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Summary of Master Thesis 
This thesis explores the use of GPS data in evaluating and grouping drivers based on their 
driving behavior. The motivation for this project is the increasing amount of GPS data 
available, more and more users utilize GPS enabled devices and the data generated from 
these devices could be used in many aspects, such as driver behavior analysis. This is a 
very interesting subject to users such as insurance companies who are interested in more 
accurately assessing their customers' risk based on their actual behavior, rather than 
statistical analysis, which is common today. 
Driving behavior can be assessed by looking at the data associated with the GPS data, such 
as data from accelerometers, compasses, etc. but also from data derived directly from the 
GPS data itself. This paper focuses on the later of the two, based on the 217 GB ITS dataset 
generated in 2012-2014 by 458 drivers located in the North Jutland region of Denmark. 
The thesis describes a framework able to evaluate drivers based on any dataset containing 
GPS data. To fairly evaluate drivers we introduce the term Hot Paths, describing heavily 
traversed paths in the road network, which is ideal to use as a common denominator when 
evaluating driver behavior, as they reveal paths containing large amounts of data. 
The Hot Paths reveal traffic flow in the road network and visualizes good candidates to use 
when comparing drivers, as using data gathered on a Hot Path can ensure that the drivers 
have had similar conditions when driving, e.g. the driven route, time of day, and so on, 
removing one of the many variables when comparing driver behavior. 
The thesis explores three different methods for generating Hot Paths, a modified Apriori 
algorithm based on the driven trips of drivers, a graph based algorithm based on the 
topology of the road network, and an algorithm using Strict Path Queries to generate Hot 
Paths, using precomputed hashes to quickly find routes in the network. The thesis explains 
the reasoning for considering these algorithms along with the technical aspects of each 
algorithm. 
The thesis evaluates the different implementations for finding Hot Paths and finds that the 
modified Apriori algorithm is the most efficient in terms of performance, achieving a runtime 
orders of magnitudes faster than the two other implementations when evaluated on the ITS 
dataset. These tests also shows that the framework is able to handle large amounts of data 
in an efficient manner. 
The thesis then moves on to explain how the framework allows the user to cluster the data 
on driving behavior for a selected Hot Path to ensure fairness in the clustering and 
evaluation. The thesis explores different variations of clustering methods using k-means and 
DBSCAN with and without the use of the t-Distributed Stochastic Neighbor Embedding 
dimensionality reduction method. 
The thesis also explains the use of various clustering scoring methods as the data lacks a 
ground truth for the problem of defining driving behavior. As such the data is evaluated on 
how good the resulting clusters are based on four different scoring methods, namely Dunn, 
Davies-Bouldin, Silhouette and Calinski-Harabasz. 



Using these methods the thesis then evaluates the results of the various combinations of 
clustering techniques on the dataset using an exhaustive Grid Search trying to maximize the 
clustering scores to get the best cluster representation. The thesis finds that it is possible to 
distinguish different driving behavior by looking at the resulting clusters and even more so 
that the clustering can be done in near-realtime making the framework usable in realtime 
applications. 
The thesis concludes that the main contributions is an efficient framework for generating Hot 
Paths from GPS data and evaluating driver behavior using clustering methods based on 
these Hot Paths to ensure a fair evaluation. 
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ABSTRACT
Driving behavior have shown to have an impact on prone-
ness to vehicular accidents and fuel economy making it very
interesting for insurance companies and fleet owners. By an-
alyzing GPS data from drivers it is possible to evaluate and
group drivers based on their driver behavior, measured in
terms of acceleration, jerk, lateral acceleration, and wobble.
To fairly group and evaluate driving behavior we introduce
the term Hot Path, which is heavily traversed paths in a
road network. Using Hot Paths, as a common denominator,
we utilize k-means and DBSCAN along with the dimension-
ality reduction technique t-SNE to cluster driving behavior
based on the observed data for each Hot Path. This paper
presents a framework for generating Hot Paths for a large
dataset of GPS trajectories using a novel variant of the Apri-
ori algorithm. The framework is afterwards able to create
meaningful clusters based on the observed data for the Hot
Paths giving a user the tools to more easily evaluate and
compare drivers using map matched GPS data. Through
experimentation and evaluation using various cluster scoring
methods we show that the framework is able to efficiently
and effectively handle large datasets and find meaningful
clusters in the data, e.g. representing calm and aggressive
driving behavior.

Keywords
Insurance premium, fleet owners, clustering drivers, Hot
Path, GPS data

1. INTRODUCTION
Driving style have shown to have an impact on the like-

lihood of vehicular accidents, as shown in [12]. Previously
insurance companies, fleet owners, and similar, had to rely
on the number of accidents and general personal informa-
tion, such as age and sex, to assess the risk of the driver
based on statistics. With the increased usage of telemat-
ics, which is the use of satellite navigation, computers, and
telecommunication in vehicles, it is now possible to gather
huge amounts of data on each driver’s behavior. This makes
it possible for both insurance companies and fleet owners to
monitor and evaluate exactly how their drivers perform [33].

Insurance companies have an interest in accurately calcu-
lating the car insurance premium for its customers to make
money, but also to have competitive pricing in order to re-
tain customers. There are already a few insurance compa-
nies, such as ingenie [25], insurethebox [16] and Co-op Insur-
ance [15], who use telematics to monitor their customers and

reward them for good driving behavior. Fleet owners can
also save money by observing and encouraging their drivers
to exhibit driving behavior that promote lower risk, main-
tenance cost and fuel consumption. Although drivers will
have their own individual driving style, other drivers might
have similar driving behavior. To find out if this is the case
we will examine possible clusters of drivers based on similar
driving style, e.g. hard braking. These clusters can then
be used as a basis for evaluation and comparison of drivers
when selecting premiums in an insurance company, or for
giving targeted training to fleet drivers. An example of a
clustering can be seen in Figure 1 where there are 3 distinct
clusters, each of them consisting of drivers with common
driving styles.

Figure 1: Different drivers being clustered into 3 distinct
clusters, and a single outlier (−1).

Most existing methods for evaluating and comparing
driver behavior only looks at each drivers general data, and
does not consider specific contexts like the driven roads,
time, or weather [8]. Not considering these circumstances
can lead to unfair comparisons of drivers, as these conditions
can have an effect on the drivers behavior. While there are
existing methods that do consider the specific context of
the data, they choose the specific roads based on existing
domain knowledge, rather than the collected data [29].

In order to compare drivers efficiently and fairly we intro-
duce the notion of a Hot Path. That is a heavily traversed
path in a road network. The idea is that the data from Hot
Paths can therefore be used as a basis for fairly comparing
drivers. Examples of Hot Paths can be seen in Figure 2,
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where Hot Paths from the city of Aalborg in Denmark are
highlighted. Unsurprisingly many main roads, such as mo-
torways, are highlighted, with only minor Hot Paths on the
access roads. A major difference to just using the main roads
for comparison between drivers is that using Hot Paths we
guarantee that each trip have traversed the entirety of the
Hot Path, while this is not the case when using the entirety
of a main roads directly. Hot Paths are also usable for eval-
uating a road network as the flow of traffic and potential
bottlenecks of the network becomes apparent. Furthermore,
we append Hot Paths with a context, e.g. Monday morning,
making it a more customizable tool for analyzing the driver
behavior and flow in the road network.

Motorway, -link, support >= 10000

Primary, support >= 10000

Secondary, support >= 10000

Tertiary, support >= 10000

Motorway, -link, support >= 5000

Primary, support >= 5000

Secondary, support >= 5000

Tertiary, support >= 5000

Figure 2: Hot Paths with more than 5.000 in support in
Aalborg, Denmark.

Analyzing GPS data can yield information about accel-
eration, jerk, lateral acceleration (speed through corners),
wobbling (drifting back and forth), speeding, and possibly
congestions.

The goal of this paper is to propose an efficient data min-
ing framework for comparing and grouping drivers based on
their driving behavior obtained through GPS data using Hot
Paths as a common denominator. Drivers can then be com-
pared in a fair way as they are all driving on selected Hot
Paths. The main contributions of this paper are:

– An efficient framework for finding Hot Paths using a novel
variant of the Apriori algorithm.

– Driving style evaluation using clustering, based on data
from Hot Paths.

The remaining part of the paper is structures as follows:
The related work is explored in Section 2. Section 3 pro-
vides an overview of the framework. The term Hot Path
is formally defined in Section 4, where we also present dif-
ferent algorithms for finding Hot Paths. In Section 5 the
data and parameters used when determining driver behav-
ior is defined. In Section 6 we discuss different methods
for clustering. In Section 7 we present the different experi-
ments and results to evaluate our solution. Subsequently we

present and conclude on our findings in Section 8. Lastly in
Section 9 we outline the possible extensions of our work.

2. RELATED WORKS
To cluster drivers on their behavior fairly using Hot Paths,

we need to look into driving behavior and Hot Paths. In each
of these categories we will introduce existing work.

Driving Behavior
Castignani et al. [5] looked into driver behavior profiling

using data from smartphones, including GPS data and mo-
tion sensor data. In creating driver profiling they utilize
metrics such as jerk and yaw. They show that jerk and yaw
are efficient at identifying calm and aggressive driver behav-
ior, making it interesting to consider these metrics for this
paper as well. Compared to us, they do not consider lateral
acceleration and use a coarse grouping of measures, where
we use the actual values when clustering.

Murphey et al. [29] takes a similar approach by analyzing
the jerk of drivers, which confirms that this could be an
interesting feature to look at. Their dataset is, however,
created through simulated driving with Powertrain System
Analysis Toolkit, whereas our dataset consists of real driving
data.

Constantinescu et al. [8] models driving style through sta-
tistical analysis, including mean and standard deviation val-
ues, for driving parameters such as speed, acceleration, brak-
ing, and mechanical work. They then apply Hierarchical
Cluster Analysis and Principal Component Analysis to find
meaningful groupings of drivers. This paper shows that
grouping drivers based on statistical analysis of the driving
behavior is interesting, which we will also explore in this pa-
per. They do not consider any behavior related to steering,
where we consider both lateral acceleration and wobbling.

In some of our previous work [19] we have worked with ex-
tracting driver preferences from driving behavior quite sim-
ilar to this paper. The main difference here is that in the
previous paper we were interested in the drivers preference
with regards to new routes based on how the driver have
driven previously, whereas this paper focuses on comparing
and evaluating drivers based on how they have driven.

Clustering Drivers
Kalsoom et al. [18] have very similar goals to ours, they

want to cluster drivers based on obtained GPS data, in either
a slow, normal or fast driving style category. They evalu-
ate both k-means and hierarchical clustering where their re-
sults show that k-means yields the best results. From this
we can conclude that hierarchical clustering might not be a
suitable method for our project, whereas k-means might be
interesting. In addition to k-means we also use DBSCAN
and dimensionality reduction.

Wang et al. [34] presents a solution to cluster drivers into
two categories, aggressive and moderate. They have mea-
sured vehicle speed and throttle opening for each driver. The
solution is based on a k-means SVM model using k-means
to identify the two categories and building an SVM model
to predict future occurrences. Their results are promising
which indicate that k-means is effective in identifying clus-
ters, and that SVM is able to accurately predict the classifi-
cation of new entries. A large difference is that they utilize
data from a driving simulator, as opposed to data obtained
from physically driving on a road network.
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Breuß et al. [3] explore clusterings based on GPS data
with regards to energy consumption. They utilize a jerk
based feature value along with a hierarchical clustering al-
gorithm to cluster on energy consumption of vehicles based
on driving data. They find that the jerk based clustering
yields quite good results, making jerk an interesting feature
to investigate for clustering.

Hot Path / Most Frequent Path
Luo et al. [26] developed a framework for querying time

period-based most frequent paths from big trajectory data.
Essentially this is very similar to our notion of a Hot Path,
however, their solution is point-to-point where as our im-
plementation finds all such Hot Paths for the entirety of an
area, e.g. a city. Furthermore, finding Hot Paths are not
the goal of this project, we utilize them as the foundation of
our comparison of drivers.

Krogh et al. [22] presents Strict Path Queries, a novel
way of querying large amounts of trajectory data. They
propose a method making it possible to get all trajectories
for each distinct path between two arcs, while only having
to read data for the first and last arc of the path. This
increases performance greatly when having to find all tra-
jectories traveling on a specific path between two nodes in
the road network. This kind of querying and optimization
techniques might be interesting for the work with Hot Paths
as well, however there is one large difference, as we are inter-
ested in analyzing all Hot Paths for the entire road network,
where Strict Path Queries are point-to-point.

Li et al. [24] develops an algorithm, FlowScan, for find-
ing so-called “hot routes” in a road network with moving
objects, quite similar to how we find Hot Paths based on
trajectories in a road network. Li et al. does not work on an
actual dataset, but instead rely on generated data for San
Francisco. To generate interesting paths they add neigh-
bourhoods to the map and generate trips in-between these.
Hot routes differ from Hot Paths as hot routes allow some
slack in the route, e.g. two people driving on a slightly dif-
ferent path could be included in the same hot route. Hot
Paths on the other hand requires the trajectories to follow
the same path to create a proper base for comparing driving
behavior.

3. FRAMEWORK OVERVIEW
This section describes the overall components of the

framework we develop before diving into the specific parts.
The complete overview is seen in Figure 3, and reveals that
our framework closely resembles the Extract, Transform,
Load (ETL) process.

The framework can be used with most map matched GPS
datasets and can be used to compare and evaluate individual
driving styles. Each of the major processes in our framework
are briefly explained in the following, whereafter the detailed
description will come in the following sections.

Preprocessing
Within the preprocessing step we take raw GPS data logs

and “enrich” the data. The derived data we have used, such
as lateral acceleration, is defined in Section 5.1.1.

Furthermore, this is also the step where we calculate the
Hot Paths for driver comparison in a later step. Hot Paths
are defined in Section 4.

Figure 3: A complete overview of our framework. Slanted
boxes are datasets, square boxes with slanted roof are user
input, and square boxes are processes. The “distribution of
data” is a visual presentation.

User Queries
This process generates data and visualization of the data

to help the user choose suitable parameters for both Hot
Path and the subsequent clustering. However, this is outside
the scope of this project and will not be explored in detail.
OpenJUMP can be used as a more technical way to visualize
the data and help the user choose suitable parameters.

Clustering
In this process the clustering algorithms runs on the

enriched trajectory dataset, and the resulting clusters are
scored accordingly to their quality. Details about the clus-
tering algorithms and the scoring method we implement are
described in Section 6.

Furthermore, it should be noted that adding both new
clustering techniques and rating algorithms is relatively
straightforward.

4. HOT PATHS
An interesting problem for users like insurance companies

is to find a fair way to asses the risk profiles of drivers. This
can be done by analyzing how different drivers perform when
driving on the same route. To facilitate this, we first need to
find which routes are used heavily by multiple drivers. We
call these highly used routes; Hot Paths. In the following
section we define the various notions we use when calculating
Hot Paths, including the structure of our GPS data, road
network, and Hot Paths along with the associated features,
such as support and context.

4.1 Definitions
A road network is a directed graph G = (N,A) containing

nodes and arcs. A node n ∈ N corresponds to either a shared
point between two or more road segments or the end of a
road segment. Each arc a = (s, e) ∈ A represents a directed
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road segment from the node s to the node e. The start and
end node of an arc is denoted a.s and a.e respectively.

A trajectory Tr = 〈g1, g2, . . . , gn〉 is a sequence of GPS
points, ordered by time, representing a single trip. Each
GPS point g is defined as a tuple:

g = (v, timestamp, x, y, speed, acc, jerk, θ, weather)

where v is the vehicle id, timestamp includes both date and
time, x and y represents a GPS coordinate, speed is the
vehicular speed in km/h, acc is the acceleration in m/s2,
jerk is the change in acceleration per second m/s3, θ is the
bearing of the vehicle measured in degrees and weather is
the associated weather, as measured by the nearest weather
station, including temperature, rainfall, wind, etc.

The trajectories in the ITS dataset are map matched to
the road network using the Viterbi algorithm proposed by
Wei et al. [35]. This method uses Markov models to find
the most likely path in the road network based on a given
trajectory. A map matching is mapping a subsequence of a
trajectory to the most likely arc along with an id denoting
the given trip so that all map matchings with a given trip id
can be collected to get the map matched path for the entire
trajectory. A map matched trajectory is defined as:

M = 〈m1,m2, . . . ,mn〉
m ∈M,a ∈ A,m =

(
v, t, a, T r′

)
Tr′ = 〈gi, gi+1, . . . , gk〉

(1)

where v is the vehicle id and t is the corresponding trip
id. Furthermore the subtrajectory, Tr′, of a map matching
cannot overlap with any other subtrajectory used in other
map matchings of the map matched trajectory.

We define a function match(a) that returns all map
matchings for a given arc, that is:

match(a,M) =
{
m ∈ M

∣∣∣ m.a = a
}

(2)

Where M is an optional parameter, if no parameter is
supplied the set of all map matchings for the entire dataset
is used.

A path P = 〈a1, a2, · · · , an〉 , n ≥ 1 is a sequence of dis-
tinct adjacent arcs such that ∀i, 1 ≤ i < n, ai.e = ai+1.s
and ∀i ∈ [1;n] ,¬∃j s.t. i 6= j ∧ ai = aj .

A sub path P ′ = 〈s1, s2, . . . , sk〉 of P = 〈a1, a2, . . . , an〉
exists when |P ′| < |P | and P ′ is completely contained within
P , that is ∃i s.t. 〈ai, ai+1, . . . , ai+k−1〉 = P ′.

If P ′ is a sub path of P then P is also called the super
path of P ′.

We use the term support, borrowed from Apriori [1], as
the number of observations on a path. In this paper, we
use trip support and vehicle support to refer to the num-
ber of observed trips and the number of different vehicles
respectively.

The set of trips passing an arc a, T (a), and the set of
vehicles passing an arc a, V (a) is defined as:

T (a) = {m1.t,m2.t, . . . ,mk.t} ,mi ∈ match(a)

V (a) = {m1.v,m2.v, . . . ,mk.v} ,mi ∈ match(a)
(3)

The trip support of a path P = 〈a1, a2, . . . , an〉 is defined

as Strip(P ) =

∣∣∣∣ n⋂
i=1

(T (ai))

∣∣∣∣ and the vehicle support of P is

given by Svehicle(P ) =

∣∣∣∣ n⋂
i=1

(V (ai))

∣∣∣∣.

The context, C, is some user defined filter that works on
the data associated with all trips on a path. In the ITS
dataset filters can use date, time, and weather. Specific data
can also be derived from the associated data, e.g. defining
seasons and peak hour times to only consider trips driven in
winter and during peak hours. The context is user defined,
and can be absent. The context is defined as a set of context
functions, f(P ), that takes a path, P , and returns either true
or false:

C = 〈c1, c2, . . . , cn〉 , n ≥ 0

ci = f(m)

f(m) =

{
true

false

(4)

A context function could be looking at the season, week-
day, date, weather, etc. of each path. Such a function look-
ing at the season could be:

isSeason(season′,m) ={
g1 ∈ m.Tr′

∣∣∣ season(g1.timestamp) = season′
} (5)

To be usable context functions only have one input,
namely the path. As such the isSeason function has to be
instantiated with a season, for example isWinter :

isWinter(m) = isSeason(winter,m) (6)

In SQL these functions translate to a where clause with
and in between the expression of all context functions.

We say that a path, P , belongs to a context, C, if the
following holds.

∀a ∈ P,∀m ∈ match(a), ∀c ∈ C, c(m) = true (7)

A specific context associated with a path can be denoted by
P.C, the path P must belong to any such context.

When limiting the context of Hot Paths we actually limit
the map matched data for that given Hot Path. As such
we define a function limitToContext, seen in Equation 8,
to generate the set of map matchings limited to a given
context.

limitToContext(M, C) ={
m ∈ M

∣∣∣ ∀c ∈ C, c(m) = true
} (8)

4.1.1 Hot Path
A Hot Path, H, is a path having a user-defined minimum

trip support and vehicle support defined as:

H = 〈a1, a2, · · · , an〉 ,
where Strip(H) ≥ minTripSupport
∧ Svehicle(H) ≥ minV ehicleSupport

(9)

The order of arcs in the Hot Path is the order they were
used when driving, i.e. if all drivers take one path in the
morning, and takes the reversed path on the way back, that
will constitute two different Hot Paths.

4.2 Finding Hot Paths
In this section we introduce three methods for finding Hot

Paths and argue for the advantages and disadvantages of
each one. We present two similar graph based algorithms
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and a third using the Strict Path Query method developed
by Krogh et al. [22].

We implement our algorithms using SQL and PL/pgSQL
with a few C functions needed where the functions supplied
by PostgreSQL are insufficient, or where we gain a perfor-
mance improvement compared to PL/pgSQL.

Apriori
To find Hot Paths we have developed a novel variant of

the Apriori algorithm [1] that utilizes the driven sequences
of arcs. One feature of the Apriori algorithm is, that it
will generate Hot Path candidates of all consecutive arc
combinations, having sufficient support. As we need this
data in order to choose appropriate support levels for the
ITS dataset, this algorithm is a suitable choice for our pur-
poses. The original Apriori algorithm may generate huge
candidate sets, because all items may be combined with any
other item, but because we only combine with the next arc
in the direction driven, the size of candidate sets actually
shrink as the Hot Paths grow, because candidates are re-
moved due to lack of support or no more consecutive arcs
are available. Compared to the original Apriori algorithm,
we modify the candidate generation step. Our algorithm,
which is listed in Algorithm 1, has a list of trips as input,
where each trip has a trip id and an array of traversed arcs:
{tripId, arcs[]}. As input and during the execution of the
algorithm, the arcs are in the order they were traversed. The
first step is generation of 1−itemset, where we generate one
item for each passage of each arc. When we calculate the
candidates during each iteration, we differ from the original
Apriori algorithm. Because the arcs are not independent
of the trajectory, only itemsets respecting the traversal or-
der are usable as candidates. When transitioning from the
k−itemset to the (k + 1)−itemset, we add the next arc in
the order they were traversed. For example, if the trajec-
tory visits the arcs <a1,a2,a3> in that order, the 1−itemset
has the items {<a1>, <a2>, <a3>}, the 2−itemset has the
items {<a1,a2>, <a2,a3>} and the 3−itemset has the item
{<a1,a2,a3>}.

The user can limit which arcs to include, either by speci-
fying an input table containing only the wanted arcs, or by
passing one or more arc filters to the Hot Path function.
Available filters enable the user to limit by road type, e.g.
exclude unpaved roads, by supplying a geometry (bounding
box), e.g. only arcs inside the Aalborg/Nørresundby city
area or by ignoring the start and end of each trip. The
user can further limit the amount of saved data using the
parameters minimum and maximum Hot Path Size (number
of traversed arcs), and minimum Hot Path length (Hot Path
length in meters).

If the trips are not filtered by context before the Hot Paths
are generated, the Apriori algorithm finds Hot paths for all
chosen context combinations. The end-user can then query
as needed afterwards.

Graph Based
As an alternative to the Apriori algorithm, we extract Hot

Paths using the graph representation of a road network. The
algorithm listed in Algorithm 2 uses the data annotated with
each arc to extract Hot Paths in a breadth first manner. Any
arc where trip and vehicle support are above the minimum
will itself be a Hot Path. From these it is possible to ex-
pand the Hot Paths by adding the following arc. This new

Input: Trips: {(tripId, context, vehicle, <arcs>)}
Input: Maximum Hot Path size: maxHPSize
Input: Minimum Hot Path size: minHPSize
Input: Minimum Hot Path length: minHPLength
Input: Output table name: outTable
Input: Minimum trip support: minTripSupport
Input: Minimum vehicle support: minVehicleSupport
Input: Columns for context: context
Input: Arc filters: arcFilter
Data: Arcs with sufficient trip support: CT0

Data: Candidate tables: CT1, CT2

/* Extract arcs with sufficient support

(1-itemsets) */

foreach trip do
for i in 1..length(arcs) do
if arcFilter(arcsi) then
if Strip(arc) >= minTripSupport then

insert into CT0 (tripId, arcKey, path, arcNo,
nextArcNo, pathLength, context, vehicle)

values(tripId, arcsi, <arcsi>, i, i+ 1,
arcLength, context, vehicle)

end

end

end

end

/* Generate k-itemsets */

sourceTab := CT0

destTab := CT2

nextDestTab := CT1

repeat
truncate table destTab
insert into destTab

select p1.tripid,
p2.nextArcNo,
p1.context, p1.vehicle,
p1.path || p2.arcKey as path,
p1.pathLength+p2.pathLength as pathLength

from sourceTab p1, CT0 p2
where p1.tripId = p2.tripId

and p1.nextArcNo = p2.arcNo
and Strip(path) >= minTripSupport

if Hot Path size >= minHPSize then
insert into outTable

select tripid,
Strip(path) as tripSupport,
Svehicle(path) as vehicleSupport,
context, vehicle, path

from destTab
where vehicleSupport >= minVehicleSupport

and pathLength >= minHPLength

end

/* swap source and dest */

sourceTab := destTab
destTab := nextDestTab
nextDestTab := sourceTab

until Hot Path size = maxHPSize or no more
candidates

Algorithm 1: Novel Apriori algorithm for finding Hot
Paths.

5



Hot Path is then added to the set of Hot Paths, if its trip
and vehicle support are above the minimum. This iterative
process is continued until no arcs can be added to any Hot
Path.

If a specific context is considered, the map matched data
can be limited to that context using the limitToContext
function.

Input: Graph of the road network: G(N,A)
Input: Minimum trip support: minTripSupport
Input: Minimum vehicle support: minV ehicleSupport
Input: context: C
Data: Hot Paths: HP := {∅}

/* Finding first Hot Paths */

foreach a ∈ A do
P := 〈a〉
if Strip(P ) ≥ minTripSupport
∧Svehicle(P ) ≥ minV ehicleSupport then

HP := HP ∪ {P}
end

end

/* Expanded Hot Paths */

pathLength := 1
repeat

foreach H := 〈a1, . . . , an〉 ∈ HP do
if |H| = pathLength then

foreach a ∈ A do
if an.e = a.s then

P := H ∪ a
if Strip(P ) ≥ minTripSupport
∧Svehicle(P ) ≥ minV ehicleSupport
then
HP := HP ∪ {P}

end

end

end

end

end
pathLength++

until no Hot Path is added to HP

Algorithm 2: Graph Based algorithm for finding Hot
Paths.

Strict Path Query
A third method of extracting Hot Paths is to use the Strict

Path Query (SPQ) by Krogh et al. [22]. We choose this ap-
proach because the ITS dataset is already optimized for this
query type. The SPQ is highly optimized towards answer-
ing queries about a specific segment pair, but this query only
tells the number of trips grouped by unique paths, but not
which segments were used between the start and the end
segment. Because of this we modify the query to return the
actual segments used. While modifying the query, we take
care to preserve as much of its advantage over a plain lookup
of the start and end segments.

A main reason for SPQ’s high performance is that the
algorithm only has to read data for the start and end seg-
ments. However, as we need information from the interme-

diate segments, some performance loss is unavoidable. The
performance can be somewhat preserved as we only need
to lookup the intermediate segments for one trip for each
unique path to get the traversed arcs.

By preserving the advantage resulting from only doing
lookup of intermediate segments once for each unique path,
we lose the ability to calculate the number of different ve-
hicles, because in order to so, we need to read data for all
trips to count the number of different vehicles. This also
means that context functions are not supported by this im-
plementation as well, as this also requires information from
each trip individually. The primary purpose of this imple-
mentation is to compare its performance to the other imple-
mentations. As such we do not put in unnecessary work in
this implementation, as a full implementation of the SPQ
based algorithm would most likely lower the performance of
the implementation further.

It is possible to cut the number of possible combinations
in half as SPQ returns the result for both directions of a pair
of source and destination. As such we only need to query
for one direction for each pair.

Removing Redundancy
Common for the above methods is that they find all Hot

Paths with the given minimum support. By definition all
sub paths of a Hot Path are also Hot Paths. In case only
the longest Hot Paths are needed, the sub paths, and thereby
the redundancy, can be removed after the Apriori algorithm
has been completed, but often these have higher support,
so some information is lost if they are simply removed. We
let the user decide which sub paths to preserve by supplying
a difference parameter, which defines the minimal relative
difference between super and sub path needed to preserve
the sub path (Equation 10). We preserve a Hot Path if the
relative difference in support is higher than the minimum
for all of its preserved super paths.

Dtrip ≥ Strip(PSub)− Strip(PSuper)

Strip(PSuper)

Dvehicle ≥ Svehicle(PSub)− Svehicle(PSuper))

Svehicle(PSuper)

where

PSub is the sub path,

PSuper is the super path,

Dtrip is the relative difference in trip support,

Dvehicle is the relative difference in vehicle support

(10)

Consider the Figure 4, showing three paths. If the mini-
mum support is 30.000, and the blue (starting at a1) and red
(starting at a2) each has a support of 15.000 while the green
(starting at a3) has a support of 3.000, we have four Hot
Paths: (33000, 〈a5〉), (33000, 〈a6〉), (33000, 〈a5, a6〉) and
(30000, 〈a4, a5, a6〉). The Hot Path (33000, 〈a5, a6〉) will be
preserved if the difference parameter is 10 % or less but Hot
Paths (33000, 〈a5〉) and (33000, 〈a6〉) will only be preserved
if the difference parameter is zero.

6



a2 a3

a4 a5 a6

a7

a8

a9

a1

Figure 4: Three different Hot Paths sharing some arcs.

5. DRIVER PROFILE
With the basic definitions of Hot Paths completed, it is

time to define how we model a driver profile. We do this by
defining the data needed, and thereafter describe the data
used for the driver profiles.

5.1 Data Foundation
To be able to find both Hot Paths and driver style we need

to have data from different peoples driving. Essentially the
bare minimum needed is raw GPS logs with a timestamp
and location as the rest can be computed as shown in [19].
We have however built our framework on map matched data,
and the data required is listed in Table 1.

Data Explanation

Locations The GPS coordinates for each trip.

Timestamps The time for each location.

Vehicle keys Unique identifiers for the vehicles.

Arcs The id and order of the arcs being tra-
versed.

Trips A unique identifier for each trip made by
a vehicle, including location, timestamps
and arcs.

Distances
on arcs

The distance a driver has driven on the cur-
rent arc at the time of recording.

Table 1: The data required by our framework.

5.1.1 Derived Data
In addition to the data provided by the dataset there are

numerous metrics we derive from the original data, e.g. lat-
eral acceleration.

Lateral Acceleration
The lateral acceleration of a vehicle is caused by the force

with which it turns. It can be calculated as seen in Equation
11, where v is the velocity and r is the radius of the circle
(corner) [2]. Lateral acceleration is interesting to calculate
because it gives an indicator of how aggressive drivers are
when turning, and this is not covered by any of the other
metrics. Furthermore, we can see that insurance companies
using telematics are interested in the lateral acceleration [25,
16].

ar =
v2

r
(11)

To find the radius, we use 3 consecutive GPS points form-
ing a triangle to calculate the circumcircle, and thereby the
radius of the turn, as shown in Equation 12, where a, b, and
c denote the length of the triangle sides and K is the area
of the triangle.

r =
abc

4K
(12)

Wobble
When a driver does not pay attention to the road and

starts to drift towards the side or center of the road, the
driver makes corrections to the direction of the car. Instead
of driving in a straight line, the driver ends up driving in a
slalom-like pattern. We use the term wobble as a measure
of these corrections. When a driver pays attention to the
road and is driving normally there should only be a small
amount of wobble, however when a driver is not focused,
the amount of wobble will increase. To calculate wobble we
develop an equation that utilize the bearing and speed of a
vehicle along with the bearingdiff function defined in [19],
modified to use degrees:

bearingdiff (θ1, θ2) = ((θ1 − θ2 + 180) mod 360 + 360)

mod 360− 180
(13)

Where θ1 and θ2 are the heading of the previous and
current GPS record respectively. Using the bearingdiff and
speed of a vehicle during a given time period we calculate
the wobble as follows:

totalbdiff (Tr, n, k) =

n−1∑
i=n−k

bearingdiff (gi+1.θ, gi.θ)

posdiffs(Tr, n, k) =

n−1∑
i=n−k

1, ifbearingdiff (gi+1.θ, gi.θ) > 0

negdiffs(Tr, n, k) =

n−1∑
i=n−k

1, ifbearingdiff (gi+1.θ, gi.θ) < 0

lastspeeds(Tr, n, k) =
1

k
∗

n−1∑
i=n−k

gi.v

(14)

w(Tr, n, k) = totalbdiff (Tr, n, k)

∗ min(posdiffs(Tr, n, k),negdiffs(Tr, n, k))

max(posdiffs(Tr, n, k),negdiffs(Tr, n, k))

∗ lastspeeds(Tr, n, k)

80
(15)

where Tr is the the trajectory, n is the GPS record number
and k is the number of GPS records before the current GPS
record to be used in the calculation.

The reason for using wobble rather than just looking at
differences in bearing is to only capture the slalom-like pat-
tern and not ordinary turns. Furthermore the equation looks
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at the k− 1 last GPS points which makes it possible for the
end-user to adjust the setting to the situation, e.g. setting
it high when only looking at motorway driving. The speed
is also considered when calculating wobble as wobbling at
high speed are worse than at low speed.

5.2 Driver Profiles
In order to cluster drivers, we need to define the data

representing each driver. We are using data for specific Hot
Paths to get a fair comparison between drivers. Based on
the data for each trip driven on the Hot Path we generate
a driver profile describing the driving behavior of each trip.
This includes averages of accelerations, decelerations, and
number of times aggressive behavior of different kinds are
detected.

Furthermore, additional data parameters can easily be
taken into account when clustering. The only requirement
for driver profiles with regards to the data is that the first
column must be a unique identifier. The number of columns
after that does not matter.

The complete list and explanation of parameters used in
the driver profiles for this project can be seen in Table 2. All
values are aggregated and averaged, except for the counted
values, e.g. num hard acc. The counted values are incre-
mented each time a value higher than a user-defined thresh-
old is detected, e.g. number of accelerations above 2.2 m/s2.

Parameter Description

Acc pos Average of positive speed changes.

Acc neg Average of negative speed changes.

Jerk pos Average of positive acceleration changes.

Jerk neg Average of negative acceleration changes.

Lat acc
Average of turn force. Equation defined in
Section 5.1.1.

Wobble
Average score of slalom-like driving. Equa-
tion defined in Section 5.1.1.

Num hard
acc

Number of occurrences of acc pos above a
user-defined threshold.

Num hard
dec

Number of occurrences of acc neg below a
user-defined threshold.

Num hard
pos jerk

Number of occurrences of pos jerk above a
user-defined threshold.

Num hard
lat acc

Number of occurrences of lat acc above a
user-defined threshold.

Num hard
wobble

Number of occurrences of wobble above a
user-defined threshold.

Table 2: Overview and explanation of parameters in driver
profiles.

A driver may have driven the Hot Path multiple times on
separate trips, as such the driver profiles for each trip can
be averaged to get an overall representation of each driver
across all trips on the given Hot Path.

5.2.1 Normalization
Since a driver profile contains numerical representations of

several very different metrics with varying ranges of possible

values, we use normalization. This is a technique useful for
bringing different values to a common scale and ensuring
certain metrics does not dominate others, e.g. speed versus
binary [13]. We have chosen Z-score as it is recommended by
Han et al. [13] and provides a usable common scale while also
being easy to implement, as well as Min-Max normalization
as it is commonly used for machine learning [30].

Z-score
The Z-score is defined as the distance from the average of

the entire set divided by the standard deviation [30]. This
results in a score having a zero mean, where abs(score) is
the number of standard deviations from the mean. For a
dataset having a normal distribution (Bell Curve) approxi-
mately 95 % of the data should have a Z-score between −2
and 2.

The equation for computing the Z-score can be seen in
Equation 16, where µ is the average of the data points and
σ is the standard deviation.

z =
(x− µ)

σ
(16)

Min-Max Normalization
A typical normalization technique is the Min-Max normal-

ization [30], which scales the data to a common data range,
usually between zero and one. The Min-Max normalized
value can be calculated using Equation 17.

xnorm =
(x− xmin)

xmax − xmin
(17)

6. CLUSTERING
In this section we will look into different methods for clus-

tering drivers based on their driver profile. After the clus-
tering methods we will discuss dimensionality reduction on
the driver profiles, and lastly different methods for scoring
the resulting clusters.

6.1 Clustering Methods
We start out with the simple, but effective, k-means clus-

tering method before moving onto DBSCAN.

6.1.1 k-means
Clustering based on k-means is a popular method for par-

titioning a set of data points into a number of clusters [28].
In our case with an insurance company, they may have 5
different premiums for car insurances. k-means can then
be used for finding 5 different clusters comprised of drivers
that are most similar, after which the insurance company
can decide on a premium for each cluster.

For clustering with k-means we use a simple implemen-
tation that takes the number of clusters, k, and an N ×M
matrix as input, where N is the number of drivers and M is
the number of parameters mentioned in Section 5.2. The al-
gorithm generates k centroids with M dimensions, and assign
each data points to its closest centroid. Then each centroid
is set to the average of its assigned data points. The algo-
rithm then assigns each point to its closest centroid again.
This continues until the clusters does not change or until a
specified maximum number of iterations is reached.
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The reason for choosing k-means is due to its simplicity
making it useful as a baseline algorithm for comparison. k-
means is also very suitable for classifying drivers from an
insurance company’s point of view, as there is usually a spe-
cific number of premiums to choose from, which could be a
guideline for choosing the value of k.

6.1.2 DBSCAN
Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) is a density-based clustering algorithm
that groups data points based on their proximity [11].

Instead of simply finding a fixed number of clusters as in
k-means, DBSCAN only cluster data points together if there
are a certain amount of them within a certain distance. In
addition to the data that is being clustered the algorithm
takes two parameters: ε (distance between data points) and
min samples (minimum points to start a cluster). An exam-
ple of DBSCAN can be seen in Figure 5, which will be used
for explaining how the algorithm works in the following.

The algorithm starts by picking an unvisited data point
and uses ε as a search radius to determine the number of
points in the vicinity. In the example we see that the point
A has 3 other points within its search radius, meaning that if
the minimum points variable was set to 4 or lower, a cluster
is found. Each new point found is then controlled for points
within their search radius. This is the step where the two yel-
low points (edge points) and the two additional core points
(red) are found. Core points have at least min samples− 1
other data points in the cluster within their search radius
where edge points only have a single data point in its search
radius.

The process then restarts at a new unvisited point, until
all points has been visited.

A C

B

N

Figure 5: An example of DBSCAN clustering, where core
points are illustrated in in red, cluster edge points in yellow,
and outliers in blue. Illustration from [6].

DBSCAN was chosen because, just as k-means, it is a rela-
tively simple clustering algorithm, while having an approach
that differs greatly from k-means in that it groups based on
the proximities of the data points and identifies outliers.

6.2 Dimensionality Reduction
Dimensionality reduction, or rather feature extraction, is

useful for high-dimensional datasets, such as our driver pro-
files, as it reduces the number of dimensions into a low-
dimensional representation, e.g. two dimensions. In ad-
dition it enables visualization of the data and clusterings,
when reducing to 3 or fewer dimensions. A feature of the di-
mensionality reduction techniques we consider are also that
the proximity of the high-dimensional data will also corre-
late with their proximity in the reduced space. This means

that the correlation of data points in the original space is
preserved, which is essential when clustering.

In the following we will be looking into two different meth-
ods for reducing dimensions, namely Self-Organizing Feature
Maps and t-Distributed Stochastic Neighbor Embedding.

6.2.1 Self-Organizing Feature Maps
Self-Organizing Feature Maps (SOFM) is a type of artifi-

cial neural network that apply competitive learning [21, 20].
It produces a low-dimensional representation of the input
called a map, e.g. reduction to two dimensions. A benefit
of SOFM is the unsupervised learning of the artificial neural
network, which in our case is ideal as we do not wish to state
what is and what is not good driving behavior.

6.2.2 t-SNE
t-Distributed Stochastic Neighbor Embedding (t-SNE) is

another dimensionality reduction method, comprised of two
stages [27]. During the first stage the algorithm constructs a
probability distribution over pairs of high-dimensional data
such that similar data points have a high probability of being
picked, whereas dissimilar points have a small probability.
This is similar to SNE, which t-SNE is built upon. During
the second stage t-SNE defines a similar probability distribu-
tion over the points in an embedding (low-dimensional map),
and minimizes the Kullback-Leibler divergence [23] between
the embedding and the original dataset, which tries to en-
sure that the embedding most closely represents the original
data.

6.2.3 Discussion
Due to performance issues with SOFM in our setup we

will not be using it. Reducing driver profile data into two-
dimensions with SOFM often requires more than 1 hour,
whereas t-SNE in most cases completes in less than 5 sec-
onds.

6.3 Scoring
Since we have no ground truth for evaluating the clusters

we have to utilize a more objective method for determining
how effective our clustering is. As such we look into scoring
methods for evaluating clusters.

From the Python library “scikit-learn,” used for some of
our clustering methods, we already have access to two scor-
ing methods that are not based on matching the cluster-
ing result with the truth (classification) [32]. These scoring
methods are the Calinski and Harabasz score and Silhouette
score. However, since both of these scoring methods are bet-
ter for convex clusters rather than density based clusters,
e.g. clusters made with DBSCAN [7], we have to include
additional scoring methods. As such we additionally look
into Davies-Bouldin and Dunn index.

The framework makes it easy to use additional scoring
methods, which is important as different scoring methods
perform differently according to the given data.

All of the methods mentioned here are methods that out-
put a numerical score that describe quality of the cluster
in terms of the proximity of data points within the cluster,
distance between clusters, and so on. These scores are also
relatable to telematics as a better score means that the dif-
ferent groups are easier to distinguish, making the cluster
better for grouping driving styles.

9



6.3.1 Calinski and Harabasz Score
The Calinski and Harabasz score [4] is defined as a ratio

between the dispersion of elements within a cluster against
the dispersion of clusters, where a higher value is preferred.
The equation for calculating the score can be seen in Equa-
tion 18, where k is the number of clusters, n is the total

number of points, ni is the number of points in cluster i, d
2

is the general mean of squared distances and di
2

is the mean
of squared distances within cluster i.

C =
BGSS

k − 1
/
WGSS

n− k

where WGSS =
1

2
∗

k∑
i=1

(
(ni − 1) ∗ di2

)
, BGSS =

1

2
∗
(

(k − 1) d
2

+ (n− k)Ak

)
(18)

6.3.2 Davies-Bouldin Index
The Davies-Bouldin index [9] is an expression of the ratio

between distances within a cluster to the distance between
clusters. The numerical output is above 0, where the lower
the value, the better the clustering is.

The algorithms for calculating the Davies-Bouldin Index
are listed in the equations from Equation 19 to 23. Si, in
Equation 19, is a measure of scatter within a given cluster.
Furthermore, Ti is the number of data points within the
cluster, Xj is a data point, and Ai is the centroid of the
given cluster. Finally we have p, which usually is set to 2
making it a Euclidean distance function. This has to match
the distance function used when doing the clustering.

Si =

(
1

Ti

Ti∑
j=1

|Xj −Ai|p
) 1

p

(19)

Mi,j , in Equation 20, is a measure of the distance between
two clusters. ak,i is the kth element of Ai.

Mi,j = ||Ai −Aj ||p =

(
n∑

k=1

|ak,i − ak,j |p
) 1

p

(20)

Since Davies-Bouldin is a ratio of the distance between
data points within a cluster to the distance between clusters,
it is exactly what is calculated in Equation 21.

Ri,j =
Si + Sj

Mi,j
(21)

The final two equations, Equation 22 and Equation 23,
utilize the declared equations to put it all together.

Di ≡ max
j 6=i

Ri,j (22)

DB ≡ 1

N

N∑
i=1

Di (23)

6.3.3 Dunn Index
The Dunn index [10] is the ratio of the smallest distance

between any two data points of two different clusters to

the largest distance between any two data points within the
same cluster. This is between 0 and ∞, where the higher
the value the better the clustering is.

The definition for Dunn index is in Equation 24, where
δ(Ci, Cj) is the distance between the clusters Ci and Cj and
4i is the maximum distance between two points within the
cluster Ci.

4i = max
x,y∈Ci

d(x, y)

DIm =

min
1≤i<j≤m

δ(Ci, Cj)

max
1≤k≤m

4k
(24)

6.3.4 Silhouette Score
The silhouette score [31] measures cohesion (how similar

elements in a cluster are to each other), where the score
ranges from −1 to 1. The higher the score, the better the
clustering is and elements of different clusters will be dis-
similar. Scores around 0 indicate overlapping clusters, and
negative scores indicates that elements have been wrongly
assigned.

Silhouette score is defined in Equation 25, where a(i) is
the average distance of i to all other data points within its
cluster and b(i) is the lowest average distance of i to any
cluster other than its own.

s(i) =
b(i)− a(i)

max a(i), b(i)
(25)

7. EXPERIMENTS
This section will outline the experiments we have per-

formed to assess the performance of our framework. We be-
gin by describing the data used for the experiments before
detailing the performance experiments.

7.1 Data Foundation
The experiments made in this paper are based on the ITS

[17] dataset, which is a 217 GB dataset collected in 2012-
2014, containing map matched GPS trajectories from 458
vehicles in Denmark. Some experiments are focusing on spe-
cific geographical areas and other filters. The dataset and
selected filters are summarized in Table 3.

The ITS dataset supports SPQ defined in [22], usable for
path-based analysis.

7.2 Hot Paths
In this section we show our Hot Path experiments, where

we start by investigating minimal support values, before
doing performance measurements, and finally showing the
number of Hot Paths discovered.

7.2.1 Investigating Minimal Support Values
To extract Hot Paths we use the ITS dataset with some

initial filtering:

• Limit to the Aalborg/Nørresundby city area.

• We exclude the road categories: residential, living
street, unpaved, service, unclassified. These are not
likely Hot Paths as they are of little importance to
traffic in general. We exclude these as the data is
biased to a small area, which might result in erroneous

10



Filter Item Count

None

Data points 1,144,334,515

Trips 1,381,021

Vehicles 458

Arc passages 79,434,563

Used arcs 391646

Aalborg / Nrsb

Data points 275,051,868

Trips 520,230

Vehicles 424

Arc passages 21,541,883

Used arcs 13,269

Aalborg / Nrsb
excluding minor
roads

Data points 227,222,840

Trips 508,023

Vehicles 424

Arc passages 17,414,841

Used arcs 2,594

Aalborg / Nrsb
excluding minor
roads and first
and last 500m of
each trip

Data points 202,004,086

Trips 471,691

Vehicles 424

Arc passages 15,216,999

Used arcs 2,594

Table 3: Summation of specific filters used. Rows 2-4 con-
stitute subsets of the preceding rows.

Hot Paths. As for residential and living street, they
do not take almost no part in any Hot Path, even if
trip support is as low as 5,000 as illustrated in Figure
7.

• We remove the first and the last 500 m of each trip
due to privacy concerns.

The data is limited to Aalborg/Nørresundby as the data is
heavily biased towards this region of Denmark, as seen in
Figure 6, as such this have no effect on the general applica-
bility of the method.

This leaves the following amount of data for the Hot Path
extraction:

• 1,868 segments, but only 1,805 has data in the ITS
dataset.

• 1,628,110 segment pairs for the SPQ algorithm before
trip support filtering, but only 249,671 pairs if Strip ≥
10, 000.

When saving the Hot Paths, we only keep Hot Paths with
these properties:

• Contains at least 5 arcs.

• Has a length of at least 500m.

The cut-off values for these properties can of course be
changed, however we choose these limitation as Hot Paths
with smaller lengths and less arcs will only have a small
amount of data for each trip.

The effect of a trip support limit on the entire dataset can
be seen in Figure 7, where the x-axis shows the limit on trip
support and the y-axis shows how many percent of the total

Figure 6: Heatmap of the ITS dataset.

arcs are left for each road type. The figure shows, that when
the minimum trip support is chosen to a value above 10, 000,
almost all road types except motorways are removed. These
values will of course differ for different datasets or if lim-
itations are used on the dataset, e.g. looking at data for
another city, or only considering specific time periods.

5,000 6,000 7,000 8,000 9,000 10,000 11,000
0

20

40

60

80

100

Minimal trip support

P
er
ce
n
ta
g
e

motorway motorway link

primary secondary

tertiary residential

living street

Figure 7: Percentage of arcs being part of a Hot Path for
different road types for different support values.

7.2.2 Hot Path Performance Measurements
We evaluate the performance of our suggested Apriori al-

gorithm by comparing it to the performance of the imple-
mentation based on SPQ, and the Graph Based (GB) im-
plementation. The results can be seen in Figure 10, which
shows the runtime of the different algorithms for different
trip support values. For the Apriori and GB, the tests are
done setting vehicle support to zero (which is not the best
case). The SPQ based implementation is minimal, and does
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not include handling of context or vehicle support, we in-
clude the previously mentioned filters with Hot Paths of at
least 500m.

Finally, as mentioned in Section 4.2, SPQ suffers a serious
performance hit when having to look up data for the actual
trips, as such to uphold this limitation of Hot Paths being
at least 500m, and as we remove the first and last 500m
of each trip, we only include segment pairs being at least
400m apart in the SPQ Hot Path (SPQHP) generation.

These changes have been made in order to alleviate some
of the performance problems SPQHP has, and only boosts
the performance of SPQHP.

The results in Figure 10 shows that the implementation
using Apriori is faster than the one using SPQHP, which
is likely to become more prominent if we were to add han-
dling of context or vehicle support when using SPQHP. Apri-
ori is also faster than GB. The SPQHP implementation is
reasonably fast when the number of segments is low, but
becomes substantially slower as the number of segments in-
crease. The GB implementation performs even worse than
the SPQHP implementation when trip support is high, how-
ever it should be noted that the GB implementation consid-
ers contexts, whereas SPQHP does not. In contrast, the
Apriori implementation scales better and is less sensitive to
larger amounts of data.

These results are not surprising, as the work done by the
SPQHP implementation is proportional to the number of
map segment combinations, i.e. O(N2), while the work done
by the Apriori implementation is expected to be dominated
by sorting, i.e. N ∗ log(N) where N is the number of arc
passages (times an arc is passed by a trip).

Note that the performance of the Apriori implementation
only vary little as the minimal vehicle support is changed.
This is due to trip support and vehicle support being corre-
lated, as illustrated in Figure 8. Vehicle support only makes
a difference when trip support is low. This can be seen in
Figure 9, where varying vehicle support values only make
a significant difference when trip support is low (5,000), or
when vehicle support is very high (350). This intuitively
makes sense, as more vehicles are needed to achieve a higher
trip support.
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Figure 8: Correlation between Strip and Svehicle.

When implementing the Apriori algorithm, we have a
choice of when to perform filtering based on vehicle support.
It can be done early i.e. when generating the itemsets, or
late i.e. when saving the results. Early filtering is only the
fastest option when minimum trip support is low and min-

imum vehicle support is high, as can bee seen in Table 4 .
The numbers used for Figure 9 is from the fastest of the two
options.

Minimum Strip

Filter Strip 100 200 300 350

Early

5,000 2750 s 2722 s 1382 s 554 s

10,000 909 s 907 s 758 s 481 s

20,000 280 s 279 s 272 s 238 s

30,000 158 s 160 s 158 s 158 s

Late

5,000 2275 s 2281 s 2170 s 2069 s

10,000 700 s 704 s 701 s 682 s

20,000 195 s 197 s 193 s 191 s

30,000 105 s 103 s 104 s 101 s

Table 4: Runtime comparison of early vs. late vehicle sup-
port filtering for Hot Path generation using the Apriori al-
gorithm. Green numbers indicate the fastest, and red the
slowest.
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Candiate generation Strip ≥ 5, 000

Redundancy removal Strip ≥ 5, 000

Candiate generation Strip ≥ 10, 000

Redundancy removal Strip ≥ 10, 000

Candiate generation Strip ≥ 20, 000

Redundancy removal Strip ≥ 20, 000

Candiate generation Strip ≥ 30, 000

Redundancy removal Strip ≥ 30, 000

Figure 9: Runtimes for Apriori Hot Path extraction Aal-
borg/Nørresundby area. The difference parameter for the
reduction step is set to 0.5.

7.2.3 Hot Paths Discovered
The Hot Paths found when minimum trip support is 5, 000

and 10, 000 can be seen in Figure 11. The black circle at the
center illustrates an interesting spot, where a Hot Path is
“broken”, somewhat surprisingly. The reason for this par-
ticular gap is, that at the eastern end, the traffic is split
into two roads, and at the western end, part of the traffic is
directed into the parking lot of a big grocery store.
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Figure 10: Runtime for SPQ and GB Hot Path generation
for Aalborg/Nørresundby (without reduction step).

Motorway, -link, support >= 10000

Primary, support >= 10000

Secondary, support >= 10000

Tertiary, support >= 10000

Motorway, -link, support >= 5000

Primary, support >= 5000

Secondary, support >= 5000

Tertiary, support >= 5000

Figure 11: Hot Paths with more than 5.000 in support in
Aalborg, Denmark.

7.3 Clustering
This section describes the results of running the differ-

ent clustering algorithms mentioned in Section 6 on differ-
ent Hot Paths. In total we have four different combina-
tions, k-means and DBSCAN without dimensionality reduc-
tion, and k-means and DBSCAN with dimensionality reduc-
tion through t-SNE. Furthermore, because there are numer-
ous different settings for the three algorithms (DBSCAN,
k-means, and t-SNE) we will be utilizing grid search [14] to
find the optimal settings.

7.3.1 Grid Search
Due to a lack of ground truth we utilize the clustering

scores described in Section 6.3. We choose the highest scor-
ing candidate for each cluster score, resulting in up to 4
candidates for each clustering method. From these candi-
dates the one with the overall best score is chosen as having

Figure 12: The two chosen Hot Paths for clustering evalua-
tion.

the optimal settings for this method and data.
In order to be able to compare results from k-means and

DBSCAN we would like to use the same embedding for both
clustering methods.

When choosing the optimal settings for DBSCAN we have
to consider that DBSCAN can identify points as outliers.
This is troublesome for our cluster scoring methods as these
only consider the points marked as clusters, meaning that
clusterings with large amounts of outliers can result in good
clustering scores, which is not optimal. As such we place a
user-defined restriction on the DBSCAN cluster results that
we want at most 25 % outliers in the resulting clusters. The
parameters being tuned in the grid search can be seen in
Table 5. It is worth mentioning that both the range and
increment are user-defined, and can be altered according
to the dataset or runtime requirements (larger ranges and
smaller increments results in a longer runtime).

Algorithm Setting Range Increment

DBSCAN ε 0.033 7.986 0.033

k-means Num clusters 2 10 1

t-SNE
Learning rate 4 24 1

Perplexity 20 32 1

Table 5: Parameters that are varied during the grid search.

7.3.2 Data for Clustering
We cluster on two different Hot Paths, one on the E45

motorway (Motorway Hot Path) and one found on Hobrovej
(City Hot Path), one of the larger city roads in Aalborg. The
Hot Paths can be seen in Figure 12. These two Hot Paths
have been chosen at random with the only constraint being
to represent two different road types and use, i.e. city road
and motorway.
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For the clustering experiments the context used on the Hot
Paths is from June to August, Wednesdays from 7 A.M. to
8:20 A.M. For simplicity the context for the experiments are
defined using the first arc of each path. This gives us 124
trips in total from 36 drivers for City Hot Path and 429 trips
in total from 90 drivers on Motorway Hot Path.

The data used is not normalized. The effect of normaliza-
tion is explored in Section 7.3.5.

7.3.3 Clustering Results
In this section we present the results of our clustering

methods.

k-means
The settings and runtime of the k-means algorithm for

City Hot Path and Motorway Hot Path can be seen in Table
6. The average values of the resulting clusters for City Hot
Path can be seen in Table 11 and the ones for Motorway
Hot Path can be seen in Table 14. We find that k-means is
very fast at creating clusters, making the method usable in
real time if optimal settings are known beforehand, e.g. if
an insurance company has a set number of premiums.

We see that the data for City Hot Path has 6 clusters
as compared to the 2 found on Motorway Hot Path, which
could indicate that there is a larger difference in driving style
when users drive on city roads compared to motorways.

Hot Path Clusters Iterations Runtime

City 6 500 37 ms

Motorway 2 500 39 ms

Table 6: Settings and runtime of the k-means algorithm.

DBSCAN
The settings and runtime of the DBSCAN algorithm for

Motorway Hot Path can be seen in Table 7. The average
values of each resulting cluster can be seen in Table 15.

A meaningful clustering for City Hot Path was not ob-
tainable by DBSCAN as the number of outliers were either
above 25 % or only one cluster was found.

We see that DBSCAN has a significantly higher runtime
than k-means, but still within a few seconds. The number of
clusters coincide with the number k-means have found, also
indicating that there are less variations in driving styles for
Motorway Hot Path.

Hot Path Clusters ε Min Samples Runtime

Motorway 2 7.029 5 1534 ms

Table 7: Settings and runtime of the DBSCAN algorithm
on data from Motorway Hot Path.

t-SNE
The settings found using grid search and the runtime of

the t-SNE algorithm for City Hot Path and Motorway Hot
Path can be seen in Table 8. Settings and runtime for k-
means and DBSCAN using t-SNE can be seen in Table 9 and
10 respectively. The result of clustering the two-dimensional
data generated by t-SNE can be seen in Figure 13 for City
Hot Path, and in Figure 14 for Motorway Hot Path. The

average values of each resulting cluster can be seen in Ta-
ble 12 and 13 for City Hot Path and Table 16 and 17 for
Motorway Hot Path.

We see that using t-SNE dimensionality reduction changes
the clusterings significantly. For City Hot Path we see that
using t-SNE with k-means the best clustering has 2 clusters
opposed to 6 clusters for the raw driver profiles. DBSCAN
on the other hand is now able to find a proper clustering for
8 clusters, which is in agreement with the number of clusters
found by k-means on the raw driver profiles.

For Motorway Hot Path we see that the number of clusters
found using k-means is 8 using t-SNE and only 2 using the
raw driver profiles. This is the reverse of what could be
concluded with just k-means.

DBSCAN, on the other hand, is in agreement with the re-
sults found using the raw driver profiles. We do see that an
additional small cluster has also been found, which could in-
dicate that t-SNE was able to more clearly reveal variations
in the driving styles.

Hot Path Perplexity Learn rate Runtime

City 32 15 1068 ms

Motorway 27 22 4126 ms

Table 8: Settings and runtime of the t-SNE algorithm.

Hot Path Clusters Iterations Runtime

City 2 500 21 ms

Motorway 8 500 55 ms

Table 9: Settings and runtime of the k-means algorithm
using t-SNE.

Hot Path Clusters ε Min samples Runtime

City 8 0.759 5 112 ms

Motorway 3 0.594 5 736 ms

Table 10: Settings and runtime of the DBSCAN algorithm
using t-SNE.

7.3.4 Evaluating Clusters
As we do not have a ground truth for the data, evaluating

the exact clusterings is not possible, however we can objec-
tively look at the data to try and assess the driving style of
each cluster.

City Hot Path
The results from k-means in Table 11 show 6 different clus-

ters, where 2 of them (cluster 0 and 3) consists of 90 % of the
driver profiles. Cluster 0 and 2 appear to be similar when
disregarding lateral acceleration. These clusters appear to
represent calm driving styles. Cluster 1, 3, 4, and 5 all seem
to have varying degrees of aggressive driving style. This is
also apparent in Figure 15, where we see each clusters dis-
tribution with regards to positive and negative acceleration.
In Section A similar plots regarding lateral acceleration and
jerk can be seen.

Looking at Figure 13a, showing the clustering on City Hot
Path using k-means and t-SNE, we can identify two distin-
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(a) k-means (b) DBSCAN

Figure 13: The t-SNE embedding from City Hot Path that
achieved highest cluster scores with k-means and DBSCAN
collectively.

(a) k-means (b) DBSCAN

Figure 14: The t-SNE embedding from Motorway Hot Path
that achieved highest cluster scores with k-means and DB-
SCAN collectively.

guishable clusters. Looking at the data for the clustering on
City Hot Path, seen in Table 12, we can easily classify the
two clusters as calm (cluster 0) and aggressive (cluster 1)
drivers. This correlates with what we saw when just using
k-means.

The t-SNE and DBSCAN clustering seen in Table 13 has
a total of 8 clusters. Cluster 1, which is the cluster in the
middle of Figure 13b, is the most average cluster, probably
due to its size and distance between elements. Cluster 0, 2,
4, and 5, which are all on the right side, have similar values
in jerk pos and jerk neg, somewhat in acc pos and lat acc pos,
but dissimilar on most of the others. This behavior coincides
with the calm driving style from the two earlier methods.
We also see that cluster 6 and 7 are quite similar on most
parameters, but differs on jerk and lateral acceleration. It is
clear that most of these clusters have their traits, however
they could be classified as being similar, e.g. cluster 3, 6,
and 7, belonging to an “aggressive” cluster due to their high
lateral acceleration and wobbling. Even though there are
more clusters when using t-SNE and DBSCAN, they are not
conflicting with the other methods. The resulting clusters
are simply more specific in their individual traits, but their
general similarity remains.

Motorway Hot Path
The results for both k-means and DBSCAN, seen in Table

14 and 15 respectively, show an agreement on number of
clusters, their sizes, and the driving style for each cluster.
Even though cluster 0 have more than 95 % of all driver
profiles in both cases we see that it has a more calm driving
style compared to the total average on all parameters. How
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Figure 15: City Hot Path acceleration using k-means.
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Figure 16: Motorway Hot Path jerk using DBSCAN.

the driving styles for jerk are distributed for DBSCAN can
be seen in Figure 16. The clustering using k-means and
DBSCAN with t-SNE are similar, the distributions for these
can be seen in Section A, Figure 19 and 20.

The result for t-SNE and k-means seen in Table 16 is sim-
ilar to the result we saw in City Hot Path with t-SNE and
DBSCAN where additional clusters display more specific in-
dividual traits of each cluster, but they seem to capture the
same general driving styles.

Looking at the data from t-SNE and DBSCAN in Table
17 and the visual representation of the data in Figure 14b,
it is clear to see that DBSCAN have captured the 3 distinct
groups in the data. We also see that the clusterings found
by DBSCAN with t-SNE quite closely resembles the cluster-
ings found by k-means and DBSCAN without using t-SNE.
We see that they all share a small cluster of drivers with ag-
gressive driving style, but the one calm cluster found in the
raw driver profiles have been split in two by DBSCAN when
using t-SNE. The data indicates that this split is meaningful
as we see a clear distinction in the values for wobble as well
as all counted values being high in cluster 0 and low in clus-
ter 1, while the acceleration and jerk are more similar for
both clusters, which could explain why they were clustered
as one using the raw driver profiles.
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Scoring
Now that we have generated clusters it is time to look at

how they score. We do this by using the four techniques
mentioned in Section 6.3, namely Calinski and Harabasz,
Davies-Bouldin, Dunn, and Silhouette. The results can be
seen in Table 18 for City Hot Path and in Table 19 for Mo-
torway Hot Path.

Method
Calinski

&
Harabasz

Davies-
Bouldin

Dunn Silhouette

k-means 59.54862 0.85230 0.10201 0.37630

t-SNE &
k-means

43.51493 1.35514 0.04446 0.36231

t-SNE &
DBSCAN

49.01549 1.09186 0.07955 0.22681

Table 18: Cluster scoring of the different clusters generated
on City Hot Path.

Method
Calinski

&
Harabasz

Davies-
Bouldin

Dunn Silhouette

k-means 834.31867 0.50499 0.03941 0.84654

DBSCAN 113.73104 0.26856 0.16922 0.69897

t-SNE &
k-means

39.91432 1.40050 0.00088 0.15925

t-SNE &
DBSCAN

552.18193 0.69665 0.00666 0.47580

Table 19: Cluster scoring of the different clusters generated
on Motorway Hot Path.

7.3.5 Adjusting the Dataset
The data used for both City Hot Path and Motorway Hot

Path has up until this point been used “as-is”, therefore we
will now look into what normalization does to it as well as
determine what effect the derived data we added does.

Normalization
Normalization has an affect on the data, such that a single

dimension is less likely to dominate the entire driver profile.
Therefore we ran the clustering with normalization, and in-
terestingly enough found that the two Hot Paths reacted
differently to the two methods described in Section 5.2.1.
City Hot Path achieved best results with Z-score and Mo-
torway Hot Path achieved it with Min-Max. The results can
be seen in Table 20 and 21, respectively.

From this we can see that for our dataset the normaliza-
tion is somewhat hit-and-miss. In our opinion this is because
some of the parameters we have used are somewhat similar
in scale to normalized data. Of course this may just be a
lucky coincidence. For other parameters normalization re-
moves an important difference in scale.

Furthermore we see that the Dunn-index scoring achieves
remarkable results from normalization. As described in Sec-
tion 6.3.3, the Dunn-index prefers compact clusters with
great distance to other clusters, which means that normal-
ization distributes the data in a way where our clustering
methods can better create compact and separated clusters.

Derived Data
Before clustering we added two derived values for each

data entry, wobble and lateral acceleration. As this is op-
tional data we added on top of the existing data we would
like to evaluate whether the clustering actually benefits from
this extra data. The cluster scorings from running the clus-
tering without the derived data can be seen in Table 22 for
City Hot Path and Table 23 for Motorway Hot Path.

Similar to what we saw with normalization, the cluster
scorings with the dataset without derived data displays
worse scores for some methods, and improvements for oth-
ers. Namely k-means for City Hot Path, and k-means with
t-SNE for Motorway Hot Path shows better results without
derived data.

Overall it is clear to see the derived data has a positive
impact for the cluster scoring.

8. CONCLUSION
We present an effective, efficient, and highly flexible

framework to generate Hot Paths using a novel variant of
the Apriori algorithm and fairly group and evaluate driv-
ing styles based on GPS data. Our Apriori variant clearly
outperforms the tested alternatives.

Using the data found on Hot Paths the framework is able
to group driving styles using k-means and DBSCAN in an
optional combination with the t-SNE dimensionality reduc-
tion method. We found that the framework finds meaningful
clusters showing differences in groups of drivers, such as ag-
gressive and calm driving behavior. We have also shown
that these results can be obtained in near-realtime, which is
beneficial for end-users experimenting with the clustering.

The framework can also be used for analyzing road net-
works, as we found that the generated Hot Paths tend to
capture the general flow and behavior of drivers in a road
network, making them more apparent.

9. FUTURE WORK
In this section we discuss further work that could have

improved our framework.

9.1 Classification
For future work it would be interesting to obtain labeled

data from an insurance company, having such data would en-
able us to better evaluate the effectiveness of our framework
while also enabling us to benefit from supervised learning in
our implementations. Another interesting aspect for future
work would be to use more advanced classification meth-
ods such as neural networks and Support Vector Machines.
These methods would also benefit greatly from having la-
beled data available.

9.2 Normalization
As indicated in Section 7.3.5 the clustering methods is

likely to benefit from the ability to supply weights to nor-
malized data. It could be interesting to explore the effect
of such weights. Weighting could also be an interesting fea-
ture for a domain expert who has a better understanding
of the importance of each feature with regards to a specific
domain, e.g. insurance company or fleet owner.
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Method
Calinski &

Harabasz
Diff. Davies-Bouldin Diff. Dunn Diff. Silhouette Diff.

k-means 48.32880 81.16 % 0.85381 100.18 % 0.44439 435.63 % 0.70538 187.45 %

t-SNE &
k-means

30.62817 70.39 % 1.70986 126.18 % 0.05940 133.61 % 0.29204 80.61 %

t-SNE &
DBSCAN

39.64217 80.88 % 1.13758 104.19 % 0.31714 398.69 % 0.64021 282.27 %

Table 20: Cluster scoring of the different clusters generated with Z-score normalized data on City Hot Path. The percentage
is compared to the scores in Table 18.

Method
Calinski &

Harabasz
Diff. Davies-Bouldin Diff. Dunn Diff. Silhouette Diff.

k-means 204.91672 24.56 % 1.29118 255.69 % 0.05687 144.31 % 0.33022 39.01 %

t-SNE &
k-means

136.07694 340.92 % 1.25603 89.68 % 0.06020 6849.64 % 0.22811 143.24 %

t-SNE &
DBSCAN

147.63848 26.74 % 1.16499 167.23 % 0.06020 904.51 % 0.22358 46.99 %

Table 21: Cluster scoring of the different clusters generated with Min-Max normalized data on Motorway Hot Path. The
percentage is compared to the scores in Table 19.

Method
Calinski &

Harabasz
Diff. Davies-Bouldin Diff. Dunn Diff. Silhouette Diff.

k-means 90.66014 152.25 % 0.51752 60.72 % 0.54051 529.86 % 0.79055 210.08 %

t-SNE &
k-means

34.92149 80.25 % 1.37833 101.71 % 0 0 % 0.320353 88.42 %

t-SNE &
DBSCAN

59.94259 122.29 % 1.09237 100.05 % 0 0 % 0.35958 158.54 %

Table 22: Cluster scorings from running clustering on City Hot Path dataset without derived data. The difference is compared
to the scores in Table 18.

Method
Calinski &

Harabasz
Diff. Davies-Bouldin Diff. Dunn Diff. Silhouette Diff.

k-means 440.69200 52.82 % 0.85892 170.09 % 0.03406 86.42 % 0.47093 55.63 %

DBSCAN 28.96980 25.47 % 0.54180 201.74 % 0.23784 140.55 % 0.45395 64.95 %

t-SNE &
k-means

151.09089 143.68 % 1.78830 155.66 % 0.01275 3036.94 % 0.20416 186.36 %

t-SNE &
DBSCAN

405.42261 73.42 % 0.74813 107.39 % 0.07839 1177.79 % 0.43428 91.27 %

Table 23: Cluster scorings from running clustering on Motorway Hot Path dataset without derived data. The difference is
compared to the scores in Table 19.
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A. CLUSTERING BOX PLOTS
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Figure 17: City Hot Path jerk using k-means with t-SNE.
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Figure 18: City Hot Path lateral acceleration using DBSCAN with t-SNE.
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(a) Jerk positive.
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(b) Jerk negative.

Figure 19: Motorway Hot Path jerk using DBSCAN.
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(a) Jerk positive.
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(b) Jerk negative.

Figure 20: Motorway Hot Path jerk using DBSCAN with t-SNE.
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