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turbidity measurements. The benefits of using

ultrasonic turbidity sensors have been identified

as low maintenance and low cost. The modeling

framework for the model-based design tool has

been divided into two stages consisting of a CFD

and particle tracing simulation and an acoustic

simulation. A theoretical background study of

a single particle scattering showed that particle

size, material type, and ultrasonic wave frequency

are primary parameters when anticipating a high

scattering signal. It has been found that the

particle positions depends greatly on the flow

velocity, but that the measurable output signal

depends mostly on the particle concentration,

particle size, and particle material.
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Summary

Measuring water turbidity is often performed using high precision optical turbidity sensors,
that measures the 90deg scattering of particles in water. One of the main drawbacks using
optical sensors is the need for a transparent window into the water. A permanent turbidity
measurement setup requires frequent maintenance to clear the window from biofilms and
other layers that may obstruct the transparently of the window and potentially obscure
the measurements. Ultrasonic sound waves do not require a transparent window and may
be used as an alternative.

The standard unit within water turbidity measurements is the nephelometric turbidity unit
(NTU), that is a qualitative unit defined from a nephelometric setup. The unit depends
mainly on optical parameters like frequency, concentration, material type, shape, and size.
The particles in the scope of this project are spherical with a radius of 5µm to 10µm,
a concentration of 100 particles per mL to 6000 particles per mL, and with the material
property of rigid particles, Silica particles or Polystyrene particles.

The scattering response from an ultrasonic incident wave striking a single spherical particle
can be expressed using analytical solutions to the surface boundary condition problem.
The amplitude of the scattered wave depends on the frequency of the incident wave, the
properties and size of the particle, and the distance from the particle.

The primary object in this project is to examine whether it is possible to create a design tool
that can be used in the process of model-based design for a turbidity sensor. The modeling
framework of the design tool consists of two main stages. In the first stage, the particle
positions within a given sensor geometry are calculated utilizing CFD and particle tracing
simulations. The second stage consists of an acoustic frequency simulation, simulating the
scattering field from the particle distribution calculated in the first stage.

Due to a large numerical problem, the required frequency of the incident wave is lowered
from 10MHz to 2MHz which, as a consequence, decreases the numerical problem but also
reduces the particle multi-scattering amplitude. It is, however, found that upscaling the
particle size can approximate the scattering amplitude of the original frequency with a 5%

error assuming rigid particles and a minimum average distance between the particles of
ten times the diameter of the particle.

Using the design tool, different sweeps of parameters has been investigated. It has been
found that the RMS multi-scattering amplitude as a function of the particle concentration
(particles per mL) scales with a one term power fit (Confidence level of R2 “ 0.99).

Also, the RMS multi-scattering amplitude using different material properties has been
investigated, which can be seen in Figure 1.

The design tool has also been proven useful for visualization of the scattering pressure
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Figure 1. The average RMS scattering pressure on the top, side and bottom surface as a function
of the particle concentration using the particle materials Silica, Polystyrene and rigid. The particle
radius is a “ 5µm and the flow inlet velocity is 1m{s.

field. In Figure 2 the RMS scattering pressure can be seen for a particle concentration of
100 particles per mL and 6000 particles per mL.

Figure 2. 3D mirrored acoustic solution-set with the RMS scattering pressure field on the outer
fluid domain surfaces. The particle concentrations seen is 100 p/mL and 6000 p/mL, and an inlet
flow velocity of 1m{s. Particles are assumed rigid and with a particles radius of a “ 5µm.
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Preface
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Nomenclature and
Abbreviations

Abbreviations
DoF Degrees of Freedom
NoP Number of Particles
NTU Nephelometer Turbidity Unit
PML Perfectly Matched Layers, used in the acoustic simulations to truncate the domain
SSC Suspended Solids Concentration
UT Ultrasonic Turbidity (UT) sensor

Nomenclature
γ Separation Constant, used in the determination of the scatter wave
p̂ Pressure peak amplitude
λ0 Wavelength λ0 “ c{f0

FD Particle drag force
u Fluid velocity
v Particle velocity
x Particle position
µ Fluid dynamic viscosity
∇ Gradient operator
∇2 Laplace operator
ν Fluid kinematic viscosity
ω Angular wave frequency
φ Spherical angle
ρ Fluid density
ρ0 Ambient density
ρpc Particle concentration
ρrelease Non-dimensional density proportionality factor for the particle release distribution
ρtotal Total density
ρd Disturbed density
ρp Particle density
τp Particle velocity time constant
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v0 Ambient acoustic velocity vector. Assumed to be v0 “ 0

vtotal Total acoustic velocity vector
vd Disturbed acoustic velocity vector
θ Spherical angle
Re Reynolds number
Rer Relative Reynolds number calculated using the absolute velocity difference u´ v

A Plane wave pressure amplitude
a Particle radius
Ain Inlet cross section area for the fluid flow model
Atube Measurement tube cross section area for the fluid flow model
as Scaled particle radius
c Speed of sound
Cn Scatter wave coefficient
Dhyd Hydraulic diameter used in the calculation of the Reynolds number
Din Inlet diameter
Dn Flaw wave coefficient
dp Particle diameter
h
p1q
n Hankel function of the first kind
jn Bessel function of the first kind
k Wave number, given as k “ ω{c

l Separation constant, used in the determination of the analytical scatter wave
solution

Linlet Inlet domain length
Lh Hydrodynamic entry length
m An integer used in the determination of the scatter wave
mp Particle mass
N Mesh scaling factor
n An integer used in the determination of the scatter wave
Nrelease Number of particles per release
nn Bessel function of the second kind
p Time harmonic pressure distrubance p “ p̂ eikr e´iωt

p1 Complex pressure function
p0 Ambient pressure
pflaw Flaw pressure disturbance pflaw,total “ pflaw,0 ` pflaw

pinc Incident plane wave pressure disturbance (pinc,total “ pinc,0 ` pinc)

prms RMS pressure calculated as prms “

b

1
2p
˚p

psc,s Scaled scatter pressure
psc Scattering pressure disturbance (psc,total “ psc,0 ` psc)
ptotal Total pressure
pb Pre-known analytical expression of the background pressure field
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pd Disturbed pressure
Pn Legendre polynomials
pt Total pressure field in the numerical acoustic simulations
r Spherical coordinate
Rin Inlet radius
t Time
trelease Time between particle releases
tsim Particle tracing simulation time
U0 Average inlet flow velocity
Utube Average measurement tube flow velocity for the fluid flow model
Vinlet Inlet release volume
H Length of the cylinder in the acoustic geometry
L Thickness of the PML domain
R Radius of the cylinder in the acoustic geometry
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Chapter 1

Introduction

Measuring the particle concentration in fluids is used in a broad range of industries
including food process industry, system diagnosis, and water quality monitoring. In the
food process industries is the cloudiness of the fluid used as a vital part of the process
quality control. For example, it is important that the visual appearance and cloudiness of
juice remain constant and tightly control for consumer acceptance [Linke & Drusch, 2016].
Equal criteria can be found within beverage industries [Bratby, 2015].

Within hydraulic fluid-power applications, particle contamination is known to be one of the
leading causes of wear and failures [Fitch, 2011]. Hydraulic systems are often circulating
closed systems, with high pressures and tight tolerances, and even small particles in the oil
may, therefore, have a pronounced impact. Particle contamination in hydraulic machines
can be a result of external pollution of dust and dirt or internal surface degradation.
Internal degradation can be caused by friction and surface removals from particle plowing
or cutting, which then leads to even higher particle contaminations in the system and
therefore, even more, friction and more surface removal. The high particle contamination
can then lead to an unexpected breakdown of essential components like electro-hydraulic
valves that are blockaded due to small deposits of particles in pilot lines or a direct blockade
of the spool [Fitch, 2011]. The measurement of particles within hydraulic components can,
therefore, be an important part of the reliability and diagnosis of the system. A condition
monitoring approach using particle concentration measurements can be seen in Figure 1.1.

226 Handbook of Hydraulic Fluid Technology, Second Edition

However, the process of defining precise and challenging targets (e.g., high particle cleanliness) 
is only the first step (discussed in the following section). Control of the fluid’s conditions within 
these targets must then be achieved and sustained. This is the second step and often includes an 
audit of how fluids become contaminated and then systematically eliminating these entry points. 
Often, better filtration and the use of separators may also be required. 

The third step is the vital action element of providing feedback to the oil analysis program. When 
exceptions occur (e.g., over-target results) remedial actions can then be immediately commissioned. 
Using the proactive maintenance strategy, contamination control becomes a disciplined activity of 
monitoring and controlling fluid cleanliness, not a reactive activity of responding to high dirt and 
wear debris levels.

The relationship between proactive and predictive maintenance is perhaps best illustrated in the 
graph shown in Figure 5.5 below. The Proactive Domain is influenced by the control of root causes 
such as particle contamination, with the goal of extending this domain indefinitely, if possible. The 
Predictive Domain starts at failure inception, which is also the end of the Proactive Domain. Its 
goal is early detection, while there is still considerable Remaining Useful Life (RUL) of the system 
components. The closer the point of failure detection is to the point of failure inception, the more 
effective the maintenance response will be.

If an impending failure goes undetected, then catastrophic failure is imminent. During this fail-
ure (Protective Domain) the objective is to minimize the failure severity (repair costs) and to pre-
vent collateral damage to other system components. When the life extension benefits of proactive 
maintenance are flanked by the early warning benefits of predictive maintenance, a comprehensive 
condition-based maintenance program can result [9].

5.5 SETTING RELIABILITY-BASED CLEANLINESS TARGETS

While there are numerous methods used to arrive at target cleanliness levels for fluids and lubri-
cants in different applications, most consider both the importance of machine reliability and the 
general contaminant sensitivity of the machine or system. This approach enables customization 
of the target to: (a) the reliability goals of the machine owner, (b) the risk of contamination from 
the operating environment, and (c) the contaminant tolerance of the hydraulic system. A common 
example of this approach is shown in Table 5.2 and is referred to as the Target Cleanliness Grid 
(TCG) [10].

The TCG utilizes the Reliability Penalty Factor (RPF) and the Contaminant Severity Factor 
(CSF), which are arrived at through a subjective scoring system (see Figures 5.6 and 5.7). The RPF 
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Figure 1.1. Monitoring the particle contamination level in hydraulic components may increase
the reliability of the system and potentially reduce the downtime [Fitch, 2011].
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Real-time detection of particle levels in hydraulic systems may even minimize the downtime
and increase the lifetime of the system by intelligently executing an oil flooding procedure
at an early stage when a certain contamination level is intercepted.

Water quality is an area that is of increased interest both in the US and EU [Kamstrup,
2014]. The water quality can be quantified through the degree of particle contaminations
in the water with particles of sizes varying from a few nanometers to several millimeters.
The large span in size makes it significantly challenging for water treatment engineers, to
measure the particles [Bratby, 2015].

Real-time measurements of particle concentrations in utility water distribution network
can also be used as an early-warning system, detecting polluted water before it reaches
the end-user. Polluted water in the water distribution network can be a result of a broken
pipeline or water flooding after a large rainfall where the waste water is mixed with the
utility water. Particles from natural weathering may consist of a large variety of materials,
among iron, silica, aluminum, clay and other minerals [Bratby, 2015]. The particles can also
comprise of organic matter or algae fastened on the surface of existing mineral particles.

Stringent wastewater policies demand better characterization of the water contamination
levels in sewer systems, and only a few existing monitoring techniques can be used in
real-time [Pallarés et al., 2016; Abda et al., 2009].

Particles in water are often measured as total suspended solids or Suspended Solids
Concentration (SSC) using a rinsed membrane with a known dry weight [Bratby, 2015].
Drying the membrane and the particles deposited on the membrane can be measured.
Even though this method is simple, it has some significant drawbacks. The particle
measurement is affected by the pore size of the membrane allowing smaller particles than
the pore size to pass. Also, the particle mass removed in the drying of the membrane
may result in erroneous measurements. But most of all, the method is rigorous, time-
consuming and cannot be conducted real-time. Measurement of particle concentrations
using optical scattering methods is often called turbidity measurements, which is described
in the following.

1.1 Turbidity in Water

Turbidity is a quantitative measure of the water cloudiness, which from modern standards
are defined by 90-degree light scattering of suspended solids. The original definition of
turbidity was developed in early 1900, where the measurement unit was identified as x
parts per million suspended silica in purified water [Sadar, 1999]. Because the unit did
not relate to a specific matter in the sample, the unit where referred as Turbidity Unit
(TU) [Sadar, 1999]. The apparatus that is associated with the measurement of turbidity
is called a nephelometer why the standard unit for turbidity is referred as NTU [ISO

2
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Standard, 2016]. A schematic of the apparatus can be seen in Figure 1.2.

5

Development of the 
Primary Turbidity Standard
Definition of Turbidity
By definition, turbidity is an “optical property that causes
light to be scattered and absorbed rather than
transmitted in straight lines through the sample.”2

Scattering and absorption are caused when undissolved
particles such as silt, clay, algae, organic matter, and
microorganism suspended in a sample interfere with
light passing through.  Their effect is to impart a haze or
cloudiness to the sample.  Simply defined, turbidity is the
opposite of clarity.

It is possible to quantify turbidity by measuring the
amount of light scattered away from the direction of
incident light, or the amount of light absorbed from the
incident beam.  In order for either of these measurements
to be meaningful, however, it is necessary to have a
frame of reference, or standard, against which the
numbers can be compared.

Turbidity Units of Measure
Establishing a standard for turbidity measurement and
defining its units is not as simple a process as it is for
many chemical measurements.  Turbidity is a qualitative
property, usually caused by a wide variety of substances.
Light-scattering properties of a given particle depend on
its size, shape, and refractive index (see Figure 1).
Extremely small particles scatter short wavelength light
differently than long wavelength light.  As particle size
increases, the effect is the opposite.  The complex nature
of the scattering effect and the number of variables
involved make absolute comparisons difficult.

Early efforts to quantify turbidity were done by Whipple
and Jackson in 1900.  Their work involved the
formulation of a standard suspension of 1000 parts per
million of diatomaceous earth in distilled water.
Although the suspension could not be formulated
repeatedly using materials from different sources, this
was the first relative scale of comparison for turbidity
measurements.  Compared to the standard suspension, a
sample could be described as having the same turbidity
as X parts per million suspended silica in distilled water.
Units of “parts per million, silica turbidity” were used,
and are still found in references today.  Because this was
an equivalent scale and did not relate to a specific
quantity of matter in a sample, the unit of measure was
later redefined as a Turbidity Unit (TU), the basic unit of
measure accepted today.

Turbidity Units are usually stated with a qualifier that
specifies the method of measurement.  A nephelometer
measures light scattered by a sample in the direction that
is 90 degrees from the incident light path (see Figure 2);
turbidity measured in this way is stated in Nephelometric
Turbidity Units (NTU).  Visual extinction methods of
measurement such as the Jackson Candle Turbidimeter
method measure attenuation of light in the direction of
the incident beam; these methods report in Jackson
Turbidity Units (JTU).  Note that although both units
have the same basis, results derived by the two
measurement techniques can differ substantially for the
same sample.

Formazin as a Primary Turbidity Standard
Defining a unit of measure and a relative calibration scale
was a key development in turbidity measurement.  The
major remaining difficulty was that the standard
suspension could not be formulated repeatably when
using natural materials from different sources.  Many
organic and inorganic substances were proposed for use
in preparing a primary turbidity standard.  Formazin, a
polymer suspension, was proposed for the role as early
as 1926, but little research resulted.  It wasn’t until the
early 1960s that Johns-Manville Corporation representatives
contacted Hach Company and also suggested formazin.

2Standard Methods for the Examination of Water and Wastewater, 19th
edition, 1995, page 2-8.
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Figure 1: Scattering is a function of light wavelength and
particle size.  Assuming a wavelength of approximately 
600 nm, the figure shows angular patterns of scattered
light from particles of three relative sizes: A) < 60 nm, 
B) ≈ 150 nm, and C) ≈ 6000 nm.  From Brumberger et al,
“Light Scattering”, Science and Technology, November,
1968, page 38.

Figure 2: A nephelometer quantifies turbidity by measuring
light scattered by suspended particulate material.  This con-
figuration detects light scattered at 90° from the incident beam.

Figure 1.2. Schematic of the nephelometer to measure turbidity [Sadar, 1999]

Figure 1.2 shows the idea behind the turbidity measurement. A light beam propagates
through the sample, which then scatters when the light strikes the particles in the sample.
The scattered light is then measured at a 90 deg angle from the sample, as seen in Figure
1.2. The 90-degree measurement angle is chosen because the light scattering intensity
in the 90-degree direction from the incident light beam is least sensitive to particle size
variations in the sample [Bratby, 2015]. The particles can be in the form of suspended
solids like sand, clay or organic matter, as described in the introduction. The measure
of turbidity is, therefore, highly dependent upon properties like wavelength, particle size,
particle shape, and other optical properties that influence the light scattering. Due to
a large number of variables found in turbidity measurements, it is difficult to conduct a
direct comparison between measurements taken with various samples and with different
types of equipment [Sadar, 1999].

In the pursuit of obtaining a robust calibration method for turbidity sensors, a Formazin
polymer suspension was proposed in 1926 and, again, in the 1960’s [Sadar, 1999].
The Formazin suspension was found stable and reproducible enough to meet the
requirements of a primary standard and have since been the standard for turbidity
measurements. A Formazin suspension created by 0.5g/40mL hydrazine sulfate and
5g/40mL hexamethylenetetramine in 40mL water is by the standard ISO-7027-1 defined
as 4000 NTU [ISO Standard, 2016].

1.2 Using Ultrasound for Turbidity Measurements

There can be found a large variety of precise optical turbidity instruments that can be used
for real-time turbidity measures. Common for the optical turbidity sensors is, however,
that they require a transparent detector window and fluid. Figure 1.3 shows an optical
turbidimeter used for larger particles where the light is emitted to the sample with a
45-degree angle and a pair of photoreceptors at 90-degree and 140-degree are placed to
intercept scattered signals from the particles. The sensor does also have a wiper to clean
the window face from biological growth and dirt.

3
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This kind of sensor can be used out of the laboratory, but is expensive, limited by mechanics
in the fluid, and may require frequent service.

Figure 1.3. Schematic of an optical turbidimeter for large solids, with window wiper. [Bratby,
2015]

An alternative to the optical turbidity measurement methods is to use ultrasonic waves.

Only a small amount of literature can be found in the field of ultrasonic turbidity
measurements. An ultrasonic device for real-time particle concentration measurement
was presented in the study by Abda et al. [2009]. The instrument described in Abda et al.
[2009] conducts measurements of fluid height, fluid velocity and particle concentrations in
sewers and rivers. The sensor consist of three ultrasonic transducers, as seen in Figure 1.4.

Figure 1.4. Schematic of an Ultrasonic particle concentration sensor. (Figure modified from
Abda et al. [2009])

The larger transducer is a 1.8MHz broadband transducer to measure the monostatic
velocity and water height. This transducer is placed with a slope of 75deg in the direction
of the fluid stream, which increases the Doppler frequency that is used to measure
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the flow velocity. A second sensor is oriented equally with the larger transducer and
with a mean frequency of 9.2MHz, and the third transducer is a 4.5MHz transducer
oriented 70deg towards the other transducers. The second and third transducer is used
to measure the particle concentration in the fluid. The study shows that the particle
concentration measurements in a wastewater collector follow rain events as expected, but
actual verification of the measurement precision was not presented in Abda et al. [2009].

A similar device called UB-Flow F-135 profiler by Ubertone is presented in Fischer [2009].
The UB-Flow F-135 profiler has two transducers of 1.5MHz and 6MHz respectfully. This
frequency range matches a broad range of particle sizes, starting from 30 µm [Fischer, 2009].
The study concludes that the device can measure turbidity in the form of a turbidity ratio
or turbidity profile. Another UB-Flow profiler by Ubertone can be found in Pallarés et al.
[2016], where the acoustic turbidity was related to both SSC and NTU as seen in Figure
1.5.

Figure 1.5. Acoustic turbidity as a function of time together with SSC measurements conducted
using classical sampling and analyzing methods and the turbidity in NTU measured using an
optical HACH turbidimeter [Pallarés et al., 2016].

The ultrasonic turbidity sensor in the scope of this work is primarily focused on the
measurement of particle contaminations in utility water distribution systems.

1.3 The Main Concept

The Danish company Kamstrup A/S are developing a robust, sensitive and low-cost
ultrasonic turbidity sensor [Kamstrup, 2014]. The main idea is to develop an acoustic
turbidity sensor using the technology of existing ultrasonic flow velocity sensors. This
ultrasonic turbidity sensor is the key focus of this work.

An ultrasonic flow velocity sensor uses the time it takes for a wave pack to travel from the
transmitter (Tx) to the receiver (Rx1) as illustrated in Figure 1.6.

Reversing the receiver to transmit ultrasonic wave packs in the counter flow direction,
makes it possible to calculate the flow velocity without knowing the speed of sound in the
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L

Tx/Rx U
c

Tx1/Rx1

Figure 1.6. Main concept of ultrasonic flow velocity sensor

fluid c and the resulting expressions are simply two equations with two unknown:

c` U “
L

∆t1
c´ U “

L

∆t2
(1.1)

U “
Lp∆t2 ´∆t1q

2∆t1∆t2
c “

Lp∆t2 `∆t1q

2∆t1∆t2
(1.2)

where ∆t1 is the wave travel time from Tx to Rx1, ∆t2 is the wave travel time from Tx1 to
Rx, L is the traveling length and c is the speed of sound in the fluid, that is temperature
and pressure dependent.

Contaminated water that contains particles with an acoustic impedance different from the
acoustic impedance of the fluid medium itself scatters waves when exposed to an acoustic
background field. Adding an extra sensor Rx2 in the middle section (see Figure 1.7 ) allow
the scattering field to be measured, from which it is expected that the turbidity of the
fluid can be calculated.

Rx2
Background acoustic field

Sensitive piezoelectric transducer

V

Doppler shifted scattering field
observed by the particles

Harmonic excitation of transducer

V V

V V
Tx/Rx Tx1/Rx1

Figure 1.7. Schematic of particles scattering in a background acoustic field. Due to the relative
movement of the particles in the stationary background field, the frequency observed by the
particles is Doppler shifted.

If the particles are moving in the fluid, the scattering field is frequency shifted relative to
the background field. This is due to the relative motion of the particles, and the speed of
sound called a Doppler shift. A schematic of the particle scattering waves, observed from
the perspective of the particles can be seen in Figure 1.7.

Assuming that the particles are moving in a subsonic homogeneous medium, the frequency
of the background field fb can be expressed in terms of speed of sound c and wavelength
λ, by fb “ c

λ . The frequency observed by the particle can, likewise, be expressed as:

fsc “
c´ V

λ
“ fb

´

1´
c

V

¯

(1.3)
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where V is the velocity of the particle, and the negative sign is due to the movement in
the direction away from the source.

The scattered waves of the moving particles are also Doppler shifted observed from the
perspective of the receiver Rx2 (see Figure 1.8).

Rx2
Background acoustic field

Sensitive piezoelectric transducer

V

Doppler shifted scattering field
observed by sensor Rx2

Harmonic excitation of transducer

V V

V V
Tx1/Rx1Tx/Rx

Figure 1.8. Schematic of particles scattering in a background acoustic field, observed from the
transducer Rx2

If the particle movement is assumed to be parallel to the flow direction, the relative velocity
observed by the receiver can be expressed in terms of the angle between the sensor and the
moving particle can be found as V ¨ cospθq. The Doppler shifted frequency of the scattered
particle, observed by the receiver Rx2, can be calculated as:

fr “
c` V ¨ cospθq

λ
“ fsc

ˆ

1`
V ¨ cospθq

c

˙

(1.4)

where fr is the Doppler shifted scatter frequency, and θ is the angle between the axis of
the particle movement and the receiver Rx2.

In this work is it, however, assumed that the receiving transducer Rx2 is only available
to measure waves that travel perpendicular to the transducer [Kamstrup, 2017a]. Thus,
only 90-degree waves can be observed by the transducer Rx2 and Equation 1.4, therefore,
reduces to fr « fsc.

The signal measured by the transducer Rx2 contains both the signal from the background
wave and the scattered wave. The frequency shift in the scattered wave makes it, however,
possible to separate the scattered wave from the background wave through frequency
analysis. Thus using this method only the scattering wave from moving particles can
be measured.

Initial Statement

The preceding leads to the following initial statement: How can the presented ultrasonic
turbidity sensor be designed and what parameters are critical regarding the acoustic
scattering?
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Chapter 2

Background Analysis

This chapter contains some of the main ideas behind model-based design and a thorough
description of the leading physics behind the ultrasonic turbidity sensor. Also, the classical
theory of acoustic scattering is described in this chapter.

2.1 Model Based Design

Mechatronic sensors like the ultrasonic turbidity sensor described in the introduction,
are sophisticated and multi-physical which makes it challenging to model. The design
of complicated sensors is often developed using an experimental-based approach where
a prototype is created from intuition and then optimized through a large number of
iterations with new a prototype and new experiments for each iteration [Kaltenbacher,
2015]. The experimental-based approach can be incredibly tedious, time-consuming, and
costly, especially the in the case where an important design feature fails at a late stage in
the design process. Relevant design parameters that are difficult to measure can also be
challenging to include in the design process when using the experimental-based approach.

(a) Experimental-based design (b) Model-based design

Figure 2.1. Design process using either the experimental-based approach or the model-based
approach (figure edited from [Kaltenbacher, 2015])
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More and more powerful computers have opened the possibility of designing complex
sensors using a model-based approach through multi-physic simulations. Figure 2.1(a)
shows a diagram of the experimental-based approach and Figure 2.1(b) shows a diagram
the model-based approach.

The primary purpose of the model-based approach is to reduce the number of prototypes
and the development time, thus also the final cost. Other, benefits like the visualization
of the physics behind the sensor can further help the engineer to understand the sensor
in depth. It is, however, important to comprehend the complexity of large models and
the uncertainties that arise from numerical errors, wrong material parameters, and other
uncertain physical parameters need in models.

The primary focus of this work lays in the development of a modeling framework, that can
be used in the computer aided design and simulation blocks seen in Figure 2.1.

2.1.1 The Ultrasonic Turbidity Sensor Prototype

The prototype of the ultrasonic turbidity (UT) sensor in the scope of this work, can
be seen in Figure 2.2. The UT sensor is based on the ultrasonic flow velocity meter
Ultraflow 14 made by Kamstrup A/S. The passage in the middle section seen in Figure 2.2
is constructed for the purpose of turbidity measurements, and the measurement tube is as
well altered. The first piezoelectric transducer seen from the inlet is a 10MHz resonance
transducer that is used to generate the wave pack for the flow velocity and turbidity
measurements, as described in Section 1.3. The center piezoelectric transducer is a highly
sensitive transducer used to intercept the small scattering signals as seen in Figure 2.2.
The last piezoelectric transducer is similar to the first transducer but mainly used for the
measurement of flow velocity. The measurement tube (see Figure 2.2) is used to avoid flow
vortexes in the middle section passage that may obstruct the turbidity measurements.

The UT sensor is, therefore, a highly mechatronic system that involves various physical
fields. A piezoelectric transducer exposed by force produces a small charge that can be
measured. This effect is called the direct piezoelectric effect. On the other hand, if a
voltage is applied to the piezoelectric transducer, an inverse piezoelectric effect results in a
mechanical deformation. The mechanism of the piezoelectric transducers is, therefore, an
interaction between electric quantities like electric field intensity and electric induction, and
mechanical quantities like stress and strain [Kaltenbacher, 2015]. A power electronic circuit
has to drive the first and last piezoelectric transducer, and an electric measurement circuit
has to measure the response from the middle piezoelectric transducer. The mechanical
deformation of the piezoelectric transducer results in a force applied to the fluid, which
propagates through the fluid as an acoustic pressure wave [Arnau Vives, 2008; Schmerr,
2016; Morse & Ingard, 1968]. The fluid flow as well interacts with the acoustic pressure
wave through altered fluid properties like the speed of sound and the fluid density. The
flow itself may also generate flow-induced sound that emerges in turbulent flows [Landau &
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Piezoelectric Transducer
for flow measurements Piezoelectric Transducer

for tubditiy measurement

Piezoelectric transducer
for flow measurements and 
background field generation

Inlet reflector

Outlet reflector

Flow inlet

Flow outlet

Wave package

Measurement tube
Particles

Figure 2.2. Geometry of the ultrasonic turbidity sensor with annotations

Lifschitz, 1987; Kaltenbacher, 2015]. And lastly, the particle trajectories through the sensor
is highly dependent the fluid flow [COMSOL, 2017g]. When acoustic waves propagate
through the sensor and strike the particles, the acoustic field itself exert a force on the
particles in the fluid as described in Settnes & Bruus [2012]. This force is, however,
assumed to be much smaller than the force from the fluid flow and, therefore, neglected in
this work.

The physical interactions that can be found in the ultrasonic turbidity sensor can, therefore,
be summarized as:

• Electrical ÐÑ Mechanical interaction
An electrical voltage applied over the piezoelectric element leads to a mechanical
deformation.

• Mechanical ÐÑ Acoustical interaction
The force from the piezoelectric transducer has to equal the force imposed to the fluid.

• Fluid ÐÑ Acoustical interaction
The fluid properties influence the acoustic wave propagation, and fluid vortexes generate
sound waves to some extent.

• Fluid ÐÑ Particle tracing interaction
Fluid forces affect the particle motion through the drag force.

The pressure on the piezoelectric turbidity transducer measures the acoustic field which is,
thus the primary physical field affecting the output of the turbidity sensor. In the following
section, a thorough description of the governing equations behind the acoustic motion is
presented, together with the derivation of the solution for the scattering pressure for a
single particle.

11
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2.2 Governing Equations of Linear Acoustics

The theory behind acoustic motion is comprehensive but also a well-described topic.
Classical literature such as Morse & Ingard [1968] and Pierce [1989], is widely cited in
this section, but also newer literature like Schmerr [2016] and Kaltenbacher [2015] is used.

The analytical solution of the scattering field from a single particle struck by a plane wave
is derived in this section together with a Far-Field approximation. From the solution of the
scattering field and the Far-Field approximation, important properties of the scattering
field are obtained. Also, the solution of the scattering field is used in later chapters as a
reference for numerical simulations (see Chapter 6 on page 45).

In the governing equations of acoustics, the dependent variables are usually divided into
an ambient variable and a disturbed variable. The variables for pressure, density, and
acoustic velocity can, in this manner, be written as:

ptotal “ p0 ` pd ρtotal “ ρ0 ` ρd vtotal “ v0 ` vd (2.1)

where ptotal, ρtotal,vtotal are the dependent variables, p0, ρ0,v0 are the ambient variables
and pd, ρd,vd are the disturbed variables. It is assumed that p0 " pd, ρ0 " ρd and c " vd,
with c being the speed of sound in the material [Kaltenbacher, 2015].

The ambient variables are defined by the medium of which sound propagates and in a
homogeneous medium independent of the position, which is assumed in this work.It is
further assumed that the ambient variables are independent of time, thus constant, and
that the ambient acoustic velocity is zero (v0 “ 0).

The acoustic field can be described by the continuity equation, the conservation of
momentum and the pressure-density relation [Pierce, 1989]. Assuming a non-viscous media
and no external forces, the continuity equation, the conservation of momentum (Euler
equation) and the pressure-density relation, with the ambient and perturbed variables,
can be written as [Pierce, 1989]:

Bpρ0 ` ρdq

Bt
`∇¨rpρ0 ` ρdqvds “ 0 (2.2)

pρ0 ` ρdq

ˆ

B

Bt
` vd¨∇

˙

vd “ ´∇pp0 ` pdq (2.3)

p0 ` pd “ ptpρ0 ` ρdq (2.4)

where ∇ is the gradient operator, t is the time, and ppρ0`ρdq is a thermodynamic relation
of the pressure and density (see [Pierce, 1989, p. 15]).

A linear approximation of Equations 2.2 to 2.4, is called the acoustic approximation [Pierce,
1989]. In the linear approximation, higher-order terms are neglected which gives:

Bρd
Bt
` ρ0∇¨vd “ 0 (2.5)
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ρ0
Bvd

Bt
`∇pd “ 0 (2.6)

pd “ ρdc
2 (2.7)

Equation 2.7 is only valid if |pd| ! ρ0c
2 [COMSOL, 2017b]. Taking the time derivative of

the linear continuity equation (see Equation 2.5), yields:

B2ρd
Bt2

`
B

Bt
pρ0∇¨vdq “ 0 ùñ ∇¨Bvd

Bt
“ ´

1

ρ0

B2ρd
Bt2

(2.8)

Inserting the linear conservation of momentum in Equation 2.6 and the linear pressure-
density relation in Equation 2.7 into Equation 2.8 yields the wave equation for the pressure
disturbance pd:

∇¨´∇pd
ρ0

“ ´
1

ρ0c2
B2pd
Bt2

ùñ ∇2pd ´
1

c2
B2pd
Bt2

“ 0 (2.9)

where the Laplace operator ∇2 is dependent upon the coordinate system of interest. As
evident later, especially the spherical coordinate system is of interest in this work. The
Laplace operator in spherical coordinates is given as [Morse & Ingard, 1968, p.308]:

∇2 “
1

r2
B

Br

ˆ

r2
B

Br

˙

`
1

r2 sinpθq
B

Bθ

ˆ

sinpθq
B

Bθ

˙

`
1

r2 sinpθq2
B2

Bφ2
(2.10)

Assuming that the wave contribution is only in the radial direction, thus independent of
the spherical angles φ and θ, one can find the wave equation of simple source with waves
moving spherically outward:

1

r2
B

Br

ˆ

r2
Bpd
Br

˙

“
1

c2
B2pd
Bt2

(2.11)

The wave equation in Equation 2.11, has a general solution in the form:

pd “
1

r
fpr ´ ctq `

1

r
gpr ` ctq (2.12)

where fpr´ ctq denote the wave in the positive direction and gpr` ctq denote the wave in
the negative direction. The general solution is close to the solution of plane waves [Pierce,
1989], but with a 1

r term showing that spherical waves decrease inverse proportional to r
if the medium is infinite in extent.

2.2.1 Acoustic Scattering from a Sphere

The derivation of the scattering field presented in this subsection follows the approach
found in Schmerr [2016], together with deviations from Morse & Ingard [1968].

Time-harmonic waves or monochromatic waves as called in Landau & Lifschitz [1987] are
waves where the dependent quantities are periodic functions of time. It is often convenient
to write these kinds of quantities as the real part of some complex quantity. The time-
harmonic pressure can be written as:

pd “ Retp1 e´iωtu (2.13)
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where ω is the angular wave frequency, the complex value i “
?
´1 and p1 is a complex

function independent of time. This can be p1 “ p̂ eikr for radial waves, where k “ ω{c is
the wave number and p̂ is the peak amplitude.

Inserting the complex time-harmonic description of the pressure into the wave equation
(see Equation 2.9) gives the following expression:

∇2Retp1 e´iωtu ´
1

c2
B2

Bt2
Retp1 e´iωtu “ 0 (2.14)

Since the sum of the real parts of several complex numbers is equal to the real part of the
sum of the complex numbers [Pierce, 1989], Equation 2.14 can be written as:

Ret∇2p1 e´iωt ´
1

c2
B2

Bt2
p1 e´iωtu “ 0 (2.15)

Retp∇2p`
ω2

c2
pqu “ 0 (2.16)

where p “ p1 e´iωt “ p̂ eikr e´iωt which satisfies the equation

∇2p`
ω2

c2
p “ 0 ÝÑ ∇2p` k2p “ 0 (2.17)

Equation 2.17 is called the homogeneous Helmholtz equation and describes the harmonic
pressure wave of e´iωt time dependency. It is expected that the particle shape differs from
particle to particle. However, geometries that can be characterized by only one parameter,
like spherical geometries, are often used as an approximation for simplicity[Pons & Dodds,
2015; Silva & Bruus, 2014], which is also the case in this study.

Incident wave

Sphere 

z-axis

r
a

x-axis

y-axis

θ

φ
ρ1, c1ρ2, c2

Figure 2.3. Incident plane wave in a fluid striking a solid sphere with radius a. The spherical
coordinates (r, θ, φ) are also shown.

A particle sphere of radius a, immersed in a fluid with density and pressure both satisfying
the homogeneous Helmholtz equation can be seen in Figure 2.3. The sphere density and
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sphere speed of sound are denoted ρ1 and c1 respectfully, and the fluid density and fluid
speed of sound are denoted ρ2 and c2 respectfully.

Rewriting the Helmholtz equation (see Equation 2.17) in spherical coordinates pr, θ, φq
using Equation 2.10 gives the following:

1

r2
B

Br

ˆ

r2
Bp

Br

˙

`
1

r2sinpθq
B

Bθ

ˆ

sinpθq
Bp

Bθ

˙

`
1

r2sin2pθq
B2p

Bφ2
` k2jp “ 0 (2.18)

where kj “
ωj
cj
pj “ 1, 2q. Equation 2.18 can be solved using separation of variables, where

it is assumed that the pressure p can be factorized into a product of terms only dependent
upon a single variable, that is p “ RprqΘpθqΦpφq [Schmerr, 2016; Morse & Ingard, 1968].
Inserting the factorized product into the spherical Helmholtz equation (see Equation 2.18)
gives:

"

1

R

d
dr

ˆ

r2
dR
dr

˙

`
1

Θ sinpθq
d
dθ

ˆ

sinpθq
dΘ

dθ

˙

` k2j r
2

*

sin2pθq “ ´
1

Φ

d2Φ
dφ

(2.19)

From Equation 2.19 it can be seen that the left-hand side is only a function of θ and r,
thus a function Fpr, θq can be written and the right-hand side is only a function of φ, thus
a function Gpφq can be written. Since the variables in Equation 2.19 are independent, they
must be equal to a constant, thus Fpr, θq “ Gpφq “ γ2 where γ2 is chosen for convenience
as evident later.

Taking basis on the right-hand side, the following expression can be written:

Gpφq “ γ2 ÝÑ
d2Φ
dφ2

` Φ γ2 “ 0 (2.20)

that is of the same form as a harmonic oscillator with the solution:

Φ “ eimφ (2.21)

where γ “ m is an integer because the pressure must be single valued in φ [Schmerr, 2016].
Using the same approach for the right-hand side (Fpr, θq “ γ2), yields:

1

R

d
dr

ˆ

r2
dR
dr

˙

` k2j r
2 “

m2

sin2pθq
´

1

Θ sinpθq
d
dθ

ˆ

sinpθq
dΘ

dθ

˙

(2.22)

As before, since the variables in Equation 2.22 are independent the left-hand side can be
written as fprq “ l2 and the right-hand side can be written as gpθq “ l2. Assuming that
l2 “ npn`1q, where n is an integer, then fprq and gprq can be found in the following form:

fprq “ l2 ÝÑ
d
dr

ˆ

r2
dR
dr

˙

` pk2j r
2 ´ npn` 1qqR “ 0 (2.23)

gpθq “ l2 ÝÑ
1

sinpθq
d
dθ

ˆ

sinpθq
dΘ

dθ

˙

`

ˆ

npn` 1q ´
m2

sin2pθq

˙

Θ “ 0 (2.24)

In the case of axial symmetry, the wave is independent of φ and therefore m “ 0, which
reduces Equation 2.24 to an equation that has the Legendre polynomials Pnpcospθqq as
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the solution [Morse & Ingard, 1968]. Also, a solutions for Rprq in Equation 2.23 can be
found to be the spherical Hankel function of the first kind given as hp1qn pkrq (with e´iωt

time-dependency), where kr is the nominalized radius (ωc r). The spherical Hankel function
can be described in terms of spherical Bessel functions using the following relation:

hp1qn “ jn ` inn (2.25)

where jn is the spherical Bessel function of the first kind and nn is the spherical Bessel
function of the second kind. In Appendix A.2.1, some of the spherical Bessel and spherical
Hankel functions be found.

The spherical Hankel function has the property of only describing outgoing waves and
does, therefore, satisfy the Sommerfeld’s radiation condition stating that the pressure
should vanish at infinity, thus pÑ 0 as r Ñ8 [Schmerr, 2016].

The scattering pressure can, therefore, be calculated by combining each of solutions for
the factorized variables and summing up the infinite series, which gives:

psc “
8
ÿ

n“0

Cnh
p1q
n pk2rqPnpcospθqq (2.26)

where Cn is the scatter wave coefficient that describes the influence of boundary conditions.

The scatter wave coefficient Cn can be found by relating the pressure and normal velocity
at the surface of the sphere. The incident wave, as seen in Figure 2.3, travels along the
z-axis and can be described in spherical coordinates as [Schmerr, 2016]:

pinc “ A eik2z “ A
8
ÿ

n“0

inp2n` 1qjnpk2rqPnpcospθqq (2.27)

where A is the plane wave pressure amplitude.

The flaw pressure wave inside the sphere can be found in the same manner as the scattering
pressure and are given as[Schmerr, 2016]:

pflaw “
8
ÿ

n“0

Dnjnpk1rqPnpcospθqq (2.28)

Thus, the pressures and normal velocities at the surface (r “ a) can be related as:

pinc ` psc “ pflaw (2.29)
1

ρ2

Bpinc
Br

`
1

ρ2

Bpsc
Br

“
1

ρ1

Bpflaw
Br

(2.30)

where the normal velocity is calculated as 1
iωρ

Bp
Br which can be found using the conservation

of momentum in Equation 2.6 and the monochromatic description of the acoustic velocity.
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Using Equation 2.29 and Equation 2.30 the coefficients for the scatter wave (Cn) and flaw
wave (Dn) can be solved (the derivation of the coefficients can be found in Appendix A.1).
The solution for the scatter wave coefficient (Cn) is found as:

Cn “
inp2n` 1q

Ω

"

jnpk2aqrjnpk1aqs
1

ρ1c1
´
jnpk1aqrjnpk2aqs

1

ρ2c2

*

(2.31)

Ω “
jnpk1aqrh

p1q
n pk2aqs

1

ρ2c2
´
hnpk2aqrjnpk1aqs

1

ρ1c1
(2.32)

where the prime denote the derivative (see Appendix A.2.1), that can be found as:

rjnpζqs
1 “

1

2n` 1
rnjn´1pζq ´ pn` 1qjn`1pζqs (2.33)

for both the spherical Bessel function and the spherical Hankel function.

The solution to the scattering problem for the rigid case ρ1c1 Ñ8, can be seen in Figure
2.4. The solution is found using a unit incident wave with a frequency of 10MHz, a radius
of a “ 5µm and speed of sound of c2 “ 1500m{s.
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Figure 2.4. Scatter wave as a result of a unit amplitude 10MHz plane wave traveling in
water(c2 “ 1500m{s) along the z-axis striking a sphere with radius a “ 5µm. The solution
is evaluated by truncating the solution to ten terms.

Figure 2.5 shows the scattering field solution for a 10MHz unit amplitude plane wave
striking a non-rigid sphere with the material properties c1 “ 2400m{s, ρ1 “ 1050 kg{m3

and with a radius of a “ 5µm. The fluid medium has the properties c2 “ 1500m{s, ρ2 “

1000 kg{m3.
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Figure 2.5. Non-Rigid Scatter wave as a result of a unit amplitude 10MHz plane wave traveling
in water(c2 “ 1500m{s, ρ2 “ 1000 kg{m3) along the z-axis striking a sphere with the properties
c1 “ 2400m{s, ρ1 “ 1050 kg{m3 and with a radius of a “ 5µm.

Figure 2.6 shows the percentage of the scattering pressure related to the incident wave
amplitude as a function of particle diameters calculated as r{2a. The scattering pressure
in Figure 2.6 is calculated in the same manner as for Figure 2.4 with a rigid sphere, an
incident wave frequency of 10MHz and a particle diameter of a “ 5µm.
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Figure 2.6. Normalized pressure (psc{A)as a function of particle diameters (r{2a), for different
angles θ “ r0deg 90deg 180deg 270degs. The particle is assumed rigid with a radius of a “ 5µm
and the incident wave frequency is 10MHz.

The exact solution to the scattering field found in Equation 2.26 require numerical
evaluation, and it is difficult to extract the relations between parameters like pressure
amplitude and particle size or the influence of different material parameters. Using far-
field approximations a more simple expression can be found for the scattering field.
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2.2.2 Far-Field Approximation

The theory of asymptotics can be used to approximate complex functions, like the Bessel
or Hankel functions, into more simple functions. Approximated functions are often seen in
the analysis of scattering fields, and especially in classical literature such as Pierce [1989]
or Morse & Ingard [1968] where the asymptotic approximations are used to describe the
scattering field in closed form and numerical evaluations are, therefore, avoided. This
subsection contains the derivation of the far-field approximation of the scattering field
solution in Equation 2.26.

The Hankel function hp1qn , seen in Equation 2.26 has the following asymptotic behavior for
the far-field (kr Ñ8) [Morse & Ingard, 1968, p.336]:

hp1qn pkrq „
p´iqn`1

kr
eikr as kr Ñ8 (2.34)

Inserting the asymptotic Hankel function into the expression for the scattering field (see
Equation 2.26), yields:

psc “
eik2r

k2r

8
ÿ

n“0

p´iqpn`1qCnPnpcospθqq (2.35)

From Equation 2.35 it can be seen that the scattering wave decreases as a function of the
radius r just as the solution to the pressure of a simple source in Equation 2.12.

A first order approximation of Equation 2.35 can be found using the first and second term
of the Legendre functions (see Appendix A.2.2) which yields:

psc “
1

r
eik2r

ˆ

´iC0 ´ C1cospθq

k2

˙

(2.36)

Since the sphere of interest is particles with sizes in the lower micron range and since
the frequency of the transducer is in the lower MHz range, it is assumed that the short-
wavelength limit ka ! 1 is fulfilled. In this limit, the spherical Bessel and spherical Hankel
functions found in the scatter wave coefficient Cn can be approximated by asymptotic
descriptions. A list of relevant asymptotic descriptions of the spherical Bessel and spherical
Hankel functions can be found in Appendix A.3. Inserting the asymptotic descriptions into
Equation 2.31 and using a great deal of algebra together with the relation k “ ω{c, gives
for the first and second term the following scatter wave coefficients, can be found:

C0 „ ´i
k32a

3

3

ˆ

1´
λb,2
λb,1

˙

$

&

%

1

1´ 1
3

λb,2
λb,1
pk2aq2

,

.

-

as kjaÑ 0

« ´i
k32a

3

3

ˆ

1´
λb,2
λb,1

˙

for kja ! 1 as kjaÑ 0

(2.37)

C1 „ k32a
3

ˆ

ρ2 ´ ρ1
2ρ1 ` ρ2

˙

as kjaÑ 0 (2.38)
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where λb,j “ c2jρj pj “ 1, 2q is the bulk modulus1 of the fluids.

Inserting the scatter wave coefficients into Equation 2.36 gives the far-field approximation
of the scattering field:

psc “
1

r
eik2r

ˆ

´
1

3
k22a

3

"

λ1 ´ λ2
λ1

´
3pρ1 ´ ρ2q

2ρ1 ` ρ2
cospθq

*˙

(2.39)

From Equation 2.39, it can be seen that the pressure scales with the wave number squared
k22, thus scales with the angular frequency squared since k22 “

ω2

c22
. It can also be seen

that the particle size scales with a3 and an increase of particle size from 1µm to 10µm,
thus results in an amplitude gain of 1000. It can also be seen in Equation 2.39 that the
compressibility difference between the materials scales the amplitude of the wave, while
the density difference scales the amplitude of the wave as a function of the scattering angle
θ.

1Also referred as adiabatic bulk modulus
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Chapter 3

Problem Statement

Water quality measure is crucial in distribution networks, making sure that only high-
quality water reaches the end-user. An ultrasonic Doppler multi-scattering method for
measuring turbidity has by Kamstrup A/S, been found interesting due to the potentially
low-cost solution compared to optical turbidimeters and due to the possibilities of
incorporating the ultrasonic turbidity sensor into existing technologies by Kamstrup A/S.
In order to exploit the full potential of the ultrasonic turbidity sensor, a thorough model of
the sensor should be conducted allowing the sensor design to be model-based. Important
relations between particle concentration, flow velocity, and the expected output is as well
critical for the understanding of the sensor, which leads to the following problem statement:

How can an ultrasonic turbidity sensor be modeled such that the design can be model-based
and how do critical parameters like the particle concentration and flow velocity, scale the
expected output of the sensor?

The aim of this Master’s Thesis is to create a design tool that can be used to optimize
the design of the ultrasonic turbidity sensor. The design tool is conducted using a multi-
physical approach combining different numerically based studies.

The design tool consists of Computational Fluid Dynamics (CFD) simulations, particle
tracing simulations, and simulations of acoustic scattering fields, taking base in the
geometry presented in Figure 2.2. As shown in the analysis, the acoustic scatter field of a
single particle in an infinite medium can be modeled be means of analytical expressions.
Relating the analytically calculated scattering field with the numerically calculated gives
insight to the precision of the numerical model using different mesh sizes and other crucial
parameters. A numerical multi-scattering simulation is conducted using the parameters
found from the numerical analysis of a single particle. The particle positions for the
multi-scattering simulations is calculated utilizing first a stationary CFD simulation of the
flow field and then a transient particle tracing simulation with drag force as the coupling
parameter between the flow field and the particle movement.
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3.1 Conditions for the Simulations

To make the problem more tangible, a summary of the contamination levels, particle
properties, flow conditions, and fluid properties expected for the sensor, is formed in
cooperation with Kamstrup A/S:

Inlet flow velocity has been chosen in the range 0.5 m
s to 10 m

s since that is the expected
flow velocities for the Ultraflow 14 [Kamstrup, 2004]

The fluid properties are water with a temperature of 10˝C, a dynamic viscosity of
1.307 ¨ 10´3 kg

m¨s , and a density of 999.7 kg
m3 [Çengel et al., 2012].

The transducer frequency is 10MHz in order to obtain a scattering pressure large
enough to be measured [Kamstrup, 2017a].

The particle concentrations of interest in this study are between 100 p
mL and 6000 p

mL

(particles per mL) [Kamstrup, 2017b]
The particle geometry is spheres with a diameter between 1µ and 20µ [Kamstrup,

2017b]
The particle material either silica balls with a density of 2500 kg

m3 and speed of sound
5960ms or polystyrene balls with a 1050 kg

m3 and speed of sound 2400ms [Kamstrup,
2017b]
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Chapter 4

The Model Structure

This chapter gives an overview of the modeling framework for the simulation of the turbidity
sensor (see Figure 2.2). The modeling framework is divided into two stages as shown in the
diagram in Figure 4.1. The first stage consists of a CFD simulation and particle tracing
simulation, which is described in Section 5. The second stage is described in Section
6, consisting of an auto-generation algorithm for the acoustic geometry and an acoustic
frequency domain simulation to calculate the time-average RMS pressure field within a
selected region of the sensor.

Figure 4.1. Diagram of the modeling framework used in this work. The modeling framework is
divided into two stages, first a CFD and particle tracing stage and then a computational acoustic
stage. Input parameters to the modeling framework is a sensor CAD, fluid properties, particle
properties, and acoustic properties. The output of the modeling framework is the time-average
RMS pressure field within a selected region of the sensor.
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The input parameters needed for the modeling framework are sensor CAD geometry, inlet
flow velocities, particle concentrations (p/mL), particle properties and acoustic properties
such as acoustic frequency and pressure amplitude. Most of the properties can be found
under the section Conditions for the Simulations (Section 3.1). A geometry simplification
of the CAD geometry is needed in order to reduce the computational load of the CFD
calculations. The simplified geometry is then meshed using appropriate meshing technics.
The purpose of the CFD calculation is to calculate a static fluid flow field, that can be
utilized in the particle tracing simulation. As evident later in Section 5, a turbulent fluid
flow can be found for the geometry presented in Figure 2.2 and a turbulent model is,
therefore, needed in the CFD simulation. Using a Newtonian description of the particle
motion, the particle trajectories can be simulated within the simplified geometry. Adding
the flow field to the particle simulation allow the motion of the particles to be affected by
the flow field as a result of drag forces. A converged particle concentration is in Section 5.3
defined as the time instance where the particle concentration rate within some geometry
feature of interest, does not change. Exporting the particle coordinates after particle
concentration convergence then allows an acoustic geometry to be generated. The acoustic
geometry consists of a symmetric cylinder embracing the exported particles which then
allow acoustic high-frequency multi-scattering problems to be solved. The time-average
RMS pressure field can then be extracted from the solution and related directly to the
expected signal measured by the turbidity piezoelectric transducer (see Figure 2.2).

In the following section, the description of the first stage is presented.
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Chapter 5

Fluid Flow and Particle Tracing
in the Sensor

In Section 2.2.2, it was found that the far-field acoustic pressure depends inverse
proportional to the radius of radiation (see Equation 2.39). This makes the distance
between the particles and the particle distribution an essential factor when determining
the resulting multi-scattering pressure from the particle swarm inside the UT sensor. This
chapter contains the theory behind the particle tracing simulation, and an overview of the
theory behind the CFD calculations used to calculate the flow field within the UT sensor.

X(U0,ρpc)

Particle concentration
vector

Figure 5.1. Modeling scheme for the first stage of the turbidity modeling framework.

The diagram in Figure 5.1 shows the modeling scheme for the first stage. The flow field
for a simplified geometry is modeled using a turbulent CFD model, which is then used
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to calculate the drag forces acting on the particles using a Newtonian description of the
particle movement inside the geometry. The particle coordinates at a given time instance
are then extracted from the particle trajectories, which is used to generate the acoustic
geometry (see Section 6). This approach provides a more realistic distribution of particles,
thus gives a better understanding of the acoustic field that can be expected when particles
are present in a given section of the sensor geometry.

5.1 Geometry Refinement

Solving fluid flow problems are in general a very computational demanding problem
especially in three dimensions. It is, therefore, crucial to determining whether it is
necessary to include geometric characteristics like cosmetic features and manufacturing
details that can be extraneous in numerical models. The geometry seen in Section 2.1.1
is therefore simplified as much as judged necessary to a limit where it is not expected
that the fluid flow solution changes significantly. The main body of the sensor is not
modified because the features of the main body (see Figure 5.2) affecting the flow domain
are already simple. The inlet and outlet reflector modules and the measurement tube are,
however, quite complex and are therefore streamlined and redrew in SolidWorks. The
simplifications reduce the total domain size and the number of sharp corners which lower
the mesh requirements. The simplified geometry can be seen in Figure 5.2 and a comparison
between the original CAD model and the simplified model can be seen in Appendix B.

Flow direction

Outlet reflector domain

InletOutlet

Measurement tube Inlet reflector domain

Main body

Figure 5.2. Side view of the simplified geometry used for CFD simulations and particle tracing
simulations. All relevant geometry annotations used later can be seen in the figure, including
geometry dimensions and domain tags.

Further simplifications are conducted in COMSOL after the SolidWorks CAD have been
imported. Geometric symmetry can be found on two planes; the plane along the flow
direction and the center plane orthogonal to the flow direction. It can, however, be found
that the flow is only symmetric in one plane, namely the plane along the flow. Also,
virtual operators like "Form Composite Domains" and "Form Composite Faces" are used
in COMSOL to reduce the mesh by removing non-important help lines.
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5.2 Flow Model

Fluid flow is, in general, characterized by dimensionless numbers like the Reynolds number
or Mach number. The dimensionless numbers can be used to determine, preliminarily,
what flow regime that can be expected for a given geometry. The Mach number is the
ratio between the fluid velocity and the fluid speed of sound. Effects like shock waves
and rarefaction may occur as the Mach number approaches one [COMSOL, 2017f]. The
traditional CFD interface in COMSOL does only apply for Mach number below 0.3, which
is well above the Mach number expected in this study (M̂ “ 10{1500 „ 6 ¨ 10´3). The
Reynolds number is the ratio between the inertia forces and the viscous forces. At large
Reynolds numbers, the inertial forces dominate the viscous forces and the viscous forces
cannot prevent random fluctuations in the fluid flow to occur, better known as turbulent
flow. On the other hand, if the Reynolds number is small and the viscous forces dominate,
then are random fluctuations suppressed, and the flow seems more ordered, called laminar
flow.

For internal flow, the Reynolds number can be found as [Çengel et al., 2012]:

Re “
inertical forces
viscous forces

“
U0Dhyd

ν
“
ρU0Dhyd

µ
(5.1)

where ν is the kinematic viscosity, µ the dynamic viscosity, ρ the density and U0 the
average flow velocity and Dhyd the hydraulic diameter.

Using the measurement tube of the sensor as a reference (see Figure 5.2) and using the
lowest expected average flow in the measurement tube, the smallest expected Reynolds
number can be calculated. Assuming that the fluid is incompressible, the average flow
velocity in the measurement tube Utube can be related to the inlet flow velocity U0, using
conservation of mass, thus:

9m “ ρ ¨ U0 ¨Ain “ ρ ¨ Utube ¨Atube (5.2)

ñ Utube “
Ain

Atube
¨ U0 (5.3)

where Ain and U0 are the inlet cross section area and inlet average flow velocity respectfully,
and Atube and Utube are the tube cross section area and tube flow velocity respectfully.
Using Equation 5.1 and Equation 5.3, together with the density and viscosity of water at
10˝C [Çengel et al., 2012], the flow in the measurement tube of the sensor can be found
to have a Reynolds number of approximately Re « 8605 at 0.5 m/s and Re « 1.72 ¨ 105

at 10 m/s. Flows in tubes with a Reynolds number over 4000-8000 is usually defined as
fully turbulent and the flow in the proceeding is therefore treated as fully turbulent flow
[Çengel et al., 2012].

27



Johansen, N. W. 5. Fluid Flow and Particle Tracing in the Sensor

5.2.1 The RANS model

The governing equations for fluid flow are the Navier-Stokes equations [Casey &
Wintergerste, 2000]. Solving the Navier-Stokes equations directly would, however, be
computational tedious in the case of turbulent flow, because the random fluctuations in
the turbulent flow would require an extremely high number of elements to be captured
numerically. Common software packages for CFD like Ansys Fluent and COMSOL
CFD does, therefore, use the Renolds-averaged Navier-Strokes (RANS) models which are
less computationally demanding. The Renolds-average representation divides the flow
quantities into a time-averaged mean flow with fluctuations [Casey & Wintergerste, 2000]
[COMSOL, 2017c] (see Figure 5.3). The decomposition adds new variables to be solved,
and additional information is therefore needed [Casey & Wintergerste, 2000]. Additional
mathematical models have therefore been developed, known as turbulence models to close
the RANS equations.

Figure 5.3. The fully turbulent region is calculated using the RANS model together with the
turbulence models. The flow near walls are often calculated using an analytical wall function
(Original figures from [Frei, 2013b] and [COMSOL, 2017c])

Turbulent flow is often the case in most industrial applications, and much work has been
conducted in the last century to establish good turbulence models [Casey & Wintergerste,
2000]. Despite the extensive work on the subject carried out in literature, there is still
no universal model that can describe all kinds of turbulent parameters [Homicz, 2004]
[Menter, 1993] [Casey & Wintergerste, 2000] and determine the right turbulence model is
often a highly non-trivial task that requires experimental validations to be truly trusted
[Casey & Wintergerste, 2000].

5.2.2 Turbulence Models

There can be found several turbulence models in the literature, and they are often a trade-
off between computational effort, robustness, and precision. The models are based on
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heuristic arguments and empirical functions to supply the additional variables needed in
the RANS model [Homicz, 2004]. The principal classes of turbulence models are Algebraic
models, and Transport equation models. The Algebraic turbulences models describe the
turbulent fluid motion using algebraic equations with only local properties of the fluid
flow [Casey & Wintergerste, 2000]. The Algebraic models are computational economic and
robust, but they are also less accurate compared to Transport equation models [COMSOL,
2017f]. The main reason for the superior accuracy of the Transport equation models
compared with Algebraic models is that they, in contrary to Algebraic models, does
not depend purely on local flow conditions, but also the history of the flow [Casey &
Wintergerste, 2000]. The turbulence models in the scope of this work are the Transport
equation models k-ε, k-ω, and SST turbulence models, which are common turbulent models
used in literature [Casey & Wintergerste, 2000].

The k-ε model is one of the most popular turbulence models for industrial applications
due to its well-balanced compromise between accuracy, robustness and computational
cost [COMSOL, 2017f]. It solves for the turbulent kinetic energy k and the rate
of dissipation of kinetic energy ε, and performs well in free stream flows and for
external flows but is generally not accurately for internal flows with flow fields that
have adverse pressure gradient or large curvatures [Frei, 2013b]. The k-ε model in
COMSOL’s CFD Module utilizes wall functions to calculate the flow near the walls.
Wall functions are analytical approximations of the flow near the walls and are,
therefore, less computationally demanding. The principle of wall functions can be
seen in Figure 5.3.

The k-ω model solves for the turbulent kinetic energy k and the specific rate of
dissipation of kinetic energy ω. This model can be used in the case where the k-ε
model cannot be used and are in general more accurate than the k-ε model. The
k-ω model is often used when computing internal flows, flow near walls, flow with
large curvatures and separated flows [Frei, 2013b] [Casey & Wintergerste, 2000]. The
k-ω model is, however, not as robust as the k-ε, and is especially sensitive to initial
guesses. Convergence problems are, therefore, common when using the k-ω model
[Frei, 2013b]. The k-ω turbulence model in COMSOL uses wall functions in the same
manner as the k-ε turbulence model.

The (shear stress transport) SST model is a combination of the two aforementioned
turbulence models, exploiting the robustness and free stream features of the k-
ε and the near wall features of the k-ω model [Menter, 1993]. The SST model
implementation in COMSOL does not require wall functions and are therefore more
precise around walls but does, as a consequence, also require a finer mesh near walls.
Besides a larger mesh requirement for the SST model, the SST model also tends to
converge slowly [Frei, 2013b] [COMSOL, 2017f].

Due to the superior accuracy when dealing with internal separated flows and strong
streamline curvatures, the k-ω model is selected over the k-ε model. A preliminary study
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using the SST model showed that the SST turbulence model tends to converge too slow
to be practically usable for this study.

5.2.3 Meshing for Fluid Flow

Turbulent flow problems are often highly non-linear and computationally demanding and,
therefore, very mesh sensitive. The mesh of fluid flow problems depend highly on the
geometry and type of fluid flow, and it is always important to keep in mind that the
accuracy of any numerical model is never better than the finite elements the geometry is
divided into. As the element sizes get smaller, the problem tends to the actual solution
even through the exact solution may not be reached due to non-linearities or convergence
problems [Frei, 2013a]. Meshing 3D CAD geometries as the one in Figure 5.2 can be a
tenuous task and a mesh analysis should be conducted to examine the accuracy of the
model and minimize convergence problems. Unstructured meshes like the free tetrahedral
(3D), and free triangular (2D) can be used discretize all kind of geometries, and the
mesh-generating algorithms are highly automated [COMSOL, 2017c]. A mesh with fewer
elements and equal quality can, however, be reached using structured mesh and should be
utilized if applicable. The mesh types utilized in the fluid flow model of this work are; free
tetrahedral, free triangular, swept mesh and boundary layer meshes.

Free tetrahedral and triangular mesh is an unstructured type mesh used in areas of
the geometry where structured meshes do not apply. The mesh algorithms are highly
automated but often results in a large number of elements.

Swept mesh is a particular kind of structured meshes that is structured in the direction
of the sweep but unstructured in the direction of the source face.

Boundary mesh is also a structured mesh with an element distribution more dense in
the direction normal to the surface of the boundary. The boundary mesh surface
does not have to be structured.

The mesh used for the fluid flow can be seen in Figure 5.4.

The inlet and outlet reflector domains (see Figure 5.2) are meshed using the free tetrahedral
mesh, that automatically generates free triangular meshes on all surfaces. The mesh in
the measurement tube is a swept mesh with a free triangular source face. The mesh
sizes for the entire geometry is based on COMSOL’s automatic physics-based mesh sizes,
with a normal size setting for the outlet reflector domain and a finner size setting for the
inlet reflector domain and measurement tube domain. The boundaries are meshed using
a boundary layer mesh with eight layers [COMSOL, 2017e] and automatic adjusted first
layer thickness (thickness adjustment factor of one). Also, the corner refinement tool in
COMSOL is used to reduce the elements size at sharp corner using the standard settings
for the corner refinement tool [COMSOL, 2017d].

A comprehensive mesh convergence analysis has been conducted using mesh scaling
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Free Triangular mesh

Free Tetrahedral mesh
(Normal size)

Boundary layer mesh
(8 layers, auto first layer adj.)

Sweept mesh
(Finner size)

Free Tetrahedral mesh
(Finner size)

Inlet face

Outlet face

Figure 5.4. Mesh with annotations. The mesh types used are; free tetrahedral mesh, free
triangular mesh, swept mesh, boundary layer mesh and corner refinement.

technics often seen in numerical studies. Even and uneven scaling (scaling in specific
areas) of the mesh does result in convergence problems, which may be a result of unsteady
flow. The convergence problems are discussed later in the discussion (see Chapter 9), but
it is assumed that the solutions found using the mesh seen in Figure 5.4 is sufficient for
the purpose of this work.

5.2.4 Boundary Conditions

The boundary conditions used for the fluid flow model can be seen in Figure 5.5. The
outlet boundary conditions is a zero pressure boundary condition often used in internal flow
simulations [COMSOL, 2017e]. Symmetry boundary condition is applied to the symmetry
surface (transparent on Figure 5.5) and wall functions are employed to surfaces with no
other prescribed boundary conditions.

Simple inlet boundary conditions like the circular (half) inlet as seen in Figure 5.5, can
for laminar flows be described using parabolic expressions for fully developed laminar
flow profiles. Analytical expressions for fully developed turbulent flow profiles are not
as simple as for the laminar case, and often in the form of complicated semi-empirical
functions[Çengel et al., 2012].

Instead of using analytical boundary conditions for the inlet, the boundary condition can
be described by the solution of an secondary model mapped onto the original model. The
secondary model is an easy to solve axis symmetric long tube with the same diameter as
the inlet seen in Figure 5.5. The length of the tube has to be longer than the hydrodynamic
entry length that describes the distance from the entrance of a pipe to the flow reaches
its fully developed profile. The ratio between the hydrodynamic entry length Lh and the
inlet pipe diameter Din can, for turbulent flow, be approximated as [Çengel et al., 2012]:

Lh
Din

“ 1.359Re1{4 (5.4)
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Wall functions applied to all walls

Symmetry boundary conditions 
applied to the symmetry surface

(hidden in this figure)
Inlet boundary condition

(Fully developed
turbulent velocity profile)

Outlet boundary
condition

(p=0)

Figure 5.5. Boundary conditions used in the fluid flow model

Taking basis in the highest expected flow (Uin = 10 m/s) and using Equation 5.1 together
with a inlet diameter of Din “ 15mm, gives an inlet Reynolds number of 1.15 ¨106. Using
Equation 5.4, gives a non-dimensional hydrodynamic entry length of approximately 25. In
the application note [COMSOL, 2017e], it is suggested to study the turbulent dynamic
viscosity to observe when the turbulent profile is fully developed. The turbulent dynamic
viscosity is one of the main parameters calculated in the turbulent fluid model, relating
the turbulent kinetic energy k and the specific dissipation rate ω to the Reynolds stress
tensor that is a key parameter in the RANS model [COMSOL, 2017c].

Figure 5.6 shows the simulated turbulent dynamic viscosity for a long tube with an inlet
velocity of 10 m/s and a inlet diameter of 15mm (see Appendix C for a further description
of the inlet model and mesh). In Figure 5.6, it canbe seen that the major changes in the
turbulent dynamic viscosity are small after z/D = 25 as calculated in Equation 5.4. It
can also be seen that there still are minor changes in the turbulent dynamic viscosity until
approximately z/D = 60-80. To be certain that the turbulent flow is truly fully developed
the length of inlet axis symmetric pipe are set to 80 times the inlet diameter. The fully
developed turbulent outlet result from the 2D axis symmetric model is then mapped onto
the 3D inlet face (see Figure 5.4) using the "General Extrusion" feature in COMSOL that
can be used to couple the variables of different models and coordinate systems. Also,
the initial Turbulent kinetic energy and specific dissipation rate are mapped using the
General Extrusion feature as suggested in COMSOL [2017e] and as explained in Casey &
Wintergerste [2000, p.39]. The inlet geometry and description of the inlet model mesh can
be found in Appendix C.

5.2.5 Solver for the Fluid Flow Problem

The fluid flow problem is solved as a stationary problem using the default solver provided by
COMSOL. Due to the relatively large problem is an iterative solver suggested by COMSOL.
The memory requirements for iterative solvers are in general much less than the alternative
direct solvers but also less robust. The Navier-Stokes (RANS) model and the turbulence
model are solved using a segregated solution algorithm meaning that the equations are
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Figure 5.6. The turbulent dynamic viscosity as a function of the normalized length z/D. It can
be seen that true hydrodynamic entry length for the fully developed is longer than calculated in
Equation 5.4.

solved sequentially. Both the RANS model and the turbulence model are solved using the
Algebraic Multigrid solver or Geometric Multigrid solver with GMRES as a preconditioner.
The Geometric Multigrid solver for the turbulence model has two levels, and the Geometric
Multigrid solver for the RANS model has one level, based on the Degrees of Freedom (DoF)
of each model. Other settings are set as default by COMSOL.

5.2.6 Results from Fluid Flow Model

Side views of the fluid flows can be seen in Figure 5.7 for different flow velocities. Note that
inlet geometry is extended with an extra length. The extra length is used in the particle
tracing which is explained later (See Figure 5.14 in Section 5.3). In Figure 5.7, it can be
seen that the flow have strong curvatures in both the inlet and outlet reflector domains
and the k´ ω turbulence model, therefore, applies to this problem (see Subsection 5.2.2).
The fluid flow in the measurement tube is of most interest since it is here the particles
are measured and, therefore, where the particle distribution has the greatest impact to
the acoustic field measured by the turbidity transducer. In Figure 5.7, it can be seen
that the flow streamlines in the measurement tube change significantly as a function of
the flow velocity. A cut view made in the center of the measurement tube can be seen in
Figure 4.9 for different inlet flow velocities. Figure 4.9 shows that the flow profile through
the measurement tube depends on the flow velocity and it is expected that the particle
distribution changes accordingly.

To investigate the actual particle distribution within the flows shown in Figure 5.7 and
Figure 5.8, a particle tracing simulation is conducted which is described in the following.
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Inlet flow velocity  U0 = 0.5 [m/s]

Inlet flow velocity U0 = 3 [m/s]

Inlet flow velocity  U0 = 10 [m/s]

Figure 5.7. Side view of the resulting flow with different inlet flows.

Inlet flow velocity U0 = 0.5 [m/s] Inlet flow velocity U0 = 1 [m/s] Inlet flow velocity U0= 3 [m/s]

Inlet flow velocity U0 = 5 [m/s] Inlet flow velocity U0 = 8 [m/s] Inlet flow velocity U0 = 10 [m/s]

Figure 5.8. Cut view made in the center of the measurement tube, with different inlet flows.
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5.3 Particle Tracing

The Particle Tracing for Fluid Flow module in COMSOL can be used to simulate the
motion of the particles in a fluid flow. Using the Particle Tracing model gives the ability
to track the position of the particles at a given time instance, which can then be mapped
into an acoustic problem. The particle motion within fluid flows is primarily driven by
drag forces if it is assumed that the particle mass is small [COMSOL, 2017g].
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For example, in the following model example, the velocity field is first computed using 
a Stationary study, then the particle trajectories are computed using a separate Time 
Dependent study.

Figure 2-1: The physics features required to model sparse, dilute, and dispersed flows.

D I L U T E  F L OW

In a dilute flow the continuous phase affects the motion of the particles and the particle 
motion in turn disrupts the continuous phase. This is often referred to as a 
bidirectional coupling or “two-way coupling.” The bidirectional coupling between 
particles and fluids can be modeled using the Fluid-Particle Interaction Multiphysics 
node. This node can be added manually if the necessary physics interfaces are already 

Particle Trajectories in a Laminar Static Mixer: Application Library 
path Particle_Tracing_Module/Fluid_Flow/laminar_mixer_particle

Flow type Required features

Sparse flow Drag force

Drag force, 
fluid-particle 
interaction

Dilute flow 
(two-way 
coupling)

Dispersed 
flow (four-way 
coupling)

Drag force, 
fluid-particle 
interaction, 
particle-particle 
interaction

Dense flow Cannot be solved 
with the Particle 
Tracing Module

Increasing 
particle mass 
and volume 
density

Figure 5.9. Particle-fluid interaction types [COMSOL, 2017g].

The flow type considered in this study is sparse flow meaning that the coupling between
the flow and the particle is one-way. The particles in sparse flow does not affect the
fluid flow, but the flow affects the particles through a drag force. Large particles or large
concentrations of particles require dilute flow or dispersed flow calculations with couplings
like the fluid-particles interaction and particle-particle interaction. The volume fraction of
the fluid volume and the particle volume should be less than 1%. Larger volume fractions
are called dense flows which are not supported in the Particle Tracing for Fluid Flow
module (Version 5.2a) [COMSOL, 2017g].

The governing equations behind the particle tracing simulations are presented in the
following, but a more in-depth explanation can be found in the Particle Tracing Module
User’s Guide [COMSOL, 2017g].
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The particle motion is calculated using Newtons second law as:

mp
d2

dt2
x “ Fpt,x,

dx

dt
q (5.5)

where mp is the particle mass, x is the particle position and F is the sum of all the forces
acting on the particle.

The main forces acting on the particle are buoyancy force, drag force and gravity force. In
this study, it is assumed that both the buoyancy force and gravity force can be neglected
and only the drag force FD affects the particle trajectory, which is calculated as:

FD “ mp
u´ v

τp
(5.6)

where u is the fluid velocity, v is the particle velocity, and τp is the particle velocity time
constant.

The particle time constant τp can be calculated using different drag laws, which are valid
within specific ranges of the relative Reynolds number Rer. The relative Reynolds number
Rer is similar to the Reynolds number in Equation 5.1, but with the absolute velocity
difference between the particle and fluid flow instead of just the flow velocity (see Equation
5.1). The relative Reynolds numbers Rer is given as [COMSOL, 2017g]:

Rer “
ρ‖u´ v‖dp

µ
(5.7)

where ρ is the fluid density, dp is the particle diameter and µ is the fluid dynamic viscosity.

The drag laws investigated in this report are the Stokes drag law, Schiller-Naumann drag
law, and COMSOL’s Standard Drag Correlation.

The Stokes drag law is the simplest drag law since it does not explicit depend upon the
relative Reynolds number. The Stokes particle time constant is given as:

τp “
ρpd

2
p

18µ
(5.8)

where ρp is the particle density. Stokes drag law is applicable if Rep ! 1.
The Schiller-Naumann drag law is more sophisticated than the Stokes drag law, due

to the explicit dependence on the relative Reynolds number. The Schiller-Naumann
drag law can be applied for relative Reynolds number under 800 (Rep < 800) and is
given as:

τp “
4ρpd

2
p

3µCDRe0.687r

(5.9)

where
CD “

23

Rer
p1` 0.15Re0.687r q (5.10)
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The Standard Drag Correlations consist of an extensive list of drag law relations at
different relative Reynolds numbers which can be found in the Particle Tracing
Module User’s Guide [COMSOL, 2017g]. This drag law can, therefore, be used when
the relative Reynolds numbers changes by several orders and can model drag at a
higher Reynolds number than the Schiller-Naumann drag law. The Standard Drag
Correlations is, however, computationally heavy compared to the Schiller-Naumann
drag law and Stokes drag law.

A preliminary study of the relative Reynolds number using the flow field results from
Section 5, can be found in Appendix D. In this study, the relative Reynolds number is
modeled using the Standard Drag Correlation for different flow velocities. The Standard
Drag Correlation is valid for the largest span of relative Reynolds numbers and the locally
calculated relative Reynolds numbers can, therefore, be used as an indicator for the
maximum expected relative Reynolds number in the model.

In Appendix D, it is found that the relative Reynolds number in this study does not exceed
Rep “ 10 and the Schiller-Naumann drag law is, therefore, sufficient for this study.

The domain and boundary conditions used for particle tracing study can be seen in Figure
5.10. It can be seen that not the entire fluid domain is used in the particle tracing
calculations. The sparse flow calculations only consist of one-way interactions and the
particles in the measurement tube are, thus not affected by the particles in the outlet
reflector domain (marked with gray in Figure 5.10).

Wall boundary condition
(Bounce)

Outlet boundary condition
(Disappear)

Particle Inlet

Symmetry boundary condition
(Bounce)

Figure 5.10. The domain for particle tracing simulations with boundary conditions

The boundary conditions for the walls and symmetry surface is a specular reflection
(bounce), which means that the particle kinetic energy is conserved and specularly reflected
from the wall. At the symmetry surface, a physical interpretation of the specular reflection
is that for every particle exiting the surface another particle enters the surface at the same
location with the same kinetic energy.
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5.3.1 Particle Release Strategy

Simulation of particle trajectories require the particles to enter the domain through a
given boundary. The particles can be released in different manners affecting the particle
distribution in within the geometry. The particle release strategy, therefore, influences the
particle distribution within the measurement tube used later in the acoustic simulations.

Releasing the particles in a structured manner result in particle lumps. The particle lumps
are unwanted due to the idea that the particles should enter the domain in a random
manner. Using an inlet boundary condition with a random distribution of particles or/and
a random number of particle release per time instance would solve the problem if the
particles were released at high frequency. The particle release positions are, however,
based on the mesh and the particle release can, therefore, not directly be made random.

The approximated density of particles with a random normal disturbance is used to
randomize the particle release positions on the inlet boundary. The particle density
distribution is, furthermore, made proportional to the previously calculated flow velocity
magnitude field. This means that the density of released particles is larger in regions
with highest absolute flow velocity magnitude, as would be expected if a long inlet pipe
was included in the simulation. Figure 5.11 shows the particle distribution using a freeze
boundary condition in the long axises symmetric inlet model. In Figure 5.11, it can be
seen that the density of particles is smaller at low flow velocities.

Figure 5.11. Particle distribution (gray dots) at the outlet of inlet model using the freeze
boundary condition and a inlet flow boundary condition of 10m{s. It can be seen that the density
of particles is smaller at the low flow velocity then the high flow velocity.

The density of particles is controlled using the non-dimensional density proportionality
factor ρrelease, which is calculated using the flow velocity amplitude spf.U and a random
normal disturbance, thus:

ρrelease “ r1` normrandom(spf.U,t)s ¨ spf.U (5.11)

where spf.U is a structure with flow velocities at each mesh node and normalrandom(spf.U,t)
is a normal distributed random function in both time and space. The initial velocity of
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the particles is also set to the flow velocity magnitude. A boundary release of particles at
the inlet using the random density proportionality factor in Equation 5.11 can be seen in
Figure 5.12 and a side cut of the inlet can be seen to the right in Figure 5.12.

Flow direction

Discrete particle release

[m/s] [m/s]

Figure 5.12. Particles (a = 5 µm x 30, N = 100, U0 “ 1m{s ) released using the inlet boundary
condition. The figure to the left shows the particle released in a discrete manner. In the figure to the
right shows the distribution of particles that is mesh and flow velocity (with random disturbance)
dependent. Note, the particle positions at next time instant is different (not shown), due to the
random release.

From Figure 5.12, it can be seen that the particles are not released such that the stream of
particles is continuous. This results in lumped distributions of particles in the measurement
tube, which is not expected in a physical setup. The problem can be addressed by releasing
a low amount of particles at a high frequency. This is, however, not computationally
feasible.

Another way to make sure that the particles are released such that the particle stream is
continuous is by extruding the inlet. Releasing the particles in the new extruded volume,
results in a volume release instead of a boundary release. The volume release makes
it possible to generate particles randomly both in the direction of the flow and tangent
to the flow. The new inlet domain can be seen in Figure 5.13. The domain release
node in the Particle Tracing for Fluid Flow module allow the user to release particles
in the same manner as the inlet boundary condition, but with initial positions in three
dimensions instead of two dimensions as for the inlet boundary condition. Figure 5.14
shows the volume release leading to a continuous stream of particles with an inlet velocity
of U0 “ 1m/s.

As described in the Problem Statement (see Chapter 3), it is desired to have a particle
concentration ρpc from 100 p/mL to 6000 p/mL within sensor geometry. The time between
each release ∆trelease and number of particles per release Nrelease can be calculated using
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Flow direction Flow direction

Inlet domain

Lin

Rin

Inlet reflector domain

Figure 5.13. Inlet extruded into an inlet
domain which is marked on the geometry.

Figure 5.14. Continuous random stream of
particles using the inlet domain and a domain
release node.

the mean inlet flow velocity, as:

Nrelease “ Vinlet ¨ ρpc (5.12)

∆trelease “ Vinlet ¨ Linlet (5.13)

where Vinlet “ πR2
inLinlet is the inlet release volume with inlet radius Rin, and inlet domain

length Linlet.

The particle simulation is a time-domain problem and only a single time instance is needed
for the acoustic simulation where it is assumed that steady-state conditions have been
reached. The average time it takes for the particles to pass the entire sensor geometry
Lsensor can be calculated as Lgeom{vavg, where vavg is the average particle velocity. It can
be found that a proportion of the particles gets stocked in vortexes within the inlet reflector
domain (see Figure 5.7) and different time constants for the number of particles (NoP) are
observed when releasing the particles (see Figure 5.15).

The NoP in the measurement tube counted over a period of time can be used to find the
time instance where the change in NoP is zero (dNoP{dt “ 0) indicating that particle
steady-state conditions has been reached. The time instance where NoP rate is zero is
defined as the particle convergence time instance.

It is convenient to determine a non-dimensional factor that can be used to relate the
simulation time tsim independent of inlet flow velocities. The non-dimensional factor is
calculated as:

Nsim “
tsim

Lsensor{U0
ñ tsim “

Lsensor

U0
¨Nsim (5.14)

The desired number of particles within the measurement tube together with the counted
number of particles in the measurement tube, for three different particle concentrations,
can be seen in Figure 5.15. The desired number of particles within the measurement tube
is calculated as Np,tube “ Vtube ¨ ρpc with Vtube “ 1.155mm3.
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Figure 5.15. Number of particles in the measurement tube with different particle concentration
levels

Figure 5.15 shows the NoP approximately converge after Nsim “ 3. It can also be seen
that convergence of the NoP is divided into two phases. The first phase from Nsim “ 0

to approximately Nsim “ 1 consist of the particles that follow the fast main flow and the
second phase from approximately Nsim “ 1 to Nsim “ 2, where particles from slow flow
regions are released into the main flow and therefore lastly encountered in the measurement
tube. The main part of the slow flow regions can be found in the upper part of the inlet
reflector domain (see Figure 5.2).

5.3.2 Particle Tracing Results

Using the flow field calculated in the CFD model as described in Section 5, the particle
trajectories can be calculated. Figure 5.16 shows the particle positions at the particle
concentration convergence time instance with different particle concentrations. The
particles have a radius of 5 µm and are in Figure 5.16 upscaled 30 times, to make the
particles more visible.

Figure 5.17 shows the particle trajectories at different inlet flow velocities and with a
constant particle concentration of 100 p/mL. In Figure 5.17, it can clearly be seen that the
particles circulate in the top region of the inlet reflector domain, which is the reason for
the different time constants seen in the particle concentration convergence plot in Figure
5.15. It can also be seen that the particle trajectories rotates inside the measurement tube
and that the particle trajectories rotation increases as the flow velocity increases.
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ρpc= 100 p/mL

ρpc= 500 p/mL

ρpc= 1000 p/mL

ρpc= 6000 p/mL

Figure 5.16. The simulated particles inside the UT sensor, seen from the side. The particle
concentration ρpc is changed through each figure, but the flow velocity remains constant U0 “ 1m{s
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ρpc= 100 p/mL  U0= 0.5 m/s

ρpc= 100 p/mL  U0= 3 m/s

ρpc= 100 p/mL  U0= 10 m/s

Figure 5.17. The particle trajectories with a particle concentration of 100 p{m3 and different
flow velocities. It can be seen that there are particle encirclements in the top region of the inlet
reflector domain, as described in Subsection 5.3.1.
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Chapter 6

Computational Acoustics

The second stage of the modeling framework is the computational acoustics which can be
seen in the diagram in Figure 6.1. This chapter contains an analysis of the acoustic
numerical method used in this work, including a mesh analysis, solver analysis and a
description of the domain truncation method utilized in this work. The numerical analysis
is based on a simple geometry with only one particle, that can be related to the analytical
solution found in Section 2.2.

Acoustic Boundary
Description

X(U0,ρpc)

CFD and Particle Tracing Simulations

Figure 6.1. Diagram of the second stage, that contains the acoustic geometry generation, acoustic
computation, and evaluation of the scattering pressure field. The inputs to the second stage are
the particle coordinates, properties for the acoustic generation algorithm, mesh parameters, and
background pressure field properties.
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The sketch of the main principles behind the UT sensor as described in the introduction
(see Chapter 1) is reshown for convenience in Figure 6.2.

Rx2
Background acoustic field

Sensitive piezoelectric transducer

V

Doppler shifted scattering field
observed from the particles

Harmonic excitation of transducer

V V

V V
Tx/Rx Tx1/Rx1

Figure 6.2. Particles scattering in a background acoustic field, where the scattering frequency is
Doppler shifted due to the relative movement of the particles in the stationary background field.

As described in the introduction, the Doppler effect is crucial regarding the ability
decouple the signal of the wave scattered by the particles from the background excitation
wave. Modeling the Doppler effects seen in Figure 6.2 is a time-domain problem, with
moving objects and high-frequency wave propagation. Moving the objects can be modeled
numerically using a moving mesh approach. This method is, however, difficult due to ill-
condition issues leading to numerical errors at the interface between the moving mesh and
the stationary mesh. Another important point is the spherical geometry of the particle. A
spherical geometry cannot be represented in two-dimensions (2D) or lower, and a three-
dimensional (3D) simulation is, therefore, needed. Circles as illustrated in Figure 6.2,
represent cylinders in space which has a very different scattering response compared to
spheres. Spherical waves act much like plane waves as seen in Section 2.2 and do not
change shape as they propagate far from the scattering, but only diminish in amplitude
with the factor 1/r. Cylindrical waves, on the other hand, both diminishes in amplitude
and changes shape when propagating, leaving a wake behind.

A 3D time-domain acoustics simulation with moving mesh and high frequency wave
propagation is a rather computationally expensive and numerically unstable task.

An alternative to the time-domain study is a frequency domain study. Assuming that the
excitation of the background wave is time-harmonic, a frequency domain simulation of the
scattering would lead to the same result as a time-domain solution. The Doppler effect can,
however, not be represented in the frequency domain simulation, which is not a problem
because the frequency domain simulation allow the scattering field to be decoupled directly
from the background field making the Doppler effect unnecessary. In the frequency study,
the background field can be applied as a pre-known analytical expression and the scattering
field can, therefore, be calculated from the total acoustic field as:

pt “ pb ` psc (6.1)
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where pt is the resulting pressure field, psc is the scattering pressure field, and pb is the
pre-known analytical expression of the background pressure field.

Numerical acoustic problems with frequencies in the MHz range have millions of DoF per
mm3, due to strict requirements for the mesh size. Conducting an acoustic simulation of
the entire UT sensor geometry is, therefore, not possible as this problem would have an
extreme size. To reduce the size of the problem only the inner section of the measurement
tube is considered for the analysis of the scattered field. The domain of interest is marked
with a green color in Figure 6.3.

Piezoelectric Transducer
for tubditiy measurement

Measurement tube

Particles

Domain of interest for
Computational Acoustics

Background wave

Figure 6.3. Turbidity sensor, with the acoustic computational domain marked with green.

The scattering pressure on the surface of the acoustic computational domain can be related
directly to the scattering pressure experienced by the turbidity transducer seen in Figure
6.3. The surface scattering pressure is, hence the final product of the acoustic analysis
as this reduces the problem significantly. The surface of the measurement tube is further
assumed to be non-reflecting making it easier to determine the acoustic scattering field.

In the following, it is assumed that the background pressure wave propagating through the
measurement tube is a perfect plane wave in the direction aligned with the inner part of
the measurement tube.
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6.1 The Acoustic Frequency Domain Model

The frequency domain or time-harmonic study branch in COMSOL utilizes the
inhomogeneous Helmholtz equation given as [COMSOL, 2017b]:

∇¨
ˆ

´
1

ρc
p∇pt ´ qdq

˙

´
k2pt
ρc

“ Qm (6.2)

where qd is the dipole domain source and Qm is the monopole domain source. In
the problem of this work, no sources are introduced, and Equation 6.2 reduces to the
homogeneous Helmholtz equation

∇2pt ` k
2pt “ 0 (6.3)

which is equal to the Helmholtz equation found in Section 2.2 if pt is replaced with p. The
total pressure pt is given in Equation 6.1 and the expression for the background pressure
pb utilized in this work, is a plane wave background field given by [COMSOL, 2017b]:

pb “ p0 e´ik¨x “ p0 e
´i k x¨ek

}ek} (6.4)

where k is the wave number vector, k “ ω
c is the wave number amplitude, ek is the wave

direction and x is the coordinate vector.

Geometries a with pressure background field applied to only some of the domains
are controlled automatically by COMSOL using a continuity condition at the internal
boundaries between domains with and without the pressure background field. This feature
is used later for the damping layers.

6.2 Analysis of Numerical Scattering

The large computational domain seen in Figure 6.2 with the particles particles calculated
from the combined fluid flow and particle tracing study (see Chapter 5) results in a
large multi-scattering problem with millions of DoF, to be solved. Important aspects
like geometry size, mesh size, and solver selection can significantly reduce the total
computational time if chosen with care.

In order to analyze the numerical acoustic problem, a simplified version of the
computational domain seen in Figure 6.2 is conducted. The simplified model consists
of a single rigid particle place in the center of the computational domain. The domain
surrounding the particle has the form of a half cylinder with damping layers on the outer
boundaries and the material properties of water are applied to both the damping layers
and the fluid domain. The geometry of the simplified model can be seen in Figure 6.4.
The damping layers in Figure 6.4 are used to emulate an open domain problem utilizing
perfectly matched layers (PML). The PML damping layer is described more in depth in
Subsection 6.2.2. In the analysis of this section, it is assumed that the background pressure
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Particle
a = 5 µm

(Sound hard
boundary condtion)

Water domain

PML domains

LPML= λ0/2H = λ0∙ 6

R = λ0∙ 3

Symmetry cut plane 
(symmetry boundary condtion)

Outer surfaces
(Sound hard wall

boundary conditions)

Figure 6.4. Geometry of the simplified model
for the analysis of the numerical scattering
problem.

Figure 6.5. 10MHz plane background wave
with an unit amplitude applied to the fluid
domain.

wave is a 10MHz plane background wave with an unit amplitude, applied only to the fluid
domain. The background wave can be seen in Figure 6.5.

Using the simplified model with a single particle only require a small computational
domain, which reduces the computational time from hours to seconds. Also, the analytical
solution to the scattering problem of a single sphere has already been shown in Section
2.2, which is utilized as a reference in various occasions throughout this section.

6.2.1 Meshing the Acoustic Domain

The three-dimensional geometry as seen in Figure 6.4 consists of a fluid domain and
multiple PML domains. The fluid domain is discretized using the, by COMSOL,
default free tetrahedral method which is a robust way of discretizing the geometry for
computational acoustics. The fluid domain is meshed using a maximum element size nmax,
a minimum element size nmin, a maximum growth rate of 1.2, a curve factor of 0.6 and
resolution in narrow regions of 1. A comparison between different mesh curve factors and
growth rates can be found in Appendix E. The maximum element size nmax is determined
using a Nyquist-like approach relating the maximum mesh-element size to some portion
of the wavelength λ0 “ c{f0, that is:

nmax “
λ0
N
“

c

N ¨ f0
(6.5)

where N is a mesh scaling factor, c is the speed of sound in the material and f0 is frequency
of the wave. The minimum element size is controlled by a proportion of particle size,
through the following relation:

nmin “
a

N
(6.6)

where a is the particle size.
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The PML domains in the simplified model has a thickness of λ0{2 and are meshed using a
structured swept mesh with 30 layers, giving a high performance of the PML (see Section
6.2.2) and the reflections from the PML can be treated as is minimal. At the boundaries
between the PML domains and the fluid domain, a single-layered boundary layer mesh is
utilized as suggested in COMSOL [2017b]. The boundary layer mesh is utilized to enhance
the calculation of normal derivative of the pressure at the boundary, used in the calculation
of the pressure level and acoustic intensity. The boundary layer thickness is chosen to be
λ0{N{10 as suggested in the application note COMSOL [2017a].

The simplified geometry with the mesh size parameters as explained before, N = 8 and
f0 = 10MHz, can be seen in Figure 6.6 and a zoom at the particle mesh can be seen in
Figure 6.7.

Figure 6.6. Free tetrahedral in the fluid
domain and swept mesh in the PML domains.
Important settings are N = 8, f0 = 10MHz, a
= 5 µm.

Figure 6.7. Zoom of the mesh around the
particle, with a curvature factor of 1.2 and
growth rate of 0.6. The mesh around the particle
is controlled mainly by the minimum mesh size
and the curvature factor.

From Figure 6.7, it can be seen that the mesh size close to the particle is finer than the mesh
further away from the particle. A finer mesh is needed, due to large pressure gradients
found near the particle. The mesh near the particle is mainly controlled by the minimum
mesh size and the curvature factor (see Appendix E).

Mesh Convergence Analysis

In order to evaluate the precision of the model with different mesh settings, the solution
of a numerical evaluation of the scattering problem using a single particle is compared
to its analytical solution. Figure 6.8 shows the interpolated numerical scattering solution
evaluated on the symmetry cut plane (see Figure 6.4) with the mesh shown in Figure 6.6.

Figure 6.9 shows the corresponding interpolated analytical solution. The green dots seen
in Figure 6.8 and Figure 6.9 are the original numerical and analytical solutions respectfully.
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Figure 6.8. Scattering pressure on the symmetry cut plane, with background pressure of 10MHz,
particle size of 5 µm and the mesh seen in Figure 6.6 (N = 8). Note the green dots are solutions
points exported from COMSOL and the surface is the interpolated solution with a step size of
λ0{50

Figure 6.9. Analytical solution to the scattering problem using the same properties as the
numerical. The green dots are the spherical solution points and the surface is the interpolated
solution with step size of λ0{50.

It can clearly be seen that the coordinates of the green dots in Figure 6.9 and Figure 6.8 does
not match, making it difficult to relate the analytical solution with the numerical solution.
A cubic interpolation of the original scattering solutions with a constant spacing of λ0{50,
using the griddata function in Matlab is, therefore, utilized. Using the interpolated data,
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the numerical and analytical solutions to the scattering field can be related directly. The
interpolated solution points in a circle with a radius of 5 times the radius of the particle are
removed, due to interpolation problems close to the particle. The mesh near the particle is
controlled by the curvature factor, thus not a function of N and the overall results of the
mesh convergence analysis is not altered by the removing the points close to the particle.

The numerical error is evaluated using the relative accumulated error given as
[Kaltenbacher, 2015]:

Etotal “

d

řM
i“1pp

sc,a
i ´ psc,ni q2

řM
i“1pp

sc,a
i q2

¨ 100% (6.7)

where M is the total number of interpolated element nodes, psc,n is the interpolated
analytical solution to the scattering field and psc,n is the interpolated numerical solution
to the scattering field. Note the notation psc,n “ psc,n and psc,a “ psc,a.

The relative accumulated error as a function of the mesh scaling factor N can be seen in
Figure 6.10, together with the total simulation time. In Figure 6.10, it can be seen that
the relative accumulated error converges after approximately N “ 8 and only a minimal
enhancement in model precision is gained using a larger N .
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Figure 6.10. Relative Accumulated Error and Total Simulation Time as a function of the mesh
scaling parameters N. The total simulation time is the simulation time plus the meshing time.

Examining Figure 6.10, it can be seen that the relative accumulated error does not decrease
further to zero as the mesh size is made smaller. This may be a result of other numerical
errors related to the computation of the scattering field or reflections from the PML that
is not ideal. The numerical errors related to the computation of the scattering field is
evident at low mesh resolutions. Figure 6.11 shows the difference between the analytical
solution psc,a and the numerical solution psc,n with a mesh scaling factor of N “ 4. In
Figure 6.11, it can be seen that artifacts from the background plane wave can be found in
the scattering solution.
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Figure 6.11. Difference between the numerical and analytical solution with a rigid particle of
the size a “ 5µm, a background frequency of 10MHz and with a mesh scaling factor of N “ 4.
Numerical artifacts are marked on the figure.

From Figure 6.10, it can be seen that a good compromise between simulation time and
precision can be found using the mesh scale N “ 8, thus used in the remaining of this
work.

6.2.2 Perfectly Matched Layers

Acoustic problems involving scattering are often treated as open-domain problems,
meaning that the domain is truncated using appropriate absorbing methods or boundary
conditions. An outgoing wave not absorbed, influences the scattering field through
reflections from the computational domain boundaries. Some of the methods used to
absorb outgoing waves are matching layers, radiation boundaries, and perfectly matched
layers (PML) [Berenger, 1994]. In this work, the PML method is of interest due to the
robustness toward unknown wave types and unknown angles of incidence. The PML used
in the simplified model has already been shown in Figure 6.4 and the principle is alike for
the final model. In the following, a thoroughgoing description of the PML properties is
presented. The deviations found in this subsection follows approaches found in [Berenger,
1994] and [Kaltenbacher, 2015].

An incident plane wave propagating along the x-axis and striking a boundary between two
different mediums can be seen in Figure 6.12 to the left. Because of continuity across the
boundary, a system of equations for the pressures and velocities can be set up from which
it can be found that the proportion of the incident wave reflected can be calculated as:

R “
z̃ ´ z

z̃ ` z
(6.8)
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φ1

φ

ρ0,c ρ,c ˜ ˜ρ,c ˜ ˜ρ0,c 

Physics domain Absorbing domain Absorbing domain Physics domain

InterfaceInterface x

y
x

y

Figure 6.12. The left figure shows a plane wave normal to the interface and the right figure
shows a plane wave oblique to the interface

where z “ ρ0 ¨ c and z̃ “ ρ̃ ¨ c̃ are the acoustic impedances on either side of the boundary.
From Equation 6.8, it can clearly be seen that the wave reflected at the boundary is zero
if z “ z̃, meaning that the impedance in the two domains are matched. The absorbing
domains seen in Figure 6.12, are outside the physics domain and, ρ̃ and c̃ does not need
to have any direct physical meaning. Assuming that the plane wave in Figure 6.12 to the
left, travels along the x-axis, ρ̃ and c̃ can be chosen as:

ρ̃ “ ρ0p1` iσ0q c̃ “
c

1` iσ0
(6.9)

where σ0 is a damping coefficient or function.

Inserting the complex ρ̃ and c̃ into the Helmholtz equation (see Section 2.2), yields:

B2p

Bx2
`
ω2

c̃2
p “ 0 ùñ

B2p

Bx2
`
ω2

c2
p1` iσ0q2p “ 0 (6.10)

Assigning k̃ “ ω
c p1` iσ0q the complex wave number, the general solution to Equation 6.10

can be found to be:
p “ p̂ eik̃x e´iωt “ p̂ eikx e´σ0 e´iωt (6.11)

From Equation 6.11 it can be seen that the plane wave is damped by a factor σ0 and both
impedance matching and wave absorption is achieved. However, if the wave is traveling
obliquely to the boundary as seen to the right in Figure 6.12, both impedance matching
and damping cannot be conducted as for the perpendicular case.

To be able to conduct an impedance matched and damping absorption layer for oblique
waves, the pressure pd and velocity vd are decomposed in into its associated Cartesian
components (other coordinate systems can also be used). In this derivation only two
dimensions are considered, and the pressure and acoustic velocity is written as pd “ px`py

and vd “ vx ` vy respectfully. Introducing an artificial damping in the linear conservation
of momentum (see Equation 2.6) and the linear continuity equation (see Equation 2.5),
gives [Berenger, 1994]:

Bpx
Bt
` σxpx “ ´ρ0c

2 Bvx
Bx

Bpy
Bt
` σypy “ ´ρ0c

2 Bvy
By

(6.12)

Bvx
Bt
` σxvx “ ´

1

ρ0

Bppx ` pyq

Bx

Bvy
Bt
` σyvy “ ´

1

ρ0

Bppx ` pyq

By
(6.13)
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where σx and σy are damping functions. Taking only the equations for the pressure and
acoustic velocity for the x-axis and setting the damping function σx “ c ¨ σ0, then the
harmonic solution can be found to be as shown Equation 6.11. The decomposition of the
pressure and velocity, allow the total pressure to be expressed in terms of its x and y
components. Thus, a two-dimensional spherical wave as seen in Figure 6.13 can be treated
as two individual one-dimensional plane waves of the form shown in Equation 6.11, which
result in a theoretical reflectionless boundary [Berenger, 1994]. In Figure 6.13, it can be
seen that the decomposition allow σx and σy to be assigned individually to domains with
its associated component normal to the physical domain.

σx ≠ 0
σy = 0

x

y
σx = 0
σy ≠ 0

σx ≠ 0
σy ≠ 0

Physics domain
PML domains

Wave scattering

Figure 6.13. The decomposition allow individual assignments of the PML domains.

Assuming that the incident wave is a plane wave oblique to the boundary of the PML as
shown to the right in Figure 6.12, a time harmonic description of the pressure and velocity
with respect to the x-axis can be written as:

px “ p̂x eipk̃xx`k̃yyq e´iωt py “ p̂y eipk̃xx`k̃yyq e´iωt (6.14)

vx “ v̂ ¨ cospϕq eipk̃xx`k̃yyq e´iωt vy “ v̂ ¨ sinpϕq eipk̃xx`k̃yyq e´iωt (6.15)

where k̃x and k̃y are the unknown complex wave numbers, p̂x and p̂y are pressure amplitudes
and v̂ is the velocity amplitude.

Inserting the equations for the time-harmonic pressures (see Equations 6.14) into the linear
continuity equations with damping (see Equations 6.12) and isolating for the pressure
amplitudes p̂x and p̂y, yields:

p̂x “
i c2k̃xρ0v0cospϕq

iω ´ σx
(6.16)

p̂y “
i c2k̃yρ0v0sinpϕq

iω ´ σy
(6.17)

Inserting Equation 6.16 and Equation 6.17 into the linear conservation of momentum with
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damping (see Equations 6.13) gives:

cospϕqp´iω ` σxq “ c2 ¨ k̃x

˜

cospϕqk̃x
iω ´ σx

`
sinpϕqk̃y
iω ´ σy

¸

(6.18)

sinpϕqp´iω ` σyq “ c2 ¨ k̃y

˜

cospϕqk̃x
iω ´ σx

`
sinpϕqk̃y
iω ´ σy

¸

(6.19)

The two equations Equation 6.18 and Equation 6.19, connects the two unknowns k̃x and
k̃y [Berenger, 1994]. Taking the ratio of the two equations, yields:

cospϕqpiω ´ σxq
sinpϕqpiω ´ σyq

“
k̃x

k̃y
(6.20)

Solving for the complex wave number k̃y in Equation 6.20 and substituting the result into
Equation 6.18 gives:

´ cospϕq2piω ´ σxq2 “ c2k̃2x (6.21)

where the positive solution for k̃x gives

k̃x “
cospϕqpiσx ` ωq

c
(6.22)

Using the same approach for k̃y, gives

k̃y “
sinpϕqpiσy ` ωq

c
(6.23)

Substituting Equation 6.22 and Equation 6.23 into Equation 6.16 and Equation 6.17 gives:

p̂x “
i cospϕq2cpiσx ` ωqρ0v0

iω ´ σx
“ cospϕq2cρ0v0 (6.24)

p̂y “
i sinpϕq2cpiσy ` ωqρ0v0

iω ´ σy
“ sinpϕq2cρ0v0 (6.25)

Thus, the total pressure amplitude can now be found as:

p̂ “ p̂x ` p̂y “ cρ0v0pcospϕq2 ` sinpϕq2q “ cρ0v0 (6.26)

which rearrange shows that the acoustic impedance experience by the incident wave is
equal to the acoustic impedance from which the plane wave traveled from, by the pressure
velocity relation [Pierce, 1989]:

z “
p0
v0
“ cρ0 (6.27)

This proof shows that a theoretical plane wave of any angle and any frequency is perfectly
matched using a single PML layer. It can, however, be found that in practical numerical
experiments, reflections may occur due to numerical artifacts. The numerical artifacts
can, however, be reduced by tuning the damping factors [Berenger, 1994]. The PML
method also works with waves other than plane waves with only a minimum of reflection
[COMSOL, 2017b].
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The PML implementation for the acoustic module in COMSOL has different geometry
settings that automatically detects the local coordinate systems needed inside the PML
domains. The geometry setting that fits the problem of this work is the cylindrical
geometry setting. Other parameters like the damping factors are set to default.

PML Mesh

As the PML layers are actual domains, they have to be discretized in terms of mesh.
The mesh in the PML layers is sensitive to coordinate scaling which may result in poor
mesh qualities. Convergence problems for iterative solvers are likely to occur if poor mesh
qualities exist in the PML domains. Hence, it is advantageous to use structured swept
mesh in the direction normal to the direction of scaling as this minimizes the chance for
low mesh qualities [COMSOL, 2017d]. In Figure 6.14, a cut view from the top of the
simplified model can be seen together with annotations related to the PML mesh. The
domain thickness of the PML is controlled as a proportion of the wavelength L “ λ0{LN .
The layer thickness is also controlled as a proportion of the wavelength h “ λ0{hN .

Particle Meshed
PML

LPML= λ0/LN

Water domain

h = λ0/hN 

Figure 6.14. Cut view of the simplified model with PML annotations.

The nearest integer of the ratio of the PML domain thickness and the PML layer thickness,
gives the number of layers in the PML domain. The number of layers is implemented
in COMSOL using the distribution node under the swept mesh with a fixed number of
elements by n “ roundpL{hq. Figure 6.15 show the scattered wave pressure level using
different PML layer thickness h with a constant PML domain thickness of L “ λ0{8.

From Figure 6.15 to the left, it can clearly be seen that reflections from the boundaries
affect the solution of the scattering pressure field. It can also be seen that a thinner
PML layer thickness, thus increases the number of layers, reduces the reflections from the
boundaries in the solution. Already from h “ λ0{20, it can be seen that the variation in
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Figure 6.15. Acoustic scattering pressure sound level with different PML layer thicknesses. The
frequency is f0 = 10MHz, particle size a “ 5µm and the medium is water.

the solution settles as the layer thickness of the PML is decreased.

 h = λ0/10
 n = 1

 h = λ0/20
n = 2

 h = λ0/40
n = 5

 h = λ0/60
n = 8

 h = λ0/80
n = 10

Figure 6.16. The convergence rate with different numbers of layers in the PML swept mesh
(L “ λ0{8).

The PML settings does, however, also affect the numerical stability of the problem, which
is evident in Figure 6.16 showing the number of iterations used by the iterative solver.
The PML settings, therefore, both influences the precision of the solution and the stability
of the problem. Using the approach of relating the numerical solution with the analytical
solution as introduced in Section 6.2.1, the relative accumulated error is calculated for
different values of LN and hN .

Figure 6.17 shows the relative accumulated error together with the total simulation time,
the physical memory required and the problem size as a function of the number of layers
in the PML domain. The results in Figure 6.17 shows that the principal parameter for the
PML is the total number of layers used in the PML domain and that different PML domain
thicknesses do not influence the solution significantly. From the total simulation time in
Figure 6.17, it can be seen that simulation time has a U shape, with large simulation times
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Figure 6.17. Relative accumulated error, total simulation time, the physical memory required
and the problem size as a function of the number of layers in the PML domain n.

using only a few PML layers due to a low convergence rate and large simulation time using
more than ten layers due to a larger problem size. Using the results from Figure 6.17, the
number of PML layers is chosen to be approximately 8 layers.

6.2.3 Solver Selection for the Acoustic Calculation

In the Acoustic Module Users Guide [COMSOL, 2017b], a large range of direct and iterative
solvers are suggested. Small acoustic problems (low number of DoF) are often solved using
direct solvers like the MUMPS or PARADISO. But as seen in the maximum mesh element
size relation nmax “ c

f0N
, high-frequency acoustic problems require small mesh elements

which result in large problems requiring substantial memory resources when using direct
solvers. Iterative solvers are, hence, often the only option when choosing solvers. The
geometric multigrid as a solver is proposed in [COMSOL, 2017b] with various smoothers.
Using geometric multigrid as the solver, require the Nyquist criterion to be satisfied in the
entire geometry, otherwise, the solution may not converge [COMSOL, 2017b]. Especially
edge and boundary nodes can be problematic regarding the Nyquist-criterion. Linear
solvers like GMRES or FGMRES can, however, be used with the geometric multigrid
as the preconditioner, even with elements not fulfilling the Nyquist criterion [COMSOL,
2017b].

Using the simplified model as shown in Figure 6.4, together with the mesh chosen in
Section 6.2.1 and the PML settings found in Section 6.2.2, an investigation of different
solver configuration is conducted. The problem is a Pressure Acoustic Frequency Domain
Simulation, with the settings for the background pressure and materials as found in Section
6.2.1, giving a problem size of 1.59M DoF. The machine used has an Intel Xeon E5-2665
2.40 GHz CPU with 16 cores, 77.75 GB available memory and runs COMSOL 5.3 in
Windows 7 (64bit).
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Table 6.1 show the results of the investigation using different solvers and different solver
set-ups.

Iterative Solvers
Solver Preconditioner Results

Preconditioner Geometric Multigrid (1 level) Maximum number of
PARADISO as Coarse Solver iterations reached (200 iter.)

Preconditioner Geometric Multigrid (1 level) 6 Iter., Memory 14.38GB,
Krylov with GMRES as smoother Sim. time 51 min 39 sec
PARADISO as Coarse Solver

GMRES Geometric Multigrid (1 level,V seq.) 8 Iter., Memory 6.49 GB,
MUMPS as Coarse Solver Sim. time 90 sec

GMRES Geometric Multigrid (1 level,V seq.) 8 Iter., Memory 6.19 GB,
PARADISO as Coarse Solver Sim. time 75 sec

GMRES Geometric Multigrid (1 level,W seq.) 8 Iter., Memory 6.72 GB,
MUMPS as Coarse Solver Sim. time 90 sec

GMRES Geometric Multigrid (1 level,F seq.) 8 Iter., Memory 6.88 GB,
MUMPS as Coarse Solver Sim. time 92 sec

FGMRES Geometric Multigrid (1 level) 8 Iter., Memory 7.25 GB,
PARADISO as Coarse Solver Sim. time 86 sec

GMRES Algebraic Multigrid >1000 Iter., Memory -GB,
PARADISO as Coarse Solver Sim. time >60 min

Direct Solvers (default solver in COMSOL)
Solver Preconditioner Results
MUMPS Solved directly Memory 54.79GB,

Sim. time 13 min 23 sec
PARADISO Solved directly Memory 45 GB,

Sim. time 9 min 43 sec

Table 6.1. Comparison between different solvers and solver settings for an Acoustic Helmholtz
problem with PML. Problem size 1.59M DoF.

From Table 6.1, it can be concluded that the GMRES linear solver with the Geometric
Multigrid Preconditioner and PARADISO as the coarse solver, is the solver-setting that
uses the lowest amount of memory and solves the problem at highest speed. This solver
is, therefore, chosen for the final acoustic simulations.
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6.3 Particle Distribution and Acoustic Geometry
Generation

In the first part of the second stage, the particle positions are utilized in the particle
geometry generation algorithm. The diagram in Figure 6.18 shows the first part of the
second stage.

X(U0,ρpc)

CFD and Particle Tracing Simulations

Acoustic Frequency Calculations

Acoustic Boundary
Description

Figure 6.18. The first part of the second stage.

The particle coordinates are exported from the first stage of the modeling framework, which
defines the size of the acoustic domain. The Acoustic Boundary Description box contains
the algorithm that generates the outer domains of the system. The Acoustic Geometry
Constraints box in Figure 6.18 holds constraints for the particle geometry generation
algorithm and makes sure that no particles are placed within the PML domains and that
particles on the boundaries are removed. The Auto-Generation of Acoustic Geometry box
in Figure 6.18 then creates the particle geometry in an iterative manner from the particle
coordinate matrix and combines the final acoustic geometry.

6.3.1 Acoustic Domain and Particle Coordinates

The geometry of the final model has the same shape as simplified model seen in Figure 6.4,
thus a symmetrical cylinder with PML domains on the outer boundaries. The radius of the
measurement tube is used as the radius of the cylinder in the final model. The available
memory in the computer used for the acoustic simulations is the limiting factor for the size
of the acoustic geometry, thus defines the length of the cylinder assuming constant radius.

When an ultrasonic wave propagates through a cloud of particles, produces each particle
a scattered wave reinforcing the pressure field in some directions through multi-scattering.
Assuming that the cloud of particles is of spherical form and that the particles are
significantly smaller than the wavelength of the background wave. Also, assuming that the
internal particle distances are less than a wavelength. Then the scattering of the particle
cloud can be calculated using the scattering solution of a single particle as derived in
Section 2.2, but with effective parameters such as effective radius, effective density, and
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effective compressibility [Morse & Ingard, 1968]. It is, therefore, expected that the multi-
scattering pressure primarily found some distance from the end of the cylindrical domain
as shown in Figure 6.19. Using a too short cylinder domain as the computational domain
and the multi-scattering effects are not captured.

Flow direction

High scattering pressureLow scattering pressure

Acoustic domain

Plane backgound 
wave

Figure 6.19. Non-uniform distribution of the particle scattering due to the angle influence in the
scattering solution.

From preliminary numerical experiments, it has been found that a cylinder length of 10mm
can be simulated with the 77GB of RAM available in this work, but only with a reduced
background plane wave frequency of 2MHz. The reduced background frequency is treated
later in Section 6.5.

Figure 6.20 shows the particle coordinates exported from the fluid flow and particle tracing
simulation in stage one together with the particles selected for the acoustic geometry
generation marked with orange.
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Figure 6.20. Particle coordinates exported from the fluid flow and particle tracing simulation,
stage one. The orange particles are the particles selected for the acoustic geometry generation.

The particle selection is performed by searching through the particle coordinates and
selecting only the particles ˘5mm from zero on the y-axis. Also, through preliminary
numerical experiments, it has been found that inverted mesh problems occur if particles
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are touching the symmetry surface. The particles with coordinates one particle diameter
from the symmetry surface are, therefore, removed. However, this condition only affects
a few particles, and the influence of the removed particles can be ignored. The Matlab
script used to select the particles can be seen in Appendix F.1.

In Figure 6.21, a front view of the selected particles with different flow velocities and a
constant particle concentration of 6000p{mL, can be seen. The large difference particle
distributions seen in Figure 6.21 is a consequence of the flow profiles seen in Figure 5.8.

Figure 6.21. Cut-view of the particles selected for the acoustic geometry generation, with a
constant particle concentration of 6000p{mL and different flow velocities.

The final acoustic geometry used for the acoustic simulations is created in two sequences.
At first, a base geometry is defined without particles. The base geometry consists of a half
cylinder with a radius of R “ 5mm` 0.2mm, where the 0.2mm is an extra radius length
ensuring that no particles encounter the outer boundaries. Particles on or adjacent to the

63



Johansen, N. W. 6. Computational Acoustics

boundary may result in inverted meshes or failure in the automatic meshing algorithm.
The length of the cylinder is chosen to be H “ 10mm ` 2 ¨ 0.2mm. The PML domain
thickness is chosen to be L “ λ0{4.

The last part of the sequence is to create the particle geometry using Matlab LiveLink
for COMSOL. The particle geometry is created by sweeping through all selected particles
seen as the orange particles in Figure 6.20 and creating a spherical geometry with radius
a at the, of each particle, associated coordinate sets. The particle geometry is then saved
as a .mphbin file which can be imported into COMSOL. The acoustic particle geometry
generation algorithm can be found in Appendix F.2.

The final acoustic geometry is then created by importing the particle geometry into the
base geometry. Assuming rigid particles, the boolean operator "difference" is used to
subtract the computational domain from the particle geometry. Using the difference
operator permit the computational domain to be constructed without the internal domains
of each particle, which for the rigid case is not need for the calculation of the scattering
field, thus reduces the computational size. For non-rigid particles, the "difference" operator
is disabled, allowing the material parameters to be assigned to the particles. An example
of the final geometry with 5000p{mL at 0.5m{s can be seen in Figure 6.22.

PML domains

LPML= λ0/4H = 10mm+2·0.2mm

R = 5mm+0.2mm

Symmetry surface
(Symmetry 

boundary condition)

Particles
(Sound hard boundary

condition if rigid)

Outer surfaces
(Sound hard

boundary conditions)

Fluid domain

Figure 6.22. Final acoustic geometry using a particle geometry with with 5000p{mL at 0.5m{s.

The boundary conditions applied to the final model can also be seen in Figure 6.22. At
the outer surfaces, a sound hard boundary condition is applied meaning that the normal
velocity is zero. If rigid particles are assumed, the surface of the particles is also assigned
with a sound hard boundary condition.

The geometric entities like surfaces, domains, edges, and points is assigned by COMSOL a
unique number that is used to define to what entity a specific boundary condition or model
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feature should apply. Since the surfaces and domains of each particle are assigned unique
numbers, all the unique numbers changes when importing different particle geometries.
An automation of the selection of the geometric entities is therefore needed. In COMSOL
a large variety of selection tools based on geometric features can be found. A "selection
box" is used to select the fluid domain, a "complement selection" is used to select the
PML domains, a "selection cylinder" is used to select the particle boundaries or domains
(depending on rigid or non-rigid particles), a "selection box" is used to select the symmetry
boundary, and a "difference selection" is used to select the internal boundaries between
the fluid domain and the PML domains.

6.4 Mesh in the Final Model

The final model mesh is made similar to the mesh for the simplified model (see Section
6.2.1). The fluid domain is discretized using a free tetrahedral mesh with maximum element
size nmax “

c
N ¨f0

, a minimum element size nmin “
a
N , a maximum growth rate of 1.5, a

curve factor of 1 and resolution in narrow regions of 1. The PML domains are meshed
using swept mesh with a layer thickness of h “ λ0{30, which gives 7 PML layers, using
a PML thickness of L “ λ0{4. A boundary layer mesh is applied to the internal surface
between the fluid domain and the PML domains, which increases the precision of the
normal gradient of the pressure at the boundary [COMSOL, 2017b].

Figure 6.23. Final mesh using the final geometry seen in Figure 6.22. The background wave
frequency is 2MHz.

Figure 6.22 shows the mesh using a 2MHz background wave. The meshing algorithm
took 5min and 15sec to generate the mesh consisting of 13.1M elements which result in a
problem size of 19.5M DoF.
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6.5 Scaled Scatter Solution

The simulation conditions found in the Problem Statement (see Chapter 3) states that the
simulation should be conducted using a background frequency of 10MHz. It can, however,
be found that the resulting mesh is too large to be built and consists of more than 100M
elements. The frequency is, therefore, reduced to 2MHz as described in Section 6.4.

In Section 2.2.2, the far-field approximation was derived, which in short can be written as:

psc “
eik2r

r
k22a

3Apθq (6.28)

where Apθq is an amplitude function and k2 “ ω
c2

is the fluid domain wave number.

The wave number and particle radius relation can be rewritten as:

k22a
3 “ p

k2
q
q2 pa ¨ vq3 ùñ v “ q2{3 (6.29)

where v and q are positive constants.

Inserting the relation seen in Equation 6.29 into the far-field approximation in Equation
6.28, yields the scaled far-field solution:

psc,s “
eik2r

r

ˆ

k2
q

˙2
´

a ¨ q2{3
¯3
Apθq (6.30)

Since the frequency is reduced from 10MHz to 2MHz, the scaling factor q is equal
q “ 10MHz

2MHz “ 5 and the particle size should, therefore, be scaled by the factor 52{3 “ 2.92.
Inserting the scaled particle with radius as “ a ¨ q2{3 and a frequency of 2MHz into
the scattering solution found in Section 2.2, together with the solution of the non-scaled
particle and frequency the two solutions can be related. In Figure 6.24, both the scaled
backscattering (θ “ 180deg) solution and the non-scaled backscattering solution can be
seen as a function of radius normalized with the scaled particle diameter ds “ 2 ¨ as. In
Figure 6.24 it is assumed that the particle is rigid with an original size of a “ 5µm, a non
scaled frequency of 10 MHz and an incident wave amplitude of 1MPa, in both cases.

The RMS pressure of both the scaled and non-scaled solution can also be seen in Figure
6.24. The RMS pressure for time-harmonic waves is equal to the time-average pressure and
can be used to describe the effective pressure of the wave. Two waves with different wave
frequencies can, therefore, easily be related as shown in Figure 6.24. The RMS pressure is
calculated as:

p2rms “
1

T

ż T

0

pd
2dt (6.31)

where T “ 1
f “

2π
ω is the time interval. Assuming that the pressure is described by the

time-harmonic disturbance pd “ Retp e´iωtu “ Retp0 eik e´iωtu, then the RMS pressure can
be found as:

p2rms “
1

2
p20 “

1

2
|p|2 ùñ prms “

c

1

2
|p|2 “

c

1

2
p˚p (6.32)
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Figure 6.24. The scaled backscattering (θ “ 180deg) solution with as “ a ¨ 52{3 and associated
non-scaled solution, together with the RMS pressures of the two waves as a function of the radius
normalized with the scaled diameter ds “ 2 ¨ as. The incident wave has an amplitude of 1MPa
and the particle is assumed rigid.

where p˚ is the complex conjugated of the pressure p.

In Figure 6.25 and Figure 6.26, the absolute error and the relative error1 in four different
directions can be seen respectfully as a function of the normalized radius. From Figure 6.26,
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Figure 6.25. Absolute error between the
scaled and non-scaled scatter solution in four
directions.

Figure 6.26. Relative error between the
scaled and non-scaled scatter solution in four
directions.

it can be seen that the relative error is large close to the particle and for the backscattering
(180deg), the error decreases under 5% after ten times the scaled particle diameter (ds)
and settles to an error of approximately 2.5 % error after 20 times ds. It can also be seen
that the 90deg and 270deg scattering error is small already from 5 times ds and that the
forward scattering (0deg) decreases under 5% after 32 ds.

1The relative error is calculated as perror “
psc´psc,s

psc
¨ 100r%s
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From Figure 6.25 and Figure 6.26, it can be seen that the scaling of the particle size to
achieve the same effective pressure at a lower frequency, is only, to some extent, valid if
the particles are far from each other.

Note that in Appendix F.3, the scripts used in the following analysis can be found. Using
the particle coordinates found in Section 5.3, the distance between all particles can be
calculated. The distance between two particles qpx,y,zqi and qpx,y,zqj can be found using the
Euclidean distance:

dij “
b

pqxi ´ q
x
j q

2 ` pqyi ´ q
y
j q

2 ` pqzi ´ q
z
j q

2 (6.33)

Sweeping through all the particles for a given flow and particle tracing solution (the solution
set), the following particle distance matrix can be found:

D “

»

—

—

—

—

—

—

—

–

0 d12 d13 . . . d1j

d21 0 d23 . . . d2j

d31 d32 0 . . . d3j
...

...
...

. . .
...

di1 di2 di3 . . . 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.34)

where i “ j “ Nparticles and Nparticles is the total number of particles in the given solution
set. The matrix in Equation 6.34 is clearly symmetric since the distance di,j is equal to the
distance dj,i and only half of the distances seen in Equation 6.34 needs to be calculated. In
the following, Figure 6.27 is used as an example for the analysis of the particle distances
and it is assumed that the particles has an radius of a “ 5µm.

1
Rcritical 3
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d19

8

Figure 6.27. Particle cloud taking basis in the particle number 1 in the center used for the
explanations in this section.

Further, it is assumed that a unit diagonal matrix of the size Nparticles ˆNparticles is added
to the matrix in Equation 6.34 and it is assumed that the distance between the particles is
less than 1m. Taking basis in the system in Figure 6.27, the distances vector for the first
particle di“1,j“1..9 can be described as

di“1,j“1..9 “ r1 d12 d13 d14 d15 d16 d17 d18 d19s (6.35)
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Taking the minimum of the vector di“1,j“1..9, gives the distance to the nearest particle.

dnext,i=1 “ minpdi“1,j“1..9q “ d13 (6.36)

Doing the same for all particles (i “ 1..Nparticles) and taking the mean of the resulting vector
dnext, gives the mean distance to the nearest particle for the given solution set. Figure 6.28
shows a contour plot of the mean distance to the nearest particle dnext normalized with the
particle diameter ds for different particle concentrations and different flows. Taking only
the nearest particle may, however, give an inaccurate picture of the mean distance to the
nearest particles. Instead, taking the mean of the distances of the nearest four particles
may give a better picture. The mean of the distances between the nearest four particles
in the system seen Figure 6.27 can be found as:

dnext4,i=1 “ meanpdsorted
i“1,j“1..9p1 : 4qq where dsorted

i“1,j“1..9 “ sortpdi“1,j“1..9q (6.37)

“ meanprd13 d15 d12 d14sq (6.38)

where sort is a descending order sort function. Repeating this for all particles and taking
the mean of the resulting vector, gives the mean of the particles mean distance of the
nearest four particles dnext4 “ meanpdnext4q, for the given solution set. Where it is assumed
that at least five particles can be found in the solution set. The mean of the mean distance
to the nearest four particles dnext4 normalized with the scaled particle diameter dnext4{ds
with different particle concentrations and different flows can be seen in Figure 6.29.
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Figure 6.28. The normalized mean distance
to the nearest particle, with different particle
concentrations flow velocities.

Figure 6.29. The normalized mean distance
of the mean of the nearest four particles, with
different particle concentrations flow velocities.

From Figure 6.28 and Figure 6.29, it can be seen that the mean distance of the nearest
particle or the mean of the mean of the nearest four particles are in the worst case 10 ¨ ds

and 14 ¨ ds, thus the particle-particle interaction distance for the nearest four particles is
at most 14 ¨ ds. Relating the results to Figure 6.26, shows that the nearest four particle-
particle interactions contributes with a scaling error in the backscattering direction of 4%

to 3%.
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The number of nearest particles may, however, vary depending on the region of interest
and the solution set. Referring to the system seen in Figure 6.27, a critical radius Rcritical

has been defined. The particles within the critical radius Rcritical can be calculated using
the boolean operator ă as:

Ncritical,i “ sumpdi“1,j“1..9 ă Rcriticalq (6.39)

“ sumpr0 1 1 0 1 0 0 0 0sq “ 3 (6.40)

The mean of the number of nearest particles over all particles (meanpNcriticalq) within the
critical distances Rcritical “ 10 ¨ ds and Rcritical “ 20 ¨ ds can be seen in Figure 6.30 and
Figure 6.31 respectfully, for different particle concentrations and flow velocities.
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Figure 6.30. The mean of the number of
particle-particle interactions over all particles
with Rcritical “ 10 ¨ ds for different particle
concentrations and flow velocities.

Figure 6.31. The mean of the number of
particle-particle interactions over all particles
with Rcritical “ 20 ¨ ds for different particle
concentrations and flow velocities.

Figure 6.30 and Figure 6.31 shows that there is at maximum one particle-particle
interaction within a critical region of Rcritical “ 10 ¨ ds, from each particle and that there is
multiple particle-particle interactions if the critical region is extended to Rcritical “ 20 ¨ ds,
from each particle.

Taking the sum Ncritical vector gives the total number of particle-particle interactions
Ncritical within the Rcritical distance, for the given solution set. The possible number of
particle-particle interactions for a given solution set can be found as:

Npossible “ N2
particles ´Nparticles (6.41)

Dividing the total number of particle-particle interactions Ncritical within Rcritical with the
total possible interactions Npossible times 100 gives the percentage of possible particle-
particle interactions. The percentage of possible particle-particle interactions can be seen
in Figure 6.32 and Figure 6.33 for Rcritical “ 10 ¨ ds and Rcritical “ 20 ¨ ds, respectfully.

In Figure 6.30, it was found that the worst case mean number of particles-particle
interactions within a critical radius of 10¨ds was one particle-particle interaction. In Figure
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Figure 6.32. The percentage of possible
particle-particle interactions for the critical ra-
dius of Rcritical “ 10 ¨ ds.

Figure 6.33. The percentage of possible
particle-particle interactions for the critical ra-
dius of Rcritical “ 20 ¨ ds.

6.28, it was found that nearest particle distance is a worst case 10 ¨ds. It can, therefore, be
concluded that the scaling error related to particle-particle interactions under 10 ¨ds results
in a scaling error of at most 5% for the backscattering (see Figure 6.26). In Figure 6.31, it
was found that the mean number of particles-particle interactions within a critical radius
of 20 ¨ds was at worst 6.5 and best less than 1, depending on the solution set. It is difficult
to conclude how the larger number of particle-particle interactions affects the scaling error.
Figure 6.29, does, however, give a picture of how four particles affect the error through
the mean distance of the four particles which at worst is 14 ¨ ds, thus resulting in a scaling
error of at most 3% for the backscattering. Figure 6.32 and Figure 6.33 shows that the
percentage of particle-particle interactions within the critical radius of 10 ¨ ds and critical
radius of 20 ¨ ds compared to the total possible number of particle-particle interactions
which is in general low.

For the given solution sets and with rigid particles, scaling the frequency and particle size
are, hence, assumed to be a good approximation for the non-scaled solution.
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Chapter 7

The Combined Simulation

In this chapter, the combined model constituting the model framework presented in
Chapter 4 is presented together with the results of different sweeps using rigid and non-
rigid particles and particles with different sizes. The combined model is implemented in
Matlab using COMSOL LiveLink for Matlab. In Figure 7.1, the computational routines
for the combined model can be seen.

ρpc

ρpc

First Loop

Second Loop

Third Loop

iteration

iteration

iteration

1 min to 50 min
2h to 2h 36 min

cp , ρp

Figure 7.1. Diagram of the computational routines implemented in Matlab using COMSOL
LiveLink for Matlab. The computational simulation times are examples from Section 7.1 and
varies depending on the input and the computational power available.
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Examining the diagram in Figure 7.1, it can be seen that the combined model is divided
into three main loops. The first loop contains the static CFD simulation and particle
tracing simulation. Beside the prepared sensor geometry as presented in Section 5.1, the
flow velocity vector u0 and the particle concentration vector ρpc are inputs for the first
loop. The number of iterations is defined by the length of the flow velocity vector and the
particle concentration vector. After the first iteration of the outer loop, the solution of
the static CFD is used multiple times to simulate the particle trajectories. This cascaded
approach reduces the computational time significantly compared to a sequential approach.
After particle concentration convergence (see Section 5.3), the particle coordinates is then
exported to a .csv file. The first loop is then repeated until all flow velocities, and particle
concentrations have been simulated. In the second loop, as seen in the diagram in Figure
7.1, the particle coordinate files are then used to construct the particle geometry that
is utilized in the acoustic simulations. At each iteration of the second loop, the particle
coordinates of a specific combination of flow velocity u0 and particle concentration ρpc,
together with a chosen particle size, is used to generate the particle geometry. After each
iteration is the particle geometry saved in the COMSOL geometry format .mphbin. The
second loop is repeated for all combinations of flow velocities and particle concentrations.
The third loop consists of the acoustic meshing sequence and frequency domain simulation.
The particle geometries are first loaded into the base geometry (see Section 6.3.1), then
the acoustic mesh is created using the settings found in Section 6.2.1. After meshing,
the acoustic scattering field is calculated, and critical properties are then exported into
.mat and .fig files for later analysis and visualization. As for the second loop, this process
is repeated for all flow velocities and particle concentrations. The three step method
presented in the diagram in Figure 7.1 has the advantage of both allowing the entire
modeling framework to be simulated without user interference, but also re-simulations of
later loops to be conducted without needing the first loops to be re-simulated. An example
could be that the user wants to find out how the particle size scales the RMS pressure at
the surface of the sensor and the first loop has already been calculated. Then the user
skips the first loop and creates another loop around the second and third loop sweeping
through different particle sizes.

A few of such sweeps has been conducted which is presented in the following.
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7.1 Results from The Combined Simulation

In the combined CFD and particle tracing simulation (loop one in Figure 7.1), the following
inlet flow velocity vector u0 and particle concentration vector ρpc used:

u0 “ r0.5 1 3 5 8 10s
”m

s

ı

(7.1)

ρpc “ r10 100 300 500 800 1000 2000 3000 4000 5000 6000s
” p

mL

ı

(7.2)

The inlet flow velocity vector, and particle concentration vector in Equation 7.1 and
Equation 7.2 are utilized in all sweeps within this section. The results from the CFD
simulations and particle tracing simulations have already been shown in Section 5.2.6 and
Section 5.3.2 respectfully, and the results of these simulations are, therefore, not re-shown
in this section. In the following, it is assumed that the speed of sound in the fluid medium
is 1500m{s, the density of the fluid medium is 1000kg{m3 and that the background plane
wave has an amplitude of 1MPa. The scaling approximation presented in Section 6.5 is
also applied to all simulations, thus with a scaled background frequency of 2MHz, and a
scaled particle size as as “ a ¨ q2{3, where q “ 10MHz{2MHz “ 5.

Rigid particle and a “ 5µm

In this sweep, it is assumed that the particle is rigid and has a size of a “ 5µm. Figure
7.2 shows the total simulation time for the acoustic simulation including the meshing
sequence. In Figure 7.3 the acoustic problem size can be seen as a function of the particle
concentration for different flow velocities. Figure 7.3 shows that the problem size is directly
proportional to the particle concentration and that the flow velocity influence is small
mainly due to the small change in the total number of particles.
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Figure 7.2. Total acoustic simulation time
including the meshing sequence as a function of
the particle concentration for different inlet flow
velocities.

Figure 7.3. Acoustic problem size (DoF)
as a function of the particle concentration for
different inlet flow velocities.

In Figure 7.4 four different 3D mirrored acoustic solution-sets can be seen together with
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the associated RMS pressure scattering field on the outer fluid domain surfaces for different
particle concentrations and with an inlet flow velocity of 1m{s.

Figure 7.4. 3D mirrored acoustic solution-set with the RMS scattering pressure field on the
outer fluid domain surfaces. The particle concentrations range from 100p{mL to 6000p{mL, and
an inlet flow velocity of 1m{s. The particles is assumed rigid and with a particles size of a “ 5µm.

The average of the RMS pressure on the top, side and bottom surfaces in the acoustic
solution-sets makes it easier to relate different solution-sets to each other. The average
surface RMS pressure can also be related directly to the RMS pressure the piezoelectric
transducer would experience if placed on the surface.

Figure 7.5 shows the average RMS scattering pressure on the top surface (see Figure
7.4) as a function of the particle concentration with different flow velocities. Figure 7.6
shows the corresponding average RMS scattering pressure on the side and bottom surfaces
respectfully.

Figure 7.7 shows the mean and standard deviations of the average RMS scattering pressure
on the top, side and bottom. The mean and standard deviation is taken over the flow
velocities, thus indicating the expected perturbation the flow gives to the average RMS
acoustic pressure on the surface of the geometry.
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Figure 7.5. The average RMS pressure on the top surface as a function of the particle
concentration and with different flow velocities. The particles is assumed rigid and with the
size a “ 5µm.
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Figure 7.6. The average RMS scattering pressure over different flow velocities on the
side and bottom surfaces as a function of the particle concentration. The particles are
assumed to be rigid and with the size a “ 5µm.
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Figure 7.7. Mean and standard deviations
over the flow velocities for the average RMS
scattering pressure on the top, side, and bottom.
Rigid particles with size a “ 5µm.

Figure 7.8. One term power fit on the
flow mean RMS scattering pressure on the top
surface of the measurement tube. Rigid particles
with size a “ 5µm.
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Figure 7.8 shows that the flow-mean RMS scattering pressure on the top surface of the
measurement tube can be well approximated using the one term power fit with one term for
rigid particles with size a “ 5µm. The fit result for the flow mean average RMS scattering
pressure on the top surface with a background pressure amplitude of 1MPa, gives:

psc,rms “ α ¨ ρβpc where α “ 8.273 β “ 0.5309

R2 “ 0.9963
(7.3)

Rigid particle and a “ 10µm

Increasing the particle radius from 5 µm to 10 µm should increase the scattering pressure
by a factor of 23 “ 8 according to the far-field approximation (see Section 2.2.2). In
Figure 7.9, four different 3D mirrored acoustic solution-sets with the associated RMS
scattering pressure field on the outer fluid domain surfaces can be seen. The particle sizes
are a “ 10µm and the particles are assumed rigid.

Figure 7.9. 3D mirrored acoustic solution-set with the RMS scattering pressure field on the
outer fluid domain surfaces. The particle concentrations from 100 p/mL to 6000 p/mL, and an
inlet flow velocity of 1 m/s. Rigid particles with size a “ 10µm.

The flow mean average RMS scattering pressure for the top surface with a “ 5µm and
with a “ 10µm, can be seen in Figure 7.10. In Figure 7.10, the flow mean average RMS
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scattering pressure for the top surface using a “ 5µm multiplied with the factor 23 “ 8 can
also be seen. It can be seen that there is a good agreement between the flow mean average
RMS scattering pressure for the top surface with a “ 5µm multiplied by the factor of 23

and the flow mean average RMS scattering pressure for the top surface with a “ 10µm,
indicating that the far-field approximation does apply to this problem.
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Figure 7.10. The average RMS pressure on the top surface as a function of the particle
concentration and with different flow velocities. Rigid particles with size a “ 5µm.

Figure 7.11 shows the flow mean and standard deviation of the average surface RMS
scattering pressure for the top, side and bottom surface.
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Figure 7.11. Mean and standard deviations
over the flow velocities for the average RMS
scattering pressure on the top, side and bottom.

Figure 7.12. one term power fit on the
flow mean RMS scattering pressure on the top
surface of the measurement tube.

As for the sweep with a “ 5µm, a one term power fit using the flow mean average RMS
scattering pressure for the top surface can be seen in Figure 7.12. The fit result for the
flow mean average RMS scattering pressure on the top surface with a rigid particle with
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size a “ 10µm and a background pressure amplitude of 1MPa, gives:

psc,rms “ α ¨ ρβpc where α “ 64.0475 β “ 0.5255

R2 “ 0.9964
(7.4)

Relating the one term power fit in Equation 7.3 with Equation 7.4, it can clearly be seen
that the coefficient α in the case of a particle size a “ 10µm is close to a factor of 8
times larger than the coefficient α in the case of a particle size a “ 5µm (α “ 8.273, thus
8.273 ¨ 8 “ 66.184) as predicted by the far-field approximation.

Non-rigid particle and a “ 5µm

In the problem statement (see Chapter 3) it can be seen that two material types are of
interest for the turbidity measurements. The two materials are Silica with a density of
2500kg{m3 and speed of sound of 5960m{s and Polystyrene with at density of 1050kg{m3

and speed of sound of 2400m{s. Figure 7.13, shows the 3D mirrored acoustic solution-set
with the RMS scattering pressure field on the outer fluid domain surfaces, using (a) Silica
to the left and (b) Polystyrene to the right. The particle concentration and inlet flow
velocity seen in Figure 7.13, is of 1000p{mL and 1m{s respectfully and the particle size is
a “ 5µm.

Figure 7.13. 3D mirrored acoustic solution-set with the RMS scattering pressure field on the
outer fluid domain surfaces. The particle properties are to the left (a) Silica and to the right
(b) Polystyrene. In both figures are the particle concentration 1000p{mL employed with a flow
velocity of 1m{s and a particle size of a “ 5µm.

In Figure 7.13 to the left, it can be seen that the RMS scattering pressure field is non-
uniformly distributed and mainly concentrated at the entrance of the tube. In Figure 7.13
to the right, it can be seen that the RMS pressure is more uniformly distributed. This
may be due to the small relative difference in the density of the particle and the fluid. In
Section 2.2.2, it was found that the cospθq term of the far-field approximation depends on
the density difference between the particle and the fluid. Thus as seen in Figure 2.5 in
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Section 2.2.2, the scattering is more evenly distributed in the far-field when the density
difference is small as also evident in Figure 7.13.
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Figure 7.14. The average RMS scattering pressure on the top, side and bottom surface as a
function of the particle concentration using the particle materials Silica, Polystyrene and rigid.
The particle size is a “ 5µm and the flow inlet velocity is 1m{s.

Figure 7.14, shows the average RMS scattering pressure on the top, side and bottom
surface as a function of the particle concentration using the particle materials Silica and
Polystyrene, and assuming rigid particle. Figure 7.14, clearly shows that the amplitude
scales as the particle properties gets less rigid. This characteristic can also be seen in the
far-field approximation (see Section 2.2.2). In the far-field approximation, it can be seen
that the scattering amplitude decreases as the bulk modulus of the particle approaches the
bulk modulus of the fluid.
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Figure 7.15. The figure to the left shows the problem size for the non-rigid and rigid simulations.
The figure to the right shows the simulation time also for the non-rigid and rigid simulations.
Particle size a “ 5µm and flow velocity of 1m{s.

Figure 7.15 to the left shows the problem size using non-rigid particle properties and the
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rigid particle properties. It is expected that the problem size of the non-rigid particles is
larger since the internal domains of each particle have to be meshed and simulated. It
can, however, be seen in Figure 7.15 to the right that the simulation time is lower for the
non-rigid simulations even through the problem size is larger. The decrease in simulation
time may be a result of a higher convergence rate for the iterative solver due to lower
gradients at the surface of the particles.
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Chapter 8

Conclusion

The primary purpose of this project has been to create a modeling framework that can be
used as a model-based design tool for the development of an ultrasonic turbidity sensor.

An analytical solution to the scattering by a sphere in fluids has been found using
separation of variables, together with the far-field approximation. Using the far-field
approximation important properties of the scattering field amplitude has been identified.
It has been found that the scattering field scales inverse proportional to the distance from
the particle, scales with the frequency squared and scales with the particle size cubic.

A two stages modeling framework consisting of a CFD simulation and Particle Tracing
simulation stage, and an Acoustic simulation stage, has been presented. In the first stage,
it has been found that the flow is mainly turbulent and that a k ´ ω turbulence model,
with wall-functions, is the most appropriate turbulence model for the fluid flow in the given
geometry. The second part of the first stage, a time-domain particle simulation using the
static flow solution has been conducted. It has been found that the Schiller-Naumann drag
law is the most suitable drag law for the particle-fluid interaction. The particle release
strategy has been chosen such that a continuous stream of particles is released into the
computational domain.

For the acoustic simulations, only a static particle solution has been required. To retain
a consistent static solution, a particle convergence analysis has been conducted. The
convergence analysis has shown that the particle concentration is consistent after Nsim “ 3

that is related to the simulation time by tsim “ Lsensor
U0

¨ Nsim. Results from the particle
tracing simulations have shown that the particle trajectories seem to circulate the surface
of measurement tube as the fluid velocity increases.

It has been found that a frequency domain simulation is adequate for the purpose of
scattering field simulations. Using a simplified model, critical parameters such as mesh
size, problem size, and perfectly matched layers has been analyzed. Utilizing interpolated
data from the numerical solution of the scattering field from a single particle, together with
interpolated data from the corresponding analytical solution a relative accumulated error
has been calculated indicating that the mesh size should have approximate eight nodes
per wavelength. Taking the difference between the numerical and analytical solution of
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the scattering problem have shown that numerical artifacts can be found in the scattering
solution if the mesh resolution is inadequate.

An investigation of the PML thickness and layer thickness showed that a low number
of layers affects the convergence rate of the iterative solver together with noneffective
damping. It has also been found that a high number of layers increases the computational
time due to a larger problem size. A trade-off between the effectiveness of the non-reflective
properties of the PML, convergence and low simulation time, have been found using eight
layers in the PML domains with only a small difference between the simulations using
different PML thickness.

A solver analysis for the numerical acoustic scattering problem has been conducted using
the simplified model. It has been shown that iterative solvers should be utilized due to
the large problem size and that the iterative GMRES solver with Geometric Multigrid as
preconditioner and PARADISO as coarse Solver, is the most usable solver for the problem
in this work.

In the analysis of the particle distribution, it has been found that the particle spread
changes significantly as a function of the flow velocity with a large section of the
measurement tube not occupied by particles at high flow velocities. It has also been
found that the size of the acoustic geometry is mainly limited by the memory available for
the computation. Using a plane background wave frequency of 2MHz and 77GB of RAM,
it has been found that a geometry consisting of a half cylinder with the radius equal to the
radius of the measurement tube (5mm) and a length of 10mm, can be simulated. A base
geometry has been conducted, and an automatic particle geometry generation algorithm
has been developed in order to transform particle coordinates exported from the particle
tracing simulation into a geometry that can be used in the acoustic stimulation. Meshing
the combined acoustic base geometry with the particle geometry using the parameters
found in the mesh convergence analysis gives a problem size of around 20M DoF.

A decrease in scattering amplitude as a consequence of the reduction in frequency from
10MHz to 2MHz has been compensated for by scaling the particle size. It has been
found from the far-field approximation that the particle size should be scaled according
to as “ a ¨

`

10MHz
2MHz

˘2{3. Since the scaling approximation only applies in the far-field, an
analysis of the particle-particle distances has been conducted. From the analysis of the
particle distribution, it has been concluded that the majority of the particles are within
in the far-field and that the expected backscattering error should be at most 5% using the
scaling approximation, assuming a rigid particle.

It has been shown that the combined simulation can be used to sweep through different
parameters like particle concentration, flow velocity, particle material and particle size,
with the average RMS scattering pressure at various surfaces as the output of the combined
simulation. From the combined simulation, it has been found that the average RMS
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scattering pressure follows a one term power fit with R2 “ 0.9963, using rigid particles
with a radius of 5µm. It has also been found that the flow velocity does not disturb the
average RMS scattering pressure significantly. The particle size has been found to some
degree to follow the size scaling of the far-field approximation. The simulations of the
non-rigid particles show that the average RMS scattering pressure scale significantly with
the rigidness of the particles with an average RMS scattering pressure of 50Pa, 297Pa,
818Pa for Polystyrene, Silica, and a rigid particle respectfully, at a particle concentration
of 6000p{m3. It has also been found that the simulation time seems to decrease as the
particles get less rigid.
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Chapter 9

Discussion and Future Work

In the fluid flow (CFD) analysis, severe convergence problems have occurred throughout
the project. Much effort has been put into a mesh convergence analysis for the CFD
simulation, yet limited by numerical convergence problems. An algebraic residual analysis
has been used to pinpoint the areas in the geometry with large algebraic errors, which may
indicate insufficient mesh resolution or sharp corners in the geometry [Ringh, 2016]. The
algebraic residual analysis did, however, not lead to better convergence. An explanation
is that the mesh convergence problems may be a result of non-linearities arising from an
unsteady flow which is suppressed using a coarser mesh [COMSOL-Support, 2017]. Mesh
convergence may, thus be found using a time domain simulation which should be exploited
to gain more confidence in the CFD simulation results.

In the combined simulation, it was found that the average RMS scattering pressure did
not change much with the inlet flow velocity. Relating the distribution of the particles
for different flow velocities with the average RMS scattering pressure on the surface of
the sensor shows that even though the internal distribution of particles varies significantly
with the flow, it does not influence the surface pressure significantly. Thus indicating
that the particle-particle multi-scattering interactions are limited to local scattering and
that the RMS scattering pressure experienced on the surface is mainly due to particle
scattering in the near vicinity of the surface. Beside interesting physical interpretations,
the local scattering may be used to truncate the acoustical computational domain further
by constructing a hollow cylinder geometry. It should, however, be noted that the fluid flow
is anticipated to be more fluctuating, due to unsteady phenomenon’s that is not resolved
using the static CFD simulation. Fluctuations in the fluid flow may have a direct impact
on the particle distribution in the near vicinity of the surface and can potentially influence
the scattering pressure significantly.

In the scaling approximation, rigid particles are assumed. The error of the scaling
approximation for non-rigid particles may, however, vary from this approximation since
the cospθq term of the particle-fluid density difference changes the amplitude in different
directions. The scaling approximation should, therefore, be investigated using material
types of interest to gain more confidence in the errors related to the scaling approximation.

The investigation of the particle release showed that even after particle convergence the

87



Johansen, N. W. 9. Discussion and Future Work

number of particles (NoP) as a function of time varies with up to 5% of the NoP target.
Inconsistency may, therefore, be found in the scattering solution if another time instance
after particle convergence is chosen. A more thorough investigation of the particle release
strategy should hence be conducted. It is anticipated that an even more random release
strategy would solve the problem.

The particle tracing simulation assumed a sparse flow. At high particle concentrations may
other flow types, however, be more suitable which should be examined in future works.
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Appendix A

Mathematics for the Derivation
of the Scattering Problem

The boundary condition problem described in Section 2.2.1 will be solved in this appendix,
together with some properties and background theory about Bessel, Hankel and Legendre
functions.

A.1 The Derivation of the Scatter Field Coefficients

The boundary condition on the surface of the sphere must be continuous, as described in
Section 2.2.1. The equations for the incident wave, the scatter wave and flaw wave can be
found in Equations 2.27, Equation 2.26 and Equation 2.28, respectfully. The pressure on
the boundary (r “ a) of the sphere can be written as:

pinc ` psc “ pflaw (A.1)

8
ÿ

n“0

!

inp2n` 1qjnpk2aq ` Cnh
p1q
n pk2aq ´Dnjnpk1aq

)

Pnpcospθqq “ 0 (A.2)

The normal velocity on the boundary of the sphere can be written as:

1

ρ2

Bpinc
Br

`
1

ρ2

Bpsc
Br

“
1

ρ1

Bpflaw
Br

(A.3)

Both the incident, scatter and flaw wave has Bessel and Hankel functions that are
dependent on the radius r. It is, however, convenient to differentiate the functions with
respect to its entire argument (see the differentiation properties of the Bessel and Hankel
functions in Equation A.12). The following relation is therefore used for the Bessel function
of the first kind (the relation also applies to jn, nn and hn):

Bjnpkrq

Br
“ k

Bjnpkrq

Bkr
“ krjnpkrqs

1 (A.4)

Using the relation in Equation A.4, the normal velocity on the boundary (r “ a) can be
written as:

1

ρ2

Bpinc
Br

`
1

ρ2

Bpsc
Br

“
1

ρ1

Bpflaw
Br

(A.5)
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8
ÿ

n“0

#

inp2n` 1qk2rjnpk2aqs
1 ` Cnk2rh

p1q
n pk2aqs

1

ρ2
´
Dnk1rjnpk1aqs

1

ρ1

+

Pnpcospθqq “ 0 (A.6)

For the expressions in the breakages in Equation A.2 and Equation A.6 form two equations
with two unknown. Solving for the scatter field wave amplitude Cn, gives:

Cn “ ´piqnp2n` 1q
rjnpk2aqs

1jnpk1aqk2ρ1 ´ rjnpk1aqs
1jnpk2aqk1ρ2

rh
p1q
n pk2aqs1jnpk1aqk2ρ1 ´ rjnpk1rqs1h

p1q
n pk2aqk1ρ2

(A.7)

Using the relations k1 “ ω
c1
, k2 “ ω

c2
which as ratio gives k2

k1
“

c1
c2
, the scatter field wave

amplitude Cn can be re-written only regarding speed of sound and density:

Cn “
inp2n` 1q

Ω

"

jnpk2aqrjnpk1aqs
1

ρ1c1
´
jnpk1aqrjnpk2aqs

1

ρ2c2

*

(A.8)

Ω “
jnpk1aqrh

p1q
n pk2aqs

1

ρ2c2
´
hnpk2aqrjnpk1aqs

1

ρ1c1
(A.9)

A.2 Properties and Background for the Bessel functions,
Hankel functions and Legendre functions

A.2.1 Spherical Hankel and Spherical Bessel functions

The spherical Hankel function of the first kind hp1qn is defined as the solution to a differential
equation of the following form [Morse & Ingard, 1968, p. 336]:

d2 R

dζ2
`

2

ζ

d R

dζ
` rζ ` npn` 1qs

R

ζ2
“ 0 (A.10)

Either the spherical Bessel function of first (jn) and the second kind (nn) as well the
spherical Hankel function, will have these properties [Morse & Ingard, 1968]:

jn´1pζq ` jn`1pζq “
2n` 1

ζ
jnpζq (A.11)

d

dζ
jnpζq “ rjnpζqs

1 “
1

2n` 1
rnjn´1pζq ´ pn` 1qjn`1pζqs (A.12)

Combining Equation A.11 and Equation A.12 gives a very useful relation without n ă 0:

rjnpζqs
1 “ n

jnpζq

ζ
´ jn`1pζq (A.13)

Some of the Hankel functions of the first kind [Morse & Ingard, 1968, p. 336]:

h0pζq “
epiζq
iζ

h1pζq “ ´
epζq
ζ

ˆ

1`
i
ζ

˙

h2pζq “
i epiζq
ζ

ˆ

1`
3i
ζ
´

3

ζ2

˙

(A.14)

Some of the spherical Bessel functions [Morse & Ingard, 1968, p. 337]:

j0pζq “
sinpζq
ζ

n0pζq “ ´
cospζq
ζ

(A.15)

j1pζq “
sinpζq
ζ2

´
cospζq
ζ

n1pζq “ ´
sinpζq
ζ

´
cospζq
ζ2

(A.16)
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A.2.2 Legendre functions

The Legendre functions Pnpηq is the solution to the differential equation of the following
from [Morse & Ingard, 1968, p. 333]:

p1´ η2q
d2P

dη2
´ 2η

dP

dη
` npn` 1qP “ 0 (A.17)

where P is the variable solved for, n is an integer and η is independent variable or function.
In the case of spherical radiation η “ cospθq.

Some of the Legendre functions [Morse & Ingard, 1968, p. 334]:

n “ 0 P0pηq “ 1 (A.18)

n “ 0 P0pcospθqq “ 1 (A.19)

n “ 1 P1pηq “ η (A.20)

n “ 1 P1pcospθqq “ cospθq (A.21)

n “ 2 P2pηq “
1

2
p3η2 ´ 1q (A.22)

n “ 2 P2pcospθqq “
1

4
p3cosp2θq ` 1q (A.23)
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A.3 Some Useful Asymptotics

In the determination of the far-field approximation of the scattering field in Section 2.2.2,
some asymptotics for the Bessel and Hankel functions was used. The asymptotics is found
using by expanding the functions into series. The function series in Maple is used for this
purpose.

j0pzq “
sinpzq
z

series
ÝÑ 1´

1

6
z2 ` ...

j0pzq „ 1 as pz Ñ 0q

(A.24)

j1pzq “
sinpzq
z2

´
cospzq
z

series
ÝÑ

1

3
z ´

1

30
z3 ` ...

j1pzq „
1

3
z as pz Ñ 0q

(A.25)

rj0pzqs
1 “

cospzq
z

´
sinpzq
z2

series
ÝÑ ´

1

3
z `

1

30
z3 ` ...

rj0pzqs
1 „ ´

1

3
z as pz Ñ 0q

(A.26)

rj1pzqs
1 “

pz2 ´ 2qsinpzq ´ 2cospzqz
z3

series
ÝÑ

1

3
´

1

10
z2 `

1

168
z4 ` ...

rj1pzqs
1 „

1

3
as pz Ñ 0q

(A.27)

h0pzq “
eiz

iz
series
ÝÑ ´

i
z
` 1`

1

2
iz ´

1

6
z2 ` ...

h0pzq „ ´
i
z

as pz Ñ 0q

(A.28)

h1pzq “ ´
i epzq
z

ˆ

1`
i
z

˙

series
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i
z2
´

1

2
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1

3
z `

1

8
iz2 ´ ...

h1pzq „ ´
i
z2

as pz Ñ 0q

(A.29)

rh0pzqs
1 “

eiz

z
p1`

i
z
q

series
ÝÑ

i
z2
`

1

2
i´

1

3
z ´

1

8
iz2 ` ...

rh0pzqs
1 „

i
z2

as pz Ñ 0q

(A.30)

rh1pzqs
1 “ ´

eiz

z3
pipz2 ´ 2q ´ 2zq

series
ÝÑ

2i
z3
`

1

3
`

1

4
iz ´

1

10
z2 ` ...

rh1pzqs
1 „

2i
z3

as pz Ñ 0q

(A.31)
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Appendix B

Geometry Simplification and
Mesh Convergence for Flow and

Particle Simulations

The geometry of the ULTRAFLOW 14 flow sensor made by Kamstrup A/S are simplified
in order to be more workable for numerical simulations. A side view of the non-
simplified geometry and the simplified geometry can be seen in Figure B.1 and Figure
B.2, respectfully.
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Figure B.1. Side view of Kamstrup ULTRAFLOW 14 flow sensor modified to be used as a
turbidity sensorA
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Figure B.2. Side view of the simplified Kamstrup ULTRAFLOW 14 flow sensor, to be used for
numerical simulations
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Appendix C

Flow Inlet Model

The geometry for the inlet flow model is constructed using an axis symmetric 2D model,
which is much easier to solve than a full 3D model. The geometry constructed as a long pipe
with an inlet diameter of 15mm and a length of 50 times the inlet diameter as described
in Subsection 5.2.4.

The inlet condition for the model is the average inlet flow U0 and the outlet boundary
condition set equal to a pressure of zero, with a normal flow. The mesh is constructed
as suggested in [COMSOL, 2017e] with two mapped meshes. In the first mapped mesh,
the distribution along the symmetry axis and outer wall of the pipe are set equal to 50
nodes with equal distance between each node. Using the second mapped mesh, 20 nodes
are allocated on the inlet and outlet, distributed with most nodes on the outer boundary
of the pipe as seen in Figure C.1.

g

Figure C.1. The mapped mesh of the inlet flow
model. It can be seen that the inlet (and outlet)
boundary condition in the model is mapped using
a non-equal distribution with most mesh nodes
closest to the wall.

Figure C.2. The resulting flow profile using the
k´ω turbulence model with an inlet average flow
of U0 “ 1m{s
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Appendix D

Relative Reynolds Number for
Particle Tracing

The relative Reynolds number is described in Section 5.3. The drag relations, seen in
Section 5.3, are valid for different ranges of relative Reynolds number. Simulating the
particle trajectories using the Standard Drag law that combines different drag laws for
different relative Reynolds number is very slow, but it is expected that the maximum local
relative Reynolds number calculated can be used as a measure of the relative Reynolds
generally found in the particle tracing problem.

Figure D.1 shows the relative Reynolds number using the Standard Drag law [COMSOL,
2017g] with an inlet velocity of 0.5 m/s and a particle concentration of 100 particles/mL.
The time instance is after particle concentration convergence (see Section 5.3 for more
information about particle concentration convergence)

Figure D.1. Relative Reynolds number using a particle concentration of 100 particles/mL and a
fluid velocity of 0.5 m/s

Figure D.2 shows the relative Reynolds number using the Standard Drag law [COMSOL,
2017g] with an inlet velocity of 10 m/s.

From Figure D.1 and Figure D.2, it can be seen that the relative Reynolds number does
not excite Rer “ 10. Assuming that the particle concentration converged time instance
can be used to generalize the relative Reynolds number for all other time instances, the
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Figure D.2. Relative Reynolds number using a particle concentration of 100 particles/mL and a
fluid velocity of 10 m/s. The time instance is after particle concentration convergence.

over limit for the relative Reynolds number in this work is Rer “ 10.
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Appendix E

Investigation of Mesh for
Acoustic Simulations

As described in Section 6.2.1, the acoustic mesh consist of three different types of mesh,
namely a free tetrahedral mesh, a swept mesh in the PML domain, and a boundary layer
mesh. The free tetrahedral mesh is controlled using a size node. The size node consists
of five different parameters, max size, min size, maximum element growth rate, curvature
factor and resolution of narrow regions. The maximum element size nmax is controlled
using a Nyquist-like theorem as explained in Section 6.2.1. The minimum element size is
control by the size of the particles. The curvature factor and resolution of narrow regions
controls the number of elements around the particle. Figure E.1 shows the mesh influence
of different curvature factor and growth rate settings. Figure E.2 and Figure E.3 shows the
influence of different curvature settings and growth rate settings on the scattering pressure
in the 0 deg and 180 deg directions, respectfully. The resolution of narrow regions does
not influence the mesh around the particle. Table E shows the settings used in this work.

Parameter Features
max size λ0{N

min size Ri{N

maximum element growth rate 1.5
curvature factor 1
resolution of narrow regions 1
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Figure E.1. The influence on the mesh using, from (a) to (c), different curvature settings and
from (d) to (e) different growth rate settings.
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Figure E.2. The influence of different curva-
ture settings on the scattering pressure in the 0
deg and 180 deg directions.

Figure E.3. The influence of different growth
rate settings on the scattering pressure in the 0
deg and 180 deg directions
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Appendix F

Scripts and Algorithms

F.1 Particle Coordinate Selection Function

Script to search through all particle coordinates and find the particles within a selected
range on the y-axis. Particle coordinates one particle diameter from the x-axis is ignored
as explained in Section 6.3.1.

f unc t i on out = part i c l e_v iew_se l ec t i on_fcn ( p a r t i c l e )
% out = part i c l e_v iew_se l ec t ion_fcn ( p a r t i c l e )
% Required va r i a b l e s
% - p a r t i c l e . d a t a ; % Pa r t i c l e coo rd ina t e s
% - p a r t i c l e . a ; % Radius o f p a r t i c l e s
% - pa r t i c l e . v i ew_area ; % The s i z e o f the view area
% Output v a r i a b l e s
% - p a r t i c l e . p o s % Se l c e c t ed p a r t i c l e coo rd ina t e s
% - partic le .data_m_pos % Pa r t i c l e coo rd ina t e s without s e l e c t e d
%% Take only s e c t i o n o f p a r t i c l e s in scope
j = 0 ; t = 0 ;
f o r i = 1 : l ength ( p a r t i c l e . d a t a )

i f p a r t i c l e . d a t a ( i ,1) < - p a r t i c l e . a ∗2
i f p a r t i c l e . d a t a ( i ,2)< par t i c l e . v i ew_area /2 . . .

&& pa r t i c l e . d a t a ( i ,2) > - pa r t i c l e . v i ew_area /2
j=j +1;
p a r t i c l e . p o s ( j , 1 ) = p a r t i c l e . d a t a ( i , 1 ) ; %x coo rd ina t e s
p a r t i c l e . p o s ( j , 2 ) = p a r t i c l e . d a t a ( i , 2 ) ; %y coo rd ina t e s
p a r t i c l e . p o s ( j , 3 ) = p a r t i c l e . d a t a ( i , 3 ) ; %z coo rd ina t e s

e l s e
t = t+1;
partic le .data_m_pos ( t , 1 ) = p a r t i c l e . d a t a ( i , 1 ) ; %x coo rd ina t e s
partic le .data_m_pos ( t , 2 ) = p a r t i c l e . d a t a ( i , 2 ) ; %y coo rd ina t e s
partic le .data_m_pos ( t , 3 ) = p a r t i c l e . d a t a ( i , 3 ) ; %z coo rd ina t e s

end
end

end
out = p a r t i c l e ;

F.2 Acoustic Particle Geometry Generation Algorithm

The particle geometry is set up by sweeping through all selected particles and creating a
spherical object with radius a at the, of each particle, associated coordinate sets.

f unc t i on comb_acoustic_gen_fcn ( pa r t i c l e , main_path )
% comb_acoustic_gen_fcn ( pa r t i c l e , main_path )
% Auto - genera t i on o f the a cou s t i c domain us ing p a r t i c l e p o s i t i o n s
% Required va r i a b l e s
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% - main_path % Main path
% - p a r t i c l e . p o s % Se l e c t ed p a r t i c l e coo rd ina t e s
%% Pre - ru t i n e
% Export path and c r e a t i on o f export d i c t i ona ry
export_path = [ main_path ' Resu l t s \Acoustic_geom_R10\ ' ] ; mkdir ( export_path )
% Path to s e l e c t e d p a r t i c l e coo rd ina t e s
part i c l e_path = [ main_path ' Resu l t s \CFD_particle\ ' ] ;
p a r t i c l e . d a t a = 0 ; p a r t i c l e . p o s = 0 ;
% Aquire the l i s t o f p a r t i c l e s coord inate f i l e s
d i r_in fo = d i r ( [ par t i c l e_path ' ∗ csv ' ] ) ;
pa r t i c l e_coord ina t e_st r = nat so r t ({ dir_info .name } ) ;
%% Generation o f model geometry
f o r i = 1 : l ength ( par t i c l e_coo rd ina t e_s t r ) ; t i c

% Export name us ing s e l e c t e d p a r t i c l e coo rd inate f i l e
export_name = [ ' acoustic_geom_v4_ ' par t i c l e_coord ina t e_st r { i }( . . .
s t r f i n d ( par t i c l e_coo rd ina t e_st r { i } , ' pos ' ):end - 4 ) ] ;
% Continue i f the f i l e a l l r e ady e x i s t
i f e x i s t ( [ export_path export_name ' .mat ' ])==2

disp ( ' F i l e a l l r e ady e x i s t ! ' ) ; cont inue
end
% Clear ing old v a r i a b l e s
p a r t i c l e = rmf i e l d ( p a r t i c l e , { ' data ' , ' pos ' } ) ; c l e a r model gen_data ;
% F i l e s e l e c t i o n and p a r t i c l e coo rd ina t e s
p a r t i c l e . d a t a = csvread ( [ part i c l e_path par t i c l e_coord ina t e_st r { i } ] , 8 ) ;
% Determineation o f subsec t i on o f i n v e s t e r g a t i o n
p a r t i c l e = part i c l e_v iew_se l ec t i on_fcn ( p a r t i c l e ) ;
% Create COMSOL geometry and export o f geometry to COMSOL .mphbin
% formate
model = particle_geom_COMSOL_fcn_v2( p a r t i c l e ) ;
model.geom ( ' geom1 ' ) . expo r t ( [ export_path export_name ' .mphbin ' ] ) ;
% Generation data
gen_data.gen_time = toc ;
gen_data.f i le_name = par t i c l e_coo rd ina t e_s t r { i } ;
gen_data.N_part ic les = length ( p a r t i c l e . p o s ) ;
%Save data about the genera t i on f o r l a t e r use
save ( [ export_path export_name ' .mat ' ] , ' gen_data ' )

end

func t i on out = particle_geom_COMSOL_fcn_v2( p a r t i c l e )
% particle_geom_COMSOL_fcn ( pa r t i c l e , cy l )
% Function to generate a cou s t i c p a r t i c l e geomtry
% Required va r i a b l e s
% - p a r t i c l e . a % Pa r t i c l e rad iu s
% - p a r t i c l e . p o s % Se l e c t ed p a r t i c l e coo rd ina t e s
% Output i s a model s t r u c t f o r COMSOL L iv e l i nk
%% I n i t i a l setup
import com.comsol .model . ∗
import com . comso l .mode l . u t i l . ∗
model = Mode lUt i l . c r ea t e ( 'Model ' ) ;

%% Parameter s e t t i n g s
model .param.set ( 'Rp ' , num2str ( p a r t i c l e .R ) ) ;
model .modelNode.create ( ' comp1 ' ) ;
mode l .geom.create ( ' geom1 ' , 3 ) ;
%% pa r t i c l e gene ra t i on
f o r i = 1 : l ength ( p a r t i c l e . p o s )

model.geom ( ' geom1 ' ) . c r e a t e ( [ ' sph ' num2str ( i ) ] , ' Sphere ' ) ;
model.geom ( ' geom1 ' ) . f e a t u r e ( [ ' sph ' num2str ( i ) ] ) . s e t ( ' r ' , 'Rp ' ) ;
model.geom ( ' geom1 ' ) . f e a t u r e ( [ ' sph ' num2str ( i ) ] ) . s e t ( ' pos ' , . . .

{num2str ( p a r t i c l e . p o s ( i , 1 ) ) num2str ( p a r t i c l e . p o s ( i , 2 ) ) num2str ( p a r t i c l e . p o s ( i , 3 ) ) } ) ;
end
%% Geometry cons t ruc t
model.geom ( ' geom1 ' ) . run ;
model.geom ( ' geom1 ' ) . run ( ' f i n ' ) ;
out = model ;
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F.3 Particle-Particle Interaction Analysis

The scripts for the particle-particle analysis calculates the distance between all particles,
which is used to analyze the number of particle-particle interactions as seen in Section 6.5.

%% Par t i c l e - P a r t i c l e I n t e r a c t i o n Analys i s
c l o s e a l l ; c l c ; c l e a r a l l
par t i c l e_path = ' / Resu l t s /CFD_particle/ ' ; d e l e t e ( ' p a r t i c l e_r e su l t .ma t ' )
rho_str_vec = [10 100 300 500 800 1000 2000 3000 4000 5000 6000 ] ;
u0_str_vec = [0 . 5 1 3 5 8 1 0 ] ;
f o r j = 1 : l ength ( u0_str_vec )

f o r i = 1 : l ength ( rho_str_vec )
c l e a r p a r t i c l e
f i le_name = [ part i c l e_path ' particle_pos_u0_ ' num2str ( u0_str_vec ( j ) ) . . .

'_rho_pc ' num2str ( rho_str_vec ( i ) ) ' . c s v ' ] ;
p a r t i c l e . d a t a = csvread ( file_name , 8 ) ;
%% Parameters f o r the loop
pa r t i c l e . v i ew_area = 10e - 3 ;
p a r t i c l e . a = 5e -6∗(10 e6 /2 e6 )^(2/3 ) ; % Pa r t i c l e s i z e with s c a l i n g
p a r t i c l e . d i s t_ c r i t i c a l_1 0d = (1+10)∗ p a r t i c l e . a ∗2 ;
p a r t i c l e . d i s t_ c r i t i c a l_2 0d = (1+20)∗ p a r t i c l e . a ∗2 ;
p a r t i c l e . d i s t_ c r i t i c a l_5 0d = (1+50)∗ p a r t i c l e . a ∗2 ;
%% Calcu la t i on func t i on s
p a r t i c l e = part i c l e_v iew_se l ec t i on_fcn ( p a r t i c l e ) ;
p a r t i c l e = par t i c l e_d i s t_f cn ( p a r t i c l e ) ;
%% Save to r e s u l t s t r
pa r t i c l e_re su l t . rho_st r_vec = rho_str_vec ;
pa r t i c l e_re su l t .u0_st r_vec = u0_str_vec ;
p a r t i c l e_r e su l t .Nd i s t_c r i t i c a l_10d ( i , j )= pa r t i c l e .Nd i s t_c r i t i c a l_10d ;
pa r t i c l e_r e su l t .Nd i s t_c r i t i c a l_20d ( i , j )= pa r t i c l e .Nd i s t_c r i t i c a l_20d ;
pa r t i c l e_r e su l t .Nd i s t_c r i t i c a l_50d ( i , j )= pa r t i c l e .Nd i s t_c r i t i c a l_50d ;
pa r t i c l e_re su l t .Npp_cr i t i c a l_10d ( i , j ) = mean( pa r t i c l e .Nd i s t_c r i t i c a l_pp10d ) ;
pa r t i c l e_re su l t .Npp_cr i t i c a l_20d ( i , j ) = mean( pa r t i c l e .Nd i s t_c r i t i c a l_pp20d ) ;
pa r t i c l e_re su l t .Npp_cr i t i c a l_50d ( i , j ) = mean( pa r t i c l e .Nd i s t_c r i t i c a l_pp50d ) ;
p a r t i c l e_ r e su l t .Nd i s t_po s i b l e ( i , j ) = pa r t i c l e .Nd i s t_po s i b l e ;
p a r t i c l e_ r e su l t .N ( i , j ) = pa r t i c l e .N ;
part i c l e_resu l t .mean_dis t_next ( i , j ) = mean( pa r t i c l e . d i s t_to_nex t ) ;
part i c l e_resu l t .mean_dist_next4 ( i , j ) = mean( part ic le .mean_dist_to_next4 ) ;
pa r t i c l e_re su l t . s td_d i s t_nex t ( i , j ) = std ( pa r t i c l e . d i s t_to_nex t ) ;
p a r t i c l e_ r e s u l t . p ( i , j ) = rmf i e l d ( p a r t i c l e , ' data ' ) ;

end
end
save ( ' pa r t i c l e_r e su l t .ma t ' , ' p a r t i c l e_ r e s u l t ' )

func t i on out = par t i c l e_d i s t_f cn ( p a r t i c l e )
% Pa r t i c l e d i s t ance c a l c u l a t i o n by means o f euc l i d ean norm
% out = par t i c l e_d i s t_f cn ( p a r t i c l e )
% requ i r ed va r i a b l e s
% - p a r t i c l e . d i s t _ c r i t i c a l f o r 10d & 20d & 50d
% - p a r t i c l e . p o s
d i s t = ze ro s ( l ength ( p a r t i c l e . p o s ) , l ength ( p a r t i c l e . p o s ) ) ;
%% Calcu la t i on o f d i s t an c e s between p a r t i c l e s
f o r i = 1 : l ength ( p a r t i c l e . p o s )

% Display proce s s
counter = process_l ine_fcn ( i , l ength ( p a r t i c l e . p o s ) , counter ) ;
start_pos_j = i +1;
f o r j = start_pos_j : l ength ( p a r t i c l e . p o s )

d i s t ( i , j ) = sq r t ( ( p a r t i c l e . p o s ( i , 1 ) - p a r t i c l e . p o s ( j ,1))^2+ . . .
( p a r t i c l e . p o s ( i , 2 ) - p a r t i c l e . p o s ( j ,2))^2+ . . .
( p a r t i c l e . p o s ( i , 3 ) - p a r t i c l e . p o s ( j , 3 ) ) ^ 2 ) ;

end
end
%% Distance to next p a r t i c l e
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% Creates a symetr i c matrix and adds ones in the d iagona l which i s u s e f u l l
% l a t e r
pa r t i c l e . d i s t_mat r i x = di s t '+ d i s t ;
p a r t i c l e . d i s t_mat r i x = pa r t i c l e . d i s t_mat r i x+diag ( ones (1 , l ength ( pa r t i c l e . d i s t_mat r i x ) ) ) ;
% Number o f p a r t i c l e s
p a r t i c l e .N = length ( pa r t i c l e . d i s t_mat r i x ) ;
% Ca l cu l a t e s d i s t ance to nea r e s t p a r t i c l e ( i f the re were no ones in the diag
% then t h i s command would return ze ro s
pa r t i c l e . d i s t_to_nex t = min( pa r t i c l e . d i s t_mat r i x ) ;
% Ca l cu l a t e s d i s t ance to nea r e s t four p a r t i c l e s
dist_to_next4 = so r t ( p a r t i c l e . d i s t_mat r i x ) ;
i f l ength ( dist_to_next4)<=4

part ic le .mean_dist_to_next4 = 0 ;
e l s e

part ic le .mean_dist_to_next4 = mean( dist_to_next4 ( 1 : 4 , : ) ) ;
end
% Ca l cu l a t e s the number o f d i s t an c e s that are with in some l im i t
pa r t i c l e .Nd i s t_c r i t i c a l_10d = sum(sum( pa r t i c l e . d i s t_mat r i x <pa r t i c l e . d i s t_ c r i t i c a l_1 0d ) ) ;
p a r t i c l e .Nd i s t_c r i t i c a l_20d = sum(sum( pa r t i c l e . d i s t_mat r i x <pa r t i c l e . d i s t_ c r i t i c a l_2 0d ) ) ;
p a r t i c l e .Nd i s t_c r i t i c a l_50d = sum(sum( pa r t i c l e . d i s t_mat r i x <pa r t i c l e . d i s t_ c r i t i c a l_5 0d ) ) ;
% Ca l cua l t e s the number o f d i s t an c e s per p a r t i c l e that are with in some l im i t
pa r t i c l e .Nd i s t_c r i t i c a l_pp10d = sum( pa r t i c l e . d i s t_mat r i x <pa r t i c l e . d i s t_ c r i t i c a l_1 0d ) ;
pa r t i c l e .Nd i s t_c r i t i c a l_pp20d = sum( pa r t i c l e . d i s t_mat r i x <pa r t i c l e . d i s t_ c r i t i c a l_2 0d ) ;
pa r t i c l e .Nd i s t_c r i t i c a l_pp50d = sum( pa r t i c l e . d i s t_mat r i x <pa r t i c l e . d i s t_ c r i t i c a l_5 0d ) ;
% Ca l cu l a t e s the t o t a l number o f p o s s i b l e d i s t an c e s
p a r t i c l e .Nd i s t_po s i b l e = pa r t i c l e .N ^2 - p a r t i c l e .N ;
out = p a r t i c l e ;
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