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Preface

This thesis was made as a completion of the Sound and Music Computing mas-
ter’s programme at Aalborg University. It describes a Virtual Analog simulation
and extensions of plate reverberation and the process leading up to the result. The
project has been done in collaboration with the French hard- and software develop-
ing company Arturia and was supervised by Stefania Serafin and Jesper Rindom
Jensen at Aalborg University.

The topic of Virtual Analog simulations has much intrigued me since the semester
leading up to this project. It uses current day technology to simulate classical ef-
fects that many musicians still love nowadays. Additionally, the simulations make
it possible for otherwise fixed parameters to be changed, creating sounds never
heard before. To me, this fusion of classical and modern in a musical context is
something truly amazing and has motivated me greatly during this project.

This report is structured as follows: Chapter 1 gives an introduction on the topics
of Virtual Analog simulations and plate reverberation. Also, the goals that were
set for this project will be stated. Chapter 2 then gives an overview of the physics
of a thin metal plate. This needs to be understood in order to reach the afore-
mentioned goals. Chapter 3 describes the state of the art of both implementation
approaches as well as plugins in digital plate reverberation after which Chapter
4 compares these different approaches by describing experiments that have been
done based on these. At the end of this chapter, the approaches are compared and
the most suitable one is chosen to be used for this project. Chapter 5 describes
an algorithm created based on the chosen implementation approach and includes
extensions that have not yet been achieved by the current state of the art. Chapter
6 presents a real-time plugin based on this algorithm. Then, Chapter 7 presents an
evaluation on both the output sound of the implementation as well as the plugin.
Chapter 8 discusses the audible results of the implementation. Lastly, Chapter 9
concludes and presents possible future work.

Throughout the course of this project I have published a paper at the 14th Sound

ix
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and Music Computing Conference [1]. This paper can be found in Appendix A. First
of all, I would like to thank Stefania Serafin and Jesper Rindom Jensen for super-
vising me during the course of this project and putting in a lot of time to read
through both this report and the published conference paper. Secondly, I would
like to thank Stefano d’Angelo for being Arturias contact person and guiding me
through the first phases of the project.

Aalborg University, May 21, 2017

Silvin Willemsen
<swille15@student.aau.dk>



Chapter 1

Introduction

A great number of digital audio effects is currently available to musicians and
producers. Many sounds we could not even imagine a few years ago we can now
create using current DSP technology. However, despite this immense amount of
options, there is still a great desire for the sound of the classical analog effects that
made their first appearance in the late 40s and characterised music from the 50s
and 60s onwards.

1.1 Virtual Analog

Even though, generally, ’regular’ digital (later referred to as digital) sound effects
’do the job’, they do not have the ’feel’ that the old analog effects had – something
greatly desired by many musicians. Contrary to digital effect simulations, Virtual
Analog (VA) simulations rely on a model of the analog effect they are simulating
[2]. A great advantage of VA simulations over the original systems is that they do
not age and thus do not require time consuming maintenance. Also, when dig-
italised they are easily accessible, mostly simpler to use and can be made much
cheaper than their analog counterparts. Naturally, the sound of a used analog au-
dio effect can have its charm, but if desired, this can be modelled into the simula-
tion. Also, VA simulations make it possible for parameters like room size, material
properties, etc. to be changed, which is physically impossible or very hard to do.
This can result in unique sounds that can only be created using VA simulations.

1.2 Plate Reverberation

Analog audio effects have been around for almost a century. They especially flour-
ished in the 50s and 60s as new techniques of manipulating audio signals were
developed [3]. A popular reverberation technique at the time was plate reverbera-
tion. A plate reverb utilises a small speaker (actuator) attached to a big steel plate

1



2 Chapter 1. Introduction

to make it vibrate, and several pickups to pick up the sound after it has propa-
gated through the plate (see Figure 1.1). Several different plate reverbs made it to
the market, the most popular being the Elektro-Mess-Technik’s EMT140 used in the
Abbey Road Studios and undoubtedly leaving a mark on music in the aforemen-
tioned years. In fact, it was the only reverb used on Pink Floyd’s Dark Side of the
Moon [4].

Figure 1.1: "An original hardware Plate Reverb." (Source and caption: [5])

1.3 Project Goals

A big issue of using an actual plate reverb is the sheer size and weight of it. The
plate is about 2×1 m big and weighs (together with the rest of the installation)
roughly 270 kg [6], hence, a digital implementation of it would be desirable. How-
ever, in order to sound as close to the physical plate reverb as possible, the imple-
mentation should be a simulation of the real thing: a VA simulation. As digital
and VA implementations of plate reverberation already exist, research needs to
be done on which implementations approaches exist and which one has the best
speed versus quality tradeoff. The first goal of this project is therefore:

To find the implementation approach with the best speed versus quality tradeoff for a VA
simulation of Plate Reverberation.

Currently available VA plugins (as will be described in Chapter 3) do not use the
full potential of VA simulations. As said above, VA simulations make it possible to
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manipulate parameters that are physically impossible to change. Parameters like,
for instance, pickup positions and sheet-size can be made dynamic, i.e., changed
while sound is going through the plate. Hence, the second goal of this project is:

To explore the possibilities that VA simulations pose on Plate Reverberation and extend on
already existing models accordingly.

Lastly, to apply this all, the model and extensions to it must be implemented. This
should be made real-time if possible. The last goal of this project is thus:

To create a (preferably) real-time VA simulation of Plate Reverberation.





Chapter 2

Plate Physics

VA simulations rely on a model of the effect they are simulating. In order to create
a simulation for plate reverberation, the physics of it first needs to be understood.
This chapter describes the physics of plate reverberation. First, the Kirchhoff-Love
model, one that mathematically describes vibration in thin metal plates, will be
explained. Thereafter, different aspects of plate reverberation will be explored, in-
cluding frequency dispersion, different kinds of damping mechanisms and bound-
ary conditions.

2.1 Kirchhoff-Love Model

The Kirchhoff-Love model mathematically describes stresses and deformations in
thin plates subjected to external forces. The partial differential equation for an
isotropic plate (including damping) is [7]:

∂2u
∂t2 = −κ2∇4u− c

∂u
∂t

+ f (xin, yin, t). (2.1)

Here, u = u(x, y, t), a state variable that describes the transverse plate deflection
and is defined for x ∈ [0, Lx], y ∈ [0, Ly] – where Lx and Ly are the horizontal
and vertical plate dimensions, respectively – and t ≥ 0, c is a loss parameter, ∇4

is the biharmonic operator, f (xin, yin, t) is the input signal at input source loca-
tion (xin, yin) at time instance t and finally, κ2 can be referred to as the stiffness
parameter:

κ2 =
Eh2

12ρ(1− ν2)
, (2.2)

where E, h, ρ, and ν are the Young’s modulus, plate thickness, plate density and
Poisson’s ratio, respectively.

Note: the third (z) dimension of the plate can be ignored as the Kirchhoff-Love model
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6 Chapter 2. Plate Physics

assumes this dimension to be "much smaller than the other two" [8].

Equation (2.1) can be seen analogous to a mass-spring-damper system written
as the solution to the acceleration of u over x and y. In the first term, κ2 can
be seen as a spring constant and therefore has a negative, restoring effect on the
acceleration. It also makes sense that, for instance, if the plate is thicker – which
increases the value of κ2 – there will be a bigger restoring force.

The biharmonic operator is defined as:

∇4 =
∂4

∂x4 + 2
∂4

∂x2∂y2 +
∂4

∂y4 ,

and can be multiplied onto a variable with two spatial dimensions, in this case the
state variable u. The higher the resulting value of this at a certain point of the plate,
the higher the restoring force at that point will be.

The second term of the equation can be seen as a damper and therefore has a
negative effect on the acceleration as well. The bigger the loss parameter c or the
velocity of u at a certain point, the bigger the negative effect on the acceleration at
that point will be.

The last term is the input at a specified location. It makes sense that this is the
only positive term, as it is the only term that adds energy to the system.

2.2 Frequency Dispersion

One feature that characterises the sound of a plate reverb is the fact that higher
frequencies propagate faster through a metal plate than lower frequencies [7, 9].
This phenomenon is called frequency dispersion. The dispersion relation is defined
as:

ω2 ' γ4κ2, (2.3)

where ω is the angular frequency and γ the wavenumber. The group and phase
velocities are defined as:

cph =
√

κω cgr = 2
√

κω. (2.4)

Using the properties of the EMT140 (steel, 0.5 mm thick) and a frequency range
of 20-20,000 kHz, group velocities can vary between ca. 20-620 m/s. In regular
(or room) reverberation all frequencies travel at the same speed making frequency
dispersion one of the main differences between plate and room reverberation.

2.3 Damping

In [7] and [9], the authors state that in plate reverbs, three different kinds of damp-
ing occur: thermoelastic damping, radiation damping and damping induced by a
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porous medium. All three will be shortly described in this section.

Thermoelastic Damping

Thermoelastic damping occurs in materials with a high thermal conductivity. It
is an internal damping mechanism that damps different frequencies at different
strengths according to the following formula [9]:

αth(ω) =
ω

2
η(ω) ≈ ω2R1C1

2(ω2h2 + C2
1/h2)

, (2.5)

where R1 and C1 are terms that contain material dependent constants. In the case
of the EMT140 plate reverb these are [7]:

R1 = 4.94 · 10−3 C1 = 2.98 · 10−4 rad m2/s.

A graph showing the thermoelastic damping for the EMT140 plate can be seen in
Figure 2.1:

Figure 2.1: "Thermoelastic damping for the EMT140 plate. (...)" (Source image and caption: [9])

Radiation damping

Radiation damping happens when vibration is converted to acoustic energy. This
happens according to the following formula [7, 9]:

αrad =
1

4π2
caρa

ρh
2(Lx + Ly)

LxLy

ca

fc
g(ψ), (2.6)
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g(ψ) =
(1− ψ2) ln[(1 + ψ)/(1− ψ)] + 2ψ

(1− ψ2)3/2 , where ψ =

√
f
fc

Here, ρa and ca are the density of air and speed of sound in air respectively and fc

is the critical frequency which can be calculated using:

fc =
c2

a
2πκ

.

A graph showing the predicted radiation damping can be seen in Figure 2.2:

Figure 2.2: Predicted radiation damping using EMT140 properties.

Damping induced by Porous Medium

Plate reverberators contain a porous plate positioned behind the metal plate. The
distance between the two entities can be set creating a difference in low-frequency
decay [7, 9]. The damping plate position changes this decay between roughly 0.6 –
5.5 seconds [10] and can be manipulated on the interface of a real plate reverb like
the EMT140.

A graph showing the damping induced by a porous medium can be seen in
Figure 2.3.



2.4. Boundary Conditions 9

Figure 2.3: "Damping factor induced by the porous plate computed with Cummings model for
different distances between the plates: d = 65.8 mm (dotted); 17.3 mm (dash-dotted), 13.2 mm
(dashed); 11.0 mm (solid)." (Source image and caption: [9])

2.4 Boundary Conditions

The state of the edges of a plate are referred to as the boundary conditions. The
authors state in [11] that a plate can have three different boundary conditions: free,
clamped or simply supported (hinged). Every combination will have a unique
impulse response and will thus sound different. This report will use the case
where all sides are simply supported as this is the case with a plate reverb. This
means that, recalling eq. (2.1), state variable u = 0 at x = 0, x = Lx, y = 0 and
y = Ly.





Chapter 3

State Of The Art

This chapter is divided into two sections. First, the state of the art (SOTA) regarding
digital implementation approaches is described, then the SOTA regarding digital
and VA plate reverb plugins is described.

3.1 Implementation Approaches

3.1.1 Convolution Reverb

Convolution reverbs use the impulse response of, for instance, a room and convolve
this with an input signal to get a reverberated output. In order to get a convolution
plate reverb, the impulse response of an actual plate reverb needs to be recorded.
Depending on the length of the impulse response, the computational power needed
can vary a lot. Impulse responses of several seconds for example make for a very
computationally intensive and inefficient implementation [12].

The advantage of using convolution for digital plate reverberation is that the
audio output very closely resembles the audio output from the actual plate reverb.
However, there is not a lot of flexibility in this implementation as the impulse
response is recorded and hence static. All parameters, including plate properties,
pickup positions and speaker positions are fixed.

3.1.2 Feedback Delay Networks

As devised by Jean-Marc Jot in [13] and used as an implementation approach for
creating a digital plate reverb by Jonathan Abel in [10], Feedback Delay Networks
(FDNs) are one way of digitally modelling a plate reverb. FDN structures are a nice
solution to the digital reverberation problem. They can be represented as a set of
digital delay lines whose inputs and outputs are connected by a feedback matrix
[14] (see Figure 3.1). FDNs provide an way to efficiently parameterise dynamic
control of the reverberators and can thus be a VA solution to the problem.

11



12 Chapter 3. State Of The Art

Figure 3.1: "Basic Feedback Delay Network." (Source image and caption: [14])

In his implementation, Abel uses a hybrid reverberator structure that is a com-
bination of a convolutional impulse response c(t) and an FDN reverberator depen-
dent on damper setting θ with impulse response d(t; θ) running in parallel. This
creates impulse response h(t; θ) being:

h(t; θ) = c(t) + d(t; θ). (3.1)

An example of this, visualised using waveforms, can also be seen in Figure 3.2:

Figure 3.2: "Example Hybrid Structure Responses. From top to bottom: FDN d(t); windowed con-
volution c(t); complete hybrid response y(t); measured response h(t)." (Source image and caption:
[10])
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3.1.3 Finite-Difference Schemes

Finite-difference schemes are used for solving differential equations (such as the
Kirchhoff-Love model) by approximating them with difference equations. In [9],
Arcas says that finite-difference schemes can be used to verify physical models.
What these schemes basically do, is to subdivide a large problem or model into
smaller parts. In the case of a plate reverb it subdivides the plate into a grid
where for plate state u(x, y, t): x = lX, y = mX and t = nT for l = 0, 1, ..., Lx

X , m =

0, 1, ..., Ly
X and n ∈N0. Here X is the spacing between adjacent points and T = 1/ fs

is the time step. Naturally, the smaller spacing X and the higher sample rate fs,
the more detailed the approximation.

An implementation using finite-difference schemes is shown in [15]. Solving
the formula for simply supported boundary conditions gives:

(1 + σT)un+1
l,m =2un

l,m − (1− σT)un−1
l,m − µ2

(
un

l+2,m + un
l−2,m + un

l,m+2 + un
l,m−2

)

− 2µ2
(

un
l+1,m+1 + un

l+1,m−1 + un
l−1,m+1 + un

l−1,m−1

)

+ 8µ2
(

un
l+1,m + un

l−1,m + un
l,m+1 + un

l,m−1

)
− 20µ2un

l,m

+
T2

ρHX2 δli ,mi f n. (3.2)

where σ ≥ 0 is a loss parameter and µ = κT/X2 ≤ 1/4 for stability. In the above
equation, the state u at position (l, m) at the next time instance is computed using
multiple points on the grid at and around (l, m) at the current time instance, one
point at (l, m) at the previous time instance and the input signal at point (li, mi).

As can be seen in [16] the use of finite-difference schemes is very computation-
ally demanding. With their implementation and a gridsize of 26×34 it took 22.6
seconds to output 1 second of sound at a sample rate of 44,100 Hz.

3.1.4 Modal Description

The state u, as seen in the Kirchhoff-Love equation (2.1) can be modelled as being
a summation of a number of different modes [17]:

u =
M

∑
m=1

N

∑
n=1

qmnΦmn(x, y), (3.3)

where qmn is the unknown ’amplitude’ of mode (m, n) (m being the mode over
the horizontal axis and n over the vertical axis of the plate) and Φmn(x, y) is a
modal shape defined over x ∈ [0, Lx] and y ∈ [0, Ly]. Apart from the chosen time
step (1/ fs) the computational speed depends on the number of modes (M and N)
being calculated instead of the gridsize as described in the previous section. In
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theory, the number of modes are infinite, but as can be seen in further on in this
section, there exists a stability condition that limits this amount.

For a rectangular plate with sides Lx and Ly, using simply supported boundary
conditions, Φmn(x, y) be calculated [17]:

Φmn(x, y) =
4

LxLy
sin

mπx
Lx

sin
nπy
Ly

, (m, n) ∈ Z+. (3.4)

With eq. 3.3 substituted into eq. 2.1 and the derivative operators then substituted
with difference operators:

∂2qmn

∂t2 ⇒ 1
k2

[
qt+1

mn − 2qt
mn + qt−1

mn

]
,

∂qmn

∂t
⇒ 1

2k

[
qt+1

mn − qt−1
mn

]
,

qmn can be found using the following update equation [17]:
(

1
k2 +

cmn

ρhk

)
qt+1

mn =

(
2
k2 −ω2

mn

)
qt

mn +

(
cmn

ρhk
− 1

k2

)
qt−1

mn +
Φmn(xp, yp)

ρh
Pt, (3.5)

where Pt is the input signal at time instance t at specified input location (xp, yp), k
is the chosen time step 1/ fs and cmn is a loss coefficient that can be set per mode.
This gives a lot of control over the frequency content of the output sound. The
solution to both the loss coefficients and the eigenfrequencies ωmn can be found in
Chapter 5.

The output can be retrieved at a specified point by multiplying the qmn that was
found in eq. (3.5) with a specified output point in Φmn [17]:

uout =
M

∑
m=1

N

∑
n=1

qmnΦmn(xout, yout). (3.6)

Resonator Filters

The total system described above can also be seen as an addition of many frequency
dependent filters. If in eq. (3.5) we let:

Amn =
1
k2 +

cmn

ρhk
, Bmn =

2
k2 −ω2

mn, Cmn =
cmn

ρhk
− 1

k2 ,

Φmn(xp, yp) = Φinmn , Φmn(xout, yout) = Φoutmn ,

the transfer function of the total filter will be:

H(z) =
M

∑
m=1

N

∑
n=1

Φinmn ·Φoutmn
ρh z−1

Amn + Bmnz−1 + Cmnz−2 . (3.7)
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If we normalise with respect to Amn, the transfer function will look like this:

H(z) =
M

∑
m=1

N

∑
n=1

Φinmn ·Φoutmn
ρhAmn

z−1

1 + Bmn
Amn

z−1 + Cmn
Amn

z−2
. (3.8)

A block diagram representation of the system can be seen in Figure 3.3:

Figure 3.3: Block diagram representation of the update equation for all modes.

Essentially H(z) is a collection of resonator filters that individually filter the
signal according to the eigenfrequency of mode (m, n) and are added together in
the end. The transfer function of a resonator filter (in general form) is [18]:

Hres(z) =
G

1 + a1z−1 + a2z−2 , (3.9)

where G is the gain of the filter and:

a1 = −2R cos(ω0) and a2 = R2.
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Here, 0 < R < 1 (for stability of the filter) and ω0 is the resonant frequency (i.e., the
location of the peak). In the range ∞ < ω0 < ∞ it can be shown that the following
condition should hold:

− 2 < a1 < 2. (3.10)

If this is not true, R must be bigger than 1 making the filter unstable. The above
condition can thus be regarded as a stability condition for the filter.

If we compare eqs. (3.8) and (3.9), we can see that:

Gmn =
Φinmn ·Φoutmn

ρhAmn
z−1, a1 = − Bmn

Amn
, a2 = − Cmn

Amn
.

Notes: Bmn
Amn

and Cmn
Bmn

are on the right side of the update equation, so their sign must be
inverted. Moreover, Gmn is multiplied by z−1 which is not the case in the general transfer
function. This does not change the frequency response of the filter, it merely applies a phase
shift on the output signal.

From this, it be seen that the gain Gmn of each individual filter greatly depends
on the input and output positions on the plate. If we look at Cmn and Amn we find
that their terms 1

k2 are a lot bigger than cmn
ρhk making the latter a lot less influential

for the general equation than the former. It can be found that for all modes:

−C
A

. −1 ⇒ R =

√
C
A

& 1.

Also, − B
A can be substituted in condition (3.10) resulting in:

−2 < − B
A
< 2.

Filling in B and A, getting rid of the minus sign (as this will not change anything
to the condition) and replacing 1

k2 with f 2
s we get:

−2 <
2 f 2

s −ω2

f 2
s + c

ρhk
< 2.

As said before, the factor c
ρhk does not influence the equation much. Ignoring this

term results in:

−2 < 2− ω2

f 2
s
< 2.

If we assume the eigenfrequencies ω to be real valued, the second term in the
equation will always be negative. If we also assume ω to be non-zero, the equation
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will always result in a value lower than 2. This means that only following condition
is left:

2− ω2

f 2
s
> −2,

−ω2 > −4 f 2
s ,

ω < 2 fs. (3.11)

Equation (3.11) can be seen as the stability condition for the algorithm. (Also seen
in [17])

3.2 Plugins

In this section, the SOTA regarding digital/VA plugins is described. Most plugins
described could be downloaded and were informally evaluated (by the author)
using Digital Audio Workstation Garageband [19].

3.2.1 Abbey Road Reverb Plates Plugin

In 2016, Audio Plugin company Waves introduced the Abbey Road Reverb Plates
plugin which models the plate reverbs from the Abbey Road studios (see Figure
3.4) [20]. The Graphical User Interface (GUI) allows for the user to adjust the
following parameters:

• Damper amount (0-10)

• Plate type (4 different kinds)

• Input/Output level (-Inf – 18 dB)

• Treble amount (-20 – +20 dB)

• Bass Cut (0 – 4)

• Predelay (0–500 ms)

• Dry/Wet (%)

• Drive (%)

• Analog (%)
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Figure 3.4: Abbey Road Plate Reverb plugin.

Evaluation

A trial version of the plugin could freely be downloaded from the Waves audio
website. This evaluation is based on that.

The GUI works really well and nice sounds can be created with it. Unfor-
tunately the only plate properties available are the ones derived from the plate
reverbs used at the Abbey Road Studios making it not possible to change param-
eters like plate size and positioning of the input speaker and pickups. Of course,
this is what needed to be achieved with this plugin, yet it decreases freedom which
can be achieved using a VA implementation approach.

3.2.2 U-audio EMT140 Plugin

In 2010, Universal Audio introduced the EMT140 Classic Plate Reverberator Plug-
In (see Figure 3.5) [21]. It is a convolution reverb [22] and the parameters that can
be changed are:

• Input Filter

• Plate type (3 different kinds)

• Reverberation time (0–5.5 sec)
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• More equalising and panning settings.

Figure 3.5: U-audio EMT140 plugin.

Evaluation

Although, no trial version could be found of this plugin, a demo video [4] could
be used to evaluate the product.

In the video, the functionality of the plate reverb plugin is shown. Just as with
the Waves Abbey Road plugin the freedom of plate properties is limited. In this
plugin it is limited to three different plates formerly found at studio ’The Plant’ in
Sausalito, CA [4]. Also, in the opinion of the author, the difference between the
dry signal and the signal after processing does not change that much. This could
be due to the choice of sound in the video, which already contained some reverb
if heard correctly.

The looks of the GUI have been chosen to match the original interface of the
EMT140 which is a nice addition to the plugin.

3.2.3 PA1 Dynamic Plate Reverb

A very interesting solution found is the PA1 Dynamic Plate Reverb plugin made by
Craig Webb (see Figure 3.6) [23]. It uses the Kirchhoff-Love equation to calculate
the plate’s modes of vibration and subsequently use that to calculate output at a
given position from an input at another given position. Essentially, it adopts the
modal description explained in Section 3.1.4, making it a VA plugin. With this
plugin it is possible to change the following parameters:

• Material (Steel, Gold, Silver, Titanium, Aluminium)

• Plate size: changed by dragging the top-right corner (1.50×1.00 m – 3.00×2.00
m)

• Stereo pickup positions (anywhere on the plate)

• Tension of the plate (0 – 2000 N)
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• Plate gain (0.5 – 2.0)

• Move input: which will move the input across the plate at a certain speed
creating a flanging/vibrato effect (0–7 m/s)

• Stereo width (%)

• Pre-delay (2–200 ms)

• Dry/Wet (%)

• Frequency dependent decay of 8 different octave bands: changed by dragging
dots resembling different bands (62.5, 125, 250, 500, 1000, 2000, 4000 and 8000
Hz) up and down (0.3–10 sec).

Figure 3.6: PA1 Dynamic Plate Reverb plugin.

Evaluation

A beta version of the plugin could be downloaded for free. This evaluation is based
on that.

This plugin has a large set of possibilities and sounds natural. The interface
is clear and being able to visually change the pickup positions and the size of the
plate is a nice touch to the plugin. Especially interesting are the parameters that
are hard/impossible to change in a physical plate reverb. These are material, plate
size, movement of the input, pickup position, tension of the plate and frequency
dependent decay.

3.2.4 ValhallaPlate

In 2015, ValhallaDSP made a plugin called ValhallaPlate (see Figure 3.7) [24]. The
parameters that could be changed by the plugin are:
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• Mix (%)

• Predelay (0–500 ms)

• Decay (0.5–30 s)

• Size (0–200%)

• Width (0–200%)

• Equalisation settings

• Modulation rate (0.05–5Hz)

• Modulation depth (%)

• Mode (Option to change the material: Chrome, Steel, Cobalt, Brass, Alu-
minum, Copper, Unobtanium, Adamantium, Titanium, Osmium, Radium
and Lithium)

• Presets

Figure 3.7: ValhallaPlate plugin.

Evaluation

A trial version of the plugin could freely be downloaded from the ValhallaDSP
audio website. This evaluation is based on that.

ValhallaPlate is a very nice sounding reverb. It is a visually minimalistic and
easy to use plugin but sounds very powerful. As the website states, it is based on
the physical principles of plates (probably making it another VA solution). Also,
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the amount of materials that can be chosen are high. Another great power of the
ValhallaPlate is the abundance of presets to which the user can also add their own
creations.

3.2.5 CSR Plate Reverb

In 2011, IK Multimedia released a plugin called the CSR Plate Reverb (see Figure
3.8) [25]. The plugin is divided into an easy and an advanced panel where the former
is a boiled down version of the latter. The parameters that could be changed in the
easy-panel are:

• Mix (%)

• Diffusion (%)

• Reverb Time (0.105 – 23.56 s)

• Low Time (0.2–4.0x)

• High Frequency cutoff (20–20,000 Hz)

• High Frequency Damping (0.0–24.0dB (HICUT))

• Equalisation settings

• Modulation rate (0.05–5 Hz)

• Modulation depth (%)

The advanced panel is divided into parameters regarding the following topics (and
their parameters):

• Input/Output (In Level, Out Level, Mix, In Image, Out Image)

• Time (Reverb time, Low time, Crossover, High Frequency Cutoff, High Fre-
quency Damping Pre Delay)

• Reverb (Size, Diffusion, Buildup Disperse Modulation)

• Color (Low Cutoff Frequency, Low Cutoff Gain, High Cutoff Frequency, High
Cutoff Gain)

• Reflections (Time Left, Level Left, Time Right, Level Right)

• Echo (Time Left, Feed Left, Time Right, Feed Right)
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Lastly, there is a MOD-panel where LFOs and even envelopes can be applied to
specific parameters.

Figure 3.8: CSR Plate Reverb plugin.

Evaluation

A trial version of the plugin could freely be downloaded from the IK Multimedia
audio website. This evaluation is based on that.

The power of the CSR Plate Reverb plugin is the large number of possibilities.
The user can fine-tune the plate reverb exactly the way they want to and even apply
LFOs and envelopes to the different effects. If the user is not an expert in this field,
the easy-panel makes simple parameter tweaking possible.

Despite the possibilities, he reverb itself does not sound really natural. There
are also no possibilities for changing the material or direct size of the plate (prob-
ably making this a convolution reverb).

3.2.6 Discussion Plugins

Considering all the above, the PA1 Dynamic Plate Reverb was found most interest-
ing plugin. It was the most natural sounding and closer to a VA implementation
than the others. It has been concluded that an implementation solution for this
project would – in a certain sense – extend upon this plugin.

Even though the plugin is a perfect example of an already existing VA solution
to the problem, not all possibilities that VA simulations pose on plate reverberation
have been exploited. In the PA1 plugin, one can change the plate dimensions, but
this does not affect the sound real-time in any way. When the program changes to
the new dimensions, it can even be heard in the output sound. What the plugin
does contain is the possibility to move the input source horizontally with a speed
that the user can set. It does not, however, include moving outputs, let alone
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moving them in different patterns over the plate. In Chapter 5 these possibilities
will be described and experimented with.



Chapter 4

Comparison of Different Implemen-
tation Approaches

This chapter compares different implementation approaches that Chapter 3 de-
scribes. All explorations have been carried out in the MATLAB environment on a
MacBook Pro with a 2,2 GHz Intel Core i7 processor. At the end of the chapter,
the explorations are discussed and a conclusion is given on what implementation
approach would be most suitable for this project.

4.1 Finite-Difference Schemes

Below, the implementation of the finite-difference schemes explained in Section
3.1.3 is described.

For implementing a finite-difference scheme, the one found in [15] was used.
Here, the authors implement a finite-difference scheme using several matrices con-
taining the material properties and source position of the sound. The output would
be a vector containing all values of one row of plate values. For this exploration,
the scheme found in eq. (3.2) was implemented. Also, a visualisation of the plate
was made (see Figure 4.1).

25
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Figure 4.1: Visualisation of Finite-Difference Scheme (source in centre).

4.2 Reflection Model

A way to think about the plate model was to use the edges of the plate as mirrors
for the input source (see Figure 4.2 for an illustration of this). An algorithm would
be created that would include all reflected sources in a coordinate system. The
sources would be located at points:

(±xp + 2x · Lx,±yp + 2y · Ly), (x, y) ∈ Z, (4.1)

where (xp, yp) is the input source position. It would then be calculated how far
each reflected source would be away from the output position(s). The delay and
damping would be calculated for each individual source accordingly. The distances
from the sources to the output would get closer and closer together the further the
source is, differentiating between early and late reflections.
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Figure 4.2: An illustration of the reflection model.

4.3 Modal Description

The modal description explained in Section 3.1.4 will be shortly described below.
A more detailed exploration of this implementation approach can be found in
Chapter 5.

As explained before, a modal description of a plate, decomposes it into several
modes that each can be activated differently over time (recall eq. (3.3)). The amount
that each mode is activated (qmn), depends, recalling eq. (3.5), on the previous state
of the plate, the input position of the actuator on the plate and the input signal
itself. Retrieving the output happens by filling in qmn for all modes into eq. (3.6)
and setting a specific output position. All this means that only three points on the
entire plate are needed to compute a stereo output using one input on the plate.
It has been found that roughly 14 seconds were needed in order to compute 9.2
seconds of reverberated sound.

Next to that, it has been found very easy to change the parameters the plate



28 Chapter 4. Comparison of Different Implementation Approaches

depends on using this model.

4.4 Discussion and Conclusion

It was chosen not to investigate convolution, as it requires a recording of the im-
pulse response (of which the physical parameters can not be changed) and is there-
fore not a VA solution. It could, however, be twisted into a VA solution when it
is generated using physical parameters. Then in a hybrid structure as described
by Abel in [10] it could be used and potentially become a VA solution. This is
something that could be investigated in future work.

The finite-difference schemes worked quite well. The output is a sound that
could clearly be heard as being reverberated. However, compared to some state of
the art plugins, the output sounds really metallic and has a lot of high frequency
content. Next to that, the implementation is not very fast. For a sound of 0.1
seconds and a grid of 100×100 points it takes almost 4 seconds to process. Every
point on the grid of the plate has to be computed for every time instance in order
for the scheme to work. For the eventual implementation (preferably) only input
and output points need to be computed.

The reflection model was initially thought to drastically improve computational
time as it would only take coordinates of reflected sources as input, but this was
underestimated. Especially the fact that horizontal reflections would also be re-
flected vertically and vice versa. Also, as can be seen in Section 2.2, some frequen-
cies travel at speeds higher than 600m/s. For a response of, for instance, only 5
seconds, the algorithm would need to include all reflections in a radius of more
than 3000 meters from the source. Using a plate of 2×1m this would mean that the
algorithm would need to account for at least 14,137,067 reflected sources1! If the
distances to both outputs would be calculated, this number would be even twice as
large. This would be (way) too much data to result in a computationally efficient
model.

The implementation approach that was eventually chosen is the modal descrip-
tion. Compared to the aforementioned approaches, it only requires three points on
the plate to fully generate a stereo output. Looking at the computational times
of the different approaches, it can be seen that this results in a significantly faster
approach. Next to that, as mentioned above, parameters are very easy to change
using this model. This is promising for eventually implementing extensions stated
in the second project goal in Chapter 1.

1Calculation: A · Sd = π · 30002 · 1
2 where A is the area of the circle in m2 and Sd is the source

density in 1/m2.



Chapter 5

Implementation of a VA Plate Re-
verb based on a Modal Description

This chapter describes an implementation based on the theory found in Section
3.1.4. It gives a detailed explanation of the created implementation with the help
of code snippets for the more complex parts of the algorithm. The raw code can be
found in Appendix B.1.

5.1 Initialisation

At the start of the algorithm, many parameters need to be initialised. For testing
purposes, it has been chosen to use the properties of the EMT140 plate reverb in
the algorithm (which can obviously be changed). Therefore, the plate width and
height are set to: Lx = 2 m, Ly = 1 m respectively. If we recall eq. (2.2) where
stiffness parameter κ2 is calculated, we need the Young’s modulus, the thickness of
the plate, the density of the material and Poisson’s ratio. For steel, with a thickness
of 0.5 mm, these parameters are: E = 2 · 1011 N/m2, h = 0.0005 m, ρ = 7850
kg/m2 and ν = 0.3 respectively. Using kSquared = (E*h^2)/(12*rho*(1-v^2)),
κ2 is calculated. The input and left and right outputs on the EMT140 are at the
following positions [9]: (xp, yp) = [0.4Lx, 0.415Ly], (xl , yl) = [0.1Lx, 0.45Ly] and
(xr, yr) = [0.85Lx, 0.45Ly]. Furthermore, the air density and speed of sound (in air)
are needed to calculate the radiation damping αrad in eq. (2.6). These are set to
ρa = 1.225 kg/m2 and ca = 343 m/s respectively. Finally a sample rate fs = 44,100
Hz is used, and a sound file is chosen as input. This file will be zero-padded (in
this case, 5 seconds or 220,500 samples) it will leave room for a long reverberation
time in the output signal.

29
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5.2 Calculate Eigenfrequencies

The (angular) eigenfrequencies ωmn can be calculated using the following equation
[26]:

ωmn = κπ2

(
m2

L2
x
+

n2

L2
y

)
. (5.1)

Recalling condition (3.11), we can see that this poses a limit on the total number of
modes in (3.5) and a creates the dependency:

ωM(n)m, ωmN(m) < 2 fs, (5.2)

where m ∈ [1, M(n)] and n ∈ [1, N(m)]. All the eigenfrequencies that satisfy
this condition will be used in the algorithm (see Figure 5.1 as an illustration for
this). Using a sample rate of 44,100 Hz the highest stable eigenfrequency will be
2·44,100 Hz

2π = 14,037 Hz.

Figure 5.1: Visualisation of stable modes using EMT140 properties. Each dot represents a single
mode (m, n) that, when inserted into eq. (5.2), satisfies the condition ωmn < 2 fs.

In the algorithm, an omega matrix is created where the first column contains all
eigenfrequencies (ω) and the second and third column the corresponding horizon-
tal (m) and vertical (n) modes respectively. In the code below, the two latter are are
defined as m1 and m2 respectively.
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1 %% Create Eigenfrequencies
2 disp('Create Omega')
3 val = 0;
4 m = 1;
5 m1 = 1;
6 m2 = 1;
7 omega = zeros(100000,3); %set to zeros for program speed
8 while val < fs*2 %check for stability
9 val = ((m1/Lx)^2 + (m2/Ly)^2)*sqrt(kSquared)*pi^2; %calculate ...

eigenfrequency
10 %m1 is fixed, increase m2 until above stability condition
11 if val < fs*2 %double check for stability
12 omega(m,1) = val; %first column: eigenfrequency
13 omega(m,2) = m1; %second column: horizontal mode
14 omega(m,3) = m2; %third column: vertical mode
15 m2 = m2 + 1;
16 m = m+1;
17 else
18 if m1 == 1
19 stablem2 = m2-1; %set highest stable vertical mode
20 end
21 m2 = 1; %reset m2
22 m1 = m1 + 1; %increment m1
23 val = ((m1/Lx)^2 + (m2/Ly)^2)*sqrt(kSquared)*pi^2; %check ...

if (m1,1) > 2fs
24 if val > fs*2
25 stablem1 = m1 - 1; %set highest stable horizontal mode
26 break; %if (m1,1)> 2fs , break out of the loop
27 end
28 end
29 end
30 omega = omega(1:m-1,:); %get rid of zeros

5.3 Calculate In- and Output Vectors

In the algorithm, three vectors are created, Φin, ΦoutL and ΦoutR (phiIn, phiOutL
and phiOutR) are calculated using eq. (3.4). The modes corresponding to the
eigenfrequencies calculated in the previous section (omega(:,2) and omega(:,3))
will be inserted as m and n in this equation. In the code below, the values of in,
outL and outR are the relative positions of the in- and outputs on the plate and
are normalised back to the plate dimensions in the calculation below.

1 %% Create PhiIn and -Out
2 M = length(omega(:,1));
3 phiIn = zeros(M,1);
4 phiOutL = zeros(M,1);
5 phiOutR = zeros(M,1);
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6 for m = 1:M
7 phiIn(m,1) = (4/(Lx*Ly))*sin((omega(m,2)*pi*in(1))/Lx)*...
8 sin((omega(m,3)*pi*in(2))/Ly);
9 phiOutL(m,1) = (4/(Lx*Ly))*sin((omega(m,2)*pi*outL(1))/Lx)*...

10 sin((omega(m,3)*pi*outL(2))/Ly);
11 phiOutR(m,1) = (4/(Lx*Ly))*sin((omega(m,2)*pi*outR(1))/Lx)*...
12 sin((omega(m,3)*pi*outR(2))/Ly);
13 end

5.4 Calculate Loss Coefficients

In [17], the authors set loss coefficients per frequency band (also see Section 3.2.3).
Here, the thermoelastic and radiation damping mechanisms described in Section
2.3 have been implemented to ultimately create a loss coefficient for each individual
eigenfrequency. It was chosen to leave out the damping induced by a porous
medium, as it can be ignored when set to the furthest possible distance and is thus
no internal damping mechanism in a thin metal plate. In Figure 5.2 the results can
be seen.

Figure 5.2: Calculated thermoelastic and radiation damping for EMT140 properties.

The loss coefficients are then calculated in the following way [9, 17]:

cmn =
12 ln(10)

T60
where T60 =

3 ln(10)
αtot

gives cmn = 4αtot. (5.3)
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Here, αtot is the addition of all damping factors.

5.5 The Main Loop

Now, with everything initialised, the reverberated output can be calculated using
update equation (3.5). In the code below, the vectors factorBdA, factorCdA and
factorIndA are B

A , C
A and Φin

ρhA found in Section 3.1.4.
As qt+1 is a state in the future, the entire equation is shifted back one sample.

This causes Pt to become Pt−1 in the update equation. Because at the very first
time instance, there is no ’previous’ input signal, P0 is set to 0.

1 %% Main loop
2 disp('Loop');
3 output = zeros(2,length(input)); %initialise output
4 output2 = zeros(2,length(input)); %initialise normalised output
5

6 for t = 1:length(input)
7 %the update equation
8 if t == 1 %there is no value for t-1 at t=1, so set input to 0
9 qNext =(factorBdA.*qNow+factorCdA.*qPrev+factorIndA.*0);

10 else
11 qNext ...

=(factorBdA.*qNow+factorCdA.*qPrev+factorIndA.*input(t-1));
12 end
13

14 %fill in the output at sample t
15 output(1,t) = qNext'*phiOutL;
16 output(2,t) = qNext'*phiOutR;
17

18 %update qVectors
19 qPrev = qNow;
20 qNow = qNext;
21 end

After the loop is done, a normalised version of the output is created:

1 % Normalise Output
2 output2 = zeros(2,length(output));
3 for i = 1:2
4 output2(i,:) = output(i,:)/max(abs(output(i,:)));
5 end
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5.6 Extensions: Dynamic Outputs

The PA1 Dynamic Plate Reverb Plugin (as described in Section 3.2.3) has the func-
tionality of moving the input from left to right over the plate to create a flanging
effect. Here, not only both outputs (not inputs) will be able to move, but they will
be able to move in circular and even Lissajous patterns. This happens according to
the following formulas:

xout(t) = RxLx sin

(
Sx ·

2πt
fs

+ θx

)
+ 0.5, (5.4)

yout(t) = RyLy sin

(
Sy ·

2πt
fs

+ θy

)
+ 0.5. (5.5)

Here, −0.5 < Rx < 0.5 and −0.5 < Ry < 0.5 when multiplied with Lx and Ly

respectively, determine the horizontal and vertical maxima of the output pattern.
If one of these has a value of zero, the outputs will move in a linear fashion. The
shape of the pattern is determined by the horizontal and vertical speeds Sx, Sy

and the horizontal and vertical phase shifts θx and θy respectively. For example if
Sx = Sy = 1, θx = 0 and θy = 0.5π the outputs will follow an elliptical pattern.
The patterns created for different values of Sx, Sy and θx, θy can be seen in [27]. If
either Sx or Sy has a value of zero, the outputs will again move in a linear fashion.
Note that, though not implemented, it could be perfectly possible to set different
values for the aforementioned parameters for the left output channel and the right.

All possible output positions are precomputed in order to improve computa-
tional time. A value of 10,000 coordinates/meter is chosen as this has been found
to be a good tradeoff between speed and quality of the output sound. The centres
of the patterns have been set to the middle of the plate. In the algorithm, the code
in Section 5.3 is changed to:

1 %% Create PhiIn
2 M = length(omega(:,1));
3 phiIn = zeros(M,1);
4 for m = 1:M
5 phiIn(m,1) = (4/(Lx*Ly))*sin((omega(m,2)*pi*in(1))/Lx)*...
6 sin((omega(m,3)*pi*in(2))/Ly);
7 end
8

9

10 %% Create PhiOut
11 phiOutL = zeros(M,1);
12 phiOutR = zeros(M,1);
13 disp('Create PhiOut')
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14 if flanging == true %if true, precompute phiOutL and R for all ...
possible output positions

15 % Set up Moving Outputs
16 disp('Set up Moving Outputs')
17 %set shape extremes
18 Rx = 0.4;
19 Ry = 0.4;
20

21 xPoints = 2*Rx*Lx;
22 yPoints = 2*Ry*Ly;
23

24 outputPointsX = 0:1/(10000*xPoints):1;
25 outputPointsY = 0:1/(10000*yPoints):1;
26 outputPointsX = (outputPointsX-0.5)*xPoints+0.5;
27 outputPointsY = (outputPointsY-0.5)*yPoints+0.5;
28

29 %set x and y speeds
30 Sx = 4;
31 Sy = 3;
32

33 %set thetax and y
34 thetax = 0;
35 thetay = 0.5*pi;
36

37 %Create possible output positions
38 circX = outputPointsX(ceil(length(outputPointsX)*...
39 (Rx*sin(Sx*2*pi*(1:2/max([Lx Ly]):fs)/fs + thetax)+0.5)));
40 circY = outputPointsY(ceil(length(outputPointsY)*...
41 (Ry*sin(Sy*2*pi*(1:2/max([Lx Ly]):fs)/fs + thetay)+0.5)));
42

43 %Set speeds for left and right output
44 Lspeed = 50;
45 Rspeed = 30;
46 phiOutLPre = zeros(M,length(circX));
47 phiOutRPre = zeros(M,length(circX));
48 for t = 1:length(circX)
49 for m = 1:M
50 phiOutLPre(m,t) = ...

(4/(Lx*Ly))*sin((omega(m,2)*pi*circX(t))/Lx)*...
51 sin((omega(m,3)*pi*circY(t))/Ly);
52 phiOutRPre(m,t) = ...

(4/(Lx*Ly))*sin((omega(m,2)*pi*circX(t))/Lx)*...
53 sin((omega(m,3)*pi*circY(t))/Ly);
54 end
55 end
56 else %if false, create PhiOutL and R for their set output positions
57 for m = 1:M
58 phiOutL(m,1) = (4/(Lx*Ly))*sin((omega(m,2)*pi*outL(1))/Lx)*...
59 sin((omega(m,3)*pi*outL(2))/Ly);
60 phiOutR(m,1) = (4/(Lx*Ly))*sin((omega(m,2)*pi*outR(1))/Lx)*...
61 sin((omega(m,3)*pi*outR(2))/Ly);
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62 end
63 end

In the loop, the dynamic outputs are accounted for by adding the code below
before line 14 in the main loop (see previous section). Even though the left and
right output follow the same pattern, they can be set to go at different speeds using
the Lspeed and Rspeed variables.

1 %% Flanging
2 if flanging == true
3 phiOutL = phiOutLPre(:,floor(mod(t/Lspeed,length(circX))+1));
4 phiOutR = phiOutRPre(:,floor(mod(t/Rspeed,length(circX))+1));
5 end

5.7 Extensions: Changing Plate Dimensions

The fact that VA simulations are extremely flexible, poses a lot of interesting oppor-
tunities for model manipulation. The most interesting parameters to manipulate
are those that are physically ’fixed’, such as the dimensions of a steel plate. Gen-
erally speaking, changing the dimensions of a steel plate is physically impossible
to do. The challenge was thus to imagine how the sound would change if it would
be possible. Looking at the variables that are dependent on the horizontal (Lx) and
vertical (Ly) plate dimensions, it can be seen that changing these would change the
eigenfrequencies, the modal shapes and radiation damping. As can be seen in eq.
(5.1) the eigenfrequencies lower as Lx and Ly grow. The thickness of the plate can
also be changed. This changes the stiffness factor κ2 in eq. (2.2) which then changes
the eigenfrequencies again. It can be shown that a decrease in thickness will lower
the eigenfrequencies. In the algorithm, all this is accounted for by introducing new
variables Lxnew, Lynew and hNew which are initially set to the original values of
their fixed counterparts. Below, some examples can be seen (where start = ...

44100 samples) that, when added to the loop, will change the dimensions of the
plate over time:

1 %change dynamic variables over time
2 Lxnew = Lx*(1+(t-start)/44100); %change in width
3 Lynew = Ly*(1-(t-start)/(4*fs)); %change in height
4 hNew = h*(1-(t-start)/(4*fs)); %change in thickness
5 kSquared = (E*hNew^2)/(12*rho*(1-v^2)); %update stiffness factor

These variables are then used in eq. (5.1) and change the eigenfrequencies accord-
ingly:



5.7. Extensions: Changing Plate Dimensions 37

1 %change eigenfrequency values according to Lxnew and Lynew
2 for i = 1:length(omega(:,1))
3 omega(i,1)=(((omega(i,2)*pi)/Lxnew)^2 + ...

((omega(i,3)*pi)/Lynew)^2)*sqrt(kSquared);
4 end

Given the stability condition (5.2), the number of eigenfrequencies that can be
accounted for also grows as the plate dimensions grow. In the algorithm, this
is implemented by adding zero values to qt+1, qt and qt−1 (the q-vectors) in eq.
(3.5), where the combinations mn were non-existent in the previous update. In the
algorithm the highest stable modes are found using the following code:

1 % calculate highest stable modes
2 m1check = 1;
3 m1Prev = stablem1;
4 m2Prev = stablem2;
5 stableValm1 = 0;
6 stableValm2 = 0;
7

8 % calculate highest stable modes
9 m1Var = 0;

10 while m1Var == 0
11 stableValm1 = ((m1check*pi/Lxnew)^2 + ...

(1*pi/Lynew)^2)*sqrt(kSquared);
12 if stableValm1 > fs*2
13 m1Var = 1;
14 else
15 m1check = m1check+1;
16 end
17 end
18 stablem1 = m1check-1;
19 m2check = 1;
20 m2Var = 0;
21 while m2Var == 0
22 stableValm2 = ((1*pi/Lxnew)^2 + ...

(m2check*pi/Lynew)^2)*sqrt(kSquared);
23 if stableValm2 > fs*2
24 m2Var = 1;
25 else
26 m2check = m2check+1;
27 end
28 end
29 stablem2 = m2check-1;

If the plate decreases in size, the values of the q-vectors for which the combinations
mn do not satisfy the stability condition anymore will be removed. The code for
both cases can be seen below. As this code is computationally heavy, it will only be
checked every 100th sample. This number has been chosen as this has been found
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to be a good tradeoff between speed and quality of the output sound.

1 %% Check for unstable eigenfrequencies (happens when decreasing Lx ...
or Ly and increasing h)

2 tooHighVect = find(omega(:,1) > fs*2);
3 if ~isempty(find(omega(:,1) > fs*2,1))
4 % delete if omega > 2fs
5 omega(tooHighVect,:) = [];
6 qNext(tooHighVect,:)= [];
7 qNow(tooHighVect,:) = [];
8 qPrev(tooHighVect,:) = [];
9 else

10 %% Add eigenfrequencies that are now stable (happens when ...
increasing Lx or Ly and decreasing h)

11 if m1Prev < stablem1 || m2Prev < stablem2
12 % if highest stable mode has changed create new omega matrix
13 omegaPrev = sortrows(omega,[2,3]); %set for comparison later
14 omega = zeros(100000,3);
15 val = 0;
16 m = 1;
17 m1 = 1;
18 m2 = 1;
19 while val < fs*2
20 val = ((m1*pi/Lxnew)^2 + ...

(m2*pi/Lynew)^2)*sqrt(kSquaredNew);
21 if val < fs*2
22 omega(m,1) = val;
23 omega(m,2) = m1;
24 omega(m,3) = m2;
25 m2 = m2 + 1;
26 m = m+1;
27 else
28 m2 = 1;
29 m1 = m1 + 1;
30 val = ((m1*pi/Lxnew)^2 + ...

(m2*pi/Lynew)^2)*sqrt(kSquaredNew);
31 if val > fs*2
32 break;
33 end
34 end
35 end
36 omega = omega(1:m-1,:);
37 %% OPTION ONE: stable horizontal mode increased
38 if m1Prev < stablem1
39 index = 0;
40 for j = 1:length(omega)
41 if j-index < length(omegaPrev)
42 if omegaPrev(j-index,2) ~= omega(j,2)
43 %insert 0's at right locations
44 qNext = [qNext(1:j-1,1); 0; qNext(j:end,1)];
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45 qNow = [qNow(1:j-1,1); 0; qNow(j:end,1)];
46 qPrev = [qPrev(1:j-1,1); 0; qPrev(j:end,1)];
47 index = index + 1;
48 end
49 else
50 %insert 0's at the end
51 qNext = [qNext ; ...

zeros(length(omega)-length(qNext),1)];
52 qNow = [qNow ; ...

zeros(length(omega)-length(qNow),1)];
53 qPrev = [qPrev ; ...

zeros(length(omega)-length(qPrev),1)];
54 end
55 end
56 else
57 %% OPTION TWO: stable vertical mode increased
58 if m2Prev < stablem2 % Just adding zeros instead of ...

this smart-adding gives metallic sounds
59 index = 0;
60 for j = 1:length(omega)
61 if j-index < length(omegaPrev)
62 %insert 0's at right locations
63 if omegaPrev(j-index,2) ~= omega(j,2)
64 qNext = [qNext(1:j-1,1); 0; ...

qNext(j:end,1)];
65 qNow = [qNow(1:j-1,1); 0; qNow(j:end,1)];
66 qPrev = [qPrev(1:j-1,1); 0; ...

qPrev(j:end,1)];
67 index = index + 1;
68 end
69 else
70 %insert 0's at the end
71 qNext = [qNext ; ...

zeros(length(omega)-length(qNext),1)];
72 qNow = [qNow ; ...

zeros(length(omega)-length(qNow),1)];
73 qPrev = [qPrev ; ...

zeros(length(omega)-length(qPrev),1)];
74 end
75 end
76 end
77 end
78 end
79 end

Because the above code is not called every sample (but every 100th), it needs to be
called when the ’stretching’ stops. If it does not do this, the update equation will
not rely on the current (changed) parameters and can become unstable. Therefore,
it runs through it one extra time when it is done.

Lastly, the different kinds of damping – the thermoelastic damping αth in eq.
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(2.5) and the radiation damping αrad in eq. (2.6) and with that A, B and C in Section
3.1.4 – are also updated according to the new dimensions.

5.8 Extra: MATLABs Filter Function

As an alternative to the update equation, the input can be filtered with H(z) found
in the Resonator Filter part of Section 3.1.4. The input will be filtered using the
coefficients of every individual mode. All these ’outputs’ will ultimately be added
together to create an identical output to the update equation. In the code this looks
like:

1 %initialise filter coefficients
2 b = [0 0];
3 a = [0 0 0];
4 for mode = 1:length(omega(:,1))
5 b = [0 factorIn(mode)];
6 a = [1 -factorBdA(mode) -factorCdA(mode)];
7 output(1,:) = output(1,:) + phiOutL(mode).*filter(b,a,input)';
8 output(2,:) = output(2,:) + phiOutR(mode).*filter(b,a,input)';
9 end

This method is a lot slower than the update equation: it takes roughly 3 minutes
to process 9.2 seconds of sound.



Chapter 6

Real-Time Plugin

This chapter describes the real-time plugin that was made based on the implemen-
tation described in the previous chapter. As the algorithm was still computation-
ally heavy, some adaptations have been made to it. These will also be described
in this chapter. The plugin was developed using the Audio System Toolbox in the
MATLAB environment and its layout can be seen in Figure 6.1. It has been tested
using a MacBook Pro containing a 2,2GHz Intel Core i7 processor. Its raw code can
be found in Appendix B.2.

Figure 6.1: Plugin Layout.
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6.1 Controls and Layout

The main controls of the plugin are:

• The Dry/Wet-ness of the signal ranging from 0 - 100%. This simply adds the
input to the reverberated output in the following way: (1− DW) · input +
DW · output where DW is the Dry/Wet-value ranging from 0–1.

• The Plate Width and Height ranging from 1.0 – 3.0 m and 0.5 – 2.0 m, respec-
tively.

• The amount of Cents in between each eigenfrequency ranging from 0.01 to
10.0 cents (see Section 6.2.3 for a detailed explanation on this).

Next to that, there are switches which turn off/on:

• The calculation of Cents (Calculate Cents)

• Movement of the pickups over the plate (Flanging)

• The option of hearing the change in plate dimensions in real-time (Stretching)

• An LFO that stretches the plate over time (LFO Stretch)

• The thermoelastic and radiation damping (Physical Damping). (see Chapter
8 for a detailed explanation on this matter) Note: when turned off, T60 is set to
4 seconds for all frequencies.

The sixth button (Reinitialise) can be used to reset the algorithm if, for example
the Plate Width or Height have been changed (also see Section 6.4. As continuously
updating the eigenfrequencies causes artefacts in the sound, it has been chosen to
only update these when this button is pressed.

Note: It would, however, be possible to include a library with many different settings
for the plate and load these instead of calculating every change at the spot. This has not yet
been investigated and could be implemented in future work.

6.2 Computational Speed

As stated in Section 3.1.4, the computational speed depends on the total number of
eigenfrequencies (M(n) and N(m)) being accounted for in the algorithm. A corre-
lation of 0.996 has been found between this and program speed, making decreas-
ing this amount the main focus. This number has been found by using MATLABs
tic-toc function. The number of modes would be set and the loop would be run
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roughly 50 times. The average time was taken and linked to the number of modes.
After a few different settings of modes, the correlation was calculated.

As stated in Section 4.3, it takes roughly 14 seconds to compute 9.2 seconds
of sound. The total number of eigenfrequencies accounted for in the algorithm
using EMT140 properties is 18,218. Below, a few ways are described to decrease
this number, without greatly affecting the (perceived) output sound. They have
been added to the algorithm right after the eigenfrequencies are calculated. All
computational times have been retrieved by using MATLABs tic-toc function in
the algorithm.

6.2.1 Ignore Unactivated Modes

The input position (xp, yp) greatly determines which modes are activated and
which are not. If we, for example, let xp = 0.25Lx, it can be shown that in eq.

(3.4), the term sin
(

mπxp
Lx

)
= 0 for m = 4, 8, 12... etc., i.e., multiples of 4. This makes

the eventual state variable u in eq. (3.3) 0 at all times for those specific modes. (It
also makes sense when looking at eq. (3.9), where if Φ(xp, yp) = 0 for a certain
mode, the gain G of that mode will also equal 0.) The reason for this fact, is that
these modes have a node at this specific input position and are thus not activated.

The way that this is implemented in the algorithm is by first calculating how
many times xp

Lx
and yp

Ly
need to be multiplied until they are integers. Then these

values xint and yint can be used to find the unactivated modes. All eigenfrequencies
with modes that satisfy:

mod (m, xint) = 0 || mod (n, yint) = 0, (6.1)

can be ignored. Using this condition and the input position used by the EMT140
(0.4Lx,0.415Ly), the total number of eigenfrequencies can be reduced to 14,614 (see
Figure 6.2).
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Figure 6.2: Visualisation of modes accounted for where unactivated modes are ignored (using
EMT140 properties).

Now, the algorithm only needs roughly 12 seconds to compute 9.2 seconds of
sound. Using an input position of (0.5Lx, 0.5Ly) deletes almost three quarters of
the total the number of modes, resulting in a total amount of 4,593 (see Figure 6.3).

Figure 6.3: Visualisation of modes accounted for where unactivated modes are ignored (using an
input at (0.5Lx, 0.5Ly)).
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This is because every even mode in both the x and y-direction can be ignored
as they have a node at this position. This special case reduces the computational
time to about 5.7 seconds. Below, the implementation in the algorithm can be seen.

1 %% Delete Neclegible Modes From Input
2 if delModes == true
3 disp('Delete neclegible modes from input')
4 i1 = 1;
5 answ1 = p(1);
6 %multiply relative position x with integers until the answer ...

becomes an integer
7 while rem(answ1,1) ~= 0
8 i1 = i1+1;
9 answ1 = p(1)*i1;

10 end
11 %multiply relative position y with integers until the answer ...

becomes an integer
12 i2 = 1;
13 answ2 = p(2);
14 while rem(answ2,1) ~= 0
15 i2 = i2+1;
16 answ2 = p(2)*i2;
17 end
18 %discard the eigenfrequencies accordingly
19 n = 1;
20 while n <= length(omega(:,1))
21 if mod(omega(n,2), i1) == 0 || mod(omega(n,3), i2) == 0
22 omega(n,:) = [];
23 else
24 n = n + 1;
25 end
26 end
27 end

The same can be done for the output positions. However, because there are multi-
ple outputs they need to be located on the same nodes, i.e., they must share either
their vertical or their horizontal position, or a multiple of this. In other words,
most of the time, modes for a single output can not be discarded as the other out-
put might need it. On top of that, when the flanging effect is turned on, the nodes
that the outputs It has thus been decided not to discard modes based on output
position.

6.2.2 Remove Dependency

What the authors do in [17] is to only include the eigenfrequencies m ∈ [1, M]

and n ∈ [1, N] where M and N are fixed, as opposed to the dependency seen in
condition (5.2). As the authors do not make it clear how they find M and N, their
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values were chosen so to maximise the total number of eigenfrequencies. This was
done by multiplying m with n for the eigenfrequencies that satisfy the stability
condition (5.2), selecting m and n that maximise this answer and setting M and N
to these values. All eigenfrequencies that have higher mode-values than these are
then discarded. See the code below.

1 %% Remove dependency
2 if square == true
3 highMode = omega(:,2).*omega(:,3);
4 indexFound = find(highMode==max(highMode(:))); %find highest ...

possible MN
5 i = 1;
6 maxM1 = omega(indexFound(1),2);
7 maxM2 = omega(indexFound(1),3);
8 while i <= length(omega(:,1))
9 % if an eigenfrequency has a mode-value higher than the ...

maximum, discard
10 if omega(i,2) > maxM1 || omega(i,3) > maxM2
11 omega(i,:) = [];
12 else
13 i = i + 1;
14 end
15 end
16 end

This action reduces the number eigenfrequencies to 11,628 and the computational
time to 9.8 seconds for 9.2 seconds of sound. If we look at what this action ac-
tually does, it can be seen that it removes modes with a high-frequency. Using a
linearly swept sine (20 – 20,000Hz) of 10 seconds as an input and comparing the
dependency-removed output with the original output proves the aforementioned
statement (see Figure 6.4).
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Figure 6.4: The original output and its difference with the dependency-removed output. The input
is a linearly swept sine (20 – 20,000 Hz) with a length of 10 seconds.

6.2.3 Cents

What the authors explain in [17] is the possibility of removing eigenfrequencies
that are close together and thus not perceptually important. Here, the following is
proposed:

d =
( 12√

2
C/100 − 1

)
· fc, (6.2)

where C is an arbitrary amount in cents and fc is the current eigenfrequency (in Hz)
starting with the lowest eigenfrequency accounted for in the algorithm, which can
be calculated using f = ω

2π . The algorithm will then discard the eigenfrequencies
if:

fi − fc < d,

otherwise:
fc = fi.

When C is put to 0.1 cents, the total number of eigenfrequencies accounted for (us-
ing the EMT140 properties) decreases from 18,218 to 7,932 (see Figure 6.5), which
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already makes a big difference in computational time: roughly 8.3 seconds to com-
pute 9.2 seconds of sound.

Figure 6.5: Visualisation of modes accounted for where C = 1 cent.

Below, the implementation of the above can be seen. Note, that the omega

matrix first needs to be sorted according to the eigenfrequencies in order for it to
work. At the end, it will be sorted back according to its modes.

1 %% Calculate Cents
2 if calcCent == true
3 disp('Calculate Cents')
4 n = 1;
5 C = 0.1;
6 omegaPrev = 0; %set omega_i
7 omega = sortrows(omega,1); %sort according to eigenfrequencies
8 ncent = ...

nthroot(2,12)^(C/100)*(omega(1,1)/(2*pi))-omega(1,1)/(2*pi); ...
%set d in Hz

9 while n < length(omega(:,1))
10 %if f_c-f_i < d, discard eigenfrequency
11 if omega(n,1)/(2*pi) - omegaPrev/(2*pi) < ncent
12 omega(n,:) = [];
13 else
14 omegaPrev = omega(n,1); %otherwise set next f_i
15 n = n+1;
16 % and calculate next d
17 ncent = nthroot(2,12)^(C/100)*(omega(n,1)/(2*pi))...
18 -omega(n,1)/(2*pi);
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19 end
20 end
21 omega = sortrows(omega,[2,3]); %sort according to modes
22 end

If all of the above is implemented and the initial values of the sliders are set to:
Dry/Wet: 100%, Plate Width: 2 m and Height: 1 m, putting Cents to 1 will give no
audible artefacts using a buffer size of 512 samples. In total, 3,018 eigenfrequencies
will be accounted for in the algorithm (see Figure 6.6).

Figure 6.6: Visualisation of modes accounted for with all mode-reduction techniques applied (C = 1
cent).

6.3 Dynamic Outputs

As can be seen in the previous chapter, in order to improve the computational
speed when the outputs are moving, the modal shape Φ(xout, yout) is evaluated for
different values of t: t ∈ [1, fs] with steps of 2/max([Lx Ly]), before the main loop
and is then selected (instead of evaluated) at the appropriate times in the update
equation. This step size was found to be a good balance between speed and having
minimal artefacts in the sound if the speed is not set to be too high.
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6.4 Changing Plate Dimensions

In the algorithm, the eigenfrequencies and q-vectors would be recalculated accord-
ing to the plate dimensions (see Section 5.7). Unfortunately, to do this continuously
is too computationally expensive and will cause artefacts in the sound. Therefore,
it has been decided to keep the same number of eigenfrequencies until reinitialisa-
tion of the plugin. The values of the individual eigenfrequencies, however, will be
updated to maintain the stretching effect.

6.4.1 Smooth Stretching

If the dimensions of the plate are changed fast, it sounds like the plate is stretched
’stepwise’ which creates an undesired sound. In order to resolve this, an addition
has been made to the algorithm to smooth out the slider changes. For both the x
and y-dimension if:

[Ds · φ]/φ > [Dc · φ]/φ,

then:
Ds = Ds − 1/φ,

and if:
[Ds · φ]/φ < [Dc · φ]/φ,

then:
Ds = Ds + 1/φ,

where Ds is the smoothed out dimension that will be used in the algorithm, Dc is
the current dimension, i.e., the current slider position and φ is a variable dependent
on the program speed. The ’round’-function is used to convert the analog values
from the slider to values with a specified step size.

If the dimensions are changed slowly, the above method has the opposite effect.
This is why the smoothing only occurs when the changes are big, i.e., bigger than
1/φ meters. As said before, there is an extremely high correlation between the
total number of eigenfrequencies and the program speed. It has thus been chosen
to make φ linearly dependent to the number of eigenfrequencies. It has been found
that φ = Etot

20 (where Etot is the total number of eigenfrequencies accounted for) is a
nice tradeoff between speed of Ds reaching Dc quickly when the slider is changed
fast and eliminating the ’stepwise stretching’ sound. See the code below for the
implementation.

1 M = plugin.lengthOmega;
2 sS = round(M/20); %set speed dependent variable
3 %check for change larger than threshold
4 if abs(plugin.Lx - plugin.Lxpre) > 1/sS
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5 plugin.smoothLx = true;
6 else
7 plugin.smoothLx = false;
8 end
9 if abs(plugin.Ly - plugin.Lypre) > 1/sS

10 plugin.smoothLy = true;
11 else
12 plugin.smoothLy = false;
13 end
14

15 %smooth stretching
16 if plugin.smoothLx == true
17 if round(LxSmoothUse*sS)/sS > round(plugin.Lx*sS)/sS
18 LxSmoothUse = LxSmoothUse - 1/sS;
19 else
20 if round(LxSmoothUse*sS)/sS < round(plugin.Lx*sS)/sS
21 LxSmoothUse = LxSmoothUse + 1/sS;
22 end
23 end
24 else
25 LxSmoothUse = plugin.Lx;
26 end
27 if plugin.smoothLy == true
28 if round(LySmoothUse*sS)/sS > round(plugin.Ly*sS)/sS
29 LySmoothUse = LySmoothUse - 1/sS;
30 else
31 if round(LySmoothUse*sS)/sS < round(plugin.Ly*sS)/sS
32 LySmoothUse = LySmoothUse + 1/sS;
33 end
34 end
35 else
36 LySmoothUse = plugin.Ly;
37 end
38

39 %set previous value the value used in the plugin
40 plugin.Lxpre = LxSmoothUse;
41 plugin.Lypre = LySmoothUse;





Chapter 7

Evaluation

This chapter describes three different types of evaluations that have been done
over the course of this project. First of all, to find out how much the number
of modes could be reduced (to increase computational speed) before a difference
would be heard in the output sound, a MUSHRA test was carried out. Secondly, a
questionnaire was made (and filled out by the same participants of the MUSHRA
test) especially to evaluate whether the output sound was enjoyed. Lastly, the
plugin was informally evaluated by some music producers to find out if they would
use the implementation for their own projects. All three evaluations and their
results are described below after which they are discussed and concluded upon.

7.1 MUSHRA test

MUSHRA stands for MUltiple Stimuli with Hidden Reference and Anchor and is
used to test subjective audio quality (also see [28]). The number of modes that the
algorithm accounts for was reduced according to eq. (6.2). In this formula, C was
set to 0.1, 0.5, 1, 2, 5, 10 and 20 cents, resulting in an output that became of less and
less quality. These values have been chosen based on either: 1) being close to the
predicted value where subjects would perceive a difference between reference and
mode reduced reference (i.e., the value that was looked for) or 2) being so much
reduced in quality that it would act as an extra anchor point for the participants
not to weigh small impairments too heavily. Next to this, the reference output (no
mode reduction) was low-passed at 3.5kHz and used in the test as an anchor point.
The audio files used were: 1) a short melody played by with a digital version of the
Wurlitzer Classic instrument found in Garageband [19], 2) a recording of a ukulele
playing a part the intro of Led Zeppelins Stairway to Heaven, 3) a part of Queens
We are the Champions where vocals were isolated. These sounds were chosen as
they belong to three different groups of sounds (digital keyboard, acoustic string
instrument, vocals) that the plugin could be used with. The lengths of the audio
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files were 9.2, 12 and 15 seconds respectively. The audio files were processed in the
algorithm and presented to the subject as a 100% wet output signal. The test was
carried out using the software found in [29] (see Figure 7.1 for the GUI layout).
For the test, a MacBook Pro with a 2.2GHz Intel Core i7 processor and a set of
Beyerdynamic DT770 M headphones were used. The participants were allowed to
change the volume before and during the test.

Figure 7.1: MUSHRA test GUI.

In total, nine people participated in the test, of which eight were considered
either musicians (at least 2–3 years of experience) or experienced listeners (4 or
more hours listening to music a day). The participants were between 19–32 years
of age. The average rating per instrument per condition can be found in Figure 7.2.
The anchor (the low-passed reference at 3.5kHz) was rated on average 95, 47 and
94 for the keyboard, ukulele and vocals respectively. In Figure 7.3 the means and
95% confidence intervals of the difference in rating between the reference and the
mode reduced condition can be seen. For the detailed results, see Appendix C.1.
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Figure 7.2: Average rating for the different sound files per mode reduced condition.

Figure 7.3: Difference in rating between reference and mode reduced condition (means and 95%
confidence intervals).

7.2 Questionnaire

The same subjects participating in the MUSHRA test needed to fill out a question-
naire. The most important part of the questionnaire was to find out if the partici-
pants enjoyed the reverb effect when applied to the different audio files. A video
would present both the unprocessed input sound and the processed (reference)
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sound (see [30]). Thereafter, the participants would answer the question: "Did you
enjoy the sound of the reverberation effect in the following sounds: 1) Keyboard,
2) Ukulele, 3) Vocals" on a scale of 1-5 (no, not at all - no, not really - I’m indiffer-
ent - Yes, quite - Yes, very much). After this, the following was asked: "What is
your general opinion on the reverberation effect? If you’re a musician/producer,
would you use it? For what kind of music/sounds? Any additional comments?"
to retrieve extra information on the opinion of the participants.

For the keyboard the participants rated the reverberated output an average of
4.33, for the ukulele 4.56, and for the vocals 2.89 on the aforementioned scale (also
see Figure 7.4. Most musicians and producers that participated in the test, would
use the plate reverberation effect for their instruments/as a plugin. For the detailed
results, see Appendix C.2.

Figure 7.4: Histogram of ratings for the three different reverberated sounds.

7.3 Plugin

To evaluate the plugin in use, it was sent to four music producers personally known
by the author. They were then asked to give their informal opinion on the sound of
the plugin. The following instructions were given: "Cents is set to 10 at initialisation
of the plugin. Changing this to a lower value will increase the quality of the reverb,
but increases the chance of audible artefacts. To apply your change in Cents turn
Re-Initialise off and on again." The lowest Cents value the producers could use
before experiencing artefacts differed a lot between them. One could only set its
value to 4 while another could set it to 1 (see Figure 7.5 for his detailed analysis).

The plugin was generally enjoyed by the people it was sent to, especially when
applied to vocals, guitars and kicks. One producer said the output sound contained
a lot of low and mid-frequency content and missed the ’highs’. He also said the
reverb contained a lot of resonance, making it very ’dirty’ and unique.

Changing the Plate Width/Height parameters have been considered a very inter-
esting feature of the plugin.
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Figure 7.5: CPU load of one of the music producers.

7.4 Discussion and Conclusion

MUSHRA test

First of all, in Figure 7.2, it can be seen that (on average) the more the modes
were reduced, the lower the participants would rate the quality of the audio file
(as expected). An interesting thing that can be seen is that the ukulele got a lower
rating more quickly than the other sounds as the modes decreased. This can be
explained by the fact that this sound has more high-frequency content and the
mode reduction algorithm has more influence on higher frequencies than lower.
The rating for the low-passed anchor sound also implies that the ukulele sound is
more affected by high-frequency reduction.

In Figure 7.3 it can be seen that the results of the MUSHRA test differ a lot
between different instruments. For the ukulele it only takes 1 cent to be distin-
guishable from the reference 95% of the time, whereas for the vocals it takes 2
cents and for the keyboard even 5. The mean of the three instruments, however,
implies that the difference between reference and mode-reduced reference can not
be heard (with 95% certainty) when Cents is set to 0.1 but can be heard when Cents
is set to 0.5. Because of this difference between the mean and the individual audio
files it has been concluded that more subjects are needed to be able to say more
about the data.
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Questionnaire

The questionnaire proves that the output of the algorithm is generally enjoyed. As
can be seen from the ratings, participants enjoyed the reverb more when applied to
instruments rather than vocals. This might be caused by the wetness of the signal.
When applied to vocals a too wet signal might be too "rich" or make it sound like
someone is "singing in the shower" (see Appendix C.2).

Plugin

The difference in the lowest possible Cents value (before artefacts are heard) be-
tween the music producers is most probably due to the different processors they
use. The participant who experienced artefacts at 1 cent, used an AMD Ryzen
1800x (3.6GHz) processor whereas the participant who could not go below 4 cents
used a four-year-old Intel Core i5-4670 3.4GHz processor. In the end however,
the artefacts only appear during real-time playback in the DAW. After exporting a
sound file the artefacts will generally be gone [31].

The observation of the producer saying that the output sound missed high-
frequency content, can most probably be explained by the fact that the mode re-
duction especially influences this part of the spectrum. He set the Cents parameter
between 2–4 cents removing a lot of high-frequency modes, explaining his obser-
vation.

Some music producers stated that they would not use the plugin 100% wet,
but only, for instance, 25–30%. This means that a low quality as a result of mode
reduction would be masked by the dry signal in that case, i.e, the reverb would
blend into the sound, rather than be a stand-alone sound, allowing for a higher
mode reduction.

A point of general feedback was that the Dry/Wet-parameter was found to be
"a bit too sluggish", which can be solved by having a separate gain for both in- and
output sound. Next to that, one of the producers would have liked to see a decay
parameter, which – according to the author – would not be hard to implement.



Chapter 8

Discussion

In this chapter, the (audible) results of the algorithm will be discussed. They have
been informally evaluated by the author. Unfortunately, during the course of this
project, there was no access to an actual plate reverb, so to in order to tell whether
the algorithm was successful it was compared to the PA1 Dynamic Plate Reverb
and ValhallaPlate: already existing VA plugins. When compared to these plugins,
it was attempted to put their settings (plate size, decay values, etc.) as close to the
values of the algorithm as possible. The outputs from the plugin and the algorithm
were then compared. The reasons for any differences in sound output could only
be speculated on, as the plugins were not open-source and internal parameters
were thus hidden.

As there was no way to compare the extensions (moving the outputs and chang-
ing plate dimensions) to existing solutions, the output could only be evaluated
based on what it was expected to sound like. The spectrograms of the input and a
few output examples can be found in Figure 8.1.
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Figure 8.1: Specrtograms of input and different output examples (all normalised) using EMT140
properties. x-axis: Time (0–6 seconds), y-axis: Frequency (0–3000 Hz). (a): Dry input signal, (b): Left
output signal (0.1Lx, 0.45Ly), (c): Plate stretched from Lx = 2–4 m between 1–2 seconds., (d): Plate
shrunk from Lx = 2–1 m between 1–2 seconds.

8.1 General Output

In general, the output sound is very natural, especially when combined with some
dry input signal. Although no formal listening tests (focusing on this) have been
carried out, the naturalness of the sound has been reported by the author. When
compared to the PA1 Dynamic Plate Reverb and ValhallaPlate the output has more
low-frequency content. This is probably because the damping factors that were
included in the algorithm mostly attenuate the high-frequency content. As can
be seen in Chapter 6, the option of turning off the physical damping factors was
added. This creates a ’fuller’ sound with more high frequency content. (For more
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on this, see Section 8.4)

8.2 Dynamic Outputs

Moving the outputs creates a result that sounds like a vibrato/flanging effect. This
can be explained by the fact that the outputs ’travel away’ or ’travel towards’ sound
that has already been travelling in the plate which changes the pitch of the output
sound slightly. This could be seen analogous to the Doppler effect.

Letting the left and right output move at different speeds or in different patterns
causes the sound to have arrive later/earlier in the left channel than the right
channel at different time instances. Perceptually, it will sound like the reverb is
moving from left to right at different speeds causing a very immersive stereo effect.

8.3 Changing Plate Dimensions

Increasing the size of the plate creates a pitch-bend effect: lower pitch when Lx

and/or Ly are increased and higher when these are decreased. This can be ex-
plained by the fact that the eigenfrequencies are ’stretched/shortened’ as the plate
dimensions increase/decrease. The exact opposite happens when plate thickness
is changed: if the plate gets thicker, the pitch goes up, and the other way around.

An interesting effect occurs when input and output are combined (not 100% wet
signal) as the pitch bend effect only applies to the reverb, and does not influence
the dry input signal.

8.4 Loss Coefficients

The current state of the art does not make use of loss coefficients dependent on
physical parameters. The possibility to make some of these parameters dynamic
was explored; the most interesting parameter being the air density ρa in eq. (2.6).
When increasing this, the sound (especially the high frequency content) will die
out sooner and has a ’muffled’ sound; this can also be derived from the equation.
Ultimately, it was decided against implementing this feature, as it did not add
much to the sound; it only decreased the naturalness of the plate reverb.

Furthermore, in the real-time plugin, the option of turning the Physical Damp-
ing parameter off and on was included. It has been found that for a lot of different
input sounds, the output gets more appealing when this damping is excluded
from the algorithm. It generally gets more ’muffled’ as there is a decrease in high-
frequency content when including these damping mechanisms. The author as-
sumes the creators of the The PA1 Dynamic Plate Reverb plugin also found this,
as this plugin offers frequency dependent controls. It could also be that these cre-
ators saw the potential of VA simulations of offering different kinds of damping
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that are physically impossible, while maintaining the option of recreating the orig-
inal sound. User-controlled damping in the low-frequency range is implemented
in plate reverbs (damping induced by porous medium), but VA simulations allow
to extend upon this by having more options regarding frequency spectrum. This
is also the reason why the porous medium has been left out of the project. A pa-
rameter that controls the loss coefficients just like a porous medium would do in
the real world could be implemented in future work.



Chapter 9

Conclusion and Future Work

In this report, a VA simulation of plate reverberation was presented. Different
implementation techniques have been investigated of which one was chosen to be
the most suitable for VA simulation of plate reverberation. Possible extensions to
already existing models have then been explored and created. The aforementioned
has all been implemented and transformed into a real-time plugin of which the
output is found to be natural and enjoyable. Parameters like in- and output po-
sitions and plate dimensions have been made dynamic resulting in a very unique
and interesting vibrato and pitch-bend effect (respectively), something which has
not yet been achieved by the current state of the art. The above means that all of
the project goals stated in Chapter 1 have been achieved.

In the future, I would like improve on the plugin, both in usability and func-
tionality. First of all, parameters related to the LFO stretching of the plate (such
as speed and amount) and the movement of the pickups (different patterns, speed,
etc.) could be expanded upon and made available to the user. Next to that, I
would like to explore the possibilities of improving computational speed in differ-
ent ways than stated in this report. It could be investigated if the algorithm could
be parallelised in some way. Alternatively, a library containing information about
the plate at different settings could be created replacing the need to calculate some
values every loop. I would then like to test the plugin (again) with musicians in
order to test usability and whether the output sound is satisfactory. Furthermore,
as stated in Chapter 8 it would be interesting to add the damping induced by a
porous medium to the implementation. Lastly, I would like to explore the pos-
sibilities of changing other parameters of the plate using the presented algorithm
as a basis. The shape and the structure of the plate, for example, would be very
interesting to make dynamic. Moreover, different materials, such as gold and alu-
minium, or even non-metallic materials like glass, could be explored and result in
some interesting timbres.
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ABSTRACT

In the 50s and 60s, steel plates were popularly used as a
technique to add reverberation to sound. As a plate re-
verb itself is quite bulky and requires lots of maintenance,
a digital implementation would be desirable. Currently,
the available (digital) plugins rely solely on recorded im-
pulse responses or simple delay networks. Virtual Analog
(VA) simulations, on the other hand, rely on a model of
the analog effect they are simulating, resulting in a sound
and ’feel’ the of the classical analog effect. In this paper,
a VA simulation of plate reverberation is presented. Not
only does this approach result in a very natural sounding
reverb, it also poses many interesting opportunities that go
beyond what is physically possible. Existing VA solutions,
however, have limited control over dynamics of physical
parameters. In this paper, we present a model where pa-
rameters like the positions of the in- and outputs and the
dimensions of the plate can be changed while sound goes
through. This results is in a unique flanging and pitch bend
effect, respectively, which has not yet be achieved by the
current state of the art.

1. INTRODUCTION

A great number of digital audio effects is currently avail-
able to musicians and producers. Many sounds we could
not even imagine a few years ago, we can now create using
current DSP technology. However, despite this immense
amount of options, there is still a great desire for the sound
of the classical analog effects that made their first appear-
ance in the late 40s and characterised music from the 50s
and 60s onwards. Even though, generally, digital sound ef-
fects ’do the job’, they do not have the ’feel’ that the old
analog effects had - something greatly desired by many
musicians. Contrary to digital effect simulations, Virtual
Analog (VA) simulations rely on a model of the analog
effect they are simulating [1]. A great advantage of VA
simulations over the original systems is that they do not
age and thus do not require time consuming maintenance.
Also, when digitalised they are easily accessible, mostly
simpler to use and can be made much cheaper than their
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analog counterparts. Naturally, the sound of a used analog
audio effect can have its charm, but if desired, this can be
modelled into the simulation. Also, VA simulations make
it possible for parameters like room size, material proper-
ties, etc., to be changed, which is physically impossible or
very hard to do. This can result in unique sounds that can
only be created using VA simulations.

A popular reverberation technique used in the 50s and
60s was plate reverberation. A plate reverb utilises a small
speaker (actuator) attached to a big steel plate to make it
vibrate, and several pickups to pick up the sound after it
has propagated through the plate. Several different plate
reverbs made it to the market, the most popular being the
EMT140 used in the Abbey Road Studios and undoubtedly
leaving a mark on music in the aforementioned years. In
fact, it was the only reverb used on Pink Floyd’s Dark Side
of the Moon [2]. A big issue of using an actual plate reverb
is the sheer size and weight of it. The plate is 2x1m big and
weighs (together with the rest of the installation) roughly
270kg [3], hence, a digital implementation of it would be
desirable.

There are different ways of digitally implementing plate
reverberation. Convolution is an effective approach, but
not a VA one as it is not based on physical parameters.
This means that flexibility is limited. Feedback Delay Net-
works (FDNs), as proposed by Jean-Marc Jot in [4], are
also used as an implementation approach for creating a
digital plate reverb by Jonathan Abel in [5]. FDNs are an
efficient way of realising a VA solution to the plate rever-
beration problem. However, in his implementation, Abel
uses a hybrid structure consisting of a convolutional part
and an FDN-based part, making it not fully VA. Finite dif-
ference schemes as proposed in [6] and [7] are flexible,
VA, but very computationally heavy solutions. Lastly, the
vibrations of the plate can be decomposed into a series of
plate modes - a modal description of the plate. It is both
a VA and not computationally heavy approach and gives a
lot of freedom in dynamic parameter manipulation.

Currently there are some VA plate reverb plugins avail-
able such as the PA1 Dynamic Plate Reverb [8] (that uses
the aforementioned modal description) and the Valhalla-
Plate [9]. These plugins, however, do not use the full
potential of VA simulations. Parameters like for example
pickup positions and sheet-size can be made dynamic, i.e.,
changed while sound is going through the plate. This will
result in some interesting sounds and effects that can not
be achieved with a physical plate reverb. In this paper we



propose a VA simulation of plate reverberation that utilises
these dynamic parameters - something that the aforemen-
tioned plugins have not implemented. Furthermore, differ-
ent kinds of damping that occur in physical plate reverbs
are taken into account to make the simulation sound even
more natural.

This work is structured as follows: in Section 2 the physics
of a thin metal plate will be explained, in Section 3 a nu-
merical solution will be described, in Section 4 the results
of this solution will be discussed and lastly in Section 5 we
will conclude and discuss future works for this project.

2. PHYSICS OF A THIN METAL PLATE

In order to simulate a plate reverb, a model of the physics
of the plate is needed. The Kirchhoff-Love model mathe-
matically describes stresses and deformations in thin plates
subjected to external forces. The partial differential equa-
tion for an isotropic plate (including damping) is [10]:

∂2u

∂t2
= −κ2∇4u− c∂u

∂t
+ f(xin, yin, t). (1)

Here, u = u(x, y, t), a state variable that describes the
transverse plate deflection and is defined for x ∈ [0, Lx],
y ∈ [0, Ly] and t ≥ 0, c is a loss parameter, ∇4 is the bi-
harmonic operator, f(xin, yin, t) is the input signal at input
source location (xin, yin) at time instance t and finally, κ2

can be referred to as the stiffness parameter:

κ2 =
Eh2

12ρ(1− v2)
, (2)

where E, h, ρ, and v are the Young’s modulus, plate thick-
ness, plate density and Poisson’s ratio, respectively.

2.1 Frequency dispersion

One feature that characterises the sound of a plate reverb
is the fact that higher frequencies propagate faster through
a metal plate than lower frequencies [10, 11]. This phe-
nomenon is called frequency dispersion. The dispersion
relation is defined as:

ω2 ' γ4κ2, (3)

where ω is the angular frequency and γ the wavenumber.
The group and phase velocities are defined as:

cph =
√
κω cgr = 2

√
κω. (4)

Using the properties of the EMT140 (steel, 0.5mm thick)
and a frequency range of 20-20,000kHz, group velocities
can vary between ca. 20-620m/s. In regular (or room) re-
verberation all frequencies travel at the same speed making
frequency dispersion one of the main differences between
plate and room reverberation.

2.2 Damping

In plate reverbs, three different kinds of damping occur:
thermoelastic damping, radiation damping and damping
induced by a porous medium [10, 11]. All three will be
shortly described in this section.

2.2.1 Thermoelastic damping

Thermoelastic damping occurs in materials with a high
thermal conductivity. It is an internal damping mechanism
that damps different frequencies at different strengths ac-
cording to the following equation [11]:

αth(ω) =
ω

2
η(ω) ≈ ω2R1C1

2(ω2h2 + C2
1/h

2)
(5)

where R1 and C1 are material dependent constants. In the
case of the EMT140 plate reverb, these are R1 = 4.94 ·
10−3 and C1 = 2.98 · 10−4 [10].

2.2.2 Radiation damping

Radiation damping happens when vibration is converted to
acoustic energy. This happens according to the following
equation [10, 11]:

αrad =
1

4π2

caρa

ρh

2(Lx + Ly)

LxLy

ca

fc
g(ψ), (6)

g(ψ) =
(1− ψ2) ln[(1 + ψ)/(1− ψ)] + 2ψ

(1− ψ2)3/2
,

where ρa and ca are the density of air and speed of sound

in air respectively and ψ =
√

f
fc

. Here, fc is the critical

frequency and can be calculated using fc =
c2a
2πκ .

2.2.3 Damping induced by porous medium

Plate reverberators contain a porous plate positioned be-
hind the metal plate. The distance between the two enti-
ties can be set creating a difference in low-frequency de-
cay [10, 11]. The damping plate position changes this de-
cay between roughly 0.6 - 5.5 seconds [5] and can be ma-
nipulated on the interface of a real plate reverb like the
EMT140.

2.3 Boundary conditions

The states of the edges of a plate are referred to as the
boundary conditions. In [12], the authors state that a plate
can have three different boundary conditions: free, clamped
or simply supported (hinged). For a rectangular plate such
as the plate reverb this means that there are 27 different
possible combinations of boundary conditions. Every com-
bination will have a unique impulse response and will thus
sound different. In this work, we limit ourselves to all
sides being simply supported. This means that state vari-
able u = 0 at x = 0, x = Lx, y = 0 and y = Ly .

3. NUMERICAL SOLUTION

The implementation approach we chose to use is the modal
description (see Section 1). In this section a numerical so-
lution of this will be presented.

The state u, as seen in the Kirchhoff-Love equation (1)
can be modelled as being a summation of a number of dif-
ferent modes [13]:

u =

M∑

m=1

N∑

n=1

qmnΦmn(x, y), (7)



where qmn is the unknown amplitude of mode (m,n) (m
being the mode over the horizontal axis and n over the ver-
tical axis of the plate) and Φmn is a modal shape defined
over x ∈ [0, Lx] and y ∈ [0, Ly]. In this model, M · N is
the total number of modes accounted for. In theory, this is
infinite. Note that – apart from the chosen time step (1/fs)
– the computational speed depends on M and N .

For a rectangular plate with sides Lx and Ly , using sim-
ply supported boundary conditions, Φmn(x, y) can be cal-
culated [13]:

Φmn(x, y) =
4

LxLy
sin

mπx

Lx
sin

nπy

Ly
, (m,n) ∈ ZZ+,

(8)
and qmn can be found using the following update equation
[13]:

Aqt+1
mn = Bqtmn + Cqt−1

mn +
Φmn(xp, yp)

ρh
P t, (9)

where constants A,B and C can be described in the fol-
lowing way:

A =
1

k2
+
cmn
ρhk

, B =
2

k2
− ω2

mn,

C =
cmn
ρhk

− 1

k2
.

Moreover, P t is the input signal at time instance t at spec-
ified input location (xp, yp), k is the chosen timestep 1/fs
and cmn is a loss coefficient that can be set per eigenfre-
quency which gives a lot of control over the frequency con-
tent of the output sound.

3.1 Eigenfrequencies

The (angular) eigenfrequencies ωmn can be calculated us-
ing the following equation [14]:

ωmn = κπ2

(
m2

L2
x

+
n2

L2
y

)
. (10)

According to [13] and experimental observation, stability
of the update equation (9) can only be assured if and only
if:

ωmn < 2fs. (11)

This poses a limit on the total number of modes in (7) and
a creates the dependency:

ωM(n)n, ωmN(m) < 2fs, (12)

where m ∈ [1,M(n)] and n ∈ [1, N(m)]. All the eigen-
frequencies that satisfy this condition will be used in the
algorithm.

3.2 Loss coefficients

In [13], the authors set loss coefficients per frequency band.
In our implementation, the different damping mechanisms

Figure 1. Thermoelastic (αth) and Radiation damping
(αrad) for values based on the EMT140.

described in Section 2.2 have been implemented to ulti-
mately create a loss coefficient for each individual eigen-
frequency. If we set the porous medium to the furthest
distance possible, the damping induced by this can be ig-
nored. In Figure 1 the results can be seen.

The loss coefficients are then calculated in the following
way [11, 13]:

cmn =
12 ln(10)

T60
, where T60 =

3 ln(10)

αtot
, (13)

⇒ cmn = 4αtot.

Here, αtot is simply the addition of all of damping factors.

3.3 Dynamic outputs

The output can be retrieved at a specified point by, in a
certain sense, inverting (7):

uout =
M∑

m=1

N∑

n=1

qmnΦmn(xout, yout). (14)

The PA1 Dynamic Plate Reverb (as described in Section
1) has the functionality of moving the input from left to
right over the plate to create a flanging effect. In our im-
plementation, not only both outputs (not inputs) are able
to move, but they are able to move in elliptical and Lis-
sajous patterns. This happens according to the following
equations:

xout(t) = RxLx sin

(
Sx ·

2πt

fs

)
+ 0.5, (15)

yout(t) = RyLy sin

(
Sy ·

2πt

fs
+ θ

)
+ 0.5. (16)

Here, Rx, Ry ∈ [−0.5, 0.5] when multiplied with Lx and
Ly respectively, determine the horizontal and vertical max-
ima of the output pattern. If one of these has a value of
zero, the outputs will move in a linear shape. The shape
of the pattern is determined by the horizontal and verti-
cal speeds Sx, Sy and the phase shift θ. For example if



Sx = Sy = 1 and θ = 0.5π the outputs will follow an
elliptical pattern. The patterns created for different values
of Sx, Sy and θ can be seen in [15]. If either Sx or Sy
has a value of zero, the outputs will again move in a linear
fashion. Note, that it is perfectly possible to set different
values for the aforementioned parameters for the left out-
put channel and the right.

3.4 Changing plate dimensions

The fact that VA simulations are extremely flexible, poses a
lot of interesting opportunities for model manipulation. We
were interested in manipulating parameters that are physi-
cally ’fixed’, such as the dimensions of a steel plate. Gen-
erally speaking, changing the dimensions of a steel plate
is physically impossible to do. The challenge was thus
to imagine how the sound would change if it would be
possible. Looking at the variables that are dependent on
the horizontal (Lx) and vertical (Ly) plate dimensions, we
see that changing these would change the eigenfrequen-
cies, the modal shapes and radiation damping. As can be
seen in (10) the eigenfrequencies lower asLx andLy grow.
Given the stability condition (11), the number of eigen-
frequencies that can be accounted for (M(n) and N(m)
in (7)) also grows as the plate dimensions grow. In the
algorithm, this is implemented by adding zero values to
qt+1
mn , q

t
mn and qt−1

mn (the q-vectors) in (9), where the com-
binations mn were non-existent in the previous update.
If the plate decreases in size, the values of the q-vectors
for which the combinations mn do not satisfy the stability
condition anymore will be removed. Also in (7), the modal
shapes change depending on Lx and Ly in (8). As long as
the same number of modes is accounted for, the q-vectors
will not be affected in (9) as Φmn changes. Lastly, the ra-
diation damping αrad and factors A,B and C in (9) will be
updated as Lx and Ly change.

The thickness of the plate can also be changed. This
changes the thermoelastic damping αth in (5), the radia-
tion damping αrad in (6) and the stiffness factor κ2 in (2)
which then changes the eigenfrequencies again. It can be
derived that a decrease in thickness will lower the eigen-
frequencies.

4. RESULTS

In this section, the results of the implementation will be
discussed. They have been informally evaluated by the
authors and sound demos have been made available on-
line 1 . Unfortunately, we did not have access to an actual
plate reverb, so to in order to tell whether the implemen-
tation was successful we compared it to the PA1 Dynamic
Plate Reverb and ValhallaPlate: already existing VA plug-
ins. When compared to these plugins, we tried to put their
settings (plate size, decay values, etc.) as close to the val-
ues of our implementation as possible. The outputs from
the plugin and our implementation were then compared.
The reasons for any differences in sound output we could
only speculate on, as the plugins were not open-source and
internal parameters were thus hidden.

1 http://tinyurl.com/zwscbtl Full link: [16]

Figure 2. Plots of input and different output examples
using EMT140 properties. Total length of outputs: 9.2
seconds. (a): Dry input signal, (b): Left output signal
(0.1Lx, 0.45Ly), (c): Left moving output signal (Rx =
Ry = 0.4, Sx = 6, Sy = 5, θ = 0.5π), (d): Plate stretched
from Ly = 1− 2m between 1− 2 seconds.

As we did not have any way of comparing our novel addi-
tions (moving the outputs and changing plate dimensions)
to existing solutions, we could only evaluate the output
based on what we expected it to sound like. The wave-
forms of the input and a few output examples can be found
in Figure 2.

4.1 General output

In general, the output sound is very natural, especially when
combined with some dry input signal. Although no formal
listening tests have been carried out, the naturalness of the
has been reported by the authors. When compared to the
PA1 Dynamic Plate Reverb and ValhallaPlate the output
has a little more low-frequency content. This is probably
because the damping factors we included in our algorithm
mostly attenuate the high-frequency content.

4.2 Moving outputs

Moving the outputs creates a result that sounds like a vi-
brato/flanging effect. This can be explained by the fact that
the outputs ’travel away’ or ’travel towards’ sound that has
already been travelling in the plate which changes the pitch
of the output sound slightly.

Letting the left and right output move at different speeds
or in different shapes causes the sound to arrive in the left
channel and the right channel at different time instances.
Perceptually, it will sound like the reverb is moving from
left to right at different speeds causing a very immersive
stereo effect.

4.3 Changing plate dimensions

Increasing the size of the plate creates a pitch-bend effect:
lower pitch when Lx and/or Ly are increased and higher



when these are decreased. This can be explained by the
fact that the eigenfrequencies are ’stretched/shortened’ as
the plate dimensions increase/decrease. The exact oppo-
site happens happens when plate thickness is changed: if
the plate gets thicker, the pitch goes up, and the other way
around. This can be explained by the increase in the stiff-
ness factor in (2) when the thickness increases.

An interesting effect occurs when input and output are
combined (not 100% wet signal) as the pitch bend effect
only applies to the reverb, and does not influence the dry
input signal.

4.4 Dynamic loss coefficients

To the best of our knowledge, the current state of the art
does not make use of loss coefficients dependent on phys-
ical parameters. We explored the possibility to make some
of these parameters dynamic. The most interesting param-
eter we explored is the air density (ρa) in Equation (6).
When increasing this, the sound (especially the high fre-
quency content) will die out sooner and has a ’muffled’
sound and can also be derived from the equation. Ulti-
mately, we decided against implementing this feature, as it
did not add much to the sound; it only decreased the natu-
ralness of the plate reverb.

4.5 Computational speed

As stated in before, the computational speed depends on
the total number of eigenfrequencies (M(n) and N(m))
being accounted for in the algorithm. We found a corre-
lation of 0.996 between this number and program speed,
making decreasing the total number of eigenfrequencies
our main focus. What the authors explain in [13] is the
possibility of removing the eigenfrequencies that are not
perceptually important. In our algorithm we propose:

d = (
12
√

2
C/100 − 1) · fc, (17)

where C is an arbitrary amount in cents and fc is the cur-
rent eigenfrequency (in Hz) starting with the lowest eigen-
frequency accounted for in the algorithm which can be cal-
culated using f = ω

2π . The algorithm will then discard the
eigenfrequencies if:

fi − fc < d,

otherwise:
fc = fi.

When C is put to 0.1 cents, the total number of eigen-
frequencies accounted for (using the EMT140 properties)
decreases from 18,218 to 7,932, which makes a big dif-
ference in computational time. Now, our implementation
only needs only needs roughly 7 seconds instead of 12 sec-
onds to process 9.2 seconds of audio, proving that a real-
time implementation would indeed be feasible. The algo-
rithm has been tested using a MacBook Pro containing a
2,2GHz Intel Core i7 processor. The authors indeed report
no significant audible difference after reducing the number
of modes this way.

In order to improve computational time when the outputs
are moving, Φmn(xout, yout) is evaluated for different val-
ues of t: t ∈ [1, fs] with steps of 4/max([Lx Ly]), be-
fore the update equation (9) and is then selected (instead of
evaluated) at the appropriate times in the update equation.
We found this step-size to be a good balance between speed
and having minimal artefacts in the sound if the speed is
not set to be too high.

Changing the plate dimensions greatly influences the com-
putational time as the eigenfrequencies need to be recal-
culated many time. To improve computational time, the
eigenfrequencies and the modal shapes are reevaluated ev-
ery 100th time-step, according to the current (new) dimen-
sions of the plate. As with the previous chosen time-step,
found this to be a good balance between speed and having
minimal artefacts.

5. CONCLUSION AND FUTURE WORK

In this paper we presented a VA simulation of plate rever-
beration. The output of the implementation sounds natu-
ral and parameters like in- and output positions and plate
dimensions have been made dynamic resulting in a very
unique and interesting flanging and pitch-bend effect (re-
spectively), something which has not yet been achieved by
the current state of the art. Another novelty is that we in-
cluded thermoelastic and radiation damping that influence
every eigenfrequency independently.

In the future we would like to create a real-time plu-
gin containing all that is presented in this paper. In order
to do so, the algorithm needs to be optimised, especially
computationally heavy processes like moving the pickups
and changing the dimensions of the plate. When this is
achieved, the plugin will be tested with musicians in order
to test usability and whether the output sound is satisfac-
tory. Furthermore, we would like to add damping induced
by a porous medium to our implementation. Even though
it has been ignored in this work, it is an important feature
in the EMT140. Lastly, we would like to explore the pos-
sibilities of changing other parameters of the plate using
the presented model as a basis. The shape and the struc-
ture of the plate, for example, would be very interesting to
make dynamic. Moreover, different materials, such as gold
and aluminium, or even non-metallic materials like glass,
could be explored and result in some interesting timbres.
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Appendix B

MATLAB Code

B.1 Main Algorithm

1 %% Reset Functions
2 %clear all;
3 clc
4 close all;
5

6 %% Set Global Variables
7 fs = 44100; %sample rate
8 ca = 343; %speed of sound in air
9 pa = 1.225; %air density

10

11 %% Set VA effects
12 phasing = false; %make pickups move or not
13 stretching = 0; %stretch or not (0 = false, 1 = true)
14 physDamp = false; %set physical damping off/on
15 decay = 4; %if physDamp = false, this decay value will be used for ...

all frequencies
16

17 %% Set plate parameters
18 Lx = 2; %Plate width
19 Ly = 1; %Plate height
20 h = 0.0005; %plate thickness (m)
21

22 rho = 7850; %Material Density (kg/m^3)
23 E = 2e11; %Young's modulus
24 v = 0.3; % Poissons ratio
25 kSquared = (E*h^2)/(12*rho*(1-v^2)); %stiffness factor
26

27 %% Set input/output positions
28 p = [0.4 0.415]; %input position between (0-1)
29 qL = [0.1 0.45]; %left output position at (0-1)

77
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30 qR = [0.84 0.45]; %right output position at (0-1)
31

32 %transform to fit plate dimensions
33 in = [p(1)*Lx p(2)*Ly];
34 outL = [qL(1)*Lx qL(2)*Ly];
35 outR = [qR(1)*Lx qR(2)*Ly];
36

37 %% Get input
38 [sound, soundfs] = audioread('rhodes2.aif');
39 offset = 0; %set possible offset (in samples) for testing after stretch
40 fixed = true;
41 if fixed == true
42 len = 2; %set fixed length for input (in seconds)
43 else
44 len = floor(length(sound)/soundfs); %set length to original ...

length of input
45 end
46 input = zeros(soundfs*len+soundfs*5,1); %create room for reverb (5 ...

seconds)
47 input(1+offset:length(sound(1:soundfs*len,1))+offset) = ...

sound(1:soundfs*len,1); %insert sound
48 input(1+offset:length(sound(1:soundfs*len,1))+offset) = ...

ones(soundfs*len,1); %insert sound
49

50 %% Set mode reduction options
51 square = false; %remove dependency
52 delModes = false; %delete unactivated modes
53 calcCent = false; %calculate cents
54 C = 1; %set C
55

56 %% Create Eigenfrequencies
57 disp('Create Omega')
58 val = 0;
59 m = 1;
60 m1 = 1;
61 m2 = 1;
62 omega = zeros(100000,3); %set to zeros for program speed
63 while val < fs*2 %check for stability
64 val = ((m1/Lx)^2 + (m2/Ly)^2)*sqrt(kSquared)*pi^2; %calculate ...

eigenfrequency
65 %m1 is fixed, increase m2 until above stability condition
66 if val < fs*2 %double check for stability
67 omega(m,1) = val; %first column: eigenfrequency
68 omega(m,2) = m1; %second column: horizontal mode
69 omega(m,3) = m2; %third column: vertical mode
70 m2 = m2 + 1;
71 m = m+1;
72 else
73 if m1 == 1
74 stablem2 = m2-1; %set highest stable vertical mode
75 end
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76 m2 = 1; %reset m2
77 m1 = m1 + 1; %increment m1
78 val = ((m1/Lx)^2 + (m2/Ly)^2)*sqrt(kSquared)*pi^2; %check ...

if (m1,1) > 2fs
79 if val > fs*2
80 stablem1 = m1 - 1; %set highest stable horizontal mode
81 break; %if (m1,1)> 2fs , break out of the loop
82 end
83 end
84 end
85 omega = omega(1:m-1,:); %get rid of zeros
86

87 %% Remove dependency
88 if square == true
89 highMode = omega(:,2).*omega(:,3);
90 indexFound = find(highMode==max(highMode(:))); %find highest ...

possible MN
91 i = 1;
92 maxM1 = omega(indexFound(1),2);
93 maxM2 = omega(indexFound(1),3);
94 while i <= length(omega(:,1))
95 % if an eigenfrequency has a mode-value higher than the ...

maximum, discard
96 if omega(i,2) > maxM1 || omega(i,3) > maxM2
97 omega(i,:) = [];
98 else
99 i = i + 1;

100 end
101 end
102 end
103

104 %% Delete Neclegible Modes From Input
105 if delModes == true
106 disp('Delete neclegible modes from input')
107 i1 = 1;
108 answ1 = p(1);
109 %multiply x_p with integers until the answer becomes an integer
110 while rem(answ1,1) ~= 0
111 i1 = i1+1;
112 answ1 = p(1)*i1;
113 end
114 %multiply y_p with integers until the answer becomes an integer
115 i2 = 1;
116 answ2 = p(2);
117 while rem(answ2,1) ~= 0
118 i2 = i2+1;
119 answ2 = p(2)*i2;
120 end
121 %discard the eigenfrequencies accordingly
122 n = 1;
123 while n <= length(omega(:,1))
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124 if mod(omega(n,2), i1) == 0 || mod(omega(n,3), i2) == 0
125 omega(n,:) = [];
126 else
127 n = n + 1;
128 end
129 end
130 end
131

132 %% Calculate Cents
133 if calcCent == true
134 disp('Calculate Cents')
135 n = 1;
136 omegaPrev = 0; %set omega_i
137 omega = sortrows(omega,1);
138 ncentSave = [];
139 ncent = ...

nthroot(2,12)^(C/100)*(omega(1,1)/(2*pi))-omega(1,1)/(2*pi); ...
%set d in Hz

140 while n < length(omega(:,1))
141 %if f_c-f_i < d, discard eigenfrequency
142 if omega(n,1)/(2*pi) - omegaPrev/(2*pi) < ncent
143 omega(n,:) = [];
144 else
145 omegaPrev = omega(n,1); %otherwise set next f_i
146 n = n+1;
147 % and calculate next d
148 ncent = nthroot(2,12)^(C/100)*...
149 (omega(n,1)/(2*pi))-omega(n,1)/(2*pi);
150 end
151 end
152 omega = sortrows(omega,[2,3]); %sort according to modes
153 end
154

155 %% Create PhiIn
156 M = length(omega(:,1));
157 phiIn = zeros(M,1);
158 for m = 1:M
159 phiIn(m,1) = (4/(Lx*Ly))*sin((omega(m,2)*pi*in(1))/Lx)*...
160 sin((omega(m,3)*pi*in(2))/Ly);
161 end
162

163 %% Set up Moving Outputs
164 disp('Set up Moving Outputs')
165 outputPointsX = 0:1/(10000*Lx):1;
166 outputPointsY = 0:1/(10000*Ly):1;
167 outputPointsX = outputPointsX*Lx;
168 outputPointsY = outputPointsY*Ly;
169

170 %set shape extremes
171 Rx = 0.4;
172 Ry = 0.4;
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173

174 %set x and y speeds
175 Sx = 4;
176 Sy = 3;
177

178 %Create possible output positions
179 circX = outputPointsX(ceil(length(outputPointsX)*...
180 (Rx*sin(Sx*2*pi*(1:2/max([Lx Ly]):fs)/fs)+0.5)));
181 circY = outputPointsY(ceil(length(outputPointsY)*...
182 (Ry*sin(Sy*2*pi*(1:2/max([Lx Ly]):fs)/fs + 0.5*pi)+0.5)));
183

184 %Set speeds for left and right output
185 Lspeed = 50;
186 Rspeed = 30;
187

188 %% Create the Output Vector
189 phiOutL = zeros(M,1);
190 phiOutR = zeros(M,1);
191 disp('Create PhiOut')
192 if phasing == true %if true, precompute phiOutL and R for all ...

possible output positions
193 phiOutLPre = zeros(M,length(circX));
194 phiOutRPre = zeros(M,length(circX));
195 for t = 1:length(circX)
196 for m = 1:M
197 phiOutLPre(m,t) = ...

(4/(Lx*Ly))*sin((omega(m,2)*pi*circX(t))/Lx)*...
198 sin((omega(m,3)*pi*circY(t))/Ly);
199 phiOutRPre(m,t) = ...

(4/(Lx*Ly))*sin((omega(m,2)*pi*circX(t))/Lx)*...
200 sin((omega(m,3)*pi*circY(t))/Ly);
201 end
202 end
203 else %if false, create PhiOutL and R for a their set output positions
204 for m = 1:M
205 phiOutL(m,1) = (4/(Lx*Ly))*sin((omega(m,2)*pi*outL(1))/Lx)*...
206 sin((omega(m,3)*pi*outL(2))/Ly);
207 phiOutR(m,1) = (4/(Lx*Ly))*sin((omega(m,2)*pi*outR(1))/Lx)*...
208 sin((omega(m,3)*pi*outR(2))/Ly);
209 end
210 end
211

212 %% If the platemesh is desired, set to 'true'
213 creaMesh = false;
214 if creaMesh == true
215 disp('Create Mesh')
216 gridSize = 102; %set gridsize/meter
217 modeAdd = false;
218 meshFunc = zeros(gridSize*Ly-(Ly-1),gridSize*Lx-(Lx-1)); ...

%initialise the mesh
219 %create modeshape over x and y for every mode
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220 for x = 1:gridSize*Lx-(Lx-1)
221 for y = 1:gridSize*Ly-(Ly-1)
222 for mode = 1:length(omega(:,1))
223 meshFunc(y,x,mode) = (4/(Lx*Ly))*...
224 sin(omega(mode,2)*pi*((x-1)/(gridSize-1))/Lx)*...
225 sin(omega(mode,3)*pi*((y-1)/(gridSize-1))/Ly);
226 end
227 end
228 end
229 end
230

231 %% Damping
232 if physDamp == true %if physical damping is true..
233 %% Calculate thermoelastic damping
234 %Set thermal coefficients
235 R1 = 4.94e-3;
236 C1 = 2.98e-4;
237 %Calculate damping coefficient and damping factor
238 n1 = (omega(:,1)*R1*C1)./((omega(:,1).^2*h^2)+((C1^2)/(h^2)));
239 alphaTH = (omega(:,1)/2).*n1;
240

241 %% Calculate Radiation Damping
242 fc = (ca^2)/(2*pi*sqrt(kSquared)); %calculate critical frecuency
243 phiRad = sqrt((omega(:,1)/(2*pi))/fc);
244 g = ((1-phiRad.^2).*log((1+phiRad)./(1-phiRad))+2.*phiRad)./...
245 ((1-phiRad.^2).^(3/2));
246 alphaRadPre = ...

(1/(4*pi^2))*(ca*pa)/(rho*h)*((2*(Lx+Ly))/(Lx*Ly))*(ca/fc);
247 alphaRad = alphaRadPre.*g;
248

249 %% Calculate total damping
250 alphaTot = alphaRad+alphaTH;
251 T60 = 3.*log(10)./alphaTot; %reverberation time
252 end
253 if physDamp == true %if physical damping is true calculate loss ...

coefficients using
254 cm(1:length(omega(:,1)),1) = 12.*(log(10)./T60); %physical damping
255 else
256 cm(1:length(omega(:,1)),1) = 12.*(log(10)./decay); %decay value
257 end
258

259 %% Initialise update equation
260 k = 1/fs;
261 qNext = zeros(length(omega(:,1)),1);
262 qNow = zeros(length(omega(:,1)),1);
263 qPrev = zeros(length(omega(:,1)),1);
264

265 %calculate coefficients
266 factorA = (1/k^2)+(cm/(rho*h*k));
267 factorB = ((2/k^2)-(omega(:,1)).^2);
268 factorIn = ((phiIn)./(rho*h));
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269 factorC = ((cm/(rho*h*k))-(1/(k^2)));
270

271 %calculate normalised (with respect to A) coefficients
272 factorIndA = factorIn./factorA;
273 factorCdA = factorC./factorA;
274 factorBdA = factorB./factorA;
275

276 %% Set up dynamic variables if stretching == 1
277 if stretching == 1
278 Lxnew = Lx;
279 Lynew = Ly;
280 hNew = h;
281 kSquaredNew = kSquared;
282 start = 44100; %set startingpoint of stretching (in samples)
283 ending = 44100+44100; %set endpoint of stretching (in samples)
284 omega = sortrows(omega,[2,3]); %sort according to modes
285 omegaShift = omega;
286 end
287 change = 0;
288

289 outputShapeL = zeros(2,length(input));
290 outputShapeR = zeros(2,length(input));
291 ind = 1;
292

293 %% Main loop
294 disp('Loop');
295 tic
296 output = zeros(2,length(input)); %initialise output
297 output2 = zeros(2,length(input)); %initialise normalised output
298

299 update = true; %if false, use the filter function, else use the ...
update equation

300 if update == false
301 %initialise filter coefficients
302 b = zeros(length(omega(:,1)),2);
303 a = zeros(length(omega(:,1)),3);
304 for mode = 1:length(omega(:,1))
305 b(mode,:) = [0 factorIn(mode)];
306 a(mode,:) = [1 -factorBdA(mode) -factorCdA(mode)];
307 output(1,:) = output(1,:) + ...

phiOutL(mode).*filter(b(mode,:),a(mode,:),input)';
308 output(2,:) = output(2,:) + ...

phiOutR(mode).*filter(b(mode,:),a(mode,:),input)';
309 end
310 for i = 1:2
311 output2(i,:) = output(i,:)/max(abs(output(i,:)));
312 end
313 else
314

315 for t = 1:length(input)
316 %the update equation
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317

318 if t == 1 %there is no value t-1 at t=1, so set input to 0
319 qNext =(factorBdA.*qNow+factorCdA.*qPrev+factorIndA.*0);
320 else
321 qNext ...

=(factorBdA.*qNow+factorCdA.*qPrev+factorIndA.*input(t-1));
322 end
323

324 %% draw functions
325 if t > 0 && mod(t,1) == 0 && creaMesh == true
326 plate = zeros(gridSize*Ly-(Ly-1),gridSize*Lx-(Lx-1));
327 for modeM = 1:length(omega(:,1))
328 plate = plate + qNext(modeM).*meshFunc(:,:,modeM);
329 if modeAdd == true && mod(modeM,ceil(modeM/50)) == 0 && ...

t == 5
330 mesh(plate);
331 title(['Modes included: ' num2str(modeM)])
332 drawnow;
333 end
334 end
335 mesh(plate);
336 zlim([-5e-4 5e-4])
337 set(gca,'CLim',[-7e-7 7e-5])
338 title(['Sample: ' num2str(t)]);
339 drawnow;
340 end
341

342 %% stretching (only works correctly if all mode reduction is false)
343 if stretching ~= 0 %if sheet size changes
344 if t > start
345 change = 1;
346 if mod(t,100) == 0 || stretching == 2 %for every 100th ...

sample check:
347 m1check = 1;
348 m1Prev = stablem1;
349 m2Prev = stablem2;
350 stableValm1 = 0;
351 stableValm2 = 0;
352

353 %change dynamic variables over time
354 %Lxnew = Lx*(1+(t-start)/44100); %change in width
355 Lynew = Ly*(1-(t-start)/(4*fs)); %change in height
356 %hNew = h * (1-(t-start)/(4*fs)); %change in thickness
357 %kSquared = (E*hNew^2)/(12*rho*(1-v^2)); %update ...

stiffnessfactor
358

359 %% Draw the plate every 1000th sample
360 draw = false;
361 if draw == true && mod(t,1000) == 0
362 clf
363 if flanging == false
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364 plateScat = [-Lxnew/2 -Lynew/2 hNew/2 ...
-hNew/2;Lxnew/2 -Lynew/2 hNew/2 ...
-hNew/2; Lxnew/2 Lynew/2 hNew/2 ...
-hNew/2; -Lxnew/2 Lynew/2 hNew/2 ...
-hNew/2;-Lxnew/2 -Lynew/2 hNew/2 -hNew/2];

365 micsOut = [qL(1)*Lxnew-Lxnew/2 ...
qL(2)*Lynew-Lynew/2 0; ...
qR(1)*Lxnew-Lxnew/2 qR(2)*Lynew-Lynew/2 0];

366 micIn = [p(1)*Lxnew-Lxnew/2 ...
p(2)*Lynew-Lynew/2 0];

367 end
368 if flanging == true
369 plateScat = [-Lxnew/2 -Lynew/2 hNew/2 ...

-hNew/2;Lxnew/2 -Lynew/2 hNew/2 ...
-hNew/2; Lxnew/2 Lynew/2 hNew/2 ...
-hNew/2; -Lxnew/2 Lynew/2 hNew/2 ...
-hNew/2;-Lxnew/2 -Lynew/2 hNew/2 -hNew/2];

370 micsOut = ...
[(circX(floor(mod(t,length(circX))+1))...

371 /Lx)*Lxnew-Lxnew/2...
372 (circY(floor(mod(t,length(circY))+1))/Ly)*...
373 Lynew-Lynew/2 0;...
374 (circX(floor(mod(t/2,length(circX))+1))/Lx)*...
375 Lxnew-Lxnew/2...
376 (circY(floor(mod(t/2,length(circY))+1))/Ly)*...
377 Lynew-Lynew/2 0];
378 micIn = [p(1)*Lxnew-Lxnew/2 ...

p(2)*Lynew-Lynew/2 0];
379 end
380 hold on;
381 plot3(plateScat(:,1),plateScat(:,2), ...

plateScat(:,3));
382 plot3(plateScat(:,1),plateScat(:,2), ...

plateScat(:,4));
383 scatter3(micsOut(:,1),micsOut(:,2),...
384 micsOut(:,3),[],[1 0 0]);
385 scatter3(micIn(:,1), ...

micIn(:,2),micIn(:,3),[],[0 1 0]);
386 ylim([-3 3])
387 xlim([-3 3])
388 zlim([-1*h 1*h])
389 view(38,89)
390 drawnow;
391 end
392

393 % calculate highest stable modes
394 m1Var = 0;
395 while m1Var == 0
396 stableValm1 = ((m1check*pi/Lxnew)^2 + ...

(1*pi/Lynew)^2)*sqrt(kSquared);
397 if stableValm1 > fs*2
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398 m1Var = 1;
399 else
400 m1check = m1check+1;
401 end
402 end
403 stablem1 = m1check-1;
404 m2check = 1;
405 m2Var = 0;
406 while m2Var == 0
407 stableValm2 = ((1*pi/Lxnew)^2 + ...

(m2check*pi/Lynew)^2)*sqrt(kSquared);
408 if stableValm2 > fs*2
409 m2Var = 1;
410 else
411 m2check = m2check+1;
412 end
413 end
414 stablem2 = m2check-1;
415

416 %% Check for unstable eigenfrequencies (happens ...
when decreasing Lx or Ly and increasing h)

417 tooHighVect = find(omega(:,1) > fs*2);
418 if ~isempty(find(omega(:,1) > fs*2,1))
419 % delete if omega > 2fs
420 omega(tooHighVect,:) = [];
421 qNext(tooHighVect,:)= [];
422 qNow(tooHighVect,:) = [];
423 qPrev(tooHighVect,:) = [];
424 else
425 %% Add eigenfrequencies that are now stable ...

(happens when increasing Lx or Ly and ...
decreasing h)

426 if m1Prev < stablem1 || m2Prev < stablem2
427 % if highest stable mode has changed create new ...

omega matrix
428 omegaPrev = sortrows(omega,[2,3]); %set for ...

comparison later
429 omega = zeros(100000,3);
430 val = 0;
431 m = 1;
432 m1 = 1;
433 m2 = 1;
434 while val < fs*2
435 val = ((m1*pi/Lxnew)^2 + ...

(m2*pi/Lynew)^2)*sqrt(kSquared);
436 if val < fs*2
437 omega(m,1) = val;
438 omega(m,2) = m1;
439 omega(m,3) = m2;
440 m2 = m2 + 1;
441 m = m+1;
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442 else
443 m2 = 1;
444 m1 = m1 + 1;
445 val = ((m1*pi/Lxnew)^2 + ...

(m2*pi/Lynew)^2)*sqrt(kSquared);
446 if val > fs*2
447 break;
448 end
449 end
450 end
451 omega = omega(1:m-1,:);
452 %% OPTION ONE: stable horizontal mode increased
453 if m1Prev < stablem1
454 index = 0;
455 for j = 1:length(omega)
456 if j-index < length(omegaPrev)
457 if omegaPrev(j-index,2) ~= ...

omega(j,2)
458 %insert 0's at right locations
459 qNext = [qNext(1:j-1,1); 0; ...

qNext(j:end,1)];
460 qNow = [qNow(1:j-1,1); 0; ...

qNow(j:end,1)];
461 qPrev = [qPrev(1:j-1,1); 0; ...

qPrev(j:end,1)];
462 index = index + 1;
463 end
464 else
465 %insert 0's at the end
466 qNext = [qNext ; ...

zeros(length(omega)-...
467 length(qNext),1)];
468 qNow = [qNow ; ...

zeros(length(omega)-...
469 length(qNow),1)];
470 qPrev = [qPrev ; ...

zeros(length(omega)-...
471 length(qPrev),1)];
472 end
473 end
474 else
475 %% OPTION TWO: stable vertical mode ...

increased
476 if m2Prev < stablem2 % Just adding ...

zeros instead of this smart-adding ...
gives metallic sounds

477 index = 0;
478 for j = 1:length(omega)
479 if j-index < length(omegaPrev)
480 %insert 0's at right locations
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481 if omegaPrev(j-index,2) ~= ...
omega(j,2)

482 qNext = ...
[qNext(1:j-1,1); 0; ...
qNext(j:end,1)];

483 qNow = [qNow(1:j-1,1); ...
0; qNow(j:end,1)];

484 qPrev = ...
[qPrev(1:j-1,1); 0; ...
qPrev(j:end,1)];

485 index = index + 1;
486 end
487 else
488 %insert 0's at the end
489 qNext = [qNext ; ...

zeros(length(omega)-...
490 length(qNext),1)];
491 qNow = [qNow ; ...

zeros(length(omega)-...
492 length(qNow),1)];
493 qPrev = [qPrev ; ...

zeros(length(omega)-...
494 length(qPrev),1)];
495 end
496 end
497 end
498 end
499 end
500 end
501

502 %change eigenfrequency values according to Lxnew ...
and Lynew

503 for i = 1:length(omega(:,1))
504 omega(i,1)=(((omega(i,2)*pi)/Lxnew)^2 + ...

((omega(i,3)*pi)/Lynew)^2)*sqrt(kSquared);
505 end
506

507 %% Create PhiIn and -Outs based on new eigenfrequencies
508 omega = sortrows(omega,[2,3]);
509 M = length(omega);
510 phiIn = zeros(M,1);
511 phiOutL = zeros(M,1);
512 phiOutR = zeros(M,1);
513 for m = 1:M
514 phiIn(m,1) = (4/(Lxnew*Lynew))*...
515 sin((omega(m,2)*pi*p(1)*Lxnew)/Lxnew)*...
516 sin((omega(m,3)*pi*p(2)*Lynew)/Lynew);
517 if flanging == false
518 %they move relative to the plate dimension
519 phiOutL(m,1) = (4/(Lxnew*Lynew))*...
520 sin((omega(m,2)*pi*qL(1)*Lxnew)/Lxnew)*...
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521 sin((omega(m,3)*pi*qL(2)*Lynew)/Lynew);
522 phiOutR(m,1) = (4/(Lxnew*Lynew))*...
523 sin((omega(m,2)*pi*qR(1)*Lxnew)/Lxnew)*...
524 sin((omega(m,3)*pi*qR(2)*Lynew)/Lynew);
525 end
526 end
527 if physDamp == true
528 %Calculate thermoelastic damping
529 n1 = ...

(omega(:,1)*R1*C1)./((omega(:,1).^2*hNew^2)+...
530 ((C1^2)/(hNew^2)));
531 alphaTH = (omega(:,1)/2).*n1;
532

533 % calculate radiation damping
534 fc = (ca^2)/(2*pi*sqrt(kSquared));
535 phiRad = sqrt((omega(:,1)/(2*pi))/fc);
536 g = ((1-phiRad.^2).*log((1+phiRad)./...
537 (1-phiRad))+2.*phiRad)./((1-phiRad.^2).^(3/2));
538 alphaRadPre = (1/(4*pi^2))*(ca*pa)/(rho*hNew)*...
539 ((2*(Lxnew+Lynew))/(Lxnew*Lynew))*(ca/fc);
540 alphaRad = alphaRadPre.*g;
541 alphaTot = alphaRad+alphaTH;
542 T60 = 3.*log(10)./alphaTot;
543

544 cm = zeros(length(omega(:,1)),1);
545 cm(1:length(omega(:,1)),1) = 12.*(log(10)./T60);
546 else
547 cm = zeros(length(omega(:,1)),1);
548 cm(1:length(omega(:,1)),1) = 12.*(log(10)./decay);
549 end
550 %calculate coefficients
551 factorA = (1/k^2)+(cm/(rho*hNew*k));
552 factorB = ((2/k^2)-(omega(:,1)).^2);
553 factorIn = ((phiIn)./(rho*h));
554 factorC = ((cm/(rho*hNew*k))-(1/(k^2)));
555

556 %calculate normalised (with respect to A) coefficients
557 factorIndA = factorIn./factorA;
558 factorCdA = factorC./factorA;
559 factorBdA = factorB./factorA;
560 if stretching == 2
561 stretching = 0;
562 end
563 end
564 if t >= ending && stretching ~= 0 %stop stretching if t ...

> ending
565 stretching = 2;
566 end
567 end
568 end
569
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570 %% Flanging
571 if flanging == true
572 if change == 1 %if stretching occurs
573 for m = 1:M
574 phiOutL(m,1) = (4/(Lxnew*Lynew))*...
575 sin((omega(m,2)*pi*...
576 ((circX(floor(t/Lspeed)+1))/Lx)*Lxnew)/Lxnew)*...
577 sin((omega(m,3)*pi*...
578 ((circY(floor(t/Lspeed)+1))/Ly)*Lynew)/Lynew);
579 phiOutR(m,1) = (4/(Lxnew*Lynew))*...
580 sin((omega(m,2)*pi*...
581 ((circX(floor(t/Rspeed)+1))/Lx)*Lxnew)/Lxnew)*...
582 sin((omega(m,3)*pi*...
583 ((circY(floor(t/Rspeed)+1))/Ly)*Lynew)/Lynew);
584 end
585 else %otherwise use precalculated PhiOuts
586 phiOutL = ...

phiOutLPre(:,floor(mod(t/Lspeed,length(circX))+1));
587 phiOutR = ...

phiOutRPre(:,floor(mod(t/Rspeed,length(circX))+1));
588 end
589 end
590

591 %fill in the output at sample t
592 output(1,t) = qNext'*phiOutL;
593 output(2,t) = qNext'*phiOutR;
594

595 %update qVectors
596 qPrev = qNow;
597 qNow = qNext;
598 end
599 % Normalise Output
600 for i = 1:2
601 output2(i,:) = output(i,:)/max(abs(output(i,:)));
602 end
603 end

B.2 Real-Time Plugin

Notes: This code works only with MATLABs Audio System Toolbox and can be tested in
its Audio Test Bench. The function initPlate contains the first part (before the Main
Loop) of the algorithm above.

1 classdef realTimePlateReverbPlugin < audioPlugin
2 properties
3 % Use this section to initialize properties that the end-user
4 % interacts with.
5 wetness = 50;
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6 cm = false;
7 Lx = 2;
8 Ly = 1;
9 cents = 10;

10 calcCents = true;
11 delModes = true;
12 init = true;
13 phasing = false;
14 smoothLx = false;
15 smoothLy = false;
16 square = true;
17 stretching = true;
18 LFO = false;
19 end
20 properties (Access = private)
21 % Use this section to initialize properties that the ...

end-user does
22 % not interact with directly.
23 currentSample = 0;
24 circXLength = 0;
25 LxSmooth = 2;
26 LySmooth = 1;
27 Lxpre = 2;
28 Lypre = 1;
29 T60 = 4;
30 rho = 7850;
31 h = 0.0005;
32 lengthOmega = 832;
33 omega = zeros(832,3);
34 factorBdA = zeros(832,1);
35 factorCdA = zeros(832,1);
36 factorIndA = zeros(832,1);
37 phiOutL = zeros(832,1);;
38 phiOutR = zeros(832,1);
39 phiOutLPre = zeros(832,22050);
40 phiOutRPre = zeros(832,22050);
41 qNext = zeros(832,1);
42 qNow = zeros(832,1);
43 qPrev = zeros(832,1);
44 qPre = zeros(832,1);
45 samp = 0;
46 prevLengthOmega = 0;
47 p = [0.4 0.415];
48 qL = [0.1 0.45];
49 qR = [0.84 0.45];
50 saveMat = zeros(10000,2);
51 initNum = 1;
52 end
53 properties (Constant)
54 % This section contains instructions to build your audio plugin
55 % interface. The end-user uses the interface to adjust tunable
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56 % parameters. Use audioPluginParameter to associate a public
57 % property with a tunable parameter.
58 PluginInterface = audioPluginInterface(...
59 audioPluginParameter('wetness',...
60 'DisplayName','Dry/Wet',...
61 'Label','%',...
62 'Mapping',{'lin',0,100}),...
63 audioPluginParameter('Lx',...
64 'DisplayName','Plate Width',...
65 'Label','m',...
66 'Mapping',{'lin',1,3}),...
67 audioPluginParameter('Ly',...
68 'DisplayName','Plate Height',...
69 'Label','m',...
70 'Mapping',{'lin',0.5,2}),...
71 audioPluginParameter('cents',...
72 'DisplayName','Cents',...
73 'Label','cents',...
74 'Mapping',{'lin',0.01,10}),...
75 audioPluginParameter('calcCents',...
76 'DisplayName','Calculate Cents',...
77 'Label','off/on',...
78 'Mapping',{'enum','off','on'}),...
79 audioPluginParameter('phasing',...
80 'DisplayName','Phasing',...
81 'Label','off/on',...
82 'Mapping',{'enum','off','on'}),...
83 audioPluginParameter('stretching',...
84 'DisplayName','Stretching',...
85 'Label','off/on',...
86 'Mapping',{'enum','off','on'}),...
87 audioPluginParameter('LFO',...
88 'DisplayName','LFO Stretch',...
89 'Label','off/on',...
90 'Mapping',{'enum','off','on'}),...
91 audioPluginParameter('cm',...
92 'DisplayName','Physical Damping',...
93 'Label','off/on',...
94 'Mapping',{'enum','off','on'}),...
95 audioPluginParameter('init',...
96 'DisplayName','Re-initialise',...
97 'Label','Click twice',...
98 'Mapping',{'enum','off','on'}))
99 end

100 methods
101 function plugin = realTimePlateReverbPlugin %<---
102

103 end
104 function out = process(plugin, in)
105 % This section contains instructions to process the ...

input audio
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106 % signal. Use plugin.MyProperty to access a property of ...
your

107 % plugin.
108 if plugin.init == true
109 options = [plugin.delModes plugin.square ...

plugin.calcCents plugin.phasing ...
plugin.stretching plugin.cents plugin.cm]; ...
%[delModes calcCent phasing stretching cents]

110 disp('Initialising Plugin')
111 [plugin.factorBdA, plugin.factorCdA, ...

plugin.factorIndA, plugin.omega, ...
plugin.phiOutL, ...

112 plugin.phiOutR, plugin.phiOutLPre, ...
plugin.phiOutRPre, plugin.p, plugin.qL, ...
plugin.qR, plugin.circXLength]...

113 = initPlate(plugin.Lx,plugin.Ly,options);
114 % Lspeed = 50;
115 % Rspeed = 30;
116 plugin.qNext = zeros(length(plugin.omega(:,1)),1);
117 plugin.qPre = zeros(length(plugin.omega(:,1)),1);
118 plugin.qNow = zeros(length(plugin.omega(:,1)),1);
119 plugin.qPrev = zeros(length(plugin.omega(:,1)),1);
120 plugin.samp = 0;
121 plugin.init = false;
122 plugin.lengthOmega = length(plugin.omega(:,1));
123 plugin.prevLengthOmega = length(plugin.omega(:,1));
124 plugin.initNum = plugin.initNum + 1;
125 disp(plugin.lengthOmega)
126 end
127 out = zeros(length(in),2);
128 if plugin.prevLengthOmega > plugin.lengthOmega
129 qNextLoop = plugin.qNext(1:plugin.lengthOmega);
130 qNowLoop = plugin.qNow(1:plugin.lengthOmega);
131 qPrevLoop = plugin.qPrev(1:plugin.lengthOmega);
132 factorBdALoop = plugin.factorBdA(1:plugin.lengthOmega);
133 factorCdALoop = plugin.factorCdA(1:plugin.lengthOmega);
134 factorIndALoop = ...

plugin.factorIndA(1:plugin.lengthOmega);
135 phiOutLLoop = plugin.phiOutL(1:plugin.lengthOmega);
136 phiOutRLoop = plugin.phiOutR(1:plugin.lengthOmega);
137 else
138 if plugin.prevLengthOmega < plugin.lengthOmega
139 qNextLoop = ...

[plugin.qNext;zeros(plugin.lengthOmega - ...
length(plugin.qNext),1)];

140 qNowLoop = ...
[plugin.qNow;zeros(plugin.lengthOmega - ...
length(plugin.qNow),1)];

141 qPrevLoop = ...
[plugin.qPrev;zeros(plugin.lengthOmega - ...
length(plugin.qPrev),1)];
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142 factorBdALoop = ...
[plugin.factorBdA;zeros(plugin.lengthOmega ...
- length(plugin.factorBdA),1)];

143 factorCdALoop = ...
[plugin.factorCdA;zeros(plugin.lengthOmega ...
- length(plugin.factorCdA),1)];

144 factorIndALoop = ...
[plugin.factorIndA;zeros(plugin.lengthOmega ...
- length(plugin.factorIndA),1)];

145 phiOutLLoop = ...
[plugin.phiOutL;zeros(plugin.lengthOmega - ...
length(plugin.phiOutL),1)];

146 phiOutRLoop = ...
[plugin.phiOutR;zeros(plugin.lengthOmega - ...
length(plugin.phiOutR),1)];

147 else
148 qNextLoop = plugin.qNext;
149 qNowLoop = plugin.qNow;
150 qPrevLoop = plugin.qPrev;
151 factorBdALoop = plugin.factorBdA;
152 factorCdALoop = plugin.factorCdA;
153 factorIndALoop = plugin.factorIndA;
154 phiOutLLoop = plugin.phiOutL;
155 phiOutRLoop = plugin.phiOutR;
156 end
157 end
158

159 if plugin.stretching == true
160 M = plugin.lengthOmega;
161 pLoop = plugin.p;
162 qLLoop = plugin.qL;
163 qRLoop = plugin.qR;
164 kSquared = 0.5833;
165 k = 1/44100;
166 LxSmoothUse = plugin.LxSmooth;
167 LySmoothUse = plugin.LySmooth;
168 sS = round(M/20);
169 if abs(plugin.Lx - plugin.Lxpre) > 1/sS
170 plugin.smoothLx = true;
171 % disp('smoothLx:');
172 % disp(plugin.smoothLx);
173 else
174 plugin.smoothLx = false;
175 end
176 if abs(plugin.Ly - plugin.Lypre) > 1/sS
177 plugin.smoothLy = true;
178 % disp(plugin.smoothLy);
179 else
180 plugin.smoothLy = false;
181 % disp('smoothLy:')
182 % disp(plugin.smoothLy);
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183 end
184 if plugin.smoothLx == true
185 if round(LxSmoothUse*sS)/sS > ...

round(plugin.Lx*sS)/sS
186 LxSmoothUse = LxSmoothUse - 1/sS;
187 else
188 if round(LxSmoothUse*sS)/sS < ...

round(plugin.Lx*sS)/sS
189 LxSmoothUse = LxSmoothUse + 1/sS;
190 end
191 end
192 else
193 LxSmoothUse = plugin.Lx;
194 end
195 if plugin.smoothLy == true
196 if round(LySmoothUse*sS)/sS > ...

round(plugin.Ly*sS)/sS
197 LySmoothUse = LySmoothUse - 1/sS;
198 else
199 if round(LySmoothUse*sS)/sS < ...

round(plugin.Ly*sS)/sS
200 LySmoothUse = LySmoothUse + 1/sS;
201 end
202 end
203 else
204 LySmoothUse = plugin.Ly;
205 end
206 plugin.Lxpre = LxSmoothUse;
207 plugin.Lypre = LySmoothUse;
208 % disp(LxSmoothUse);
209

210 if plugin.LFO == true
211 LxLoop = LxSmoothUse+...
212 (sin(2*pi*plugin.currentSample/44100)/4);
213 else
214 LxLoop = LxSmoothUse;
215 end
216 plugin.LxSmooth = LxSmoothUse;
217 plugin.LySmooth = LySmoothUse;
218 LyLoop = plugin.LySmooth;
219 omegaLoop = plugin.omega;
220 i = 0;
221 phiOutLLoop = zeros(M,1);
222 phiOutRLoop = zeros(M,1);
223 factorALoop = (1/k^2)+((12.*(log(10)./plugin.T60))/...
224 (7850*0.0005*k));
225 rhoUse = plugin.rho;
226 hUse = plugin.h;
227 factorALoopAll = factorALoop*rhoUse*hUse;
228 for m = 1:M
229 omegaLoop(m,1)= (((omegaLoop(m,2)*pi)/LxLoop)^2 ...
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+ ...
((omegaLoop(m,3)*pi)/LyLoop)^2)*sqrt(kSquared);

230 if omegaLoop(m,1) < 44100*2
231 i = i+1;
232 end
233 factorBdALoop(m,1) = ...

((2/k^2)-(omegaLoop(m,1)).^2)./factorALoop;
234 factorIndALoop(m,1) = ((4/(LxLoop*LyLoop))*...
235 sin((omegaLoop(m,2)*pi*pLoop(1)*LxLoop)/LxLoop)*...
236 sin((omegaLoop(m,3)*pi*pLoop(2)*LyLoop)/LyLoop))...
237 ./(factorALoopAll);
238 phiOutLLoop(m,1) = (4/(LxLoop*LyLoop))*...
239 sin((omegaLoop(m,2)*pi*qLLoop(1)*LxLoop)/LxLoop)*...
240 sin((omegaLoop(m,3)*pi*qLLoop(2)*LyLoop)/LyLoop);
241 phiOutRLoop(m,1) = (4/(LxLoop*LyLoop))*...
242 sin((omegaLoop(m,2)*pi*qRLoop(1)*LxLoop)/LxLoop)*...
243 sin((omegaLoop(m,3)*pi*qRLoop(2)*LyLoop)/LyLoop);
244 end
245 index = zeros(1,i);
246 i = 1;
247 for m = 1:M
248 if omegaLoop(m,1) < 44100*2
249 index(1,i) = m;
250 i = i + 1;
251 end
252 end
253 plugin.omega = omegaLoop;
254 qNextLoopInd = qNextLoop(index);
255 qNowLoopInd = qNowLoop(index);
256 qPrevLoopInd = qPrevLoop(index);
257 factorBdALoopInd = factorBdALoop(index);
258 factorCdALoopInd = factorCdALoop(index);
259 factorIndALoopInd = factorIndALoop(index);
260 phiOutLLoopInd = phiOutLLoop(index);
261 phiOutRLoopInd = phiOutRLoop(index);
262 else
263 qNextLoopInd = qNextLoop;
264 qNowLoopInd = qNowLoop;
265 qPrevLoopInd = qPrevLoop;
266 factorBdALoopInd = factorBdALoop;
267 factorCdALoopInd = factorCdALoop;
268 factorIndALoopInd = factorIndALoop;
269 phiOutLLoopInd = phiOutLLoop;
270 phiOutRLoopInd = phiOutRLoop;
271 index = 1:plugin.lengthOmega;
272 end
273 % phiOutLPhase = plugin.phiOutLPre;
274 % phiOutRPhase = plugin.phiOutRPre;
275 curSamp = plugin.currentSample;
276 lengthCircX = plugin.circXLength;
277 for t = 1:length(in)
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278 if t == 1
279 qNextLoopInd = (factorBdALoopInd.*qNowLoopInd+...
280 factorCdALoopInd.*qPrevLoopInd+...
281 factorIndALoopInd.*plugin.samp);
282 else
283 qNextLoopInd = (factorBdALoopInd.*qNowLoopInd+...
284 factorCdALoopInd.*qPrevLoopInd+...
285 factorIndALoopInd.*in(t-1,1));
286 end
287 % if plugin.phasing == true
288 % phiOutLLoopInd = ...

phiOutLPhase(:,floor(mod((curSamp+t)/4,lengthCircX)+1));
289 % phiOutRLoopInd = ...

phiOutRPhase(:,floor(mod((curSamp+t)/8,lengthCircX)+1));
290 % end
291 %
292 out(t,1) = ...

plugin.wetness/100*25000*sum(qNextLoopInd.*...
293 phiOutLLoopInd)...
294 +(1-plugin.wetness/100)*in(t,1);
295 out(t,2) = ...

plugin.wetness/100*25000*sum(qNextLoopInd.*...
296 phiOutRLoopInd)...
297 +(1-plugin.wetness/100)*in(t,1);
298 qPrevLoopInd = qNowLoopInd;
299 qNowLoopInd = qNextLoopInd;
300 end
301 % if toc > 0.015
302 % plugin.prevLengthOmega = plugin.lengthOmega;
303 % plugin.lengthOmega = plugin.lengthOmega - 100;
304 % disp(plugin.lengthOmega)
305 % else
306 % if toc < 0.01
307 % plugin.prevLengthOmega = plugin.lengthOmega;
308 % plugin.lengthOmega = plugin.lengthOmega + 100;
309 % disp(plugin.lengthOmega)
310 % end
311 % end
312 %disp(get(gca, 'CurrentPoint'));
313 plugin.samp = in(end);
314 plugin.qNext(index) = qNextLoopInd;
315 plugin.qPrev(index) = qPrevLoopInd;
316 plugin.qNow(index) = qNowLoopInd;
317 plugin.currentSample = plugin.currentSample + ...

length(in(:,1));
318 % figure(2);
319 % sc atter(1:length(omegaLoop),sort(omegaLoop(:,1)))
320 % drawnow;
321 end
322 function reset(plugin)
323 % This section contains instructions to reset the plugin
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324 % between uses or if the environment sample rate changes.
325 end
326

327

328 end
329 end
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C.1 Results MUSHRA test

C.2 Results Questionnaire

99
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