
.

Embedded
Massive MTC Device Emulator

for lte using
Software Defined Radios

Master Thesis, Autumn 2016 – Spring 2017
Anders Charly Rasmussen and Mathias Rønholt Kielgast

Wireless Communication Systems
Department of Electronic Systems

“Wire telegraph is a kind of a very, very long cat.
You pull its tail in New York and his head is meowing in Los Angeles.

And radio operates exactly the same way:
you send signals here, they receive them there.
The only difference is that there is no cat.”

Antennas, Propagation and Radio
Networking (APNet)
Department of Electronic Systems
Aalborg University
Fredrik Bajers Vej 7
DK-9220 Aalborg Ø, Denmark
Telephone: (+45) 9940 8600
Fax: 9940 9840
www.es.aau.dk

Field of education: Wireless Communication Systems
Title: Embedded Massive MTC Device Emulator for LTE using Software Defined Radios
Project period: Autumn 2016 – Spring 2017

Authors:

Anders Charly Rasmussen
arasm12@student.aau.dk

Mathias Rønholt Kielgast
mkielg11@student.aau.dk

Abstract:
An increase in machine type communication (MTC) devices on LTE networks, generally for uses within the
internet of things (IoT), is occurring and is expected to continue with much increased growth. These new types
of devices results in new communication patterns, which together with the massiveness of the expected amount
of devices, initiated changes in LTE. A device emulating multiple devices on the network is sought in order to
enable performance testing of the LTE protocol with regards to massive amounts of MTC devices.
A prototype using LTE Release 8 compliant code is developed, capable of running several devices in parallel
and transmitting their combined signals through a common radio front-end. This functionality is achieved by
splitting the physical layer of the LTE protocol into a common part for all devices, and an individual part tied to
to each device. Tests verify the design principle, showing that connecting multiple MTC devices using the same
radio front-end to an eNodeB is possible. The prototype developed enables up to 15 devices to synchronise and
complete random access procedure with a commercial eNodeB at 5MHz. Further tests show that bandwidth
has great importance in the number of supported devices. This promises well for implementations using MTC
specific protocols which operate at a much lower bandwidth, such as LTE-M and NB-IoT. The implementation
can therefore be seen as a strong proof-of-concept for massive device emulators for LTE based networks.

Supervisors:
Petar Popovski
Dong Min Kim
Industrial supervisor:
Germán Corrales Madueño

Printed copies: 5
Page count: 74
Appendices: 25
Completed: June 7th, 2017

The contents of this report are freely available, but publication or other distribution (with
reference) is only allowed with the consent of the authors.

iii

http://www.es.aau.dk/
mailto:arasm12@student.aau.dk
mailto:mkielg11@student.aau.dk

Preface

This Master’s thesis is covering the work done by Anders Charly Rasmussen and Mathias Rønholt
Kielgast, concluding their Wireless Communication Systems Master’s programme at Aalborg
University. The thesis covers the development of a “massiveMTC emulator” device, which is performed
in a collaboration between Keysight Laboratories in Aalborg and the Department of Electronic Systems
at Aalborg University.

The authors would like to thank Telenor Aalborg for granting access to eNodeB and core network
test facilities, with special thanks to Simone Barbera of Telenor for his helpfulness. The authors would
also like to thank Keysight Laboratories for the extensive access to their UXM wireless test setup. In
addition, thanks is given to Nuno Kiilerich Pratas for guidance during the first parts of the thesis.

The thesis begins with an introduction giving an overview of the context of the research and
current LTE development, before describing the objectives of the thesis. Following the introduction,
preliminary research will be described to give the required insight and understanding of the technical
aspects relevant for the development. Subsequently, a description of the test bed setup is given before
the documentation of the prototype device development. The prototype functionality and performance
is then evaluated, before the thesis is rounded off by conclusions and an overview of further work.

Citations are made by the use of the American Institute of Physics (AIP) style. This uses the
citations numbered as e.g. [3], the full cite is then written in the bibliography in the end of the thesis.
If a citation is placed before a full stop, it refers only to that sentence; when placed after a full stop,
it refers to the entire paragraph. References for figures, tables and equation, are made according to
the chapter name in which they are found, e.g. the second figure in chapter X would be referred as
figure X.2. All graphs and pictures are referred to as figures.

Aalborg University, June 7th, 2017

v

Contents

Nomenclature xii

1 Introduction 1
1.1 LTE basics . 2
1.2 Existing MTC technologies . 3
1.3 Objectives of thesis . 4

1.3.1 Development context . 5

2 Preliminary research 7
2.1 Baseband signals . 7
2.2 Software defined radios . 9

2.2.1 RF architectures . 10
2.2.2 Digital converters . 10
2.2.3 USRP . 12

2.3 LTE principles . 12
2.3.1 Frame structure . 13
2.3.2 Channels . 14
2.3.3 Establishing connection in LTE . 16
2.3.4 Power control . 19

2.4 Preliminary analysis of PRACH detection . 21

3 System setup: MassiveMTC test bed 23
3.1 SDR implementation of MTC device . 23
3.2 LTE system architecture . 26

3.2.1 OpenAirInterface implementation . 28

4 System development 29
4.1 Development of core principle . 29

4.1.1 Individual and common physical layers . 30
4.1.2 Radio layer modifications and uplink power control 31

4.2 Uplink power budget . 32
4.3 Downlink path loss emulation . 36
4.4 Scalability . 37
4.5 Initiation: The device handler . 40
4.6 Outputs of software . 40

5 Performance evaluation 41
5.1 PRACH detection analysis . 43
5.2 CPU load analysis . 44
5.3 Power control . 46
5.4 Data transfer . 48

6 Conclusion 51
6.1 Further work . 53

vii

Contents

Bibliography 57

Appendices 61

A LTE protocol 63
A.1 LTE layers . 63
A.2 LTE channels . 65

B LTE multiple access techniques 69
B.1 Orthogonal frequency-division multiple access (OFDMA) 69
B.2 Single carrier FDMA (SC-FDMA) . 71

C Security 73
C.1 Authentication . 73
C.2 Integrity protection and ciphering . 74
C.3 Identifiers . 75
C.4 OpenAirInterface HSS . 75

D PRACH simulation results 77

E CPU load results 79

F Physical layer tracing 83

viii

Nomenclature

3GPP 3rd generation partnership project
ACK Acknowledgement
ADC Analogue-to-digital converter
AES Advanced encryption standard
AIA Authentication information answer
AIR Authentication information request
AM Acknowledged mode
AMC Adaptive modulation and coding
ARP Access reservation protocol
AS Access stratum
ASME Access security management entity
BCCH Broadcast control channel
BCH Broadcast channel
BLER Block error rate
BSR Buffer status reporting
C-RNTI Cell radio network temporary identifier
CA Carrier aggregation
CC Country code
CCCH Common control channel
CFO Carrier frequency offset
CN Core network
coPHY Common physical layer
CP Cyclic prefix
CQI Channel quality indicator
CSI Channel status information
DAC Digital-to-analogue converter
DCCH Dedicated control channel
DCI Downlink control information
DDC Digital down-converter
DEMUX Demultiplexing
DFT Discrete Fourier transform
DFT-S-OFDM DFT-spread-OFDM
DL-SCH Downlink shared channel
DRB Data radio bearer
DRX Discontinuous reception
DSP Digital signal processor
DTCH Dedicated traffic channel
DUC Digital up-converter
E-UTRAN Evolved UMTS terrestrial radio access network

ix

Contents

eDRX Extended discontinuous reception
EEA EPS encryption algorithm
EIA EPS integrity algorithm
eMTC Enhanced MTC
eNodeB Evolved node B
EPC Evolved packet core
EPRE Energy per RE
EPS Evolved packet system
FDD Frequency-division duplexing
FDMA Frequency-division multiple access
FPGA Field-programmable gate array
GPP General purpose processor
GPRS General packet radio service
GSM Global system for mobile communications
GUI Graphical user interface
HARQ Hybrid automatic repeat request
HeNB Home eNodeB
HSS Home subscriber service
ICI Inter-carrier interference
IF Intermediate frequency
IMEI International mobile equipment identity
IMSI International mobile subscriber identity
inPHY Individual physical layer
IoT Internet of things
IP Internet protocol
ISI Inter symbol interference
LP-OFDMA Linearly precoded OFDMA
LPWAN Low-power wide-area network
LSB Least significant bit
LTE Long term evolution
LTE-A Long term evolution advanced
LTE-M LTE-MTC
M2M Machine-to-machine communication
MAC Multiple access control
MCC Mobile country code
MCCH Multicast control channel
MCH Multicast channel
MCS Modulation and coding scheme
MIB Master information block
MIMO Multiple input multiple output
MME Mobility management entity
MNC Mobile network code
MSG Message
MSIN Mobile subscriber identification number
MSINDN Mobile station international subscriber directory number
MTC Machine type communication

x

Contents

MTCH Multicast traffic channel
MUX Multiplexing
NACK Negative acknowledgement
NAS Non-access stratum
NB-IoT Narrowband IoT
NDC National destination code
OAI OpenAirInterface
OFDM Orthogonal frequency-division multiplexing
OFDMA Orthogonal frequency-division multiple access
OP Operator key
OS Operating system
OSI Open systems interconnection
OTA Over-the-air
P-GW PDN gateway
PAPR Peak-to-average power ratio
PBCH Physical broadcast channel
PCAP Packet capture
PCCH Paging control channel
PCFICH Physical control format indicator channel
PCH Paging channel
PCRF Policy control and charging rules function
PDCCH Physical downlink control channel
PDCP Packet data convergence protocol
PDN Packet data network
PDSCH Physical downlink shared channel
PDU Protocol data unit
PGA Programmable gain amplifier
PHICH Physical HARQ indicator channel
PHR Power headroom reporting
PHY Physical (layer)
PLMN Public land mobile network
PMCH Physical multicast channel
PPRB Power per RB
PRACH Physical random access channel
PRB Physical resource block
PSM Power saving mode
PSS Primary synchronisation signal
PUCCH Physical uplink control channel
PUSCH Physical uplink shared channel
QoS Quality of service
QPSK Quadrature phase-shift keying
RA Random access
RACH Random access channel
RAO Random access opportunity
RAP Random access procedure
RAR Random access response

xi

Contents

RB Resource block
RE Resource element
RF Radio frequency
RLC Resource link control
RMSE Root mean square error
RRC Radio resource control
RS Reference signal
RSRP RS received power
RSSI Received signal strength indicator
S-GW Serving gateway
SAE System architecture evolution
SC-FDMA Single carrier FDMA
SDR Software defined radio
SDU Service data unit
SFN Subframe number
SFO Sampling frequency offset
SI System information
SIB System information block
SISO Single input single output
SN Subscriber number
SNR Signal-to-noise ratio
SR Scheduling request
SRB Signalling radio bearer
SRS Sounding reference signals
SSS Secondary synchronisation signal
TB Transport block
TBS Transport block size
TCP Transmission control protocol
TDD Time-division duplexing
TDMA Time-division multiple access
TM Transparent mode
TPC Transmit power control
TTI Transmission time interval
UCI Uplink control information
UDP User datagram protocol
UE User equipment
UHD USRP hardware driver
ULSCH Uplink shared channel
UM Unacknowledged mode
UMTS Universal mobile telecommunications system
USIM Universal subscriber identity module
USRP Universal software radio peripheral
VNI Virtual network interface
VoIP Voice over IP
VPN Virtual private network

xii

Contents

List of Symbols

A Amplitude
AI Amplitude of I component
AQ Amplitude of Q component
B Bandwidth
fc Carrier frequency
fs Sampling frequency
Gtx Transmission gain
I In-phase (component)
K Secret key
κ Digital scaling factor
Nc Number of sub-carriers
NI In-phase noise component
NIQ Total baseband noise
NMTC Number of MTC devices
NQ Quadrature noise component
pd Probability of detection
pfp Probability of false positives
PN Noise power
PPL Power attenuation due to path loss
Q Quadrature (component)
t Time variable
Tcoh Coherence period
Tcp Cyclic prefix duration
τs Delay spread
θ Signal phase
Ts Symbol duration

xiii

1. Introduction

The development and demand on mobile broadband have been rapidly increasing in the past 10 years,
enabling fast internet almost everywhere in developed countries and with close to full technology
penetration as subscribers is nearing all citizens in these countries. Developments on the wireless
infrastructure have been made to provide the necessary capacity to support the vast growth in
subscribers and traffic intensity from the first available mobile data access technology “general packet
radio service” (GPRS, expansion of the GSM protocol) to “long term evolution advanced” (LTE-A)
protocol, which have been deployed in the recent years. The LTE-A protocol, widely known as “4G”
i.e. the 4th generation mobile communication, is as its name suggests an evolution of the “long term
evolution” (LTE) protocol and by that, it is based on the same principles.

The LTE protocol is specified by the 3rd generation partnership project (3GPP), and was first
introduced through Release 8 in December 2008. LTE-A was introduced in Release 10 (March 2011),
after an enhancement of “standard” LTE in Release 9 (December 2009). After the introductory
release of LTE-A, Release 11 and 12 has been made with enhancements to the LTE-A protocol,
especially focused on providing faster connections with shorter delays through technologies such as
carrier aggregation (CA) and higher order multiple input multiple output (MIMO), as well as overall
improvements to the protocol. Also, as a part of the Release 12, implementation of a new category
of communication, namely machine type communication (MTC), was introduced into the LTE-A
functionality. [1]

Machine type communication (MTC), or machine-to-machine communication (M2M), is a vastly
increasing market, due to a large increase within the internet of things (IoT): machines (or “things”)
communicate with each other without directly involving a user. By 2013, there was 9.1 billion IoT
devices installed, and it is expected that there will be a total of 28.1 billion devices installed by 2020
[2]. An example of IoT devices is the implementation of smart grids by electricity, water, heat, and
cooling providers. By implementing smart meters and other sensors which are remotely accessible
throughout distribution grids, the way has been opened for instant readings of consumption, faster
and eased leakage detection, easier and more efficient control of production, etc. [3].

Communication from sensors (and other MTC applications) give rise to a significantly different
type of communication patterns, which requires changes in the established network in order for it to
handle this efficiently. Communication demand from such devices can be both sporadic or with some
(pseudo-)constant interval, but what is more distinctive to human operated communication, MTC
sessions are mostly short with only small amounts of data to be transmitted; the amount of devices
is however far greater in such systems compared to systems consisting of human operated devices, as
city areas will have a very high density of devices. The massiveness of the devices in each cell is one
of the main challenges of MTC, as a base station must be able to handle all the devices. Especially in
terms of resilience against bursts in communication, in cases where many devices seek to send reports
on the same time; an example of this could be in the event of power failure messages sent by electricity
meters in a whole neighbourhood in case of power outage. Also, many of such devices will be battery
powered and will therefore demand high efficiency and the support of low-power transmissions;

1

1. Introduction

in these cases, it is important that transmission overhead must be small compared to the small packets
to be relayed. [4, 5, 6]

One of the main points of the further development of LTE in order to be optimised for MTC is
the “handshake” (the access reservation protocol (ARP)) which must be performed when a device is
accessing the network. This step it vital, as it is generally required every time of a device is seeking to
(re-)access the network, and in LTE it poses a high degree of transmission overhead compared to the
expected size of data to transmit in MTC use cases. The future of mobile broadband, widely known
as “5G”, is partly going to be further enhancements of the LTE-A protocol (so-called LTE-A Pro)
along with a new protocol named “New Radio”. One of the main goals for the capabilities of 5G is
to be able to compete with systems dedicated for IoT/MTC and not based on established systems
provided by mobile network operators.

1.1 LTE basics

An overview of the basics of an LTE systems is given in this section, such that a better understanding
and a clear definition of the aim of this thesis is possible.

The two main elements in LTE is the evolved node B (eNodeB), which is the name for the base
station in a LTE system, and user equipment (UE), which is the devices accessing the network. Uplink
transmission refers to transmission from the UE to the eNodeB, while downlink is the reverse. As
discussed, MTC is becoming a focus of the further implementation and development of LTE – in this
context, the term “MTC device” will be used for a device accessing the network. The wireless network
nodes are illustrated in figure 1.1. The eNodeB is connected to a core network, which will be further
discussed in chapter 3.

eNodeB

UE

UE

MTC	device

Figure 1.1: MTC device (illustrated as a water meter in a household) and UEs (smart phones)
accessing the network using a nearby eNodeB.

The LTE protocol is divided into a protocol stack, which makes up what is comparable to the OSI
model layers one to three. Further discussion of the LTE protocol principles, especially within the
physical (PHY) layer, is found in chapter 2; overview of the protocol stack can be found in appendix
A. In the following section, MTC solutions for LTE will be discussed, before this chapter will be
concluded with a discussion of the aims and goals of this report.

2

1.2. Existing MTC technologies

1.2 Existing MTC technologies

Multiple solutions exist for wide-area MTC communication, both within licensed and unlicensed bands;
solutions for unlicensed bands are typically known as low-power wide-area networks (LPWANs), while
cellular technologies for licensed bands are grouped within their own category. Only the two most
notable MTC protocols for licensed bands are investigated here, of which both technologies are further
developments of LTE. The two technologies are LTE-MTC (LTE-M) and narrowband IoT (NB-IoT);
an overview of the main differences can be seen in table 1.1. LTE-M is also known as enhanced MTC
(eMTC).

Table 1.1: Comparison of LTE MTC technologies, specification data combined from [7, 8, 9].

LTE Release 8 LTE-M NB-IoT
Downlink peak rate < 150Mbps < 1Mbps < 170 kbps
Uplink peak rate < 50Mbps < 1Mbps < 250 kbps
Downlink bandwidth 1.08—18MHz 1.08MHz 180 kHz
Duplex mode Full duplex Full or half duplex Half duplex

LTE compatibility - In-band
In-band, guard-band,
and standalone

Power saving - eDRX and PSM eDRX and PSM

Nodes supported per cell
In the order of hund-
reds or a few thousands

up to approx. 1m approx. 50 k to 200 k

These protocols are focused on supporting many devices and lower power consumption in the MTC
device in order to prolong battery lifetime. The main change is therefore also apparent which is a
reduction of bandwidth in both LTE-M and NB-IoT. This allows for simpler hardware implementation
and in turn cheaper devices. A side effect of the reduced bandwidth is a natural reduction in data
rate; this is however not so important as the amount of information is considerably lower for MTC
devices, as previously discussed.

There are two new schemes introduced to the LTE regarding power saving in both LTE-M and
NB-IoT: extended discontinuous reception (eDRX) and power saving mode (PSM). eDRX allows the
MTC device to sleep between transmissions without having to reattach. In PSM, the MTC device can
enter a sleep state giving the eNodeB notice on when it will attempt to transmit again; it will then
move to an idle state where the device is reachable in downlink for a set amount of time, before going
back to sleep. [7, 10]

One of the biggest differences between LTE-M and NB-IoT is the placement of the bands: while they
both are able to coexist with existing LTE implementations by reserving part of the total band, NB-IoT
is also able to run stand-alone (not inside an LTE band) and within the guard bands surrounding the
existing LTE bands. They are both, however, simplified versions of the LTE(-A) protocol, and as such
relies on the same basic principles. [7, 11]

3

1. Introduction

1.3 Objectives of thesis

Implementations on MTC technologies are currently under way, both within LTE-M and NB-IoT; they
have been specified in LTE Release 13 [12, 13], currently the latest, and implementations are being
developed and tested. How real implementations and roll-out of these protocols and their associated
devices will affect the communication network as a whole is still unanswered, because these networks
have not been tested with large number of devices at the scale of massive MTC. MTC communication
is already a part of the network using non-MTC specific LTE protocol releases and this type is expected
to increase – vastly when deployment MTC specific parts of the protocol is complete. The effects on
the eNodeB and core network with this increase of devices and device network access pattern are a
main unknown for the mobile network operators; an unknown which must be answered to be able to
efficiently expand the network and provide reliable connections both to the new MTC devices as well
as the current mostly human operated devices. The possibility to evaluate protocols with regards to
massive amounts of devices is important with regards to evaluation of protocol performance in MTC
use cases, making way for the necessary adaptations and readjustments required in the core network.
Development and testing of LTE MTC technologies are therefore of high relevance.

Evaluation of full implementations of a given protocol yields important insight into protocol
performance. Conventional simulations usually evaluate small parts of a protocol individually, but
this does not necessarily offer a clear display of the bottlenecks and other performance limitations of
the protocol as a whole; it is difficult to combine individual results for the ARP and authentication
performance to a realistic evaluation of all the network system elements. The alternative to simulating
is expensive and cumbersome, as this requires a massive test bed with coordinated control of each
unit so that different access scenarios can be tested; this would be difficult to make in practice and
certainly expensive in hardware.

To solve the problems present in both simulations and real-life testing, a third solution is to be
developed: a massive MTC device emulator implemented using a software defined radio (SDR). This
“massiveMTC” emulator should be able to emulate individual MTC devices and their protocol stack,
while transmitting their individual signals through the same RF port on the SDR, i.e. combining the
signals from each MTC device. Such a system should ease performance testing of the LTE protocol in
scenarios with a varying amount of MTC devices as well as different accessing behaviours. Having the
setup localised on a single SDR board connected to a host PC allows for simple initiation and control
while maintaining a wide range of applications, because such a unit can be used not only in a simple
test bed but also connected to commercial eNodeBs, due to the fact that it performs live emulation
which reacts directly with the eNodeB.

A massiveMTC device should therefore provide the ability to:

• Emulate entire protocol stacks of multiple MTC devices.

• Emulate individual channel conditions for the MTC devices.

• Provide information based on a realistic demodulator (as both up- and downlink are transmitted
on a real channel).

• Have centralised control of the behaviour of each MTC device.

The design principle is illustrated in figure 1.2, where all functionalities are collected within one device.

4

1.3. Objectives of thesis

eNodeB

H1(t)

H2(t)

HN(t)

MassiveMTC

USRP B210

Figure 1.2: MassiveMTC solution principle, where all devices are virtually created within the one
massiveMTC device.

One of the key elements to be evaluated in the protocol is the ARP, which potentially is a bottleneck
as well as constituting non-negligible overhead. Simulation of this in LTE can be difficult to make
in a way that provides insight of the performance of real-life systems, as such a simulation must
implement not “just” realistic channel demodulation performance, but also how well the succeeding
steps in the procedure can be performed dependent on how many nodes are active on the system, and
how many are trying to get access to the network at the same time. It is currently sought to develop
new versions of the attachment and authentication procedures in order to access the network for MTC
devices [14, 15, 16], so that overhead from these initial steps can be reduced to obtain better efficiency
when transmitting and increased support of massive numbers of devices.

The massiveMTC device will be developed using LTE Release 8 of LTE due to several
considerations. While this implementation will strictly speaking constitute parallel UEs, it can
be moderated to behave as MTC devices on a “standard” LTE network. The MTC protocols
in development for LTE are in the deployment and testing phases and are therefore not directly
implementable [17, 18]; but they generally rely on the same principles as standard LTE as they seek
as much compatibility with existing LTE systems as possible [19]. The developed massiveMTC device
will therefore be a viable platform for implementations of the MTC protocols to be used for further
development process. It can thereby serve as a strong proof-of-concept for “massive device emulators”
and a platform for further development of such massive devices in LTE protocol development.

1.3.1 Development context

The massiveMTC device is an implementation of the communication protocol to be emulated for
multiple devices. This in itself can evaluate random access procedures and more, however, it can not
on its own produce network traffic at the eNodeB and core network as would result from real devices
accessing the network. Application layer behaviour must be added on top of the massiveMTC device
implementation in order to be able to produce realistic traffic patterns.

Therefore in parallel to the development of massiveMTC, the development of a virtualisation
of IoT operating systems (OSs) is carried out. This is carried out separately from the work on
the massiveMTC device and is not part of this thesis. Each virtual IoT OS should then enable

5

1. Introduction

the emulation of some specific MTC device with a designated network communication pattern (e.g.
transmission interval, payload, etc.). With such a complete setup, the LTE network can be tested in
regards to how different device behaviours will affect the system, and also if different combinations of
devices on the network will be able to get the quality of service (QoS) required by each device. The
principle of the whole system setup is illustrated in figure 1.3.

Virtualisation environment

IoT OS IoT OS IoT OS...
Middleware

MassiveMTC device

MTC device ...MTC device MTC device

Software defined radio

Figure 1.3: MassiveMTC solution principle in context.

The solution principle is devised such that a middleware also is to be developed, which
routes information between the virtualisation environment and the massiveMTC device. The IoT
virtualisation environment is to be run on a separate PC (or on an embedded device), and the
middleware handles the traffic between one IoT OS instance within this environment and its
corresponding MTC device protocol stack, thereby seemingly having its own radio to access the
network. The initial development of the virtualisation environment is documented in [20], and work to
implement this on an embedded platform as well as adding additional features is documented in [21].
The middleware is developed to be implemented either at the virtualisation environment PC, or in
case of this being on an embedded device with a much stricter hardware limitations, on a standalone
device, e.g. a programmable router or a raspberry pi. The current design of the middleware is a
virtual private network (VPN) server solution to which both the massiveMTC device host PC and the
virtualisation environment host are connected; on the middleware server, routing tables are managed
between the virtualisation instances and the massiveMTC instances. As stated, the specification and
development of neither the middleware nor the virtualisation environment is within the scope of this
thesis, only an interface from the massiveMTC implementation to the middleware is provided.

6

2. Preliminary research

Before development on the massiveMTC device is possible, some technical details must be reviewed
and discussed. In this chapter, baseband signal fundamental theory and the principle of SDRs are
reviewed, as these are important fundamentals in regards to the implementation. Also, the core
principles of LTE, especially for the lower layers, are discussed and a preliminary analysis of the LTE
ARP is performed by use of simulations.

2.1 Baseband signals

Signal processing within wireless communication technology is usually performed on the baseband
level, sometimes known as the information channel, in order to save processing power. The baseband
signal can be written as a sum of two vectors, representing two signals in quadrature, known as the
in-phase (I) and quadrature (Q) components; I and Q are used as a complex representation of a real
signal.

This representation is viable for many digital modulation techniques, however only amplitude
modulation will be discussed as this is the most dominant modulation form in LTE, although the
principle remains the same for all modulation types. An example of a complex representation in a
constellation diagram is shown in figure 2.1.

I

Q

0010

Figure 2.1: Example of I and Q components in a constellation diagram using 16QAM modulation.

The I/Q components are widely used within RF processing and are also the representation used
for SDR modules. Due to this, a short review of I/Q fundamentals is given here. The magnitude and
phase of any signal can be defined from the Cartesian form:

A=
√
A2
I +A2

Q , θ = tan−1
(
AQ
AI

)
, (2.1)

where A is the total amplitude of the vector, AI and AQ are the I and Q component amplitudes,
respectively, and θ is the signal phase. Any constellation point can be obtained by having a relative
difference in amplitude of the I and Q components. [22]

7

2. Preliminary research

The total baseband signal can then be described in complex form:

sB(t) =AI(t)+ jAQ(t) , (2.2)

where t is time. This signal can then be upconverted to RF signal:

s(t) =AI(t)cos(2πfct)−AQ(t)sin(2πfct) , (2.3)

where fc is the carrier frequency, and the negative sign of the Q component is by convention. With
fc specified, the sinusoidal terms are predictable, meaning that all the information is within the I/Q
amplitude terms, i.e. AI and AQ. The I and Q terms can be summed, as the two signals are orthogonal
to each other, and therefore do not interfere. [22]

In order to downconvert from passband to baseband, the in-phase amplitude component, AI , of
the incoming signal, s(t), can be obtained, using a multiplication of 2cos(2πfct):

s(t)2cos(2πfct) = 2AI cos2(2πfct)−2AQ sin(2πfct)cos(2πfct)
=AI(t)+AI(t)cos(4πfct)−AQ sin(4πfct)

(2.4)

The second and third term can be removed with a low-pass filter due to the high frequency carrier,
fc, thus leaving only AI after filtering. The quadrature amplitude component, AQ, can be obtained
in a similar fashion, using a sine instead of a cosine for the multiplication. It is therefore seen that no
information loss during the conversion between passband and baseband. [22]

It is important to note than an identical decrease in both I and Q components will result in a
reduced amplitude of the signal while the phase remains unchanged; this can be used to emulate path
loss on a channel. Changing I or Q independently will introduce amplitude and phase distortion of
the signal; changing one or both components randomly can be used to emulate noise on a channel.
Illustrations of this can be seen in figure 2.2.

(a) Reduced amplitude.

I

Q

(b) Phase change.

I

Q

(c) Frequency change.

I

Q

Figure 2.2: Illustration of how a change in amplitude, phase, or frequency will affect I/Q samples.
Grey dots represent the original samples.

8

2.2. Software defined radios

2.2 Software defined radios

Software defined radios (SDRs) can be thought of as reprogrammable radios where the physical layer
can be modified significantly using software. These modifications can be split up into two parts;
baseband parameters, such as modulation and error correction code, and radio front-end features
such as configurable bandwidth and carrier frequency. An SDR is therefore a flexible communication
platform capable of adapting to different applications.

There are more than one way to build an SDR, common to all of them is that a combination
of hardware and software is required. Different signal processing devices exist which are useful when
choosing an SDR platform, advantages of the three most commonly used are summarised below [23, 24]:

• General purpose processors (GPPs), also known as a “normal microprocessor”, which are
advantageous due to their flexibility and low costs.

• Digital signal processors (DSPs), specialised in performing signal processing calculations on a
large amount of data in real time, with a relatively good power efficiency compared to GPPs.

• Field-programmable gate arrays (FPGAs), computationally powerful, but power inefficient and
more cumbersome to program.

GPPs and DSPs are both programmed by software (e.g. in C-code), whereas an FPGA is programmed
by use of a hardware descriptive language (e.g. VHDL), which strictly speaking is not “software”. Some
of the newest releases of commercial SDRs now offer a combination of a GPP and an FPGA, see for
example [25]. Other implementation types have the software running on a host PC connected to
the FPGA, which in a way is a combination of a GPP and an FPGA solution, discussed further
in section 2.2.3. Purely GPP based SDRs are infeasible for today’s requirements to sampling
bandwidth, latency/jitter etc. with current architectures and are therefore generally not used, at
least if complexity, power consumption, and size are to be taken into account [24].

Changing e.g. waveform and/or coding in an FPGA based SDR takes more time to reconfigure
in comparison to a GPP based, as reconfiguration of the FPGA logic can be necessary. This can
potentially be a drawback, especially if the SDR has to change configurations several times within
short timespans. Whether this is necessary depends on the limitations of the FPGA and the specific
use case, and the drawback can potentially be countered by pre-compiling configurations in a fixed
region of the FPGA memory in advance while still having regions available for reconfiguration; this
will however require more memory on the FPGA, increasing the cost of the unit. In order to mitigate
memory usage, some processes can be moved from the FPGA to software (on the GPP or connected
PC). [24]

Some of the main application areas of SDRs are cognitive radio, as it is crucial that the radio
is able to sense existing radio signals or unexpected channel conditions and adapt by switching
to an unoccupied frequency band and/or change the transmission bandwidth. Another perk of
SDRs is the ability to use adaptive coding and modulation in dedicated hardware based on current
channel conditions in order to guarantee a certain link performance, as well as being able to deploy
a hierarchical network solution; an example of this is to use Wi-Fi when possible, and then switching
to LTE when there is insufficient coverage of the preferred network. Some of the general drawbacks
of using an SDR is the cost of the units, as they can be expensive dependent of what is required of
them, as well as their power consumption when running. [24]

9

2. Preliminary research

2.2.1 RF architectures

Multiple RF architectures exist, below are some of the most commonly used architectures used in
SDRs explained. Only the receiver architectures will be discussed as the transmitter architectures
generally are equivalent.

The simplest receiver is the “zero-IF” receiver; this is also called a homodyne or direct-conversion
receiver. This receiver translates the RF signal from carrier frequency directly down to baseband
samples, i.e. zero-IF means that there is no intermediate frequency (IF), such that the signal fed
through the analogue-to-digital converter (ADC) is centred around 0Hz. One of the problems with
this design is the so-called “flicker noise”. Flicker noise is generated by semiconductors around 0Hz;
this can especially be a problem for narrowband transmission in zero-IF as the entire wanted signal
is around 0Hz. In general, a minimal DC offset of the baseband signal is required, as well as closely
matched gain and phase of the I and Q components in order to avoid spurious signals. This can
however be compensated by adding a feedback loop. [24]

Another approach is the “direct-IF” conversion, or digital-IF, where a regular mixer translates the
signal from carrier frequency to an IF; the ADC then converts the IF signal before it is downconverted
to baseband. This approach avoids flicker noise present in a zero-IF converter. A bandpass filter
is required in this design after the conversion to IF, which may be required to be tunable if large
carrier frequency ranges are to be supported. When using more than one IF, the receiver is called a
“super-heterodyne”; this is a widely used principle in conventional transceiver implementations. [24]

2.2.2 Digital converters

The digital down- and upconverters that are used in SDR implementations can be understood as
software defined implementations of normally otherwise hardware implemented radio, such as filters,
amplifiers, and baseband processing. The implementation is often of the direct-IF type, where the
signal is downconverted to an IF and then sampled before being downconverted to baseband in the
digital domain. The by far most used implementation of the digital converters is by using FPGAs,
which is why this section will only discuss such implementations. The FPGA is sometimes used to
only host the digital converters, although it is possible to do more signal processing on the chip [26],
such as source and channel coding.

After the signal has passed through the ADC, it will continue into a digital down-converter (DDC)
which is composed of three major components:

• A digital local oscillator operating at IF.

• A digital mixer, which, using the local oscillator, mixes with the signal, creating two new signals,
one at double the IF and one around baseband (this happens due to the frequency shifting
properties of the Fourier transform).

• A low-pass filter, filtering the signal at double IF frequency; this filter can also include a
decimation filter, removing a set amount of samples.

The receiver chain is illustrated in figure 2.3. [27]

10

2.2. Software defined radios

DDC

0°/90°

ADC Mixer LP-filter +
DecimationLP-filterMixer

Amplifier Oscillator

Mixer ADC Mixer LP-filter +
DecimationLP-filter

Oscillator Host

Figure 2.3: Simplified receiver chain of an SDR.

In SDRs, the frequency of the local oscillator can be changed, allowing change in sampling
bandwidth, changing the RF frequency, and gain of the RF front-end is also possible, usually through
a drive amplifier. [27]

The local oscillator in the DDC is able to switch between frequencies while maintaining a continuous
phase, making it possible to sweep across a frequency range without creating any transients which
would otherwise appear due to instantaneous phase changes [27]. A decimation filter is a filter which
only keeps one of N samples, dropping the sample rate by a factor N , this is an effective way of
lowering the amount of samples without losing any information, as long as the Nyquist theorem is
fulfilled. The Nyquist-Shannon sampling theorem states that a band-limited signal can be uniquely
determined by samples if fs> 2B, where fs is the sampling frequency and B is the bandwidth of the
band-limited signal1. If this criterion is not uphold, aliasing of the signal will occur. [28]

The transmitter chain is slightly different; naturally, it utilises a digital up-converter (DUC) instead
of a DDC, in which the major difference is that instead of a low-pass decimation filter, an interpolating
filter is used. This performs the opposite operation of the decimation filter, i.e. adding more points
in between the baseband input samples fs/N , creating the interpolated output at rate fs, thereby
interpolating with a factor N . The transmitter chain is illustrated in figure 2.4. [27]

DUC

0°/90°

DAC Mixer LP-filter +
InterpolationLP-filterMixer

Amplifier Oscillator

Mixer DAC Mixer LP-filter +
InterpolationLP-filter

Oscillator Host

Figure 2.4: Simplified transmitter chain of an SDR.

The hardware (i.e. FPGA) implementation of DDC and DUC significantly lower the processor
workload of the host PC, as it would otherwise have to process data at the ADC sample rate which

1B is known as the “Nyquist frequency”, and 2B as the “Nyquist rate”.[28]

11

2. Preliminary research

can be several million samples per second, which is not feasible with modern processors. By having
the conversion and decimation/interpolation performed in hardware, the software running on the host
PC has to process signals at a much lower rate and bandwidth compared to the ADC or DAC. An
added advantage is that some extra signal processing can take place in the FPGA and that a reduction
in data-rate to and from the host PC means that less data has to be stored in memory.

2.2.3 USRP

The SDR platform used in this thesis is an USRP, developed by Ettus Research. Their approach on
the applied B200-series is to compute all baseband operations on a PC, which acts as a “host” for
the board, and that the USRP is working as a “radio peripheral”, effectively giving the host PC the
ability to decode radio signals. Ettus Research also provides as a library which makes it possible to
communicate with the USRP from the host PC. The USRP library is open source, meaning that it is
possible to change in the signal processing functions, as well as implementing additional logic on the
USRP board which might be useful for some applications, e.g. in use cases where the modulation or
error correction method are constant. [23]

Ettus Reseach provides “daughter boards” which can be mounted on the regular boards in order to
provide a larger frequency range or bandwidth, as well as the ability to synchronise multiple boards.
All baseband processing to the host PC, which enables the user to work with the signals using C
instead of hardware languages. [23]

2.3 LTE principles

The LTE protocol is split into a protocol stack, illustrated in figure 2.5, in which there are four main
layers:

• Packet data convergence protocol (PDCP) layer

• Resource link control (RLC) layer

• Multiple access control (MAC) layer

• Physical (PHY) layer

The PDCP layer handles IP packets, passed from the application layer (using TCP/UDP protocol).
[29]

The protocol stack is illustrated in figure 2.5. All the layers are described in appendix A along
with a short overview of their individual layer responsibilities.

For downlink transmission, LTE uses an orthogonal frequency-division multiple access (OFDMA)
scheme, i.e. relies on the wideband technique orthogonal frequency-division multiplexing (OFDM) to
obtain spectrum efficiency and resilience against frequency selective channels. OFDM is a multi-carrier
technique: it divides the allocated spectrum into orthogonal subcarriers, each on which signals are
modulated using conventional modulation methods. For uplink transmission, the related single carrier
FDMA (SC-FDMA) is used. The basics of these techniques are discussed in appendix B.

12

2.3. LTE principles

NAS

PDCP

RLC

IP

USIM

MAC

PHY

Radio

RRC

Application

Figure 2.5: LTE protocol stack of a UE.

The LTE protocol is specified both for frequency-division duplexing (FDD) and time-division
duplexing (TDD); by definition they result in different up-/download spectrum allocation as well
as frequency deployment on a network perspective, each having their own pros and cons. Following
discussion (as well as the above-mentioned appendix) will focus only on FDD systems; most core
principles are however valid across both FDD and TDD implementations.

2.3.1 Frame structure

In LTE, the OFDMA principle is applied using both frequency-division multiple access (FDMA) and
time-division multiple access (TDMA). This results in a frame that is composed of elements defined in
both time and frequency. The highest element in time domain is a frame2; a frame in LTE lasts 10ms
and consists of ten subframes, each 1ms. Subsequently, each subframe consists of two slots, where
each slot is 0.5ms. Every slot consists of either six or seven OFDM symbol durations depending on if
cyclic prefix (CP) is extended or not. Combining the time domain with the frequency domain results
in an overall frame structure for LTE, namely the resource grid.

The smallest element to be allocated for an UE is a resource block (RB), which has the duration
of a slot and bandwidth of a physical resource block (PRB), i.e. 180 kHz; the PRB is divided into
12 subcarriers with 15 kHz spacing. Within a RB, resource elements (REs) are defined; these are the
smallest elements in the resource grid and describe a single symbol modulated onto a subcarrier, i.e.
it is one subcarrier wide in frequency and lasts one symbol duration in time. RBs are allocated in
pairs within the same subframe, usually within the same PRB3. The downlink resource grid can be
seen in figure 2.6 and in greater detail in figure 2.7. [29, 30]

2On the physical layer; larger elements are defined on higher layers.
3Frequency hopping within a subframe (known as distributed mapping) is however supported.

13

2. Preliminary research

BW
(1.4 MHz)

12 subcarriers
(15 kHz spacing)

Frame
(10 ms)

t

 PRB
(180 kHz)

Slot Slot
Subframe

 (1 ms)

f

Symbol durationResource block Resource element

Figure 2.6: OFDMA/LTE resource grid, illustrating how frequency and time are divided into
blocks (example with lowest allowed bandwidth in LTE of 1.4MHz excluding guard bands).

Transport blocks (TBs) are passed from the MAC layer to the PHY layer, which is then mapped
onto allocated RBs in the resource grid. The MAC layer may pass TBs once for every transmission
time interval (TTI), where a TTI corresponds to one subframe duration. The TB size (TBS) is
therefore dependent on the current number of allocated PRBs and the modulation and coding scheme
(MCS). [29, 30]

2.3.2 Channels

There are three types of channels in LTE: logical channels, transport channels, and physical channels.
Logical channels provide services between the RLC and MAC layer of the protocol and are generally
deciding what type of information is transmitted, e.g traffic, control, or broadcast channels. Transport
channels reside lower in the protocol stack, and are responsible for carrying data from the MAC layer
to the PHY layer. The PHY layer defines how the data is transmitted, e.g. encoding and interleaving.
Physical channels are the lowest level channels in LTE; they are mapped to the resource elements in
the resource grid. An illustration of how the physical channels are mapped to the resource grid can
be seen in figure 2.7. [29, 30]

As can be seen from the figure, multiple channels exist; the following is a list of all physical channels
in LTE for both downlink and uplink.

Downlink:

• Physical broadcast channel (PBCH)

• Physical downlink control channel (PDCCH)

• Physical downlink shared channel (PDSCH)

• Physical control format indicator channel (PCFICH)

• Physical HARQ indicator channel (PHICH)

14

2.3. LTE principles

t

f

SF 9SF 8SF 7SF 6SF 5SF 4SF 3SF 2SF 1SF 0

PRB 5

PRB 4

PRB 3

PRB 2

PRB 1

PRB 0

PDCCH
PDSCH
PBCH PCFICH

RS
PHICH PSS

SSS
Unused

Figure 2.7: Mapping of physical channels to the downlink resource grid for 1.4MHz bandwidth.

Uplink:

• Physical uplink control channel (PUCCH)

• Physical uplink shared channel (PUSCH)

• Physical random access channel (PRACH)

How logical, transport, and physical channels are mapped is reviewed in appendix A.2.

PDCCH is responsible for downlink resource allocation of the PDSCH on which the UE can receive
data from the eNodeB as well as resource allocation in uplink (“uplink grants”). In uplink, PUCCH
is used to transmit uplink control information (UCI) if no data is present, otherwise UCI is carried
over to PUSCH (since an UE cannot transmit both PUCCH and PUSCH in the same subframe). UCI
typically consists of hybrid automatic repeat request (HARQ) information, channel quality indicator
(CQI) reports, as well as scheduling requests for uplink transmissions. [29, 30]

LTE is using adaptive modulation and coding (AMC) to obtain link adaptation; this is done to
optimise the system capacity and coverage dependent on the signal quality available for the different
UEs. Therefore, the uplink modulation used as well as the coding scheme applied is determined
for each UE based on the latest received signal quality; the decision of the given modulation and
coding scheme (MCS) is made by the eNodeB and the decision is contained in the downlink control

15

2. Preliminary research

information (DCI) that also contains the uplink grant. The downlink MCS is also given in DCIs; the
decision is made using CQI reports from the UE, this is discussed further in section 2.3.4. [29]

2.3.3 Establishing connection in LTE

When a device seeks to establish connection on an LTE network, three major steps are to succeed:

• Synchronisation with cell

• Obtain cell system information

• Access reservation

Frequency and time synchronisation is obtained by the decoding of primary and secondary
synchronisation signals (PSS and SSS), which are transmitted in the beginning and in the middle
of all frames, i.e. every 5ms (light and dark green in figure 2.7); being able to track PSS and SSS
yields subframe level synchronisation and physical layer cell identity, as this is embedded in SSS.
[29, 31]

System information is received through master information block (MIB) and system information
blocks (SIBs). MIB (transmitted on the PBCH) is the first packet to be decoded by the device,
in which the most important parameters are available, e.g. system bandwidth and PHICH format.
Having this information, the DCI containing system information can be found on PDCCH, which
contains the positions of SIB messages. [29]

PSS

SSS

System information

eNodeBUE

PBCH

MIB

PDCCH

DCI

PDSCH

SIB1/SIB2

Synchronisation

Figure 2.8: Sequence diagram of synchronisation and download of system information.

The SIB1 message contains cell access information and information necessary to locate other SIB
messages. SIB2 messages contains control and shared channel configuration, including random access
(RA) information necessary for the ARP. [29]

Synchronisation and system information messages are displayed in figure 2.8.

16

2.3. LTE principles

2.3.3.1 Access reservation protocol (ARP)

After cell search, synchronisation and subsequent successful decoding of MIB and SIB, the device can
seek to successfully connect to an eNodeB through the ARP. The ARP is generally contention-based4

and is constituted by a random access procedure (RAP) to obtain resource allocation. The UE will
calculate the position of the next possible random access opportunity (RAO) in the resource grid and
decide which RA preamble to transmit, using information about timing and preamble format obtained
from the SIB2 message. It should be noted that the UE will retransmit the preamble with increased
transmit power after a random back-off period, if it does not receive a response. [30]

The UE will then wait on a response from the eNodeB on PDSCH, namely the random access
response (RAR, or simply MSG2). The RAR contains information about uplink timing adjustment, a
temporary identity of the UE (temporary C-RNTI), and when (and where) the next message should
be transmitted on PUSCH. It will usually be undetectable by the eNodeB, if two (or more) UEs have
chosen the same preamble to be sent at the same RAO; the eNodeB will issue a RAR which will be
received and understood by both (or all) UEs. Collisions are therefore not detected until the UEs’
response to the RAR, namely the MSG3 which includes the RRC connection request.

The connection request is transmitted on PUSCH, and includes the received temporary identity
along with specific subscriber details. As the contents of the messages are different between the
colliding UEs, the collision can be detected and the procedure is stopped for the given UEs; these will
have to restart the RAP. The eNodeB can specify in the RAR if the UEs should apply a random
back-off before restarting the RAP. RRC connection setup (MSG4 on PDSCH) is the reply from the
eNodeB to the connection request; this stage is called the contention resolution step. It contains the
response to the connection requests. It is sent to the connection requests that are collision free, and
allocates uplink resources for the UE if any are available, or denies the request if no resources are
available. [29, 31, 32]

MSG1: Preamble

MSG2: Response

MSG4: RRC Conn. Setup
PDSCH

(Collision detection)

PDSCH

eNodeB

PRACH

PUSCH

UE

MSG3: RRC Conn. Request

Ack
PHICH
Grant

PDCCH

Grant
PDCCH

Ack
PUCCH

Figure 2.9: Sequence diagram of random access procedure in LTE.

4Can be contention-free in handover scenarios.

17

2. Preliminary research

The steps in a successful and collision free RAP is illustrated in figure 2.9. It is followed by
authorisation steps for the connection to be authorised by and registered on the core network; this is
described in the following section.

2.3.3.2 Authorisation and other subsequent steps

Following a successful RAP, additional signalling is required in order to transmit and receive user
data from the network. In RRC connection request and setup messages of the RAP, the RRC layer
messaging is configuring the signalling radio bearer (SRB) of type one [29]; the RRC signalling is
specified in [33]. MSG4 is responded to with the RRC connection setup complete message, in which
the initial NAS layer message is concatenated; this is called the attach request or the NAS service-
request message [30, 32].

After receiving RRC connection setup complete from the UE, the eNodeB will transmit an
authentication request message, containing information received from the core network which should
be used for authentication of the UE. The UE will then use data from this message to prepare the
authentication response message, which contains authentication information from its SIM card. A
more in-depth explanation of the authentication procedure can be found in appendix C.

Upon successful authentication, a security mode command is transmitted on PDSCH in order to
activate integrity protection and ciphering. Integrity protection allows the receiver to detect packet
insertion or replacement, while ciphering protects from a third party receiving and decoding the
signal. The UE will verify the content of the security mode command messages and if successful, apply
integrity protection and cipher to subsequent messages before answering with a security mode complete
message. It should be noted that this message is the last message which is not protected by ciphering.
The eNodeB will transmit a RRC connection reconfiguration message, responsible for establishing
SRBs of type two and the data radio bearer (DRB); it may also include eventual piggybacked NAS
layer messages. The UE will, if successful, answer with a RRC connection reconfiguration complete
message, allowing for user data transfer using a DRB. [29, 34]

The eNodeB is allowed to send RRC connection reconfiguration before receiving security mode
complete, it should however release the connection if one of them fails [29]. The necessary signalling
for successful authentication, including acknowledgements, scheduling requests (SRs), as well as up-
and downlink grants are shown in figure 2.10.

18

2.3. LTE principles

eNodeB

RRC Conn. Setup Complete
PUSCH

UE

PUSCH

Security Mode Complete

Security Mode Command
PDSCH

RRC Conn. Reconfig. Complete
PUSCH

Grant
PDCCH

Grant
PDCCH

Ack
PHICH

RRC Connection Reconfig.
PDSCH

Ack
PHICH

Grant
PDCCH

Grant
PDCCH

Ack
PHICH
Grant

PDCCH

Ack
PUCCH

SR
PUCCH

SR
PUCCH

Grant
PDCCH

Authentication Request
PDSCH

Ack
PUCCH

SR
PUCCH

PUSCH

Authentication Response

Ack
PHICH

Ack
PUCCH

SR
PUCCH

Figure 2.10: Additional signalling following the RAP in LTE, produced using information from
[16, 29].

2.3.4 Power control

Power control is an important part of the LTE protocol to enable reliable mobile communication.
In LTE, intra-cell interference is not an issue in the same way, as it has been in previous mobile
communication technologies, as the OFDMA by design provides orthogonality between uplink streams.
However, efficient power control is still an important feature, as it ensures sufficient transmitted energy
in order to provide the desired QoS while keeping power consumption in battery powered devices as
low as possible. Generally, transmission power in LTE is calculated using power per RB (PPRB) or
energy per RE (EPRE). Uplink data rates on the channel are controlled by the MCS, while for a

19

2. Preliminary research

given MCS setting the transmission power is kept constant. The power control consists both of an
open loop method and a closed loop method using transmit power control (TPC); the PPRB is kept
constant for all RBs on transmission. Also for uplink, the “power headroom” is tracked to not exceed
the maximum power allowed in resource allocation. [29]

For downlink transmission, there is no individual power regulation for signals to different UEs.
Instead, the channel conditions of the downlink channel is reported using CQI, so that appropriate
MCS can be used [29]. Additional types of channel status information (CSI) signalling are specified
for MIMO transmission [29]. The CQI is related to the signal-to-noise ratio (SNR), however, how
the CQI is mapped to a specific channel condition is vendor specific; the CQI scale is defined to go
from 1 to 15, where 15 represents excellent channel conditions [35]. The CQI values corresponds to
different MCS settings. Also, power offsets between channels are introduced to boost reference signal
(RS) detection [29].

In the following sections, an overview of some of the essential power control elements is given.
Power control is specified in [36].

2.3.4.1 Open loop uplink power control

By definition, closed loop power control is not possible for the ARP signalling. Until attachment to
the cell, open loop control is therefore applied. The procedure applies a target received power specific
for the RA preamble (set by the eNodeB, indicated in SIB2 messages) and an estimation of the path
loss between the eNodeB and UE. The path loss is estimated from the RS received power (RSRP)
and its transmission power, which is also indicated in the SIB2 messages. The transmission power is
limited by a maximum power specified by device category. [29, 36]

The open loop estimation is an estimate of the downlink channel, while its application is for uplink.
This is carried out under the assumption that the uplink and downlink channel are long term reciprocal.
[29]

2.3.4.2 Closed loop uplink power control

The closed loop uplink power control is possible after attachment to the cell, enabling feedback in
the control system. The power control is then handled individually for sounding reference signals
(SRS), PUCCH, and PUSCH transmission. Transmission on all three channels are bounded by the
same maximum transmission power. Each channel power is calculated using different parameters,
partly specified by upper layers and partly given in PDCCH data. However, all three algorithms
incorporate both an open loop component (direct path loss estimation as for ARP) as well as closed
loop calculations that changes on a larger time scale (“semi static”). The power control for all three
channels is revised every subframe, so that power control is performed for every 1ms. [29, 36]

2.3.4.3 Power headroom

The power headroom is a measure of how close the UE transmission power on PUSCH is to the
maximum transmission power of the UE. It is MAC layer control information that is used in the
eNodeB when allocating resources; power headroom reportings (PHRs) are sent to ensure that
additional RBs within a given subframe are not allocated to a device, if this would require the
maximum transmission power to be exceeded. Transmission of a PHR is occurring periodically and if

20

2.4. Preliminary analysis of PRACH detection

the estimated path loss changes more than a given threshold. The PHRs are only transmitted within
subframes in which the UE has an uplink grant. [29]

2.4 Preliminary analysis of PRACH detection

In order to understand the limitations of multiple UEs attempting to connect to the network,
simulations have been carried out to investigate the expected preamble detection probability for a
given RAO. This test is performed using a range of UEs, as seen in figure 2.11. The tests are carried
out in Matlab using the LTE System Toolbox for generation of baseband preamble signals as well
as the detection after white Gaussian noise is added in order to obtain the desired SNR.

In the scenario with only one UE, a random preamble is chosen out of the 64 available as would
normally be the case if the eNodeB only allows group A preambles; the resulting signal is generated,
channel noise is added, and detection of the preamble is attempted; this is carried out Ntrials times.

(a) 1 UE transmitting at a given RAO.

-25 -20 -15 -10 -5 0

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty
 (

-)

Preamble detection
False positives

(b) 5 UEs transmitting at the same RAO.

-25 -20 -15 -10 -5 0

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pr

ob
ab

ili
ty

 (
-)

Preamble detection
Total pre. detection
False positives

(c) Combined plot of preamble detection simulation with 1 to 30 UEs transmitting at the same RAO.

-25 -20 -15 -10 -5 0

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty
 (

-)

1 UE
2 UEs
3 UEs
4 UEs
5 UEs
10 UEs
20 UEs
30 UEs

Figure 2.11: Simulated preamble detection results.

21

2. Preliminary research

The probability of successful detection, pd, is estimated as follows:

p̃d = Ndet,tx
Ntrials

, (2.5)

where Ndet,tx is the number of preambles detected given that the preamble has been transmitted. In
addition, the probability of false positives, pfp is also found:

p̃fp = Ndet,ntx
63Ntrials

, (2.6)

where Ndet,ntx is the number of preambles falsely detected, i.e. given that the preamble has not been
transmitted. The division of 63 is due to that there is 64 preambles to chose from, one of which is
sent, i.e. there is 63 possibilities of a false positive. The pfp is then the probability of preamble with
index i is falsely detected, which is assumed equal for all of the residual preambles.

When multiple preambles are sent in the same RAO, Nsent preambles are chosen randomly to be
transmitted. The following is used to calculate the probability of detection:

p̃d = Ndet,tx
NsentNtrials

. (2.7)

And likewise for the probability of false positives:

p̃fp = Ndet,ntx
(64−Nsent)Ntrials

. (2.8)

Also, for the simulations with multiple UEs transmitting a preamble, the probability of receiving
all preambles sent in a PRACH slot is calculated as well; this is denoted “total preamble detection” in
the figures. The −8 dB limit is added, as the probability of detection shall be equal to or exceed 99%
for burst format zero (i.e. preamble format) at −8 dB SNR (for single UE transmission), as specified in
[37]. Figure 2.11(c) illustrates what happens when an increasing number of UEs attempts to connect
to the eNodeB in the same RAO, in order to give an overview of the performance of preamble detection
for a varying amount of UEs. Additional plots from the analysis can be found in appendix D.

It is seen from the simulations that when five UEs tries to use the same RAO, only 80% (at the
−8 dB SNR level) of these will be detected. This is a bottleneck for a systems with a large amount of
devices; this is also in a best case scenario without collisions. The probabilities for successful detection
will worsen taking collisions into account, which is more likely given that some preambles are usually
reserved for contention-free access (handovers).

22

3. System setup: MassiveMTC test bed

The massiveMTC device is to be developed on an SDR platform connected to an eNodeB emulator.
The connection between eNodeB and the massiveMTC device is made through cable so that
interference is not introduced in the licensed spectrum.

Both the massiveMTC and the eNodeB are to be implemented using USRP B210 boards that
feature Xilinx Spartan 6 FPGAs, as LTE implementations are known to be made on such boards.
The open source project srsUE [38], developed by Software Radio Systems, is used as framework to
perform the UE/MTC device protocol stack functionality; this is discussed in section 3.1. For the
evolved UMTS terrestrial radio access network (E-UTRAN) and core network (CN), the open source
project OpenAirInterface is chosen, this is discussed in section 3.2. Both the srsUE project and the
OpenAirInterface have been verified to be supported on the USRP B210 board.

USRP	B210 USRP	B210

MassiveMTC OpenAirInterface

Shielded	cable

USB	3.0 USB	3.0

Tx Tx

RxRx

Figure 3.1: MassiveMTC test bed setup.

Figure 3.1 illustrates the setup, it consists of two B210 boards as explained above. Two ports on
each of the boards are connected to splitters/combiners, this is required since the board transmits and
receives on different ports. Additionally, 30 dB attenuators are introduced in order to attenuate the
signal so that the maximum input power is not exceeded due to the low path loss of the cable as opposed
to a wireless link. The boards are connected the PCs running massiveMTC and OpenAirInterface,
respectively, with USB 3.0. Further discussion about the implications of the setup described in this
section can be found in section 4.2.

3.1 SDR implementation of MTC device

As stated, the srsUE implementation is used as basic framework of the UE/MTC device protocol
stack. It is a modular C++ implementation of the device side protocol stack using LTE functionality
provided by srsLTE, which is an open source C library providing core LTE functions. The protocol
stack in srsUE is defined as illustrated in figure 3.2. The defined radio layer makes use of the srsLTE
API, defined in srsLTE, to send commands to the USRP hardware driver (UHD) [39], which is the
driver used for accessing the USRP board. All of the srsUE modules and srsLTE functions are run on
the PC, sending baseband signals and required metadata to the SDR board through the UHD.

The virtual network interface (VNI) is implemented as a Linux “TUN device”, which is a tunnelling
interface that relays IP packets; in this way, applications can access the UE gateway and make use of
the LTE connection.

23

3. System setup: MassiveMTC test bed

GW VNI

srsLTE API

UHD

NAS

PDCP

RLC

USIM

MAC

PHY

Radio

RRC

Application

Figure 3.2: LTE protocol stack as implemented in srsUE.

It should be noted that srsUE is implemented in such a way that while all protocol layers are
initiated at start-up, most of them wait before they start processing on a subframe basis. The only
layer active from the beginning is the PHY layer, while the MAC layer simply waits for synchronisation
is reached. Layers above the MAC perform no operations before first steps in the RAP has occurred.
This means that the CPU load of srsUE is dependent on how far the UE is in the attach procedure.

The MAC and PHY layer are both split into several modules. The PHY layer consists of the
following modules:

• (General) PHY module

• PRACH module

• PHY channel receiver module

• PHY channel worker module

• PHY channel common (worker) module

The general PHY initiates the workers and generates a pool of these, as well as create instances of the
PRACH and common worker modules. After initiation, it is used as an interface to the PHY modules
for the upper layers. The PRACH module handles all PRACH procedures, including generating the
preamble signals. The PHY channel receiver handles cell search, cell synchronisation, and reception
of each subframe by parsing subframe data to a channel worker for decoding after calculating carrier

24

3.1. SDR implementation of MTC device

frequency offset (CFO) and sampling frequency offset (SFO), tracking time, and more. Essentially, the
PHY channel receiver is the backbone of the PHY layer, inasmuch as its thread provides bookkeeping
of subframes for all layers and initiates decoding for each received subframe. The channel worker
performs the decoding of subframes; see appendix F for detailed trace of down- and uplink processes.
Several are instantiated, and for each subframe an idle worker is given the data from a subframe to
process. In a similar fashion, they are used for encoding a subframe for transmission. The common
channel worker handles PRACH, which is prepared before a RAO, and the decoding of RAR; it is
also where channel properties are saved, such as estimated path loss and information calculated from
PSS/SSS (such as CFO and SFO). In this way, the common channel worker is the interface between
the individual workers.

The MAC layer consists of the following modules:

• (General) MAC module

• Multiplexing (MUX) module

• Demultiplexing (DEMUX) module

• Downlink HARQ module

• Uplink HARQ module

• PCAP1 module

• Protocol data unit (PDU) module

• Procedure modules for:

– Buffer status reporting (BSR)

– Power headroom reporting (PHR)

– Random access (RA)

– Scheduling request (SR)

The investigation of the implementation has mostly been of the procedures for RA and SR. It is the
SR procedure that signals the RA procedure instance to commence. The flow of initiation of PRACH
and transmission of the preamble is displayed in figure 3.3.

The uplink processing in srsUE is always four subframes ahead of the downlink reception, in the
sense that data is prepared four subframes before it is actually transmitted. This makes it possible to
stream the data over USB 3.0 to the buffers on the SDR before it should be transmitted without this
being time critical; transmission time is handled using metadata through the UHD. The reason that
it is exactly four subframes ahead is that srsUE must read ACKs/NACKs at the current subframe, as
eventual retransmissions is transmitted four subframes after a NACK is received [29].

1“Packet capture”, file output for tracking in network protocol analysers such as Wireshark.

25

3. System setup: MassiveMTC test bed

MAC

Radio

srsLTE API

SR procedure RA procedure

PHY

PHCH recv. PRACH

case: in sync
 if: ready to send
 send PRACH

is ready to send
send

Figure 3.3: Simplified PRACH transmission trace in MAC/PHY layer.

3.2 LTE system architecture

The network architecture of LTE is composed of three main parts: user equipment (UE), evolved
UMTS terrestrial radio access network (E-UTRAN), and core network (CN) which specifically for
LTE is more widely known as evolved packet core (EPC). The combination of E-UTRAN and EPC
are known as the evolved packet system (EPS); the setup is illustrated in figure 3.4. E-UTRAN handles
communication between UE and EPC and is composed by eNodeBs in a flat network architecture. It
should be noted that an eNodeB is a logical node, and not a physical construction, e.g. an eNodeB
can be a three-sector site, pico eNodeB controlling multiple pico cells, or a home eNodeB (HeNB)
controlling a femtocell. [29, 30]

The eNodeB is responsible for scheduling, transmitting, and receiving data to and from UEs.
eNodeBs is capable of handover to neighbouring eNodeBs, which together with load and interference
information is the main purpose of the X2 interface between eNodeBs. [29]

The EPC is responsible for the overall control of all UEs and establishment of EPS bearers, which
are “communication paths” from UEs to the internet [29]. The main logical nodes of the EPC are:

• PDN gateway (P-GW)

• Serving gateway (S-GW)

• Mobility management entity (MME)

• Home subscriber service (HSS)

• Policy control and charging rules function (PCRF)

26

3.2. LTE system architecture

Internet

MME

eNodeB

S-GW P-GW

HSS

PCRF

eNodeB

S1-U

S5/S8
SGi

S11 Gx

S6a

Rx

S1-C
S1-MME

X2

Figure 3.4: LTE system architecture with interface names. Dotted lines represent control
information and full lines is data.

The EPC can be split up into two planes, namely user and control plane. Both S-GW and P-GW
operates on the user plane, as they transport IP data traffic between UE (via eNodeB) and the external
network (the internet). S-GW is the gateway between eNodeB and EPC, while P-GW is the gateway
between EPC and the external network, communication between P-GW. The gateways may be seen as
independent logical nodes, but are often combined in a single node, known as the system architecture
evolution (SAE) gateway. [30]

An MME operates on the control plane, and as such handles signalling related to mobility and
security for E-UTRAN. The MME processes information between UEs and the EPC, for which the
NAS protocol is used. The HSS is a central database which contains information about subscribers
on the network, such as telephone number and universal subscriber identity module (USIM) data.
PCRF is responsible for charging functionalities and ensures that this is in accordance with the users
subscription profile. [29]

The NAS layer can be seen as the equivalent of the network layer in the OSI model, and is used
for managing UEs on the network. This includes handling establishment, handover, and release of
bearers, while also handling the establishment of connections and security between the network and
UEs. The access stratum (AS) protocols are the joint designation of the protocols/layers that handles
communication between the UE and eNodeB, i.e. MAC, RLC, and PDCP layers. It can be seen as
the equivalent of the data link layer in the OSI-model. Some of the most important tasks for the
AS layer is radio resource allocation in both uplink and downlink, header compression, security, and
position estimation of the UE. [29]

27

3. System setup: MassiveMTC test bed

3.2.1 OpenAirInterface implementation

OpenAirInterface is a software alliance which offers an open source software implementation of UE,
eNodeB, and EPC (excluding PCRF) [40]. The implementation used to emulate the eNodeB and EPC
is an “all in one” setup, where all nodes are deployed on the same PC, as seen in figure 3.5.

Internet

eNodeB

MME

S-GW P-GW

HSS

S1-C
S1-MME

S1-U SGi

S6a

S11

Figure 3.5: OpenAirInterface E-UTRAN/EPS setup.

It can be seen from figure 3.5 that S-GW and P-GW are merged together such that there is no
interface between the two nodes. The interface between MME and S-GW is virtual, meaning that the
signals are not sent through a network stack.

The HSS is deployed on the same PC as the EPC. The HSS is implemented using an SQL database
in order to store the information for all users; more info on how subscriber data is added to the HSS
database can be found in appendix C.4.

28

4. System development

The development of the massiveMTC device is split into several stages; the major steps are documented
in this chapter. First, it is sought to devise a development principle to enable “parallel” devices and
use this to develop a device that enables emulation of independent MTC devices. Initial development
of the principle and prototype implementation is completed with two devices in parallel as a proof
of concept. Subsequently, with a core principle well-defined and a two-device prototype, development
continued to focus on scaling and improving reliability.

As stated in chapter 3, the device protocol stack functionality will be derived from the srsUE
implementation [38], which implements the full protocol stack along with the srsLTE API to the
UHD, enabling transmission over the USRP B210.

4.1 Development of core principle

To have independent MTC devices running on the same device using the same RF front-end, several
concerns must be taken into account. The two main objectives are to receive the (downlink) signals
and parse these to each individual protocol stack, meanwhile for uplink, the signals for transmission
from each MTC device must be combined appropriately before transmission using the SDR.

The implementation principle devised is performed exclusively on the PHY and radio layer, while
the upper layers are duplicated. Duplicating the higher layers is deemed a technically viable approach,
due to the fact that the most computational heavy processes are placed in the physical layer functions,
specifically in the synchronisation and turbo coding processes; also individual higher layers are
important for the devices to act independently, which is necessary for the emulation to be realistic.

Common PHY

Radio

L3

L2

inPHY

L3

L2

inPHY

L3

L2

inPHY...

Figure 4.1: Core principle in development strategy: radio layer is shared, on top is the PHY layer
(layer one) split into a common part and an individual part.

29

4. System development

Thereby, an approach with the following implementation modules is chosen:

• A common physical layer (coPHY), where calculation heavy and common functionality should
be computed once for all MTC devices.

• Individual physical layers (inPHYs), where individual decisions are made.

• Extra functionality in the radio layer in order to enable simultaneous transmission of signals
from all MTC devices.

• All layers above the PHY are completely duplicated for each device, enabling full individual
functionality for these layers.

The design philosophy is illustrated in figure 4.1.

4.1.1 Individual and common physical layers

The coPHY is handling all steps with regard to getting received signals from the SDR; it has three
major responsibilities:

• Cell search

• Cell synchronisation

• Synchronous reception, parsing control and data information to each inPHY.

Cell search is deemed impractical to handle individually, as this requires changing the SDR frequency
(sampling frequency), which practically cannot be handled in parallel. By that, access to different cells
will not be supported by the massiveMTC device. Synchronisation is also managed in the coPHY, as
this is identical between the MTC devices since they have the same physical access to the channel, i.e.
the shared antenna front-end; the tracking of subframe number (SFN) is thereby occurring here and
is shared between the individual MTC devices. As a result from this, PSS/SSS as well as all MIB and
SIB decoding occur in the coPHY. When the coPHY is synchronised with an eNodeB, it will signal
the inPHYs and start passing received signals each subframe.

The inPHY handles both the down- and uplink processing that subsequently occur when receiving
synchronously from the eNodeB. Decoding of downlink signals is vital, as all uplink transmissions
are scheduled and granted by the eNodeB. The up- and downlink grants are given individually to
the MTC devices, and must therefore be handled by the inPHYs. Thereby, the main purpose of the
inPHY (in downlink) is to decode all PDSCH or PDCCH allocated for the given device, along with
information from PHICH in which ACK/NACK messages are transmitted. In regards to uplink, the
inPHY is responsible for decoding and handling uplink grants (given in DCI format 0 messages on the
PDCCH) and subsequent encoding of PUSCH or PUCCH, as well as generating SRS.

Upon transmission, the inPHY writes to two buffers in the radio layer: a buffer with transmission
control information, and a buffer with the transmission samples; these buffers are described further in
section 4.1.2. In addition to the buffers, a flag is set to signal subframe processing has finished. This
is illustrated in figure 4.2.

30

4.1. Development of core principle

InPHY2InPHY1

CoPHY

Radio

srsLTE API

Physical channel receiver
Cell search
→ PSS/SSS
→ MIB

Synchronisation
→ (Sub)Frame tracking (SFN)

Synchronised reception
→ Sending received signals to InPHY workers.

PHY worker
Downlink processing
→ Downlink grants
→ Transport decoding:
 - PDSCH or PDCCH
 - PHICH

PHY worker
Downlink processing
→ Downlink grants
→ Transport decoding:
 - PDSCH or PDCCH
 - PHICH

TTITTI

(a)

InPHY2InPHY1

Radio

Transmission thread

Data and control information buffers
→ Channel emulation
→ Individual power handling
→ Signal summation for SF

PHY worker
Uplink processing
→ Encoding:
 - PUSCH or PUCCH
 - SRS

Mutex

PHY worker
Uplink processing
→ Encoding:
 - PUSCH or PUCCH
 - SRS

TTI

srsLTE API

(b)

Figure 4.2: Implementation of coPHY and inPHY for two MTC devices in down- and uplink,
respectively. (a) Downlink. (b) Uplink.

4.1.2 Radio layer modifications and uplink power control

Samples from those MTC devices who have data to send are combined in the radio layer, before the
samples for the given subframe are scheduled for transmission in the SDR through the srsLTE API.
The signals are scaled such that they are each sent with their desired power. The combined baseband
signal, s′tx, is then:

s′tx(τ) =
NMTC−1∑
i=0

Gtx,i
Gtx,max

si(τ) , (4.1)

where τ is the discrete time samples, NMTC is the amount of MTC devices, Gtx,i is the transmission
gain of the ith MTC device, Gtx,max is max(Gtx,0,Gtx,1, . . . ,Gtx,NMTC−1), and si is the baseband
transmission signals from the ith MTC device.

The combination of signals results in higher powers and amplitude. The maximum amplitude of the
signal from one MTC device (amplitude of the baseband complex float handled in the radio layer) is
varying between approximately 0.6 and 1.2; for the combination of signals, both maximum amplitude
and average power scales with amount of devices, illustrated in figure 4.3. To avoid clipping in the
power amplifier, the combined signal, i.e. s′tx(τ), is normalised if the maximum peak of the combined
signal exceeds 1.2, and the total baseband signal to be transmitted is then:

stx(τ) = 1
σ
s′tx(τ) , (4.2)

31

4. System development

where σ = maxτ (s′
tx(τ))

1.1 is the scaling factor, which then results in a peak normalisation to 1.1 (σ = 1
when no scaling is performed). The transmission gain in the SDR is then set to Gtx = σGtx,max. In
the implementation, some of the operations are carried out in logarithmic domain (decibel).

0

S1(t)
S2(t)
S′(t)

Si
gn

al
 a

m
pl

itu
de

Atx0

t

Atx1

Atx

Figure 4.3: Illustration of the signal summation and associated amplitudes.

As previously stated, two buffers are introduced in the radio layer: the transmission control buffer
and the transmission samples buffer. The transmission samples buffer contains the individual signal
samples for the subframe from the UEs, i.e. si in equation (4.1); the buffer size is dependent on the
bandwidth of the cell, so the initiation and allocation are not carried out until after cell search. The
transmission control buffer contains both the amount of samples as well as timing information for
transmission.

Also, two mutexes are implemented: a “radio access” and a “transmission” mutex. A mutex, short
for “mutual exclusion”, is a method that enables halting a thread, such that it does not enter a critical
parts of code, e.g. access to memory shared between threads. The radio access mutex is used when
accessing the radio layer, e.g. for setting the individual transmission power or for getting received
signal strength indicator (RSSI) values. The transmission mutex is used by the inPHYs in order to
be able to write to their respective transmission buffers, which are allocated in the same array. In
addition to the mutexes, a conditional variable is implemented which signals the radio layer that the
radio layer is to carry out transmission processing. Flags are used for each MTC device to signal
whether they have finished uplink processing for the given subframe.

4.2 Uplink power budget

As previously stated, this thesis is utilising USRP B210 boards developed by Ettus Research. In order
to emulate individual distances from the eNodeB to the MTC devices, path loss has to be implemented.
There is however a limit as to how many individual signals can be transmitted and their relative power
levels due to the physical limitations of the radio front-end of the SDR; this is subject to investigation
in this section.

The output of the SDR is the individual signals combined at the same point in time and place
– the individual signals from the MTC devices will therefore theoretically have equal power as they
generally aim for the same received power at the eNodeB; there will however still be some difference in

32

4.2. Uplink power budget

the signal amplitude of the individual signals due to imperfections in LTE power control and frequency
dependent noise estimations. Additionally, the reference received power is not the same on all physical
channels, e.g. PRACH and PUSCH does usually not have the same received power, so differences will
occur in output power between devices. Path loss for the individual MTC device is subtracted from
their gain levels in the inPHY; this gain is then used in the radio layer when combining the signals
and setting the total gain of the SDR for a given subframe. This is discussed in section 4.1.2. It is
then up to the inPHY LTE power control to make up for the difference in output power (by tuning its
set gain for the SDR higher) so that the received power at the eNodeB is close to the reference/aimed
power.

This implementation setup mitigates the so-called “near-far” problem, where the DAC cannot
produce the small changes in a low power signal when the dynamic range is used to generate a high
power signal simultaneously. However, the problem is not completely eliminated – an analysis of what
performance can be expected of the USRP B210 boards are therefore made.

The transmit gain of the B210 board is configurable, and can be set anywhere between 0 dB to
89.8 dB in steps of 0.2 dB by controlling a programmable gain amplifier (PGA) using the UHD [41].
The B210 board is equipped with a 12-bit DAC [42]. Output transmit power varies between −70 dBm
and 13 dBm at 2.65GHz using the whole gain spectrum, the relation between gain and transmit power
scales almost linearly [43].

It must first be determined how many quantisation values are required to accurately describe a
signal, in order to determine the maximum number of MTC devices which can transmit at the same
time without clipping the signal on the radio front-end; figure 4.4(a) shows the root mean square error
(RMSE) between a sine wave created using a range of N uniformly distributed quantizer levels up to
the entire range of the 12 bit DAC (212 = 4096 levels). Figure 4.4(b) shows examples of the decimation
process to display the quantisation effect.

(a)

0 500 1000 1500 2000 2500 3000 3500 4000

of DAC levels

10-4

10-3

10-2

10-1

100

RM
SE

RMSE of reconstructed sine wave using # quantizer levels

(b)

16 quantizer levels

64 quantizer levels

512 quantizer levels

Figure 4.4: Decimation factor impact on RMSE for a sine wave. (b) shows examples of the resulting
output for different amount of quantizer levels, marked on (a).

33

4. System development

A threshold RMSE of 10−2 is chosen as an acceptable error, this corresponds to a sine wave created
with a minimum of 57 quantizer levels. In order to allow for some headroom, as well as having an
integer divisor of 212 for simplicity, 64 is chosen as required number of quantizer levels for signal
generation. Dividing the total number of quantizer levels with the now set requirement of 64 yields
the maximum number of MTC devices that are allowed to transmit at the same time:

MTC max = 4096
64 = 64 . (4.3)

Note that this assumes that all MTC devices have identical transmit power. This is in other words the
maximum number of MTC devices which can transmit in the same subframe and can be considered
“best-case”.

In order to determine the “worst case”, e.g. the case where the least amount of devices can transmit
in the same subframe, a case consisting of two MTC devices is considered, where the MTC devices will
not generate the same output of the SDR. According to the LTE standard, the minimum transmit
power of a device is −40 dBm [44]. “Worst-case” is then when the signal from the MTC device far
away from the eNodeB, transmitting at maximum power (23 dBm for device category 0 [7]), arrives at
the eNodeB with a very low power compared to the device close to the eNodeB. This is illustrated in
figure 4.5. A maximum difference in path loss can then be defined, i.e. a kind of “maximum emulated
distance” between the two devices.

eNodeB

MTC device 2 MTC device 1

PL
2

PL
1

USRP B210

d

Figure 4.5: Illustration of path loss in the system, PL2 is the emulated path loss and PL1 is the
signal path loss due to physical attenuators and not emulated by the implementation.

Recall that with the accepted level of quantisation error (arbitrarily chosen to 10−2 RMSE for a
sine wave in order to have a reference), at least 64 levels should be used to generate the amplitude
span. This then sets a lower limit of the output power relative to the high power signal of the closest
device.

The output of the SDR is set to be at the device closest to the eNodeB, henceforth called device
one. The “far away” device is called device two. Any desired path loss from device one to the eNodeB
should be emulated using physical attenuators at the conducted connection. The output signal of the
SDR is, therefore:

sSDR(t) = Ptx,1s1(t)+(Ptx,2−PL2)s2(t) , (4.4)

where Ptx,1 and Ptx,2 are the individual set output powers with total output power Ptx ≈Ptx,1 +Ptx,2−
PL2, PL2 is the path loss from device two to device one, and s1(t) and s2(t) are the normalised signals
of device one and two, respectively.

34

4.2. Uplink power budget

Now, at least 64 quantizer levels should be within the amplitude span of device two signal after
path loss. The power of device two after path loss should then not subceed the equivalent of 64 least
significant bit (LSB) flips, and the following relation is thereby obtained:

Ptx,2−PL2 ≥
64

4096−64Ptx,1 , (4.5)

where Ptx,2−PL2 is the SDR output for device two. Equation (4.5) then translates into:

PL2 ≤ Ptx,2−
64

4032Ptx,1 . (4.6)

In the likely case that the two devices are transmitting with maximum and minimum specified power,
respectively, this is then equivalent to:

PL2 ≤ 23dBm− (−40dBm−17.99dB)≈ 81dB . (4.7)

This means that if there is more than 81 dB difference between the output power of the SDR set by
the MTC devices, the low signal power device will suffer higher quantisation noise than the accepted
threshold. What 81 dB path loss relates to in relative emulated distance depends on the attenuation
between the SDR and the eNodeB due to the power law nature of path loss.

Figure 4.6 shows the relation between physically added attenuation to the combined signals in dB
and maximum distance according to Friis’ free space path loss between the MTC devices in km. An
attenuation of 60 dB corresponds to a distance of 10m at 2.65GHz using free space path loss, i.e. with
the closest device being 10m from the eNodeB the maximum cell size of 100 km [29] can be emulated.
It should be noted that a signal of 23dBm−60dB−81dB =−118dBm will however not be decodable
by the OpenAirInterface emulating the eNodeB in the test bed.

0 10 20 40 50 6030
0

10

20

30

40

50

60

70

80

90

100

M
ax

 d
is

ta
nc

e
[k

m
]

Maximum distance between MTC devices

Attenuation [dB]

Figure 4.6: Maximum possible distance between MTC devices as a function of attenuation of the
radio link assuming free space path loss.

The calculations performed in equation (4.7) are based on the minimum power requirement for
an LTE MTC device, it is however possible to lower the power further as the SDR board is capable
of transmitting with a power of −70 dBm [43]. By that, 30 dB attenuation can be added by gain
adjusting the SDR instead of adding physical attenuators.

It should be noted that these cases describe the two limiting cases, and cannot be applied to any
arbitrary configuration of MTC devices.

35

4. System development

4.3 Downlink path loss emulation

To make the multiple devices experience individual channel conditions, some channel emulation is
implemented in the downlink on the massiveMTC device. A simple attenuation of the sampled
baseband signal will not change the SNR, because the attenuation of the information signal will be
equal to that of the noise. Instead, the noise level must be increased relatively to the information signal
level. In the massiveMTC implementation, a “static” decrease in the SNR is developed to emulate path
loss. The downlink path loss emulation is implemented in the coPHY just before passing the signals
to the inPHYs; this means that the CFO and SFO estimation, as well as PSS and SSS tracking are
the same between devices, and made directly on the sampled signal (without any channel emulation).
Placing the channel emulation before the processing in the coPHY would prove impractical, as these
processes are by design carried out on behalf of all the devices. Alternatively, it could be placed in
the inPHYs, which would yield the same result (if placed in the beginning of the processing); the
reasoning behind choosing the coPHY is that it keeps the inPHYs “unaware” of the emulation, and it
makes it easier to manage the given path losses, as they are used in only one place and therefore the
implementation does not require further interfacing.

To obtain the decrease in the SNR level, channel estimation of the noise level (or the SNR itself,
which generally requires noise level estimation as well) must be performed, otherwise noise cannot be
added at a known level relative to the signal and the reduction in SNR will be unknown. As the channel
emulation is only performed when synchronised (as cell search and synchronisation is performed by the
coPHY), estimation can be performed using the downlink RSs. The channel estimation is also carried
out in the inPHYs to be able to do CQI reporting, however only for their allocated RB depending on
CQI reporting mode set by eNodeB. The noise estimation is based on subtracting the known RS form
from the received PSS.

Noise is generated as follows:

N = κ

√
PPLPN

2 NIQ , NIQ =NI + jNQ , (4.8)

where PPL is the “path loss attenuation” (emulated as an increase in noise level, but results in the
same result with regard to SNR), PN is the current noise level, and NI ,NQ

i.i.d.∼ N (0, 1). The κ is the
digital scaling factor used to take the receiver gain into account, as it is the ratio between the received
power and the “digital power” of the baseband signal.

The digital scaling factor is estimated using the difference between the RSSI value estimated in the
baseband processing in the masiveMTC implementation and the on-board RSSI estimate found using
the B210 ADC. This is a method also applied by srsUE in other functions; however, it has been found
not to yield perfect results and requires offset scaling that needs to be calibrated.

The generated noise is then added to the samples and passed to the inPHY; in this way, the different
devices will then be experiencing different channels for decoding downlink control information and
data, as well as for CQI reporting. The noise samples, i.e. NIQ, are pre-generated when initiating the
software, as real-time generation has proven too slow. A large array is therefore pre-generated in the
memory, so that the random number generation is not required in the time sensitive process.

36

4.4. Scalability

As a final remark, it should however be noted that while downlink channel emulation is possible,
the implementation is not reliant on individual downlink channels. Meaning that regardless of the
measured channel, each MTC device is able to report a predetermined CQI to the eNodeB. This
implementation strategy is based on that if it is the objective to test the load on a network, little is
gained by adding additional path loss in downlink, which adds calculation heavy processes in the time
critical parts of the software.

4.4 Scalability

To expand the implementation in order to handle more devices, several tweaks are required; most
notably additional USIM details are incorporated in the OpenAirInterface HSS and in the massiveMTC
device, more advanced device initiation processes are developed and optimised, as well as additional
signalling for less dependency between individual devices. The latter is a key feature to prevent that
the collective performance is not severely affected by the performance of the individual devices, i.e.
the performance should not be limited by the slowest device. This is especially relevant in uplink
processing, where the transmission should be executed when the deadline for transmission is reached,
even if all devices have not finished processing; in this case, the packets from the late device(s) will
simply be discarded. This is however preferable to the alternative, where all packet transmissions are
delayed (and probably discarded by the eNodeB).

A detailed illustration of the down- and uplink processing in, and signalling between, the radio layer
and physical layer is displayed in figure 4.7. The transmission thread is signalled to start once every
subframe, either by the last inPHY that is ready or by the coPHY when reaching the transmission
deadline. Because of this, the coPHY and radio are always synchronised, and thereby transmission
(i.e. uplink) is always synchronous with the downlink, as is required for LTE. This provides resilience
to errors or other events slowing individual devices down.

The function calls performed in the inPHY and radio layer is shown in figure 4.8. For each
TTI (subframe), the worker in the inPHY will signal the radio layer through function calls in the
general PHY module: it will either write the transmission data (I/Q samples in complex float format)
and appropriate signals/metadata (tx_buffer()) or simply signal that no data is to be transmitted
(nothing_to_send()).

The two function calls for signalling the radio are essentially equal in their structure, which is why
they are collectively described in figure 4.8. When nothing is to be sent, time information for the
given TTI is written to the transmission control buffer and the flag signalling that uplink processing
has finished is set. When transmission is to occur, the same functions are carried out and in addition
to this, the signal samples are written to the transmission buffer; the number of samples written to
the transmission samples buffer is indicated in the information written to the transmission control
buffer. Both procedures will finish by checking whether all devices have finished processing, in which
case uplink transmission process in the radio layer will be signalled through the conditional variable.

37

4. System development

F
igure

4.7:
Elaborate

illustration
ofdow

n-and
uplink

processing
and

signalling
on

the
radio

and
PH

Y
layers.

38

4.4. Scalability

Radio

radio.cc
process_tx_buffer(void)

while (running)

if (data_to_send)
Gain scaling and maximum amplitude normalisation
Combine signals from MTC devices with data_to_send
tx()
Reset tx buffers

else
tx_end()

Reset ready_to_send flags

Wait for signal from conditional variable

tx(cf_t* buffer, uint32_t nof_samples, srslte_timestamp_t tx_time)
Send data (in buffer) to UHD through SRSLTE_API with appropiate metadata

uint32_t buffer_nof_s: Number of samples (length of buffer)
bool ready_to_send: Flag for signaling processing for this subframe has finished

srslte_timestamp_t buffer_time: Timestamps for timing transmission
cf_t* buffer_f: Samples, I/Q data

InPHYx

phy.cc

tx_buffer(cf_t* buffer, uint32_t nof_samples, srslte_timestamp_t tx_time)
or
nothing_to_transmit(uint32_t tti, srslte_timestamp_t tx_time)

Lock tx mutex
Write data to buffers
if (all is ready_to_send)

Start tx_buffer process thread by signalling conditional variable
Unlock tx mutex

tx_end(void)
Write zeros to UHD buffer and signal 'end of burst'

Figure 4.8: InPHY uplink data and control signalling to radio layer.

In the radio layer, the transmission process (process_tx_buffer()) will check whether any of the
devices have data to be transmitted. If any, signals from the devices will be combined, power control
as described in section 4.1.2 is carried out, before the combined signals are sent to the SDR using the
tx() function call.

As previously discussed, and displayed in figure 4.7, additional signalling occurs from the coPHY
when the deadline for transmission is reached. This function call uses the same mutex, but applies
another function in the radio layer. The function will check, whether all devices have finished their
processing, so that transmission for the active TTI has occurred or is occurring. If not, the transmission
process will be initiated for the devices which have finished processing such that transmission will occur
within the deadline.

39

4. System development

4.5 Initiation: The device handler

The instantiation of the devices is handled from a main module, as is customary for C/C++ software.
A configuration file with RF settings is loaded inside the main module, (such as downlink and
uplink frequencies), SDR device arguments, output/logging settings, USIM data, as well as some
“expert” settings (amongst others, specific PRACH transmission gain and number of PHY layer
workers/threads). When each device is initiated it is registered in a device handler, which is developed
for handling the multiple device instances as well as the coPHY. Handles to the instances and their
individual layers are stored in the device handler, required handles is passed to the coPHY so that it
can pass subframe data and other signalling to the devices.

The additional path losses for the individual device signals are set in the device handler; as per
current development, it is hard-coded in the device handler software module, but it could be integrated
in the configuration file.

Error messages from the radio layer, starting the coPHY when the software is finished initiating,
as well as the termination of the device handles and coPHY when shutting down are also handled by
the device handler.

4.6 Outputs of software

During the initiation of the software modules, messages are written to the console such that progress
can be tracked. When initiated, only important events will be notified through the console, such as
initial decoding of MIB and SIB1/2 messages. When MIB has been found, cell settings will be setup
for each device, such that arrays can be allocated and workers instantiated; this is called cell initiation
and messages for this are also written to the console. When synchronised, messages will be sent to
the console upon PRACH transmission, as well as if the RAP is successful and RRC connected state
is reached. If authentication goes well and the RRC reconfiguration complete message is received,
the VNI, i.e. the TUN device, will be generated; messages for this and the given IP address will also
be written to the console. Upon successful connection, only eventual synchronisation issues will be
written to the console; in the event that connection re-establishment is required, additional PRACH
transmissions and RRC connected messages (if successful) will be displayed.

Additional outputs can be written to a log file, the verbosity of the output is set through the
configuration file. Debug messages are written so that software progress can be tracked; examples of
these are messages describing synchronisation in coPHY, TBs between MAC and inPHY, when signals
are sent to the transmission buffer in the radio layer, as well as transmission of baseband signals to
the SDR. The log messages cannot be tracked in real time and is therefore a debugging tool. With
the current development status, outputs must be written to the console if they are required in real
time.

40

5. Performance evaluation

The massiveMTC prototype implementation is tested in order to evaluate the performance of the
implementation. This chapter describes the test setups used before providing the data from the tests.
All tests are carried out with the massiveMTC software running on a desktop PC. The specifications
of the desktop PC, acting as the host PC, are shown in table 5.1.

Table 5.1: MassiveMTC host PC specifications.

PC Dell Optiplex 9020 SFF
Distribution Ubuntu 16.04 LTS
Kernel 4.4.0-67-lowlatency
CPU Intel Core i7-4790 @ 3.60GHz
Memory 24GB 1600MHz DDR3L RAM

In order to test the massiveMTC device implementation, an eNodeB (or eNodeB emulator) is
required, as the code will otherwise not run due to the downlink synchronisation in the LTE protocol;
all messages must also be handled correctly in order to verify successful attachment to a network.
Three different eNodeB setups are used, each with their own advantages:

• Dedicated test bed using OpenAirInterface

• UXM wireless test set (E7515A)

• Nokia eNodeB at Telenor Aalborg test facility

In addition to these, successful attachment has been carried out on an Anite 9000 network simulator,
but no further test has been conducted using this setup.

OpenAirInterface has been the most used platform, it being the eNodeB in the test bed for the
massiveMTC device development. More information about OpenAirInterface setup is given in section
3.2.1. It has high degree of reconfigurability, especially as specific functionality can be changed
directly in the source code. It can however be difficult to modify the OpenAirInterface code due
to the low transparency of the implementation. The OpenAirInterface eNodeB can handle up to three
devices before becoming unreliable according to the developers; especially that the MAC scheduling
is not optimised causes some issues for more than two devices. It proved difficult to connect to the
OpenAirInterface EPC with more than two devices due to seldom success in either the authentication
or the creation of a DRB. A major downside of the OpenAirInterface is the power control; it does not
have strict control on the output power, both total and relative between physical channels, as it uses
calibrated values from their own setup. A consequence of this is that downlink path loss estimation,
and thereby uplink power control, does not work as intended and uplink power must therefore be
manually set as a constant on the massiveMTC device. In addition, the OpenAirInterface EPC has
not proven capable of correctly routing IP traffic, making data transfer tests impossible on this setup.

41

5. Performance evaluation

Through the collaboration with Keysight Laboratories in Aalborg, tests has been carried out on
their E7515A UXM wireless test set, which is a signalling test device designed for RF design validation
of LTE devices by emulating an eNodeB. The UXM is capable of changing parameters using a GUI
which makes it possible to test use cases within the LTE protocol, as well as dissecting protocol
messages for debugging. It is however only capable of testing one UE at a time (on the same cell). A
picture of the UXM and massiveMTC during testing is shown in figure 5.1. The UXM has an internal
EPC emulator, but also supports connecting to an external EPC. Tests has been conducted both for
the internal EPC emulator as well as with an external emulator, namely the Polaris EPC emulator,
also supplied by Keysight Laboratories.

Figure 5.1: The massiveMTC device host PC and B210 board (lower left) connected to the UXM
(lower right) at Keysight Laboratories in Aalborg. The oscilloscope and power supply is not used
during massiveMTC device testing.

The mobile operator Telenor granted access to test the massiveMTC device on a commercial Nokia
eNodeB at their testing facility in Aalborg. This being a commercial eNodeB allows for a greater
number of devices to be connected at the same time. In the test facility, the test eNodeB is connected
to the live Telenor EPC, which makes it impossible to get authenticated to the network without a real
SIM card. Unfortunately, this means that the implementation is not able to successfully connect to
the network as physical SIM information is not supported and injecting false USIM data into Telenor’s
live HSS is not viable. Tests are instead carried out on the Nokia eNodeB connected to the Polaris
EPC emulator provided by Keysight Laboratories; connection using this EPC did however also prove
unsuccessful, as the NAS authentication request message (shown in figure 2.10) issued by the MME
within the Polaris EPC is not detected. It is observed that with the Polaris EPC, the attachment
procedure consistently reaches the authentication request step, meaning that the massiveMTC devices
reach the RRC connected state and issue the RRC connection setup complete message, including the
NAS attach request message for the MME, which is received correctly at the MME. The response
(authentication request message) is however lost somewhere between the MME and massiveMTC
device implementation.

All tests in the following sections are carried out in band seven in LTE, which corresponds to
2.6GHz. Tests for support of the bandwidths in LTE are shown in table 5.2.

42

5.1. PRACH detection analysis

Table 5.2: Test of supported bandwidts of massiveMTC prototype implementation.

OAI UXM Nokia
1.4MHz N/A x∗ N/A
3MHz N/A - N/A
5MHz
10MHz
15MHz
20MHz () () ()

∗Cell search and synchronisation working,
issue observed with RAP MSG3.

Working.

() Working, but unstable.

x Not working.

N/A Not supported by eNodeB.

- Not tested.

The Nokia eNodeB at Telenor does not support bandwidths lower than 5MHz, OpenAirInterface
claims that it supports all bandwidths; it is however not working at 1.4 nor 3MHz on the test bed.
1.4MHz is tested on the UXM, where neither the original srsUE nor massiveMTC device are able to
connect due to some error in the decoding of the MSG3 of the ARP.

5.1 PRACH detection analysis

As only a limited amount of simultaneously attached devices are supported by OpenAirInterface,
evaluation of the attachment procedure of many devices are therefore not possible on this platform.
Instead, only the preamble detection is tested to prove that several device instances are generated, and
that these are able to transmit in the same RAO. OpenAirInterface, in its original version, will only
detect one preamble (above a given threshold), as it only supports starting one attachment procedure
per RAO; the preamble detection module will therefore by default only return the preamble with
the highest detected energy. However, to test the preamble detection and not the full attachment
procedure, this is modified such that all preamble above the detection threshold are reported, so that
preamble transmission and signal addition is verified.

The detection rate of the preambles are displayed in table 5.3, where up to ten devices transmit in
the same RAO and the subsequent detection is noted on the output of the OpenAirInterface host PC
for 30 RAOs. The massiveMTC is transmitting with a constant gain of 55. The test is performed with
PRACH configuration index 0 having a root sequence index of 0, zero correlation zone configuration
value 11, and frequency offset parameter value 2; these are the default settings in OpenAirInterface.

Table 5.3: Detection of preambles using OpenAirInterface eNodeB.

MTC devices Detection rate
1 100%
2 98.3%
3 98.8%
4 99.1%
5 96.6%
10 96.4%

43

5. Performance evaluation

Detection performance is seen to be excellent also for many devices, which is in accordance with
that the conducted channel conditions are good, even though 30 dB attenuation is used on the signal
(as described in chapter 3). Generally, no false positives are observed, though such has been observed
during the development and generally when the PRACH transmission power is increased from the
reference received power, as will be discussed in section 5.3.

It should be noted that it is difficult to use the OpenAirInterface setup to investigate the preamble
detection rate in a realistic scenario, as the detection threshold within is empirically set and does not
by default take estimated delay into account as part of the threshold. Further detailed investigation
with regard to other power levels is not performed, as the actual output power of the B210 board is
not calibrated as well as with the current development status, the testing sweep is not automated,
making the process slow and cumbersome.

It is however observed that the detection is independent of whether the transmitted preamble indices
are in sequence, meaning that it does not seem to prompt for the signals to result in neither additional
missed detections nor false positives if e.g. preambles with indices 0, 1, and 2 are transmitted.

5.2 CPU load analysis

The tests conducted at the Telenor test facilities involve connecting an increasing number of MTC
devices to a network in order to measure the CPU load while the devices are connected and in
synchronisation with a Nokia eNodeB, in order to establish an idea of how many devices can be
connected at the same time. The CPU load has been measured using the Ubuntu system monitor. As
a result of the issues with the EPC at the Telenor test facility, the tests performed shows the CPU load
of the host PC when the devices are connected and reaching RRC connected; when the authentication
request is not received, the devices stay synchronised until they are released by the Nokia eNodeB.
Tests are conducted with the Nokia eNodeB running at 5 and 10MHz bandwidth. It should be noted
that during all tests, the initial spike in CPU load is due to initialisation of software, followed by a
spike for cell search and initial synchronisation as displayed in figure 5.2(a).

The average CPU load of the host PC observed during the tests conducted both using the Nokia
eNodeB and OpenAirInterface is shown in table 5.4; envelope of maximum core load is illustrated in
figure 5.2. Additional test results can be found in appendix E.

Table 5.4: Average CPU load (in percentages) with N MTC devices using Nokia and
OpenAirInterface (OAI) eNodeB.

Nokia OAI
N 5MHz 10MHz 5MHz 10MHz
1 5 8 11
2 10 14 16
4 17 11
6 15 20
8 20 48
10 35 55
12 42
14 52
15 57

44

5.2. CPU load analysis

The CPU load generally increases with the number of connected devices as expected. Maximum
memory usage is registered just above 20%, corresponding to 4.8GB for the case where 15 MTC
devices is connected. The average core load of the CPU increases with around 10% for every five
MTC devices. It should be noted that that performance for more than 15 MTC devices at 5MHz
proved unstable, resulting in synchronisation issues.

(a) 4 MTC devices.

Time [s]0 40

M
ax

 c
or

e
lo

ad
 [%

]

0

100
Initiation Cell synch.

(b) 10 MTC devices.

Time [s]0 40

M
ax

 c
or

e
lo

ad
 [%

]

0

100

(c) 15 MTC devices.

Time [s]0 40

M
ax

 c
or

e
lo

ad
 [%

]

0

100

Figure 5.2: Envelope of maximum CPU core load, i.e. the maximum load on any of the cores, for
Nokia eNodeB tests at 5MHz.

The required memory for eight MTC devices at 10MHz case is also about 5GB. More than eight
MTC devices at 10MHz proved unstable, similarly to when having more than 15 devices at 5MHz.

The same test has been organised using the OpenAirInterface eNodeB and EPC, in order to
investigate the influence on the CPU load if successful authentication is possible. Due to performance
constraints of this platform, only up to two MTC devices could be connected at the same time.

45

5. Performance evaluation

It is seen that an increase in CPU usage per device is apparent, which is expected as all protocol layers
are running. It seems that halving the number of MTC devices yields approximately the same CPU
usage when comparing the Nokia eNodeB with OpenAirInterface.

CPU usage of srsUE and the massiveMTC implementation has been compared for a single user in
order to investigate the effect of the added overhead, this can be seen in figure 5.3. MassiveMTC has
similar CPU usage for one device compared to srsUE. This shows that the added multi-thread overhead
has negligible effect on the performance. It is by definition not possible to test the performance of
srsUE with more than one UE on the same device, at least not using the same SDR. However, making
parallel srsUE instances running using separate SDR boards should result in a CPU load increase
equal to the load of a single device.

(a) 1 srsUE UE device connected to OpenAirInterface eNodeB at 5MHz.

(b) 1 device in massiveMTC connected to OpenAirInterface eNodeB at 5MHz.

Figure 5.3: Comparison of CPU load at 5MHz.

Table 5.5 summarises the maximum amount of MTC devices which are able to connect and
maintaining a stable connection.

Table 5.5: Maximum number of stable MTC devices.

Bandwidth Nokia OAI
5MHz 15 2
10MHz 8 2

5.3 Power control

Uplink: Preamble power

The received power of preambles sent by multiple devices in the same RAO is compared, in
order to test whether the output signal scaling of the uplink power control described in section
4.1.2. The results are displayed in table 5.6. The preambles sent are chosen randomly, causing
occasional duplicates/collisions; the received powers of colliding preambles are not taken into account.

46

5.3. Power control

The estimated received power measurement by OpenAirInterface is performed using an arbitrary
logarithmic scale, so it cannot be translated directly into received power in dBm; however, a change
in the expected direction of the received power is observed.

Table 5.6: Preamble power detection trials using OpenAirInterface, with estimated power of
preamble detections. Values are in a arbitrary logarithmic scale used by OpenAirInterface, the
gain value is the transmission gain as set by the individual devices, µ is the mean for all the trial
runs.

Trials
Gain 1 2 3 4 5 6 7 8 9 10 11 12 13

MTC0 57 76.7 dup 76.7 76.7 76.7 72.0 dup 76.7 76.7 76.7 60.0 dup 75.0
MTC1 55 70.8 dup 71.6 72.0 72.0 70.5 72.0 70.9 70.6 71.6 55.7 dup 71.7
MTC2 53 67.2 68.5 67.1 68.3 55.7 65.7 66.5 70.0 66.4 66.9 57.0 66.5 69.7
MTC3 51 66.6 65.9 65.4 64.2 nd 62.3 61.0 64.6 63.7 63.9 nd 57.0 64.1
MTC4 49 63.0 63.9 62.5 61.6 56.4 58.4 dup 60.0 63.4 61.6 60.5 61.4 58.4
MTC5 47 57.0 nd 60.5 56.4 72.0 56.4 60.7 58.4 58.7 58.7 nd 59.4 55.7

Frame 290 294 298 302 352 356 360 364 368 372 406 410 414
Trials

Gain 14 15 16 17 18 19 20 21 22 23 24 25 26 µ
MTC0 57 75.0 75.0 75.0 76.7 75.0 75.0 75.0 75.0 dup 76.7 75.0 75.0 75.0 74.9
MTC1 55 72.0 71.4 71.5 72.0 72.0 72.0 72.0 71.5 dup 72.0 72.0 72.0 71.9 70.9
MTC2 53 69.4 67.6 67.4 68.8 68.5 71.0 68.2 67.0 68.1 68.2 67.3 69.4 67.7 67.1
MTC3 51 64.3 63.5 63.3 65.4 63.0 66.5 63.0 65.7 65.5 65.6 64.9 63.9 64.5 64.1
MTC4 49 59.4 57.0 58.4 62.4 58.0 60.7 72.0 59.7 62.7 63.1 61.9 60.5 61.4 61.1
MTC5 47 55.7 58.4 57.0 56.4 55.7 71.0 58.4 57.0 58.7 nd nd 57.0 nd 59.0

Frame 418 422 430 434 438 442 446 450 454 458 462 466 470
nd Not detected by OpenAirInterface.
dup Duplicate/collision, i.e. same preamble is sent multiple times in the same RAO.

Having a received power up to 10 dB above the reference received power results in a large number
of false positives detected by the OpenAirInterface. These are ignored in the analysis.

It is seen that the received powers are individual for each device, displaying that the output signal
scaling works. The estimated difference between devices is approximately 2 dB to 4 dB, where the gain
difference between them is set to 2 dB on the transmitter side.

Downlink: CQI analysis

In order to test the implemented downlink power control, the CQI is analysed. The CQI reporting
in srsUE, which is also the one used in the massiveMTC device, is based on the work in [35]. The
CQI is implemented as a look-up table based on the SNR in order to ensure that the current AMC
guarantees a transport block error rate (BLER) below 10%. The paper found that during single input
single output (SISO) transmission, an approximate 10 dB increase in SNR corresponds to an increase
of 5 in CQI value.

The test is performed on the UXM at 5MHz with cell power −60 dBm and reference signal power
(in the SIB2 message) at 18 dBm, resulting in a simulated path loss of 78 dB. These values are chosen
such that a high CQI will be reported in the case of no additional path loss, this can be seen in figure
5.4. An additional 5 dB path loss is then added until the reported CQI is close to 1. The reported
CQI for all cases is displayed in figure 5.4 and the average CQI can be found in table 5.7.

47

5. Performance evaluation

Table 5.7: Average CQI with added path loss.

PL Mean CQI
0 dB 14.66
5 dB 13.47
10 dB 12.13
15 dB 5.85
20 dB 4.12
25 dB 1.76

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CQI

0

50

100

150

200

250

N
o.

 o
f r

ep
or

ts

CQI reportings with added path loss

 0 dB
 5 dB
10 dB
15 dB
20 dB
25 dB

Figure 5.4: CQI at varying SNR levels measured over approximately 6.5 s, note that a 2 s settling
time has been removed from the data in order to improve the noise estimation.

It can be seen that while the CQI drops for each case, it is not the linear behaviour described in
[35] where a 10 dB decrease in SNR yields a CQI value of 5, while the behaviour is satisfactory at the
edges of the CQI-scale.

5.4 Data transfer

The ability to transfer data through one of the MTC devices created in the massiveMTC emulator
has been verified, the throughput is measured using the UXM wireless test set. The measured IP and
over-the-air (OTA) throughputs are shown in figure 5.5 using massiveMTC and the original version
of srsUE. The data transfer is generated using the iperf tool, where the MTC device acts as server
and the UXM acts as client. The server is set up as shown in listing 5.1.

Listing 5.1: Server initiation command.
1 $ i p e r f −s −p 5001 − i 1 −w 64k

The -s flag sets up the server side, -p is used to set the port number, -i sets reporting interval,
and -w sets the TCP window size. The client is set up as shown in listing 5.2, where -c sets it up as
client, which is followed by the IP of the server. The -t flag is used to set transmit time in seconds
and -r reverses the roles of client and server after t seconds.

48

5.4. Data transfer

Listing 5.2: Client initiation command.
1 $ i p e r f −c 192 . 168 . 3 . 1 28 −t 10 −r

First, the eNodeB acts as a client while the MTC device is the server, so that downlink traffic
throughput is tested. After 10 s the direction is reversed, and data is then transmitted in uplink.
MCS setting is set to 8 for both down- and uplink, as this proved to perform the best on the UXM;
this corresponds to QPSK modulation and a transport block size of 3496 bit per subframe.

(a)

0 5 10 15 20 25

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Th
ro

ug
hp

ut
 [M

bp
s]

MassiveMTC throughput

DL IP
UL IP
DL OTA
UL OTA

(b)

0 5 10 15 20 25

Time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Th
ro

ug
hp

ut
 [M

bp
s]

srsUE throughput

DL IP
UL IP
DL OTA
UL OTA

Figure 5.5: IP and OTA throughput at 5MHz for both up- and downlink with MCS set to 8.

It is seen that throughput using massiveMTC is close to unchanged in both up- and downlink
compared to srsUE, and that the maximum data rate for both implementations is approximately
3.3Mbps. This corresponds well with the theoretical maximum throughput of 3.496Mb/s at 5MHz
when the MCS is 81.

It is apparent that drops in the throughput is present in the downlink case of srsUE in figure 5.5(b),
this is due to the device losing synchronisation with the cell, and that it therefore has to find PSS
again; this also occurs in the massiveMTC implementation. For higher transport sizes it is seen that
the implementation (srsUE and inherently also massiveMTC) has trouble keeping up the throughput,
when it has to use 16QAM.

1Theoretical throughput is calculated by finding the TBS index and size using table 7.1.7.1-1 and 7.1.7.2.1-1 in [36].

49

6. Conclusion

Given the recent and continuing rise in MTC devices due to high growth in the popularity of IoT,
new communication patterns are introduced to wide-area networks featuring packets with smaller
payloads from a vast amount of subscribers. Actions towards improving the existing networks are in
development in order to be able to accommodate the larger amount of active devices on the network.
This is also the case for cellular networks, where operators want to compete with dedicated LPWAN
systems. New protocols which are able to coexist with LTE, such as NB-IoT and LTE-M, emerged in
Release 13 to accommodate these new demands. Implementations for deployment are in development,
currently being in the pilot project phase.

A design principle and a prototype are sought to be developed in order to evaluate the potential
improvements that the new MTC protocols bring, and to evaluate bottlenecks in the core network
when massive amounts of devices are accessing the network. This new device, called the massiveMTC
device, is capable of emulating multiple devices on the network, such that eNodeB and core network
can be evaluated, as well as new features, to determine whether they can sustain the desired amount
of devices in a cell.

By emulating the entire protocol stack, the most realistic evaluation can be obtained, as the
functionality of the entire protocol stack must be carried out in real time. By using an SDR as
radio front-end, testing up against commercial eNodeBs is possible, as there is no significant difference
between signals from commercial devices and the SDR generated signals.

A first step towards developing the massiveMTC device is to investigate whether it is possible
to create a software emulator where several MTC devices are able to communicate using the same
RF front-end in order to keep the cost of the emulator as low as possible. An existing software
implementation of a single Release 8 compliant device protocol stack has therefore been used to develop
a platform providing multiple MTC devices that all share the same RF front-end. Although Release
8 is deprecated, it still serves as a strong proof-of-concept as the overall structure of the protocol
remains the same for all releases as non-MTC specific elements of LTE are backwards compatible.
The implementation also provides proof-of-concept for NB-IoT and LTE-M, because they are based
on the same underlying principles, though not directly backwards compatible.

The design principle enables several instances of the LTE protocol stack to access the same radio
layer by splitting the PHY layer of the LTE protocol into a common part for all devices, known as
the common physical layer (coPHY), and an individual part for each MTC device, named individual
physical layers (inPHYs). This makes it possible to do calculations that are equivalent for all devices
in order to cut down complexity and lower usage of computational powers, thereby gaining scalability.

Power control in both up- and downlink has been implemented such that it is individual for each
MTC device, facilitating individual channel conditions to each MTC device. So far a simple difference
in path loss between devices is supported; more advanced channel emulation can be added, however
this must be investigated considering the trade-off between channel complexity and scalability, as
adding more complexity will require the implementation to be less computational efficient, effectively
reducing the number of devices that can be emulated.

51

6. Conclusion

Furthermore, the maximum number of MTC devices which can physically transmit at the time without
degrading the resolution of the signal transmitted from the SDR has been investigated. It is found
that 64 devices (see analysis in section 4.2) should be able to transmit at the same time without
excessive quantisation noise being generated in the radio front-end, if the output powers of the signals
are equal. The dynamic range is therefore not the limiting factor on the prototype.

The design principle of the massiveMTC prototype implementation has been verified, and its
performance evaluated, using three different eNodeBs. Tests show that it is possible to successfully
decode combined signals from the devices at the eNodeB, and successful attachment of multiple devices
has been accomplished using an eNodeB emulator.

The overall CPU load of the massiveMTC platform has been investigated in order to determine the
maximum number of MTC devices the platform is able to keep in synchronisation with an eNodeB.
The tests show that lowering the bandwidth increases the number of MTC devices which can run at
the same time, as required computational power scaled with the bandwidth. Successful authentication
was not possible at the commercial Nokia eNodeB due to issues with receiving messages from the core
network, the results do however indicate how the performance is for multiple MTC devices which are
kept in RRC connected mode, and thereby in synchronisation with the cell. Testing on an eNodeB
emulator (OpenAirInterface) on which successful authentication is possible, gives an indication of how
much extra computational power is needed once the authentication step is complete. The results
using the commercial eNodeB show that up to 8 and 15 devices can be realised for 5 and 10MHz
respectively, using the Intel i7 processor based PC, indicating that the maximum number of emulated
MTC devices will be much larger using MTC specific protocols, given the smaller bandwidths of
LTE-M and especially NB-IoT. The results with the eNodeB emulator indicates that performance
with full attachment will increase required computational power and thereby decrease the amount of
devices that can be realised.

Common for all massiveMTC configurations is that the application becomes unstable before 100%
usage of the CPU cores is reached. This suggests that better performance can be obtained by code
optimisation and mitigation of bottlenecks in the implementation, without changing hardware platform
to dedicated hardware or to more powerful general purpose hardware. A computational gain is achieved
by splitting the physical layer into a common and an individual part, this gain scale with an increase
in bandwidth as well as with an increase of connected MTC devices. This gain paves the way for
implementations supporting massive amounts of MTC devices. The gain can be increased by moving
further functionality into the coPHY.

Both up- and downlink channel emulation are tested. The test of the uplink channel emulation in
uplink is carried out by estimating the power of received preambles from multiple devices transmitting
with different power: while a difference in received power is apparent, the received power estimation
used on the OpenAirInterface is not suitable to further evaluate the specific output powers of the
devices. The method is however proven to work, while the precision of the scaling has not been verified
due to limitations of the test bed. Downlink channel emulation is validated using CQI reporting: the
tests show that the path loss implementation does decrease the SNR as desired, however, the behaviour
does not seem to result in the expected linear change in CQI values reported. The implementation
is based on two features: the noise estimation and the digital scaling. Further testing of other noise
estimation techniques within srsLTE should be tested, such as noise estimation of cell-specific reference
signals or estimation using the empty resource elements in the resource grid, to compare with actual
noise measurements in order to determine the best noise estimation procedure.

52

6.1. Further work

Additionally, further work should be put into the digital scaling procedure to make it less dependent
on input power and generally more precise.

Generally, it has been shown that the design principle devised in this thesis does enable live
emulation of multiple devices using a single radio front-end. Full authentication as well as data
transfer has successfully been carried out using the massiveMTC prototype implementation, showing
that the full LTE protocol stack functionality is implemented. The devised design principle and its
prototype implementation serves as a strong proof-of-concept for massive device emulators as well as
a platform for further development of “massive devices” testing for LTE based protocols and network
performance.

6.1 Further work

This section covers some areas which could be investigated further or optimised on the current
prototype platform, as well as additional functionalities that are deemed natural to consider for further
development.

The overall stability of massiveMTC should be improved, as it is currently not uncommon that
the coPHY layer loses synchronisation with the eNodeB. After lost synchronisation coPHY has to
search for PSS in order to re-establish synchronisation, before the individual MTC devices are able to
continue communication; an example of this can be seen in figure 5.5(b), where the data transfer is
temporarily interrupted. The example in the figure is for the native srsUE, and the issue is inherently
also in the massiveMTC device implementation. As srsUE is code that is continuously being updated,
a potential solution could be to use an updated version of srsUE. Migration to the newest version
will require the massiveMTC device changes to be manually reinstated on the new srsUE branch.
However, it does not seem that this issue has yet been mitigated, so for further development this
should be something to investigate, as this poses to be a limiting factor when scaling.

As instability occurs before 100% CPU usage is reached (for any core, not in average), significant
improvements should be achievable through bottleneck mitigation; one bottleneck is probably found
in the access to shared media where mutexes are used to control the access. This should be improvable
with a more flexible multi-thread access solution. Some calculation heavy processes could potentially
be moved to an FPGA in order to reduce the load on the CPU. Whether it should be implemented
in the FPGA on the SDR or a different FPGA depends of the size of the implementation and if
USB 3.0 can support the increased data rate. An example of such a process is the turbo-decoder,
which according to one of the developers of srsUE is dominating the CPU load – in some data heavy
cases up to 80% of the load. Further investigation with profiling tools may be able to find additional
functionalities which could benefit from being implemented on an FPGA.

It is currently not possible to control the MTC devices in real time when running the massiveMTC
implementation, this means that every time the user would like to change the amount of devices, the
up- or downlink path loss, or when the MTC devices should (re-)try to attach to the cell, massiveMTC
has to be restarted and in some of the cases also recompiled. A control layer should be implemented,
so that when the virtualisation environment and middleware (as described in section 1.3.1) can pass
such control information to the device handler, in which then functionalities should be implemented
to start, stop, and change path loss for the individual MTC devices based on information arriving
from the application layer through the middleware.

53

6. Conclusion

An example of a finished user-interface is shown in figure 6.1, which should be running on top of
the virtualisation environment; it is sought that real-time outputs of the protocol performance are
displayed, e.g. of the ARP performance and current capacity status of the cell.

Figure 6.1: Concept of finished product. Types of MTC devices with different data patterns can
be added by clicking on a map, while real-time statistics on performance are displayed.

The massiveMTC prototype implementation is developed on LTE Release 8 compatible source code.
As development of implementations for LTE-M and NB-IoT advances, these are the obvious choice
for further development to enable support of these protocols. Performance for these protocols should
be expected to be much improved as they are simpler and operates lower bandwidths. The Software
Radio Systems developers are currently working on a modified version of srsUE in order to support
NB-IoT; migrating this (when available) into the massiveMTC implementation should not prove very
demanding. Also, implementing LTE-M support should also be viable, as this in greater extend than
NB-IoT resembles standard LTE. It is advised to update to the newest version of srsUE in the process
before seeking to implement new physical layer functionalities.

The functionality for adding path loss is currently implemented in the form of a modified uplink
power scaling and additional downlink noise generation. Several points of optimisation are available for
this implementation: to enable precise uplink path loss, the scaling of the SDR gain to actual output
power should be taken into account – the SDR gain does result in a linear output power change,
however not a one-to-one change. For the downlink, as previously stated, the noise estimation process
could be further investigated and the digital gain scaling should be improved. To obtain general
improvements for the power control and channel emulation, it can be tried to manually calibrate the
B210 board. The channel emulation development is kept on a show-case level being relatively simple,
as this is not required to do core network and eNodeB load evaluation of massive devices. However, if it
is deemed interesting and purposeful, further steps can be taken for the channel emulation: additional
channel emulation on the baseband signals can be implemented in the form of a log-normal distribution
emulating slow fading, as well as fast fading in the form of a Rayleigh or Rician distributed power.

54

6.1. Further work

Doppler effects can be added, which enables emulation of moving MTC devices; this can be applied
to baseband signals in real time by shifting the baseband samples in a circle around the origin as
a way of introducing a frequency offset. Adding more advanced channel emulation will result in a
trade-off with performance, as this will add further load to the CPU. However, a solution to this is to
implement the channel emulation on dedicated hardware in order to remove additional computations
on the host PC.

For optimising the test bed consisting of the massiveMTC device and OpenAirInterface, the
OpenAirInterface implementation should also be updated. OpenAirInterface is, as srsUE, under
continuous development, while it appears that the developers tend to focus on upgrading the eNodeB
towards newer releases, some improvements to the number of devices which can be connected at the
same time has however taken place according to reports on the OpenAirInterface mailing list. The
version of OpenAirInterface used for testing is unable to parse IP traffic coming from the internet back
to the eNodeB; this is most likely tied together with the fact that the current setup has the eNodeB and
core network running on the same PC. Reports from the mailing list indicate that people successfully
solved this problem by running a newer version of the core network and eNodeB on separate PCs (it
is unsure if running the core network on a virtual machine on the same PC as the eNodeB will solve
the problem). Running the core network on a separate PC will also ease the reconfiguration if another
core network should be used (such as the Polaris EPC emulator), as only the IP addresses used as
interfaces between eNodeB and core network should be changed.

The OpenAirInterface core network is currently unable to release UEs from the network, it is there-
fore impossible to connect with the same SIM information twice without restarting the core network,
as the core network will not accept the device a second time. The developers of OpenAirInterface
has reported that an update supporting release of devices should be coming to the develop branch soon.

The authors believe that the work done in this thesis can serve as a strong starting point for
further development of massive device testing platforms, enabling emulation of multi-device scenarios
in future communication protocols.

55

Bibliography

[1] 3GPP. LTE releases. http://www.3gpp.org/specifications/67-releases. [Online, accessed
June, 2017].

[2] Denise Lund, Carrie MacGillivray, Vernon Turner, and Mario Morales. Worldwide and regional
internet of things (IoT) 2014–2020 forecast: A virtuous circle of proven value and demand.
Technical report, International Data Corporation (IDC), 2014.

[3] Ye Yan, Yi Qian, Hamid Sharif, and David Tipper. A survey on smart grid communication
infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys and
Turtorials, 15(1):5–20, 2013.

[4] Erfan Soltanmohammadi, Kamran Ghavami, and Mort Naraghi-Pour. A survey of traffic issues
in machine-to-machine communications over LTE. IEEE Internet of Things journal, 3(6):1–21,
2015.

[5] Andrea Biral, Marco Centenaro, Andrea Zanella, Lorenz Vangelista, and Michele Zorzi. The
challenges of M2M massive access in wireless cellular networks. Digital Communications and
Networks, 1:1–19, 2015.

[6] M. Zubair Shafiq, Lusheng Ji, Alex X. Liu, Jeffrey Pang, and Jia Wang. A first look at
cellular machine-to-machine traffic – large scale measurement and characterization. IEEE/ACM
Transactions on Networking, 21(6):1960–1973, 2013.

[7] Nokia. LTE evolution for IoT connectivity. https://tools.ext.nokia.com/asset/200178, 2016.
White paper.

[8] Ericsson. Cellular networks for massive IoT. https://www.ericsson.com/assets/local/

publications/white-papers/wp_iot.pdf, 2016. White paper.

[9] Mads Lauridsen, István Kovács, Preben Elgaard Mogensen, Mads Sørensen, and Steffen Holst.
Coverage and capacity analysis of LTE-M and NB-IoT in a rural area. IEEE Vehicular Technology
Conference, (84), 2016.

[10] GSMA. 3GPP low power wide area technologies. http://www.gsma.com/iot/

3gpp-low-power-wide-area-technologies-white-paper/, 2016. Mobile IoT white paper.

[11] Philippe Reininger. 3GPP Standards for the Internet of Things. http://www.3gpp.org/

ftp/Information/presentations/presentations_2016/2016_11_3gpp_Standards_for_IoT.pdf.
3GPP presentation, Smart Summit Singapore November 2016. [Online, accessed June, 2017].

[12] 3GPP. Progress on 3GPP IoT. http://www.3gpp.org/news-events/3gpp-news/1766-iot_

progress. [Online, accessed June, 2017].

[13] 3GPP. Standardization of NB-IOT completed. http://www.3gpp.org/news-events/3gpp-news/

1785-nb_iot_complete. [Online, accessed June, 2017].

57

http://www.3gpp.org/specifications/67-releases
https://tools.ext.nokia.com/asset/200178
https://www.ericsson.com/assets/local/publications/white-papers/wp_iot.pdf
https://www.ericsson.com/assets/local/publications/white-papers/wp_iot.pdf
http://www.gsma.com/iot/3gpp-low-power-wide-area-technologies-white-paper/
http://www.gsma.com/iot/3gpp-low-power-wide-area-technologies-white-paper/
http://www.3gpp.org/ftp/Information/presentations/presentations_2016/2016_11_3gpp_Standards_for_IoT.pdf
http://www.3gpp.org/ftp/Information/presentations/presentations_2016/2016_11_3gpp_Standards_for_IoT.pdf
http://www.3gpp.org/news-events/3gpp-news/1766-iot_progress
http://www.3gpp.org/news-events/3gpp-news/1766-iot_progress
http://www.3gpp.org/news-events/3gpp-news/1785-nb_iot_complete
http://www.3gpp.org/news-events/3gpp-news/1785-nb_iot_complete

Bibliography

[14] Andres Laya, Luis Alonso, and Jesus Alonso-Zarate. Is the random access channel of LTE and
LTE-A suitable for M2M communications? A survey of alternatives. IEEE Communications
Surveys and Turtorials, 16(1):4–16, 2014.

[15] Carsten Bockelmann, Nuno Pratas, Hosein Nikopour, Kelvin Au, Tommy Svensson, Cedomir
Stefanovic, Petar Popovski, and Armin Dekorsy. Massive machine-type communications in 5G:
Physical and MAC-layer solutions. IEEE Communications Magazine, 54(9):59–65, September
2016.

[16] Nuno K. Pratas, Sarath Pattathil, Čedomir Stefanović, and Petar Popovski. Massive machine-
type communication (mMTC) access with integrated authentication. IEEE International
Conference on Communications (ICC), 2017.

[17] Monica Alleven. KT, Samsung pursue NB-IoT pilot. http://www.fiercewireless.com/wireless/
kt-samsung-to-launch-nb-iot-pilot. FireceWireless.com, April 26, 2017. [Online, accessed
June, 2017].

[18] Iain Morris. Could LTE-M Torpedo NB-IoT? http://www.lightreading.com/iot/nb-iot/

could-lte-m-torpedo-nb-iot/a/d-id/732464. LightReading.com, February 2, 2017. [Online,
accessed June, 2017].

[19] Dino Flore. LTE evolution and 5G. http://www.3gpp.org/ftp/Information/presentations/

presentations_2016/2016_11_flore_LTE%20evolution%20and%205G.pdf. 3GPP presentation,
Broadband World Forum 2016. [Online, accessed June, 2017].

[20] Kaj Printz Madsen, Rune Willum Larsen, Jonas Sand Madsen, Rene Mejer Lauritsen,
Casper Møller Bartholomæussen, and Carsten Vestergaard Risager. Kuiga Box: A test bed for
large scale testing of virtualized IoT devices, 2016. Aalborg University, Department of Computer
Science, student project, sw704e16.

[21] Anders Normann Poulsen and Gabriel Vasluianu. NTA – Network Test Application, 2017. Aalborg
University, Department of Computer Science, student project, d807f17.

[22] Upamanyu Madhow. Introduction to Communication Systems. University of California, Santa
Barbara, 2014.

[23] Di Pu and Alexander M. Wyglinski. Digital Communication Systems Engineering with Software-
Defined Radio. Artech House, 2013.

[24] Eugene Grayver. Implementing Software Defined Radio. Springer, 2013.

[25] Xilinx Inc. ZYNQ boards, SoCs and MPSoCs. https://www.xilinx.com/products/

silicon-devices/soc.html. [Online, accessed June, 2017].

[26] Ettus Research. FPGA utilization statistics. https://kb.ettus.com/B200/B210/B200mini/

B205mini#FPGA. [Online, accessed June, 2017].

[27] Rodger H. Hosking. Software-Defined Radio Handbook. http://www.pentek.com/pildocs/8363/
techother/DGTLRCVRHBK43.PDF. 12th edition, PENTEK. [Online, accessed June, 2017].

[28] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing. Pearson, third
edition, 2014.

58

http://www.fiercewireless.com/wireless/kt-samsung-to-launch-nb-iot-pilot
http://www.fiercewireless.com/wireless/kt-samsung-to-launch-nb-iot-pilot
http://www.lightreading.com/iot/nb-iot/could-lte-m-torpedo-nb-iot/a/d-id/732464
http://www.lightreading.com/iot/nb-iot/could-lte-m-torpedo-nb-iot/a/d-id/732464
http://www.3gpp.org/ftp/Information/presentations/presentations_2016/2016_11_flore_LTE%20evolution%20and%205G.pdf
http://www.3gpp.org/ftp/Information/presentations/presentations_2016/2016_11_flore_LTE%20evolution%20and%205G.pdf
https://www.xilinx.com/products/silicon-devices/soc.html
https://www.xilinx.com/products/silicon-devices/soc.html
https://kb.ettus.com/B200/B210/B200mini/B205mini#FPGA
https://kb.ettus.com/B200/B210/B200mini/B205mini#FPGA
http://www.pentek.com/pildocs/8363/techother/DGTLRCVRHBK43.PDF
http://www.pentek.com/pildocs/8363/techother/DGTLRCVRHBK43.PDF

Bibliography

[29] Stefania Sesia, Issam Toufik, and Matthew Baker. LTE - The UMTS Long Term Evolution: From
theory to practice. Wiley, second edition, 2011.

[30] Harri Holma and Antti Toskala. LTE for UMTS: Evolution to LTE-Advanced. Wiley, second
edition, 2011.

[31] Erik Dahlman, Stefan Parkvall, and Johan Sköld. 4G - LTE/LTE-Advanced for Mobile Broadband.
Academic Press, second edition, 2014.

[32] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial
Radio Access Network (E-UTRAN); Overall description; Stage 2, 2010. TS 33.300, version 8.12.0.
Release 8. www.3gpp.org.

[33] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC);
Protocol specification, 2014. TS 33.331, version 8.21.0. Release 8. www.3gpp.org.

[34] Germán C. Madueño, Jimmy J. Nielsen, Dong Min Kim, Nuno K. Pratas, Čedomir Stefanović,
and Petar Popovski. Assessment of LTE wireless access for monitoring of energy distribution in
the smart grid. IEEE Journal on Selected Areas in Communications, 34:675–688, 2016.

[35] Mohammad T. Kawser, Nafiz Imtiaz Bin Hamid, Md. Nayeemul Hasan, M. Shah Alam, and
M.Musfiqur Rahman. Downlink SNR to CQI mapping for different multiple antenna techniques
in LTE. International Journal of Information and Electronics Engineering, 2(5):757–760, 2012.

[36] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures, 2009.
TS 36.213, version 8.8.0. Release 8. RTS/TSGR-0136213v880, www.3gpp.org.

[37] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Base station radio transmission
and reception, 2016. TS 36.104, version 8.14.0. Release 8. www.3gpp.org.

[38] Software Radio Systems (SRS). srsLTE/srsUE. https://github.com/srsLTE. [Online, accessed
June, 2017].

[39] Ettus Research. USRP hardware driver and USRP manual. https://files.ettus.com/manual/.
[Online, accessed June, 2017].

[40] OpenAirInterface Software Alliance (OSA). OpenAirInterface. http://www.openairinterface.

org/?page_id=72. [Online, accessed June, 2017].

[41] Ettus Research. USRP B210 UHD FPGA image probing. Specifications returned by connected
board when probing with uhd_usrp_probe.

[42] Ettus Research. USRP B200/B210 Bus Series Specification Sheet. https://www.ettus.com/

content/files/b200-b210_spec_sheet.pdf.

[43] Ettus Research. B210 RF performance. https://kb.ettus.com/B200/B210/B200mini/B205mini#
RF_Performance_Data. Page 235, [Online, accessed June, 2017].

[44] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio
transmission and reception, 2016. TS 36.101, version 8.27.0. Release 8. www.3gpp.org.

[45] Junyi Li, XinzhouWu, and Rajiv Laroia. OFDMA Mobile Broadband Communications: A systems
approach. Cambridge University Press, 2013.

59

www.3gpp.org
www.3gpp.org
www.3gpp.org
www.3gpp.org
https://github.com/srsLTE
https://files.ettus.com/manual/
http://www.openairinterface.org/?page_id=72
http://www.openairinterface.org/?page_id=72
https://www.ettus.com/content/files/b200-b210_spec_sheet.pdf
https://www.ettus.com/content/files/b200-b210_spec_sheet.pdf
https://kb.ettus.com/B200/B210/B200mini/B205mini#RF_Performance_Data
https://kb.ettus.com/B200/B210/B200mini/B205mini#RF_Performance_Data
www.3gpp.org

Bibliography

[46] Cubic metric in 3GPP-LTE. Technical report, Motorola, 2006. 3GPP TSG RAN WG1 LTE
Adhoc - Tdoc R1-060023.

[47] 3GPP. 3GPP System Architecture Evolution (SAE); Security architecture, 2008. TS 33.401,
version 8.1.1. Release 8. www.3gpp.org.

[48] 3GPP. Technical Specification Group Core Network and Terminals; Numbering, addressing and
identification, 2009. TS 23.003, version 8.4.0. Release 8. www.3gpp.org.

60

www.3gpp.org
www.3gpp.org

Appendices

61

A. LTE protocol

The LTE protocol consists of multiple layers, this appendix will explain the major functionalities of
the layers. The layers and their interconnectivity are displayed in figure A.1

A packet received by a layer is known as a service data unit (SDU), while a packet leaving a layer
is known as a protocol data unit (PDU). This means that a PDCP PDU is the same as a RLC SDU
as it is the same packet from the “point of view” of two different layers. The LTE protocol is split up
into two planes; the control plane and the user plane. Only the NAS and RRC layer operates solely
on the control plane, while the application layer communicates using IP packets is solely on the user
plane. [29]

NAS

PDCP

RLC

IP

USIM

MAC

PHY

Radio

RRC

Application

Figure A.1: LTE protocol stack of a UE.

A.1 LTE layers

NAS

The NAS layer is the highest layer in the control plane. It is responsible for communication between
the UE and the MME. It handles mobility of the UE, as well as management and establishment of IP
connectivity, as it transmits the USIM information to the MME during initial connection. [29]

63

A. LTE protocol

RRC

The RRC layer is mainly responsible for transmission of system information from both NAS and AS,
paging establishment, maintenance of RRC connections (connection between UE and E-UTRAN) and
security functions in the AS. [29]

PDCP

The PDCP layer is responsible for handling messages to and from the RRC layer in the control
plane and IP packets in the user plane. The main functionalities of the PDCP layer are IP header
compression, as well as security, both in the form of ciphering and integrity protection. Reordering
and duplicate detection of bearers during handover also takes place at the PDCP layer. [29]

Data above the PDCP is transported using bearers, there are multiple types of bearers in LTE.
Between UE and eNodeB, there is two types of radio bearers, namely the signalling radio bearers
(SRBs) and data radio bearers (DRBs). Below is a brief explanation of the roles of each bearer:

• SRB0 is responsible for initial RRC messages in both up- and downlink. SRB0 is transporting
data on common control channel (CCCH) using RLC transparent mode.

• SRB1 handles amongst other things RRC connection reconfiguration and release, UE capability
inquiries, and data information transfer. SRB1 is transmitted on dedicated control channel
(DCCH) using RLC acknowledged mode.

• SRB2 is only used for user plane data, it should be noted that SRB2 has lower priority than
SRB1, and is only configured after security has been established. SRB2 is transmitted on DCCH
using RLC acknowledged mode.

• DRBs are configurable depending on which service is required; any RLC transmission mode
can be applied, and they can be have prioritised bit rates in order to guarantee a better QoS.
Multiple DRBs can be created for a single UE.

One RLC and PDCP entity is established for every active radio bearer. [29]

RLC

The main functions of RLC are segmentation and reassembly of packets. Retransmission on the RLC
layer is possible depending on which transmission mode is chosen, of which there are three:

• Transparent mode (TM) – If TM is used, no functionality are performed to the packets that pass
through the RLC entity. This is only used for system information (SI) (MIB and SIBs), paging
messages, and RRC messages sent when only SRB0 is available. This entity is unidirectional,
meaning that it has to be set up as either as a transmitting or a receiving entity.

• Unacknowledged mode (UM) – which is also unidirectional, used for data transfer of delay
sensitive and error tolerant applications, such as voice over IP (VoIP). Using this mode allows
for segmentation, concatenation, reassembly, reordering, and duplicate detection of packets.

• Acknowledged mode (AM) – is bidirectional and supports retransmission, such that an entity
can both transmit and receive. This mode is mainly used by error sensitive but delay tolerant
services, such as web browsing and file downloading.

64

A.2. LTE channels

One RLC entity is established for every active bearer. The data transferred from the RLC to
the MAC layer is going through logical channels which are either control logical channels (for RRC
signalling and other control data) and traffic logical channels (for user data). These, along with
transport and physical channels is discussed in A.2. [29]

MAC

The MAC layer performs multiplexing and demultiplexing between the logical channels and the
transport channels. As shown in figure A.2, there is only one MAC entity per UE, which combines
the different RLC entities (channels). The MAC layer aims to uphold the desired QoS for each
radio bearer. As a result of this, the MAC layer has to report the amount of buffered data left for
transmission to the eNodeB; this is carried in BSRs. The MAC also handles random access control,
HARQ signalling, timing advance estimation, and discontinuous reception (DRX). [29]

PHY

The main functions of the PHY layer are to handle TB mapping from the resource grid to and from
the MAC layer, link adaptation, power control, and cell search/synchronisation. [29]

A.2 LTE channels

The purpose of the logical channels, along with which channels they are routed to, is described in
this section; this together with the discussion in section 2.3.2 seek to provide a basic understanding
of the channels in LTE. The channels are illustrated in figure A.2; multicast channels are included in
the illustration for clarification, but are not implemented in LTE until Release 9, they were however
included in the Release 8 standard due to forward compatibility [29].

The broadcast control channel (BCCH) is used in downlink to transmit SI (MIB and SIBs), MIB is
transmitted using the PBCH while SIB is routed to PDSCH via downlink shared channel (DL-SCH).
Paging control channel (PCCH) handles paging (incoming data to the UE), it routes to PDSCH. When
no connection is established, the CCCH is used for control information in both up- and downlink, while
the DCCH serves the same purpose when the UE is in RRC connected state with the eNodeB. It
should be noted that CCCH operates in RLC TM mode, while DCCH operates in RLC AM mode.
The dedicated traffic channel (DTCH) transmits, as the name implies, user traffic in both up- and
downlink. [29]

Below is a list of all channels displayed in figure A.2.

Physical channels:

• Physical broadcast channel (PBCH)

• Physical downlink shared channel (PDSCH)

• Physical HARQ indicator channel (PHICH)

• Physical downlink control channel (PDCCH)

• Physical control format indicator channel (PCFICH)

65

A. LTE protocol

Downlink

PBCH PDSCH PCFICHPDCCHPHICH PMCH

MCHDL-SCHBCH PCH

PCCHBCCH CCCH DTCHDCCH MTCH MCCH

PUSCHPRACH

RACH ULSCH

CCCH DTCHDCCHLogical channels

Logical channels

Transport channels

Transport channels

Physical channels

Physical channels

Uplink

MAC

PHY

MAC

PHY

PUCCH

Figure A.2: Logical, transport and physical channels in up- and downlink. Note that radio bearers
and physical signal channels such as PSS and SRS are omitted. Light blue boxes are multicast
channels. Dashed lines are routes purely for control information.

• Physical multicast channel (PMCH)

• Physical random access channel (PRACH)

• Physical uplink shared channel (PUSCH)

• Physical uplink control channel (PUCCH)

Transport channels:

• Broadcast channel (BCH)

• Paging channel (PCH)

• Downlink shared channel (DL-SCH)

• Multicast channel (MCH)

• Random access channel (RACH)

• Uplink shared channel (ULSCH)

Logical channels:

• Broadcast control channel (BCCH)

• Paging control channel (PCCH)

• Common control channel (CCCH)

66

A.2. LTE channels

• Dedicated control channel (DCCH)

• Dedicated traffic channel (DTCH)

• Multicast traffic channel (MTCH)

• Multicast control channel (MCCH)

67

B. LTE multiple access techniques

The fundamental multiple access techniques of LTE is orthogonal frequency-division multiple access
(OFDMA) and single carrier FDMA (SC-FDMA) for downlink and uplink, respectively. The principles
of these two techniques are discussed in the following sections to give insight to the methods and how
they give rise to the basics of the LTE resource grid and LTE in general.

B.1 Orthogonal frequency-division multiple access (OFDMA)

Orthogonal frequency-division multiplexing (OFDM) is the basis scheme of OFDMA. OFDM divides
the available bandwidth into Nc subcarriers (or subchannels, also called “tones”) that are equally
spaced. These subcarriers then make up a series of non-frequency-selective (narrowband) channels;
they are overlapping, but are orthogonal to each other, an example of this can be seen in figure B.1.
This gives rise to high spectral efficiency compared to conventional FDMA, as no guard bands are
required due to the orthogonality. It also enables low complexity on the receiver-side, which is desired
for cheap, mobile or high-rate devices. [29, 45]

f

Figure B.1: Frequency spectrum response, subcarriers in OFDM.

The principle of OFDMA is to split up a high symbol rate (wideband) signal into parallel low
rate signal on each of these sub-carriers. Doing so increases symbol durations, which is desired as
the symbol duration, Ts, should be large compared to the delay spread in the channel, τs, decreasing
the influence of inter symbol interference (ISI). The principle is illustrated in figure B.2 The long
symbol duration is also important in relation to the coherence period, Tcoh, as this effectively makes
the channel a linear time-invariant system. This ensures that the signal orthogonality is preserved
and by that there is no inter-carrier interference (ICI). [29, 45]

Though the symbol duration is long, ISI is not negligible; a guard period between symbols must
therefore be implemented. Instead of a simple, empty guard period, a cyclic prefix (CP) is applied;
this takes the last part of the symbol and duplicates it in front of the symbol, as illustrated in figure
B.3. The duration of the CP, Tcp, should be as long as the longest (supported) channel impulse
response to completely counter the ISI. The application of CP (in contrast to using a simple guard
period) results in a symbol that appears cyclic/periodic, which makes for simpler processing using a
discrete Fourier transform (DFT). [29, 30, 45]

69

B. LTE multiple access techniques

S/P converter ∑

exp(-j2πf
1

)

exp(-j2πf
N

)

exp(-j2πf
2

)

T

T

T

T

Figure B.2: High rate signalling put on parallel (lower rate) data streams on the sub-carriers.

Figure B.3: OFDM transmission chain.

By definition, an OFDM symbol is a sum of Nc complex symbols modulated on the sub-carriers.
This causes a Gaussian waveform (in time domain), which generally speaking has a high peak-to-
average power ratio (PAPR), i.e. large power fluctuations over time; this is discussed further in
[29, 46]. This poses a major drawback of the OFDM scheme: having large PAPR results in difficult
requirements for the power amplifier, as it will be required to have a large dynamic range; otherwise the
signal will suffer from non-linear distortion due to clipping, which will produce both in-band distortion
of the signal as well as out-of-band noise. To counter this, a large back-off must be applied in the
dynamic range, which in turn results in inefficient transmission. This is the main reason that OFDMA
is not used in the uplink of LTE, as efficient performance is vital for mobile (battery powered) UEs.
[29, 45]

As previously stated, ICI is ideally not apparent for OFDM systems. However, this is only true
when the transmitter and the receiver are synchronised in frequency. This is difficult to obtain in
real-life systems, especially as UE hardware is to be cheap and therefore often has issues as frequency
drift as well as Doppler effects due to moving terminals. Therefore, in LTE systems the CFO is tracked
and sought countered. [29]

OFDMA is the application of OFDM combined with frequency-division multiple access (FDMA)
and/or time-division multiple access (TDMA). In LTE, both are implemented, as the downlink stream
is divided in a resource grid in frequency and time. This is illustrated in figure B.4. The resource grid
is composed of RBs, which are individually allocated to different users.

70

B.2. Single carrier FDMA (SC-FDMA)

The smallest element in the resource grid is the RE, which denotes individual modulation symbols on
the subcarriers. The modulation used depends on the current channel conditions, where good channel
conditions allow for a more bits to be modulated in a single symbol, yielding a higher data rate. [29]

BW
(1.4 MHz)

12 subcarriers
(15 kHz spacing)

Frame
(10 ms)

t

 PRB
(180 kHz)

Slot Slot
Subframe

 (1 ms)

f

Symbol durationResource block Resource element

Figure B.4: OFDMA/LTE resource grid, illustrating how frequency and time is “grouped” in
blocks (example with lowest allowed bandwidth in LTE of 1.4MHz).

B.2 Single carrier FDMA (SC-FDMA)

Single carrier FDMA (SC-FDMA), also known as linearly precoded OFDMA (LP-OFDMA) or DFT-
spread-OFDM (DFT-S-OFDM), is favourable compared to OFDMA in uplink due to the reduction
in PAPR, effectively reducing the requirements for the power amplifier in the UE. The principle of
SC-FDMA is similar to OFDMA: SC-FDMA splits the wideband channel into parallel, orthogonal
subcarriers and also applies CP to counter ISI. The SC-FDMA in uplink LTE is divided into a resource
grid with same dimensions as the downlink OFDMA resource grid, providing commonality between
the up- and downlink methods. [29, 30]

Instead of directly modulating each subcarrier, SC-FDMA modulates a linear combination of the
symbols to be transmitted at a given time on all allocated subcarriers. This results in that the signals
on each subcarrier are not independent; this gives SC-FDMA its single carrier property and makes
the waveform not to be Gaussian (as is the case for OFDM), which in turn reduces the PAPR. [29]

Generally, there are two ways of allocating the subcarriers in SC-FDMA: distributed and localised.
When subcarriers are localised, a given device gets allocated a set of adjacent subcarriers for
transmission while the rest of the bandwidth subcarriers components are set to zero. For distributed
transmission, the set of allocated subcarriers is placed with a fixed amount of subcarriers between them;
as for localised, unallocated subcarrier components are set to zero. In LTE, all uplink transmissions
are of the localised kind1, except for the transmission of SRS. Using the localised method, resource
blocks can thereby be allocated for devices in a similar fashion as in downlink; allocated resource
blocks for one device at a given time are simply required to be adjacent in frequency. [29, 45]

1Some changes have been made in LTE-A.

71

B. LTE multiple access techniques

For localised transmission, frequency diversity can still be obtained by frequency hopping; in LTE
this can occur between the slots in a resource block or simply between resource blocks. The distributed
SRS provides the information required for the eNodeB to schedule effectively in order to cope with
frequency-selective fading. [29]

Figure B.5: Transmission chain for SC-FDMA with localised subcarriers.

While many of the virtues of OFDMA are kept, some trade-offs are apparent. SC-FDMA requires
frequency domain equalisation at the receiver in order to combat ISI (happens when the channel is
frequency selective) within an OFDM symbol, as now the transmission of modulation symbols occurs
across multiple subcarriers (note that no ISI between OFDM symbols due to the CP). This adds some
complexity to the receiver, which however is accepted as it still allows relative simple design on the
transmitter side, i.e. in the UE. Also, uplink scheduling can be performed in a less flexible matter
due to the requirements of localised subcarrier placement in SC-FDMA, which means that allocated
RBs must be adjacent in frequency. [29, 45]

72

C. Security

The security aspect of LTE is discussed in the form of authentication procedure and security options
upon successful authentication. In conclusion, values in the HSS implemented in OpenAirInterface
are explained along with how they are derived.

C.1 Authentication

In GSM, authentication is uni-directional, meaning that it is only the network which has to
authenticate the UE. In LTE and UMTS, the authentication is bi-directional, meaning that both
the network and the UE has to authenticate each other; this is implemented to eliminate the security
risk of fake base stations trying to trick UEs into thinking they are connected to an authentic network.

Upon provision of a new device, a secret key denoted K is placed on the USIM and in the HSS
database. This is an unique key for all UEs and all integrity and ciphering keys are based on this
number [47]. Going in detail with the derivation of all security keys is beyond the scope of this thesis,
the most notable of the keys is however the key for the access security management entity (ASME),
KASME, which is used to derive several other keys. A brief review of the authentication procedure is
given in order to give insight how the key is used; the exchange of messages is displayed in figure C.1.

Upon successful random access, a UE transmits the RRC connection setup complete message which
includes the “attach request” as part of the initial NAS message; see section 2.3.3.2. If the UE is not
known to the network before this connection, or it is the first connection within some operator specified
time, the MME will send a authentication information request (AIR). The HSS will then compute
KASME, an authentication token AUTN , the expected response from the UE XRES and a random
number RAND using K for the specific MTC device. An identity of the MTC has to be transmitted
from the UE to the HSS; if it is the first time connecting to the network, international mobile subscriber
identity (IMSI) is used as identification in the RRC connection setup complete message, otherwise
a temporary identifier can be used if the device is known to the network beforehand. The IMSI is
transmitted as rarely as possible in order to prevent spoofing of this number. [47]

The HSS transmits a response with an authentication information answer (AIA) to the MME,
if the subscriber is found in the HSS database; the response contains RAND, AUTN , KASME, and
XRES . The MME then transmits an authentication request message, including RAND, AUTN , and
KSI ASME (key selection identifier) to the UE. The UE will then read K from the SIM card and use
the received numbers to compute KASME using KSI ASME. In this way, KASME will not be exposed
OTA, which is important as the authentication request is non-ciphered. [47]

The UE can then create an authentication result from KASME and K using the same algorithm
as the HSS does. The UE will then send the RES value back to the MME in the authentication
response message. Upon receiving the authentication response, the MME will compare RES with
XRES value from the HSS; if the two values match, the UE is authenticated, this will allow the
attachment procedure to proceed; as the next steps is computing and applying integrity and ciphering
keys. [47]

73

C. Security

eNodeB / MMEUE HSS

Extract K from USIM
Compute RES

Extract K from database
Compute XRES

Authentication Request
RAND, AUTN, KSIASME

Authentication Response
RES

Authentication Info. Answer
RAND, AUTN, KASME, XRES

Authentication Info. Request
IMSI or GUTI

RRC Conn. Setup Complete
Includes initial NAS message

Figure C.1: Flowchart of authentication procedure upon successful connection in LTE, note that
communication between MME and eNodeB is omitted as it forwarding data in all cases except for
XRES , which stays at the MME.

C.2 Integrity protection and ciphering

The LTE protocol features both integrity protection and ciphering, this can be applied to both on
the NAS (UE to MME communication) and AS (UE to eNodeB communication) layer [47]. The NAS
security is capable of supporting both integrity protection and ciphering, ciphering is however optional.
The NAS security keys are constituted by the integrity key, KNAS,int, and ciphering (encryption) key
KNAS,enc; they are both derived from KASME.

All integrity protection and ciphering takes place on the PDCP layer. The AS security is similarly
to the NAS security capable of supporting both integrity protection and ciphering. The keys used are
KRRC,int and KRRC,enc for integrity and encryption of the control plane, respectively. The KUP,enc
is used for for ciphering of the data plane (the actual IP packets); in this case, there is no integrity
protection. These three keys are derived from KeNB, which in turn is derived from KASME, while the
UE has access to KASME, the eNodeB does not, it will therefore get KeNB forwarded from the MME.
[47]

Multiple encryption algorithms are available in LTE; the used algorithm is indicated by the EPS
encryption algorithm (EEA). Three algorithms are supported, namely null ciphering, SNOW, and
advanced encryption standard (AES). A fourth algorithm called ZUC was introduced in Release 11
(and onwards). The null ciphering algorithm is almost exclusively used for testing purposes and in
some special cases such as emergency calls, where USIM is not available (or required). The same
method as for EEA applies to integrity algorithms using the EPS integrity algorithm (EIA) identifier.
Algorithms can be specified individually for NAS, RRC (AS control plane), and IP (AS data plane)
integrity protection. [47]

74

C.3. Identifiers

C.3 Identifiers

This sections covers the most important identifiers used in LTE. As discussed in C.1, USIM is storing
the pre-shared secret key, K, it is also storing the IMSI. The IMSI is unique, and is assigned to
each subscriber. The IMSI is composed of three parts: the three digit mobile country code (MCC),
which is an unique identifier of which country the mobile provider is based, the two or three digit
mobile network code (MNC), which is an identifier for each provider, and lastly the mobile subscriber
identification number (MSIN), which is an operator assigned number identifying each subscriber. MCC
and MNC combined is known as the public land mobile network (PLMN); PLMN it is another way
of identifying each provider. [48]

In order to call a subscriber, one would have to know the mobile station international subscriber
directory number (MSINDN); this consists of country code (CC), national destination code (NDC),
and subscriber number (SN), which is similar to IMSI. MSINDN is in other words the actual phone
number, while IMSI is the number of the SIM card; this makes it possible to change phone number
without changing SIM card. [48]

Another way of identifying subscribers on the network is by using international mobile equipment
identity (IMEI); this is a unique number identifying a physical piece of equipment which can be used
to identify or blacklist stolen phones regardless of which USIM card is used. [48]

C.4 OpenAirInterface HSS

In order to program the HSS database in OpenAirInterface, a number of values has to be added to
the SQL database that the HSS has access to, some of these values has to be changed for every MTC
device, these values are shown in table C.1, along with the initial values.

Table C.1: Values used for the first device the in massiveMTC implementation.

Name Initial value
IMSI 208930000000008
MSINDN 88211005938
K 2DC204753BEA70DC8F010A4DFEDCEE33
OP 11111111111111111111111111111111

While the OP is the same for all devices, it is used to calculate OPc. The standard way is
OPc = AES128(K,OP)⊕OP, this has to be carried out for every device. For every new MTC device,
the IMSI, MSINDN and K values are incremented by 1 while OP stays the same, the OPC will
however change. It can be see from the IMSI that the MCC is 208 and the MNC is 93.

75

D. PRACH simulation results

Simulation results discussed in section 2.4.

(a) 1 UE.

-25 -20 -15 -10 -5 0

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty
 (

-)

Preamble detection
False positives

(b) 2 UEs.

-25 -20 -15 -10 -5 0

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty
 (

-)

Preamble detection
Total pre. detection
False positives

(c) 3 UEs.

-25 -20 -15 -10 -5 0

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty
 (

-)

Preamble detection
Total pre. detection
False positives

(d) 4 UEs.

-25 -20 -15 -10 -5 0

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty
 (

-)

Preamble detection
Total pre. detection
False positives

(e) 5 UEs.

-25 -20 -15 -10 -5 0

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty
 (

-)

Preamble detection
Total pre. detection
False positives

(f) 10 UEs.

-25 -20 -15 -10 -5 0

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty
 (

-)

Preamble detection
Total pre. detection
False positives

77

D. PRACH simulation results

(g) 20 UEs.

-25 -20 -15 -10 -5 0

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty
 (

-)

Preamble detection
Total pre. detection
False positives

(h) 30 UEs.

-25 -20 -15 -10 -5 0

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty
 (

-)

Preamble detection
Total pre. detection
False positives

Figure D.1: Simulated preamble detection with N UEs transmitting in the same RAO.

-25 -20 -15 -10 -5 0

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ili

ty
 (

-)

1 UE
2 UEs
3 UEs
4 UEs
5 UEs
10 UEs
20 UEs
30 UEs

Figure D.2: Combined plot of simulated preamble detection with 1 to 30 UEs transmitting in the
same RAO.

78

E. CPU load results

CPU load analysis plots from tests performed using Nokia and OpenAirInterface eNodeB.

(a) 4 MTC devices.

(b) 10 MTC devices.

(c) 15 MTC devices.

Figure E.1: CPU load with N MTC devices in RRC connected state using the Nokia eNodeB at
Telenor with a bandwidth of 5MHz.

79

E. CPU load results

(a) 2 MTC devices.

(b) 4 MTC devices.

(c) 8 MTC devices.

Figure E.2: CPU load with N MTC devices in RRC connected state using the Nokia eNodeB at
Telenor with a bandwidth of 10MHz.

80

(a) 2 MTC devices at 5MHz.

(b) 2 MTC devices at 10MHz.

Figure E.3: CPU load with 2 MTC devices connecting to OpenAirInterface eNodeB and EPC at
5 and 10MHz, respectively.

81

F. Physical layer tracing

The physical layer down- and uplink processes of the PHY layer of srsUE are traced by the
order in which the functions are called in the physical channel worker each subframe (inPHY in
the massiveMTC implementation); the trace is seen in figure F.1 and F.2 for down- and uplink,
respectively. The most important function calls are traced through the srsLTE API to give an overview
of the functionality of the software. The physical channel worker is responsible for both down- and
uplink processing; an instance will start each subframe by decoding downlink information and pass
data to the MAC layer, before performing the uplink processing. Downlink information must be
decoded first, as uplink grants and ACKs or NACKs must be decoded before being able to decide on
uplink transmission.

83

F. Physical layer tracing

| phch_worker.cc
work_imp()

extract_fft_and_pdcch_llr()
if ul/dl rnti, pending RAR, or ACK:
srslte_chest_dl_set_smooth_filters_coeff()
srslte_chest_dl_set_smooth_filters()
srslte_chest_dl_set_smooth_noise_alg()
srslte_ue_dl_decode_fft_estimate()
srslte_pdcch_extract_llr()

decode_pdcch_dl()
srslte_ue_dl_find_dl_dci_type()
srslte_dci_msg_to_dl_grant()
srslte_ue_dl_get_ncce

if dl_grant:
new_grant_dl()

Give grant to MAC
decode_pdsch()

srslte_chest_dl_get_noise_estimate()
srslte_sch_set_max_noi()
srslte_pdsch_decode_rnti()

MAC: tb_decoded()

generate_ack_callback()

if generate_ack:
set_uci_ack()

decode_phich()
srslte_ue_dl_decode_phich()

(proceed to UL processing)

| chest_dl.c
Channel estimation functions

| ue_dl.c
srslte_ue_dl_decode_fft_estimate()

srslte_ofdm_rx_sf()
SFO/CFO correction
srslte_ue_dl_decode_estimate()

srslte_chest_dl_estimate()
srslte_pcfich_decode()
srslte_regs_set_cfi()

| ofdm.c
srslte_ofdm_rx_sf()

srslte_ofdm_rx_slot()
FFT
Input samples OFDM symbols

| pcfich.c
srslte_pcfich_decode()

srslte_regs_pcfich_get()
srslte_precoding_simple()
srslte_precoding_diversity()
srslte_layermap_diversity()
srslte_demod_soft_demodulate()
srslte_scrampling_f()
srslte_pcfich_cfi_decode()

Finding CFI

| precoding.c

| regs.c
Extracting PCFICH sym.
Channel estimates

| layermap.c

| demod_soft.c
QPSK demodulation

| pdcch.c
srslte_pdcch_extract_llr()

srslte_regs_pdcch_get()
srslte_precoding_simple()
srslte_precoding_diversity()
srslte_layermap_diversity()
srslte_demod_soft_demodulate()
srslte_scrambling_f_offset()

| ue_dl.c
srslte_ue_dl_find_dl_dci_type()

find_dl_dci_type_siprarnti()
or

find_dl_dci_type_crnti()
Blind search for RNTI dep. on type.

| dci.c
srslte_dci_msg_to_dl_grant()

Unpacks DCI to DL grant

srsLTE

| pdsch.c
srslte_pdsch_decode_rnti()

srslte_pdsch_get()
srslte_pdsch_cp()

Get signals, igore PSS/SSS/PBSCH
srslte_precoding_single()
or

srslte_precoding_diversity()
srslte_layermap_diversity()
srslte_demod_soft_demodulate_s()
srslte_sequence_s_offset()
srslte_scrambling_s_offset()
srslte_dlsch_decode()

Extract symbols,
perform channel est.

| demod_soft.c
Demodulation dependent on modulation

Descrampling

| sch.c
Decode transport block, symbols bits
Turbo-decoding| dl_harq.c

| ue_dl.c
srslte_ue_dl_decode_phich()

srslte_phich_calc()
srslte_phich_decode()

| phich.c
Decode PHICH for CFI

MAC receives
PDSCH data

Figure F.1: Downlink processing (PHY layer) function call tracing for srsUE.84

| phch_worker.cc
work_imp()

set_uci_sr()
if ul_grant and cqi_request:
set_uci_aperiodic_cqi()
oq

set_uci_periodic_cqi()
srslte_ue_ul_set_cfo()

MAC: Inform if ul_grant and/or HARQ information

if tx_enabled:
encode_pusch()

srslte_ue_ul_cfg_grant()
srslte_ue_ul_pusch_encode_rnti_softbuffer()
srslte_ue_ul_pusch_power()
Find PUSCH power at set this in common worker

Set common worker to look for ACK at TTI+8
else if send_ack, send_sr, or send_cqi:
encode_pusch()

srslte_ue_ul_pucch_encode()
srslte_ue_ul_pucch_power()

else:
encode_srs()

Signal common worker that processing has finished.

| ue_ul.c
srslte_ue_ul_cfg_grant()

srslte_pusch_cfg()

| pusch.c

srslte_pusch_uci_encode_rnti()
srslte_ulsch_uci_encode()
srslte_sequence_pusch()
srslte_scrambling_bytes()
srslte_mod_modulate_bytes()
srslte_dft_precoding()
pusch_put()

pusch_cp()
Allocate PUSCH RBs to resource grid

| sch.c
srslte_ulsch_uci_encode()

srslte_uci_encode_ri()
Encode rank indicator

srslte_uci_encode_cqi_pusch()
Encode CQI

srslte_bit_pack_vector()
Pack bits

ulsch_interleave()
Interleave UL-SCH

srslte_uci_encode_ack()

| mod.c
Bits Modulated symbols

| rf_imp.c
srslte_rf_send_timed2()

srslte_rf_send_timed3()
rf->dev->srslte_rf_send_timed()

srsLTE

| rf_dev.h
class rf_dev_t -> rf_uhd_device

API setup for all rf_dev and srslte_rf_* calls
to point to srsLTE API function calls for UHD.

USRP hardware driver
uhd_tx_streamer_send()

| phch_common.cc
worker_end()

Lock radio mutex
set_tti()
radio_h->tx()
Unlock radio mutex

| radio.cc
tx()

srslte_rf_send_timed2()

srslte_ue_ul_pusch_encode_rnti_softbuffer()
srslte_pusch_encode_rnti()
Make DMRS and SRS
srslte_ofdm_tx_sf()
srslte_cfo_correct()
Normalise signals

srslte_ue_ul_pucch_encode()
srslte_pucch_get_format()
pucch_encode_bits()

Encode format and ACK bits
if format with CQI:
srslte_uci_encode_cqi_pucch()

srslte_pucch_get_npucch()
srslte_pucch_encode()
Make DMRS and SRS
srslte_ofdm_tx_sf()
srslte_cfo_correct()
Normalise signals

| rf_uhd_imp.c
rf_uhd_send_timed()

Setting tx metadata (using UHD func. call)
- Time specifications
- Burst flags

Send tx stream

| dft_precoding.c

| ofdm.c
srslte_ofdm_tx_sf()

srslte_ofdm_tx_slot()
IFFT, OFDM sym. Output samples

| pucch.c
srslte_pucch_get_format()

Choose PUCCH format.
srslte_pucch_get_npucch()

Amount of PUCCH resources
srslte_pucch_encode()

Shorten PUCCH if cs SRS is active (for some formats)
pucch_encode()

Encode, modulate and map resources to grid

if scheduling req.,
add to UCI

CFO mitigation

MAC uplink
packet

srslte_pusch_cfg()
Freq. hopping
SRS
Total length (bits and REs)

Figure F.2: Uplink processing (PHY and radio layer) function call tracing for srsUE. 85

	Contents
	Nomenclature
	Introduction
	LTE basics
	Existing MTC technologies
	Objectives of thesis
	Development context

	Preliminary research
	Baseband signals
	SDRs
	RF architectures
	Digital converters
	USRP

	LTE principles
	Frame structure
	Channels
	Establishing connection in LTE
	Power control

	Preliminary analysis of PRACH detection

	System setup: MassiveMTC test bed
	SDR implementation of MTC device
	LTE system architecture
	OpenAirInterface implementation

	System development
	Development of core principle
	Individual and common physical layers
	Radio layer modifications and uplink power control

	Uplink power budget
	Downlink path loss emulation
	Scalability
	Initiation: The device handler
	Outputs of software

	Performance evaluation
	PRACH detection analysis
	CPU load analysis
	Power control
	Data transfer

	Conclusion
	Further work

	Bibliography
	Appendices
	LTE protocol
	LTE layers
	LTE channels

	LTE multiple access techniques
	OFDMA
	SC-FDMA

	Security
	Authentication
	Integrity protection and ciphering
	Identifiers
	OpenAirInterface HSS

	PRACH simulation results
	CPU load results
	Physical layer tracing

