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Preface

The following master thesis covers the project made by Mathias Laursen to complete his
Wireless Communication Systems Master’s program at Aalborg university. The topic of
the thesis is indoor localisation based on wireless channel characteristics and complex
computation algorithm to enhance accuracy.

The author would like to thank Thomas Lundgaard Hansen for his help within the field
of signal processing.

The report is divided into 2 overall parts, first chapter 1-3 introduces the concept of indoor
localisation together with a basic evaluation of different wireless channel characteristics
to use for position estimation. Following chapter 4-5 describes a system model for sim-
ulating Time of Arrival as a wireless channel characteristic to improve the accuracy of
indoor location system by using the MUSIC algorithm to enhance the time resolution of
a measured wireless channel. Part to results in an evaluation of empirical and simulated
wireless channels and the ability to make precise positioning using time of arrival.

Citations are made by the use of American Institute of Physics (AIP) style. This style
represents a citation by the use of only a number e.g. [13] which refers to the 13.th entry
in the bibliography found in the end of the thesis. Adding the number before a full stop
e.g. a dot as ”[ ].” the citation refers only to that sentence and adding it after full stop
the citation is referring for the full paragraph.

For table, figure and equation references the following approach is used e.g. figure x,y
refers to the y’th figure in chapter x. Similar for the table and equations.

Aalborg University, Denmark, June 8th 2017.
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Chapter 1

Introduction

1.1 Background

In recent years the usage of positioning data has increased in a variety of applications.
Often outdoor applications perform well by utilising global positioning system (GPS) or
similar outdoor positioning systems. However for the application of indoor localisation or
navigation the GPS system does not provide satisfying accuracy. To achieve high accuracy
in an indoor environment a dedicated system has to be created which takes into account
the complexity of an indoor environment.

The need for indoor positioning systems is a increasingly growing market [1].

Indoor positioning system (IPS) has a wide range of applications and application areas.
Below are listed some different scenarios where localisation could provide increased cus-
tomer experience, ease of work, or new application could be designed based on position
knowledge. Such systems could be tracking positions or navigation:

• In the healthcare industry an accurate localisation system could provide easier pa-
tients tracking for hospitals, or for tracking demented people. Similar the system
could be used for localising staff or equipment, or help patients and relatives navi-
gate the area.
• For places like airports, museums or subways a localisation system can also help

provide guidance. This could be for guiding people to their gates in the airports,
the correct train in the subway or grant a guided tour through museums and similar.
• In warehouses the system could be used for tracking incoming and outgoing pack-

ets/orders/etc. And to keep the location of different wares known, so that packing
of orders eases. In larger warehouses or factories, localisations of tools or different
machines would also possible.
• At shopping malls or grocery stores a tracking system could also help people find

the different wares they are searching, or the system could in cooperation with a
shopping list, create the fastest way through the stores to get all wares listed.
• Lastly an IPS can be used for gathering positioning data for all kind of different
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1.1. BACKGROUND

locations. This could help provide a lot of statistical usage and applications. e.g.
knowing the positions of customers in a shopping mall, grants the possibility for
placing different wares strategically to sell more.

The need for more advanced and accurate positioning systems than those already designed
is needed. The systems already designed are based on a set of different technologies that
can be used to create an IPS. A list of technologies is found below [2].

• Satellite based navigation
• Inertial navigation system
• Sound based navigation
• Optical based navigation
• Electromagnetic wave based navigation
• Magnetic based navigation
• Infrastructure system based navigation

From surveys of IPS [2,3], it is seen that technologies for indoor positioning is mostly based
on acoustics or radio frequency methods. For the rest of the project, the main focus will
be on RF technology for indoor localisation. The graph found on fig. 1.1 from [3] provides
an outline of the accuracies and areas of usage for different wireless based localisation
systems.

Figure 1.1: Outline of current wireless localisation systems. Figure from [3].

Similar [3] have also evaluated a set of different IPS. Figure 1.2 shows the results and
listing among others, the accuracy, precision and wireless technology used.

2



1.1. BACKGROUND

Figure 1.2: Wireless indoor positioning survey evaluated in [3].

Looking at fig. 1.2 it is concluded that RSS implementation for IPS is a bad choice for
direct implementation, as the accuracy for these systems is within 2-5 m with only two
systems obtaining accuracies below this. Time based systems seems like the best choice
for an IPS system, as the accuracies for these system is around 1 m when using an Ultra
Wideband (UWB) system. Systems based on more than one technology seems to achieve
higher accuracies than those based only on a single technology e.g. the SmartLOCUS
system which is based on both RF time of arrival (ToA) and Ultrasound ToA achieves an
accuracy of <15 cm [4].
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1.2. THESIS CONTRIBUTION

1.2 Thesis Contribution

The contribution of the thesis is an evaluation of a method to obtain accurate position
estimates by exploiting the signal properties for the ToA of wireless channels. First an
evaluation is performed to isolate what initially seems to be the best wireless character-
istic for creating an IPS. Afterwards this characteristic is further analysed and the high
resolution MUSIC algorithm is used to further improve the position detection ability.
Measurement and evaluations of the wireless channel in different LOS and NLOS are
evaluated w.r.t. the MUSIC signal processing algorithm. Different input parameters for
the complex algorithm are evaluated to measure the performance in the different LOS and
NLOS scenarios. Paremeters tested are SNR, samples, bandwidth and specific parameter
estimation for the MUSIC algorithm.

1.3 Thesis Overview

The remaining chapters for the thesis will be as follows; Chapter 2 describes the basic
terms used in localisation, afterwards is a description of the different localisation methods
which can be utilised for calculating a position and the chapter ends with a description of
the different wireless channel characteristics that can be utilised to obtain input data for
the localisation methods. Chapter 3 evaluates the input data and the errors introduced by
these due to changes in the wireless channel. From the conclusion that the ToA system
seems to achieve best performance, chapter 4 describes a ToA system model and how
to measure this. After the high resolution algorithm is described. Section 5.1 describes
the evaluation of the MUSIC algorithm w.r.t. the different parameters that changes the
performance of this. Both simulated and empirical data is evaluated. Chapter 6 concludes
the project and describes future work which could be made.
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Chapter 2

Indoor Localisation

The following chapter is structured as follows. Section 2.1 will provide an overview of
the different terms used in the project. Section 2.2 provides an overview of the different
positioning methods used e.g. lateration and fingerprinting. Section 2.3 explains the
different wireless characteristics which can be used to obtain data for the positioning
methods. Section 2.4 describes the performance measure for the different IPS examined.

2.1 Definition Overview

To better understand what an indoor positioning system(IPS) is, it is important to know
the most commonly used expressions and definitions.

Tag is used to describe the transmitting/receiving devices mounted on people or equip-
ment to track locations. The tag is both used for description of a dummy-transmitting
device and a smart device, which could include both transmitting, receiving and cal-
culating capabilities. It is also known as a mobile terminal (MT) or a transceiver.

Nodes are the devices, which receives the transmitted signal from the tag, or in some
situations transmits a signal to the tag. The nodes also in most cases calculates
the position of the tag or forwards the data to a server, depending on the system
architecture. Nodes are placed in known positions for the system to have reference
points when calculating the tag position. In other context the nodes are denoted
base stations, reference points or gateways.

IPS can be created in different fashions, most commonly it consists of a set of tags (the
devices which location /position are wanted) and a set of nodes which are reference
points and the sampling system used to estimate the position of the tags. IPS is
used to denote a system which is capable of locating people or objects in an indoor
environment mounted with tags. The positioning capability is measured both by
accuracy and precision of the system.

Accuracy is the mean distance error between estimated locations and the true locations.
Accuracy describes how far off the mean from a set of measurements is from the
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2.1. DEFINITION OVERVIEW

true location, thereby it can be seen as a offset error in the IPS. The accuracy of a
system is closely related to, but it not equal to the precision.

Precision is a consideration of how robust a system is. The precision is often refereed
to as the standard deviation of the location estimates or the standard deviation of
the accuracy. Compared with accuracy, a system can be very accurate and have
very low mean estimation error, however the position estimates used to obtain the
mean estimation error, can be both precise and imprecise. If the system is precise
the deviation from the estimated position is very low, and for an imprecise system
the deviation from estimate is high. Both accuracy and precision can be seen on
fig. 2.1.

Figure 2.1: Figure showing difference between accuracy and precision. Figure from [5].

Complexity as a rule of thumb increases the accuracy, range and precision of a system.
However this will decrease other competitive parameters of a system such as the
update rate, energy efficiency, setup cost, computations, etc.

Update rate defines the rate at which the IPS updates the position of a tag. The update
rate depends on the complexity of the system, the algorithms used for calculating
positions, the CPU speed and amount of data to handle.

Line of sight (LOS) is an environmental description stating information of the travel
path for a signal. For LOS the direct path between a tag and a node is unobstructed.

No line of sight (NLOS) similar to LOS states information about the environment,
however for NLOS the direct path between tag and node is either partially or fully
blocked, This condition happens when the direct path from a tag to a node is blocked
by an object, this could be a wall, window, furnitures, doors, etc, each assumed to
attenuate or block the signal.

LOS and NLOS is further described in appendix B.
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2.2. DESCRIPTION OF LOCALISATION METHODS

2.2 Description of Localisation Methods

The following section will describe the algorithms used for estimating the position of a
tag.

Generally in an IPS, the position of a device is calculated in nodes or in a central server,
this is to minimize power consumption of the tag. The reason to use a centralised server is
often a result of dummy-tags and dummy-nodes which are only used for transmitting and
receiving signals, while further handing the received signal to a stronger computational
backbone for position calculations.

To calculate the a position estimate, different algorithms can be used. Even though there
are a lot of different positioning techniques and systems, they are generally based on the
same limited number of algorithms or variations of these [5].

Tree structure of methods for locating a transmitter is presented in fig. 2.2. Overall
location detection can be performed by a scene analysis, which includes e.g. fingerprinting.
Second is lateration, utilising either angles or distances or a combination of those. Lastly
is the proximity detection which utilises nodes with low range, thereby enabling a system
which reports the position of a node as the tag position depending on proximity. Following
will be a short description of the different methods.

Location Detection

Proximity
detection   Lateration Scene Analysis

Triangulation Trilateration

Angle Time of arrival Power

Probabilistic kNN Neural NetworksMulti-lateration

Time difference 
of arrival

Figure 2.2: The different classifications for the location detection methods. Scene analysis is
also known as fingerprinting. Original figure from [2].

2.2.1 Proximity Detection

The proximity detection method is also known as connectivity based method. The method
of proximity relies on reporting the position of the node, as the estimated position of the
tag if the tag is connected with the node. The node which reports tag position, if several
nodes has connectivity, is the one with the strongest signal receiption, another measure
could also be the one with first detected ToA. Therefore to obtain a high accuracy in
a proximity detection system a dense deployed node setup is required with each node
having low connection range to avoid ambiguities. An example is given on fig. 2.3, the
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2.2. DESCRIPTION OF LOCALISATION METHODS

reported position would be that of ”Node1” even though it is clearly seen that the tag is
positioned in between ”Node1” and ”Node2”, however as node 1 has strongest connection
the position of that node is reported.

Figure 2.3: Example of proximity detection. In this case the position is based on the node with
strongest receiption.

2.2.2 Lateration

The method of lateration is to use the geometrics of a triangle to determine the position
of a tag from known reference points(nodes). The use of lateration has three variants;
triangulation, trilateration and multi-lateration.

Triangulation is the method used for estimating the location of a tag based on angles
angle (θ) from reference points. The position of a tag can be estimated using only 2 nodes
by knowing the distance d between those and measuring the angle of arrival θ from the
transmitting tag, see fig. 2.4.

Figure 2.4: Principle of triangulation

Trilateration much like triangulation, is an estimation method based on reference points
and the geometry of a triangle. Different from triangulation is the usage of distances
instead of angles. The distances can be acquired using either ToA methods utilising
the signal travel time and the speed at which they travel or by using signal strength
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2.2. DESCRIPTION OF LOCALISATION METHODS

reception(power) as a measure of distance. The principle of using trilateration is found
on fig. 2.5.

Figure 2.5: Principle of trilateration

Multi-lateration is the last lateration method. It is based on the difference in distances.
Most commonly the multi-lateration techniques is used with time difference of arrival
(TDoA). Where the trilateration is distances, which can be seen as circles that intersects,
the multi-lateration creates hyperboloids that intersects, due to the distance estimated on
time differences, instead of actual ToA measurements. The principle of multi-lateration
hyperboloids are found on fig. 2.6.

Figure 2.6: The hyperboloids formed by multi-lateration.

2.2.3 Scene analysis

The last category for localisation determination is the use of scene analysis. The method
of scene analysis is the most common based on a preinstalled system, such as WiFi. The
approach is based on creating a map of fingerprints in an offline phase or setup phase.
The after initial setup the system in an online phase, uses new measurements to match

9



2.2. DESCRIPTION OF LOCALISATION METHODS

with the fingerprints made in the offline phase. The fingerprints with the best match for
the new measurement is reported as the tag position.

Depending on the accuracy wanted, the fingerprints has to be measured in a equal or finer
grid, than the accuracy wanted. This could also be achieved by interpolation the mea-
surements between grid points. The fingerprints measured can be different characteristics
of a signal [3], however mostly received signal strength indicator (RSSI) is used. The
fingerprints are stored on a server ready for use with different scene analysis algorithms.
A downside on the usage of scene analysis is that the offline phase can be time consuming
depending on the installation area. Also the scene analysis, depending on algorithm, can
also be vulnerable to changes in environment, such as rebuilding a wall or relocating of
furnitures/offices or generally movement and changes in environment. Figure 2.7 shows
a grid which indicates reference points measured, the grid size can be changed depending
on the accuracy. Large grid size(left) gives less accuracy, small grid size (bottom-middle)
grants possibility for higher accuracy.

Figure 2.7: Grid for offline phase of scene analysis, each cross is a measurement point.

The scene analysis method have the offline approach of measuring reference points, how-
ever different methods can be utilised for the online phase to make the fingerprint match-
ing. The online phase is when system has been calibrated and is ready to position devices.
From [3] the following algorithms are examined: probabilistic method, k-Nearest Neigh-
bour (kNN) and Machine learning/neural networks.

Probabilistic method considers the probability that given an observed signal strength,
s, the position of the tag is located in location Li. A decision rule is made in the offline
phase for creating the fingerprinting map, stating that location, Li is chosen if:

P (Li|s) > P (Lj|s), where j, i = 1, 2, 3.....n (2.1)

where n is the amount of locations. Therefore measuring s, the tag position is reported
as the position L which obtains highest probability.

Nearest neighbour algorithms is a method used for classification, which assigns a data

10



2.2. DESCRIPTION OF LOCALISATION METHODS

point to its nearest neighbour or nearest class. Therefore increasing the complexity of the
nearest neighbour algorithm increases the probability that the data point is assigned to
its right position or class. Following is a description of the nearest neighbour algorithms
used in [6]. The estimated position is denoted p̂.

NN: is the assignment of p̂ as the location of the node with the nearest matching RSSI
value(like proximity detection).

KNN: is the comparison of the measured RSSI value with the k-nearest neighbour, where
k is a pre-set amount of nodes to compare with. After determining the k-nearest
neighbour the average of those points are determined.

WKNN: is the same principle as KNN, but instead of just an average each neighbour
point is weighted by a factor which is determined depending on the usage of the
system. However for a positioning system using the RSSI value to weighting the
different neighbours seems suitable. Thereby the position estimate is found as in
eq. (2.2):

p̂ =
1
G1
L1 + 1

G2
L2 + 1

Gk
Lk

1
G1

+ 1
G2

+ 1
Gk

(2.2)

where Gk denotes the k’th weighting factor of the different nodes and Lk denotes
the location of the k’th node.

EWKNN: is same approach as the WKNN but with an enhancing in the way that k
is determined dynamically. This is found to be a better approach for the WKNN,
as often when k is static(WKNN), some nodes has a tendency to be at a farther
distance, thereby increasing the error when used for estimation, even when weighted.
The determination of k in EWKNN is found in [6].

Neural networks can be trained in the offline stage, with a set of reference RSSI
measurements and corresponding known locations of tag. The neural networks adopts
the input data and calculates a set of weights that is used within a hidden layer in a
multi-layer perceptron (MLP) network with a single hidden layer. The output from a
neural network will be a 2D or 3D vector holding the estimated position coordinates. For
more information of performance, implementation and evaluation, see [7].

Using a neural network to increase the position estimate is not only possible for RSSI,
other channel characteristics could also be trained to increase the position estimates. A
training algorithm could also be implemented on top of e.g. AoA estimation techniques
or on top of the ToA estimation techniques to further improve the accuracy and precision.
The machine learning systems could even be implemented alongside the ToA and AoA
system to learn how to detect/predict ToA.

2.2.4 Summary of Localisation Methods

Implementations of systems can acquire high accuracy and precision, but often requires
a lot of calibration and complex algorithms to achieve satisfying accuracy.

The proximity detection method is not suitable for creating an accurate system, as a fine
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2.3. OBTAINING INPUT DATA

grid of reference nodes are required.

Lateration techniques is simple to implement, as the only needed knowledge is the instal-
lation locations of nodes and from these a tag position can be estimated.

The neural networks to create an IPS, from [7], seems to acquire high accuracy and
precision at a wide range from 0 m - 100 m. However the offline and training stage is
time consuming especially for larger areas. Also the scene analysis techniques are very
sensitive to changes in the environment if based on signal strength.

2.1 lists the different localisation methods and their needed input data.

Localisation method Input data Comment
Proximity detection Connection/RSSI Accuracy depends on grid size
Triangulation Angle Small measurement error in angle results in large error estimate
Trilateration Distance Requires time synchronization
Multilateration Distance Requires time synchronization
Probabilistic method RSSI High setup cost/time, accuracy depends on grid size
kNN RSSI High setup cost/time, accuracy depends on grid size
Neural Network RSSI, ToA, AoA Requires training data and complex calculations

Table 2.1: Summary of the different location algorithms mentioned.

2.3 Obtaining Input Data

The following section will provide an overview of the different wireless channel character-
istics which can be utilised to obtain the input-data needed by the different localisation
methods. From the channel the following characteristics can be used to obtain input-
data for the localisation algorithms: time of arrival, angle of arrival and received signal
strength indicator. Other characteristics might also be possible to use, however these are
the most common.

2.3.1 ToA

The trilateration and multi lateration requires requires distance as input. A distance can
be obtained using the time of arrival, also known as time of flight (ToF). By measuring
the time it takes for the signal to travel from a tag to a node the distance can be acquired,
as the speed at which a radio wave travels is known to be speed of light (c). Therefore a
distance can be calculated as eq. (2.3):

d = c · ttravel (2.3)

Where c is the speed of light (3× 108 m/s) and time traveled (ttravel) is the time traveled
from tag to node.
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2.3. OBTAINING INPUT DATA

A signal with ttravel = 100× 10−9 s corresponding to a distance as shown in eq. (2.4):

dToA = 3× 108 m/s · 100× 10−9 s = 30 m (2.4)

A drawback of using ToA is that this requires a synchronization between tag and nodes.
A way to overcome this is to use a similar technique, namely the round trip time (RTT)
which is a measure of ttravel but for a transmission from tag to node and back, see fig. 2.8.

Figure 2.8: The principle behind the RTT method for distance measurement. Figure from [5].

The distance can then be calculated using eq. (2.5):

dRTT =
(t4 − t1)− (t3 − t2)

2
· c (2.5)

where t3 − t2 is the time it takes to process the received signal and transmit it back.

A way to overcome the downsides from ToA and RTT is to use TDoA. From the ToA
scheduling between transmission from tag to node is required, and for RTT it is required
that the tag is able to both transmit and receive for sending back the signal. Using TDoA
the tag and node needs no scheduling, furthermore the tag needs only to be a transmitter,
and therefore does not need to be able to receive to be able to calculate a position. This
is a result of the system depending on time difference (∆t) instead of absolute travel time,
ttravel.

Synchronization between nodes now becomes an issue, possibly introducing estimation
errors. As a TDoA system is dependent on the time difference, having unsynchronized
nodes introduces an estimation error. Two nodes reporting times/distances and being
out of sync by 1× 10−9 s, using eq. (2.3), results in eq. (2.6):

dsync−error = 1× 10−9 s · 3× 108 m/s = 0.3 m (2.6)

where derr is the introduced distance error due to unsynchronized nodes.
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2.3.2 AoA

The triangulation algorithm requires angles as input for locating a tag. An angle can be
found using the AoA of a received signal. The most common method to acquire the angle
of arrival is to use a linear antenna array. At least two antennas is needed to estimate the
angle, however increasing antenna amount increases the accuracy of the estimate. The
angles is estimated from the difference in time between reception of a signal at two array
elements, with known spacing. The principle is shown on fig. 2.9.

Figure 2.9: Antenna array used to estimate the angle, θ, at which a signal arrives.

By knowing the spacing between antenna elements, d1 and estimating the distance, d2,
using ∆t and c, the θ can be calculated using trigonometric relations. The linear array
can be utilised for determining angle for both static and moving objects.

2.3.3 RSSI

The last input data is RSSI, which can be utilised by two different categories, those
being a fingerprint database for the scene analysis and used as a distance measure for the
trilateration technique.

The scene analysis methods (Probabilistic method, kNN, Neural Network) all need some
kind of calibration/training data in the offline stage, therefore measuring the signal
strength in a grid as seen on fig. 2.7, can be used to calibrate the system or as a training
sequence with known RSSI values and corresponding locations.

RSSI values can also be used to calculate a distance from tag to node. By knowing the
transmitted power and measuring the received power, the power lost through the traveled
path can be used to estimate the distance. For simplicity using Friis freespace model for
path loss a received power can be converted into a distance using eq. (2.7) assuming a
transmitted power is known, in this case 0 dB.

dfs = 10
(PL−20log10(f)+27.55)

20 (2.7)

where PL is the path loss, f is the frequency in MHz and dfs is distance in free space
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2.4. PERFORMANCE MEASURE

in meters. 27.55 is a constant given due to the units for the frequency and distance.
PL is defined as the difference between transmitted and received power. Figure showing
distance as function of path loss is found on fig. 2.10 assuming a transmission power of
0 dB.
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Figure 2.10: Path loss dependent on distance.

2.4 Performance Measure

The following section will describe the performance measure for an IPS. The estimation
error will is depending on input-data. The first being the euclidean distance measured
from the position estimate, p̂ to the actual true position, p. We define the error as
the Position determination error (PDE) and given a two dimensional plane (x,y) with
p̂ = (p̂1, p̂2) and p = (p1, p2), the PDE can be calculated as eq. (2.8):

PDE =
√

(p1 − p̂1)2 + (p2 − p̂2)2 (2.8)

The second measure is used for the algorithms using distance as input, this is the error
estimated in a single distance measurement (three required for position estimate). As
this can be utilised to see if different algorithms have a bias in the distance estimate, e.g.
if a input-data method is biased towards estimating a longer distance than the actual
distance. Therefore is, similarly to positions, introduced a true distance (d), distance
estimate (d̂), and a distance determination error (DDE).

DDE = d̂− d (2.9)

Both PDE and DDE are measures of accuracy, however the precision mentioned earlier
is also very important. The precision is described by the distribution of either the PDE
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2.4. PERFORMANCE MEASURE

or DDE. For the following chapters, the precision will either be described in terms of the
distribution of the error source, or by the distribution of simulated or measured errors in
DDE or PDE.

In practice, the impact of the environment can introduce large variations on the DDE
and PDE. Both AoA, ToA and RSSI has large variations in the indoor environment and
chapter 3 evaluates the performance of the different characteristics to find a target for
further examination and evaluations.
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Chapter 3

Simulations of Basic Localisation
Methods

The following chapter will describe the evaluation of the basic channel characteristics and
the corresponding methods which can be utilised for position determination. Simulations
will be made dependent on the fluctuations, attenuations and other system performance
metrics, which impacts the system. The performance metrics is depending on the method
investigated.

For some of the localisation methods, especially scene analysis, inspiration and evaluation
results were sought elsewhere.

The following sections will provide simple position estimations based on the different
localisation methods and channel characteristics mentioned in sections 2.2 and 2.3. Sec-
tion 3.1 will investigate AoA used with triangulation, where the largest error occurs due
to the wide angular spread of the received signal. Section 3.2 examines the usage of RSSI,
first in the case of fingerprinting and later as a measure of distance. The largest error
here occurs due to fluctuations in RSSI. Following in section 3.3 will be an examination
of ToA and the performance of this. The largest error occurs due to the bandwidth of the
system and detectability of the direct path. Section 3.4 concludes the basic simulations
and summarize the results.

The reason to investigate the basic localisation systems and the performance of these is to
find the most promising technique to further investigate for indoor localisation. Therefore
no complex or advanced assumptions or algorithms are made for the following evaluations.

3.1 AoA

Examining the angle of arrival for an IPS is a difficult task, as reality shows an AoA
which is uniformly distributed in angle between [0;2π]. This is a result of the reflection
on surfaces in e.g. an office. Reflections are made on walls, floors, ceilings, desks, chairs,
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3.1. AOA

doors, etc. A raytracing sketch is found on fig. 3.1.

Figure 3.1: Sketch of an example of isotropic radiating transmitter and the reception at the
receiver. Figure from [8].

Trying to estimate the position of a receiver is impossible with only the AoA if no direc-
tivity can be derived from the angular distribution. From [9] it is found that the arrival
of direct and reflected paths can be modelled as clusters. As the signal arrives in clus-
ters, it is determined that so does the angle, meaning each cluster has its own angular
distribution, see fig. 3.2.

Figure 3.2: The arrival of a single transmitted signal, with respect to delay. Denoted h(τ).
Figure from [9].

Measurements carried out suggest clusters arriving at a stationary node having laplacian
distribution. The Laplace distribution PDF is defined as eq. (3.1). [9]

L(x|µ, σθ) =
1√
2σθ
· e−|

√
2·(x−µ)/σθ| (3.1)
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3.1. AOA

where µθ is the mean angle and σθ is the standard deviation of the angle. From [8, 9]
surveying the indoor environment with regards to AoA, the laplacian distribution is found
to have the best fit for σθ distributed between 22-26◦. The distribution created using
eq. (3.1) is shown on fig. 3.3.
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Figure 3.3: AoA distribution modelled as a laplacian distribution with µθ = 0 and σθ = 22-26◦.

As mentioned the general mean angles are distributed U [0, 2π], but if the signal arrives
with a detectable direct path, it is assumed possible to identify the AoA for the first
cluster. For triangulation at least 2 nodes are needed, also it should be possible to
identify the first cluster at each node.

A system based on AoA have an accuracy which is dependent on the amount of nodes
installed, this is due to the accuracy being a function of the distance from tag to node.
It is a known that a small change in angle at the node, corresponds with a large change
of position estimate far from the node. Therefore dense deployment of nodes or accurate
AoA measurements is required.

AoA has been evaluated with the following assuptions, see table 3.1.

Node and tag position distribution in X and Y U(0,35)
Angular receiption distibution L(µθ,σθ)
µθ 0◦

σθ 22− 26◦

Tag amount 1
Node amount 3

Table 3.1: Assumptions used for simulations.

Figures 3.4a and 3.4b show best and worst case for amount of intersections with 3 nodes
and 1 tag, it is assumed that the 3 nodes can not be placed within 5 m of each other.
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Figure 3.4: Best and worst case scenario for intersecting points. Transceiver is location of the
tag.

A set of measurements is simulated, redistributing the nodes and tag and calculating the
intersecting points. Further the algorithms in figs. 3.5a and 3.5b is used for evaluation.
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(a) Neglecting algorithm based solely on 1 in-
tersection point.
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(b) Algorithm calculating the average of in-
tersection points.

Figure 3.5: Algorithms used for evaluating AoA.

The resulting PDE is plotted as a cumulative distribution function (CDF) found on fig. 3.6.
It is seen that the averaging algorithm achieves a more accurate estimate, however the
errors are still ranging from 5 m - 7.5 m at the 50 percentile level. and errors as large as
13 m - 17 m is achieved at the 90 percentile level.
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Figure 3.6: CDF for PDE using AoA.

3.1.1 Conclusion of AoA

Summarising the usage of AoA as input data to a triangulation algorithm it can be seen
that the system is inaccurate, with a mean error of 5-7.5 m. The main problem with AoA
is first of all the large angular spread, but also the ability to detect the first arriving peak.
If the first peak is undetected this introduces large errors (or no position at all).

3.2 RSSI

The following section will investigate the use of signal strength to create an IPS.

First is the usage in a fingerprinting system. A fingerprinting system creates a lookup ta-
ble depending on different RSSI values from anchor nodes, then when a position is wanted
a measurement is made and matched with the lookup table. The lookup could either be
based on a simple statistical method, or by the usage of neural networks to train data as
mentioned in section 2.3.3. The results here is found in other literature.

Second is a propagation method, where a path loss model is calibrated to match the given
environment. Then a transmission from a tag is made, and the RSSI from a set of nodes
is translated into a distance and through lateration the position of the tag is estimated.
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3.2. RSSI

3.2.1 Fingerprinting

For the accuracy of a fingerprinting system, inspiration and results in other literature has
been found, as implementation and testing of such system would require much time, also
the precision of fingerprinting systems differs a lot depending on the individual system
and setup area.

Examining the fingerprinting based method, the accuracy in these systems depends mostly
on the amount of nodes and the resolution of the fingerprinting grid, together with the
fingerprinting algorithm.

The different positioning algorithm has been analysed with regards to performance, this
is shown in fig. 3.7a. Figure 3.7b shows how the changes to distance between grid points
changes the accuracy of the PDE. The evaluations are made in a 48 m x 22 m area with
static preinstalled nodes. [6]

The examined algorithms are NN(Nearest neighbour), KNN(k-nearest neighbour), WKNN(weighted
k-nearest neighbour) and EWKNN(enhanced weighted k-nearest neighbour), the algo-
rithms are described in fig. 2.7. Using the more advanced algorithms increases the accu-
racy of the system, a KNN algorithm implemented in the system gives 2 m accuracy with
a 45% confidence level, however for a EWKNN the 2 m accuracy is given with a 60%
confidence. [6]

It seems to be a general improvement of 15% confidence changing the algorithm from NN
to EKWNN.

(a) The CDF for distance error using differ-
ent algorithms in a fingerprinting system.

(b) The impact of the spacing between grid
points for different algorithms.

Figure 3.7: Impact of spacing and the CDF for distance error in fingerprinting system. Figures
from [6].

Assuming the usage of a fingerprinting system is navigation or tracking of moving objects
or persons, changes in the environment occurs as people moves around. As a result of this,
even though the system is calibrated at each reference point, a fading due to shadowing
would affect the systems position estimates.
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3.2.2 Distance Propagation Method

In the following section the accuracy of a distance propagation method will be investigated.
Generally a propagation based method is inaccurate compared with a fingerprinting sys-
tem, which often is a result of shadow fading in an indoor environment. The impact of the
shadow effects are lowered in a fingerprinting system as the calibration procedure takes
into account the attenuation of walls, roofs and other stationary attenuating objects.

The RSSI at a node corresponds with a distance due to the path loss as function of dis-
tance as seen on fig. 3.8. Using Friis freespace model for calculating the corresponding
distance, measuring a RSSI of -60.5 dBm equals a distance of 10 m and -66.07 equals 20
m, see fig. 2.10 and eq. (2.7). The simple freespace model does however not match the
attenuation introduced in an indoor environment and therefore the LNSM(Log-Normal
Shadow Model) is often utilised instead, as this is a better match compared with exper-
imental data and also includes a probabilistic variation of the shadow effect. From [10]
the LNSM model is described as in eq. (3.2).

PL(d) = PL(d0) + 10ηlog10(
d

d0

) +X (3.2)

Where d0 is the near-earth reference distance, η is the path loss index often between
2-5 and Xσ is a zero mean gaussian random variable, with σX being standard deviation
between 2-8 dB from [10,11]. Assuming no variation in the model(Xσ = 0), the distance
become deterministic and the resulting propagation model is plotted in fig. 3.8 with η = 3
and PL(d0) = 41 which is experimental values from [10]. It seen that the LNSM which
represents experimental values has a higher path loss. The LNSM will be used for further
calculations in this section, as it is assumed that this model better represent the actual
attenuation of a signal in an indoor environment. For a real life implementation of a
distance propagation system, it would require a fitting of a path loss model with the
environment that it is going to be deployed in.

Taking the variations of the LNSM into consideration the signal with variation can be
found on figs. 3.9a and 3.9b. Due to the fluctuation of the RSSI a distance is no longer
deterministic from a single RSSI value but is now ambiguous, e.g. -70 dB ranges from a
distance between 1 m and 40 m in the case that σX equals 6, however for the case that
σX is 2 the span is approximately 6-13 m.

It is known that for a setup of a IPS system, the nodes would be placed in known positions
however with distances in between. Therefore simulations with 3 randomly distributed
nodes and a tag is made, which results in a CDF the PDE (position determination error)
as seen on fig. 3.10. For the simulations a standard deviation of the shadow fading of 2
dB was used. To compare with simulation results from section 3.1 the node positions are
U(0, 35 for both X and y direction and restricted to have a minimum distance between
them of 5 m.
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Figure 3.8: The received RSSI corresponding with distance for free space and LNSM.
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Figure 3.9: LNSM with shadow fading implemented with different standard deviation.
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Figure 3.10: Distance errors for uniform distributed nodes and tag.

3.2.3 Conclusion of RSSI

For the RSSI systems, the fingerprinting system could be used for smaller areas, however
creating a fingerprinting map for e.g. a warehouse or hospital would require a huge offline
phase and the variations in these areas are high due to the movement in such places.

For the distance propagation method, the accuracy is better compared with the AoA
method. The AoA has an accuracy of 13.5 m with 90% confidence in a 35x35 m area,
whereas this has increase to 7.5 m with 90% confidence by using RSSI instead. It should
be noted that this is by assumption that the noise fluctuation is low.

3.3 ToA

In the following section the accuracy of ToA also known as ToF examined. Generally a
ToA system is not accurate in a multipath environment due to the attenuation of signals
and reflections created. The reason for this is often the bandwidth (B) as this is the
determining factor for differentiating the direct path signal from the reflected signals.
A higher bandwidth of the system increases the time resolution thereby increasing the
chance of correct ToA estimation.

A ToA system is generally based solely on the performance of detecting this first peak.
The reflecting paths for the purpose of creating ToA is not very important for creating an
IPS, only the signals arriving very close to the direct path has impact on the performance.

As the time resolution is given by the bandwidth of the system, this can be described as
eq. (3.3):
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Tres =
1

B
(3.3)

Generally in a system estimation of ToA can’t be obtained more precise than what is
allowed by the system bandwidth.

The reflections can be seen as a set of sinc-functions with different time-delays and com-
plex weights, as mentioned in appendix B. It should be noted that the sinc-function occurs
when a rectangular window is used to convert the frequency domain data to time domain
impulse response. Using a hamming window instead the pulse shape would be a raised
cosine, as the sidelobes are suppressed. Having a large bandwidth allows for these pulse
shapes to be narrower, thereby allowing for easier differentiation between the different
paths. By having B = ∞ the pulse shapes converges to a dirac pulses and the exact
time-delay can be found.

As B = ∞ is not possible to obtain, the received signal will be a sum of the pulses at
different time-delays.

It can be seen that the having a system with a high bandwidth will allow for precise ToA
estimates whereas creating a ToA IPS system seems like a good solution. For a signal in
a LOS scenario the peak is easily detected, see fig. 3.11a. However for a NLOS situation
the direct peak can be highly attenuated and might be undetectable, see fig. 3.11b. For
the ToA method the undetected direct path will result in an estimation error.
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(a) Channel impulse response for Test 3.
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(b) Channel impulse response for Test 4.

Figure 3.11: Measured wireless channel for LOS and NLOS condition. B = 1GHz. X-axis
are converted from time to distance through eq. (2.3). The channel responses are measured in
appendix A.

As mentioned lowering the bandwidth make it harder to detect the different peaks.
fig. 3.11b and fig. 3.11a are wireless channels as seen with B = 1 GHz and the direct
paths for the LOS case is easily detected. The same wireless channels as seen with a
bandwidth of B = 40 MHz is found on figs. 3.12a and 3.12b. As it can be seen, even
though peaks are found, in a lower bandwidth system the first peak doesn’t necessarily
correspond with the true ToA, and large estimation errors can be introduced.
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Figure 3.12: Measured wireless channel for LOS and NLOS condition. B = 40MHz. X-axis
are converted from time to distance through eq. (2.3). The channel responses are measured in
appendix A.

3.4 Conclusion of Basic Localisation methods

To summarize the evaluation of the basic localisation systems different methods has been
tested. The AoA does not seem to achieve satisfying accuracy for an IPS. The evaluations
made shows accuracies of 5-7.5 m, however this has been tested with a detectable direct
path. For an undetectable path, the accuracy would be even worse.

For the RSSI the performance of the fingerprinting technique seems to obtain suitable
performance. However the calibration and setup cost and time does not seem to fit the
purpose of installing an IPS in larger areas.

RSSI used for measuring distance could be used with an averaging of several uncorrelated
measurements as this would help combat the fluctuations from the wireless channels and
therefore achieve better accuracy.

Using ToA as a measure of distance to an object seems to be the most suitable option, as
a system implemented with a high bandwidth could achieve rather accurate and precise
estimates of the ToA. The largest error in a ToA system occurs when the direct path is
attenuated below receiver sensitivity, as this results in an estimation error.

For further investigation the ToA method will be examined and the impact of bandwidth
and a more complex computation methods will be utilised to further improve perfor-
mance.
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Chapter 4

ToA Positioning with Time
Resolution Enhancement

The following chapter will describe the investigation of a more complex ToA algorithm to
further improve the ToA detection when using lower bandwidth systems. This is a result
of the ToA concluded the most promising technique in chapter 3.

From the further investigation of enhancing the ToA system, it is seen in several articles
[12–15], that the eigenvalue decomposition (EVD) method seems like a good candidate
for developing a high-accuracy IPS. EVD is utilised in a set of different algorithms, from
these the MUltiple SIgnal Classification (MUSIC) algorithm is used.

The chapter will consist of two parts, in sections 4.1 to 4.6 is a description of a system
model for a transmitter and receiver system. Following in section 4.7 is a description of
the MUSIC algorithm.

4.1 I/Q baseband description

The system will only be described using the equivalent baseband signal. For describing a
transmitted sequence such as data or pseudo random noise (PRN) the signal can be de-
scribed by its amplitude and phase or by the baseband signal in terms of the mathematical
representation of I/Q. I and Q are respectively the in-phase and quadrature component
of a signal.

The structure of the I/Q baseband signal can be found from the amplitude and phase of
the signals as found on fig. 4.1.

Using simple trigonometric properties, the following equations can be constructed:

A =
√
|I2 +Q2| (4.1)
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Figure 4.1: Baseband signal representation setup. Picture from [16].

φ = tan−1(Q/I) (4.2)

I = A · cos(φ) (4.3)

Q = A · sin(φ) (4.4)

where A is amplitude and φ is phase.

Using Eulers form we can write the I and Q signals into a plain signal using
cos(φ) + j · sin(φ) = ej·φ we can write the complex signal I + jQ as:

I + jQ = A · ej·φ (4.5)

Section 4.4 explains how the I and Q terms can be used to transmit a BPSK modulated
signal.

4.2 System Model

The overall block diagram describing the transmitter/receiver system for implementation
of a MUSIC algorithm is found on fig. 4.2. The yellow marked blocks are not described,
Therefore only the equivalent baseband signal will be described together with the impact
of the wireless channel and the changes introduced by the passband filters in the down-
conversion. Therefore the errors introduced in the RF modulator and demodulator will
not be taken into further consideration.

The ”MUSIC algorithm” block is a larger block and is further described in section 4.7.
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Figure 4.2: Block diagram for overall IPS system with data acquisition and calculations. Yellow
blocks are not described in this thesis.

4.3 Identification data

Assuming that several tags are used for locating several different objects, it is important
to be capable of differentiating the tags from each other so that identifying the tag is
possible.

To identify which tag is communicating its position, ID data is transmitted as part of the
transmission sequence. The ID data could also include other measures such as tempera-
ture, pressure or similar.

The data sequence will be denoted d(t) and described as:

d(t) for t ≤ Td (4.6)

where Td is the duration of the data for transmission. The data sequence d(t) will be used
together with the PRN sequence to transmit the ID data, obtaining processing gain and
detecting the ToA of the system.

The Galileo GPS the system generates d(t) with 50 bits/s and the PRN sequence with
1.023.000 chips/s. For GPS the PRN sequence p(t) is 1023 chips. Transmitting 1 data bit
from d(t) is it required to transmit 20 PRN sequences as Td

Ts
= 20. where Ts is transmission

time of a PRN sequence.
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4.4 Gold Code PRN Sequence

For transmitting the data d(t) and to obtain an estimate of the wireless channel a PRN
sequence is utilised for making direct sequence spread spectrum (DSSS) transmission.

The idea is to transmit the data d(t) with a given bandwidth Bd over a much larger
bandwidth Bp given by the PRN sequence p(t). This introduces a so called spread-
ing/processing gain, GP , which allows for longer transmission ranges compared with just
transmission of the data directly onto the carrier.

GP =
Bp

Bd

(4.7)

where Bp is the bandwidth of the PRN sequence and Bd is the bandwidth of the ID
data [17].

The PRN code p(t) can be seen as a sequence of chips c(t).

c(t) is defined as eq. (4.8):

c(t) =

{
1, for − Tc/2 < t < Tc/2 ,

0, Otherwise
(4.8)

where TC is duration of a single chip.

Using the chip time c(t), the PRN sequence p(t) is given by eq. (4.9)

p(t) =

N∑
i=0

c(t− i · Tc − Tc/2) for 0 < t < Ts (4.9)

Where TS = N · Tc and N is amount of chips.

p(t) is the PRN code used to make DSSS on the data signal, d(t). The method for
combining the data with the PRN sequence is XOR’ing the bits as seen on fig. 4.3. The
spreaded sequence will be denoted S(t).

Figure 4.3: Combining of d(t) and p(t) to make S(t).
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4.4. GOLD CODE PRN SEQUENCE

The sequence S(t) is transmitted over the wireless channel using BPSK. Represented as
a baseband signal where the phase, φ, of the transmitted signal is [0, π] to represent the
bits 0 and 1. For φ = [0, π] the baseband signal can be represented using only the inphase
term, I, as the Q term using eq. (4.4) equals zero.

The transmitted baseband signal can be found on fig. 4.4, assuming an amplitude A = 1.
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Figure 4.4: Generated gold code sequence.

The ID data is not the important factor, the PRN sequence is what is utilised for obtaining
a better ToA estimate. Therefore further analysis of S(T ) will not be performed and only
the PRN sequence p(t)will be analysed further.

For the PRN sequence p(t) a Gold Code is utilised, the reason for this is the unique
properties held by this specific code, namely a sharp autocorrelation and very low cross
correlation with other PRN codes.

The autocorrelation of the PRN sequence is denoted Rp(τ) and defined in eq. (4.10):

Rp(τ) =
E[(p(t)− µp(t))(p∗(t+ τ)− µp∗(t−τ))]

σpσpt−τ
(4.10)

where µ and σ are the respective mean and standard deviation for p(t).

The cross correlation of two independent sequences p(t) and x(t) is denoted Rpx(τ) and
is given by eq. (4.11):

Rxy(τ) =
E[(p(t)− µp(t))(x∗(t+ τ)− µx∗(t−τ))]

σptσxt−τ
(4.11)

where µ and σ denoted by indexes are the are the respective mean and standard deviation
for the distribution.

To generate the PRN sequence a psuedo random noise generator with deterministic com-
binations is used. The PRN code for Galileo GPS is given by the following equations:
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4.4. GOLD CODE PRN SEQUENCE

P1 = 1 + x3 + x10 (4.12)

P2 = 1 + x2 + x3 + x6 + x8 + x9 + x10 (4.13)

The polynomials is actually not polynomials, but are indexes to a MLS (maximum length
sequence) generators, with register lengths n. The MLS generators generates two inde-
pendent PRN sequences and by combining those two by XOR’ing, a PRN sequence is
generated. The resulting PRN sequence even though deterministic holds the same sta-
tistical properties as noise. Which is the high autocorrelation as mentioned earlier and
the low cross correlation with other sequences or noise. The generator system is found on
fig. 4.5:

1 2 3 4 5 6 7 8 9 1 0

XOR

1 2 3 4 5 6 7 8 9 1 0

XOR

XOR C/A Gold Code

XOR

Phase SelectorClock 
generator

Polynomial 1

Polynomial 2

a_i

Figure 4.5: PRN gold sequence generator setup.

From [17] the maximum correlation of the system is described in terms of the length, N
of the generated PRN sequence, the description is given by eq. (4.14).

The maximum autocorrelation for a PRN gold sequence is found at Rp(0) which is the
peak of the function. The autocorrelation for a gold code with n = 10 will be 1 at τ = 0.
The autocorrelation for a PRN gold sequence for τ 6= 0 is 1/N .

Rp(τ) =

{
1, for τ = 0 ,

1/N, otherwise
(4.14)

From [18] the maximum cross correlation between different sequences of Gold Code is
described. By choosing the different codes w.r.t. a known boundary the codes can be
generated(chosen) with a known maximum cross correlation between sequences.

The maximum cross correlation between two different sequences p1 and p2, each which
are Gold Codes, is given by eq. (4.15)
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4.4. GOLD CODE PRN SEQUENCE

|RS1,S2| ≤


2(n+1)/2 + 1

N
, for n odd ,

2(n+2)/2 + 1

N
, for n even

(4.15)

where n is the amount of bits in the MLS generator and N is the total length of the
sequence.

Given the Gold code used for GPS satellites, and a MLS generator with n = 10, the
maximum theoretical cross correlation for two different PRN sequences is:

|Rp1,p2| ≤
2(10+2)/2 + 1

1023
= 65/1023 ≈ 0.064 (4.16)

The receiver for a system utilising Gold Code searches to maximize the cross correlation
between the received signal and a replicated gold code sequence at the receiver node.

For the an implemented Gold code generator the corresponding autocorrelation can be
found on, see fig. 4.6.
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Figure 4.6: Autocorrelation of the Galileo GPS system (Gold Code).

As mentioned in eq. (4.14) the maximum correlation is found at Rp(0) = 1. The maximum
cross correlation for the system, as mentioned in eq. (4.15), is 0.0635 and the maximum
autocorrelation value is found to be 0.0625 for the simulations. The reason that the
autocorrelation for the system can obtain the values of the cross correlation of a sequence
and that sequence delayed can be combined to create a third sequence, which also has
the properties of the gold code.
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4.5 Channel

The transmitted sequence p(t) is sent over a wireless channel. The wireless channel will
be described by the use of a multi path environment model with uncorrelated scatters
in both time and frequency domain. The reason for uncorrelated scatters is that each
reflected path due to e.g. tables, walls, chairs, windows and similar, are independent.
Therefore the channel h(t) can be described as a sum of K paths each path i with its own
attenuation αi, phase shift φi and time-delay τi. The model is described in eq. (4.17):

h(t) =

K−1∑
i=0

αi · ejφiδ(t− τi) (4.17)

The channel described by its I/Q terms can be seen on eq. (4.18).

h(t) = hI(t) + j · hQ(t) (4.18)

Using the PRN-sequence description from fig. 4.3 with the corresponding I/Q term, the
transmission of p(t) over the wireless channel is a complex convolution of h(t) and p(t).
Denote the received signal r(t) this can be described by eqs. (4.19) to (4.21):

r(t) = p(t) ∗ h(t) + w(t) (4.19)

= (pI(t) + j · pQ(t)) ∗ (hI(t) + j · hQ(t)) + w(t) (4.20)

= pI(t) ∗ pI(t) + pI(t) ∗ j · hQ(t) + j · pQ(t) ∗ hI(t) + pQ(t) ∗ hI(t) + w(t) (4.21)

Where w(t) is additive white gaussion noise (AWGN).

Using the BPSK transmission the quadrature component for p(t) equals zero and the
above reduces to eq. (4.22):

r(t) = pI(t) ∗ h(t) + w(t) (4.22)

Having a Gold Code as seen on fig. 4.7a convolving this with a wireless channel with only
a 40 MHz bandwidth as seen on fig. 4.7b the resulting convolution (received signal r(t))
is pictured on fig. 4.8.
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(a) Realisation of the first few chips of p(t)
using Gold Code.
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pendix A.

Figure 4.7: Realisation of p(t) and h(t).
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Figure 4.8: Received signal r(t) obtained by a convolution of p(t) with h(t).

4.6 Correlator/despreading

After receiving the signal r(t) it is correlated with a replicate of the known PRN sequence
p(t). thereby obtaining the correlation properties of the Gold Code, and from the high
peaks in the correlation detect the ToA. The autocorrelation properties is described in
section 4.4.

As it is known that a convolution with a signal complex conjugated and time reversed
is the definition of correlation. Therefore using a convolution of r(t) with p∗(−t) the
correlated signal y(t)can be expressed as eq. (4.23):

y(t) = r(t) ∗ p∗(−t) (4.23)
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Which can be rewritten as eq. (4.24):

y(t) = Rp(τ) ∗ h(t) + w(t) (4.24)

It is now seen that y(t) is expressed as the autocorrelation of the sequence p(t) convolved
with h(t). The signal y(t) is shown on fig. 4.9a, this is found by correlating the channel
found on fig. 4.8 with a time shifted version of the intial transmitted prn sequence p(t).
This is plotted together with the autocorrelation for that specific PRN code Rp(τ). From
fig. 4.9b is is easily seen that the the autocorrelation is time shifted by a delay τ , in this
case approximately 75 ns corresponding with a distance of 22.5 m.
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(a) y(t) and Rp(τ) plotted.
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(b) Zoomed on maximum correlation area.

Figure 4.9: Search method for first path delay.

The method for finding the delay which represents the direct path is by using several
shifted cross correlators at the receiver. The cross correlator obtaining the highest corre-
lation level will be chosen as the first arriving peak.

This can be seen as a sweep of RP (τ) over the received signal y(t) to find the maximum
correlation. The timeshift yielding the maximum correlation is chosen as the delay τ0 (first
path signal). For further description of this cross correlation receiver (RAKE receiver),
see [19].

Calculating the maximum of the average of a series of autocorrelation function, it is
possible to determine the maximum of these as seen on fig. 4.9b. The series of different
autocorrelations utilised for averaging is found on fig. 4.10a, together with the average
marked as the black line and the true distance marked with a red stem. The error found
by using this method in different SNR-levels is seen on fig. 4.10b.
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Figure 4.10: Search method for first path delay.

It is seen that the cross correlation estimates distances so that the DDE error lies between
0 and 7.5 m, this is for measurements performed at 0-20 m, however it is expected that
for longer transmission ranges the DDE will increase.

Two approaches can be used to utilise this correlation and peak detection more efficient.
Either the bandwidth B of the system has to be increased to obtain higher time resolution
or the correlation measured can be utilised as input for the MUSIC algorithm.

4.7 MUSIC Algorithm

As it has been shown, the usage of cross correlation for estimating time of arrival is
not suitable for an indoor environment due to the severe multipath scattering which
potentially changes the point of maximum correlation, thereby introducing an estimation
error. The maximum cross correlation detector has its performance improved by increasing
the bandwidth of the transmitted sequence p(t), however for practical purposes this has
been shown difficult. Therefore by deploying an advanced signal processing algorithm,
namely the MUSIC algorithm, low bandwidth ToA systems can be improved by applying
prior knowledge of the system, e.g. knowing the PRN sequence.

Recall the multipath model from eq. (4.17):

h(t) =

K−1∑
i=0

αi · ejφiδ(t− τi) (4.25)
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where K − 1 is the amount of multipath scatters, αi is the attenuation, φi is the phase
and τi is the propagation delay.

To use the music algorithm a model has to be established fist. A linear combination of
autocorrelation functions can be utilised to describe the received signal ȳ.

The following model and vector notation from [20] will be used:

ȳ = Ā · ū+ w̄ (4.26)

where

ȳ =
[
y(0) y(1) · · · y(K − 1)

]T
(4.27)

Ā =
[
RP (τ0) RP (τ1) · · · RP (τK−1)

]T
(4.28)

ū =
[
u0 u1 · · · uK−1

]
(4.29)

w̄ =
[
w(0) w(1) · · · w(K − 1)

]T
(4.30)

(4.31)

where u is the complex weights αi · ejφi from the channel eq. (4.25) and RP (τ) is the
autocorrelation of the PRN sequence shifted by τ . w̄ is additive white noise.

The MUSIC algorithm is as mentioned earlier based on the eigenvalue decomposition of
the covariance matrix of the autocorrelation functions described by eq. (4.26). From [19]
the input covariance matrix for the MUSIC algorithm is described as eq. (4.32):

C̄ = E[ȳȳ∗] (4.32)

which by inserting eq. (4.26) results in eqs. (4.33) and (4.34).

C̄ = ĀE[ūū∗]Ā∗ + E[w̄w̄∗] (4.33)

C̄ = ĀCuuĀ
∗ + Cww (4.34)

Assuming the noise W̄ to be AWGN, eq. (4.34) can be written as:

C̄ = ĀCuuĀ
∗ + σ2

wĪ (4.35)

where σw is the standard deviation of the noise and Ī is the identity matrix. The subspaces
used in the MUSIC algorithm may now be found by eigenvalue decomposition to obtain
Ā and Cuu.
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For now lets assume that the magnitude αi is constant and the phase φi is random
uniformly distributed ∈ [0, 2π] over the different propagation delays τi. In this case it is
known that the rank of the covariance matrix is full for a K × K matrix, and also the
K ×K matrix is non-singular.

Having J > K measurements, from linear algebra and the theory of noise estimation it
is known that the J × J covariance matrix formed by J measurements will have rank K.
Therefore it is also seen that the J−K smallest eigenvalues are all equal to the noise σ2

W . It
should be noted that the K largest eigenvalues are associated with K signal eigenvectors,
and that the J −K smallest eigenvectors are associated with noise eigenvectors.

The remarkable property of the noise and signal eigenvectors is the fact that the subspace
spaced by the noise eigenvectors are orthogonal on the subspace spaced by the signal
eigenvectors.

Denoting the eigenvectors by βi there exists βi for i = 0 . . . K signal eigenvectors and βi
for i = K + 1 . . . J noise eigenvectors with the orthogonal property. From the orthogonal
property the autocorrelation RP (τ) can be used as a projection of the signal subspace
onto the noise subspace, see eq. (4.36).

β̄i
∗ · ¯Rp(τ) = 0 (4.36)

As Rp(τ) must lie within the signal subspace, using the orthogonal subspace to create a
pseudo spectrum, the time delay τ0 complying with the orthogonality will be shown as a
spike in the MUSIC spectrum given by eq. (4.37):

M(t) =
1

J∑
i=K+1

β∗i ·RP (τi)

(4.37)

For more information on the MUSIC algorithm and its properties, see [12–15,19,20].

The Music algorithm requires the covariance matrix for the signal as input. For simula-
tions this is easily obtained as the noise and signal vectors are generated separately as in
eq. (4.35). However for the measured signals the covariance matrix has to be estimated
using the observations, the estimated covariance matrix is denoted Ĉ defined in eq. (4.38):

¯̂
C = 1/L

L∑
i=1

ȳȳ∗ (4.38)

where L is amount of snapshots of the received signal.

A block diagram showing the different steps in the MUSIC algorithm is found on fig. 4.11.

41



4.7. MUSIC ALGORITHM
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Figure 4.11: Block diagram showing different steps in the MUSIC algorithm.

4.7.1 Decorrelating the Covariance Matrix

It was assumed that the phase φ of the received signals were uniformly distribute between
[0, π] and the attenuation α was constant for the signal propagation delay τ . However for
a practical scenario often described by the wide sense stationary uncorrelated scattering
(WSSUS) channel, the complex attenuation u = αejφ is highly correlated, and to avoid
ambiguities uncorrelated data has to be used for input to the MUSIC algorithm. To obtain
uncorrelated data the wireless channel is measured over a set of different frequencies. The
amount of frequencies used is given by N . For each different frequency the covariance
matrix C is calculated. Denoting each different covariance matrices by Ci the uncorrelated
covariance matrix is given by eq. (4.39):

¯̂
C =

1

N

N∑
i=1

C̄i (4.39)

Other methods can also be used to calculate a more precise covariance matrix, these are
briefly mentioned. Other techniques could be the use of spatial smoothing using several
measurements in different manners to obtain a more precise covariance matrix. Another
method is the usage of a Forward-Backward algorithm used to calculate a better estimate
of the covariance matrix by making it more like a Teoplitz matrix (equal elements along
the diagonal of the covariance matrix). The Forward backward algorithm is implemented
using

¯̂
CFB =

1

2
(

¯̂
C + J

¯̂
C∗J) (4.40)

where J is the anti diagonal matrix of size K ×K.

The methods for more precise covariance matrices are not used further.
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Chapter 5

MUSIC Algorithm Performance
Analysis

The system model has been simulated and evaluated w.r.t different parameters when
changes the performance of the system. The following chapter describes and concludes
the results. The following sections will describe how the evaluations were made both for
simulated and empirical data. The largest difference between the simulations and the
measurements is the level of correlation together with the amount of reflections, where for
simulated data few reflection are used and the measurements captures all the reflections
for the given scenario.

For the simulations uncorrelated channels have been simulated, however for the measured
channels the different scatters might not be fully uncorrelated, and as the MUSIC algo-
rithm requires full rank and uncorrelated data the performance might decrease, to obtain
uncorrelated data see section 4.7.1. In simulations the scatters have same power, how-
ever for the measured wireless channel it is seen that the reflections are often attenuated
compared with the direct path peak.

The parameters tested is the SNR, the bandwidth B, the different path delays τ , the
peak-estimation and the amount of samples in both time and frequency, snapshots in
time will be denoted L and frequency will be denoted N . Both different NLOS and LOS
situations are measured and evaluated.

Analysing the performance of the MUSIC algorithm is dependent on several input pa-
rameters, and a full evaluation of these will not be made in this project.

When referring to a ”test” these are the different measurements from appendix A.
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5.1 Analytical 2-path tests

The following section will describe the evaluation of the performance using the MUSIC
algorithm with a simulated wireless channel. The simulations provides insight in the
performance in a controlled environment, where different aspects of e.g. the wireless
channel can be controlled. Performance of a ToA system is measured by its ability to
detect the first arriving peak of a signal, τ0.

Therefore an evaluation of the detection performance for two peaks were made. The peaks
were set were with a static ∆t = τ1 − τ0, where τ0 is the ToA of the first arriving peak
and τ1 is the arrival of a delayed peak.

The simulated channels have been normalized w.r.t. the bandwidth of the system, B.

The simulation was tested on a channel as seen on fig. 5.1 where for different tests,
variations in ∆t are introduced. The MUSIC spectrum, M(t), calculated for the channel
can be found on fig. 5.2. It is clearly seen that M(t) indicates that two paths are found
in the channel and the marked delays, τ , corresponds well with the simulated delays from
fig. 5.1. The simulations were made using SNR = 25 dB, number of time snapshots L = 10
and number of frequencies N = 10.
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Figure 5.1: The simulated channel, with two delays τ0 = 1.2 and τ1 = 1.75. ∆t = 0.55.
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Figure 5.2: MUSIC spectrum calculated for simulations with channel from fig. 5.1. It is easily
seen that the peaks at τ0 = 1.2 and τ1 = 1.75 are found. SNR = 25 dB, L = 10, N = 10.

The evaluation of the required SNR with regards to detecting τ0 and how this is im-
pacted by the different SNR and ∆t is found on fig. 5.3. For these simulations N = 10
different frequencies has been used to obtain uncorrelated data, and L = 20 different
time-snapshots has been taken for each frequency resulting in a total of 200 snapshots.

The error in detectability is the DDE given by eq. (2.9). It is the mean error from the
true distance ,d, to estimated distance ,d̂. Calculating an actual distance would require
that the bandwidth, B, is known.
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Figure 5.3: Test of the ability to detect τ0 with changing ∆t and at different SNR. L = 20 and
N = 10.

45



5.1. ANALYTICAL 2-PATH TESTS

For the purpose of detecting the time of arrival τ0 it can be seen on fig. 5.3 that the DDE
is better when the two peaks arrives within a short ∆t of each other. The curve from
∆t = 0.15, achieves the best DDE at SNR from 0-15 dB compared with other ∆t-tests.
At the low SNR compared with the other tests, having peaks arrive close to each other
still seems to obtain satisfying accuracy. This is explained by the fact that two paths
arriving within a short ∆t will be seen as a single path by the system. Therefore the
DDE in the case that the two paths has equal power becomes half the time difference,
DDE = ∆t

2
.

For two close arriving paths, the DDE is good for low SNR (0-15 dB), however a higher
SNR than that required to obtain low DDE for the case of ∆t = 0.25 and ∆t = 0.35
is required to obtain the exact distance. This is because the paths arrives close to each
other (δt = 0.15) and therefore higher SNR is required to distinguish these. This is only
the case when the paths have equal power and only two paths are present.

The impact of the amount of uncorrelated samples have been tested. The method for
obtaining uncorrelated samples in the WSSUS channel is to make frequency hopping
over N different frequencies. The simulations are made at 50 iterations for each SNR,
and afterwards an average is calculated. It can be seen that changing from N = 10 to
N = 25, the SNR required to obtain the same DDE is lowered by approximately 4-5 dB,
see fig. 5.4.
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Figure 5.4: Changes in amount of different frequencies N, to examine impact of DDE at
different SNR levels. L = 10.

The DDE improvement using N = 200 has also been simulated. From this it can be seen
that having enough uncorrelated data, even for SNR levels from 0-15 dB it is possible
to obtain a low DDE. However in a practical scenario it might not be possible to obtain
this amount of uncorrelated frequencies as there are limitations in the frequency band
available, for further information of obtainable uncorrelated frequencies see appendix A.5.
The evaluation of measured wireless channels correlation impact is found in section 5.3.
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5.2 Experimental evaluation of MUSIC algorithm

In order to analyse the performance in a real life implementation, 6 different scenarios
has been measured, 3 LOS and 3 NLOS setups. The 3 LOS measurements are the same
scenario but with an increasing distance between transmitter and receiver. For a descrip-
tion of how the different setups were measures see appendix A. The different measured
wireless channels and their corresponding frequency sweeps are found in appendix A.4.

A measured LOS and NLOS channel from appendix A are found on fig. 5.5. Note that
the NLOS has a large attenuation of its first peak arrival in the NLOS case, see fig. 5.5b.
The figures are created w.r.t. distance on the x-axis.
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(a) Test 1, LOS condition, B = 1GHz.
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(b) Test 5, NLOS condition, B = 1GHz.

Figure 5.5: Channel impulse response h(t) for two different measurements of wireless channel.

The measurements result in a set of impulse responses. To obtain the covariance matrix
used for MUSIC algorithm input, simulations has been made transmitting a PRN Gold
Code sequence through the measured wireless channel and correlating the received signal
with a replica of the transmitted sequence, see sections 4.5 and 4.6. The correlations
now obtained is utilised to calculate the covariance matrix using eq. (4.38) and eq. (4.39)
used as input for the MUSIC algorithm, see section 4.7. fig. 5.6 is showing 10 different
measured correlation functions, from N = 10 different frequencies.

The SNR is tested by adding white noise to each impulse response. The SNR is measured
by calculating the variance of the measured channel signal and scaling the added noise
correspondingly to obtain the given SNR.
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Figure 5.6: Measured CCF from 10 different frequencies. Gold code is assumed for the trans-
mitting PRN sequence. Figure is only showing the relevant sample area. B = 40MHz.

Using the covariance matrix as input for the MUSIC algorithm, the corresponding MUSIC
Spectrum M(t) obtained can be seen on fig. 5.7d. The first peak of the music spectrum
is detected at 42 ns and it is known that the true peak is 38.3 nS(11.5 m) therefore this
measured peak of the spectrum results in a DDE of only 1.11 m.

The procedure mentioned above has been utilised with the 6 different scenarios mentioned,
for more information see appendix A, to evaluate the performance of the DDE for each
scenario. The DDE has been tested at different SNR levels. Tests have been made at B
= [40, 60, 80] MHz and with 20 iterations for each tested SNR for each scenario at each
bandwidth.

The evaluations of the bandwidth B is found on figs. 5.7a to 5.7c and how this impacts
the music spectrum for one of the test is found on fig. 5.7d.
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(a) B = 40 MHz, measured DDE for test 1-6.
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(b) B = 60 MHz, measured DDE for test 1-6.
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(c) B = 80 MHz, measured DDE for test 1-6.

0 5 10 15

10-8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
B=40MHz
Peak, 40MHz
B=60MHz
Peak, 60MHz
B=80MHz
Peak, 80MHz

(d) Measured music spectrum at B =
[40,60,80] MHz. Measurement used is test 6.

Figure 5.7: Evaluation of different input parameters for MUSIC algorithm. L = 20 and N =
10 for all tests.

It is seen that the accuracy increases with an increasing bandwidth. Also as test 1-3 are
the LOS and test 4-6 are NLOS it is also noted that for the NLOS situations the DDE is
the worst at 1.5-2.5 m accuracy at SNR = 0 dB. For the LOS situations a DDE generally
below 1 m can be achieved except for the 40 MHz bandwidth where the accuracy of 1 m
for LOS is first achieved for SRN > 10 dB.

The most important from the DDE results is that by using the MUSIC algorithm the
accuracy achieved is better than that achieved by the use of correlation max search from
fig. 4.10b. The correlation maximum search achieves accuracies for test 1-6 in between 1 -
7 m with a bandwidth B = 40 MHz. The MUSIC algorithm with same system parameter
enhances the time resolution thereby achieving accuracies between 0 - 2.5 m. Where
looking solely on the LOS cases the accuracies lies between 0-1.5 m.

Similar performance for the MUSIC algorithm and correlation max search can be found
in [19], where for a larger set of empirical data the following MUSIC and correlation search
CDF is found, see fig. 5.8.
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Figure 5.8: Resulting correlation search (CCF max search) and Music Algorithm(HRDE) for
empirical measurements performed in [19].

5.3 Correlation impact

As the MUSIC algorithm requires a full rank covariance matrix as mentioned in section 4.7,
the performance depending on the amount of frequencies used to obtain uncorrelated data
has been evaluated. Using B = [40, 60, 80]MHz and N = [10,15,20] different frequencies
the DDE of test 1 has been calculated to give an indication of the impact of frequency
amount and bandwidth changes. The result is shown on fig. 5.9.
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Figure 5.9: The decrease of DDE at different SNR levels depending on B and N .

It is seen that the amount of uncorrelated data does not seem to have a definitive impact,
It can be seen that increasing the amount of uncorrelated data N both has possibility to
increase or decrease the DDE. It can however be seen that increasing the bandwidth of
the system B increases the accuracy. Especially the line of sight measurements accuracy
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are increased whereas the DDE for the NLOS measurements saturates towards the first
detectable peak of impulse responses. This is also backed by [13, 19] stating that it is
more important to have high time resolution on the measured auto correlation functions
used as input for the MUSIC algorithm, than having a lot of frequency snapshots N .

The difficulty might be to create a system with a wide bandwidth, compared to creating
a narrowband system. Therefore the pros and cons for creating a real life implementation
should be a weighting between complexity of the system and acceptable accuracy and
precision.

5.4 Measurement precision and accuracy

The precision of the measurements are dependent on the SNR. At lower SNR the fluctu-
ations of the DDE is higher than at larger SNR. As small DDE can be achieved using
different uncorrelated frequencies and a high bandwidth, it does not mean that large errors
can not occur. Also even though the DDE saturates the precision of the measurements
still allow for large errors. Test 3 has been used as a LOS case where the error distribution
for different SNR levels has been evaluated. The distributions of error was found to be
normal distributed with mean µ and standard deviation σ, from the error data a fitting
of a normal distribution was made. The PDF of this is found on fig. 5.10 for SNR levels
of [0, 10, 20].
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Figure 5.10: Fitted PDF of DDE at different SNR-levels. B = 40 MHz, L = 20, N = 10. Test
3 was used to generate PDF.

In table 5.1 is found a mean(accuracy), µ, and standard deviation, σ,(measure of precision)
averaged over test 1-6. At low SNR both the accuracy and the precision are low, even with
a lot of measurements the accuracy will not reach a mean of 0 m, but saturates towards
it. However as the SNR increases it is seen, as expected, that the standard deviation, σ,
decreases.
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SNR [dB] 0 1 2 3 4 5 10 20 30 40
µ [m] -1.04 -0.97 -0.88 -0.81 -0.75 -0.66 -0.5 -0.25 -0.23 -0.22
σ 0.4 0.33 0.29 0.22 0.22 0.2 0.117 0.08 0.067 0.046

Table 5.1: Mean and standard deviation of measurements at different SNR levels. Saturation
in both accuracy and precision is observed. B = 40 MHz.

5.5 Signal Space Evaluation

It is important to note that due to the method of eigenvalue decomposition used in the
MUSIC algorithm, it is a critical point of interest to investigate the changes in accuracy
by choosing a wrong amount of noise eigenvectors to use for music spectrum estimation,
see section 4.7. As the covariance matrix will hold K signal vectors and J −K − 1 noise
eigenvectors, where J is the rank of the covariance matrix, it is important to choose the
correct amount of noise eigenvectors. The amount of noise vectors to use J −K − 1 will
be refered as V . Using test 1 the impact of choosing V incorrect evaluated. For more
information on the amount of vectors, see the eigenvalue decomposition mentioned in
section 4.7.

A stem plot of the eigenvalues is found on fig. 5.11a, it can be seen that there exists 3
eigenvalues larger than σ2

w. Thoose the amount of noise eigenvectors to use for estimation
of the spectrum is V = J−K−1 = 77 as the rank of the covariance matrix is 81. Testing
the amount of eigenvectors to estimate the spectrum from V = 1 . . . 81 can be seen on
fig. 5.12. It is expected to see a saturation after V > 3 as no signal vectors are used for
MUSIC spectrum estimation.

It can be seen on fig. 5.11b that at lower SNR it can be difficult to estimate k therefore
introducing large errors. To overcome this problem choosing V << J − K − 1 than an
initial estimate of the amount of signal vectors is preferred as seen on fig. 5.12 which
shows saturation even for choosing the amount of noise eigenvectors lower than the initial
guess.
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(a) B = 40 MHz. SNR = 20 dB.
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Figure 5.11: Stemplot of eigenvalues for the EVD of the covariance matrix. L = 20, N = 10.
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Figure 5.12: Choice of i values for estimation for the MUSIC spectrum, M(τ). J tested from
1-30 as saturation is already introduced in the earlier J-values.
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Chapter 6

Conclusion

In this thesis the basic performance of indoor localisation systems was investigated. Chap-
ter 3 consist of an analysis of different methods for indoor positioning, both the methods
used to calculate the positions of a tag, and the wireless channel characteristics which
can be used to calculate input data for the positioning methods. Signal strength, Time
of Arrival and Angle of Arrival was investigated to evaluate the performance especially
w.r.t. the changes in a wireless channel and the errors this introduces. The Time of
Arrival system was concluded the most promising technique and the thesis transitioned
into an analysis of this.

For ToA as measure of distance different ToA detection methods was investigated. These
being the general approach of using a correlation maximum search based on correlation
properties of the pseudo random noise codes used. And the use of the MUSIC algorithm
to estimate the ToA based on a eigenvalue decomposition of the signal thereby exploiting
the properties of the signals to increase time resolution for better accuracy.

Further in chapter 4 a system description and model for a ToA system is described used
for further simulation of the system and for describing what factors should be taken into
consideration in a real life implementation. The evaluation of the correlation search is
also made and it is shown that accuracies for both LOS and NLOS in the area of 1 - 7 m
can be achieved using both simulated and empirical data. Lastly the section presents the
MUSIC algorithm and describes the steps to obtain the MUSIC spectrum M(t).

Chapter 5 evaluates the MUSIC algorithm for simulations of the model described for
a ToA system. For simulations the impact of scatter arrival, SNR and correlation was
evaluated. The measurements performed are examined and the MUSIC spectrum is used
to estimate the ToA of the first peak for the measured channels. Depending on the
SNR, accuracies < 2.5m can be obtained for NLOS situations and errors < 1m can be
achieved for LOS situations. It is also found that increasing the bandwidth B of the
system increases performance of the accuracy. Going from B = 40MHz to B = 80MHz
improves the accuracy by 0.5-1 m. For SNR levels tested it is seen that the precision
increases with increasing SNR, however for the empirical data the accuracy with enough
measurement does not seem to change. The amount of uncorrelated data was investigated
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and it is found that 10 sets of uncorrelated frequencies are sufficient for achieving good
accuracy. It is seen from the NLOS cases that the estimation error has limitations for
this case as an undetected direct peak will not be present in the MUSIC spectrum.

The MUSIC algorithm is capable of enhancing the traditional method of correlation max
search. The higher time resolution provided for low bandwidth systems gives a significant
improvement in accuracy however it also increases the complexity of a system. ToA with
higher precision is possible to create using the MUSIC algorithm.

6.1 Future Work

As the MUSIC algorithm has been used and is a known signal processing technique,
several varieties and improvement os this has been developed. For further improving the
system and the corresponding DDE results implementations of these even more advance
MUSIC algorithms could be made. The MUSIC algorithms which is expected to improve
the systems performance is the EV (eigenvector) method. The reason for improvements
in this algorithm is that the noise eigenvectors are expecte to all be equal to σ2

w for a
theoretical implementation. However for an actual estimate covariance matrix the noise
eigenvectors are 6= σ2

w and by utilising a normalisation with the eigenvalues it is found
in [14] that the MUSIC spectrum is less sensitive to inaccurate estimates of the noise
eigenvalues.

Therefore the music spectrum would be given by:

M(t) =
1

J∑
i=K+1

1
λi
β∗i ·RP (τi)

(6.1)

where λ is the eigenvalue of the corresponding noise vector βi.

Also implementation of the Forward Backward algorithm mentioned in section 4.7 to
obtain a toeplitz matrix could be implemented to further improve the estimation. Another
MUSIC variant which is often used or referred to is the ROOT-MUSIC algorithm, this
algorithm has however not been further investigated.

Other methods such as the ESPRIT algorithm is also widely used within the estimates of
AoA and ToA and should also be implemented and tested.

To evaluate the MUSIC algorithms performance, a more strategic approach to the mea-
surement campaign should be made. This is a result of too few measurement having been
made to evaluate the performance of the algorithm. Only 2 actual NLOS situations is
seen from the measurements those being test 4 and 5 from appendix A. Especially longer
distances between transmitter and receiver should be measured and the performance in
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these situations should be evaluated against the performance of a corresponding correla-
tion max search. It is also important to measure the wireless channels over time to see the
fluctuations and estimate the SNR level whereas a more precise estimate of the impact of
noise could be performed.

Further investigation woule also include a prototype for ToA measuring or several proto-
types for setting up a TDoA system for testing and in- or decreasing accuracy using this
system with the MUSIC algorithm.

For Further work should also be described the impact of the modulator and demodulator,
together with a description of the errors these could introduce.
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Appendix A

Channel Measurement Description

A.1 Purpose of Measurements

To evaluate the MUSIC algorithm in a real life implementation it is important to have
measurements for a different set of scenarios and distances. Simulations does not repre-
sent the wireless characteristics to same degree as actual measurements which captures
both attenuations and multipath effects. The following appendix will describe how the
different measurements were conducted, and how the post-processing of frequency- and
time-domain data were made.

A.2 Setup

For measuring the wireless channel a network analyser, namely the Agilent N5227A version
A.09.80.20, was used.

A frequency sweep were measured from f = 2 GHz – 3 GHz with a frequency stepping of
∆f = 500 KHz.

For transmitting and receiving antenna were used two Suhner SWA 0859/360/4/10/V
planar antennas. The antenna pattern at the frequency range does not change much,
therefore patterns only for 2.3 GHz and 2.7 GHz is shown, see figs. A.1a and A.1b.
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A.2. SETUP

(a) 2.3 GHz behaviour of antenna. (b) 2.7 GHz behaviour of antenna.

Figure A.1: Antenna pattern for the planar antenna used for measuring the wireless channel.

After setting up the Agilent N5227A the cables connecting the antennas to the network
analyser is mounted. The impact of the cables, such as extra delay and attenuation is
calibrated so that only the wireless channel impact is measured.

The measurements were conducted in the institute of Aalborg university, at the AP-
Net(Antenna, Propagation and Radio Networking APNet) section, located at Niels Jernes
vej 12, A6 building.

The floor plan for the area the measurements were creates in and positions of transmitter
and receiver at the 6 different tests are shown on fig. A.2.
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Figure A.2: Floorplan of measurement area, squares are receiver positions, circles are trans-
mitter positions, colors are matching pairs for each of the 6 tests.

For summarization of the distance and naming of the different tests and conditions, see
table A.1.

Test number Color Condition True distance [m]
1 Red LOS 10
2 Blue LOS 15.5
3 Green LOS 20
4 Cyan NLOS 20
5 Purple NLOS 21
6 Brown NLOS 12

Table A.1: Listing of the different tests conducted, with color-code to identify on fig. A.2.

For each setup a single frequency sweep is made from 2-3 GHz with a total of 2000 samples
(∆f = 500KHz). Also the network analyser has an option to transform the frequency
sweep into a time domain representation which for each setup also have been saved.

A.3 Data processing

The frequency sweep corresponding time domain representation is saved as a .csv file
including, frequency steps, time steps, magnitude and phase(degree).

The following method is used to calculate the time domain response from the frequency
sweep in Matlab.

• Load the .csv data file into matlab.
• Convert the power to amplitude.
• Calculate the baseband I/Q signal from the amplitude and phase.
• Apply hamming window with same length as the baseband signal.
• Calculate the IFFT of the baseband signal and the correct time-axis.
• Calculate the first peak above a given threshold to estimate ToA.
• Mark the correct distance on figures.

63
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A.4 Channel Impulse Responses and Frequency Sweeps

The following results were obtained by using the above procedure. It is seen that for all
LOS the error from first peak and the true distance is small, however for test 4 and 5
it can be seen that the first peak is highly attenuated and the peak is detected wrong,
the peak-detection threshold is set for -10 dBm (0.1 mW). Both the measured frequency
response and time response is shown in pairs, see figs. A.3 to A.8.
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Figure A.3: Measured frequency sweep and calculated channel impulse responses test 1, condi-
tion is LOS.
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Figure A.4: Measured frequency sweep and calculated channel impulse responses test 2, condi-
tion is LOS.
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Figure A.5: Measured frequency sweep and calculated channel impulse responses test 3, condi-
tion is LOS.
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Figure A.6: Measured frequency sweep and calculated channel impulse responses test 4, condi-
tion is NLOS.
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Figure A.7: Measured frequency sweep and calculated channel impulse responses test 5, condi-
tion is NLOS.
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Figure A.8: Measured frequency sweep and calculated channel impulse responses test 6, condi-
tion is NLOS.

In the case of NLOS (test 4-6) it is seen that the direct path signal is attenuated in test 4
and 5, however for test 6 the NLOS does not provide noticeable attenuation. In the LOS
case, test 2-3 shows that the direct path is the strongest compared with the following
delayed reflections. For test 1 however the direct path is not the strongest, but could be
explained by the arrival of two reflected paths arriving in the same time delay shortly
after first peak.

A.5 Coherence Bandwidth

As the channel is assumed to be WSSUS when measuring, the method used to obtain
uncorrelated data could be frequency shifting. This is a result of the channel at a given
frequency obtain WSS in the time variable and uncorrelated scattering in the delay vari-
able, however to obtain several uncorrelated scatters frequency hopping is used.

To achieve at least partially uncorrelated data it is important to know how much to
changes the frequency, this change is called the coherence bandwidth, where a given cor-
relation value is satisfied. Therefore the frequency correlation function (FCF) is calculated
so that the coherence bandwidth can be found.

To calculate the coherence bandwidth different approaches can be used, one is to calculate
the Fourier transformation of the power delay profile (PDP). Second method is to calculate
the autocorrelation of the measured frequency sweep. To check the coherence bandwidth
for an actual bandwidth B in the system a part of the sweep corresponding to the actual
bandwidth is used and the autocorrelation for this bandwidth is calculated and averaged
for all frequency steps.

Using the second method and calculating the autocorrelation of the frequency bandwidth,
the FCF for different bandwidths are found on fig. A.9. The coherence bandwidth has
been calculated for all 6 tests using a bandwidth of 40 MHz and 80 MHz.
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(b) Bandwidth of 80 MHz.

Figure A.9: Frequency correlation function created from test 1-6.

For a 0.5 correlation level the coherence bandwidth lies between 15-22.5 MHz for the
measurements using a 40 MHz bandwidth and using bandwidth of 80 MHz the coherence
BW is 18-40 MHz. Therefore if a higher bandwidth is used to obtain data, the difference
in frequency, ∆f to shift to obtain uncorrelated data is larger.

67





Appendix B

Impact of Indoor Environment

Sections 2.3.1 to 2.3.3 describes the different input-data which can be obtained from the
different characteristics of a wireless channel. These characteristics are easily obtained
in an outdoor environment, with few-to-none reflections and obstructions. The same
characteristics in an indoor environment is however decreasing the systems ability to
locate a tag.

More precisely it is the impact of whether the tag and node is in LOS or NLOS condition,
and if reflections are present or not, for more information see section 2.1. The different
conditions have a huge impact on the performance and ability to calculate the location of
a tag, as multipath will occur in an indoor environment in a smaller or larger scale, see
fig. B.1.

Figure B.1: Multipath environment, reflections occur on objects. Figure shows LOS condition,
as no blocking of direct path.

The LOS condition in a multipath environment will be described as a reception of the
signal with a dominant direct path (DDP), thereby the first arriving signal is the direct
path and also the strongest. NLOS can be further divided into two different subcategories,
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namely non dominant direct path (NDDP) and undetected direct path (UDP). NDDP is
generally the same as DDP, the only difference is that the direct path is no longer the
strongest, which in some cases might introduce estimation errors. UDP is the case that
the direct path is attenuated below receiver sensitivity, thereby not being detected. This
could be the case of a wall attenuating the signal, and therefore what looks like the first
path arriving, is actually a reflected path.

The received signal is dependent on the channel impulse response (h), meaning a descrip-
tion of the channel the signal is transmitted over. h for the channel found on fig. B.1, is
depicted as fig. B.2. An ideal tag is transmitting what is ideally a dirac pulse (δ) and at
the node the received signal is represented as the δ transmitted over different paths each
with different attenuation (α) and propagation delay (τ), see eq. (B.1). The dirac pulse
is an observation happening if the system has infinite B.

h(t) =

K∑
i=0

αi · δ(t− τi) (B.1)

Where K is the amount of paths.

Equation (B.1) is shown in fig. B.2 as the direct path (red line) and reflected paths (blue
lines).

Due to the limitations of the system, the bandwidth can not be infinite and by limiting
the bandwidth of a system, the δ pulse instead becomes a pulse shape. This pulse shape
assuming a rectangular filter, become a sinc-function, which is dependent on the band-
width of the transmitted signal. For a bandwidth limited system eq. (B.1) translates into
eq. (B.2).

h(t) =

K∑
i=0

αi · sinc(B · (t− τi)) (B.2)

Where B is the bandwidth of the system and K is the amount of paths. Equation (B.2)
is shown on fig. B.2 as the black line.

The impact of the pulse shape has a huge impact on especially AoA and ToA methods.
AoA as the angle of arrival can change significantly if the direct path and reflected path
arrives with small ∆t, as discriminating the arrivals becomes difficult. ToA as what is
detected as the peak of the first arriving path is different, from the actual direct path
(difference between dashed grey and red line, fig. B.2). The following sections will describe
and evaluate the problems related to the indoor environment.
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Figure B.2: Received signal corresponding with fig. B.1. Red line is direct path and blue is
different reflected paths.
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