IMPROVING THE MODEL CHECKING ACTIVITY USING

H-UPPAAL

A NEW INTEGRATED DEVELOPMENT ENVIRONMENT FOR MODEL CHECKING

BY NIKLAS KIRK MOURITZSEN & RASMUS HOLM JENSEN

((

1.1
1.2
1.3

41
4.2
4.3
4.4

6.1
6.2
6.3
6.4
6.5

7.1
7.2

8.1
8.2
8.3
8.4

Contents

Prefaceo i i e e i e 7
Reading GUIdeo e 7
=111 0T] oo 7
NOtatiON ..o e e e e 13
SUMMANY ..ottt ittt ettt et saa s a s s nsaansannsnnnsnnnsnnnsnnnss 15
1| The Model Checking Activity and H-UPPAAL

Problem i e e e a e 19
Related WOrK . ..o i ittt e et a e na e aa s nnnnnns 21
UPPAAL PORT .ttt ittt ettt et e e e e e e e e e e e e e e e e 21
Colored Petri Nets 22
Previous work on H-UPPAALo e 24
Usability Evaluation and Analysis 25
The H-UPPAALManifestoc.oiiiiiiiiii ittt e e innnanns 27
Expert User Evaluationcoiiiiiiii it a e e e 29
TaSKS . oo e e 29
RESURS . . ot e e e e e 30
Usability Problems 32
Design ldea RanKingsot e 37
DISCUSSION . . .o e 39
L Changelog

Visualand MinorChangesc.iiiiiiiiii e iii i enasnasnnrnnns 43
Visual Changeso ottt e 43
MINOr ChaNgeS .« . v e 44
Utilizing the UPPAAL Backendttt e riaenns 47
Automatic Reachability Analysis 47
Periodic QUEES . . . oot e 51
QuUEry FEEADACK . . o ittt 51
MuUltiple ENGINESo e 52

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

10

11
111
11.2
11.3
11.4
11.5
11.6
11.7

12

13

14
14.1
14.2
14.3
14.4

15
15.1
15.2
15.3

16

m Final Evaluation and Thoughts

Performance Testcciiiiiiiiiii ittt tia i nasaanrnnnnnns 57
PartiCipants e 57
TASKS ittt e e e e 57
Hypothesis . ..o e 58
Test Structure and Setting e 58
Results (EffiCiencCy)o oot 59
Results (Effectiveness) 61
Interpreting the ResuUlts 63
Problematic Situations e 65
L0 o T T 1= T o 67
Future Work ..o i ittt e et e e e na i anns 69
Reading Performance Evaluation e 69
Improvements to Periodic QUENES e 70
SIMUIALOr . o o 70
Support for Multiple UPPAAL VEISIONS 71
Addressing Colorblindness and Accessibility 71
Reworkingthe Query Pane i e 71
Visualizing Communication e 72
References and Appendices
Bibliographyc.coiii i i e 77
Expert User Evaluation Resultsot 79
Expert User Evaluation Tasksciiiiiiiiiiii it inainnnnns 81
Task: Draw a model e 81
Task: Expand a model 82
Task: Explain amodel 82
Task: Rank the different proposals 83
Designldeasciiiiiiiiiiii ittt it ia e ia e aaaaannnnns 85
Location UrgenCy . . .« v oottt e e 85
Subcomponent Functionality Representation i 86
Edge Propertieso e 87
Performance Task Sheetsttt e iaanns 89

(

AALBORG UNIVERSITY
STUDENT REPORT

Title
H-UPPAAL

Theme
Model Checking Tools

Project period
P10, spring semester 2017

Project group
DES106F17

Authors
Niklas Kirk Mouritzsen
nmouri12@student.aau.dk

Rasmus Holm Jensen
rhje12@student.aau.dk

Project supervisors
Ulrik Nyman
ulrik@cs.aau.dk

Dimitrios Raptis
raptis@cs.aau.dk

Number of Pages: 74
Number of Appendix Pages: 26
Published: 2017-06-02

Department of Computer Science
Aalborg University

Software

Selma Lagerl6fsvej 300

9220 Aalborg

WWW.cs.aau.dk

Abstract

Model checking is a popular research area;
however, most people are concerned with
efficiency and speed regarding verification
time and computer resources. In recent years,
limited work has been put into optimizing the
entire model checking activity. Due to this, we
introduced the H-UPPAAL tool, which includes
modern concepts such as hierarchies and
integrated development features. Throughout
the project, we raise and answer the question:

How can the introduction of hierarchies
and integrated development features improve
the workflow in the model checking activity ?

To answer this question, we evaluate
the tool using different techniques, such as
expert insight and performance evaluation
where we compare the tool to the mature
model checking tool, UPPAAL. These evalua-
tions indicate that the newly developed tool
contains concepts that create value in the
model checking activity.

The substance of the report may only be published (with references) in agreement with the authors.

www.cs.aau.dk

1.1

1.2

1.2.1

Preface

This report is written by project group DES106F17 from the Software Master’s program
at Aalborg University. This report concludes the semester spanning from January 2017
to June 2017 and expands on the semester project given in Mourtizsen and Jensen, 2016
(same authors). The overall theme of this project is verification, more specifically model
checking tools. In this project explorative work have been made on how hierarchies can
benefit the world of model checking. During this project, there have been developed a tool
that includes such hierarchies while being inspired by modern integrated development
environments. The following preface is copied from Mourtizsen and Jensen, 2016 and
then expanded on to explain any new concepts.

Reading Guide

Throughout the report, personal pronouns refer to the authors of the report. The content
of this report is written chronologically and should be read as such. The report uses the
Chicago style method of citations for instance [Gerd Behrmann, 2006]. A lexicographically
sorted list of references can be found in the Bibliography on Page 78.

Terminology

This section will cover the terminology used throughout the report. We will describe the
terms used in the UPPAAL tool, and introduce some terms used to describe the newly
developed H-UPPAAL tool.

The UpPAAL Tool

The terminology of UPPAAL will be explained through the use of Example 1. Figure 1.1
shows the models for the implemented system, while Figure 1.2 shows the declarations
and parameters used for the different templates.

Example 1 — Boss/Worker relation. We want to model a workspace consisting of 1 boss,
and an arbitrary amount of workers. The boss has an arbitrary amount of tasks that he
uses his workers to complete. The tasks are unordered, and must each take no longer than
30 minutes to complete. Workers may take a break when working on a task, but the break
must not exceed 10 minutes. When the workday starts, the boss is allowed a period of 40
minutes, where he can plan the day. In this period he may drink up to 3 cups of coffee.
After planning the day, the boss must begin assigning work to individual workers. The
workday concludes when all tasks are finished.

n Chapter 1. Preface

e Planning

planned <= 40

work!

Assigning (

tasksDone()
done = true

JobsDone Q

(8]

cups <3

i

(6]

understood?

—————————————————=
worker : id_w @

ltasksDone()
task[worker]!
nextTask()

(a) Boss template.

Coffee

Break

break < 10

JobsDone

O done GD\

GetTask
work?

Ready

ldone
task[id]?
hadBreak = false

(3 J©
0understood!

worked =0

hadBreak = true (%rking
\—/ worked <= 30

break = 0
hadBreak == false
(b) Worker template.

Figure 1.1: UPPAAL template of a boss assigning tasks to multiple workers.

done;

work;
task[W], understood;

O © N O U A WD =

Listing (1.1) Global declarations.

1 break, worked;
2 hadBreak;

Listing (1.2) Worker declarations.

1

Listing (1.3) Worker parameters.

0 N oA WD =

©

1

planned;
[0,3] cups = 0;
nextUp = 0;

nextTask() {
(nextUp < N - 1) {
nextUp = nextUp + 1;

tasksDone () {
nextUp == N - 1;

©

worked == 30e

Listing (1.4) Boss declarations.

Listing (1.5) System declarations.

Figure 1.2: UPPAAL declarations and parameters for the boss-worker example.

1.2 Terminology n

Template

A structure used to define an abstract timed automaton which later can be instantiated.
Works similar to a class in OOP. A timed automaton is simply an instance of a template,
meaning that templates are not singleton where the automaton is.

Process

In UPPAAL an instantiated automaton of a template is called a process. When
writing queries, it is the name of the process that is used which sometimes differ
from the name of its template.

Model (System)

A model, also known as System, is the description of the entire network of timed
automata. The system declarations in UPPAAL is where we declare which and how
templates are instantiated.

In the model for Example 1, there are two templates. These templates are put into the
model in parallel by the system declaration (Code Snippet 1.5). Note that we only have
one worker template, but the model consists of many worker automata. The worker has
the parameter const id_w id, which creates workers according to the size of the type
id_w. This is defined using the constant W which is set to 3 as seen in Line 2 in Code
Snippet 1.1.

Global State

Describes the state of all locations of the timed automata, alongside variables and
clocks. We can talk about symbolic states, where values of clocks can be bounds and
not actual values. For instance, a clock might have the bound ¢ > 32. Analyzing this
symbolic state space is what allows UPPAAL to work with an infinite state space.

Transition
Describes how the entirety of the model goes from one state to the next. This could be
by automata in the network taking edges or by delaying time on the clocks.

Query

A query is an inquiry of properties of a given model. The key purpose of verification is
that we can query the model of a system resulting in a boolean answer. Often used to
verify if the model can reach a specific state, or check when specific edges are available.
Some queries are able to return traces, which can be used as proofs for the property.
Queries are written in syntax based on TCTL (timed computation tree logic).

Trace
A series of transitions leading up to a state where a given property holds, or an
example of a state where the property does not hold.

One example of a query could be E<> Boss.cups == 3 && Boss.JobsDone which is the
same as asking “Is it possible for the boss to drink three cups of coffee and still get the job done?”.
If UPPAAL returns false, no trace is returned, since it is impossible to reach this particular
state. However, if the property holds, a trace will be returned, showing an example of
how this is possible. A similar example could be A<> Boss. JobsDone which translates to
“Is it guaranteed that the boss eventually gets the job done?”. In this case, if UPPAAL returns
false, a trace could be returned, showing a single example of when this property does
not hold, e.g. an example of a deadlock before the boss reaches JobsDone .

n Chapter 1. Preface

Clock
A special variable that keeps track of time. All clocks progress linearly. Can be reset by
the update-statement on an edge.

In the boss-worker example, there are three clocks defined (break, worked, planned) as
seen in Line 1 in Code Snippet 1.2 and Line 1 in Code Snippet 1.4. These clocks track time
of how long the worker has been working, the durations of his break, and how long the
boss has been planning.

Location
Is the state in which an automaton is at any given time. A location can be annotated
with an invariant.

Invariant
A boolean expression that must evaluate to true to be in, or enter, this location.

Furthermore, a location can be either urgent or committed:

Urgent
Denotes that time is not allowed to pass when the system is in this location.

Committed
If the automaton is in this location, time cannot pass, and the system is forced to
take a transition that includes at least one edge from a committed location.

The visual representation of the Coffee location can be seen at o in Figure 1.1. This
location is urgent but has no invariant. The location Planning at o does have an
invariant restricting the boss from planning for more than 40 minutes. An example of a
committed location can be seen at e .

Edge
An edge is a passage from one location to another and can be annotated with four
different properties:

Select

A shorthand for creating identical edges over a specified range. Used to model a
non-deterministic switch case.

Guard
A boolean expression, often based on variables and clocks, which must evaluate to
true for the edge to be active.

Synchronization
A way for automata in the network to communicate (either handshake or broadcast).
A synchronization is mediated using channels.

Update
One or multiple statements that update variables and clocks when the edge is taken.

As described, an edge is a way of moving from one location to another. An example can
be seen at o . This particular edge has all the possible properties set.

1.2 Terminology

The worker : id_w is the select statement. As mentioned, this is a shorthand notation for
creating multiple edges. Figure 1.3 illustrates how the boss template (Figure 1.3a) could
be expanded if we had three workers (Figure 1.3b).

cups <3 cups <3
Planning m Coffee Planning m Coffee
planned <= 40 O cups ++ @ planned <= 40 O cups ++ @
work! work!

understood? understood?

SN
Assigning <>W©

task[0]!

Assigning ()

©

ltasksDone()

tasksDone()
done = true

task[worker]!
nextTask()

tasksDone()
done = true

nextTask()

ltasksDone()

task[1]!
nextTask()

ltasksDone()
task[2]
nextTask()

JobsDone Q

JobsDone

(a) Boss template. (b) Expanded boss template.

Figure 1.3: Functionality of select statements illustrated.

The edge at o also has a guard, namely ltasksDone() . The taskDone() -function returns
true if the boss is done assigning tasks, otherwise false. The function is defined in Lines
14-16 in Code Snippet 1.4. This guard will prevent the boss from assigning more tasks
than he has available. Another example of a guard can be seen at e . This guard ensures,

in combination with the invariant of the Working location, that each task takes precisely 30
minutes to execute.

The synchronization of the edge at o indicates that when the edge is taken, syn-
chronization on the channel task[worker] , should occur. We use the worker variable from
the select statement to indicate which of the workers should accept the synchroniza-
tion. For instance, when communicating with worker #2, we synchronize on the channel
task[2] .

The last property on the edge is update, which in this case will call the function nextTask() ,
declared in Lines 6-10 in Code Snippet 1.4. This function will increment the nextUp vari-

able. Another example of an update can be seen at G , where we simply increment the
amount of cups the boss has consumed by 1, using cups++ .

n Chapter 1. Preface

Channel
A media for synchronization, which is of the type handshake or broadcast. A channel
can also be urgent.

Handshake
If a channel is of the handshake type, only two automata can synchronize over this

channel at the time. The sender is marked with |, while the receiver is marked with
?.

Broadcast
If a channel is of the broadcast type, one sender (!) on this channel may synchronize
with zero to many receivers (?).

Urgent
Denotes that no time may pass if a synchronization is possible on this channel.

In the boss-worker example we have five (2 + W) channels: understood, work, and
task[W]) as seen in Lines 9-10 in Code Snippet 1.1. The boss broadcasts on the work
channel to tell the workers to get going, seen at e . The task[W] is, as described previ-
ously, an array of channels, one for each worker in the system. Furthermore, understood
is a channel used by the workers to acknowledge the task they have been assigned. This

synchronization can be seen at e .

1.2.2 The H-UPPAAL Tool

The terminology used in H-UPPAAL is similar to the one already covered; however, it
does introduce the following terms.

Component
A component is a collection of locations, edges, and subprocedures. A component
always has exactly one initial and one final location.

Subcomponent

An instance of a component declared inside another component with a specific
instance name.

Subprocedure

A collection of subcomponents that runs in parallel, started by a fork and concluded
by a join.

1.3 Notation

1.3 Notation

The following notation is from Mourtizsen and Jensen, 2016 and is reproduced here for
the readers’ convenience since it will be used in the report.

Notation 1.1 ¢; : C denotes that c; is a subcomponent of component C. Likewise, we have
that {c1, ¢z, c3} : C denotes that all subcomponents in the set are instances of component
C.

We might have two components A and B. In B we have a single instance of A, named a;.
We know that 4, is an instance of A, so we write a4 : A.

Notation 1.2 Sc is a function that, given a component, C, will return the set of all subcom-
ponents instantiated in that component.

We might have a component, A, with subcomponents sy, s3, s3, and, s4. In this example
we have that Sc(A) = {s1, s2, 3, 54 }. If we have a component B with no subcomponents,
we have that Sc(B) = @.

Notation 1.3 Ic is a function that, given a component, C, will return all instances of this
component. We now have that Vc; € Ic(C) | ¢; : C.

If we have three components, A, B and, C, where Sc(A) = {b; : B, ¢1: C}, Sc(B) = {a; :
A, c3:C},and, Sc(C) ={ay: A, by : B}, we then have that Ic(A) = {ay, a2}.

Notation 1.4 Loc is a function that, given a component, C, will return all locations in that
component.

We might have a component, C, with an initial location, /y, and a final location /;. In this
case, Loc(C) ={ly, h }.

2 Summary

Model checking is a technique that allows for designing information systems
while having a guarantee that this design has certain properties. Tools like
UPPAAL have an expressive modeling language that allows for modeling of
rather complex systems while having an efficient verification engine that can be
utilized to ensure said properties. Detailed models have a tendency to become

so complex that they become hard to comprehend. ,
- Mourtizsen and Jensen, 2016

This project focuses on the continued work on the formal model checking and verification
tool H-UPPAAL, which is based on the UPPAAL tool developed primarily at Aalborg
University. This project is focused on evaluating and improving the tool, designed, de-
veloped and implemented mostly in Mourtizsen and Jensen, 2016, where effort has been
made in improving the model checking activity by introducing hierarchies and integrated
development environment features. This is done to have a greater modularity in models,
better encapsulation, and, in general, a higher abstraction level.

Furthermore, this project also focuses on utilizing the UPPAAL backend in new ways
to give modelers new tools and techniques to use while implementing models. One of the
concepts introduced is the automatic reachability analysis, which allows modelers to visually
see reachable parts of the implemented models in real time during the development. The
idea is here to notify users whenever potential bugs, or unwanted behavior, is introduced.
This feature can be seen as a form of automation of techniques modelers would usually use.

Throughout the project, the H-UPPAAL tool has gone through different evaluations. These
evaluations are done to compare the H-UPPAAL tool, and in extension, the new concepts
introduced with the tool, to the mature UPPAAL tool. To do this, an expert user evaluation
were conducted. This evaluation investigated whether expert users of the UPPAAL can
understand and use the new concepts introduced. After this, a more in-dept performance
test was conducted, where the tools were directly compared on participants ability to solve
exercises. Considering the amount of work that has been put into H-UPPAAL, the results
from both evaluations are promising, indicating that further work within the area should
be done might be very interesting.

The report concludes with insight into how the H-UPPAAL tool could be improved in
different areas to better compete with mature model checking tools such as UPPAAL. In
general, we believe that the tool shows enormous potential and we believe that given
more work, the tool would be able to compete with well established model checking and
verification tools.

The Model Checking Activity
and H-UPPAAL

4.1
4.2
4.3
4.4

6.1
6.2
6.3
6.4
6.5

Problem................

Related Work
UPPAAL PORT

Colored Petri Nets

Previous work on H-UPPAAL
Usability Evaluation and Analysis

The H-UrPPAAL Manifesto

Expert User Evaluation ..
Tasks

Results

Usability Problems

Design Idea Rankings
Discussion

3 Problem

Model checking is mostly concerned with validation or verification of concur-
rent programs, data protocols, and reactive systems. This technique allows
developers and researchers to design software while having a guarantee that

the design has certain qualities. Mourtizsen and Jensen, 2016

There have been done plenty of research in the domain of automated verification and
model checking. However, most research focuses on optimizing results from verification
queries given a model. Based on experience and conversation with various experts in
the realm of model checking we have found that the workload of performing the model
checking activity lies in modeling the system rather than verifying its properties. Figure
3.1 illustrates the workflow when using a model checking tool. Research that is concerned
with model checking tends to focus around the backend of such tools, where effort is
laid into representing and exploring state space efficiently. However, what value does an
efficient backend provide if the user spends the majority of the time on generating the
model that describes the behavior?

!

(Problem analysis J

Fine tuning

[l

|)

e)
s

Figure 3.1: Flow of the model checking activity.

This question has motivated us to look at how we can enhance the bridge from user to an
underlying verification engine. We would like to explore how we can use hierarchies and
features that are inspired by modern programming IDEs. We have been implementing a
tool called H-UPPAAL that attempts to do exactly this [Mourtizsen and Jensen, 2016]. This

m Chapter 3. Problem

tool extends the verification engine of UPPAAL, which is a model checking tool that models
systems using networks of timed automata [Larsen et al., 1997]. H-UPPAAL includes
hierarchies and comes with features inspired by integrated development environments.
Via this new tool, we would like to see if these concepts can provide value (increasing
performance) during the model checking activity. In general, we would like to investigate:

How can the introduction of hierarchies and integrated development fea-
tures improve the workflow in the model checking activity?

We deem that by exposing users with varying knowledge of formal verification to H-
UPPAAL, we can find evidence for and against the concepts it introduces. The goal of this
semester is to finalize the tool by polishing the hierarchical model alongside adding a
bit more IDE flavor. After this, the investigation commences, where hierarchies and IDE
features are put to the test.

— Debug queries
Verification queries

Queries

Time
Figure 3.2: Development of different query-types over time.

Looking at Figure 3.1 the state users tend to stay in the longest is Fine tuning. Based
on our own experience and via conversations with users of model checking tools, users
initially want to ensure that the model in being developed represents the behavior of the
given system in question. For this reason, users tend to manually utilize the verification
engine to debug the model to see if the model represents the intended behavior. As time
progresses the users become more and more confident in the model and start to write
actual verification queries. Figure 3.2 illustrates how users tend to use these two types of
queries over time. They start out by writing queries purely to ensure that the behavior of
the model is as intended, and ends up with the actual verification queries that ensure that
the designed model have certain qualities. Note that from the backend’s point of view we
do not distinguish between these two types of queries. For this reason, we will look at
how one could introduce features that facilitate debugging queries.

In the fall of 2016 [Mourtizsen and Jensen, 2016] it was stated that formal syntax and
semantics for the tool was important to explain and prove that the new hierarchical lan-
guage of H-UPPAAL can be translated to the language of UPPAAL. However, we deem that
a complete formalism for the tool is secondary to investigating the impact of the concepts.
If hierarchies and IDE features show to add no value to the model checking activity, work
on such a formalism is drawn useless, considering that such drafts and suggestions to this
type of formalisms have already been published, e.g. [David and Moller, 2001].

4.1

Related Work

Some work has already been made in designing and formulating new languages and tools
in the domain of model checking. This chapter strives to credit some related work that
has been made both regarding formulating a modeling language and how the translation
of these languages and test of such tools can be done.

UPPAAL PORT

There exists many version of the UPPAAL tool out there, which all make use of the power
of the verification backend for some specialized purpose. One of such tools is UPPAAL
PORT [Hékansson et al., 2008]. This branch of the UPPAAL family is concerned with
incorporating Partial Order Reduction Techniques (PORT), which exploits the commutativity
property of a subset of the state space where the ordering of parallel transitions results
in the same state which is used to reduce the state space exploration. In respect to the
developed H-UPPAAL tool, this tool includes structures from the SaveCCM language.
This language, as H-UPPAAL, has a hierarchical nature, consisting of components, both
simple ones, and composite ones. Besides this, details for a collection of components can
be abstracted over using assemblies, switches, and ports. In Figure 4.1 we see a model of
an adaptive cruise controller (ACC) [Akerholm et al., 2007]. We see that some of the details
of how this cruise controller behaves are encapsulated in components and assemblies, like
how the break works (Brake Controller) or how the system recognizes objects on the road
(Object Recognition).

<<SaveComp>>

Road Signs Enabled O o <<Assembly>>
ACC Max Speed O Speed Limit [J-{O— ACC Application

Road Sign Speed O O

[] <<Assembly>>

[Throttle

[]> Controller

<<SaveComp>>

Object
Recognition

Distance (O
Current speed ()

O 10 Hz

V

<<Switch>>

Mode Max Speed

ACC Enabled 1 >
Brake Pedal Used 1 > Brake Assist

ACC

<<SaveComp>>

> Brake
Controller

Brake Signal

Figure 4.1: Adaptive cruise controller modeled in SaveCCM.

4.2

Chapter 4. Related Work

UPPAAL PORT is in particular interesting since it already uses UPPAAL in combination with
a hierarchical structure. However, it is more of a merge between two languages rather than
a hierarchical version of UPPAAL. UPPAAL PORT combines the compositional structure
from the SaveCCM language and the behavior of timed automata from UPPAAL to model
a system. You describe the communication between components and, in general, the
composition of the system using SaveCCM components, while using the timed automata to
describe the behavior of leafs in the tree also known as simple components. In comparison,
H-UPPAAL uses a tree of timed automata and use them to describe behavior in all levels
of components in the tree. Meaning that we can use constructs from timed automata in
the top most level as well as the lowest.

Colored Petri Nets

In the domain of formal verification, networks of timed automata are not the only formal-
ism used to describe concurrent and reactive systems. In this field of research, another
popular formalism is Petri nets. These nets consist of places, transitions, and arcs between
the two. Tokens can be inside places while a transition describes how tokens relay from
one place to the next. An extension of this formalism is timed and colored Petri nets, which
enables the “coloring” of tokens, essentially allowing for the annotation of additional
information on a token besides where it is placed in the net. These colors can be used to
easier describe a more complex state space by having integers, strings or even time as
properties on a token. Furthermore, formalisms including hierarchies in colored Petri nets
have been developed. In Figure 4.2 a model of an assembly line is modeled using such a
formalism [Huber et al., 1989].

AssemblyLine#1 wnem Machine#2 ~—

[]n [Eou
V
®
\/

Mach1 Machine#2

A->Start
B BxSee

|

Buf1 Buffer#3

B->in
C->0Out

Mach2 Machine#2

C->Start

Mach3 Machine#2

E->Start

G F->Sftop

Figure 4.2: Assembly line modeled using hierarchical colored Petri net [Huber et al., 1989].

421

4.2 Colored Petri Nets

The figure shows that we simply encapsulate some of the behavior as a transition with a
more complex behavior called a subpage. Note that multiple instances of the same subpage
is allowed, as Mach1, Mach2 and Mach3 are all instances of the Machine#2 subpage. This is
rather similar to the way components and subcomponents works in H-UPPAAL, where
we can instantiate multiple subcomponents of the same component.

CPN Tools

A tool that implements both a hierarchical and colored Petri net is CPN Tools!. This tool
allows for exploration of state space and verification of properties of said state space
similar to tools of the UPPAAL family. CPN Tools is broadly used for scientific purposes.
The paper that introduces this tool has more than a thousand citations [Jensen et al., 2007].
A significant amount of these papers is case studies, where the tool have been used in an
industrial setting, which indicates the tool has its impact in the industry as well.

[(& NONS) “w CPN Tools (Unversion 3.9.5, August 2013)]
¥Tool box
Auxiliary Mew Page
Create

Decdlare
Hierarchy quastion Create

Maonitaring
DO %%
Simulation gqueastion
State space x ‘ =1 ‘ 4]
Style , : - ,
View
Development
= Help state
» Options _
¥ support.con question
Step: 0
Time: O check
» Options Knowledge
» History Ba--
¥ Dedarations

SiIm
(Do M| b pp

state?2 - » foundanswerl
question

£y
- >
b

cta

Figure 4.3: Screenshot of CPN Tools.

Figure 4.3 shows CPN Tools and illustrates that the tool is composed of a side panel
(left-hand side) and the canvas (right-hand side). The layout of the tool is to some degree
similar to the one of H-UPPAAL where we have one part of the model open at the time,
and all interaction with this model is accessible from the same view. We have not used
CPN Tools for inspiration, but we agree that having all features that interact with a model
should be present when modeling opposed to the more divided user interface of UPPAAL.

1http://cpntools.org/

http://cpntools.org/

m Chapter 4. Related Work

4.3 Previous work on H-UPPAAL

This report is the continued work on the tool H-UPPAAL which can be seen in Figure
4.4. This work was centered around designing and implementing a tool that introduces
hierarchies into networks of timed automata [Mourtizsen and Jensen, 2016]. The tool was
manifested around issues with the current version of UPPAAL, where the complexity of
performing model checking is attempted reduced by adding a formalism that allows for
abstraction and a tool that is inspired by modern programming IDEs. The formalism that
ended up in H-UPPAAL is strongly inspired by From HUPPAAL to UPPAAL: A Translation
from Hierarchical Timed Automata to Flat Timed Automata [David and Moller, 2001], where
the authors presents a hierarchical formalism that can be translated to UPPAAL. Note that
H-UPPAAL do not implement this formalism but a simpler prototyped version.

o o H-UPPAAL
Project B + m - a
° Amaryllis :
9 Customer :
9 Kitchen H L
° Wi
palienc_e =0
e LineCook H ’
* order!
e Ramsay : !
L20 < Em
. : — limi
9 Waitress : patience == limit
Backend Errors Errors Warnings A

Figure 4.4: The H-UPPAAL Tool.

4.4 Usability Evaluation and Analysis

4.4 Usability Evaluation and Analysis

The theme of the project is centered around improving the model checking activity rather
than improving the underlying verification. For this reason, we need to be able to reason
about how new ideas and concepts will affect this activity. To do so, there have been
conducted two different usability evaluations, a rather qualitative study, to investigate
preferences of expert users (Chapter 6) and a quantitative study to measure performance
of our newly developed tool H-UPPAAL compared to an existing mature model checking
tool UPPAAL (Chapter 9). This performance test is greatly inspired by “Does Size Matter?:
Investigating the Impact of Mobile Phone Screen Size on Users’ Perceived Usability, Ef-
fectiveness and Efficiency.” [Raptis et al., 2013]. This study shows a significant effect of
screen size on efficiency, i.e a larger mobile screen decrease the time it takes for a user to
complete a task. However, our inspiration is not found in mobile devices or screen size,
but have strong relations to how the study was conducted and the methodology of the
statistical analysis.

In general the idea of evaluating and designing systems for experts is obviously not
a novice idea. As more and more people started using IT systems, designing and evalu-
ation usability for such systems have become more and more important. In articles like
“A methodology for quantifying expert system usability” [Mitta, 1991], the usability and
how to quantify it is discussed. And there have in general been done a lot of evaluations
on expert systems from all kinds of areas, like systems designed for medical experts
“Evaluating Medical Expert Systems: What To Test, And How ?” [Wyatt and Spiegelhalter,
1991], where they discuss how we evaluate systems for expert in the medical domain.

When browsing for scientific papers regarding such evaluations in the domain of model
checking, one is often left with no results, indicating that there have been done limited to
no research in this particular area. Papers regarding new tools and techniques for model
checking claim that they desire a high usability of their system, but not much effort have
been put into actually evaluating them. In other words, evaluation of expert systems is for
sure not a novice idea, but such evaluation focused on model checking might be.

5 The H-UrPPAAL Manifesto

To better help to steer the project and evaluate ideas, a manifesto consisting of 6 principles
were put together in Mourtizsen and Jensen, 2016. The principles of this manifesto are
reproduced here for the readers’ convenience.

Principle 1 — Backward Compatible. Even though H-UPPAAL is a new tool, it should
still be clear that it is based on UPPAAL, and should therefore use the same concepts.

Principle 2 — Integrated Development Environment. H-UPPAAL should facilitate quick
and easy development of models and verification of these.

Principle 3 — Information Hiding. Unnecessary information should be collapsible to
increase overview.

components, should have identity through name and color to increase familiarity and
allow for easy communication and collaboration. Furthermore, it should be clear which
properties are in relation to which elements.

Principle 5 — Printable. You should be able to export a model so that it can be printed
without loosing any information.

Principle 6 — Objects Require Space. Objects take up space on the screen, and cannot
overlap with other objects. An exception for this is edges, that may overlap, since this
restriction would otherwise make it too hard, or even impossible, to model certain

| Principle 4 — Identity and Relation. Different visual elements, such as locations and
| systems.

6.1

6.1.1

Expert User Evaluation

We would like to investigate how users of UPPAAL can transition into our newly devel-
oped H-UPPAAL tool, i.e. adhering to Principle 1 (Backward Compatible). To do this,
a usability evaluation has been conducted. This test should indicate where H-UPPAAL
needs polishing to accommodate familiarity and preferences of UPPAAL experts. Besides
a smoother transition to our tool, we would like to get useful feedback from these experts
on some of the design decision we have considered and implemented. In general, the
purpose this test is to figure out which parts of the tool need to be improved and gain
insight on expert users’ preferences, especially regarding the visual representation of
models in H-UPPAAL.

This test is based on the think-aloud protocol [Nielsen, 1993], where participants are
given tasks and asked to think out loud while they are performing them. The think-aloud
protocol serves a medium to the mind of the participants, meaning that you can discover
what users really think about the system while they are using it. The verbalization of
thoughts during a test will assist in catching misunderstanding and easier point out a
single part of a system which causes confusion or misconception. In general, this allows
us to understand the users’ thought process better when working with H-UPPAAL and in
extend model checking.

This evaluation was conducted using six participants who all have prior experience
with the UPPAAL tool. We label these participants with letters A - F. For this study we
handpicked students that we saw as good representatives of users that should be confident
in tools like UPPAAL and that have knowledge regarding model checking. Before starting
the actual evaluation, we asked the participants a few questions regarding their experience
with UPPAAL and their confidence in this.

Tasks

The test is divided into four tasks: Draw a Model, Expand a Model, Explain a Model, and Rank
the Different Proposals. To ensure that the order of the tasks does not affect the outcome
of the test (the carry-over effect), the order is randomly permuted between participants.
However the Draw a Model is always the first task that is used to introduce the participants
to our project and the H-UPPAAL tool. The following sections will outline these tasks and
explain their purpose. The task sheets can be found in Appendix 14.

Draw a Model

The participant is asked to reproduce the model of a vending machine using H-UPPAAL.
The goal here is to see if the participant has a smooth transition from drawing models
in UPPAAL to drawing models using our tool. Ideally, each participant should feel no

6.1.2

6.1.4

6.2

Chapter 6. Expert User Evaluation

difference, since the tools are similar. However, H-UPPAAL has some changes with respect
to the modeling language. For this reason, it is desired to investigate if this change
introduces too many misconceptions.

Expand a Model

We would like to see if the participant can understand the hierarchies introduced in H-
UPPAAL. In this task, we provide a “Computer Scientist”, and a “University”-component,
which have a hierarchical structure. After a brief introduction of theses components, the
participant is tasked with expanding the model they created in the Draw a Model-task.

Explain a Model

A typical use case for tools like H-UPPAAL is scientific research. For this reason, it is
preferable that communication of these models is as smooth as possible, e.g. the users’
ability to read and understand models. We will in this task present the participant with
a printed, hierarchical model developed in H-UPPAAL. The participant is then asked to
explain the model in as great detail as possible. This will also, to some extend, test how
well we adhere to Principle 5 (Printable). If the participant does not touch upon certain
selected areas, we will ask the participant to explain them further.

Rank the different proposals

During the development of the tool, we made some choices on the design of the user
interface. Up until now, we have used our intuition and the one of our supervisor, since
all of us are to some degree expert user of UPPAAL. However, we would like to investigate
if some of the alternative solutions for model representation is more or less preferable to
other expert users. For this reason, in this task, we present the participants with design
ideas in three different areas. Each area consists of a few ideas. The participant is then
asked to rank the ideas on a scale from Strongly Dislike the idea to Strongly Like the idea.
Theses ideas can be found in Appendix 15.

Results

Prior to the actual results, we will briefly discuss how the participants answered in
respect to their own perception of expertise using the UPPAAL. This was done using a
short questionnaire. Table 6.1 shows what and how the different participants answered.
Participant A and B had not used the tool for some time but still deemed themselves as
Experienced users. The last four participants had all used the tool within the last month
and deemed that they were either Experienced or Expert users. This questionnaire simply
supports our initial assumption regarding their capabilities, namely that they are familiar
with the tool and have used it a lot.

6.2 Results

When was the last time you used
UPPAAL?

Never

More than 12 months ago

6 - 12 months ago a4
1 - 6 months
0 - 30 days ago e arans

How frequent did you use UPPAAL
the last year?

0 times

1-10times |/
11 - 50 times v
More than 50 times v v |/

How would you describe your expe-
rience with UPPAAL?

Not experienced

Novice

Experienced I/ 4
Expert a4 v

Table 6.1: Questionnaire answers.

The purpose of this evaluation is to gather insight from users that are familiar with
the UPPAAL tool. It is desired to find the most severe problems that our tool contains
according to these experienced users. For this purpose, we have analyzed how the
participants executed the Draw a Model, Expand a Model and Explain a Model tasks. This
was done by identifying usability problems (14 in total), and for each participant classified
them as either Cosmetic, Serious or Critical [Molich and Dumas, 2008]. Table 6.2 shows
which participants encountered which problem and the level of severity. A problem is
labeled [l Cosmetic if they hesitated briefly. ~ Serious problems delayed the participant
significantly and needed a few hints to proceed. The severest problems are [l| Critical,
where participants either needed instructions or rather extensive hints to proceed with
the task at hand. The following sections will go through the usability problems found
and propose solutions to these, and describe the participants’ preferences on the provided
design ideas.

9 10 11 12 13 14

Table 6.2: Categorization of usability problems found in the evaluation. Full description
of the problems can be found in Section 6.3.

6.3

Chapter 6. Expert User Evaluation

Note that a blank cell in Table 6.2 indicates that the participant did not get exposed to a
situation where the problem might occur, or that the participant simply had no problem.
For instance, in Usability Problem 4 (Drawing nails), only participant B and E had severe
problems with doing exactly this. Some of the other participants did succeed in creating
nails where others did not even try.

In general, the participants seemed rather pleased with the H-UPPAAL tool. Even though
they encountered some problems during the test, most participants stated that they found
the tool intuitive. Though this test was not intended to get the users perception of the tool,
but rather to find usability problems on transitioning between the tools, we also get the
intuition that expert users of UPPAAL seem interested in tools like H-UPPAAL.

Usability Problems

Ideally, we would like to address all the usability problems that we found during the
evaluation. However, due to limited time, this remains as wishful thinking. Instead, we
would like to try to solve the most serious problems. This section will go through the
different problems identified, explaining how to solve them potentially and how extensive
this would be.

Usability Problem 1 — Initial location. The participants experienced trouble identifying
the initial location in a component. Some participants thought that a new initial location
had to be created, while others realized that the location was already created as a part
of a component.

The initial location has undergone some changes from UPPAAL to H-UPPAAL. In the newly
developed tool, this location is pinned to the top left corner of a component. Though
many participants did immediately understand this change, some people required a subtle
hint regarding the location shape to realize the change. It seems that people either ignore
the locations in the components or that they are confused about the looks of them. This
effectively means that we do no adhere to Principle 1 (Backward Compatible) since users
are unable to map their knowledge about an initial location from UPPAAL to H-UPPAAL.

A solution for this problem could be to emphasize the initial location. This could be
done by animating or briefly annotating them as seen in Figure 6.1. The idea is to briefly
catch the users’ attention to make them realize that initial location is built into the structure
of a component, similar to how we gave them hints during the evaluation.

Fino

Figure 6.1: Sketch of hints on initial and final locations.

6.3 Usability Problems m

Usability Problem 2 — Parallel subcomponents. Participants could not start subcompo-
nents in parallel since they were unfamiliar with the fork/join concepts.

Parallelization is not a new concept that we have introduced with H-UPPAAL. But with the
new hierarchical structure, we have introduced constructs that explicitly models parallel
running subcomponents. Since the users were not told that this new construct existed
many of them did not know that they were needed. One way of potentially solving this
issue could be to make the join and fork constructs look more like the ones used in UML
activity diagram (black rectangles). This would, however, cause forks and join to be
indistinguishable, potentially causes some other usability problems. Unless a better idea
comes along, we deem this problem could be temporarily fixed by introducing the user to
the concepts in a help menu or an initial tutorial of the tool.

Usability Problem 3 — Drawing edges. The participants could not draw edges between
locations, subcomponents, joins and forks. Most participants looked for an edge
creation mouse, as used in UPPAAL, while others tried different key modifiers or simply
dragging the mouse from one element to another.

The only way to draw an edge in H-UPPAAL is by either ALT -click or middle-click an
object that can start an edge. This problem was a simple realization that this special key
combination inherited from UPPAAL was used by close to none of the participants, and
was not the first way they tried to draw edges. Many of the participants searched the
context menus for the option to draw an edge from various objects without luck. This
indicates that the draw edge functionality should be enabled within these menus. This
effectively also suggest that Principle 1 (Backward Compatible) is not as important as
one might initially think. However, additional research has to be done to say anything
conclusive.

Usability Problem 4 — Drawing nails. Participants were unable to create nails. Some
participants tried double clicking the edge while others tried to hold down different
key combinations.

Drawing nails while creating an edge was not problematic to any of the participants.
However, some of the participants had severe trouble adding nails to an existing edge.
Like Drawing edges (Usability Issue 3) this option was only enabled by ALT - or middle-
click using the mouse. The addition of an “Add nail” option in the context menu of an
edge would most likely decrease the severity of this problem like seen in the sketch in
Figure 6.2.

m Chapter 6. Expert User Evaluation

k,ﬁdd Select
Add Guard

Add Synchronization

Add Update ﬁ

Add Nail

Figure 6.2: Sketch of added entry in the context menu.

Usability Problem 5 — Drawing locations. Participants experienced trouble with draw-
ing locations. Some participants looked for a location creation mouse, while others
tried different key combinations.

Many of the participants became familiar with the different mice types in UPPAAL (a
“Location”-mouse and an “Edge”-mouse). Participants that had trouble figuring out how
they could add their first location searched most of the Ul to find these mice types without
luck. However, many of them realized that right-clicking the canvas opened a context
menu with an option for drawing one. Currently, we do not have any good ideas for how
to solve this issue, but we believe that if the users got some initial help on how to add
locations (either ALT -, middle-, right-clicking), this would temporarily fix the issue.

Usability Problem 6 — Reading edge properties. The participants had problems reading
the different edge properties. Some participants thought that the properties were nails
due to their behavior (when moving the edge) while others had trouble identifying
whether they were working with a guard, synchronization, update or select.

In the design of H-UPPAAL, we wanted properties on edges to be closely bound to the
edge that they belong to and for this reason, we introduced special nails that acted as
anchors. The participants were briefly confused about this new way of annotating an edge
since it looked like “mini-states” or probabilistic constructs of UPPAAL SMC (illustrated in
Figure 6.3). Most participants agreed that this new way of adding properties was superior
to the free floating colored labels used in UPPAAL. A solution that could reduce this
confusion is to try to enhance the difference between nails and edge properties by always
having nails be some distinct color e.g. black.

6.3 Usability Problems

(a) Probabilistic state in UPPAAL SMC

(b) Properties on edges in H-UPPAAL

Figure 6.3: Confusion between edge properties and probabilistic states.

Usability Problem 7 — Adding edge properties. Participants were experiencing trouble
adding properties to an edge. Most participants tried double-clicking the edge to open
a dialog where they could input the different edge properties.

Annotation of a model with properties in UPPAAL is done in a dialog that is opened by
double clicking an element. However, in H-UPPAAL these properties are added using
context menus. All of the participants figured this rather quickly, but some of them
continuously tried to double click an edge to annotate it. This effectively means that we
are not adhering to Principle 1 (Backward Compatible). A solution to this problem would
be to introduce the same behavior when double-clicking an edge.

ing a subcomponent. Some participants tried to drag components out from the file

Usability Problem 8 — Drawing subcomponents. Participants had problems when draw-
panel while others tried clicking elements in the file panel.

Some participants tried to drag in components from the file panel to add them to the
canvas without luck. A solution to this problem would simply be to allow dragging of
components into the canvas to add subcomponents. One might need some visual aid to
see that dragging the components does something, e.g. a ghost-subcomponent following
the mouse.

Usability Problem 9 — Differentiating clocks and data variables. The participant could
not differentiate clocks and data variables when reading the model.

During the Explain a Model-task, participants had a hard time identifying the type of
variables without having the declarations available (which variables are clocks and which
are representing data). All participants eventually figured out the type of the different
variables through deduction with thought processes like “y is incremented in this update,
so y must be an integer”. We believe that a solution where clocks are underlined would
solve this problem like seen in Figure 6.4, where we have a clock x and an integer y. If
introduced to the idea, it should be clear to see which variables are clocks and which are
not.

n Chapter 6. Expert User Evaluation

Figure 6.4: Sketch of underlined clocks.

Usability Problem 10 — Location urgency. The participant is experiencing trouble with
differentiating the visual indications of location urgency. Some participants ignored
the shape of the location, while others pondered what the shape might mean. Most of
them did, however, realize that the shape represented urgency, but was still unable to
differentiate urgent and committed.

In the evaluation, participants were exposed to Design Idea 2 (New Urgency with Octagon
Shape) (with location identifiers in the center of locations). When doing the Explain a
Model-task, participants had a hard time immediately differentiating urgent and committed
locations. Some participants would look at a location and say that it is urgent, ignoring
the bold border. Other participants would do the opposite, saying that the location is
committed, even though the border of the locations was not bold. Looking at the results
from the table ranking test, we decided to change the location urgency shapes to match the
Design Idea 3 (New Urgency with Octagon and Square Shapes). This problem is related
to Principle 1 (Backward Compatible), however, as mentioned in Mourtizsen and Jensen,
2016, we decided to change the way location urgency is displayed to utilize the central
space for location identifiers.

Usability Problem 11 — Size. Participants had a hard time reading the models due to a
small size.

Some participants felt that some Ul elements were too small. This problem could be fixed
by upping the scale of the smallest element. However, this might cause some users to feel
like the size is too big. Instead, one could implement a zoom functionality, similar to the
one found in UPPAAL. This would allow users to view the model at their desired size and
the only thing we should consider is the relative size of the UI elements to each other, e.g.
locations do not feel too big compared to edges, etc.

Usability Problem 12 — Describing fork and joins. The participant experienced trouble
when describing the semantics of fork and joins, causing them to use made up words
and strange sentences. However, most participants understood the concepts correctly
but were just unable to explain them.

When asked to explain a model, participants needed a little time before realizing how the
fork and join constructs worked. Some participants saw them as a special location and
said that outgoing edges were identical to the normal location to location edges, i.e. when

6.4 Design Idea Rankings

multiple edges are available, a non-deterministic choice has to be made (full exploration
of the state-space). However, all participants eventually figured out the semantics of the
constructs. Furthermore, some participants struggled a bit with describing the constructs
since they did not know what to call them, causing them to refer to the fork/join constructs
with words like “parallelization-thingies”. We deem that it will challenging to make these
construct self explanatory, and for this reason we believe that a short introduction view
could decrease the severity. This view should explain what the constructs are called and
briefly account for the semantics through a simple example.

Usability Problem 13 — Removing properties from an edge. Participants were experienc-
ing trouble when removing properties from an edge since a text field had focus, causing
it to consume the keyboard event. This means that, visually, the edge properties looked
selected, but since the text field had focus, the participants actually pressed delete
inside the text field rather than deleting the property.

This problem is based on the fact that the tool currently has two focus points, meaning
that the user can focus a text field while selecting elements in the model. However, when
trying to delete the selected elements by pressing the DELETE -key, the text fields would
react to the key-event. The event is then consumed and not propagated on to the selected-
element-delete functionality. To solve this, one should not be able to have two focus points
in the application. Instead, text fields should be unfocused when selecting elements, and
vice versa. Effectively causing the tool only to have a single focus point.

Usability Problem 14 — Keeping context menus open. The participant is experiencing
trouble with keeping a context menu open, since they moved the cursor slightly outside
the menu, effectively closing it right after opening it.

This problem occurs when participants open a context menu, for instance by right-clicking
a component, and move the cursor slightly outside the context menu. This could be fixed
by keeping the context menu open even after the cursor moves outside its boundaries.
The context menu could then be closed by clicking some other element in the Ul, or by
pressing the ESC -key.

6.4 Design Idea Rankings

Another task the participants were asked to perform is the Rank the Different Proposals-task.
The following sections will cover the results of this task. Each section visualizes the
ranking of the design ideas found in Appendix 15, where the circle indicates the average
ranking of an idea (identified with a number in the circle) and the lines represents the
minimum- and maximum ranking. The left side of the scale represents Strongly Dislike,
while the right side represents Strongly Like.

6.4.1 Location Urgency

When ranking the different ideas in regards to location urgency, participants tend to
disagree, as seen in Figure 6.5, especially in regards to Design Idea 1 (Traditional UPPAAL
Urgency). In general, participants think that the traditional representation is easy to read,
i.e. U means Urgent, and C means Committed. However, they find it hard to remember
which is the more strict one. Few participants think that both Design Idea 2 (New Ur-
gency with Octagon Shape) and Design Idea 3 (New Urgency with Octagon and Square

6.4.2

Chapter 6. Expert User Evaluation

Shapes) could help them better remember the difference, due to the more strict shape of
the different locations. In general, participants said that the difference between urgent and
committed in Design Idea 2 (New Urgency with Octagon Shape) is too subtle and can be
hard to notice.

An important thing to remember here is that the reasoning behind changing the shape
of the location is to free up space inside of the location so that this space can be utilized
for displaying a unique identifier for the location [Mourtizsen and Jensen, 2016]. The
participants did not know this when being tasked with ranking the different ideas. The
reasoning behind this is that we wanted an unbiased opinion on how to best represent
urgency. Had we told them, some participants might say that the introduction of these
identifiers would be better than not having them, forgetting about the change in the
location shape.

@*—0—0—0 | 1) l
*—0—0—0 : 2 I
o—0—0—1= I ® I

Figure 6.5: Ranking results for location urgency ideas.

Subcomponent Functionality Representation

As seen in Figure 6.6, participants mostly agree that they like Design Idea 4 (Textual Repre-
sentation). Most participants said that this idea would allow them to get a good overview
on what functionality the subcomponent represents. Furthermore, most participants agree
that Design Idea 5 (Miniature Model Representation) would quickly become unusable
when the encapsulated component is large or complex. Based on this, some participants
dislike the idea where others would like functionality that supports switching between
the two ideas, depending on the component. The idea here is to show a textual representa-
tion for complex or larger models while showing a miniature model for simpler models.
The two different views are reflected in the ranking, where the participants disagree on
whether they like or dislike the idea.

O Controller

Solves the problem
by cycling through
soloutions

X

Figure 6.6: Ranking results for subcomponent functionality representation.

6.5 Discussion m

6.4.3 Edge Properties

When ranking the ideas concerning edge properties, participants agree that they dislike
Design Idea 6 (Traditional UPPAAL Edge with Properties). Participants stated that they
find it hard to remember which colors represent what property, especially when not having
worked with the tool for some time. When considering Design Idea 7 (Single Box with
Properties), people tend to agree that they like this idea more. Here, participants said that
it seems nice to have the properties grouped, with an icon representing each property. A
few participants said that it might be useful to use the current UPPAAL colors (e.g. yellow
for select) for the background of the icons. The participants disagreed on whether they
like or dislike Design Idea 8 (Multiple Boxes with Single Property). Here, people say that
it might be confusing that the properties are split, but also that it could be nice to have
freedom of placement, while still having the properties boxed.

Figure 6.7: Ranking results for edge properties representation.

6.5 Discussion

While performing the evaluation, we noticed some potential problems with the way the
evaluation constructed regarding the tasks Rank the Different Proposals and Explain a Model.
This section will discuss these problems.

6.5.1 Concerns With Ranking

In respect to Rank the Different Proposals-task, it is important to note that the design ideas
only show a fragment of a model, e.g. only an edge. These changes of visual representa-
tion were not merely aesthetic changes but were aimed to solve other interaction problems.

In Design Idea 7 (Single Box with Properties) and Design Idea 8 (Multiple Boxes with
Single Property) the edge is presented in isolation, meaning that the participants did not
see how scattered the nail-property idea could be or how much space the box-property
idea would require. Participants are most likely influenced by the context of the design
idea, and seeing one of the ideas in use, might change their preferences.

6.5.2

Chapter 6. Expert User Evaluation

Another thing to have in mind with respect to the ranking task is that we have tried to be
as unbiased towards our new ideas as possible. For instance, the center of a location were
cleared by changing the shape to use it for identifiers, but Design Idea 2 (New Urgency
with Octagon Shape) and Design Idea 3 (New Urgency with Octagon and Square Shapes)
did not include these identifiers. We avoided this because we did not want to put any bias
towards any of the ideas beforehand.

In general, the ranking test is to some degree an easy way of performing an A/B test for
design ideas but without the expense to implement all of the different ideas. In effect,
we believe that the results of the ranking task should be considered with this in mind.
Participants were only exposed to bits of a model in isolation, which would probably in-
fluence their opinion. Despite this, we do believe that the feedback participants delivered,
both directly, but also through describing their thought process when ranking the ideas, is
useful to us.

Impact of Colors as Identity

The Explain a Model-task showed great results. However, this task can be seen as a test
of how well the participants understand model checking. The model we provided for
them to explain was designed to be easily understandable and made great use of colors.
This caused some participants to understand the component/subcomponent idea almost
instantly because they could relate the subcomponents to their corresponding component
simply by using their colors as identifiers. This is what the colors are intended to do, so
we are happy to see that it made sense to the participants.

However, seeing that colors are rarely used in UPPAAL models, we would like to ex-
plore solutions that force users to use the colors that are built into the tool. Our initial
idea is to use a new, random, not already used color whenever the user creates a new
component. This would give each component a unique color and, in extend, a unique
identity with no effort required. Having such a feature would effectively mean that the
tool would help the readers of the model in the same way as we did when designing the
Explain a Model-task.

A
7.2

8.1
8.2
8.3
8.4

Changelog

Visual and Minor Changes 43

Visual changes
Minor Changes

Utilizing the UrPPAAL Backend 47
Automatic Reachability Analysis

Periodic Queries

Query Feedback

Multiple Engines

7 Visual and Minor Changes

71

This chapter briefly sums up the visual and minor changes that have been made to the
H-UPPAAL as an response to the Expert User Evaluation (Chapter 6).

Visual changes

Based on the Expert User Evaluation (Chapter 6), there were found some concerns with
respect to the visual representation of a model in H-UPPAAL. This section sums up what
have changed. Taking a look at Figure 7.1, we notice two differences. Firstly by examining
the initial location L26, we see that the way a committed location have changed from
being an octagon with a bold border to being a square. And secondly, we see that nails
are no longer colored to clarify what changes behavior of the model and what does not
change behavior.

. Ramsay

patience=0,p=0 p<10 work? p++ patience=0,p=0 p<10 work? p+
S O Q—] - S & 9—]
patience < 2 4 patience < 2 J
®&—0
yell! p<10 p==10 yell! p<10 p==10
lete!
@__ complete! @ complete!
patience = 0, p++ patience = 0, p++
O S ® ©
work? work?
(a) Before changes. (b) After changes.

Figure 7.1: Location urgency and nail colors changed.

Some expert users had issues recognizing the initial location and had no concept of a final
location when they opened the tool for the first time. For this reason, we implemented
indicators that will show and animate briefly when a component is created like seen in
Figure 7.2.

LocationMarkings

Figure 7.2: Location markings.

7.2

7.21

Chapter 7. Visual and Minor Changes

Lastly, we have made the message panel more responsive in the manner that whenever
any message enters the panel, it will unfold itself. This is done to accommodate syntax
errors and warnings as soon as they are introduced as visualized in Figure 7.3.

I patience = 0, p++ I
© ©
work?

Backend Errors (1) Errors Warnings ~

(a) Before changes.

patience = 0, p++

Backend Errors (1) Errors Warnings X

Unknown identifier: foo (foo)

[/Users/asmusholmjensen/Downloads/Amaryis |
(b) After changes.

Figure 7.3: A responsive message panel.

Minor Changes

There have been added some small but still noteworthy features which should make the
tool feel more like an IDE. This section will sum up these changes.

Replacing Subcomponents

There have been added an option that allows the user to replace one subcomponent
for another from the context menu of a subcomponent as seen in Figure 7.4. This will
allow users to try out different strategies in various components. This feature adheres to
Principle 2 (Integrated Development Environment).

<~ Scheduler

Open in canvas

Draw edge
Update Subcomponent > Stack
TaskProducer
Delete
imw | Evaluator

PriorityQueue A
TestSuite

Queue

Figure 7.4: Replacing a subcomponent menu.

7.2 Minor Changes n

7.2.2 Location Identifier Rebalancing

The models in H-UPPAAL have unique identifiers for locations across a project. In com-
bination with the way we simply increment a counter for locations, the user can end up
with models where the unique location identifiers can seem rather random as seen in
Figure 7.5a. For this reason, we have introduced a rebalancing feature of these identifiers
by performing a breadth first search in respect to subcomponents, which ensures that
identifiers in a component are within the same span of numbers as seen in Figure 7.5b. This
feature adheres to Principle 2 (Integrated Development Environment), however, allowing
users to completely change all identifiers at once might have a negative influence on the
overall readability of the model. Imagine that a user is used to working with specific
location identifier, e.g. L18 is the error location, while L37 is the success location. These
might be changed completely, forcing the user to use the new location identifiers.

Waitress £ Waitress £

cocked? cocked? order?

recievel recieve!

TakingOrder TakingOrder
s, L
(a) Unbalanced model. (b) Rebalanced model.

Figure 7.5: Location Identifier Rebalancing.

7.2.3 Multiple Projects

A feature that one might expect to be present in a modern tool would be the ability to
open a project in a specific directory. In the previous version of H-UPPAAL, this was not
the case, and the tool simply opened a fixed folder relative to the executable. To better
adhere to Principle 2 (Integrated Development Environment), we have now added this
missing functionality, allowing users to use H-UPPAAL for more than one project at the
time. However, similar features like save project as, import components from existing project
are still not present.

7.2.4 Updated Keyboard Shortcuts

Ideally, we would have liked to use the same keyboard shortcuts as UPPAAL. However, we
realized that the ALT -key (used in UPPAAL to create locations, edges and more) is also used
by Linux to manage the position of the application on the screen. Since comparability with
Linux is desired, and these keyboard shortcuts are a core part of H-UPPAAL, we decided to
change all ALT keyboard shortcuts to use the SHIFT -key instead. This might seem like an
issue in regards to Principle 1 (Backward Compatible), however, as mentioned in Usability
Problems (Section 6.3) and Usability Problems (Section 6.3), people were not familiar with
the ALT keyboard shortcuts in the first place. This might indicate that introducing SHIFT
keyboard shortcuts is a elegant alternative.

8.1

Utilizing the UrPPAAL Backend

As described in Mourtizsen and Jensen, 2016, the H-UPPAAL tool is very dependent on the
utilization of the powerful UPPAAL verification engine. Previously, this engine was only
utilized to run relatively simple queries. This chapter will go through some changes that
introduce some more advanced and interesting behavior to the H-UPPAAL tool, inspired
by integrated development environments and our experiences with the model checking
activity.

Automatic Reachability Analysis

As previously mentioned, modelers tend to utilize two types of queries during the model
checking activity. One type of queries is utilized to debug the model. The other type of
query a modeler might write is one that verifies the behavior of the model. We would
like to facilitate the debugging queries better, making us adhere to Principle 2 (Integrated
Development Environment). A feature that could assist the user passively during the
development of a model is something we call automatic reachability analysis. The idea is
that the tool continuously checks if all locations in a model are reachable. This would
allow users to get notified when a location is not reachable. Based on our experience and
expert user conversations, it seems that models often have some locations which should
never be reachable, e.g. an error or deadlock location. If models contain locations which
are not desired to be reachable, they are often annotated as error states with a name or
sometimes color.

Automatic reachability analysis in H-UPPAAL should act like static code analysis of
IDEs, which can detect if some part of the code is unreachable, for instance when the
condition inside an if statement always evaluates to false, the code block inside is not
reachable. Similarly, users should be notified of which parts of the model is not reachable.
Looking at Figure 8.1 we see two versions of a Timer component, where a subtle change
to the invariant of L2 makes L1 unreachable since the edge L2 — L1 is never available.

(a) L1 Reachable. (b) L1 Unreachable.

Figure 8.1: Example of subtle change in model that changes reachability.

It is desired that the effect of changes like this one is instantly noticeable for the user.
The most straightforward solution to do this is to run a simple reachability query for all

8.1.1

8.1.2

Chapter 8. Utilizing the UPPAAL Backend

locations in the model on every model change. The result of these queries then has to be
reflected in the UI. We have decided only to mark the locations that are not reachable in
a model with the same philosophy as in static code analysis where no answer is a good
answer. Marking all locations that are reachable is similar to marking all lines of code in
an programming editor that are syntactically correct, which most certain would add more
noise than value. An illustration of how we visualize that a location is not reachable is
applied to the previous example as seen in Figure 8.2. Here, LO and L2 are reachable,
while L1 is not.

Figure 8.2: Location L1 marked as unreachable.

Since the Timer component only consists of 3 locations, we only have to run 3 queries to
check if all locations are reachable, i.e. the following queries:

E<> Timer.LO E<> Timer.L1 E<> Timer.L2

Running on change

Ideally, you would want the information this feature provides as fast as possible. However,
in some cases, it seems better to wait for a small period before actually starting the
background analysis. Imagine that you are writing a guard. Every single character you
type or remove, have to be considered as a change, since changing <= — < could have a
huge influence on the model. This does, however, also mean that when you are typing
the guard a > 2, you will end up with a change, where the guard is incomplete, and in
some cases syntactically incorrect, e.g. a > . In these cases, the background reachability
analysis would not work, and therefore it would be better to wait for the user to introduce
all of the changes he wants. In this case, this would be to finish writing the guard. We are
not able to detect when the user is done typing a guard, but we can detect when the users
have not been typing for some time.

Exhaustive Queries

However, as mentioned, for some locations it might be very time consuming to check if
they are reachable. This can be problematic especially when a model is centered around
avoiding an error location, effectively forcing us to explore the entire state space. For this
reason, we need to ensure that the tool does not hog the CPU when doing the automatic
reachability analysis. This could easily be solved by forcing a query to stop when a time
limit is exceeded. A problem with this is then, how do we notify the user? If we do not
mark the location in question, the user will think that the location is reachable. On the
other hand, if we are not sure that the location is, in fact ,unreachable, the red marking
might confuse the user. For this reason, we introduce an additional marking: yellow. Red
now means that a location is guaranteed to be unreachable while yellow demonstrates
uncertainty, i.e. we do not know for sure if a location is reachable or not. This will allow
modelers to have locations that might be exhaustive to check for reachability while having

8.1 Automatic Reachability Analysis

the automatic reachability analysis running, like in the example seen in Figure 8.3. This
illustrates a location Error that is only reachable when some other more complex part of
the model synchronizes on the error channel.

@ StatusTracker

complete

Figure 8.3: Example of uncertain reachability.

8.1.3 Optimizations

One could imagine that there are some optimizations one could introduce to optimize this
reachability analysis to achieve faster results and reduce the impact on CPU and RAM
usage. This section will go through some optimizations one could introduce to achieve this.

Start by Analyzing the Opened Component. It is not uncommon for a change in one
component to influence the behavior of other components. This is the reason why we need
to re-do the reachability analysis on the whole model every time the user introduces a new
change. However, since we are working with visual changes (a colored aurora around
the locations), it would make sense to run the reachability queries for the visible locations
before the rest of the model. One might even go as far as to only run the reachability
queries for the locations visually presented to the user. Let us, for instance, consider the
component presented in Figure 8.4. When browsing this component, you only really
care about locations L8 - L12 until you look at the other parts of the model. This would,
however, require H-UPPAAL to run new reachability queries every time the user looks at
different components. However, this might still be better than always running all queries.
Further investigation is required on the matter before anything conclusive can be said.

Waitress <>

cooked?

recieve!

GettingFood

TakingOrder

Figure 8.4: Waitress component.

m Chapter 8. Utilizing the UPPAAL Backend

Only Analyze Incomplete Components. Our experience tells us that not all areas of a
model are finished at the same time. This means that some components are completed
before other components. This would also mean that doing analysis on these components
would be a “waste”. To facilitate this, we have introduced a feature, where users can
include or exclude components in this analysis. Figure 8.5 shows how a component can
be either included or excluded from the analysis. The ability to toggle this functionality
on or off, depending on the users need adheres to Principle 3 (Information Hiding).

Project + m o

Q s :

9 Customer . . —
Configuration

9 Gordon Ramsay Main

+ Include in periodic check E
9 Kitchen

[. N Description

Figure 8.5: “Include in periodic check” option in component context menu.

Utilizing Metavariables. It might be interesting to investigate whether using metavari-
ables [David and Larsen, 2011] could result in a performance increase by making some of
the reachability queries redundant. Imagine a model with 20 locations, L1, L2, ..., L20.
This would result in the reachability analysis running 20 queries. However, whenever
running any one of these queries, we would potentially gain additional knowledge about
other reachable locations. For instance, we might have edges L5 —+ L6, L6 — L7, and,
L7 — L8 . Executing the reachability query E<> L8 could result in us gaining knowledge
about L6 and L7 (storing this information in metavariables), causing their corresponding
queries to become redundant. This scenario is visualized in Table 8.1. It might also be in-
teresting to do a full exploration of the state-space while using metavariables to keep track
of which locations are reachable. However, this raises additional problematic situations,
such as dealing with very large state spaces, which we will not discuss in this report.

Waiting | Running | Finished | Redundant
E<> L13 | E<> L11 E<> L8 E<> L6

E<> L16 | E<> L14 | E<> L20 | E<> L7

E<> L15 | E<> L17 E<> L4
E<> L19 | E<> L2 E<> L12
E<> L5 E<> L1 E<> L10
E<> L3 E<> L18
E<> L9

Table 8.1: Redundant queries scenario visualized.

Using Under- and Over-Approximation Techniques. It might be worth investigating
whether utilizing under- and over-approximation [David and Larsen, 2011] techniques
could yield meaningful results while optimizing the response time for the reachability
queries. Remember that an indication of whether a location is reachable or not is “good
enough”. We do not necessarily need a full-blown guarantee that a particular location is
reachable or not. The idea of automatic reachability analysis is based around assisting
the user during the modeling process, rather than giving him deep insight into the model

8.2 Periodic Queries

that is being developed. This effectively means that implementing these techniques, could
provide the user with answers such as “This location might not be reachable” faster than
“This location is definitely not reachable”, and still allow him to utilize the automatic
reachability analysis during model development.

8.2 Periodic Queries

After introducing the automatic reachability analysis into the tool, we thought to ourselves
that users might have some model-specific queries that they keep executing many times
modeling. To facilitate a tool that allows users to automate this, we have introduced
something we like to call periodic queries. The concept is very similar to the approach in
our automatic reachability analysis, but instead of reachability queries, users are able to
run custom queries, and get the corresponding UPPAAL response, as they would with
normal queries.

To create a periodic query, the user must firstly create a query as they would normally
do. After this, the newly created query can be marked as periodic by clicking the three
vertical dots to the right and then clicking “Run periodically”. This is illustrated in Figure
8.6, where we have several queries for finding different Fibonacci numbers.

Queries > =
E<>fib==3

>
E<>fib==11

+ Run periodically

E<>fib==89 Clear Status
Delete

E<> fib == 377

>
E<> fib == 7127

»
E<> fib == 10946

>

Figure 8.6: Periodic queries checking for fibonacci numbers.

8.3 Query Feedback

In UPPAAL, running a query will return a status describing if the model adheres to the
property specified in that query, i.e. if the query is successful. However, some queries
will also return some additional information. One example of such could be the bounded
liveness queries: supremum and infimum [David and Larsen, 2011]. These queries will
find the supremum or infimum for a given expression, exp, for all reachable states that
satisfy a particular predicate, Pr. The queries are formulated using the following syntax:

sup{Pr} : exp inf{Pr} : exp

n Chapter 8. Utilizing the UPPAAL Backend

Running this type of query will cause UPPAAL to respond with a dialog describing the
result. This type of query is not the only one which returns some textual representation
of the query result. Another example could be when doing a regular verification query
which encounters a runtime error, e.g. a variable overflowing. In this case, the query will
be marked as unsuccessful, and provide a meaningful error message.

To accommodate the desire to return a textual representation of additional query de-
tails, we re-used a dialog we had previously implemented. This dialog can be seen in
Figure 8.7. Implementing this feature will allow us to be more independent of the UPPAAL
tool when testing H-UPPAAL (we do not have to open UPPAAL every time a query is
unsuccessful, since we now have the same error messages).

Query Result Query Result

Query Query
Ez>fib==11 sup{TestSuite.L1} : Evaluator.score

Result Result
Assignment of value '46368' to variable fib’ is out of range Evaluator.score <= 410

(a) Out of range error message. (b) Supremuim query result.

Figure 8.7: Query feedback dialogs.

8.4 Multiple Engines

In old versions of H-UPPAAL, only a single instance of the UPPAAL engine was utilized.
This effectively meant that all queries had to be run sequentially. Considering the feature
where the user can run all queries in the query pane, this might not seem like a big deal.
However, consider the features discussed in Section 8.1 and Section 8.2. These features are
dependent on fast results, which would be virtually impossible if we kept this sequential
behavior.

To solve this issue, multiple engines are instantiated and are allocated as a special resource
that can be acquired when running queries. If no more resources are available, additional
engines will be instantiated and allocated, until a maximum threshold is reached. This
threshold is implemented to avoid hogging too much RAM and CPU. The point here is
that we run out of computational power and memory at some point. This would indicate
that, at some point, it is probably not worth instantiating additional engines, but instead
wait for existing engines to be available. This points towards allowing users to specify this
upper threshold themselves. We have not yet done this, but we imagine that when a set-
tings panel is introduced, this threshold would be an ideal candidate to put in such a panel.

Currently, when engine resources are released, they are made available to be used again,
but never de-allocated or destroyed. This means that if the system reaches its maximum
threshold of engine resources, it will keep all of these engines in memory, waiting for them
to be used. In most cases, it is very nice to keep these engines in memory since we do

8.4 Multiple Engines

not have to re-instantiate them when doing new queries. However, this also means that
H-UPPAAL can become very memory-intensive, even in “idle”-mode. One could imagine
a feature that would de-allocate these additional engines, freeing up some memory. How-
ever, one would have to consider how much time it takes to re-instantiate the engines,
compared to how much memory they require.

Final Evaluation and

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

10
11

11.1
11.2
11.3
11.4
11.5
11.6
11.7

Thoughts

PerformanceTest 57
Participants

Tasks

Hypothesis

Test Structure and Setting

Results (Efficiency)

Results (Effectiveness)

Interpreting the Results

Problematic Situations

Conclusionccoiviuinnnnn. 67

FutureWorkccvvieeinn.. 69

Reading Performance Evaluation
Improvements to Periodic Queries
Simulator

Support for Multiple UPPAAL Versions
Addressing Colorblindness and Accessibility
Reworking the Query Pane

Visualizing Communication

9

9.1

9.2

9.2.1

Performance Test

In order to verify whether hierarchies and integrated development environment features
make a difference in formal verification tools, a performance test [Nielsen, 1993] com-
paring the performance of H-UPPAAL to UPPAAL have been conducted. The goal of this
performance test is to formally test if the concepts in H-UPPAAL will add value for users.
More specifically this performance test compares efficiency and effectiveness between the
two tools during three modeling tasks. It is important to note that this test is not designed
to test the performance of the verification engine, but rather to be able to compare the
performance of users when using H-UPPAAL and UPPAAL. This chapter will cover how
this test have been structured and shows an analysis of the results.

Participants

To compare the performance of UPPAAL and H-UPPAAL, we would like the expertise of
the participants to be as similar as possible. For this reason, we have chosen to conduct the
performance test using novel users. We imagine that experts in this field know all different
kind of tools and concepts that could impact the comparison. However, the participants
must still have an understanding of verification and model checking, and for that reason,
we have chosen to use computer scientist students at Aalborg University. These students
are ideal since all of them have been exposed to model checking and UPPAAL at some
point. We were lucky to be allowed to provide a guest lecture in the course Test and
Verification, and in extend, use the students in this course to conduct this performance test.
Ideally, we would do a power analysis [Field, 2009, p. 58] to determine how many of these
students we need to include in our study. Since this course have roughly 20 attendees, we
deemed that it would be a relative fine sample size to deduce some effect. However, only
14 students ended up participating in the study.

Tasks

During the development of H-UPPAAL, we have given a lot of attention to the idea that
users should be able to query, expand, and create models with ease. Based on this, we
decided to evaluate the tools on these three parameters.

Task A: Querying models

An important step in developing models is the aspect of making inquiries. The idea here
is to see if users can generate correct queries based on the new hierarchical structure, and
extract meaningful information from the responses to these queries, i.e. can the users
translate the results of a query into information about the model behavior.

9.2.2

9.2.3

9.3

9.4

Chapter 9. Performance Test

Task B: Expanding models

The idea here is to evaluate if users understand a model that is not yet finished, and
based on this, capable of expanding the model such that it is complete and models correct
behavior. We have this tasks since models are often built over longer periods of time,
repeatedly returning to the model like other work documents. Furthermore, you could
also imagine that several people are working on the model at the same time.

Task C: Creating models from scratch

One could argue that without being able to create a model from scratch, a tool such as
H-UPrPAAL would be rather useless. Based on this, we believe that evaluating the users’
capabilities to create brand new models is important.

Hypothesis

As described in Chapter 3, we would like to investigate whether the concepts introduced
in H-UPPAAL increases efficiency and effectiveness. To do this, the following hypotheses
have been defined. The goal of the performance test is to either prove or disprove these.

Hy: The tool used to complete an exercise will have an influence on the efficiency of a user.

Hs: The tool used to complete an exercise will have an influence on the effectiveness of a
user.

These hypotheses will be tested in four different settings. One for each task, and one
where these tasks are combined. Meaning that we will attempt to verify these hypotheses
in a setting where we isolate the users’ ability to query, expand and create models, and a
more general setting, comparing the performance across these activities.

Test Structure and Setting

This performance test is a crossover study using a repeated-measures design [Field, 2009,
pp- 457-505], meaning that we have a within-subject design. To do this, we permute
the order of the tasks the participants are assigned to cancel out the carry over effect,
i.e. we want to cancel the fact that knowledge from one task has an influence on the
next. We do this by dividing the test into two sessions, one for each tool. Each session
includes the three task in permuted order similar to the structure of the Expert User
Evaluation in Chapter 6. Furthermore, we want the two sessions for a participant to
be comparable, meaning that the order of tasks that a participant is assigned during
the first session is identical in the second session. The carry-over effect also applies in
respect to the order of tools the participants uses, and for this reason, half of the partic-
ipants will start the first session using H-UPPAAL and the other half starting with UPPAAL.

The test will be conducted with all participants in parallel, meaning that we will have to
be able to track each of the participants” individual performance with respect to time. For
this reason, we have time-framed each task to 15 minutes for an easier track of time, but
also to avoid dragging the participants into frustration or boredom depending on their
speed. Figure 9.1 illustrates how the test will unfold for one particular participant. This
participant will have to perform the tasks in the order A, C, B, using UPPAAL in the first
session and H-UPPAAL in the second. The task sheets this participant was assigned to can
be found in Appendix 16.

9.5 Results (Efficiency) m

Session 1 Session 2
A 15 min A
UPPAAL C H-UPPAAL C
B B

Figure 9.1: Layout of the test for one participant.

Lastly, the participants are allowed to solve the exercises however they see fit, as long as
they do not use the simulator available in UPPAAL. We disallow this to make a more fair
comparison between the two tools in their current state. We do however believe that the
performance test should be re-run when a simulator is introduced into H-UPPAAL.

9.4.1 Laboratory and Field Testing

In respect to the setting of a usability test, one can consider conducting it in a laboratory
environment where everything is controlled. Another option is to conduct the test in the
tield, where the test happens where the users already exist, where one does not have to
simulate an office environment because the test is conducted at the users’ office in the first
place. Essentially a field study trades control for a realistic setting [Kaikkonen et al., 2005].

The setting of this test is a combination of a field and lab study. We let the users be
in the “field” doing their exercises as they would otherwise during the Test and Verification
course. This means that they are allowed to use their personal laptops. However, we
enforce “lab”-rules to fit the test structure, essentially trying to control the setting, like
you do in a lab study. Besides the participants being able to work in a more relaxed
environment, this setting also allows us to easier handle many participants at once.

9.5 Results (Efficiency)

The time a participant spent on each exercise were tracked during this performance test,
to measure the efficiency of the users. The completion time for each participant can be
seen in Table 9.1 for H-UPPAAL and Table 9.2 for UPPAAL. Entries are formatted using
the minutes.seconds format, describing the amount of time the participant used to finish
a particular exercise. The cells are colored in such a way that white indicate that the
participant used up all allocated time for an exercise, where more orange cells indicate
that the participant used less time.

m Chapter 9. Performance Test

‘ 1 2 3 4 5 6 7 9 100 11 12 13 14 15
A |12.43 15.00 15.00/06.35 15.00 05.17 10.38 15.00 09.29 15.00 15.00 15.00 15.00 15.00
B |11.49 15.00 15.00 10.19 11.40 15.00 13.55 15.00 15.00 15.00 12.22 09.05 15.00 15.00
C 05.41 15.00 15.00 09.30 15.00 12.26 12.42 15.00 15.00 15.00 14.51 08.40 14.35 15.00

Table 9.1: Time used in H-UPPAAL.

‘ 1 2 3 4 5 6 7 9 10 11 12 13 14 15
A |07.10 10.34 15.00 10.29 06.15 10.28 04.53 15.00 04.21 06.36 10.39 08.09 15.00 15.00
B |08.45 14.25 15.00 15.00 14.35 13.16 09.55 15.00 15.00 07.55 15.00 08.30 15.00 13.22
C 106.00 15.00 15.00 15.00 10.50 15.00/05.54 15.00 13.00 08.24 15.00/05.15| 15.00 15.00

Table 9.2: Time used in session UPPAAL.

Taking a look at the means and standard deviations for H-UPPAAL and UPPAAL (Table 9.3
and Figure 9.2), we see an indication that the tool used had some effect on how much time
a participant spends on completing a task in favor of UPPAAL. However, we would like to
have some statistical foundation that the efficiency is affected by the tool. For this reason,
we have analyzed our results using a t-test which is used to compare two groups of people
and test if there are significant evidence that the tool has an effect on the measured time. A
t-test is particularly useful when you have a categorical, independent variable (the tools)
and a continuous, dependent variable (time measurements). We use the paired samples
t-test [Field, 2009, pp. 324-341], since the first group, using H-UPPAAL, and the second
group, using UPPAAL, are dependent i.e. they are of the same participants. We have
conducted such a test for each exercise, A, B, and C, and one test where we considered all
exercises combined.

Exercise Tool Mean SD
A H-UrPPAAL 1249 03.28
UPPAAL 10.00 03.52
B H-UrrPAAL 1331 02.04
UPPAAL 12.55 02.48
C H-UrPAAL 13.06 03.01
UPPAAL 12.06 03.59
All Combined H-UprpPAAL 13.09 02.51

UPPAAL 11.40 03.43

Table 9.3: Means and standard derivation (SD) for H-UPPAAL and UPPAAL in
minutes.seconds

16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00

9.6 Results (Effectiveness)

B H-UrrAAL
UPPAAL

B C Combined

Figure 9.2: Means and standard deviations for H-UPPAAL and UPPAAL visualized.

Exercise A

There is a significant difference in the task completion time and tool with:
t(26) =2.065, p = 0.049

Exercise B

There is no significant difference in the task completion time and tool with:
t(26) = 0.649, p = 0.522

There is no significant difference in the task completion time and tool with:
t(26) =0.750, p = 0.460

All combined

There is a significant difference in the task completion time and tool with:
1(82) =2.061, p = 0.042

| Exercise C

9.6 Results (Effectiveness)

Each exercise has been ranked on a boolean scale: Incorrect or Correct. The following
evaluation rules were established to more precisely judge the correctness of the exercises.
Ideally, we would hand this information over to a third party to do the actual evaluation
of the exercises to avoid being biased towards one of the tools. However, since we do not
have the resources to do this, we decided to simply do them ourselves. The results can be
seen in Table 9.4 and are visualized in Figure 9.3.

Correctness Criterion for Exercise A

If the participant can formulate at least one query that retrieves some supremum (worst
case) or infimum (best case) values from the given model and if the values provided
on the exercise sheet are also correct, the exercise is marked as Correct, otherwise

Incorrect.

n Chapter 9. Performance Test

Correctness Criterion for Exercise B

If the participant can extend the provided model by inserting a Gordon componen-
t/template correctly while modeling the described behavior correctly, the exercise is
marked as Correct, otherwise Incorrect.

Correctness Criterion for Exercise C

If the model created by the participant enables queries that are successful with the first
20 Fibonacci numbers and somehow fail with other numbers, the exercise is marked as
Correct, otherwise Incorrect.

Exercise Tool Incorrect Correct Total
H-UPPAAL 9 5 14
A UPPAAL 4 10 14
Combined 13 15 28
H-UrrPAAL 12 2 14
B UPPAAL 11 3 14
Combined 23 5 28
H-UrPAAL 2 12 14
C UPPAAL 7 7 14
Combined 9 19 28
H-UPPAAL 23 19 42
Combined UPPAAL 22 20 42
Combined 45 39 84

Table 9.4: Task correctness rates.

85.7% mm H-UPPAAL
UPPAAL

71.4%

Correctness

- 357%

C Combined

Figure 9.3: Task correctness rates visualized.

The correctness rates for the different tasks indicate that there is in fact some correlation
between what tool is used and the effectiveness of the participant. To be sure that there is
significant evidence for this correlation we used a Pearson Chi-Square test to analyze the
results [Field, 2009, pp. 687-692]. We use this method since both our independent variable

9.7 Interpreting the Results m

(the tools) and the dependent variable (correctness) are categorical. Using this test, we will
see if there is any significant association between these two variables. We have, as with the
time measurements, conducted a Chi-Square test for each exercise, A, B, and C, and one
test where we considered all exercises combined, based on the results in the contingency
matrices in Table 9.4.

Exercise A
There is no significant association between correctness and tool, given:
X2(1,N = 28) = 3.590 with p = 0.058

Exercise B
There is no significant association between correctness and tool, given:
X2(1,N = 28) = 0.243 with p = 0.622

Exercise C

There is a significant association between correctness and tool, given:
X2(1,N = 28) = 4.094 with p = 0.043

Combined
There is no significant association between correctness and tool, given:
X2(1,N = 84) = 0.048 with p = 0.827

9.7 Interpreting the Results

After the statistical analysis of the results, we found that there are in fact some correlations
between the performance of the participants during the exercises and the model checking
tool used. This section will cover how, when and why this is the case.

9.7.1 Task A: Querying models

When it comes to querying the model, we found significant results that UPPAAL is the
more efficient tool (H; is accepted in this setting). We did not find any significant difference
in the effective of the two tools (H, is rejected in this setting).

When investigating the exercises handed in by the participants, we found that some
of them had trouble writing the correct queries in H-UPPAAL, effectively resulting in them
spending all their time and not completing the exercise. 5 participants had trouble with
the way H-UPPAAL queries must be formulated [Mourtizsen and Jensen, 2016], causing
them to write queries similar to the one seen in Figure 9.4a, where the correct query would
be as seen in 9.4b. Furthermore, 1 of the participants had swapped the predicate and and
expression (see Section 8.3). Others might have gone through the same struggle as these,
but ended up with the correct query in the end. This might explain why H-UPPAAL users
are significantly less efficient, but not significantly less effective.

inf{Evaluator.L18} : score inf{TestSuite.L1} : Evaluator.score

(a) Example of incorrect query. (b) Correct query.

Figure 9.4: Incorrect and correct queries.

One might also want to consider the fact that in H-UPPAAL, we have the unique identifiers,
e.g. L1,butalso descriptive names, such as Finished . Currently, when querying the model,

9.7.2

9.7.3

9.7.4

Chapter 9. Performance Test

you have to use the unique identifiers. In UPPAAL, you only have descriptive names,
making it a bit more simple. This difference might cause some confusion when considering
that the participants only used the UPPAAL tool prior to this evaluation. However, as
described in Mourtizsen and Jensen, 2016, it is desired that both identifiers is supported
when querying a model.

Task B: Expanding models

When it comes to reading a model and then expanding upon it, we found no significant
difference in neither efficiency nor effectiveness (H; and Hj are both rejected in this setting).
This might be caused by the complexity of the model that were provided to the participants,
i.e. if the model is too complex, participants might spend all their time on understanding
the model, leaving them with little to no time to actually expand it. Seeing that users spent
the most time on this exercise (on average 13.31 for H-UPPAAL and 12.55 for UPPAAL) and
that most people (12/14 in H-UPPAAL and 11/14 in UPPAAL) got this exercise marked as
Incorrect, we believe that this is the case. However, considering that there are no significant
difference in neither efficiency nor effectiveness, this might also indicate that users performed
equally in the two tools.

Task C: Creating models from scratch

When considering creating models from scratch, we found no significant difference in
the efficiency of users (H; is rejected in this setting). We did, however, find a significant
difference in effectiveness in favor of H-UPPAAL (H; is accepted in this setting).

Investigating the exercises solved in UPPAAL that the participant handed in, we can
not see any clear tendency as to why UPPAAL users are less effective. 2 participants made
incorrect use of arrays, looking up wrong indices as seen in Figure 9.5. 3 participants
updated some intermediate calculation in the wrong order, causing the query always to
fail. 2 participants used undeclared variables or otherwise introduced syntax errors.

Arr[i] - 1 Arr[i - 1]
(a) Incorrect array lookup. (b) Correct array lookup.

Figure 9.5: Incorrect and correct array lookups.

We believe that the introduction of integrated development features such as continuous
syntax check are helping users to spot issues, such as undeclared variables. Furthermore,
the more structured approach of showing edge properties might give users a better insight
in the model behavior, leading to more correct models in H-UPPAAL.

Combined

When considering all of the exercises combined, we find a significant evidence that users
are more efficient in UPPAAL compared to H-UPPAAL (H; is accepted in this setting). We
see no significant difference in users’ effectiveness (H, is rejected in this setting). This might
indicate that the users are more familiar with UPPAAL since they have been working
with it during the Test and Verification course. Furthermore, since there are no significant
difference in effectiveness, we believe that H-UPPAAL adheres well to Principle 1 (Backward
Compatible). We believe that if we had introduced concepts that did not make sense for
the users, this would be reflected in the measured effectiveness.

9.8 Problematic Situations m

Despite some problematic situations, described in Section 9.8, we believe that this eval-
uation shows that H-UPPAAL has great potential. Given some more work, especially in
regards to the querying of models, we believe that it would be able to compete with or
even out perform other model checking tools.

9.7.5 Limitations

We deem that a larger sample set, i.e. more participants during this performance test,
would give us a better statistical foundation. Besides the limited sample size, we also
had some limitations during the test, where, because of practical implications, we did
not get the fifty-fifty split we had planned. Participant 8 had to leave before even getting
started with the tasks, and participant 10 started with the exercises intended for the second
session. This resulted in us having 9 participants who started the first session with H-
UPPAAL and only 5 started with UPPAAL, which could have some influence on the results.
Alongside this issue, we also had a two participants switching machines after the first
session to the next, meaning that the used different PC’s to run the two tools. Many of
these complications are expected when you do have limited control of the environment,
i.e. not a true lab setting.

9.8 Problematic Situations

In the period where the test was conducted, we offered to help participants if they were
experiencing any trouble with the tools, e.g. when a tool crashed or when the exercise
formulation was unclear. We wanted to help with any problems that should not occur in
such a test, such as crashes, but not provide help with solving the actual task, since this
would influence the test results. When helping the different participants, we came across
some problematic situations that might be worth considering.

9.8.1 Color Blindness

We were made aware by two of the participants that they were in fact colorblind. This
caused them to be unable to see the color-status on the queries they had run. Figure 9.6
shows the two query status indicators. One of the participants informed us that he had
been taking screenshots of the tool, and looking up the RGB-values to determine the color.
The other participant stated that he knew that the query would probably be unsuccessful
when he got errors such as “Syntax Error”.

Queries [+] Queries

E<> Component.L5 . E<> Component.L5

Is L5 reachable? * Is L5 reachable?

(a) Successful query (b) Unsuccessful query

Figure 9.6: Query status indicators.

According to the National Eye Institute, as many as 8% of men and 0.5% of women
with northern European ancestry have a form of red-green color blindness [Facts About
Color Blindness]. Based on this, we believe that a solution to this problem will have to be
implemented. One of the participants suggested using a textual response in addition to the

9.8.2

Chapter 9. Performance Test

color indicator currently implemented. We believe that this is a good solution, however,
due to limited time, we will not implement it.

Running Queries

Two participants asked for help in regards to a strange response when they tried to run
queries. They demonstrated that running the query results in error: “ServerException: Can
only handle one property at a time”. To us, the error was clear. The participants had both
entered the query in the comment field. They might have thought that the “Query”-text
was simply a headline for the input field below. Figure 9.7a illustrates how the participants
wrote the query in the wrong place, where Figure 9.7b shows how the query is successful
if placed in the correct field.

Queries [+] Queries

sup{TestSuite.L1} : Evaluator.score

sup{TestSuite.L1} : Evaluater.score

(a) Query placed in comment field. (b) Query placed in query field

Figure 9.7: Query field misconception.

Since the actual query field is empty, it would be relatively easy to inform users that they
cannot run an empty query. However, we do not believe that this solves the core of the
problem. Instead, we believe that it should be more clear where to write the query, and
where to write the comment (if this is even needed). However, due to limited time, we
will not be implementing anything that tries to solve this issue.

10 Conclusion

Model checking is a technique used today for various purposes. A lot of work is going into improving
this technique, primarily concerning the efficiency and speed of verification of models. However, we
believe that it is also important to consider the actual creation of models, since this part is strongly
dependent on the users’ ability to work with models. Based on this, we raised the question:

How can the introduction of hierarchies and integrated development features im-
prove the workflow in the model checking activity?

In the fall of 2016, we developed a new tool called H-UPPAAL, focused on improving the model
checking activity by trying to speed up the modeling instead of the verification. Here, new concepts
like hierarchies and integrated development features were introduced, while utilizing a mature
engine to do the underlying verification.

The work we have done this semester was to investigate further if these concepts and ideas would
add some value to the activity. An initial evaluation was conducted using a small group of experts
and a think-aloud test, where we found some usability problems with the newly developed tool.
The test also showed that participants found creating and understanding H-UPPAAL-models rather
intuitive.

Furthermore, we have conducted a performance test, comparing the mature model checking tool
UPPAAL and our newly developed tool H-UPPAAL. This evaluation consisted of three exercises in
each tool measuring efficiency and effectiveness, using computer scientist students who are novices in
the model checking domain. We found significant evidence (p = 0.042) that UPPAAL was, in general,
a more efficient tool, and that it was superior (p = 0.049) during the exercise concerned with querying
existing models. On the contrary, we found significant evidence (p = 0.043) that H-UPPAAL is a more
effective tool during the exercises regarding creating models from scratch.

Besides evaluating the tool, we have also investigated interesting ways of utilizing the UPPAAL
backend. One of the features introduced is called Automatic Reachability Analysis. This feature is
similar to static code analysis, however, instead of analyzing program logic, analysis of state space is
performed on-the-fly. We deem that it is this type of feature, that will assist modelers during their
work, e.g. by finding bugs, or wrong parts of a model, faster. More generally, we have utilized this
on-the-fly technology to enable periodic queries, introducing unit-test-like queries providing the
users with continuous feedback, which will guide them during the model checking activity.

It seems that with limited efforts we have in fact been able to improve the model checking ac-
tivity. A year ago a hierarchical version of UPPAAL was only an idea. Today we have a functional tool
that utilizes many years of research in the model checking domain while being inspired by modern
concepts like integrated development environments. Based on this, the comparison of performance,
feedback from experts users, our work and experience in the field, we believe that the concepts and
ideas in H-UPPAAL show great potential and we encourage further work in the area.

11.1

11.1.1

11.1.2

Future Work

This chapter covers thoughts and ideas we have regarding the H-UPPAAL project and
how they could be realized. The overall idea with this chapter is to get an idea of how
H-UPPAAL can be shaped into a tool that can compete with mature model checking tools
such as UPPAAL by introducing interesting and useful concepts, further improving the
model checking activity. This chapter will not cover areas for improvements or further
work already covered in Mourtizsen and Jensen, 2016.

Reading Performance Evaluation

Being able to print, and in general, share a model is something we value important
Principle 5 (Printable). This is important in a research setting where we would like to
be able to present models in scientific papers, but also in a development environment,
where clean documentation of design is often desired. For this reason, we would like
to have some evaluation in respect to this. One could consider doing some qualitative
study involving experts in the domain of model checking. Besides this, we would like to
conduct a performance test in respect to this. This chapter outlines how such a test could
be conducted and what hypotheses we would like to prove. However, due to limited time
in the project, this test has not yet been realized.

Hypothesis

We have two hypotheses which we would like to confirm. Namely that a hierarchical
modeling language increases the performance in understanding the behavior and design
of a system or problem. This can be seen as two hypotheses concerned with efficiency and
effectiveness:

H3: Readers are more efficient in understanding a model presented in a hierarchical lan-
guage compared to a non-hierarchical one.

H4: Readers get a effective in understanding when a system is presented in a hierarchical
language compared to a non-hierarchical one.

Setting and Structure

To get measurements that could prove or disprove these hypotheses, we suggest a struc-
ture very similar to the one done in Chapter 9. There is a limited amount of model checking
experts available at Aalborg University, and for this reason, we would like to have one
particular participant perform a task using both the hierarchical language of H-UPPAAL
and the non-hierarchical language of UPPAAL. We suggest having at least two scientific
models or system documentations that can be produced in both UPPAAL and H-UPPAAL.
A way of getting realistic models would be to find existing complex UPPAAL models in
work documents from developers or in scientific papers, translate them to H-UPPAAL and

11.2

11.3

Chapter 11. Future Work

then use these to do the comparison. In this test, it is also important that order of the tasks
is permuted and that half of the participants starts with one language and the other half
starts with the other.

Regarding structure, we think that an exam would be a good source of inspiration. For
each model, the participants are required to explain; we would give them some prepara-
tion time. Following we would have a digital questionnaire, where the participants will
have to answer questions in regards to the model they just investigated. This questionnaire
should keep track of time, and then we would have both time measurement and some
answers to evaluate and determine how well the participant understood the model.

With the result from such a test, we could see if there are significant evidence that could
prove or disprove that a language with hierarchies has an effect on efficiency (Hz) and
effectiveness (Hy) of a model.

Improvements to Periodic Queries

The introduction of the periodic queries increases the memory footprint and CPU utiliza-
tion of H-UPPAAL. During our use of the tool, we found that in some cases the tool would
end up using quite a lot of resources, which indicates that these periodic queries need
to be handled with even more care. A result of this can in some cases lead to the user
never finding an answer since the tool tries to run all periodic queries on every change.
A solution to this problem would be to exclude the queries that repeatedly are unable to
complete or at least run them last. In respect to the automatic reachability analysis where
we set a deadline, one could consider running the exhausting location reachability checks
last but extend the time window in which it is allowed to run. This issue is, in general, a
question of trading resource acquisition for quick feedback to the user, i.e. if a query takes
too long, it might not even be “worth it” to check.

Another feature which might be interesting would be to consider which queries often
change status, e.g. which locations are switching between unreachable/reachable. The
idea is here that if a location has been reachable the last many times we checked it, it
probably will still be reachable when we check it again. Because of this, one might want to
prioritize queries that are more likely to change status.

Simulator

During the development of the tool, and during the planning of the two tests, conducted
during this semester, we found that one of the features that H-UPPAAL strongly lacks is an
option for exploring the state space of a model manually, as simulator of the UPPAAL. We
have put lots of work into enabling on-the-fly testing and debugging with the introduction
of automatic reachability analysis and periodic queries. However, without a functionality
to investigate how and why a model does or does not adhere to a certain property, limits
the users’ ability to resolve faults and understand the behavior of models. In other words,
a feature that can express how the model transitions from one state to the next, like the
simulator of UPPAAL. This will enable better debugging of the models, but will also
provide the user with traces of properties, allowing them to explain exactly how a model
does or does not have a particular quality.

11.4

11.5

11.6

11.4 Support for Multiple UPPAAL Versions

The challenge with this is not retrieving the trace and states from the verification en-
gine, which is already possible through its interface. Instead the challenge is presenting
these states and traces to the user. One has to consider how one can keep abstraction and
decomposability in models while displaying the necessary data about a state or trace. We
suggest having a look at how other model checking tools that have hierarchies, like CPN-
Tools [Jensen et al., 2007] or TAPAAL [Byg et al., 2009], displays the states and transitions
between them.

Support for Multiple UPPAAL Versions

To utilize the UPPAAL engine for verification of H-UPPAAL models, we utilize the model. jar
library distributed with different UPPAAL versions (this works as an interface to the UP-

PAAL backend). Furthermore, upon using H-UPPAAL for verification, the users would

have to copy his UPPAAL binaries (backend) to a specific directory, relative to the H-

UPPAAL distribution. When doing this, one has to make sure that the versions of the

model. jar library and UPPAAL binaries are the same. Currently, H-UPPAAL is compiled

with version 4.1.19 of the model. jar library, causing it to be incompatible with older

versions of the model. jar library. This is not optimal, since many people still use version

UPPAAL 4.0.14, and would have to download new binaries to use H-UPPAAL.

To improve this situation, one could include different versions of the model. jar library,
and let the user pick which version of UPPAAL engine his wishes to use. Alternatively, it
might be possible to detect the version of the UPPAAL binaries and use the corresponding
version of the model. jar library.

Addressing Colorblindness and Accessibility

During our performance test, we ran into the issue that two of the participants were
colorblind, who had a very hard time determining if a query was successful or not due to
the color strips that indicate the result of the query as seen in Figure 11.1b. Because this
disability is rather common (8% of men 0.5% of women [Facts About Color Blindness]) and
the fact that the result of queries is key to a model checking tool, this issue must be solved
in some way. We had a few suggestions from the participants with colorblindness, but we
found that an early mockup of the tool did not have this issue, where we used both colors
and symbols to indicate the result as seen in Figure 11.1a.

This particular issue in itself should be looked into, but more importantly, one should be
more considered and have common disabilities, like this one, in mind when designing a
GUIL. This is especially important when designing key functionality like the query pane is
for H-UPPAAL. However, some people might have mobility issues and for that reasons
have a hard time using the mouse. Other might be sensitive to flickering light or sound
and could trigger seizures. Implementing accessibility, like having a colorblind mode or
enabling a keyboard only could address some of the common disabilities.

Reworking the Query Pane

In UPPAAL, there exists many different options and techniques for how a query can be
executed by the verification engine. One example of such techniques are over- and under
approximation [Gerd Behrmann, 2006], which are useful techniques when dealing with
safety and liveness properties, respectively. In UPPAAL, you pick which techniques and
settings to use through a global settings menu, however, in our experience, these are

11.7

11.71

Chapter 11. Future Work

Queries Clear Runall Queries > =
7 successfull, 2 error
E<> Ace.L20 || Bruce.L20

E<> Gate Oce | 2
Gate can receive (and store in queue) msg's from approaching trains. Is Angry reachable?

o E<> Train(0) Cross E<> Ace.L3 && Bruce.L3 >
Train O can reach crossing Can all customers be satisfied?

o E<> Train(1).Cross Al] not deadlock >
Train 1 can reach crossing Is the system deadlock free?

G) E<> Train(0) Cross and Train(1).Stop E<> (Ace.L17 || Ace.L18 || Ace.L19 |, >
Train O can be crossing bridge while Train 1is waiting to cross. Does Customer contain a deadlock?

A E<= Train(0) Croas and (farall (i id t1il= 0 imnlv Train(il Stan)
(a) Initial query pane mockup. (b) Present query pane.

Figure 11.1: Query pane mockup and implementation.

often very dependent on which query that you are running. This causes these settings
to become somewhat tedious to change over and over while developing models since
you are running different queries dependent on the situation. Because of this, we would
like to re-work the query pane in H-UPPAAL to accommodate this, allowing users to set
techniques and settings per query. Furthermore, it might be interesting to keep track of
previous results of queries, especially considering results from infimum and supremum
queries [Gerd Behrmann, 2006]. One could even go as far as to keep a history of what the
model looked like the last time a specific query was successful, allowing users to roll back
changes which might not be wanted.

Visualizing Communication

In our experience within the model checking activity, it is often difficult to keep track
of synchronization between templates (and, in H-UPPAAL, components). We believe
that introducing a feature that visualizes communication between components would
help to improve the general understanding of where and how different synchronization
channels are used. In H-UPPAAL, one might be especially interested in such a feature;
this communication can be seen as a part of its interface, e.g. input/output channels. In
extension to the notation introduced in Section 1.3, this section will also use the following:

Notation 11.1 Let A “ B denote that component A and B contains edges with the
synchronization properties com! and com? respectively.

Subcomponent Communication
Imagine a component, C, with two subcomponents, a; : A and b : B, running in parallel.

If we have A Srmumicate, B, these subcomponents would be able to communicate over
the communicate channel. However, to visually see this, we would have to open up both
component A and B. Even though this works, we believe that it could be improved by
describing this communication when viewing the places where the components are used,
which, in this example, would be in the C component. This communication is visualized
in Figure 11.2, where subcomponents a; can synchronize with b; over the communicate

11.7.2

11.7 Visualizing Communication

channel. This idea would adhere to Principle 4 (Identity and Relation), since it links the
subcomponents together through their communication.

|

communicate

Figure 11.2: Visualizing the A ———— B synchronization.

The idea is to give the modelers an insight in how subcomponents might interact. Based
on this, we do not believe that visualizing other channels that component A might syn-
chronize on, would provide any additional information for the modeler, but rather create
a more cluttered model. One might even leave it up to the modeler to describe which
channels he wants to display, making them function more like an auto-generated comment.

Component Communication

Like how one could introduce this visualization between subcomponents to describe how
they interact with each other, one could introduce this feature for a single component,
describing how it might interact with other components, once used in a subcomponent
somewhere in the model. This is visualized in Figure 11.3, where we see that component
A can initiate synchronization on the communicate -channel, and receive a synchronization
on the status. We do not know which components that otherwise take part in these
synchronizations if any at all. This is very similar to integrated development environments,
where we do not know where a particular function is called. One could also indicate if
any of these channels are unused in other parts of the model, as a kind of warning, e.g.
“Channel is unused” (static analysis) or “Synchronization on channel complete is never received”
(dynamic analysis).

status communicate

O__

status?

communicate!

Figure 11.3: Component with synchronizations communicate! and status?.

Chapter 11. Future Work

11.7.3 Different Channel Types

In UPPAAL, and in effect, also H-UPPAAL, one might declare a channel as either Urgent,
Broadcast, or both. Especially the broadcast trait is important to keep in mind when
designing and understanding a model. Based on this, we believe that the visual additions
described above should reflect these different types of channels. One might make the
channel name italic to describe that the channel is urgent, and underline to describe that it
is a broadcast channel. This would adhere to Principle 5 (Printable).

References and Appendices

12 Bibliography

Akerholm, Mikael, Jan Carlson, Johan Fredriksson, Hans Hansson, John Hakansson,
Anders Moller, Paul Pettersson, and Massimo Tivoli (2007). “The SAVE approach
to component-based development of vehicular systems”. In: Journal of Systems and
Software 80.5, pp. 655-667.

Byg, Joakim, Kenneth Yrke Jorgensen, and Jifi Srba (2009). “TAPAAL: Editor, simulator and
verifier of timed-arc Petri nets”. In: International Symposium on Automated Technology for
Verification and Analysis. Springer, pp. 84-89.

David, Alexandre and Kim G Larsen (2011). “More Features in UPPAAL”. In: Deliverable
no.: D5. 12 Title of Deliverable: Industrial Handbook, p. 49.

David, Alexandre and M. Oliver Moller (2001). From HUPPAAL to UPPAAL: A Translation
from Hierarchical Timed Automata to Flat Timed Automata. Tech. rep. RS-01-11. BRICS.
URL: http://www.brics.dk/RS/01/11/index.html.

Facts About Color Blindness. URL: https ://nei.nih.gov/health/color_blindness/
facts_about.

Field, Andy (2009). Discovering Statistics Using SPSS, 3rd Edition (Introducing Statistical
Methods). SAGE Publications Ltd. ISBN: 1847879071.

Gerd Behrmann Alexandre David, Kim Guldstrand Larsen (2006). “A Tutorial on Uppaal
4.0”. In:

Haékansson, John, Jan Carlson, Aurelien Monot, Paul Pettersson, and Davor Slutej (2008).
“Component-Based Design and Analysis of Embedded Systems with UPPAAL PORT”.
In: Automated Technology for Verification and Analysis: 6th International Symposium, ATVA
2008, Seoul, Korea, October 20-23, 2008. Proceedings. Ed. by Sungdeok (Steve) Cha, Jin-
Young Choi, Moonzoo Kim, Insup Lee, and Mahesh Viswanathan. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 252-257. 1SBN: 978-3-540-88387-6. DOI: 10.1007/978-
3-540-88387-6_23. URL: http://dx.doi.org/10.1007/978-3-540-88387-6_23.

Huber, Peter, Kurt Jensen, and Robert M Shapiro (1989). “Hierarchies in coloured Petri
nets”. In: International Conference on Application and Theory of Petri Nets. Springer,
pp- 313-341.

Jensen, Kurt, Lars Michael Kristensen, and Lisa Wells (2007). “Coloured Petri Nets and
CPN Tools for modelling and validation of concurrent systems”. In: International Journal
on Software Tools for Technology Transfer 9.3-4, pp. 213-254.

Kaikkonen, Anne, Aki Kekéldinen, Mihael Cankar, Titti Kallio, and Anu Kankainen (2005).
“Usability testing of mobile applications: A comparison between laboratory and field
testing”. In: Journal of Usability studies 1.1, pp. 4-16.

http://www.brics.dk/RS/01/11/index.html
https://nei.nih.gov/health/color_blindness/facts_about
https://nei.nih.gov/health/color_blindness/facts_about
http://dx.doi.org/10.1007/978-3-540-88387-6_23
http://dx.doi.org/10.1007/978-3-540-88387-6_23
http://dx.doi.org/10.1007/978-3-540-88387-6_23

Chapter 12. Bibliography

Larsen, Kim G, Paul Pettersson, and Wang Yi (1997). “UPPAAL in a nutshell”. In: Interna-
tional journal on software tools for technology transfer 1.1-2, pp. 134-152.

Mitta, Deborah A (1991). “A methodology for quantifying expert system usability”. In:
Human Factors 33.2, pp. 233-245.

Molich, Rolf and Joseph S Dumas (2008). “Comparative usability evaluation (CUE-4)”. In:
Behaviour & Information Technology 27.3, pp. 263-281.

Mourtizsen, Niklas Kirk and Rasmus Holm Jensen (2016). HUPPAAL: Introducing Hi-
erarchies to Networks of Timed Automata - HUPPAAL - a New Integrated Development
Environment for Model Checking.

Nielsen, Jakob (1993). Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc. 1SBN: 0125184050.

Raptis, Dimitrios, Nikolaos Tselios, Jesper Kjeldskov, and Mikael B. Skov (2013). “Does
Size Matter?: Investigating the Impact of Mobile Phone Screen Size on Users’ Perceived
Usability, Effectiveness and Efficiency.” In: Proceedings of the 15th International Conference
on Human-computer Interaction with Mobile Devices and Services. MobileHCI "13. Munich,
Germany: ACM, pp. 127-136. ISBN: 978-1-4503-2273-7. DOI: 10.1145/2493190.2493204.
URL: http://doi.acm.org/10.1145/2493190.2493204.

Wyatt, Jeremy and David Spiegelhalter (1991). “Evaluating Medical Expert Systems: What
To Test, And How ?” In: Knowledge Based Systems in Medicine: Methods, Applications
and Evaluation: Proceedings of the Workshop “System Engineering in Medicine”, Maastricht,
March 16-18, 1989. Ed. by Jan L. Talmon and John Fox. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 274-290. ISBN: 978-3-662-08131-0. DOI: 10.1007/978-3-662-
08131-0_22. URL: http://dx.doi.org/10.1007/978-3-662-08131-0_22.

http://dx.doi.org/10.1145/2493190.2493204
http://doi.acm.org/10.1145/2493190.2493204
http://dx.doi.org/10.1007/978-3-662-08131-0_22
http://dx.doi.org/10.1007/978-3-662-08131-0_22
http://dx.doi.org/10.1007/978-3-662-08131-0_22

13 Expert User Evaluation Results

This appendix presents results from the expert user evaluation. Here, the letters A-F
represents participants.

O 060

(3 1 B2
—0— (1 B3]

2] © 0
0 O ©
—O0 (2] (3
Average (2] (113]

Figure 13.1: Results from table rating task for location urgency representation ideas.

m m O 0N = »

o ©O
00
00
(5] 4]
—O o
—©O (4]

Average e o

Figure 13.2: Results from table rating task for subcomponent functionality representation
ideas.

m o om 9 N W P

m Chapter 13. Expert User Evaluation Results

(7
(7
00
(6 (8 B 7
(8 0 0
—0— @ O
Average (6) O O

Figure 13.3: Results from table rating task for edge properties representation ideas.

- m 9 N = B
(o)

14 Expert User Evaluation Tasks

This appendix lists the tasks the experts of UPPAAL was assigned during the user expert
evaulation.

14.1 Task: Draw a model

Draw this model in the H-UPPAAL tool.

O

coin?
t=0

Error
. t==10 Waiting
t<=10
wantsTea? wantsCoffee?
t=20 t=20
C BrewingTea C BrewingCoffee
t<=13 t<=5

t> 2 t>4
teal coffee!

Final

m Chapter 14. Expert User Evaluation Tasks

14.2 Task: Expand a model

Expand the university model. Here we want the computer scientist to use the vending
machine to retrieve hot beverages in exchange for coins.

The participants were presented with a model created priorly in the tool, and were asked to
extend it as described.

14.3 Task: Explain a model

Please describe the following model out loud in as much detail as possible.

= Motivated

LineCook

Makes progress on the

current dish

Jook

7. LineC
complete? ~-—-@

LineCook
L28

Makes progress on the

current dish

ﬁb—]

work?
complete!

p<10

Keeps track of the dish, tend
patience < 2
p=<10
patience = 0, p++

to grow impatient

patience=0,p=0
©
.
yell!
&
work?

¢

14.4 Task: Rank the different proposals m

14.4 Task: Rank the different proposals

Please rank the following proposals in regards to how much you like them on the spe-
cial ranking-table. The arrow on the paper indicates the position on the table.

This correspond to the proposals found in Appendix 15

Design Ideas

This appendix contains different design ideas that have been produced through this
semester and the last semester, documented in Mourtizsen and Jensen, 2016.

15.1 Location Urgency
Design Idea 1 — Traditional UPPAAL Urgency.

2 .
L4 L4

Design Idea 2 — New Urgency with Octagon Shape.

©e—0—0 9

Design Idea 3 — New Urgency with Octagon and Square Shapes.

o—o—0—=m

m Chapter 15. Design Ideas

15.2 Subcomponent Functionality Representation
Design Idea 4 — Textual Representation.

Solves the problem
by cycling through
soloutions

15.3 Edge Properties
Design Idea 6 — Traditional UPPAAL Edge with Properties.

time < 20
do_something[x]!

var =0

Design Idea 7 — Single Box with Properties.

v

time < 20

do_something[x]!

Design Idea 8 — Multiple Boxes with Single Property.

15.3 Edge Properties

16 Performance Task Sheets

The following pages will show the task sheets that were handed to the eighth participant
during the performance test execution. This particular participant were assigned with the
order A, C, B. Using UPPAAL in session 1 and H-UPPAAL in session 2.

SESSION 1

PARTICIPANT 8

A08

Finding the Best Scheduler

Your team of experienced CPU developers have recently been more and more interested
in model checking. This has caused your team to develop a model for different schedulers
which you plan to use in the next line of CPUs. However, before beginning production,
you want to evaluate the performance of these scheduling techniques. To do this, your
team implemented a UPPAAL model based on the following description:

Project Description

We want to model a computer, where arbitrarily ordered tasks with different priority
should be executed by a CPU. This CPU can only execute a single task at a time. How-
ever, to determine when to execute the different tasks, the CPU may utilize a scheduling
technique. Our goal is to find the best possible technique.

A good scheduling technique is one where few tasks are waiting on being executed
and high priority tasks are executed before ones with lower priority.

Your colleague informs you that three different scheduling techniques have been imple-
mented: Stack, Queue, and, Priority Queue. He also informs you that you may evaluate
a particular technique using the score variable in the Evaluator template, where values
closer to 0 are considered better.

A) Start UPPAAL and open the /uppaal/cpu/cpu.xml file.

B) Find the worst case score after the TestSuite is completed.

Stack:

Queue:

Priority Queue:

C) Find the best case score after the TestSuite is completed.

Stack:

Queue:

Priority Queue:

D) Save the model, close the program, and inform the test conductors that you finished
exercise A8.

Tip!
It is possible to find infimum (smallest possible value) and supremum (largest possible
value) of a variable or clock x in location / using the following queries:

inf{l} : «x
sup{/} : x

co8

2 Fibonacci

A) Start UPPAAL and open the /uppaal/fib/fib.xml file (this project will be empty, but
load it anyway).

B) Create a new template where the following query should pass when x is found in the
tirst 20 Fibonacci numbers and fail otherwise.

E<> fib == x

Tip!
The Fibonacci sequence is defined by the recurrence relation:

Fo=F, 1+ F.2

where Fy =0, and F; = 1.

C) Indicate with a X how your model reacts to the following values of x.

X Pass Fail

O N e

s [| [_|

L I e

7127 | \ | \

10946 | | \

D) Save the model, close the program, and inform the test conductors that you finished
exercise C8.

B08

3 Kitchen Modeling

Your team of experienced model checkers has recently been working with the following
project description for Gordon Ramsay’s new restaurant, Amaryllis. The Amaryllis is a
restaurant where Gordon Ramsay is the chef. The concept of his restaurant is simple: you
place an order, and Gordon will surprise you with one of his famous dishes. To help him
in the restaurant, Gordon has hired the waitress Sofia, and two line cooks, Adam and
James.

Your colleagues have already finished a big part of the project, but are still missing
the modeling of Gordon Ramsay himself.

Gordon Ramsay

To prepare the dishes, Gordon has hired two line cooks, Adam and James. They are
good workers, but sometimes they require additional motivation in order to progress on
a dish. All of the dishes designed by Gordon consists of exactly 10 steps. Gordon also
knows that none of the steps should take longer than 2 minutes to perform, causing
Gordon to grow impatient after 2 minutes, resulting in him yelling at his cooks.

Model the Chef Gordon Ramsay
A) Start UPPAAL and open the /uppaal/amaryllis/amaryllis.xml file.

B) Model the behavior of Gordon Ramsay using a new template and add him to the
kitchen personnel.

Tip!
Familiarize yourself with the work done. Investigate how the LineCook templates

are started. Also, consider how the line cooks are instructed to prepare the meals for
Gordon.

C) Save the model, close the program, and inform the test conductors that you finished
exercise B8.

SESSION 2

PARTICIPANT 8

Finding the Best Scheduler

Your team of experienced CPU developers have recently been more and more interested
in model checking. This has caused your team to develop a model for different schedulers
which you plan to use in the next line of CPUs. However, before beginning production,
you want to evaluate the performance of these scheduling techniques. To do this, your
team implemented a H-UPPAAL model based on the following description:

Project Description

We want to model a computer, where arbitrarily ordered tasks with different priority
should be executed by a CPU. This CPU can only execute a single task at a time. How-
ever, to determine when to execute the different tasks, the CPU may utilize a scheduling
technique. Our goal is to find the best possible technique.

A good scheduling technique is one where few tasks are waiting on being executed
and high priority tasks are executed before ones with lower priority.

Your colleague informs you that three different scheduling techniques have been imple-
mented: Stack, Queue, and, Priority Queue. He also informs you that you may evaluate
a particular technique using the score variable in the Evaluator component, where values
closer to 0 are considered better.

A) Start H-UPPAAL and open the /huppaal/cpu/ folder.

B) Find the worst case score after the TestSuite is completed.

Stack:

Queue:

Priority Queue:

C) Find the best case score after the TestSuite is completed.

Stack:

Queue:

Priority Queue:

D) Save the model, close the program, and inform the test conductors that you finished
exercise A8.

Tip!
It is possible to find infimum (smallest possible value) and supremum (largest possible
value) of a variable or clock x in location / using the following queries:

inf{l} : «x
sup{/} : x

A08

co8

2 Fibonacci

A) Start H-UPPAAL and open the /huppaal/fib/ folder (this project will be empty, but
load it anyway).

B) Create a new component where the following query should pass when x is found in
the first 20 Fibonacci numbers and fail otherwise.

E<> fib == x

Tip!
The Fibonacci sequence is defined by the recurrence relation:

Fo=F, 1+ F.2

where Fy =0, and F; = 1.

C) Indicate with a X how your model reacts to the following values of x.

X Pass Fail

O N e

s [| [_|

L I e

7127 | \ | \

10946 | | \

D) Save the model, close the program, and inform the test conductors that you finished
exercise C8.

B08

3 Kitchen Modeling

Your team of experienced model checkers has recently been working with the following
project description for Gordon Ramsay’s new restaurant, Amaryllis. The Amaryllis is a
restaurant where Gordon Ramsay is the chef. The concept of his restaurant is simple: you
place an order, and Gordon will surprise you with one of his famous dishes. To help him
in the restaurant, Gordon has hired the waitress Sofia, and two line cooks, Adam and
James.

Your colleagues have already finished a big part of the project, but are still missing
the modeling of Gordon Ramsay himself.

Gordon Ramsay

To prepare the dishes, Gordon has hired two line cooks, Adam and James. They are
good workers, but sometimes they require additional motivation in order to progress on
a dish. All of the dishes designed by Gordon consists of exactly 10 steps. Gordon also
knows that none of the steps should take longer than 2 minutes to perform, causing
Gordon to grow impatient after 2 minutes, resulting in him yelling at his cooks.

Model the Chef Gordon Ramsay
A) Start H-UPPAAL and open the /huppaal/amaryllis/ folder.

B) Model the behavior of Gordon Ramsay using a new component and add him to the
kitchen personnel.

Tip!
Familiarize yourself with the work done. Find where the Gordon Ramsay subcompo-

nent should be started in parallel. Also, consider how the line cooks are instructed to
prepare the meals for Gordon.

C) Save the model, close the program, and inform the test conductors that you finished
exercise B8 .

	Contents
	1 Preface
	1.1 Reading Guide
	1.2 Terminology
	1.3 Notation

	2 Summary
	Part I — The Model Checking Activity and H-Uppaal
	3 Problem
	4 Related Work
	4.1 Uppaal port
	4.2 Colored Petri Nets
	4.3 Previous work on H-Uppaal
	4.4 Usability Evaluation and Analysis

	5 The H-Uppaal Manifesto
	Principle 1: Backward Compatible
	Principle 2: Integrated Development Environment
	Principle 3: Information Hiding
	Principle 4: Identity and Relation
	Principle 5: Printable
	Principle 6: Objects Require Space

	6 Expert User Evaluation
	6.1 Tasks
	6.2 Results
	6.3 Usability Problems
	6.4 Design Idea Rankings
	6.5 Discussion

	Part II — Changelog
	7 Visual and Minor Changes
	7.1 Visual changes
	7.2 Minor Changes

	8 Utilizing the Uppaal Backend
	8.1 Automatic Reachability Analysis
	8.2 Periodic Queries
	8.3 Query Feedback
	8.4 Multiple Engines

	Part III — Final Evaluation and Thoughts
	9 Performance Test
	9.1 Participants
	9.2 Tasks
	9.3 Hypothesis
	9.4 Test Structure and Setting
	9.5 Results (Efficiency)
	9.6 Results (Effectiveness)
	9.7 Interpreting the Results
	9.8 Problematic Situations

	10 Conclusion
	11 Future Work
	11.1 Reading Performance Evaluation
	11.2 Improvements to Periodic Queries
	11.3 Simulator
	11.4 Support for Multiple Uppaal Versions
	11.5 Addressing Colorblindness and Accessibility
	11.6 Reworking the Query Pane
	11.7 Visualizing Communication

	References and Appendices
	12 Bibliography
	13 Expert User Evaluation Results
	14 Expert User Evaluation Tasks
	14.1 Task: Draw a model
	14.2 Task: Expand a model
	14.3 Task: Explain a model
	14.4 Task: Rank the different proposals

	15 Design Ideas
	15.1 Location Urgency
	15.2 Subcomponent Functionality Representation
	15.3 Edge Properties

	16 Performance Task Sheets

