
In [3], this is seen as a linear programming problem.

Each alternative route in Rse \ {τ.r} is seen as a linear
constraint and the final preference vector is then any
point in the feasible region. In the case where there
is no feasible region (i.e. where there is no possible
preference vector that makes the taken route optimal),
the route is broken down into smaller sub-routes that
are more likely to be feasible.

Instead of using these hard constraints as stated in the
linear programming problem, we will use soft constraints
and see it as an optimization problem and solve it using
gradient descent. Soft constraints allows us to find an
approximate solution when no exact solution exists.

For each alternative route, we define the loss L as:

L(y,x,β) = Clamp
(
0,
y · β
x · β

− 1, 1

)
(2)

where Clamp(a, b, c) = max(a,min(b, c)), y is the fea-
tures of the actual trip, x is the features of the alterna-
tive route for the trip, β is the preference vector of the
route.
d = y·β

x·β − 1 is the proportional cost of alternative
route compared to the actual route. We wish to mini-
mize this, i.e. the actual route should become cheaper
and the alternative route should become more expensive.
We clamp d between 0 and 1 for two reasons:

– For d < 0, the actual route is cheaper than the al-
ternative route and there is no benefit in improving
it further.

– For d > 1, the alternative route is half or less
the cost of the actual route. We limit the loss L
in this case, as otherwise a few wildly inefficient
trips will dominate the total across all trips. For
example, if a driver is delivering a package, but not
stopping long enough for the trip to be split into
two separate trips.

A problem with using gradient descent to minimize
the loss function L is that it can result in negative
weights in the preference vector. Having features that
are weighted negatively can create arcs with negative
costs, which in turn can lead to negative cycles. Nega-
tive weights are also incompatible with many shortest-
path algorithms such as Dijkstra’s algorithm. To pre-
vent these negative weights, we take the absolute value
of β during optimization and pathfinding. Strictly, this
does not prevent negative values in β, but it does ensure
that it will always function as if it was positive. We
define abs as a function returning the absolute value
for each scalar:

abs((v1, v2, · · · , vn)) = (|v1|, |v2|, · · · , |vn|) (3)

Solving this optimization problem would necessitate
enumerating all of the routes between r.s and r.e, of
which there are exponentially many for a single pair.
Similar to [1, 3], we solve this by starting from an
initial alternative route and then iteratively solving the
optimization problem, using the new preference vector
to find a new alternative route, and adding the new
alternate route to the constraints. We will refer to this
as a pathfinding step.
To solve the optimization problem, we use a gradi-

ent descent method that iteratively searches for a local
optimum. We will refer to one such iteration as an
optimization step. This method will eventually stabilize
around a (possibly local) optimum, in which case we
need to perform the pathfinding step again. This will
change the location of the optimum, and we then per-
form further optimization steps. We call the number
of optimization steps per pathfinding step Tpathfinding.
The entire algorithm can be seen in Algorithm 1.
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Algorithm 1 Preference estimation of a single route.

Require: r is a route, G(A, T ) is a line graph, f is a feature function T → Rd+ where d is the number of features,
niterations is the number of iterations, Tpathfinding is the number of iterations per pathfinding

1: function EstimateSinglePreference(r,G, f)
2: m←

⌈
niterations
Tclustering

⌉
. m is the number of times we will find alternative routes

3: h← 0 . h is the number of alternative routes found so far
4: β ← InitialPreferences(d) . βi is the i’th feature of the preference vector
5: X ← 0md . Xij is the j’th feature of the i’th alternative route
6: y ←

∑
t∈r f(t) . yi is the i’th feature of route r

7: for i← 1, niterations do
8: if i mod Tpathfinding = 1 then . Pathfinding step
9: h← h+ 1

10: p← ShortestPath(G, r.s, r.e, g) where g(t) = f(t) · abs(β)
11: Xh ←

∑
t∈p f(t)

12: end if

13: β ← Optimize

(
h∑
j=1

L (y,Xj ,abs(β))

)
. Optimization step

14: end for
15: return abs(β)
16: end function

Algorithm 2 Clustered preference estimation over multiple routes.

Require: R is a set of routes, G(A, T ) is a line graph, f is a feature function T → Rd+ where d is the number of
features, niterations is the number of iterations, nclusters is the number of clusters, Tpathfinding is the number
of iterations per pathfinding, and Tclustering is the number of iterations per clustering

1: function EstimateMultiPreferences(R,G, f)
2: m←

⌈
niterations
Tclustering

⌉
. m is the number of times we will find alternative routes

3: h← 0 . h is the number of alternative routes found for each route so far
4: β ← InitialPreferences(nclusters, d) . βij is the j’th feature of the i’th preference vector
5: X ← 0|R|md . Xijk is the k’th feature of the j’th alternative route of the i’th actual route
6: for i← 1, |R| do
7: Yi ←

∑
t∈Ri

f(t) . Yij is the j’th feature of the i’th route
8: end for
9: γ ← InitialClusters(|R|) . γi is the cluster that trip i is currently assigned to

10: for i← 1, niterations do
11: if i mod Tclustering = 1 ∧ i 6= 1 then . Cluster assignment step
12: for j ← 1, |R| do

13: γj ←
nclusters
argmin
k=1

h∑
l=1

L(Yj ,Xjl,βk)

14: end for
15: end if
16: if i mod Tpathfinding = 1 then . Pathfinding step
17: h← h+ 1
18: for j ← 1, |R| do
19: p← ShortestPath(G,Rj .s, Rj .e, g) where g(t) = f(t) · abs(βγj )
20: Xjh ←

∑
t∈p f(t)

21: end for
22: end if

23: β ← Optimize

(
|R|∑
j=1

h∑
k=1

L(Yj ,Xjk,abs(βγj
))

)
. Optimization step

24: end for
25: return abs(β),γ
26: end function
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4.3 Clustering

Each preference vector to be learned requires its own
instance of the road network graph as it is needed to
sample alternative routes from Rse using that preference.
Learning a preference for each trip would be an unnec-
essarily complex and memory consuming task and we
also hypothesize that all the trips can be described by
a much smaller set of preferences. In [1] a preference
is found for each driver, and used to predict all their
future trips. Here we will instead try to identify a set of
preferences that each trip will be assigned to, making
preferences more general but allowing each driver to
have multiple possible preferences to choose from.

To learn which trips share preferences, we introduce
clustering in our training process. For a predetermined
number of clusters k, we want to learn k preference
vectors, each representing a cluster, and assign each
trip τ to the cluster preference that best explains it.
The most intuitive method of performing this clus-

tering would be in two steps:

– Find preferences for each trip.

– Perform clustering over the preferences.

However, this requires computing a preference vector
for each trip, only to reduce it to fewer clusters. We pro-
pose an extension of Algorithm 1 using a method similar
to the expectation-maximization (EM) algorithm [10]
in order to perform clustering without first computing
individual preference vectors, thus avoiding the expen-
sive step of computing an individual preference vector
for each trip.

The algorithm works by first assigning each trip to a
cluster. We a priori decide m, the number of clusters
we wish to find among the n trips with d features. Then
we initialize the m × d preference matrix β, and the
n-vector γ, containing the currently assigned cluster
of each trip. We explore different ways of initializing
these values in Section 4.5.
In the expectation step, each trip is assigned the

cluster that minimizes the loss L of its alternative routes.
We will refer to this as the cluster assignment step.

In the maximization step each cluster’s preference is
updated based on the trips assigned to it. Each cluster
will optimize its preference vector by minimizing the
loss using all its assigned trips over a fixed amount of
iterations. This is basically the optimization step in
Algorithm 1, but extended to several clusters.

The expectation and maximization steps are then
executed in a loop until the cluster preferences no longer
change significantly. This process is analogous to other
EM algorithms such as K-Means clustering, where we
in one step move the cluster centroids (maximization),
and in another assign points to the nearest cluster
(expectation). However, in our case, the maximization
step requires several iterations due to gradient descent.
We will refer to the number of iterations per cluster
assignment as Tclustering.
The pseudocode of the algorithm can be seen in

Algorithm 2.

4.4 Feature Normalization

The route features in our graph have an extremely high
variance between them. Meters driven are often in the
tens of thousands, while bridges crossed are usually 0 or
1. This high variance in our dataset means the gradient
descent step in the meters driven direction will have a
far larger impact than in the bridges crossed direction.
To overcome this imbalance, we normalize the features
such that each feature on each turn has a average value
of 128.

We normalize to 128 instead of 1 due to the pathfind-
ing implementation we use: RoutingKit. RoutingKit
only accepts integer costs, so normalizing to 1 would
mean a large loss of precision to rounding, whereas
normalizing to 128 leaves 7 bits to decimal values. The-
oretically, a larger value would be even more precise,
but would also have additional risk of integer overflow
during pathfinding.

4.5 Initial Preferences

The algorithms described in Section 4.2 and Section 4.3
requires a method to initialize the preference vectors
(and in the case of Algorithm 2, to initialize the cluster
assignment). The primary concern when initializing
these values, is to ensure that the clusters do not be-
come empty during the assignment step. An empty
cluster would prevent the cluster from improving in the
maximization step, as there is no loss for the optimizer
to improve, essentially making it useless. We consider
two different methods of initialization:

– Random initialization: each cluster is randomly
initialized.

– Common initialization: all clusters are initialized
to the same value.

Random initialization has the quality that very few
assumptions are made. However, one problem is that
only few of the generated preference vectors are likely
to be realistic, making it more likely to be empty during
cluster assignment.
In the common initialization method, we initialize

the preference vectors to a common starting point, e.g.
shortest-time or shortest-distance. We assume people
are primarily interested in shortest-time or shortest-
distance, which would make this a good initial prefer-
ence.
However, this presents another problem: the abs

function in equation 3 has no derivative in 0. Thus,
initializing features to 0 will mean there is no gradi-
ent for those features which would lead to them never
changing. Instead, we therefore initialize all features in
the preference vector to 1.
Likewise, it is also necessary to initialize the cluster

assignment. One option is to perform the cluster as-
signment immediately, but this leaves the possibility
of a cluster not receiving any trips. A better option is
to assign each trip to a random cluster, perform max-
imization, and then only afterwards perform cluster
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assignment. This makes it much more likely that at
least one trip is assigned to the cluster, as it is now
optimized to the randomly assigned initial trips.

4.6 Predicting Preferences

In order to know which preference to use for predicting
the route of future trips, a new model can be trained
with the context of each trip and its assigned cluster
preference. This model should be able to predict the
preference to use for routing, given the context of the
trip. Table 2 shows the identified contexts for trips and
how they are encoded.

Context Encoding

Driver id One-hot
Start time of day Circular
Start day of week One-hot
Start season One-hot
Start weather One-hot
Start location One-hot ranking
End location One-hot ranking

Table 2: List of contexts and their corresponding en-
coding method.

In a one-hot encoding, all possible discrete values of
a context (e.g. rain, snow, fog, etc. for start weather)
are each encoded as a feature. The feature which name
matches the input value takes the value 1 while all other
encoded features of the context have the value 0.

The start time of day is encoded using a 2-dimensional
24-hour circular “clock-face” where a point in time is
represented as a spatial point (x, y). This encoding
ensures that points close in time always lie close in the
encoded space (e.g. 23:59 is close to 00:00) unlike in a
simple continuous encoding.
The start and end location features are based on a

ranking system. Each user has their trips’ start road
segments grouped and ordered by number of occur-
rences. The five most frequent starting segments are
transformed to one-hot encoded features and the same
process is used for the end segments. Thus, the start
and end location features of a driver wanting to nav-
igate from their most frequent start location to their
third most frequent end location would be (1, 0, 0, 0, 0)
and (0, 0, 1, 0, 0) respectively, while a location the driver
does not frequent is encoded as (0, 0, 0, 0, 0).

The model chosen for predicting the cluster preference
is a neural network with one input layer, a single hidden
layer with dropout regularization and RELU activation,
and an output layer with softmax activation. The input
layer is given the values of the encoded contexts for all
known trips, and the network is learned to minimize
either the loss, L, or squared loss, L2, of the trips
by choosing an appropriate soft assignment of cluster
preferences.

The encoded contexts listed in Table 2 results in 491
individual input values for the neural network, while the
number of output values equals the number of clusters

decided on prior to the clustering step.
The hyperparameters of the model are: loss function

choice (default, squared), learning rate (α), dropout
regularization percentage, and the number of neurons
in the hidden layer. Section 5.7 explores how to find
optimal values for the hyperparameters.

5 Experiments

All experiments were conducted on a computer with
two Intel Xeon Quad-Core E5620 processors (2.40 GHz,
4 Cores, 8 Threads, 12M Cache), 48 GB DDR3 RAM
(1333 MHz), and a NVIDIA GeForce GTX 1070 OC
(1.822 GHz core clock rate, 1,920 CUDA cores, and 8
GB of GDDR5 memory), running Ubuntu 16.04, Post-
greSQL 9.6, PostGIS 2.3.2, and TensorFlow 1.0.1. For
handling the data on disks we utilized file system com-
pression (explained in detail in Appendix A).

5.1 Data Foundation

The dataset used in this paper consists of 1.306 billion
map matched GPS records from the ITS (Intelligent
Transport Systems) project1 gathered during a period
between 2012 and 2014 (964 days), primarily in North
Jutland, Denmark. The GPS records have been map
matched to 1.381 million trips from 458 drivers. The
trips are matched to the OpenStreetMap (OSM) road
network2. Preliminary data analysis can be seen in
Appendix C.

Additional data includes weather information for the
North Jutland in the time period 2012 to 2014 and a
speedmap containing the average driving speed profile
of the road segments in North Jutland, both provided
by Aalborg University. This speedmap is based on
GPS records of taxi drivers and forms the basis for
our dynamic feature: duration. An average speed is
provided for each 15 minute interval in a day and has
been calculated by averaging speed measurements on
road segments during the weekdays. The speed for
road segments and time interval combinations with no
measurements is inferred from other measurements (see
Appendix C.3).

Due to the speedmap only containing speeds for roads
in North Jutland and not all of Denmark, we constrain
the OSM road network used in this paper to only in-
clude the roads also included in the speedmap. After
filtering away trips from the ITS dataset not within
our constrained road network, 900 million records from
1.267 million trips remains from the same 458 drivers.
The potential for personalization increases with the
length and duration of a trip, as short trips rarely have
significantly different route alternatives. Therefore, we
filter out trips shorter than 500 meters and with a du-
ration of less than 3 minutes (thresholds based on the
analysis described in Appendix C.2). After filtering,
the total number of trips is reduced from 1267 million

1itsdanmark.dk/Om-os/ITSDanmark-(English)
2planet.osm.org/planet/2014/planet-140101.osm.bz2
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to 958 million (a reduction of 25.4 %). An overview of
the filtering steps can be seen in Table 3.

Filtering steps GPS
records

Trips Trips/
driver

No filter 1,306 M 1,381 K 3015
+North Jutland 900 M 1,267 K 2766
+Length/duration 866 M 958 K 2091

Table 3: Total count of GPS records, trips, and trips
per driver after applying each filtering step given all
458 drivers over a period of 964 days.

Feature Unit

Duration Seconds
Distance Meters
Motorway Meters
Rural Meters
Other road type Meters
Left turns 1
Right turns 1
U-turns 1
Traffic obstacles 1
Crossings 1
Bridges 1
Tunnels 1

Table 4: Road features extracted from OSM and
speedmap.

OSM contains static road features such as: distance,
road type, traffic signals, bridges, and tunnels. All of the
features used in this project are outlined in Table 4. We
will not perform experiments to see what features are
significant, as the framework is capable of determining
it during training. The insignificant features stand out
by being weighted low by all clusters. As an example of
this, the tunnel feature proves to be very insignificant
for our road network, as seen in Table 10 in Appendix D.

5.2 Shortest Path Computation
As Section 4 describes, the shortest path in a line graph
G becomes the personal optimum path when using a
preference vector in combination with the road features
to calculate the weights of G. The shortest path is used
to generate alternative routes during preference estima-
tion in Algorithm 1 line 10 and when new personalized
routes should be found. The popular shortest path al-
gorithms Dijkstra [11] and bidirectional Dijkstra are too
slow for larger graphs the size of countries [2]. Faster
methods exist, where the graph is preprocessed to allow
for better performance during pathfinding [12, 13, 14].

In line with our previous work [1], we use Customiz-
able Contraction Hierarchies (CCH) by Dibbelt et al.
[13], an extension of the Contraction Hierarchy method
by Geisberger et al. [14]. CCH consists of two steps:
preprocessing and customization. The preprocessing
step identifies cliques and shortcuts in the graph and

only has to be performed once for the whole graph.
The customization step updates the weights in the pre-
processed graph and must be performed each time the
preference vector is updated. The preference vector is
constantly updating when computing the clusters in
Algorithm 2, making the relatively slow customization
step a computationally expensive part of the train-
ing process. However, the customization run time is
bounded by the size of the graph, and does not depend
on the number of trips, making it very scalable.

5.3 Clustering Hyperparameters

The model described in Section 4.2 depends on several
different hyperparameters, such as learning rate and
the optimization method used. To find the optimal
hyperparameters, we perform grid search across the
following hyperparameter dimensions:

– Number of clusters: The number of clusters is
likely to have a significant effect on the quality
of personalization. More clusters can potentially
lead to better personalization, but also decreases
performance.

– Optimizer: The choice of optimizer can also have
a significant effect on model performance. We
evaluate two optimizers: Gradient Descent (GD)
and the Adam optimizer [15]. Compared to GD,
the Adam optimizer generally performs better in
neural networks but it is unknown if it performs
better for route personalization.

– Learning rate: The learning rate can have a signif-
icant influence. Too low and the model will take
a long time to converge. Too high and the model
may never converge to a local minimum. In ad-
dition, we will also try an exponentially decaying
learning rate (see Appendix B.1). Adam already
does adaptive learning rate optimization [15], so
decaying learning rate is generally less useful for
Adam.

There are a number of other hyperparameters which
we will not explore in the grid search, mostly due to the
already high run time of our grid search. These hyperpa-
rameters include niterations, Tpathfinding, and Tclustering
which are set to 10,000, 1000, and 1000 respectively.

The result of our grid search can be seen in Table 5.
We can see that the Adam optimizer generally per-
forms better than GD. Adam also seems to generally
perform well independently of the learning rate, with
the exception of α = 10−4 which performs significantly
worse. We believe this may be due to how Adam al-
ready implements α-decay and the effective learning
rate may therefore be too low to make any significant
improvements in the case of α = 10−4. We can also see
that the loss improves as more clusters are added, but
with diminishing returns. Only having a single cluster
(effectively not clustering), yields a significantly higher
loss than more clusters.
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Method: Adam Optimizer Gradient Decent

Clusters: 1 2 4 8 12 16 1 2 4 8 12 16

α

10−2 166 126 103 99 92 88 184 152 130 130 118 114
10−3 164 134 108 89 88 85 181 151 138 125 117 118
10−4 288 241 191 181 145 152 182 146 131 116 113 108

0.95i/100 163 118 104 91 86 88 165 146 132 121 114 100

Table 5: Percentile average loss across alternative routes (lower is better).

Each run took an average of 3.9 hours to complete.
However, we did not have exclusive use of the hardware
in the time frame the experiment was running, and the
accuracy may therefore be doubtful.

5.4 Number of Trips

To gain an idea of how many trips are necessary to infer
the preferences of a user, we conduct an experiment in
which we choose a preference vector, generate several
trips with that preference vector, and see how many
trips are necessary for our preference inference method
to infer the original preference vector from the generated
routes.

The baseline preference vector is selected by perform-
ing preference inference over the entire dataset without
clustering. The result is a preference vector that gener-
alizes all trips. We then generate n routes using that
baseline vector and a random selection of start and
endpoints from our dataset. We then perform single
cluster preference inference with these generated routes
as input and compare the estimated preference to the
baseline. By varying this n, we can see how well the
system performs under different number of trips. Co-
sine distance is used to compare the vectors, as this is
a scale invariant distance measure.
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Figure 5: Cosine distance between inferred and true
preference vectors (lower is better) as a function of
number of trips.

The result can be seen in Figure 5. We can see
that as the number of trips increase, the cosine distance
decreases. The trendline shows a exponentially decaying
relationship between the number of trips and the cosine

distance. For this particular preference, we can see that
approximately 40 trips are required to approximate the
original preference well, however the exact relationship
may vary between different preference vectors.

5.5 Synthetic Preference Inference

To determine the efficacy of clustering, we conduct an
experiment in which we generate a synthetic dataset
based on a set of known preferences and see if these
preferences can be inferred from the generated routes.

Using the method described in Section 3 and Section 4
we learn 16 cluster preferences for the dataset presented
in Section 5.1. Our 958 K real trips are then randomly
distributed between the 16 preferences and a synthetic
route is generated for each trip based on the assigned
preference. This assigned preference is regarded as
the ground truth for the generated trips. Using all
the generated trips of a preference, the model from
Section 3 and Section 4 is then used again to re-learn
the preference that generated them.

As in Section 5.4, we use cosine distance to compare
a re-learned preference vector to its true preference
vector. However, we cannot expect this experiment to
reach a perfect similarity, because a route may have
many equivalent preference vectors. These preference
vectors can be quite different, while still resulting in
the exact same route.

In addition to comparing the inferred preference vec-
tors, we will also compare the similarity of the routes.
For this purpose, we consider a route as a set of turns
and the distance between them as the Jaccard distance
of the two sets. The Jaccard distance of two sets A and
B is defined as:

dJ(A,B) = 1− |A ∩B|
|A ∪B|

(4)

The results of this experiment is presented in Fig-
ure 6b and Figure 6a. In Figure 6a, we can see that
the loss declines exponentially before stabilizing around
5.5 · 10−3.
In Figure 6b, we can see that while the cosine dis-

tance does decrease initially, it does not approach 0
but stabilizes around 0.07. This is likely due to trips
having many different equivalent preferences. In the
previous experiment with only a single cluster, this
could be diminished by adding more trips. However,
this experiment has more clusters, and thus each trip
has some degrees of freedom in what cluster it can be
assigned to. Adding more trips are therefore less likely

10



0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

10−2

10−1

100

Iterations

Lo
ss

(a) Loss as a function of number of training iterations.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

0

0.2

0.4

0.6

0.8

Iterations

D
is
ta
nc
e

Jaccard
Cosine

(b) Jaccard and cosine distance as a function of number of
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Figure 6: Loss and distance metrics over 15,000 iterations for a synthetic dataset (lower is better).

to improve the overall cosine distance. We can also
see that the Jaccard distance and cosine distance seem
correlated.

5.6 Comparison with Real Trips

The previous experiments have been based mostly on
synthetic data, due to the ease at which we can create
a ground truth. To compare against real-world trips,
we cannot use a metric like the cosine distance as it
requires the true preference to be known. We therefore
only use the Jaccard distance.
In this experiment, we start from our initial prefer-

ences from Section 4.5 and perform path inference using
the hyperparameters from Section 5.3. To evaluate the
inferred preferences, we compare the real route taken
by a user to the one taken by the inferred preference
vector.

Preference Jaccard Distance

Inferred 0.482
Fastest 0.559
Shortest 0.967

Table 6: Avg. Jaccard distance using different prefer-
ences

The resulting distribution of Jaccard distances can
be seen in Figure 8 and Table 6. We can see that the
inferred route performs very similar to the fastest route.
The inferred preference has more trips in the range
[0.0, 0.2) and is better on average. The shortest route,
however, has a high Jaccard distance for nearly all trips.

Compared to the synthetic experiment in Section 5.5,
we start similarly at a very high Jaccard distance. How-
ever, the experiment on the real data seems to stagnate
just below 0.5, whereas the synthetic experiment con-
tinues downward. The final Jaccard distance of 0.48 is

significantly higher than the synthetic Jaccard distance
of 0.09. We can interpret this in a number of ways:

– The inferred route is feature-wise similar, but
not necessarily an overlapping route. A non-
overlapping route may still be a good approxima-
tion of the true preferences of a user, and thus the
preference may still be a good approximation.

– The user preferences are non-linear. A basic as-
sumption of our framework is that the user pref-
erences are linear. If this is not the case, then
we cannot expect the system to find a suitable
preference vector.

– The user preferences may depend on features that
are not modeled in our graph. This may be due to
the features not being present in our source data
(e.g. road work).

In Section 5.5, we found the Jaccard distance followed
the cosine distance closely, which lends more credence
to the two latter interpretations. It is highly likely that
there are features not being modeled that users consider,
but we would expect duration and distance to be the
most significant features. Duration is highly dynamic,
often depending on local events, accidents, roadwork,
etc., and it may therefore be that our duration feature
is inaccurate.
The synthetic routes always follow a preference ex-

actly. This might not be the case for real drivers, as
they are unlikely to have perfect information of all road
features. Especially if a driver is driving in an area they
are unfamiliar in, it would be more likely for them to
take a route that is suboptimal with respect to their
actual preferences, e.g. the driver might not have suffi-
cient information about the duration of different route
alternatives.
All of these effects may influence the inferred pref-

erence, and may be why we do not see a significant
improvement lower than 0.5. However, it does perform
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Figure 7: Loss and distance metrics over 15,000 iterations for the real dataset (lower is better).
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Figure 8: Number of trips with Jaccard distance less
than x for different preferences

slightly better than the fastest route, and considerably
better than the shortest route.

5.7 Classification Hyperparameters

As with the hyperparameter exploration discussed in
Section 5.3, this section presents the hyperparameter
search results for the classification method described in
Section 4.6.

The parameters we explore are:

– Loss function: We can either use the default loss
described in Equation 2 or use a squared loss to
penalize wrong decisions even more.

– Learning rate: As described in Section 5.3 the learn-
ing rate can greatly influence the final accuracy of
the learned model.

– Dropout percentage: Dropout is a regularization
method used to avoid overfitting. The dropout
percentage decides how many neurons are randomly
frozen during each training step. Appendix B.2
further explains dropout regularization.

– Hidden neurons: The number of hidden neurons
in the model affects the complexity of the model.
Fewer neurons results in more general, but some-
times inaccurate, models. Many neurons allows
complex relationships to be modeled, but is more
prone to overfitting and generally requires more
training data and training time.

To find the optimal parameters for the model, we
perform a grid search across the four dimensions de-
scribed above. Using Adam as the optimization method,
90 % of the data for training, and 5 % of the data for
evaluation we obtain the results shown in Table 7. The
remaining 5 % is used for validating our results. We also
compare the results to a baseline that randomly decides
on a cluster preference for each trip in the evaluation
set.

The parameter with highest influence on the results is
the learning rate. As each configuration only encounters
each training instance once, a lower learning rate with a
slower approach towards the optimum might not reach
it over the course of a single training epoch. Dropout
does not have a large impact, except in configurations
with lower learning rates.

We validate the results using the remaining 5 % of
the data that was not used for training or testing. We
only validate the percentile average loss of the two high-
lighted configurations in Table 7. For the configuration
with 32 hidden neurons the percentile average loss was
83.3 and with 256 hidden neurons it was 83.1. These
loss values are optimal as the theoretical lowest loss is
85 according to Table 5. The reason for obtaining a
lower loss is due to the loss listed in Table 5 being cal-
culated before the final re-clustering step, which could
lower the loss further.
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Loss Default Squared

Neurons 32 64 128 256 32 64 128 256
Dropout α

0 %
10−2 81.0 81.3 81.1 81.0 81.2 81.6 82.5 82.5
10−3 89.3 84.1 83.0 84.0 83.8 83.0 83.3 82.8
10−4 119.2 90.0 94.0 89.7 108.4 93.6 99.9 92.1

25 %
10−2 81.8 81.7 84.0 82.5 81.7 82.5 81.7 81.4
10−3 85.0 84.0 83.0 82.6 85.9 84.2 84.3 84.9
10−4 93.4 104.4 106.8 100.0 103.1 99.4 101.5 96.2

50 %
10−2 82.5 82.2 82.0 82.0 82.5 82.5 82.2 82.5
10−3 87.5 90.4 84.9 85.1 90.7 85.8 83.4 84.2
10−4 111.6 105.2 101.0 98.3 97.4 121.2 104.8 98.1

Random baseline (average of 100 runs): 112.7

Table 7: Percentile average loss when predicting new routes (lower is better).

Each configuration took on average 6.27 minutes to
complete, but run time could be decreased by training
with larger batches at the price of an increased loss.

6 Conclusion

We present a novel method of modeling road networks to
allow for personalized navigation, based on our previous
work [1]. We detail how to identify different types of
features in road networks and how to model them in a
graph structure. We also extend our previous work to
include context-based preference inference by using a
combination of preference clustering and classification
based on context. We define a loss function, L, that
both the clustering and classification methods aim to
minimize.
We identify optimal parameters for both preference

inference and preference modeling using grid search and
present the best configurations for our dataset.

Section 5.4 shows that around 40 trips are required to
approximate a linear preference, and that the distance
to the true preference is exponentially decaying in the
number of trips used for training. Section 5.5 further
demonstrates that a linear preference can be approxi-
mated to within a cosine distance of 0.07 and a Jaccard
distance of 0.09. However, Section 5.6 demonstrates
that this assumption only weakly holds for real-world
users, as the Jaccard distance is much higher with values
of 0.48 and 0.56 for the inferred route and the fastest
route respectively.
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Appendix
A File System Configuration

The database tablespace for the dataset used in this paper (including raw GPS records, map matched trips,
corresponding road maps, and table indexes) consumes approximately 1 TB of disk space. When querying such
large datasets, the performance is often I/O bound. Therefore, disk read/write speed is essential for query speed.
To increase fault tolerance as well as the read/write speed of our disks, we utilized both RAID 1 (mirror) and
RAID 0 (stripe) with four 750 GB disks using a RAID 1+0 configuration. The RAID partitions are defined at
the software level using ZFS (Zettabyte File System) which also supports file system compression.
An advantage of compression on the file system level, is that it allows transparent data compression for

applications which would otherwise not support compression, e.g. PostgreSQL. The tradeoff between compres-
sion/decompression time and compression ratio depends on the compression method used. During this project,
we favored fast compression/decompression time over a high compression ratio which is why we chose the LZ4
compression method3. LZ4 provides very fast lossless compression and even faster decompression with good
scaling on multi-core CPUs. LZ4 provides a compression speed of 400 MB/s per core with decompression often
limited by the RAM speed in multi-core systems.

A.1 Compression Performance Experiment

We perform an experiment to measure the compression ratio and average query speed of four different query
types: sequential scan, spatial index scan, index scan with nested loop, and bitmap index scan. We obtained a
compression ratio of 3.92 with the run-time results of the experiment listed in Table 8. As the results shows, file
system compression using LZ4 both improved disk space usage and query execution time (on average about
50 %), with the only disadvantage being decreased disk write speed.

Query type Compression

None LZ4

Sequential scan 2339.8 915.4
Sequential scan, with nested loop 30.4 32.3
Bitmap scan 425.8 273.5
Index scan, with nested loop 279.2 284.2

Table 8: Average query execution time (in ms) over 3 runs of each query type both with and without LZ4
compression.

B Machine Learning Techniques

B.1 Learning Rate Decay

In machine learning, the learning rate, α, refers to the amount of adjustment of weights and biases per iteration.
A low learning rate results in a slower arrival at an optimum. With a high learning rate the learning time
is decreased, but when set too high the algorithm can oscillate between the boundaries of an optimum as it
continuously steps over the optimal point.

α(i) = αmin + (αmax − αmin)e
(−i/d) (5)

In equation 5 an exponentially decaying learning rate is defined given a lower and upper bound of the learning
rate (αmin and αmax), an iteration counter i, and a decay speed d. With a decaying learning rate, the algorithm
will quickly descend towards the optimum, but as training progresses it will change less and less allowing for a
finer tuning of the weights and biases.

B.2 Dropout

Overfitting is a complex problem in machine learning where the trained model is too complex to generalize the
test set. Regularization functions try to prevent overfitting by generalizing parts of the trained model.

3github.com/lz4/lz4
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Dropout is a relatively simple, but effective, regularization method for neural networks described by Srivastava
et al. [16]. Dropout work by temporarily “freezing” a proportion of the neuron in a layer (hidden or input layer)
for one training iteration, meaning their weights and biases are unchanged after the iteration and set to zero
during the iteration.
A visualization can be seen in Figure 9, where Figure 9a shows a normal neural network before applying

dropout. After applying dropout on both hidden layers, with a 25 % probability of freezing each neuron, the
neural network could temporarily look like Figure 9b for a single training iteration.

Dropout has proven to be very useful in reducing overfitting in neural networks [16].

(a) Example of neural network. (b) After applying dropout.

Figure 9: Example of the effects of dropout with a 25 % probability of freezing each neuron.

C Data Analysis

C.1 Data Distribution
Figure 10 shows the trip distribution across monthly intervals between 2012-04 and 2014-12.
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Figure 10: Density of trips across monthly intervals between 2012-04 and 2014-12.

Figure 11 illustrates the distribution of GPS observations in North Jutland for each road segment. Road
segment with less than 25 observations are not shown.

C.2 Data Filtering
As described in Section 5.1 we filter out short trips as these are unlikely to have much potential for personalization.
Delling et al., who infers route preferences from American GPS traces in [2], filters out trips shorter than 483
meters and with a duration of less than 3 minutes. In lack of Danish threshold analysis, we base our threshold
on the American threshold defined in [2]: trips must be at least 500 meters long and have a duration longer than
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Figure 11: Usage of road segments in North Jutland with an observation count above 25.

3 minutes. In Figure 12a and Figure 12b the cumulative trip count is visualized for both minutes and kilometers
driven per trip. The thresholds (3 minutes in Figure 12a and 500 meters in Figure 12b) are shown in red along
with the percentage of trips removed using the threshold. After both filtration steps the total number of trips is
reduced from 1267 K to 958 K (a reduction of 25.1 %).

C.3 Coupling Data Based On Different Map Versions
As described in Section 5.1 we use data from the ITS project, that is map matched to the 2014-01-01 version of
OSM. We also use a speedmap provided by Aalborg University, based on the 2015-10-06 version of OSM. A
difference in time of 22 months between the two maps makes coupling the datasets difficult, as OSM changes
rapidly.
To handle this problem, we invented a 4-step mapping solution from OSM 2015 to OSM 2014 which checks

the following conditions in order:

1. ID match: If the road segments have the exact same ID, the segments are assumed to be either identical or
sub segments of one another.

2. Spatial join: If the the road segment from OSM 2014, with an extra buffer of 50 meters, spatially contains
road segments from OSM 2015 we map to the 2015 road segment with the smallest distance4.

3. Reverse spatial join: Follows the same principle of the previous step but from OSM 2015 to OSM 2014.

4. Neighbor inference: If a segment in OSM 2014 have neighboring segments with a mapping, assume same
speed as neighbouring segment.

After removing road segments from outside North Jutland (as described in Section 5.1) we start the mapping
with 111 K non-mapped road segments, with the result of each step outlined in Table 9. After applying the

4Distances are calculated using the route similarity method presented by Froehlich and Krumm in [17].
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Figure 12: Filtering of trips.

4-step mapping solution, 99.95 % of all OSM 2014 road segments in North Jutland have been mapped to an
appropriate OSM 2015 road segment. Out of the remaining 53 road segments, we were able to manually map 11
of them. The remaining segments were either completely missing from the OSM 2015 or 2014 map.

Mapping method Mapped Non-mapped Mapped percentage

Before mapping 0 111,098 0.00 %
(1) ID matched 108,976 2,235 97.99 %
(2) Spatial join 110,737 474 99.57 %
(3) Reverse spatial join 110992 219 99.80 %
(4) Neighbor inference 111045 53 99.95 %

Table 9: Mapping results throughout the 4 steps.

D Cluster Preference Matrix
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