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Synopsis:

Through this report a methodology
for characterization of fracture related
parameters for numerical modelling of
delamination in composite materials is
developed. The methodology relies on
concepts of inverse parameter identifica-
tion and optimization techniques. The
numerical modelling is done through use
of the finite element method and cohesive
zone modelling.
An experiment is simulated in a paramet-
ric finite element model and a residual is
defined as the discrepancy in some given
response from the numerical model and
the physical experiment. The parameter
identification is then done by minimization
of the residual.

The crack propagation is modelled us-
ing user-defined interface elements through
ANSYS. A mixed mode multilinear cohe-
sive law for the user-defined interface ele-
ment is developed for this purpose. Since
the parameter identification is based on op-
timization techniques, much time is spent
on formulating a proper objective function.
Initially, the objective function is based on
global structural response, but use of local
measurements in the fracture process zone
is also investigated.
The motivation for this method is to re-
duce usual assumptions involved in char-
acterization of cohesive zone parameters,
increase the practical applicability by not
limiting the approach to coupon testing,
and gain as much information from few but
costly experiments.
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Resumé

Dette kandidatspeciale omhandler parameter identifikation af kohæsive zone love til numerisk
modellering af delaminering i komposit materialer. Parameter identifikation udføres gennem
brug af invers modellering og optimeringsteknikker. Invers modellering er matematisk set
den inverse proces af at bestemme afhængige variable på baggrund af uafhængige variable,
eller alternativt formuleret, er det processen af at bestemme input parametre som funktion
af output parametre. I henhold til dette speciale er de omtalte input parametre kohæsive
zone parametre og ouput parametre er et strukturelt respons som måles i både et fysisk
eksperiment og den numeriske finite element model. En mindste kvadraters formulering af et
residual, som udtrykker forskelle i det eksperimentelle og numeriske respons, minimeres ved
hjælp af gradient-baseret optimeringsalgoritmer gennem MATLAB.
Det kommercielle finite element program ANSYS (MAPDL v. 17.2) anvendes til at modellere
delaminering. Mere specifikt, anvendes en brugerdefineret interface elementrutine, UserElem,
til at modellere selve revnevæksten. En multilinear kohæsiv zone lov, bestående af et arbi-
trært nummer af linje segmenter, udvikles til dette formål. Loven er af generel karakter og
kan anvendes for en hvilken som helst grad af revneåbningsforhold.

En kort gennemgang af rapportens indhold følger. Indledningsvist er et historisk overblik
givet af emnet kohæsiv zone modellering og dets anvendelse i forbindelse med finite element
metoden. Efterfølgende preæseneres randværdiproblemet, som indeholder en stærk diskon-
tinuitet, og de styrerende ligninger for systemet, som er iboende ulineære som følge af den
ulineære materiale lov i den kohæsive model, og generelt også geometrisk ulineært.
Konstitutive betingelser for det kohæsive interface element er udledt fra en skadesmekanisk
betragtning, med indirekte anvendelse af klassisk brudmekanik. Herunder opstilles en skadesmodel,
en konstitutive tangent stivhedstensor og en relation mellem revneflade forskydning og trak-
tion. Skadesmodellen indeholder kriterier for skadesinitiering og revne udbreddelse, samt in-
terpolationsfunktioner til behandling af blandet revneåbningsforhold. De konstitutive betingelser
er implementeret i UserElem, som indeholder de resterende nødvendigheder for en komplet
beskrivelse af elementet, udarbejdet tidligere på Institut for Materialer og Produktion Aal-
borg Universitet.
Kohæsive zone parametre identificeres ved at sammenholde et respons fra den numeriske
model og det fysiske eksperiment ved minimering af et residual. Optimeringsværktøjer gen-
nem MATLAB er anvendt til minimering af residualet. Valget af algoritme er træffet på
baggrund af en kort teoretisk redegørelse samt indledende tests. Afgørende for valget er grad
af ikke-linearitet og konveksitet, skalering af design variable, samt mulighed for indførelse
af uligheds-betingelser. En 2. ordens gradient baseret algoritme er anvendt i kombination
med en multilinear kohæsiv zone lov bestående af 15-linie segmenter til at bestemme parame-
tre herfor, til modellering af delaminering i et DCB testemne under ren type I revneåbning.
Efterfulgt resultatbehandlingen, udføres en sensitivitets analyse og indflydelsen af 3D effekter
undersøges nærmere.
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Preface

This master thesis includes the findings of the group 1.121-B during the 4th semester of the
master program “Design of Mechanical Systems” hold at Aalborg University. The project
period started the 1st of February 2017 and concluded the 2nd of June 2017. In this thesis,
the results of the numerical simulations and the novel optimization program IPIT-CZL have
been obtained using a cluster owned by the Mechanical and Production Department. The
cluster have 2 processors Intel Xeon CPU E5-2687W v4 3.00 GHz (24 cores) and 256 GB
RAM, although 6 to 8 cores have been used normally.

The content of the compressed folder submitted together with this document is arranged in
the following manner:

• IPIT-Bilinear\

∼ \Program\: Includes the MATLAB scripts and ANSYS macros files required to
execute IPIT-CZL for the problem considered in Sec. 4.2.

∼ \SettingUp\: Includes the results and plotting tools that have been utilized to set
up the optimization tool, Sec. 4.2.3 - 4.2.6.

• IPIT-Multilinear\

∼ \PlottingTools\: Includes the MATLAB scripts in charge of plot results.
∼ \Program\: Includes the MATLAB scripts and ANSYS macros files required to

execute IPIT-CZL for the problem considered in Sec. 5.3.
∼ \Results\: Includes all the results presented in Sec. 5.4.
∼ \SensitivityStudy\: Includes the results from the sensitivity studies in Sec. 6.1.

• 1121B_DMS4_Spring2017.pdf: A digital version of the present document in pdf for-
mat.

The authors acknowledge the supervisors of this work Associate Professor, Ph.D. Esben
Lingaard and Assistant Professor, Ph.D. Brian Bak for all the suggestions, guidance and
facilities provided. Last but not least, a special thanks go to our families for all the support
and love received.
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Chapter 1
Introduction

1.1 Motivation

A powerful quality of composite structures is their ability to have tailored material proper-
ties for a specific application. In the wake of the introduction of composite materials during
the mid-twentieth century, came an unprecedented and separate class of failure mechanisms,
such as delamination, matrix failure/yielding, fiber-matrix debonding, kink band failure, fiber
micro-buckilng, fiber failure, which can be either brittle- of brushing-like depending on the
strength of the adhesive. The diversity of failure mechanisms are mainly attributed to the
inherently heterogeneous microstructure of composites, their anisotropy, and often laminated
applications. In real-life engineering structures using multidirectional composites, the most
common failure mechanism is delamination, due to the relatively weak interface strength of
a laminate [Overgaard and Lund, 2014].
Due to limitations in knowledge of these failure mechanisms, is the full potential of compos-
ite materials and their applicability for general engineering structures not yet fully exploited.
This motivates the scope of this master thesis, which seeks to develop a tool for characteri-
zation of fracture related material properties for numerical modelling of delamination.

Delamination can be caused by numerous reasons, e.g. manufacturing problems such as resin-
rich areas or areas of high degree of porosity which is potential sites of failure initiation and
subsequent delamination growth. Further examples include delamination caused by high peel
stresses or stress concentrations, which naturally occurs at many common types of structural
details e.g. free edges of a laminate, ply-drops/-inserts and various structural joints.

The importance of proper assessment of delamination in practice is illustrated by considering
a specific type of structural joint: A skin-stiffener joint, which is a connection of a (compos-
ite) skin to a stiffer member, e.g. a former, a stringer, a longeron or a bulkhead, to provide
load transfer paths and structural integrity. Skin-stiffener joints are commonly encountered
in aerospace and wind turbine industries.

Skin-stiffener structures are nearly used in all aircraft fuselage constructions. An example of
a sectioned fuselage of a Boeing 787 Dreamliner is shown in Fig. 1.1a. A primary concern and
common problem in thin-walled stiffened aircraft fuselages is delamination caused by pres-
sure pillowing [Haugen, 1998]. During a flight, the cabin pressure in a commercial transport
aircraft generates an internal pressure that is higher than the surrounding pressure outside
the fuselage. The frames and stringers, as shown in Fig. 1.1a, prevent the fuselage skin from
expanding as a membrane. Consequently the fuselage skin bulges outwards, or pillows, within
each panel under the action of the internal pressure. The restraint against radial expansion

3 of 111



CHAPTER 1. INTRODUCTION

at the stiffener locations causes the formation of a bending boundary layer1, which results
in stress concentrations. As a result, peeling stresses and transverse shear stresses develops
at the interface between the skin and stiffener which can lead to delamination [Haugen, 1998].

(a) (b)

(c) (d)

Figure 1.1: (a) Fuselage section of a Boeing 787 Dreamliner, showing formers, stringers, and
skin all made of composite material [Boffoli, 2007]. (b) Sectioned wind turbine blade, showing
skin, flanges and web. (c) Flange tip delamination of a thick-flanged stiffener test specimen
[Haugen, 1998]. (d) Web and flange-skin delamination of thin-flanged stiffener test specimen
[Haugen, 1998].

Another example of delamination in skin-stiffener joints in engineering sturctures is seen in
Fig. 1.1b, showing a cross section of a wind turbine blade. The interfaces between the web,
flange and skin in a wind turbine blade are often sites of fracture initiation and delamination
growth. Potential sources of delamination initiation for such skin-stiffener T-joints include
geometric discontinuities e.g. the geometric transition from the flange to the skin, the abrupt
change in bending stiffness of the skin and the flange which can form a bending boundary
layer, differences in ply-angles of adjacent plies in regions of a bending boundary layer, and
manufacturing issues related to resin flow [Haugen, 1998].
Experimental testing on skin-stiffener T-joints, similar to those in common wind turbine
blades, are performed by [Haugen, 1998] as shown in Fig. 1.1c and 1.1d. The figures show
two details of different geometry; one having a thick flange and one having a thick flange. The
skin is simply supported and a tensile load is applied to the web until complete pull off. In
Fig. 1.1c failure initiates at the flange tips and delamination grows towards the center along
the flange-skin interface. In Fig. 1.1d, failure initiates at the web-flange and fillet region,
and delamination progresses towards the flange tips and along the web-centerline. Further
information about material system, manufacturing, etc. are omitted, since the purpose is
solely to illustrate delamination in practice.

The above discussion concerning delamination in general engineering structures and the sever-
ity of consequences of failure, motivates for a methodology for assessment of delamination
suitable of analysing damage tolerant designs.

1Bending boundary layer refers to localized zones of bending stresses and deformations.
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1.2. HISTORICAL REVIEW / STATE OF THE ART

1.2 Historical Review / State of the Art
In 1921, [Griffith, 1921] presented an energy criterion for crack propagation, which postulate
that cracks propagate when the related energy release rate reaches its threshold value. Then,
Linear Elastic Fracture Mechanics (LEFM) was used by [Irwin, 1957] to reformulate the
crack propagation criterion using stress intensity factors. His work was continued by other
researchers leading to a technique called Virtual Crack Closure (VCC) [Goyal, 2003, p.14].
VCC, the J-integral presented by [Rice, 1968] and the virtual crack extension by [Hellen,
1975] represent the most used direct applications of LEFM in crack propagation problems
[Alfano and Crisfield, 2001]. The use of LEFM to predict the delamination growth has been
proven accurate however its applicability is limited [Alfano and Crisfield, 2001] [Turon et al.,
2006]:

- LEFM can be used in lack of other material non-linearities [Alfano and Crisfield, 2001]
[Turon et al., 2006].

- LEFM only consider crack propagation, therefore it requires the existence of a crack
of known initial extension and location [Alfano and Crisfield, 2001] [Turon et al., 2006]
growing in a self-similar manner (a priori known trajectory) [Goyal, 2003, p.15].

- LEFM assumes the existence of infinite stresses in the crack tip.

- LEFM assumes that the crack tip is confined to a small region, thus it cannot represent
the increase of fracture resistance due to fiber bridging over large process zones, which
is referred to as R-curve behavior. During delamination of fiber-reinforced materials is
commonly seen a prominent R-curve behavior due to large scale bridging.

- LEFM techniques in a Finite Element (FE) context are computationally inefficient due
to how fracture parameters such as stress intensity factors or energy release rates are
calculated [Turon et al., 2006]. Thus, it can be used for 2D stationary crack propa-
gation, although for 2D progressive crack propagation the computational effort rises
dramatically [Turon et al., 2006]. Moreover, computational issues emerge when dealing
with the progression of multiple cracks in a 3D problem [Alfano and Crisfield, 2001]
[Goyal, 2003, p.15].

Nonetheless, the cohesive zone modelling (CZM) represents an alternative approach to LEFM
that overcome all the issues mentioned above. CZM simulates the behavior of the crack in-
terface using the framework of damage mechanics in conjunction with indirect application
of LEFM [Alfano and Crisfield, 2001]. The fundamental idea of CZM is that resistance to
crack propagation can be described by a traction field acting on separated crack surfaces in
the cohesive zone (CZ), a region that commences at the crack tip and spans in the wake of
the crack. The traction field can be regard as a continuous distribution of nonlinear springs,
independent of one another, holding the crack surfaces together. The CZ is defined by a CZ
law, a constitutive relation between crack surface tractions and separations, which can be
seen as the stiffness of the nonlinear springs. In addition, CZM incorporates the initiation
of cracks using strength criterion. This allows one to model delamination growth in speci-
mens where the crack location, size and trajectory do not have to be known beforehand. It
is noted that CZM yields to the same results obtained by LEFM, when LEFM can be applied.

In regard to numerical models for delamination in FE analysis (FEA), the CZM is used in
combination with interface elements, which can be placed between adjacent layers of the
laminate. In short, delamination starts when the interlaminar traction surpass the interfacial
strength, and the crack front progresses when the fracture toughness of the element surpass
its critical value.
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The fact that CZM unifies crack initiation and propagation in a single theory and its simple
implementation in FEA makes it a very convenient tool to model delamination problems.

In relation to the origin of the CZM, it dates back to the late 50s and early 60s when Baren-
blatt [Barenblatt, 1959] and Dugdale [Dugdale, 1960] developed two independent models that
overcome the singular stresses at the crack tip by application of a traction field around it,
holding the crack faces together. Barenblatt proposed an equilibrium problem for elastic
materials with brittle cracks including cohesive forces at the tip and in the wake of the crack.
Dugdale argued that the stresses cannot increase beyond the yield strength of the material
and proposed, for ductile materials, the existence of a traction field ahead of the crack tip,
where nearby a plastic zone develops. Thereafter, Hillerborg presented in [Hillerborg et al.,
1976] a similar model to Barenblatt’s, including crack initiation and analyzed the CZ using
FE methods (FEM). Needleman in [Needleman, 1987] used CZM to simulate the whole inter-
face in a 2D FEA. During the 90s and until mid-2000s different CZ laws have been proposed
and implemented in FE, some have trapezoidal shape as in [Tvergaard and Hutchinson, 1992],
others exponential shape as in [Goyal-Singhal et al., 2004], and others bilinear shape as in
[Alfano and Crisfield, 2001] or [Camanho et al., 2003]. These element formulations, besides
[Goyal-Singhal et al., 2004], require that the mode mixity ratio is kept constant during delam-
ination growth, otherwise dissipated energy could be restored due to how the threshold value
have been defined. [Turon et al., 2006] presented a new formulation for interface elements
using a bilinear CZ law addressing this issue.

More recently, [Bak et al., 2014] elaborated an interface element implementation based on
[Turon et al., 2006], where the error stemming from the integration of the stiffness matrix
and the element force vector is reduced by adaptively changing the quadrature order and
integration rule (from Newton-Cotes to Gauss-Legendre) depending on the state of element
damage. That brought an improvement of the overall convergence of the element and allowed
the use of a more coarse mesh.

The present master thesis brings further development on the aforementioned implementation.
A new constitutive relation is introduced extending the cohesive law from bilinear to multi-
linear, with any number of line segments. The delamination initiation criterion is the same
as the one described in [Turon et al., 2006]. A novel propagation criterion for mixed mode
crack opening is presented for a multilinear CZ law, where the mode mixity interpolations are
chosen such that the resulting CZ law is energy consistent with the BK criterion. It is worth
mentioning that the calculation of a mode mixity ratio at every interface element integration
point is calculated using results from [Hansen and Lund, 2009], which dealt with a mixed
mode trilinear CZ law.
In addition, the present master thesis introduces a methodology for characterization of ma-
terial properties of quasi-static delamination in fiber-reinforced materials showing R-curve
behaviour. The material properties are the CZ parameters for a n-segmented multilinear
CZ law. An approach to determine CZ laws based on curve fitting and derivatives of the
analytical J-integral for two dimensional (2D) plane problems is proposed in [Sørensen and
Kirkegaard, 2006]. The approach presented here is not limited to 2D plane problems, as the
previous approach, since it utilizes a FE model being able to account for 3D effects. The
parameter identification is done using optimization techniques to minimize a response from
a physical experiment and a parametric FE model. A more detailed explanation of the work
contained in this master thesis is presented in the next section.
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1.3 Problem Specification
The scope of this master thesis is to develop and test a methodology for characterization of
material properties for numerical modelling of quasi-static delamination in composite materi-
als. The methodology relies on finite element modelling and cohesive zone modelling, giving
the opportunity to model both delamination onset and propagation. Consequently, the ma-
terial properties to be determined are cohesive zone parameters. A physical experiment is
conducted and simulated in a parametric finite element model. The cohesive zone parame-
ters are then determined through use of inverse parameter identification in conjunction with
optimization techniques by minimization of a difference in some measured response from the
experiment and the numerical model.
The master thesis is a continuation of work done in a previous semester. An outline is given
here to clarify what was done on the previous semester (3rd semester of the master program),
and what is done in this semester (4th).

The point of departure is a user-defined element subroutine, UserElem.f, which is used in
conjunction with the commercial finite element program ANSYS MAPDL v. 17.2, and has
been available to the authors of this master thesis since the beginning of the 3rd semester.
The UserElem.f element routine defines a cohesive zone interface element, which in essence,
includes a kinematic description, constitutive relations, a damage mechanics model, numerical
integration schemes, formulation of an element stiffness matrix and internal force vector,
and subroutines for post processing, which is all developed by researchers at Department of
Mechanical and Manufacturing Engineering at Aalborg University. In this project the primary
objective of interest is the damage mechanics model, wherein the mixed mode cohesive zone
law is formulated and partially the element stiffness matrix computation. The user-defined
element subroutine originally included a mixed mode bilinear cohesive zone law.

1.3.1 3rd Semester
An outline of the work done on the 3rd semester project is given here. Further information
is found in [Jensen and Martos, 2016]. The aim of the report is to be able to simulate a de-
lamination process in a finite element model such that structural responses agree with results
obtained from a physical experiment. The experiments are done using double cantilever beam
(DCB) specimens loaded under pure bending and pure mode I crack opening. The material
system under consideration is unidirectional glass fibre epoxy composites. Experiments have
been carried out, however, due to inconsistencies in the experimental data, lack of time, and
the computational convenience of using smaller test specimens than those originally given,
the final experimental data is given by the supervisors. During delamination an R-curve be-
haviour is experienced due to fibre-bridging in the wake of the crack tip. The fibre-bridging
complicates the fracture process zone, as failure mechanisms will occur at multiple length
scales.

The simulation of delamination is done through use of cohesive zone modelling. The bilinear
mixed mode cohesive zone law implemented in UserElem.f is not capable of simulating R-
curve behaviour, since only failure mechanisms occurring in the crack tip region is captured
by a bilinear cohesive zone law. By adding an extra line segment to the cohesive zone law, the
model becomes capable of simulating multiple failure mechanisms on different length scales.
Consequently, an extension of the bilinear cohesive zone law to a trilinear cohesive zone law
is a necessity to be able to simulate the physical experiment due to the R-curve behaviour
associated with the fibre-bridging.
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The extension to a trilinear cohesive zone law is limited to pure mode I crack opening. Con-
sequently, mixed mode interaction are not considered in the report. The implementation in
the user-element subroutine is tested and verified.

Having formulated a cohesive zone model capable of simulating the failure mechanisms in-
volved in the physical experiment, proper cohesive zone parameters need to be identified.
This is done by inverse parameter identification, which in general is the process of determin-
ing inputs on the basis of outputs. In this sense, inputs are cohesive zone parameters for the
finite element model and outputs are structural responses. Key to the identification process
is utilization of optimization techniques.
A structural response is measured in the physical experiment and in the finite element model
for some set of cohesive zone parameters. Their difference should be minimized by changing
the cohesive zone parameters, which forms the basis of the objective function for the opti-
mization procedure: A residual between numerically simulated and experimentally measured
structural responses. In context of optimization theory, the cohesive zone parameters become
the design variables. Ideally the residual is zero once the cohesive zone parameters have been
identified.

A program is developed for the parameter identification, which is denoted IPIT-CZL, being
short for Inverse Parameter Identification Tool for Cohesive Zone Laws. The program is made
in MATLAB. Its major tasks is to control the optimization scheme for the minimization of
the residual, generate and execute the finite element model for a given set of design variables,
and extract and compare structural responses from the numerical model and the physical
experiment. In this semester, the framework of IPIT-CZL is developed, which implies for-
mulating the overall structure of IPIT-CZL on paper, implement it in MATLAB and make
it work as intended. Naturally, as a first draft, there are room for improvements and further
development. Additionally, some decisions are made with little theoretical reference due to
time limitations.

Initial testing and benchmark tests have been run to make IPIT-CZL work as intended. Even-
tually, IPIT-CZL is tested for identifying cohesive zone parameters for use in a pure mode
I trilinear cohesive zone law, to simulate a physical experiment showing R-curve behaviour.
IPIT-CZL fails to obtain consistent cohesive zone parameters for different initial guesses. A
lot of local minima are discovered and the best of the converged solutions does not represent
the experimental structural response well. Nevertheless, the framework of IPIT-CZL has
been developed and tested, and improvements are suggested for the 4th semester.

Lastly, it is noted that alternative approaches to obtain cohesive zone parameters from struc-
tural responses of a physical experiment are also investigated. An approach inspired by
[Sørensen and Kirkegaard, 2006] and [Hansen et al., 2009] is used as standard of reference
for IPIT-CZL. The alternative approach does not make use of finite element modelling in the
parameter identification process, but relies on analytical J-integral calculations. Some parts
of the 3rd semester project has been omitted in this review, since only essential things are
pointed out to keep the overview rather compact.
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1.3.2 4th Semester

The scope of this semester (4th) is to further develop IPIT-CZL to be able to accurately
simulate delamination showing R-curve behaviour, and extend the cohesive zone model to
any n-segmented multilinear cohesive zone law and generalize it to be capable of modelling
delamination under mixed mode crack opening. The progress towards these aims are dis-
cussed in greater detail here.

The motivation for extending a bilinear cohesive zone law is clear from the previous semester:
It gives the opportunity to model failure mechanisms on different length scales enabling the
cohesive zone model to simulate R-curve behaviour. The addition of a single line segment,
making the cohesive zone law a trilinear formulation, is the simplest way of introducing
such effects. During the testing of IPIT-CZL using a trilinear cohesive zone law on the 3rd
semester, it is however observed, that the trilinear law is not sufficient to model the R-curve
behaviour seen in the physical experiment. The shape of the trilinear cohesive zone law is
simply too restrictive, and is characterized by non-physical kinks in the structural response
of the finite element model, that are not seen in the experimental structural response.

This motivates to introduce more line segments in the cohesive zone law formulation, making
the shape less restrictive. For this purpose, the cohesive zone law is extended to handle an
arbitrary number of line segments. Additionally, the cohesive zone law is generalized to be
capable of modelling mixed mode crack opening, which calls for a novel formulation of mode
mixity interactions for a multilinear cohesive zone law, which to the authors knowledge, has
not been addressed by others. For some degree of mixed mode crack opening, interpolation
functions are proposed to determine properties of a one-dimensional equivalent cohesive zone
law. Verification tests have been run to validate the implementation of a mixed mode multi-
linear cohesive zone model.

The parameter identification methodology IPIT-CZL is tested for a pure bending loaded DCB
specimen under pure mode I crack opening, similar to the one tested in the 3rd semester.
The experiment is simulated using a 15 line-segmented multilinear cohesive zone law in the
finite element model. This involves a relatively large number of cohesive zone parameters to
be identified, however, the shape of the cohesive zone law is less restrictive.
To the authors knowledge, the common approach for simulating delamination is based on
presuming the shape of the cohesive zone law to be e.g. bilinear, trilinear, trapezoidal, ex-
ponential etc. based on physical reasoning, and then determine cohesive zone parameters
for that specific shape based on either material data obtained from coupon tests, or some
structural response related to cohesive zone parameters, e.g. analytical J-integral relations.
Here, the typical classification of cohesive zone law shapes is discarded, and the idea of deter-
mining the cohesive zone law shapes is based on discretization of the cohesive zone law into
a relatively large number of piecewise linear functions, and then let the shape be determined
directly by minimization of the residual in structural responses.

Experience from the previous semester regarding the performance of the optimizer in IPIT-
CZL, suggests reformulating the optimization problem and investigate other options for al-
gorithm selection. The objective function is defined as a least squares residual formulation of
the structural responses in the experiment and the numerical model. The algorithm selection
is limited to those available through MATLAB for minimization of constrained nonlinear
optimization problems. A gradient-based interior-point algorithm is concluded to be best
suited for the problem at hand through theoretical considerations and benchmark testing.
The algorithm is capable of switching between second order quasi-newton methods in combi-
nation with a line search method for the step computation, and a trust-region method with
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first order conjugate gradient steps depending on Hessian properties at the current design
iterate.

The performance of the reformulated optimization problem is significantly improved com-
pared to the previous semester. IPIT-CZL converges to optimum points of consistent cohesive
zone parameters and objective function values, and a good agreement in terms of numerical
and experimental structural responses. Further comments are left for the report.

At the very end, sensitivity studies of the IPIT-CZL are performed to anticipate robustness
of the methodology. Additionally, the topic of 3D effects is considered which is a general
challenge in state of the art methods for assessment of delamination.

Problem Formulation

The above discussion regarding the content of the master thesis should be covered by the
following problem formulation. The scope of the master thesis is formulated in compact for
as: Development and optimization of a methodology for inverse parameter identification of
multilinear mixed mode cohesive zone laws through parametric finite element modelling and
optimization for numerical assessment of quasi-static delamination in composite materials.
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Chapter 2
Cohesive Zone Modelling

2.1 Governing System of Equation
The governing system of equations to be solved are presented in the current section. The
boundary value problem is presented in strong form, and eventually transformed into a weak
formulation, by using the principle of virtual work. However, the principle of virtual of work
in its original only applies for a continuous system. In order to apply the principle for a
crack propagation problem, which is inherently discontinuous, the original body is divided
into subdomains and extra boundary conditions are introduced. Ultimately, the governing
system of equations are derived, and the need for solving it numerically is argued. The FEM
will be used for numerical evaluation and hence the governing equations are arranged in a
form suitable for the FEM. The derivation of the governing equation presented in this section
is based on [Goyal, 2003], [Malvern, 1969] and [Turon et al., 2006].

2.1.1 Boundary Value Problem

In order to discuss the mechanics of interfacial surfaces, it is appropriate to take departure
from the boundary value problem at hand. A crack propagation problem is inherently a
discontinuous system, containing discontinuous singular surfaces. A surface is said to be
singular, if one or more properties are discontinuous across that surface. The singular surfaces
of crack propagation problems are categorized as strong discontinuous, since the displacement
field jumps across the surface.

Ti
(v)

Ω

V

Ti
+

Ti
-

X1, x1

X2, x2

X3, x3

ui

SCZ

Figure 2.1: Boundary value problem for crack propagation problem.

Consider a solid deformable body V as shown in Fig. 2.1 containing a crack. The part of
the crack on which a cohesive zone law is active is denoted by Scz and is called the fracture
process zone.
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The body V is enclosed by an external surface Ω, which has an outward unit normal vector,
denoted vj . Let Bi and T̂

(v)
i represent body forces and prescribed surface tractions in the

deformed state respectively. The surface ΩT denotes the outer boundary on which tractions
are prescribed, such that σijvj = T̂

(v)
i in accordance with Cauchy’s formula. Let Ωu denote

the outer boundary on which the displacement field is prescribed as ui = ûi. The boundaries
of prescribed tractions and displacements are defined such that their sum equals the total
external boundary, Ω = ΩT + Ωu. The stress field inside the domain V, is related to the
external loading and tractions in the fracture process zone through equilibrium equations as
given in Eq. (2.1.1) through Eq. (2.1.4) [Turon et al., 2006].

σij,j +Bi = 0 inside V (2.1.1)

σijvj = T̂
(v)
i on ΩT (2.1.2)

ui = ûi on Ωu (2.1.3)
σ+ijv

+
j = T+

i = −T−
i = σ−ijv

−
j on Scz (2.1.4)

The boundary value problem is a mixed problem, since both displacements and tractions are
prescribed. The equilibrium equations in Eq. (2.1.1) are part of the strong formulation of the
boundary value problem at hand, i.e. a system of partial differential equations which must be
obeyed at every material point within the solid body. The governing system of equations can
be categorized into equations of equilibrium, geometric equations and constitutive equations.
A brief introduction to the governing system of equations are given next.

Having already introduced the equilibrium equations in Eq. (2.1.1), the geometric equations
considered next. These equations establish a relation between the strain tensor εij and the
displacement field gradients ui,j . Various strain measures are available depending on the
magnitude of the deformations, and whether the reference geometry is the undeformed or
deformed configuration. One example of a strain tensor definition is the Green-Lagrange
strain tensor:

εij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

)
(2.1.5)

The Green-Lagrange strain tensor is defined in terms of the initial undeformed geometry and
indicates what must occur during a given deformation. This strain tensor puts no restrictions
on the magnitude of the strains by including the nonlinear product term in the round bracket
of Eq. (2.1.5). The strain tensor in Eq. (2.1.5) is seen to be symmetric. By excluding the
nonlinear product term, the infinitesimal strain tensor eij arises. However, for this to be
valid, displacement field gradients must be well less than unity |ui,j | << 1. The geometric
equations also contain the equations of compatibility, to ensure a compatible displacement
field during the deformation process.

Having briefly described the stress tensor arising from equilibrium considerations, and the
strain tensor arising from kinematical considerations, these are next related to each other
through constitutive relations. No further discussion of specific constitutive relations are
given for now, since this is a major topic in the upcoming sections. Various stress tensors ex-
ists, likewise the strain tensor, depending on the magnitude of deformations and the reference
configuration. It is noted, the constitutive relations depends on the stress and strain formu-
lation chosen. The choice of a suitable stress and strain formulation is problem dependent.
However, a pair of some stress- and strain tensor needs to be work consistent, meaning that
the resulting internal work or strain energy density must be independent of the formulation
chosen.
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2.1.2 Principal of Virtual Work for Discontinuous Systems
During the presentation of the boundary value problem, it was argued that the crack prop-
agation problem is indeed a discontinuous system. To develop the necessary mechanical
relations, further notations and introduction of a predefined crack path are added to the
original boundary value problem in Fig. 2.1. The crack path is denoted as S and acts as an
interior discontinuous singular surface as illustrated in Fig. 2.2.

Ti
(v)

S

Ω+

V+

V-

Ti
+

Ti
-

Ω-

X1, x1

X2, x2

X3, x3

ui

Figure 2.2: Body V is split into two by a discontinuous singular interior surface S.

The original domain V is divided into two subdomains V + and V − by the interior surface S.
In terms of real world applications, the body V could represent a composite laminate, and S
would then represent the adhesive between two adjacent lamina V + and V −. The surface S
would in this case be the path of delamination.

In general the principle of virtual work does not apply to discontinuous systems, however, it
can be used in its original form for each continuous subdomain, and the discontinuous system
can then be represented by introduction of extra boundary conditions for the interior surface
discontinuity. Therefore it is natural to review the principle of virtual work for continuous
systems.

For this purpose, the solid deformable body in Fig. 2.1 is reconsidered. The whole body V
is considered a continuous system and the crack at the right end of the figure is neglected.
The external virtual work for such a system can be written as:

δWext =

∫
V
BiδuidV +

∫
Ω
T̂iδuidΩ (2.1.6)

Where the surface integral has been extended to cover the entire external surface Ω, since
displacements are prescribed on Ωu, meaning that δui = 0 on Ωu, and therefore Ωu does not
contribute to the second integral of Eq. (2.1.6). Note that V and Ω refer to the deformed
configuration. In the deformed state an internal virtual work will exist due to the stress and
strain fields within the deformable body. The internal virtual work Wint is calculated in Eq.
(2.1.7). The stress field is described in terms of Cauchy’s stress tensor σij , which represents
the force in the deformed configuration per unit deformed area. Cauchy’s stress tensor is
work conjugate with the Almansi strain tensor. For small deformation analyses, the Almansi
strain tensor is equal to the infinitesimal strain tensor eij [Kildegaard, 2013], which is given
in Eq. (2.1.5) when the last nonlinear term is ignored. The internal virtual work can then
be calculated as:

δWint =

∫
V
σijδeijdV (2.1.7)
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Having obtained expressions for δWext and δWint, the principle of virtual work can be formu-
lated. In terms of physics the principle states: A necessary condition for equilibrium is that
for any kinematically compatible deformation field (δui; δeij), the external virtual work, with
statically compatible external forces1, must equal the internal virtual work. Note the princi-
ple is independent of any constitutive law and applies to all materials, within the limitations
of small deformations. Mathematically the principle reads:

δWext = δWint (2.1.8)

Having refreshed the principle of virtual work for a continuous system, it is now applied for a
discontinuous system as shown in Fig. 2.2. In crack propagation problems, the displacement
field will be discontinuous across an interior surface of the body. According to the principle
of virtual work, the deformation field variations need to be kinematically compatible, which
implies satisfaction of any prescribed displacement boundary conditions, and possessing con-
tinuous first order partial derivatives wrt. spatial coordinates in the interior of the body.
However, in case of an interior surface of displacement discontinuity, the kinematic compat-
ibility are not satisfied [Malvern, 1969]. Therefore, the principle of virtual work cannot be
applied for the whole domain at once. To circumvent this issue, the principle of virtual work
is applied for each subdomain, in which the derivatives of the displacement field, ui,j , are
continuous [Goyal, 2003], [Malvern, 1969], and formulate the local tractions/separations re-
sulting from the crack opening as extra boundary conditions along the interfacial surfaces S±.

Following the approach in [Goyal, 2003], the original domain V in Fig. 2.1, is now divided
into two subdomains V + and V − as illustrated in Fig. 2.2, which is divided by an interior
strong singular discontinuous surface S, across which, the displacement field might exhibit
jumps. The surface S represents an interfacial surface, and is bounded by the upper and
lower surfaces of V + and V − referred as S+ and S− respectively, which is illustrated in Fig.
2.3. The surfaces S, S+ and S− are defined by their outward unit normal vectors. Note the
presence of a global fixed Cartesian coordinate system. The Xi coordinates denotes material
coordinates in the undeformed configuration, while xi denotes material coordinates in the
deformed configuration.

X1, x1

X2, x2

X3, x3

vj
+

vj
-

vjV+

V+

V-

V-

S=S-=S+

S+

S-

S

Figure 2.3: A simple planar representation of surfaces S̄, S+, S− and their outward unit
normal vectors.

The surfaces S, S+ and S− are assumed to be coincident in the undeformed configuration,
meaning the interface thickness is zero. During deformation, the surfaces S+ and S− displace
independently of one another, creating a crack, having S+ and S− as newly formed crack
faces. The crack faces are illustrated at the right end of Fig. 2.2. The arrows shown in the
figure represent tractions, T±

i , resulting from a material law, describing the interfacial surface.

1The external loads are said to be statically compatible, if there is over all equilibrium for the body from
a viewpoint of rigid-body mechanics.
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The principle of virtual work, can be written separately for each continuous subdomain:∫
V +

BiδuidV +

∫
Ω+

T̂
(v)
i δuidΩ+

∫
S+

T+
i δu

+
i dS =

∫
V +

σijδeijdV (2.1.9)∫
V −

BiδuidV +

∫
Ω−

T̂
(v)
i δuidΩ+

∫
S−
T−
i δu

−
i dS =

∫
V −

σijδeijdV (2.1.10)

According to Newtons third law of action/reaction, the resultants due to the traction com-
ponents acting on any interior surface must be continuous. However, the stress components
are not necessarily continuous. A force balance equation is set up for the resultants acting
on the interfacial surface [Goyal, 2003], that is for all xi ∈ S±, the following should apply:

σ+ijv
+
j dS

+ + σ−ijv
+
j dS

− = 0 Or
T+
i dS

+ + T−
i dS

− = 0 ∀xi ∈ S± (2.1.11)

By adding Eq. (2.1.9) and Eq. (2.1.10), and substituting the relation in Eq. (2.1.11) in the
resulting expression, one can obtain the following:∫

V
BiδuidV +

∫
Ω
T̂
(v)
i δuidΩ+

∫
S+

T+
i (δu+i − δu−i )δuidS =

∫
V +

σijδeijdV ⇔∫
V
BiδuidV +

∫
Ω
T̂
(v)
i δuidΩ =

∫
V +

σijδeijdV −
∫
S+

T+
i δ(u

+
i − u−i )dS (2.1.12)

Where it has also been utilized, that V = V ++V − and Ω = Ω++Ω−. Note the variation in
the second integral of the right hand side, δ(u+i − u−i ); this is an expression for the displace-
ment jump across the surface.

A posteriori it is known to be convenient, to introduce an interfacial midsurface S̄, from
which the mechanics of the interface can be defined. The interior surface of strong disconti-
nuity S is assumed coincide with the midsurface S = S̄ throughout the deformation process.
Accordingly, the traction and displacement jump vectors, will eventually be determined from
this midsurface. The midsurface is defined as the average distance between points in S+ and
S− which in the undeformed configuration is coincident. The mathematical description of
the midsurface is explored further when the interface kinematics are also described in more
detail in Sec. 2.1.3. For now, the midsurface is simply introduced in the governing equation
of the interface, by reformulating the last integral of the right hand side of Eq. (2.1.12).

The previously defined tractions T±
i are acting on the surfaces S±. A traction vector associ-

ated with the midsurface is introduced as T̄i, whose components act in the direction of Xi.
By use of Newtons third law, and treating the surface S+ as reference, the traction acting on
the midsurface is related to the traction acting on S+ as follows:

T+
i dS

+ = −T̄idS̄ ∀xi ∈ {S+; S̄}

With this relation, the governing equation in Eq. (2.1.12) can be rewritten in terms of the
midsurface S̄ rather than the upper surface S+:∫

V
BiδuidV +

∫
Ω
T̂
(v)
i δuidΩ =

∫
V
σijδeijdV +

∫
S̄
T̄iδ(u

+
i − u−i )dS̄ (2.1.13)

This equation is the principal of virtual work for a continuum with an interior surface of
discontinuity in the displacement field. The expression is similar to the equation for a contin-
uous system in Eq. (2.1.8), except the last integral which represents the virtual work done by
the interfacial tractions in S̄. The quantity T̄i is the interfacial traction component acting on
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CHAPTER 2. COHESIVE ZONE MODELLING

a unit deformed interfacial midsurface area, being work conjugate to the displacement jump,
(u+i − u−i ), and S̄ is the midsurface area.

Note the displacement jump component (u+i − u−i ), is measured along the coordinate Xi.
A description of the tractions and displacement jumps referring to the global coordinate
system is not convenient, since it excludes the possibility to determine which traction and
displacement jump components that are associated with normal and tangential directions of
the midsurface. This is a complication in terms of the interface material law to be postulated,
since it relies on knowing the normal and tangential directions locally at the midsurface.
Therefore a local coordinate system will be defined, such that its basis vectors are normal
and tangential to the midsurface S̄. With this modification the virtual work of a discontinuous
system reads:∫

V
BiδuidV +

∫
Ω
T̂
(v)
i δuidΩ =

∫
V
σijδeijdV +

∫
S̄
Θijτjδ(u

+
i − u−i )dS̄ (2.1.14)

Where τj are the interfacial traction components acting on a unit deformed interfacial mid-
surface area, Θij is a second order rotation tensor relating the local midsurface coordinate
system to the global fixed coordinate system (X1, X2, X3). With this modification, the com-
ponents τj have a direct physical meaning in terms of normal and tangential directions to
the midsurface; the components τ1 and τ2 are associated with tangential directions of the
midsurface, while τ3 is associated with the normal direction. The formulation of a proper
rotation tensor and further elaboration on the local midsurface coordinate system are given
in the following section.
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2.1. GOVERNING SYSTEM OF EQUATION

2.1.3 Interface Kinematics
In the previous section it was argued, that the midsurface, S̄, is assumed to follow the prede-
fined crack path, S, depicted in Fig. 2.2. Additionally, the interfacial mechanics are referred
to the midsurface, e.g. the traction vector components τj represents tangential and normal
directions for a specific point on the midsurface. The crucial problem at hand is to determine
the rotation tensor Θij , which enables one to define the orientation of a local coordinate
system (ē1, ē2, ē3), at some material point of the midsurface, S̄, with respect to the global
fixed Cartesian coordinate system (X1, X2, X3). Furthermore, the orientation of (ē1, ē2, ē3)
should be expressed in terms of the upper and lower surface displacements u±i [Goyal, 2003].

Fig. 2.4 illustrates the deformation process of an arbitrary interfacial surface. Consider an
arbitrary point P 0 in the undeformed configuration, here P 0 is coincident with more points:
P+ ∈ S+ and P− ∈ S−. During the deformation process, the points will displace as described
by vectors u±i . From the geometrical definition of the midsurface S̄, a midpoint, P̄ , defined as
the average distance between surfaces S+ and S−, will define a point within the midsurface,
as illustrated by the point P̄ ∈ S̄ in Fig. 2.4. In [Goyal, 2003] is an equation for points within
the midsurface derived, x̄i, in terms of the global Cartesian coordinate system as:

x̄i = Xi +
1

2

(
u+i − u−i

)
(2.1.15)

Where Xi are the coordinates of an arbitrary material point, e.g. P 0, in the undeformed
configuration, and u±i describes the displacement, measured along Xi, of the material point.
Note the middle surface is coincident with S0 when u+i = u−i = 0.
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X3, x3, u3

Figure 2.4: A cut-out of the crack path surface Γd in deformed and undeformed configuration.

Following the procedure in [Goyal, 2003], the local coordinate system, (ē1, ē2, ē3), is derived
from a curvilinear coordinate system (ξ, η) located on the midsurface, as illustrated in the
deformed configuration of Fig. 2.4. The tangential directions are obtained as the curvilinear
gradients of the midsurface:

νξi = x̄i,ξ (2.1.16)
νηi = x̄i,η (2.1.17)

However, the curvilinear coordinates, and hence the gradients νξi and νηi , are not in general
mutually orthogonal. Alternatively, a local orthonormal coordinate system based on cross
products and norms of the tangential curvilinear gradients is established. The i’th component
of the local coordinate system is denoted (ē1i , ē

2
i , ē

3
i ) and given as follows:

ē1i =
νξi
|νξi |

, ē3i =
νξi × νηi
|νξi × νηi |

, ē2i = ē3i × ē1i , Θij =

 ē11 ē12 ē13
ē21 ē22 ē23
ē31 ē32 ē33

 (2.1.18)

The components of (ē1i , ē2i , ē3i ) defines the rotation/transformation tensor Θij at some mate-
rial point P̄ ∈ S̄.
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CHAPTER 2. COHESIVE ZONE MODELLING

The rotation tensor can be utilized to express the displacement jump vector, (u+i − u−i ), in
terms of normal and tangential directions in the local coordinate system at any material point
in the midsurface S̄. The resulting vector is denoted as the local displacement jump vector,
∆i:

∆i = Θij(u
+
i − u−i ) (2.1.19)

The rotation tensor enables one to relate a global coordinate system to a local coordinate
system, and identify tangential and normal directions locally. However, the rotation tensor
is formulated without reference to the orientation of the crack front. Consequently, the
kinematic interface model is incapable of distinguishing between the crack opening modes
associated with the tangential direction of the overall crack front, hence shear modes mode
II and mode III are indistinguishable. Therefore, a combined shear mode is often introduced,
which is spanned by the local tangential directions ē1 and ē2. This is illustrated by τs and
∆s in Fig. 2.4.

2.1.4 Cont’d Principal of Virtual Work for Discontinuous Systems
In the previous sections, the strong form of the boundary value problem at hand has been
transformed into a weak formulation by setting up a functional using virtual work principles.
The weak form is given in Eq. (2.1.14). The surfaces and volume integrals in Eq. (2.1.14)
refers to the volume and surfaces in the deformed configuration. The volume integral on
the right hand side, which represents the internal virtual work of the bulk material, is now
modified to be evaluated over the reference volume V 0. This modification enables one to
apply the Green-Lagrange strain tensor including the nonlinear terms given in Eq. (2.1.5).
This strain tensor refers to the undeformed configuration and is capable of representing large
strains, which in general is encountered in crack propagation problems [Goyal, 2003]. In
order to have a work conjugate pair of stress and strain tensors in the functional, the stress
tensor is also modified to the second Piola-Kirchhoff stress tensor (PK2), Sij . The modified
governing equation is shown in Eq. (2.1.20).∫

V
BiδuidV +

∫
Ω
T̂
(v)
i δuidΩ =

∫
V 0

SijδεijdV +

∫
S̄
Θijτjδ(u

+
i − u−i )dS̄ (2.1.20)

The switch of stress and strain tensors in calculating the internal virtual work of the bulk
material changes nothing in the derivation process. The fundamental concept of the principle
of virtual work for finite deformation analysis is the same as in case of infinitesimal defor-
mation analysis. However, it necessitates to distinguish between undeformed and deformed
configurations and use a suitable pair of work conjugate stress and strain tensors.
For convenience is the expression in Eq. (2.1.20) rewritten to a residual form as shown in Eq.
(2.1.21). The variation of internal virtual work is shown as δWint, representing variations of
the work done by the stress state Sij . The variation of the external work is shown as δWext

and represents the variation of the work done by body forces and tractions acting on the
external surface. The remaining integral represents work done by interfacial tractions.

I(ui) =

∫
V
BiδuidV +

∫
Ω
T̂
(v)
i δuidΩ︸ ︷︷ ︸

δWext

−


∫
V 0

SijδεijdV︸ ︷︷ ︸
δWint

+

∫
S̄
Θijτjδ(u

+
i − u−i )dS̄

 = 0

(2.1.21)
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2.1.5 Finite Element Discretization
The boundary value problem is too complex to be solved analytically for general structures
and nonlinearities. Therefore a numerical solution is sought. The standard displacement
based finite element method is used in this report to solve the system of nonlinear equations.
The sources of nonlinearity are material nonlinearity of the interface material law, and po-
tentially geometrical nonlinearity of the bulk material, which is often encountered in crack
propagation problems [Goyal, 2003].

The FEM is based on weak formulations, i.e. the functional depends not on the state vari-
ables and its derivatives at a particular material point, but upon their integrated effect over
the whole domain. Consequently, the boundary value problem is solved in weak form which
means that conditions that must be fulfilled such as equilibrium conditions and non-essential
boundary conditions (in general stress boundary conditions) are only satisfied in an average
sense, and not at every material point [Cook et al., 2002].

The current mathematical model of the boundary value problem in Eq. (2.1.21) is exact
and contains an infinite number of degrees of freedom (d.o.f.) (namely the displacement
components of every material point). The FEM substitutes the exact mathematical model
with an approximate mathematical model2, by introduction of assumed displacement fields
ũi and a finite number of degrees of freedom in the functional I(ui). However, the assumed
displacement fields impose artificial constraints on the original mathematical model, since
only a subclass of displacement fields are possible and therefore the displacement field is
enforced to have a certain spatial variation. Consequently, the approximate solution is in
general overly stiff compared to the original mathematical model [Cook et al., 2002].
The introduction of assumed displacement fields is done by discretizing the domain into a
finite number of subdomains (elements), and interpolate the displacement field within each
element from nodal d.o.f. dk through use of shape functions Nik.

ũi = Nikdk (2.1.22)

The virtual displacement field δũi must be kinematically compatible, i.e. satisfy essential
boundary conditions. The assumed displacement field ũi is a function of the nodal displace-
ments. The variation of the assumed displacement field is obtained as:

δũi =
∂ũi
∂dk

δdk =
∂

∂dk
(Nikdk) δdk = Nikδdk (2.1.23)

Keeping in mind that the virtual displacement field δũi is a function of nodal displacements
δdk, the residual expression, I(ui) in Eq. (2.1.21) can be rewritten as:

I(ũi) =

∫
V

Bi
∂ũi

∂dk
δdkdV +

∫
Ω

T̂
(v)
i

∂ũi

∂dk
δdkdΩ−

(∫
V 0

Sij
∂εij
∂dk

δdkdV +

∫
S̄

Θijτj
∂(u+

i − u−
i )

∂dk
δdkdS̄

)
= 0

(2.1.24)

Direct application of the relation in Eq. (2.1.23) is used to rewrite this expression further.
Additionally, since the virtual nodal displacement components δdk are constants with respect
to the integrations, these can be moved out side the integral signs.

I(ũi) = δdk

(∫
V

BiNikdV +

∫
Ω

T̂
(v)
i NikdΩ−

(∫
V 0

Sij
∂εij
∂dk

dV +

∫
S̄

Θijτj
∂(u+i − u−i )

∂dk
dS̄

))
= 0

(2.1.25)

2A finite element form of the Ritz method.
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The principle of virtual work states that equilibrium between internal and external vir-
tual works, I = 0, should prevail for any small kinematical compatible variation of the
displacement field. Given that the nodal displacement variables satisfy essential boundary
conditions, the components δdk can be chosen arbitrarily and independently of one another.
Consequently, each nodal variable δdk could be chosen non-zero, while the remaining nodal
variables are identically zero. Thus for a finite system of n d.o.f. there exists n associated
equations given as follows, for k=1...n:

Ik =

∫
V
BiNikdV +

∫
Ω
T̂
(v)
i NikdΩ−

(∫
V 0

Sij
∂εij
∂dk

dV +

∫
S̄
Θijτj

∂(u+i − u−i )

∂dk
dS̄

)
= 0

(2.1.26)

Given the discretization of the whole domain into a finite number of elements, the volume and
surface integrals can conveniently be split into a sum of integrals over each element volume
and element surface, respectively. Suppose the whole element is divided into a number of
nElem elements, Eq. (2.1.26) can then be written as:

Ik =

nElem∑
m=1

∫
V e
m

BiNikdV +

∫
Ωe

m

T̂
(v)
i NikdΩ−

(∫
V 0e
m

Sij
∂εij
∂dk

dV +

∫
S̄e
m

Θijτj
∂(u+i − u−i )

∂dk
dS̄

)
= 0

(2.1.27)

It is noted that equations Ik are formulated in four different integration domains: V e, Ωe,
V 0e and S̄e. V e represents the volume of an element within the bulk material in the de-
formed configuration. Ωe represents the surface area of a boundary (external) element. V 0e

represents the element volume of an element within the bulk material in the undeformed
configuration. S̄e represents the midsurface area of an interface element in its deformed con-
figuration. Consequently, for a given element number m in Eq. (2.1.27), not all integral
terms enters the summation, since it depends on the element type. It is also noted that no
extra approximations to the mathematical model are introduced by splitting the total volume
and surface integrals into a sum of volume and surface integrals evaluated on element level
and subsequently summed up.

Eq. (2.1.27) forms the governing system of equations for the finite element analysis to be
conducted. The system consists of n equations in n unknowns. Each equation, k, represents
an equilibrium equation which is obtained by discritization of the principle of virtual work for
a discontinuous system, taking into account possible large deformations of the bulk material,
and nonlinearity of the interfacial material law. The governing equation and the variables
are summerized here in compact notation:

Ik(d1, d2, ..., dn) = 0, for k = 1...n (2.1.28)

The integrals are evaluated numerically using Newton-Cotes quadrature rules. Regarding
the interface elements, the order of integration rule applied, depends on the element damage
state. In this work, for undamaged and fully damaged elements, a two point quadrature
rule is used, while elements under damage development uses a 10 point quadrature rule, as
suggested in [Bak et al., 2014].
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2.2 Constitutive Relation
Formulating constitutive equations for a cohesive zone model, requires one to calculate cohe-
sive tractions τi for any local displacement jump ∆j . Additionally, to numerically implement
the constitutive law, a constitutive tangent stiffness tensor is needed, to relate variations
in tractions to variations in local displacement jumps. This is a necessity since the crack
propagation problem is inherently nonlinear and must be solved incrementally.
Based on the derivation in [Turon et al., 2006] an expression for cohesive tractions for any
value of the local displacement jump vector ∆j and damage parameter d is given in Eq.
(2.2.1):

τi = (1− d)D0
ij∆j (2.2.1)

Wherein D0
ij is a second order stiffness tensor of the undamaged material, which in turn cor-

responds to the penalty stiffness. In case of equal elastic stiffness K(eq) in all three directions
the tensor reduces to D0

ij = K(eq)δij . As damage develops, the effective stiffness decreases.
Negative values of the local displacement jump vector associated with mode I deformation,
∆3, would result in interfacial penetration of two layers. This do not have any physical
meaning, because interpenetration is prevented by contact. Therefore a modification of Eq.
(2.2.1) is proposed [Turon et al., 2006]:

τi = (1− d)D0
ij∆j − dD0

ij(δ3j⟨−∆3⟩) (2.2.2)

In which ⟨·⟩ is the MacAuley bracket defined as ⟨x⟩ = 1
2(x+ |x|). The modification ensures,

that in case of negative ∆3 the stiffness is unaffected by damage and becomes equal to the
penalty stiffness, such that τ3 = K33∆3. This is clarified by writing the equation above in
Voigt notation:

τ1
τ2
τ3

 = (1− d)

 K11 0 0
0 K22 0
0 0 K33


∆1

∆2

∆3

− d

 K11 0 0
0 K22 0
0 0 K33


0
0
⟨−∆3⟩


(2.2.3)

The constitutive relation in Eq. (2.2.2) is completely defined if a damage evolution law
describing the damage parameter at every time instant during the deformation process is for-
mulated. However, before considering this further, the formulation of a constitutive tangent
stiffness tensor is considered.

2.2.1 Constitutive Tangent Stiffness Tensor

The rate of change of tractions is related to the rate of change of the separations by the
constitutive tangent stiffness tensor as expressed in Eq. (2.2.4):

dτi
dt

= Dtan
ij

d∆j

dt
(2.2.4)

Where t represents a pseudo solution time during a nonlinear solution process. This relation
might equivalently be written in terms of variations as: δτi = Dtan

ij δ∆j . Prior to deriving an
expression for the tangent stiffness tensor, its situation dependent behaviour is highlighted;
the tangent stiffness tensor not only depends on the current state of damage, but also whether
loading/unloading/reloading is expected.

To establish an expression for the constitutive tangent stiffness tensor one needs the time
derivative of Eq. (2.2.2). It is assumed that the penalty elastic stiffnesses in the 1-,2-, and
3-direction are equal, such that D0

ij = K(eq)δij . Recalling that both the damage parameter d
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and the interfacial separation ∆j are functions of time.

dτi
dt

= −ḋD0
ij∆j + (1− d)D0

ij∆̇j − ḋD0
ijδ3j⟨−∆3⟩ − dD0

ijδ3j
d(⟨−∆3⟩)

dt

Considering the last term and rewriting this:

− dD0
ijδ3j

d(⟨−∆3⟩)
dt

= −dD0
ijδ3j

∂⟨−∆3⟩
∂∆3

d∆3

dt
=

− dD0
ijδ3j

⟨−∆3⟩
∆3

∆̇3 = −dD0
ijδ3j

⟨−∆j⟩
∆j

∆̇j

Substituting this term into the expression for dτi/dt, and using the relation D0
ij = δijK

(eq)

τ̇i = −ḋδijK(eq)∆j + (1− d)δijK
(eq)∆̇j − ḋδijK

(eq)δ3j⟨−∆3⟩ − dδijK
(eq)δ3j

⟨−∆j⟩
∆j

∆̇j ⇔

τ̇i = δijK
(eq)

[
(1− d)− dδ3j

⟨−∆j⟩
∆j

]
∆̇j − δijK

(eq) [∆j + δ3j⟨−∆3⟩] ḋ ⇔

τ̇i = δijK
(eq)

[
1− d

(
1 + δ3j

⟨−∆j⟩
∆j

)]
∆̇j − δijK

(eq)

[
1 + δ3j

⟨−∆j⟩
∆j

]
∆j ḋ (2.2.5)

Thus, under the assumption of equal elastic stiffnesses in the 1-, 2-, and 3-direction, the time
derivative of the interfacial traction τ̇i is given in Eq. (2.2.5). Since Dtan

ij explicitly relates τ̇i
to ∆̇j , an expression for the damage parameter d and its time derivative ḋ are still required.
This is a topic of the following sections concerning the formulation of a damage model.

2.3 Damage Mechanics Model
A cohesive zone model is partially formulated in the framework of damage continuum me-
chanics, which motivates a further explanation of the damage parameter and its evolution,
which is the topic of the current section. To arrive at an expression for the damage evolution
law, the concept of an equivalent mixed mode CZ law is introduced and a discussion of mode
mixity interaction is given.
The damage model describes the evolution of the damage parameter, d, which controls the
degradation of the interface stiffness. The damage parameter is a scalar, which should de-
velop concurrently with the energy dissipation during the fracture process. For an undamaged
interface, the damage parameter is equal to zero, d = 0, and upon full damage it is equal
unity d = 1, in which case, the effective interface stiffness is equal to zero. The damage pa-
rameter function must be monotonically increasing during the deformation process to ensure
irreversibility.

Various approaches to formulate a mixed mode CZ model exists, such as models with decou-
pled mode I and II, potential based models, and equivalent one-dimensional cohesive zone
models. In this report, the latter approach of an equivalent mixed mode CZ law is applied,
i.e. a scalar expression relating norms of the traction and separation vectors as function of
the damage parameter d will be established. Ergo, although the cohesive state is described
by vectors of several components, the resulting CZ law is a one-dimensional law in terms of
traction- and separation vector norms. The evolution of the damage parameter is controlled
by this equivalent mixed mode CZ law.
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Figure 2.5: (a) Separation vector δ⃗ and its components for use in damage models. 3D
description includes the whole light grey box, while the 2D description is confined to the blue
plane. (b) Local coordinate system at interfacial midsurface S̄.

Damage development is directly related to fracture energy dissipation. The damage model is
only concerned with tractions and separations that affect damage development. Hence, the
full kinematic and constitutive relations given in the previous sections in terms of ∆⃗ and τ⃗ ,
contains redundant information concerning situations where either no damage develops or
cases where the damage development is identical. E.g. in case of ∆3 < 0 no damage will
develop, and independently of the sign of shear associated separations, the damage develop-
ment is the same.

Therefore, the damage model constitutive and kinematic equations are simplified to repre-
sent only tractions and separations that contribute to fracture energy dissipation. For this
purpose, a new notation is introduced for use in the damage model. Here σ⃗ and δ⃗ will rep-
resent tractions and separations in the cohesive zone respectively. These are related to the
previously defined tractions and separations as follows:

δ⃗ = ⌊δ1 δ2 δ3⌋T = ⌊|∆1| |∆2| ⟨∆3⟩⌋T (2.3.1)
σ⃗ = ⌊σ1 σ2 σ3⌋T = ⌊|τ1| |τ2| ⟨τ3⟩⌋T (2.3.2)

Note it is assumed that negative normal openings, ∆3 < 0, do not affect damage develop-
ment, and positive and negative values of shear mode openings are treated equally. The two
upcoming subsections regarding damage kinematic and damage constitutive relations, Sec.
2.3.1 and 2.3.2 respectively, are inspired by [Hansen and Lund, 2009], wherein the equivalent
one-dimensional CZ law is also derived, but in a different kinematic description. In [Hansen
and Lund, 2009], the mode mixity is described in terms trigonometric functions of angles θ
and ϕ, whereas the kinematic description here is described in terms of mode mixity ratios β
and ϱ.
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2.3.1 Damage Kinematic Relations
A local coordinate system at some point in the cohesive zone is shown in Fig. 2.5b. The
coordinate system is spanned by three unit vectors e⃗1, e⃗2 and e⃗3 which are assumed to be
associated with crack opening modes III, II and I, respectively. The separation vector δ⃗ is
shown in Fig. 2.5a in spherical coordinates; it is completely defined by its norm λ, and two
angles θ(β) and ϕ(ϱ) describing the mode mixity. However, the angles are only used for
illustration purposes, the mode mixity is actually described by parameters β and ϱ (to be
defined). A shear separation norm is introduced as δs:

δs =
√

(δ1)2 + (δ2)2 (2.3.3)

which makes the notation convenient. A single separation parameter is introduced as the
Euclidean norm of δ3 and δs and is denoted by λ:

λ =
√
(δ3)2 + (δs)2 (2.3.4)

λ is referred to as the equivalent displacement jump norm. It is a non-negative and con-
tinuous function containing the MacAuley bracket in the definition of δ3. The introduction
of an equivalent displacement jump norm, λ, in the damage model is convenient. It gives
the possibility to define concepts of loading, unloading and reloading, since it provides one
equivalent, or accumulated, measure of the displacement jump state. For instance how would
one define whether the local displacement jump is in a state of unloading or loading, if δ1
and δ2 are both increasing, but δ3 is slightly decreasing.
A mixed mode equivalent CZ law can be formulated on the basis of λ and mode mixity
ratios. The mode mixity ratios are quantified by parameters β and ϱ and are given in Eq.
(2.3.5). These mode mixity ratios are evaluated at every point in the cohesive zone from the
separation components δi.

β =
δs

δs + δ3
ϱ =

δ2
δ2 + δ1

(2.3.5)

By comparing these expressions with Fig. 2.5a and 2.5b, it is seen that β = 0 corresponds to
pure mode I, β = 1 ∧ ϱ = 0 corresponds to pure mode III, and β = 1 ∧ ϱ = 1 corresponds
to pure mode II. Note by the introduction of ϱ, it is assumed that the mode II and mode
III associated separations can be distinguished. To the authors knowledge, this has not yet
been successfully implemented in a finite element model context, since the global orientation
of the crack front with respect to the specimen dimensions and orientations are unknown.
However, to keep the derivation of a mixed mode CZ law general, it is assumed that mode II
and mode III separations can be distinguished, unless stated otherwise. The expressions in
Eq. (2.3.5) can be rewritten such that ratios of the separation components are obtained:

δ3
δs

=
1− β

β

δ1
δ2

=
1− ϱ

ϱ
(2.3.6)

Using the definition of λ in Eq. (2.3.4) and the expressions above, the following relations
have been derived:

δ3
λ

=
1− β

β̂
;

δs
λ

=
β

β̂
(2.3.7)

δ1
δs

=
1− ϱ

ϱ̂
;

δ2
δs

=
ϱ

ϱ̂
(2.3.8)

Wherein the values denoted by hat (̂·) are given as:

β̂ =
√

1 + 2β2 − 2β ϱ̂ =
√
1 + 2ϱ2 − 2ϱ (2.3.9)
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2.3. DAMAGE MECHANICS MODEL

Kinematic relations for every separation component δi can then be written in terms of the
mode mixity parameters β and ϱ and the equivalent displacement jump norm λ, as given in
Eq. (2.3.10) and illustrated in Fig. 2.5a.

δ⃗ =


δ1
δ2
δ3

 = λ


β(1−ϱ)

β̂ϱ̂
βϱ

β̂ϱ̂
1−β

β̂

 (2.3.10)

It is noted that the norm of the vector enclosed in curly brackets on the right hand side is
equal to unity independently of the values of β and ϱ, hence the length of the separation
vector is |δ⃗| = λ. The separation vector δ⃗ is then expressed as a function of the equivalent
displacement jump norm and the mode mixity ratios.

2.3.2 Damage Constitutive Relation
The damage constitutive equation is written in terms of the traction- and separation vectors,
the damage parameter and penalty stiffnesses in Eq. (2.3.11). Note that is written in terms
of σ⃗ and δ⃗ rather than τ⃗ and ∆⃗ for the reason explained in the beginning of this Sec. 2.3,
regarding traction and separation values contributing to fracture energy dissipation.

σ⃗ = (1− d)[D0]δ⃗; [D0] =

 K11 0 0
0 K22 0
0 0 K33

 (2.3.11)

Non-isotropy of the elastic stiffness matrix [D0] is taken into account by allowing the penalty
stiffnesses Kii to be different. In the previous section, when Dtan

ij was derived, the elastic
stiffnesses were assumed identical in all three directions, such that Kii = K(eq). However,
non-isotrophy is taken into account for the sake of generality.

Eventually, the damage constitutive relation reduces to a scalar expression in terms of the
norm of the separation and traction vectors known as the equivalent mixed mode CZ law.
For the pair of traction and separation norms to be work conjugate, the vector associated
with the work conjugate traction norm needs to be coincident with the separation vector δ⃗.
Reconsidering the damage constitutive relations in Eq. (2.3.11), the non-isotrophy of the
elastic stiffness matrix [D0] can cause the traction vector σ⃗ to be non-coincident with the
separation vector δ⃗, as illustrated in Fig. 2.6. Consequently the traction vector σ⃗ is in general
not work conjugate with the separation vector δ⃗.

To circumvent this issue, a work conjugate traction vector, denoted by a bar ⃗̄σ, is introduced,
as the projection of σ⃗ onto δ⃗, and denoted by ⃗̄σ.

⃗̄σ = proj
δ⃗
(σ⃗) =

σ⃗ · δ⃗
δ⃗ · δ⃗

δ⃗ (2.3.12)

This traction vector is coincident with the separation vector as illustrated in Fig. 2.6. Con-
sidering the numerator and the denominator of this fraction separately. By the definition of
Euclidean norm of a vector, the denominator reduces to the following: δ⃗ · δ⃗ = |δ⃗|2 = λ2. The
numerator σ⃗ · δ⃗ is calculated as follows:

σ1
σ2
σ3




β(1−ϱ)

β̂ϱ̂
βϱ

β̂ϱ̂
1−β

β̂

λ =

(
σ1
β(1− ϱ)

β̂ϱ̂
+ σ2

βϱ

β̂ϱ̂
+ σ3

1− β

β̂

)
λ
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σ1

σ2

σ3

δ1
δ2

δ3

e3

e2

e1

δ

σ

σ

Figure 2.6: Concept of work conjugate traction norm, the figure is based on [Hansen and
Lund, 2009]

The right hand side in Eq. (2.3.12) can then be written as follows:

⃗̄σ =

(
σ1
β(1− ϱ)

β̂ϱ̂
+ σ2

βϱ

β̂ϱ̂
+ σ3

1− β

β̂

)
λ

λ2
δ⃗ ⇔

⃗̄σ =

(
σ1
β(1− ϱ)

β̂ϱ̂
+ σ2

βϱ

β̂ϱ̂
+ σ3

1− β

β̂

)
δ⃗

λ
(2.3.13)

An expression for a mixed mode work conjugate traction vector is then obtained. The norm
of this vector is denoted σ̄ = |⃗̄σ|, being the mixed mode work conjugate traction norm, which
plays an essential role when establishing the equivalent mixed mode CZ law. The norm of ⃗̄σ
is readily calculated from Eq. (2.3.13) since |cδ⃗| = c|δ⃗| with c being a scalar and the norm of
the separation vector |δ⃗| = λ. Hence, the fraction δ⃗/λ at the far right end cancels, and the
norm of ⃗̄σ becomes:

σ̄ = σ1
β(1− ϱ)

β̂ϱ̂
+ σ2

βϱ

β̂ϱ̂
+ σ3

1− β

β̂
(2.3.14)

Having established an expression for the work conjugate traction norm, the mixed mode CZ
law can be calculated by using the damage constitutive relation in Eq. (2.3.11) and the
damage kinematic relations in Eq. (2.3.10). Substituting the kinematic relation into Eq.
(2.3.11), one obtains the following:


σ1
σ2
σ3

 = (1− d)

 K11 0 0
0 K22 0
0 0 K33




β(1−ϱ)

β̂ϱ̂
βϱ

β̂ϱ̂
1−β

β̂

λ ⇔


σ1
σ2
σ3

 = (1− d)


K11

β(1−ϱ)

β̂ϱ̂

K22
βϱ

β̂ϱ̂

K33
1−β

β̂

λ
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The expression for every traction component σi is then substituted into Eq. (2.3.14) from
which the following expression for the work conjugate traction norm can be obtained:

σ̄ = K(1− d)λ (2.3.15)

K = K11

(
β(1− ϱ)

β̂ϱ̂

)2

+K22

(
βϱ

β̂ϱ̂

)2

+K33

(
1− β

β̂

)2

(2.3.16)

This equation is referred to as the one-dimensional equivalent CZ law. It describes a relation
between a work conjugate traction norm σ̄ and the equivalent displacement jump norm λ as
a function of the mode mixity ratios β and ϱ, the damage parameter d and elastic penalty
stiffness parameters Kii. The K parameter in Eq. (2.3.16) is an equivalent mixed mode
penalty stiffness and is also given in the equation above. In the special case of equal elastic
stiffness, e.g. K11 = K22 = K33 = K(eq), the mixed mode equivalent stiffness K reduces to
K = K(eq) according to Eq. (2.3.16).

Using the one-dimensional equivalent CZ law, an expression for the damage parameter can
be obtained:

d = 1− σ̄

Kλ
(2.3.17)

Provided that a function σ̄(λ) is known, Eq. (2.3.17) can be utilized to determine an expres-
sion for the damage evolution d(λ) once the damage threshold value is exceeded, which is
discussed later in Sec. 2.4.3.

2.3.3 Damage Model Reduction
Until now, the separation vector δ⃗ has been described in spherical coordinates as: δ⃗(ϕ(ϱ), θ(β), λ),
which is illustrated in the light grey box in Fig. 2.5a. This representation of δ⃗ has the pos-
sibility of distinguishing between mode II and mode III properties. However, the current
damage model reduces the three basic local displacement jump components into two; one
associated with mode I crack opening δ3, and one associated with a combined shear mode
δs. The shear norm δs is defined as a combination of the two shearing components in Eq.
(2.3.3). With this reduction the shear-shear mode mixity ratio ϱ becomes redundant.

The energy dissipation associated with the combined shear mode Gs is defined as: Gs =
GII + GIII . It can be shown that under the assumption of equal elastic shear stiffnesses,
Ks = K11 = K22, a combined shear traction σs can be is consequently defined as:

σs =
√
σ21 + σ22 (2.3.18)

The derivation process is omitted here, but is started by enforcing
∫ δ

(t)
s

0 σsdδs =
∑2

i=1

∫ δ
(t)
i

0 σidδi,
and using the definition of δs in Eq. (2.3.3), along with rules of integration by substitution
and assuming equal elastic shear stiffnesses. Effectively, this implies that the critical energy
dissipation for mode II and III must be equal, and the critical energy dissipation of the com-
bined shear mode Gsc = GIIc = GIIIc [Overgaard et al., 2010].
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2.4 Mode Mixity Interaction
When modelling progressive delamination using CZ modelling, one needs to define a crack
initiation criterion and a crack propagation criterion. The possibility of combining initiation
and propagation characteristics is a key advantage of CZ modelling compared to e.g. linear
elastic fracture mechanics which is only concerned with propagation while various strength
theories as e.g. Tsai-Wu [Jones and Devens, 1998] or Puck [Lund and Overgaard, 2016] are
only concerned with failure initiation.

Imagine a crack opening in pure mode I; under these circumstances, failure/damage initiation
will simply occur when the traction exceeds the onset traction σ(1)3 , since after this point irre-
versible material damage will occur. However, under mixed mode loading, mode interaction
must be taken into account for determining delamination initiation. In these cases, onset of
delamination can occur even if each traction component is less than its corresponding maxi-
mum strength σ(1)I , σ(1)II and σ(1)III . This is evident by comparison of Ye’s quadratic interaction
criterion, as shown in Eq. (2.4.1), and the maximum traction criterion as illustrated in [Turon
et al., 2006]. (

σ1

σ
(1)
1

)2

+

(
σ2

σ
(1)
2

)2

+

(
σ3

σ
(1)
3

)2

= 1 (2.4.1)

In accordance, with Griffth’s crack propagation criterion, delamination propagates when the
energy release rate equals its critical value. This is straight forward in case of pure mode crack
opening. However, in case of mixed mode crack opening it is necessary to implement mode
interaction into the propagation criterion. Various criteria for prediction of delamination
propagation under mixed mode crack opening has been proposed.
It is highlighted that there is not any universal criterion for accurately predicting these
quantities. The criteria for prediction of delamination initiation and propagation depends on
the material system at hand. However, for composites using an epoxy resin or thermoplastic
PEEK resin, the BK propagation criterion [Benezeggagh and Kenane, 1995] is reported to
agree well with experimental data [Camanho et al., 2003]. This criteria predicts the critical
energy release rate Gc as follows:

Gc = GI
c + (GII

c −GI
c)

(
GII

GI +GII

)η

(2.4.2)

The ratio of shear energy release rate to the total energy release rate, is essential to this
criterion. The constant η is determined from curve-fitting of material data. The original
BK-criterion, as stated in [Benezeggagh and Kenane, 1995], is modified to include the energy
release rate associated with mode III, as done in [Turon et al., 2006]. Hence the numerator
is modified to: Gs = GII + GIII . Additionally, a total energy release rate GT is introduced
as the total sum of energy release rates for all modes: GT = GI + Gs. The modified BK
criterion then states:

Gc = GI
c + (GII

c −GI
c)

(
Gs

GT

)η

(2.4.3)

The ratio of energy release rates will be denoted as the B-parameter as shown in Eq. (2.4.4),
and is considered in more detail in the following section.

B =
Gs

GT
(2.4.4)
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2.4.1 B for Mixed Mode CZ Law
An expression for B is sought, to be able to determine a crack propagation criterion based
on the BK-criterion for the cohesive zone model in a finite element context. This topic has
been addressed in various references, e.g. [Turon et al., 2006], [Hansen and Lund, 2009] and
[Sarrado et al., 2012], which is given a brief explanation here. Prior to this explanation, the
J-integral will be considered, as it reveals a fundamental relation, which is essential to the
understanding of the approach in [Turon et al., 2006]. The J-integral is a path independent
integral given by Eq. (2.4.5) for a solid in static equilibrium, and is evaluated over a contour
Γ as illustrated in Fig. 2.7a in case of plane problems. Additionally, the J-integral can be
used to calculate the energy release rate G [Rice, 1968], [Andreasen, 2015]:

G = J =

∫
Γ

(
ωdx2 − Ti

∂ui
∂xj

dsΓ
)

(2.4.5)

Wherein ω is the strain energy density, Ti is the traction vector defined according to the
outward unit normal vΓj along the integration path Γ, such that Ti = σijv

Γ
j . By using the

path independent property of the J-integral and evaluating it along a local integration path
ΓCZ that encloses the cohesive zone, as illustrated by ΓCZ in Fig. 2.7a, it can be shown that
[Hansen et al., 2009]:

J =
∑
i=s,3

∫ δ∗i

0
σidδi =W (2.4.6)

Wherein δ∗i denotes the end-opening separation, being the i’th separation component of the
outermost point of the cohesive zone. The equation states that the J integral, and hence
the energy release rate (J=G), can be calculated by the work of interfacial separations per
unit area at the end opening point of the cohesive zone. Note that Eq. (2.4.6) transforms
a contour integral into a sum of integrals evaluated for each separation component at the
end-opening point.

δ'δ*

ΓΓCZ

x1

x2

(a)

δs

δ*(t)

δ3

θ(β') θ(β*)

δ'(t)

(b)

Figure 2.7: (a) An illustration of the integration path for the J-integral for a plane problem
and a cohesive zone. (b) Concept of self-similar crack growth. δ∗ represents the separation
at the end opening, while δ′ represents the separation at a point inside the cohesive zone.
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A criterion for determining the critical fracture toughness under mixed mode loading is the
modified BK-criterion (repeated here for convenience):

Gc = GI
c + (Gs

c −GI
c)B

η

B =
Gs

Gs +GI

The B parameter quantifies a ratio of decomposed energy release rates. The B-parameter can
be expressed in terms of the work of interfacial separations at the end-opening according to
Eq. (2.4.6). For instance, the energy release rate associated with the normal crack opening
is computed as GI =

∫ δ∗3
0 σ3dδ3.

B =
Gs

Gs +GI
=

W s

W s +W I

∣∣∣∣
for δ∗

(2.4.7)

During the deformation process, the cohesive zone develops gradually and the B-parameter
is varying with the interfacial separation as shown in e.g. [Turon et al., 2010] and [Hansen
and Lund, 2009].
When using CZ interface elements, the B-parameter is computed locally at every integration
point within the cohesive zone. Consequently, for some given time instant, the B-parameter
is not necessarily the same at the end opening point and at an arbitrary point inside the
cohesive zone, as illustrated by the two crosses in Fig. 2.7a. In LEFM-based techniques,
the B definition is unique and serves as a global measure of mode mixity, as the crack tip is
unambiguously defined in a confined small region. However, when using cohesive elements to
simulate delamination, the B-parameter in Eq. (2.4.7) serves as an “averaged” mode mixity
ratio of the fracture process zone as a whole [Sarrado et al., 2012], and is therefore not suffi-
cient to be used at the level of element integration points.

This motivates the work of [Turon et al., 2006], which allows the mode mixity to vary through
the fracture process zone, by calculating a B-parameter at every integration point in the
cohesive zone at every time instant. Reconsidering the relation in Eq. (2.4.7), which is exact
for the end-opening point δ∗, [Turon et al., 2006] assumes this relation holds for any point
within the cohesive zone, such that:

B =
Gs

Gs +GI
≈ W s

W s +W I

∣∣∣∣
for any δ′

(2.4.8)

This mathematical approximation can in terms of physics be interpreted as assuming the
crack to grow in a self-similar manner. The concept of self similar crack growth is illustrated
in Fig. 2.7b, and basically means that, whatever history some point in the cohesive zone will
experience, every other point in the cohesive zone will also experience.

Within this framework [Turon et al., 2006] develops a bilinear CZ law for simulation of
delamination under variable mode. [Turon et al., 2006] derives an expression for B, under the
assumption of equal elastic penalty stiffnesses in the three basic directions, which explicitly
depends on the local mode mixity ratio β as given in Eq. (2.4.9). The B-parameter can be
expressed in an alternative, but identical, form in terms of local separations components δ3
and δs, which can be seen directly from the definition of β and δs in Eq. (2.3.5) and Eq.
(2.3.3) respectively.

B =
W s

W s +W I
=

β2

1 + 2β2 − 2β
=

δ2s
δ2s + δ23

(2.4.9)
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This expression computes a ratio of energy release rates from instantaneous nodal displace-
ments at every integration point inside the cohesive zone for every substep during the in-
cremental Newton-Raphson based solution procedure. Due to the explicit dependence on β,
this definition of the B-parameter is easily implemented in an interface element formulation.
However, the expression is derived in preparation for a bilinear CZ law, which is not capable
of simulating R-curve behavior as experienced in many composite laminates due to fiber-
bridging.

In [Hansen and Lund, 2009], an equivalent one-dimensional trilinear CZ law is formulated
as a simple approach to take multi-scale fracture mechanisms into consideration, i.e. mech-
anisms occurring at the crack tip (e.g. plasticity, viscoelastic deformation, matrix micro
cracking) and at larger scales (e.g. fiber-bridging) can be modelled by the same CZ law.
However, without reference to the specific shape (e.g. bilinear, trilinear or exponential) of
the one-dimensional equivalent CZ law formulation, [Hansen and Lund, 2009] derives an ex-
pression for the B-parameter similar to the one shown in Eq. (2.4.9). The original expression
for B in [Hansen and Lund, 2009] is derived using a different notation, as discussed previ-
ously, the damage kinematic description in [Hansen and Lund, 2009] is described in terms of
trigonometric functions and mode mixity angles. Nevertheless, transforming the kinematic
description to be consistent with the one used in this report, one arrives at an identical
expression for B as given in Eq. (2.4.9) under the assumption of equal elastic penalty stiff-
nesses K = K(eq) = K11 = K22 = K33. Consequently, Eq. (2.4.9) also applies in case of
a one-dimensional equivalent multilinear CZ law, which is also capable of modelling multi-
scale fracture mechanisms. The critical energy release rate at some integration point in the
cohesive zone with a given β, can thereby be estimated using the modified BK-criterion in
Eq. (2.4.3) and the B-parameter in Eq. (2.4.9).

[Turon et al., 2006] and [Hansen and Lund, 2009] are examples of approaches wherein B can
be estimated based on local and instantaneous measurements of mode mixity. Various other
approaches for estimating the B-parameter are available in the literature. For instance, the
commercial finite element code ABAQUS can use three measures of mode mixity in the cohe-
sive interface element formulation, which in general can be quite different; two that are based
on computing actual ratios of energy release rates (a) and (b) (without writing B explicitly in
terms of nodal displacements) and one based on local interfacial tractions (c). Furthermore,
the actual ratios of energy release rates can be based on the current state of deformation (a)
(nonaccumulative measure of energy) or based on the history of deformation (b) (accumula-
tive measure of energy) at an integration point [Abaqus].

A suitable measure of B is problem-dependent. Reconsidering the (a) and (b) options in
ABAQUS, it is stated in the ABAQUS analysis reference [Abaqus], that a mode mixity B
based on the instantaneous/current state of deformation is suited for mixed mode delami-
nation simulations where the primary energy dissipation mechanism is associated with the
creation of new surfaces due to failure in the cohesive zone (similar to cases where LEFM is
adequate). On the other hand, a mode mixity ratio based on deformation history is suitable
in situations where other significant dissipation mechanisms govern the overall structural
respose, e.g. fiber-bridging. Further guidelines are given in [Abaqus].
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This suggests calculating B based on deformation history, when working with material sys-
tems where fiber-bridging is likely to occur. Under the assumption of self similar crack
growth, the B-parameter can be computed according to Eq. (2.4.8) which is rewritten below
in alternative but identical expression:

B =

∑2
i=1

(∫ δ
(t)
i

0 σidδi

)
∑3

i=1

(∫ δ
(t)
i

0 σidδi

) (2.4.10)

Instead of evaluating B instantaneously for a given β, the B-parameter is evaluated by pure
mode integrals from (t=0) until the current time step (t) at every element integration point.
Consequently, B in Eq. (2.4.10), is based on deformation history. In case of a multilinear CZ
law, the integrals in Eq. (2.4.10) are evaluated exactly by applying a trapezoidal integration
rule. Due to its ease of implementation and time limitations, B as given in Eq. (2.4.9) in
terms of β is utilized in the following. However, one objective for further work is to evaluate
B based on accumulative energy release rates, which could benefit when modelling fracture
mechanisms including fiber-bridging [Abaqus].

In summary, the elastic stiffnesses are assumed to be equal for every direction K(eq) = K11 =
K22 = K33. Consequently, the B-parameter can be expressed explicitly as a function of
the normal-shear mode mixity ratio β as given in Eq. (2.4.9) for use in the BK-criterion.
Additionally, the three basic separation components are collapsed into two: δ3 and δs. Hence
it is not possible to distinguish between mode II and mode III fracture properties. A combined
shear traction component, σs, is defined as given is in Eq. (2.3.18), since the elastic shear
stiffnesses are equal, K11 = K22. This implies that the critical energy dissipation for mode
II and mode III are assumed to be equal Gsc = GIIc = GIIIc.
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2.4.2 Mixed Mode Interpolation of Multilinear CZ Laws
An n-segmented mixed mode multilinear CZ law contains a total of 2n model parameters
to be determined: σ̄(i) and δ̄(i) for i = 1...n. Some of these parameters are fixed, e.g. the
last traction point is identically zero σ̄(n) = 0, and some can be estimated directly from the
experimental data, e.g. the final separation δ̄(n), which can be read from measurements of
the separation at the initial crack tip. This is discussed further in Sec. 5.1. The remaining
mixed mode CZ parameters needs to be related to pure mode material data through inter-
polation formulae. In this section, interpolation formulae for every discrete point (δ̄(i); σ̄(i))
of the one-dimensional equivalent traction-separation curve are defined. Tractions σ̄(i) are
interpolated using a quadratic criterion similar to Ye’s criterion in Eq. (2.4.1), but inspired
by the BK-criterion. The interpolation of discrete separation points δ̄(i) are determined such
that the critical energy release rate of the one-dimensional CZ law is energy consistent with
the BK-criterion.

λ
δ(1)

σ(3)

σ(2)

σ(1)

σ(4)

σ(n-1)

σ(n)

σ

δ(2) δ(3) δ(4) δ(n-1) δ(n)

(2)W(3)

(a) (b)

Figure 2.8: (a) Symbolic n-segmented mixed mode multilinear CZ law in (σ̄; δ̄)-space. (b)
Multilinear CZ laws and interpolation between pure mode material data.

In the absence of experimental data suggesting the effect of mode mixity on the onset traction
σ̄(1), [Turon et al., 2006] combines a quadratic interaction stress criterion, e.g. Ye’s criterion
in Eq. (2.4.1) and the idea of B from the BK-criterion to formulate a delamination initiation
criterion as:

(σ̄(1))2 = (σ
(1)
3 )2 +

[
(σ(1)s )2 − (σ

(1)
3 )2

]
Bη (2.4.11)

Where σ(1)3 and σ
(1)
s represents the onset traction for the corresponding mode, and the σ̄(1)

represents the onset traction for the equivalent mixed mode CZ law, as illustrated in Fig. 2.8a.
In this report, the criterion in Eq. (2.4.11) is modified. In case of no available experimental
data, every discrete mixed mode equivalent tractions point σ̄(i) is interpolated from pure
mode material data I and s as follows:

(σ̄(i))2 = (σ
(i)
3 )2 +

[
(σ(i)s )2 − (σ

(i)
3 )2

]
Bξ (2.4.12)

The super index (i) denotes points in the traction-separation space as depicted in Fig. 2.8a.
It is assumed that every discrete traction point in the equivalent mixed mode CZ law can be
interpolated with the same curve fitting exponent ξ. Note the exponent ξ is different than
the usual exponent η used for interpolation of energy release rates.
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Given the equivalent mixed mode discrete traction points σ̄(i) according to Eq. (2.4.12), the
separations are considered next. The separations are determined such that the equivalent
mixed mode CZ law is energy consistent with the BK-criterion. In order to determine separa-
tion points δ̄(i) from energy release rates, Eq. (2.4.5) and Eq. (2.4.6) are reconsidered. Under
the assumption of self similar crack growth the energy release rate for any point inside the
cohesive zone can be calculated by the work done by the interfacial separation at that spe-
cific point. In terms of the equivalent traction norm σ̄ and the equivalent displacement jump
norm λ, the total work of the separation per unit area is given in Eq. (2.4.13). This equation
is rewritten as a sum of intervals for every two consecutive separation points [δ̄(i−1); δ̄(i)]:

Gc =W =

∫ δ̄(n)

0
σ̄(λ)dλ =

∫ δ̄(1)

0
σ̄(λ)dλ+

(n−1)∑
i=1

∫ δ̄(i+1)

¯δ(i)
σ̄(λ)dλ (2.4.13)

The integral for some interval [δ̄(i−1); δ̄(i)] in Eq. (2.4.13) will be denoted by (i−1)W(i) as
illustrated in Fig. 2.8a. Due to the piecewise line segmented shape of the CZ law, each of
the integrals (i−1)W(i) represents a trapezium. Therefore the integrals are exactly evaluated
by use of a trapezoidal integration rule. The i’th interval, the (i−1)W(i) integral is computed
as:

(i−1)Wi =
1

2
(σ̄(i) + σ̄(i−1))(δ̄(i) − δ̄(i−1)) (2.4.14)

From here, an expression for the i’th discrete separation point δ̄(i) can be derived:

δ̄(i) = δ̄(i−1) +
2 (i−1)Wi

σ̄(i) + σ̄(i−1)
(2.4.15)

It is assumed, that each interval of the work of separation per unit area (i−1)Wi (and thus
the energy release rate) is interpolated using Eq. (2.4.16), which is based on the original
BK-criterion for interpolating critical energy release rates, and here extended it to the W:

(i−1)Wi =
(i−1)W I

i +
(

(i−1)W s
i − (i−1)W I

i

)
B(β)η (2.4.16)

Where the mode mixity parameter B is calculated according to Eq. (2.4.9). Using Eq.
(2.4.16) in Eq. (2.4.15), the discrete separation points of the mixed mode multilinear CZ law
can be determined through interpolation of fracture energies. The combined expression is
given in Eq. (2.4.17).

δ̄(i) = δ̄(i−1) +
2
(

(i−1)W I
i +

(
(i−1)W s

i − (i−1)W I
i

)
B(β)η

)
σ̄(i) + σ̄(i−1)

(2.4.17)

With this approach of determining each discrete separation point of the equivalent mixed
mode multilinear CZ law, the critical energy release rate Gc(=

0Wn) is consistent with the
original BK-criterion. In summary, mixed mode equivalent tractions are interpolated from
pure mode material data using a quadratic interaction criterion according to Eq. (2.4.12).
Mixed mode separations are determined by assuming that each subinterval of the critical
energy release rate, as discretized by a two consecutive separation points, can be interpolated
using the BK-criterion. The interpolation of a mixed mode CZ law for a hypothetical material
using these interpolation formulae are shown in Fig. 2.8b. The dark solid lines represent
interpolation curves for discrete points (δ̄(i) ; σ̄(i)) for any mode mixity ratio β between 0 and
1.
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2.4.3 Damage Evolution for Mixed Mode Multilinear CZ Law

In this section, an expression for the damage parameter for a mixed mode multilinear CZ law
is derived. The evolution of the damage parameter is situation dependent. To completely
define the damage evolution, one needs to define a damages threshold value and an expression
for damage development as function of the equivalent displacement jump norm d(λ).

Initially, an expression for d(λ) is sought. For this purpose it is assumed that a point
(λ(t); σ(t)) lies on the multilinear CZ law, and hence not on the unloading/reloading se-
cant stiffness lines. For a given mode mixity ratio β, an n-segmented mixed mode multilinear
CZ law is shown in Fig. 2.9a. An arbitrary line segment of the multilinear CZ law is shown
in Fig. 2.9b representing any of the (n-1) line segment of the softning part of the n line
segmented CZ law.

Every line segment has a similar description and is completely defined by the coordinates
of its end points. The line, ℓ, shown in Fig. 2.9b contains three points: (δ̄(A) ; σ̄(A)), (λ ;
K(1−d)λ) and (δ̄(B) ; σ̄(B)). Using this notation, a general formula for the damage evolution
along an arbitrary line segment of a mixed mode multilinear CZ law is derived.

λ
δ(1)

σ(3)

σ(2)

σ(1)

σ(4)

σ(n-1)

σ(n)

σ

δ(2) δ(3) δ(4) δ(n-1) δ(n)

(a)

l

λ

σ

σ(B)

σ(A)

δ(A) δ(B)

K(1-d(t))

λ(t)

σ(t)

(b)

Figure 2.9: (a) A one-dimensional equivalent CZ law for a given mode mixity. (b) Line
segment containing three points in separation-traction space.

Recalling the expression for determining the damage parameter of some mixed mode CZ law
in Eq. (2.3.17), as repeated here for convenience, which applies in cases where the traction
separation point lies on the mixed mode CZ law:

d(λ) = 1− σ̄(λ)

K(eq)λ
(2.4.18)

To finalize the expression for d, the work conjugate traction norm must be determined as
a function of the separation norm σ̄(λ). This is done by finding the parameters m and b
describing the equation for the arbitrary line segment in Fig. 2.9b:

σ̄(λ) = mλ+ b

The parameters describing the line segment is readily found by using Fig. 2.9b and equations
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for the slope of a line segment. Every intermediate step in the derivation is included.

m =
σ̄(B) − σ̄(A)

δ̄(B) − δ̄(A)

σ̄(B) = mδ̄(B) + b⇔

b = σ̄(B) −mδ̄(B) = σ̄(B) − σ̄(B) − σ̄(A)

δ̄(B) − δ̄(A)
δ̄(B) ⇔

b =
σ̄(B)(δ̄(B) − δ̄(A))

δ̄(B) − δ̄(A)
− (σ̄(B) − σ̄(A))δ̄(B)

δ̄(B) − δ̄(A)
⇔

b =
σ̄(A)δ̄(B) − σ̄(B)δ̄(A)

δ̄(B) − δ̄(A)

Combining the expressions for m and b, the work conjugate traction norm is determined as
function of the separation norm σ̄(λ):

σ̄(λ) =

(
σ̄(B) − σ̄(A)

δ̄(B) − δ̄(A)

)
λ+

(
σ̄(A)δ̄(B) − σ̄(B)δ̄(A)

δ̄(B) − δ̄(A)

)
⇔

σ̄(λ) =
σ̄(B)

(
λ− δ̄(A)

)
+ σ̄(A)

(
δ̄(B) − λ

)
δ̄(B) − δ̄(A)

(2.4.19)

The expression for σ̄(λ) is substituted in Eq. (2.4.18) to have a final expression for the
damage parameter:

d(λ) = 1− σ̄(λ)

K(eq)λ
⇔

d(λ) = 1− σ̄(B)(λ− δ̄(A)) + σ̄(A)(δ̄(B) − λ)

K(eq)λ(δ̄(B) − δ̄(A))
⇔

(2.4.20)

The expression is rewritten and super indicies are introduced to represent the pseudo solution
time. Addtionally, it is highlighted that the damage parameter is confined to the range [0;1].

d(t)(λ) = 1 +
σ̄(B)(δ̄(A) − λ(t)) + σ̄(A)(λ(t) − δ̄(B))

K(eq)λ(t)(δ̄(B) − δ̄(A))
, d ∈ [0; 1] (2.4.21)

It is highlighted that the expression only applies within the range: δ̄(A) ≤ λ ≤ δ̄(B). Conse-
quently when implementing the damage evolution law in an interface element for use in finite
element analysis, appropriate book keeping should be done to control which line segment of
the multilinear law is currently operating.

Having determined d(λ), the definition of a damage threshold value is considered next. In
order to track and ensure irreversible damage development, the element damage values are
stored at each converged pseudo time increment (t). Thus, at any time instant, (t), the
damage parameter at the previously converged time step (t-1) is known d(t−1). The damage
parameter will only develop if the current value of λ is larger than a damage threshold value,
r. The damage threshold value is defined in terms of the equivalent displacement jump norm
and calculated from d(t−1). The damage parameter in Eq. (2.4.21) is given as function of
λ, such that d(λ). In order to calculate the threshold value, r, the inverse relation is needed
r(t) = λ(d)|d=d(t−1) .

r(t) =
σ̄(A)δ̄(B) − σ̄(B)δ̄(A)

σ̄(A) − σ̄(B) +K(eq)(1− dOld)(δ̄(B) − δ̄(A))
(2.4.22)
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2.4. MODE MIXITY INTERACTION

If λ ≤ r no damage will develop, meaning that ḋ = 0, hence Dtan
ij is defined in different

expressions depending on the size of λ in relation to r. The damage parameter and threshold
value are both internal state variables, they are further explored when the constitutive relation
and the damage model are implemented in a the finite element code of the interface element.

37 of 111



CHAPTER 2. COHESIVE ZONE MODELLING

2.5 Cont’d Constitutive Tangent Stiffness Tensor
In order to finalize the expression for the constitutive tangent stiffness tensor in Eq. (2.2.5)
of Sec. 2.2.1, the time derivative of the damage parameter ḋ is needed. According to Eq.
(2.4.21) d is a function of multiple variables: d(λ, σ̄(A), σ̄(B), δ̄(A), δ̄(B)). In the general case,
these variables depend on the mode mixity ratio which can be time dependent during the
deformation process. Time derivatives of all these intermediate variables should be evaluated.
However, it is assumed that the dependency on the mode mixity can be neglected during the
incremental loading. This is also done in other references working with a bilinear CZ law,
e.g. [Overgaard et al., 2010] and [Turon et al., 2006], which states that for real applications
the rate of change of the mode mixity is sufficiently small to be neglected considering the
pseudo time increment taken during the deformation process. The time derivative is then
approximated by neglecting terms other than λ̇.

ḋ =
∂d

∂λ

∂λ

∂t
+

∂d

∂σ̄(A)

∂σ̄(A)

∂t
+

∂d

∂σ̄(B)

∂σ̄(B)

∂t
+

∂d

∂δ̄(A)

∂δ̄(A)

∂t
+

∂d

∂δ̄(B)

∂δ̄(B)

∂t
≈ ∂d

∂λ
λ̇ (2.5.1)

Differentiating d in Eq. (2.4.21) wrt. λ the following is obtained3:

∂d

∂λ
=

(σ̄(A) − σ̄(B))K(eq)λ(δ̄(B) − δ̄(A))− [σ̄(A)(λ− δ̄(A)) + σ̄(B)(δ̄(A) − λ)]K(eq)(δ̄(B) − δ̄(A))

[K(eq)λ(δ̄(B) − δ̄(A))]2
⇔

∂d

∂λ
= K(eq)(δ̄(B) − δ̄(A))

(δ̄(A) − σ̄(B))λ− [σ̄(A)(λ− δ̄(B)) + σ̄(B)(δ̄(A) − λ)]

(K(eq))2λ2(δ̄(B) − δ̄(A))2
⇔

∂d

∂λ
=

(σ̄(A) − σ̄(B))λ− [σ̄(A)λ− σ̄(A)δ̄(B) + σ̄(B)δ̄(A) − σ̄(B)λ]

K(eq)(δ̄(B) − δ̄(A))λ2
⇔

∂d

∂λ
=

(σ̄(A) − σ̄(B))λ− [(σ̄(A) − σ̄(B))λ− σ̄(A)δ̄(B) + σ̄(B)δ̄(A)]

K(eq)(δ̄(B) − δ̄(A))λ2
⇔

This expression reduces to the final expression for the derivative of the damage parameter
with respect to the equivalent displacement jump norm λ:

∂d

∂λ
=

σ̄(A)δ̄(B) − σ̄(B)δ̄(A)

K(eq)(δ̄(B) − δ̄(A))λ2
(2.5.2)

To finalize the expression for ḋ an expression for λ̇ should also be obtained. Note that there
is the following relation between the separations defined as δ and as ∆: λ =

√
δ2s + δ23 =√

∆2
1 +∆2

2 + ⟨∆3⟩2. This is done by using the chain rule and thus differentiating λ wrt. ∆k

from Eq. (2.3.4).

λ̇ =
∂λ

∂∆k
∆̇k ⇔

λ̇ =
∆k

λ

[
1 + δ3k

⟨−∆k⟩
∆k

]
∆̇k

Please note that if the symbol δ includes two subindexes, as in the equation above δ3k, it
refers to the Kronecker’s delta tensor. Combining the expressions for λ̇ and ∂d/∂λ yields a
final expression for the time derivative of the damage parameter:

ḋ =
σ̄(A)δ̄(B) − σ̄(B)δ̄(A)

K(eq)(δ̄(B) − δ̄(A))λ3

[
1 + δ3k

⟨−∆k⟩
∆k

]
∆k∆̇k ⇔

ḋ = H(AB)

[
1 + δ3k

⟨−∆k⟩
∆k

]
∆k∆̇k (2.5.3)

3Derivative of a fraction: (f/g)′ = (f ′g − fg′)/g2
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Wherein H is a scalar function of λ, given as follows:

H(AB) =
σ̄(A)δ̄(B) − σ̄(B)δ̄(A)

K(eq)(δ̄(B) − δ̄(A))λ3
for δ̄(A) ≤ λ ≤ δ̄(B) (2.5.4)

Returning then to Eq. (2.2.5) which relates the rate of change of tractions ∂τi/∂t to the rate
of change of the separations ∂∆j/∂t, and is repeated here for convenience:

τ̇i = δijK
(eq)

[
1− d

(
1 + δ3j

⟨−∆j⟩
∆j

)]
∆̇j − δijK

(eq)

[
1 + δ3j

⟨−∆j⟩
∆j

]
∆j ḋ

Substituting the expression for the time derivative of the damage parameter into this equation,
a final expression that explicitly relates τ̇i and ∆̇j is obtained. Note that some subindexes are
changed to make sure that the Newton’s notation is consistent. The tangent stiffness tensor
is identified such that: τ̇i = Dtan

ij ∆̇j .

Dtan
ij =



δijK
(eq)
[
1− d

(
1 + δ3j

⟨−∆j⟩
∆j

)]
−K(eq)

[
1 + δ3i

⟨−∆i⟩
∆i

] [
1 + δ3j

⟨−∆j⟩
∆j

]
H(AB)∆i∆j

for ∆̄A ≤ λ ≤ ∆̄B and λ > r

δijK
(eq)
[
1− d

(
1 + δ3j

⟨−∆j⟩
∆j

)]
for λ ≤ r

(2.5.5)
The situation dependent behaviour of the tangent stiffness tensor is illustrated in Fig. 2.10.
In case of λ < r, unloading or reloading occurs, and the tangent stiffness tensor is given by
the second line of Eq. (2.5.5), which is illustrated as Dtan(2)

33 in Fig. 2.10. In case of damage
development λ > r, the tangent stiffness tensor is given by the first line of Eq. (2.5.5), and
is illustrated in the figure by Dtan(1)

ij .

τ3

τ3
(i)

τ3
(i-1)

Δ3
(i-1) Δ3

(i)Δ3
(t)

Δ3

D33
tan (1)

D33
tan (2)

Figure 2.10: Illustration of the situation dependence of the tangent stiffness tensor. Here the
tangent stiffness tensor is shown in mode I space, that is the third traction and separation
components are considered.
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Chapter 3
Interface Element Formulation

3.1 Interface Element Formulation
Having introduced the boundary value problem and defined the interface kinematics together
with a complete description of the interfacial constitutive law, the formulation of an interface
finite element is examined in more detail. The interface element applied in this report, is an
8-noded, 3D, bilinear isoparametric solid element of zero thickness in the undeformed state.
The interface element is shown in Fig. 3.1, in its underformed and deformed configuration.
The mechanics of the interface element is referred to its element midsurface S̄e.

1 2

5 64

8

3

7

1 2

4 3

5 6

8 7

Se+

Se

Se

Figure 3.1: 8-noded, brick, isoparametrix interface solid element.

The isoparametric formulation implies the introduction of an element natural coordinate
system (ξ; η), which maps the physical element into a reference element, that mathematically
is a perfect square. With this definition, the element nodes are located at (ξ; η) = (±1;±1).
Additionally, per definition the element nodal coordinates, Xi, and nodal displacements,
dk, are interpolated using the same interpolation function matrix, denoted as [N ] [Cook
et al., 2002]. Not to be confused with the multilinear CZ law to be implemented in the
interface element, the isoparametric element is bilinear, meaning that the displacement field
is interpolated bilinearly within the element from nodal displacements, as seen from the
entries of the shape function matrix in Eq. (3.1.7).

N1 =
1

4
(1− ξ)(1− η) (3.1.1)

N2 =
1

4
(1 + ξ)(1− η) (3.1.2)

N3 =
1

4
(1 + ξ)(1 + η) (3.1.3)

N4 =
1

4
(1− ξ)(1 + η) (3.1.4)

[N ]+ =

 N1 0 0 N4 0 0
0 N1 0 ... 0 N4 0
0 0 N1 0 0 N4

 (3.1.5)
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[N ]− = −[N ]+ (3.1.6)

[N ] =
[
[N ]− , [N ]+

]
(3.1.7)

The separation of the element surfaces Se+ and Se− represents the opening of a crack, and
is described by Eq. (3.1.8).

u⃗+ − u⃗− = [N ]d⃗ (3.1.8)

Using the rotation tensor [Θ] from Eq. (2.1.18), the local displacement jump vector can be
calculated as:

∆⃗ = [Θ][N ]d⃗ (3.1.9)

3.1.1 Internal Force Vector and Element Stiffness Matrix
In order to derive an expression for the internal force vector and the element stiffness matrix,
the principle of virtual work, as stated in Eq. (2.1.21), is reconsidered (switching the notation
to matrix-vector notation, to be consistent with the current section). The internal virtual
work associated with a single interface element, δWCZe , is calculated as shown below, wherein
S̄e represents the midsurface area of a single interface element in its deformed configuration.

δWCZe =

∫
S̄e

δ(u⃗+ − u⃗−)T [Θ]T τ⃗ dS̄ (3.1.10)

Insertion of the element kinematic relations of Eq. (3.1.8), the interfacial element internal
virtual work becomes:

δWCZe =

∫
S̄e

δd⃗T [N ]T [Θ]T τ⃗ dS̄ (3.1.11)

The variation of the nodal displacements is unaffected by the integration and can be taken
outside the integral signs. From here, the internal force vector, r⃗int, is identified, as the
vector relating the virtual nodal displacement to the virtual internal work: δW = δd⃗T r⃗int.
Performing these steps, the internal force vector for the interface element becomes:

r⃗int =

∫
S̄e

[N ]T [Θ]T τ⃗ dS̄ (3.1.12)

The integral is transformed to the natural coordinate system due to the isoparametric for-
mulation of the interface element. This is done using the Jacobian matrix [J ], whose entries
contain derivatives of the shape functions wrt. the natural coordinates, e.g. Ni,ξ. The specific
expression for the Jacobian matrix is not of importance here, but can be found in references
[Goyal, 2003] or [Overgaard et al., 2010]. The determinant of the Jacobian matrix is denoted,
J, and represents and area scale factor relating a deformed midsurface infinitesimal area el-
ement, dS̄e, to an infinitesimal area element in the natural coordinate system dξdε. The
transformation is given below:

r⃗int =

∫
S̄e

[N ]T [Θ]T τ⃗ dS̄ =

∫
ξ

∫
η
[N ]T [Θ]T τ⃗Jdηdξ (3.1.13)

In order to calculate the element tangent stiffness matrix [kT ], the following relation needs
to be established:

δr⃗int = [kT ]δd⃗ (3.1.14)
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Before establishing such a relation, it is highlighted, that displacement-controlled Newton-
Raphson procedures are used for numerically solving the nonlinear FE analysis. In Newton-
Raphson like methods, the internal force vector needs to be computed accurately, and the
tangent stiffness matrix may be computed approximately. Keeping this in mind, the deriva-
tion of [kT ] is continued.
Taking the first variation of the internal force vector yields the following:

δr⃗int =

∫
ξ

∫
η

(
[N ]T [Θ]T δτ⃗J + [N ]T δ[Θ]T τ⃗J + [N ]T [Θ]T τ⃗ δJ

)
dξdη (3.1.15)

Since the numerical integration of the element tangent stiffness matrix and the subsequential
assembly of the global tangent stiffness matrix is computationally time consuming, only the
first term in the first variation of the internal force vector is considered for approximating
the element tangent stiffness matrix [Overgaard et al., 2010]. Consequently, changes in the
rotation matrix, δ[Θ], and changes in the deformed interface area, δJ , with respect to dis-
placements are all omitted. However, the potential error due to changes in the interface
area is regarded negligible, since the FE model uses an Updated Lagrangian formulation to
account for geometrical nonlinearity, wherein the reference geometry is updated in each iter-
ation of the substep in the Newton-Raphson solver used [Bak et al., 2014].

[kT ]δd⃗ ≈
∫
ξ

∫
η
[N ]T [Θ]T δτ⃗Jdξdη (3.1.16)

Recalling the constitutive tangent stiffness [Dtan], which relates variations in the CZ traction
vector to variations in the local displacement jump vector: δτ⃗ = [Dtan]δ∆⃗. This is substituted
into the approximation of the element tangent stiffness tensor, and thereafter the kinematic
relation in Eq. (3.1.9) is utilized:

[kT ]δd⃗ ≈
∫
ξ

∫
η
[N ]T [Θ]T [Dtan]δ∆⃗Jdξdη ⇔

[kT ]δd⃗ ≈
∫
ξ

∫
η
[N ]T [Θ]T [Dtan][Θ][N ]δd⃗Jdξdη ⇔

[kT ]δd⃗ ≈ δd⃗

∫
ξ

∫
η
[N ]T [Θ]T [Dtan][Θ][N ]Jdξdη ⇔

[kT ] ≈
∫
ξ

∫
η
[N ]T [Θ]T [Dtan][Θ][N ]Jdξdη (3.1.17)

Having arrived at a result for the element tangent stiffness tensor, and element internal
force vector for an interface element, the nonlinear FE analysis can readily be solved using
Newton-Raphson solvers.
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3.2 Programming of Interface Element Constitutive Relation
The programming and implementation of the constitutive relation and damage model for
the interface finite element is presented in form of algorithms written in pseudo code. The
algorithms are part of an element subroutine called UserElem.f. This is a user-defined ele-
ment subroutine available through the commercial finite element program ANSYS MAPDL
(v. 17.2). A complete user-defined interface element supporting a bilinear CZ law and capa-
ble of modelling mixed mode loading has been developed by the Department of Mechanical
Engineering at Aalborg University, and has been available for the authors of this report since
the beginning of the semester. UserElem.f includes a kinematic description, a constitutive re-
lation, a damage model, element damage-dependent adaptive numerical integration schemes,
formulation of an element stiffness matrix and internal force vector, and subroutines for post
processing. Since the scope of this report is to formulate and implement a mixed mode mul-
tilinear CZ law, only the constitutive relations are considered here.

Fig. 3.2a through 3.2d are commonly referred to through the description. A multilinear CZ
law is shown in Fig. 3.2a. The CZ law is discontinuous in terms of slopes and σ̄(λ) cannot be
described by a single function, but a series of piecewise linear functions. Each line segment
has a similar description and is completely defined by its two end points (δ̄(i) ; σ̄(i)) and
(δ̄(i+1) ; σ̄(i+1)). The derivations of the constitutive tangent stiffness tensor and the damage
parameter are kept in a general sense, making the expressions applicable for any line segment.
The basic idea of the following implementation is to keep the formulae general for any line
segment, as illustrated in Fig. 3.2c, and use counters (e.g. intvalOld and intvalNew) to
identify the currently operating line segment function σ̄(λ).

Supporting Comments

Extra comments to the pseudo codes are given to guide the reader. Due to lack of space
within a single page, the pseudo code is split into four algorithms: (1/4), (2/4), (3/4) and
(4/4).

- The code is formulated such that the CZ law is defined in cases, controlled by a pa-
rameter n. n gives the total number of line segments involved in the multilinear CZ
law. E.g. n=2 and n=3 represents a bilinear CZ law and trilinear CZ law, respectively.
In case of n=2, the original bilinear CZ law is activated with no modifications done.
However, the case of n=3...15 are new, and describes a n-segmented multilinear CZ law.

- The subroutine is called intMatDamage as shown in the caption of the pseudo codes; its
inputs are shown in round brackets () and outputs as shown in the square brackets [].
The inputs to the subroutine are the damage parameter from the previously converged
substep dOld, the local displacement jump vector ∆⃗, and an array MatData containing
real constants defining the multilinear CZ law. The outputs of the subroutine are the
damage parameter for the current substep d, a tangent and a secant stiffness matrix
Dtan andDsec respectively, critical energy dissipation Gc, the energy left to be dissipated
before full damage Gleft, and the normal-shear opening mode mixity ratio β.

- Algorithm (1/4) lines 2-8. From the separation vector ∆⃗ are the combined shear norm
δs, the equivalent separation norm λ and the mode mixity ratio β defined, for use in
the damage model.
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Figure 3.2: (a) n-degree multi linear cohesive law. (b) Illustrate concept of dlim
i parameter.

(c) Arbitrary line segment of multi linear law for a given separation range. (d) The fracture
energy left for a given separation.

- Algorithm (2/4) lines 12-25. CZ laws for pure mode I and pure shear mode s are stored
in the MatData() array. The pure mode separation δ

(i)
3,s and traction σ

(i)
3,s values are

assembled into arrays delta() and sigma(), respectively. An array W of the fracture
energy associated with each interval of two consecutive separation points is also defined.

W has dimensions (n x 3); one row for each trapezium of the multilinear and a column
for mode I, mode s and the equivalent mixed mode CZ law. Fig. 3.2a illustrates the
equivalent mixed mode CZ law, hence the fracture energy of each interval is written in
the third column of W. The energy associated with the specific interval [δ̄(2); δ̄(3)] is
denoted (2)W(3) and is stored in the third row of W. Thus, the grey trapezium illustrated
in Fig. 3.2a represents W(3,3).
These division of the total fracture energy into separate intervals is a necessity due to
the interpolation functions chosen and to conveniently calculate Gleft as will be seen.

- Algorithm (1/4) lines 27-37. The equivalent mixed mode CZ law is established using
the interpolation formulae given in Sec. 2.4.2. The discrete separation and traction
points of the mixed mode CZ law are stored in deltaBar and sigmaBar, respectively.

- Algorithm (2/4) lines 6-24. To take the irreversibility of the damage parameter into ac-
count, the damage values are stored at the element integration points at each converged
substep. The damage parameter at the previously converged substep is denoted: dOld.
Based on dOld, a damage threshold value, r, is calculated according to Eq. (2.4.22).
Only if λ > r, damage development will occur. At a given substep, the location on
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the multilinear CZ law is yet unknown. In order to calculate r, the line segment corre-
sponding to dOld must be identified, such that (A) and (B) parameters in Eq. (2.4.22)
can be determined. The line segment corresponding to dOld is identified by comparing
relative sizes of dOld and a parameter denoted dlim

(i) . Damage limiting values dlim
(i) are

formulated from values in deltaBar() and sigmaBar(), and are shown in Fig. 3.2b. E.g.
σ̄(2) = K(eq)(1− dlim

1 )δ̄(2) ⇔ dlim
1 = 1− σ̄(2)/K(eq)δ̄(2). Note, the first damage limiting

value dlim
(1) is associated with the second traction/separation values (δ̄(2); σ̄(2)). A scalar

intvalOld is used to locate the line segment corresponding to dOld.

- Algorithm (3/4). If λ is greater than the damage threshold value, λ > r, damage
will develop, and the damage parameter d should be updated. Now, the line segment
corresponding to the current value of λ should be identified. This is done by comparing
relative sizes of λ with the discrete separation points, of the multilinear CZ law, stored
in deltaBar(). Based on the comparison, a scalar intvalNew is defined such that (A)
and (B) parameters, as illustrated in Fig. 3.2c, for the corresponding line segment
can be determined. The damage parameter is calculated according to Eq. (2.4.21).
Eventually, a H scalar is calculated for use in the expression for the tangent stiffness
tensor Dtan

ij which is denoted as Ktan in the pseudo code. If the current value of λ is
less than the threshold value, the damage parameter d = dOld.

- Algorithm (3/4) lines 24-36. The procedure to calculate the energy left to be dissipated
Gleft is illustrated in Fig. 3.2d. At a given time instant, λ(t) is located between δ̄(2) and
δ̄(3) as shown in the figure. Gleft is shown as grey and is split into multiple separate
geometries; a triangle (0 ; 0), (λt ; K(1 − dt)λt), (λt ; 0), a trapezium (λt ; 0), (λt ;
K(1− dt)λt), (∆̄(3) ; τ̄ (3)) and (∆̄(3) ; 0), and the usual trapeziums stored in the third
column of W. Area formulae for these geometries are then used to obtain Gleft. The
fracture energies associated with the remaining trapeziums are calculated by summing
appropriate entries in W:
Gleft =

1
2K

(eq)(1− d)λ2 + 1
2 [K

(eq)(1− d)λ+ σ̄(B)][δ̄(B) − λ] +
∑n

i=intvalNew+2W (i, 3)

A special case is set up when λ is located in the range δ̄(n−1); δ̄(n), such that intalNew =
n− 1, in which case there are no remaining trapeziums to be summed.

- Algorithm (4/4). Secant and tangent element stiffness matrices are calculated.
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(1/4) subroutine [d, Dtan, Dsec, K(eq), Gc, Gleft, β] = intMatDamage(dOld, ∆⃗, MatData)
1: select case(n)
2: Damage Kinematic Relations
3: Norms δs and λ are calculated according to Eq. (2.3.3) and Eq. (2.3.4) respectively:
4: δs =

√
∆2

1 +∆2
2

5: λ =
√
δ2s + ⟨∆3⟩2

6: The normal-shear opening mode mixity ratio β is calculated according to Eq. (2.3.5),
and the B(β) parameter is calculated according to Eq. (2.4.9):

7: β = δs
δs+⟨∆3⟩

8: B(β) = β2

1+2β2−2β

9: case(2)
10: ...
11: case(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
12: Pure Mode Material Data
13: Pure mode I and shear mode s CZ laws are described by traction and separation arrays

delta() and sigma() respectively, which are defined from real constants stored in an array
called MatData().

14: delta(:)=zeros(n,2); sigma(:)=zeros(n,2)

15: delta=
[
δ
(1)
3 δ

(2)
3 ... δ

(n−1)
3 δ

(n)
3

δ
(1)
s δ

(2)
s ... δ

(n−1)
s δ

(n)
s

]T
sigma=

[
σ
(1)
3 σ

(2)
3 ... σ

(n−1)
3 σ

(n)
3

σ
(1)
s σ

(2)
s ... σ

(n−1)
s σ

(n)
s

]T
16: The fracture energies for an interval of two consecutive separation points [δ(j−1); δ(j)]

are calculated for mode I (j−1)W I
j , shear mode (j−1)W s

j , and the equivalent mixed
mode (j−1)W̄j . This is calculated for every n-interval and stored in an array W (),
whose first, second, and third column are associated with mode I, mode s, and the
equivalent mixed mode CZ law, respectively. Thus, the j’th row of W () becomes
W (j, :) = ⌊ (j−1)W I

j
(j−1)W s

j
(j−1)W̄j⌋.

17: W(:)=zeros(n,3); sigmaBar(:) = zeros(n,1); deltaBar(:) = zeros(n,1)
18: for jj=1:n do
19: for kk=1:2 do
20: if jj=1 then
21: W(jj,kk)=0.5 ∗ sigma(jj,kk) ∗ delta(jj,kk)
22: else
23: W(jj,kk)=0.5 ∗ (sigma(jj-1,kk) + sigma(jj,kk)) ∗ (delta(jj,kk) − delta(jj-1,kk))
24: end if
25: end for
26:
27: Equivalent Mixed Mode CZ Law
28: A mixed mode equivalent CZ law is calculated. Each component δ̄(i) and σ̄(i) are

calculated according to Eq. (2.4.17) and Eq. (2.4.12) and stored in arrays deltaBar(i)
and sigmaBar(i) respectively.

29: sigmaBar(jj) =
√

sigma(jj,1)2 + (sigma(jj,2)2 − sigma(jj,1)2) ∗B(β)ξ

30: if jj=1 then
31: deltaBar(jj) = 2(W (jj,1)+(W (jj,2)−W (jj,1))∗B(β)ξ)

sigmaBar(jj)
32: W(jj,3) = 0.5 ∗ sigmaBar(jj) ∗ deltaBar(jj)
33: else
34: deltaBar(jj) = deltaBar(jj-1) + 2(W (jj,1)+(W (jj,2)−W (jj,1))∗B(β)ξ)

sigmaBar(jj)+sigmaBar(jj-1)
35: W(jj,3) = 0.5 ∗ (sigmaBar(jj) + sigmaBar(jj-1)) ∗ (deltaBar(jj) − deltaBar(jj-1))
36: end if
37: end for
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(2/4) subroutine [d, Dtan, Dsec, K(eq), Gc, Gleft, β] = intMatDamage(dOld, ∆⃗, MatData)
1: The elastic penalty stiffness parameter is calculated as:
2: K(eq) = sigmaBar(1)

deltaBar(1)
3: The total energy dissipation Gc of the equivalent mixed mode CZ law is calculated as the

sum of all components of the third column of W.
4: Gc =

∑n
jj=1 W(jj, 3)

5:
6: Damage Threshold Value
7: Consider Fig. 3.2b, the dlim

i expressions can be derived directly from values in arrays
deltaBar() and sigmaBar(). E.g. σ̄(2) = K(eq)(1− dlim

1 )δ̄(2) ⇔ dlim
1 = 1− σ̄(2)/K(eq)δ̄(2).

The scalar intvalOld identifies the linesegment of the multilinear CZ law which corre-
sponds to dOld.

8: intvalOld = 0
9: dlim(:)=zeros(n-2,1)

10: for jj=1:n-2 do
11: dlim(jj) = 1− sigmaBar(jj+1)

KdeltaBar(jj+1)
12: if dOld > dlim(jj) then
13: intvalOld = jj
14: else
15: exit for loop
16: end if
17: end for
18:
19: A damage threshold value, r, is calculated based on dOld according to Eq. (2.4.22). The

(A), (B) parameters are shown in Fig. 3.2c and identified using intervalOld.
20: δ̄(A)= deltaBar(intvalOld+ 1)
21: δ̄(B)= deltaBar(intvalOld+ 2)
22: σ̄(A)= sigmaBar(intvalOld+ 1)
23: σ̄(B)= sigmaBar(intvalOld+ 2)
24: r = σ̄(A)δ̄(B)−σ̄(B)δ̄(A)

σ̄(A)−σ̄(B)+K(eq)(1−dOld)(δ̄(B)−δ̄(A))
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(3/4) subroutine [d, Dtan, Dsec, K(eq), Gc, Gleft, β] = intMatDamage(dOld, ∆⃗, MatData)
1: Determine d, H, Gleft
2: if λ > r then
3: Damage develops. The current range for λ is determined using intvalNew and param-

eters for the corresponding line segment are identified.
4: intvalNew = 0
5: for jj=1:n-1 do
6: if λ > deltaBar(jj) then
7: intvalNew =jj
8: else
9: exit for loop

10: end if
11: end for
12: The σ̄(A), σ̄(B), δ̄(A) and δ̄(B) parameters are updated and the damage parameter is

calculated. Note since this update only happens if λ > r, the scalar intvalNew will
always be greater than zero (since initially r=δ̄(1)).

13: δ̄(A)= deltaBar(intvalNew)
14: δ̄(B)= deltaBar(intvalNew + 1)
15: σ̄(A)= sigmaBar(intvalNew)
16: σ̄(B)= sigmaBar(intvalNew + 1)
17: Using Eq. (2.4.21) to calculate damage parameter:
18: d = 1 + σ̄(A)(λ−δ̄(B))+σ̄(B)(δ̄(A)−λ)

K(eq)λ(δ̄(B)−δ̄(A))

19: if d > 1 then
20: d = 1
21: end if
22:
23: The energy left to be dissipated is calculated. See the supporting comments for further

information.
24: Gleft =

1
2K

(eq)(1− d)λ2 + 1
2(K

(eq)(1− d)λ+ σ̄(B))(δ̄(B) − λ)
25: if (intvalNew < n-1) then
26: Gleft = Gleft +

∑n
jj=intvalNew+2W (jj, 3)

27: end if
28: else
29: No damage development occurs and the parameters: σ̄(A), σ̄(B), δ̄(A) and δ̄(B) deter-

mined in lines 20-23 (2/4) are reused.
30: d = dOld

31: Gleft =
1
2K

(eq)(1− d)r2 + 1
2(K(1− d)r + σ̄(B))(δ̄(B) − r)

32: if intvalOld<n-2 then
33: Gleft = Gleft +

∑n
jj=intvalOld+3W (jj, 3)

34: end if
35: end if
36:
37: Calculating the H scalar according to Eq. (2.5.4):
38: H = σ̄(A)δ̄(B)−σ̄(B)δ̄(A)

K(eq)(δ̄(B)−δ̄(A))λ3

39:
40: end select
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(4/4) subroutine [d, Dtan, Dsec, K(eq), Gc, Gleft, β] = intMatDamage(dOld, ∆⃗, MatData)
1: ⌈Dsec⌋ = K(eq)(1− d)⌈I⌋
2: This if statement includes the effect of the MacAuley bracket implemented in Eq. (2.5.5).

3: if ∆3 < 0 then
4: Dsec(3, 3) = Dsec(3, 3) + dK(eq)

5: end if
6: [Dtan] = ⌈Dsec⌋
7: if ... then
8: A statement for determining curve-location in the (δ̄,σ̄)-space. The location is specified

in the ’stiffChoice’ variable. Note in case stiffChoice = 0, the scalar H is unused.
9: stiffChoice = 1: Associated with damage development

10: stiffChoice = 0: Associated with unloading
11: end if
12: The expressions for the constitutive tangent stiffness matrix are obtained from Eq. (2.5.5)

13: if stiffChoice = 1 then
14: Dtan(1, 1) = Dtan(1, 1)−K(eq)H∆1∆1

15: Dtan(1, 2) = Dtan(1, 2)−K(eq)H∆1∆2

16: Dtan(2, 1) = Dtan(2, 1)−K(eq)H∆2∆1

17: Dtan(2, 2) = Dtan(2, 2)−K(eq)H∆2∆2

18: if ∆3 > 0 then
19: Dtan(1, 3) = Dtan(1, 3)−K(eq)H∆1∆3

20: Dtan(3, 1) = Dtan(3, 1)−K(eq)H∆3∆1

21: Dtan(2, 3) = Dtan(2, 3)−K(eq)H∆2∆3

22: Dtan(3, 2) = Dtan(3, 2)−K(eq)H∆3∆2

23: Dtan(3, 3) = Dtan(3, 3)−K(eq)H∆3∆3

24: end if
25: end if
26: return
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3.3 Verifying Implementation

In order to validate the implementation of the constitutive relations and the damage model,
a finite element model consisting of a single interface element has been built. The interface
element is given a set of prescribed displacements UX, UY, UZ which directly corresponds to
local separations ∆i of the interface element. The resulting stress-displacement curves should
give an exact replica of the intended CZ law for the element subroutine to be implemented
correctly.
An illustration of the finite element model is shown in Fig. 3.3a. In the undeformed configu-
ration, the interface element has zero thickness. The bottom surface has all d.o.f. prescribed
as zero, i.e. UX=UY=UZ=0, while the top surface is displaced by an amount δ. Keeping
displacement components UX=UZ=0 and varying UY corresponds to pure mode I opening
of the interface element. Verification of mixed mode loading is considered in Sec. 3.3.2.

y

xz

Δ3=δ
Δ1=Δ2=0

Δ3=δ

Δ1=Δ2=0

Δ3=δ
Δ1=Δ2=0

Δ3=δ
Δ1=Δ2=0

n14

n2

n3

n15

n4

n16

n1

n13

(a) (b)

Figure 3.3: (a) FE model for verification test. (b) Pure mode I loading - reloadning sequence.

The material type is not of importance for this verification example, hence a hypothetical
CZ law is utilized, as shown by the green curve of Fig. 3.3b. Nodal separations ∆i and
tractions τi for the user-defined interface element are stored in stress/strain post-processing
fields according to Tab. 3.1 as described in [Christensen et al., 2013]. The Y-component of
stress S,Y and elastic strain EPEL,Y corresponds to the cohesive traction-separation curve
for mode I crack opening. Monitoring these parameters and plotting S,Y versus EPEL,Y
should result in a curve following the intended CZ-law for the implementation to be correct.
In Fig. 3.3b the results from a pure mode I test for loading/unloading/reloading is shown
by the light blue crosses “+”. The prescribed displacement δ is loaded from UY=0 mm to
UY=1.67 mm, then unloaded from UY=1.67 mm to UY=0 mm, and at last reloaded from
UY=0 mm to UY=6.0 mm (being equal to the final separation in the CZ law). The multilinear
CZ law implementation works as intended, since the output of the UserElem subroutine lies
on top of the CZ law. The linear unloading/reloading and damage threshold implementation
also work properly, as seen by the data points following a line of secant stiffness, K(1 − d),
when unloading/reloading between UY=1.67 mm and UY=0 mm.

3.3.1 Sensitivity Study

Considering the same FE model, the same loading/unloading/reloading sequence, but differ-
ent shapes of the multilinear CZ law. Three different CZ law shapes are examined in more
detail as shown in Fig. 3.4a through 3.4c.
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UserElem Quantity ANSYS APDL Command
∆3 Elastic strain in y-direction NSOL,EPEL,Y
∆1 Elastic strain in xy-direction NSOL,EPEL,XY
∆2 Elastic strain in yz-direction NSOL,EPEL,YZ
τ3 Stress in y-direction NSOL,S,Y
τ1 Stress in xy-direction NSOL,S,XY
τ2 Stress in yz-direction NSOL,S,YZ

Table 3.1: Relations between UserElem outputs and APDL commands.

In Fig. 3.4a and 3.4b, it is seen that there is no problem in handling horizontal and verti-
cal line segments, nor a problem in handling line segments of positive slope, as long as the
changes in slope happens gradually.

However, in case of sudden changes, as shown in Fig. 3.4c, problems may arise. The problem
in Fig. 3.4c is explained in greater detail in Fig. 3.4d, and arises in the case of unload-
ing/reloading. At the time instant when unloading starts, δ3 = 1.67mm, some energy has
been dissipated. However, during the unloading, the load path follows arrows shown, re-
sulting in restoration of dissipated energy, which is indeed thermodynamically inconsistent.
Nevertheless, in the following, the CZ law is assumed to be monotonically decreasing, hence
no problems as shown in Fig. 3.4c will ever occur.

11 (a) (b)

(c) (d)

Figure 3.4: (a) Works well. (b) Works well. (c) Problem: Restoration of cohesive state. (d)
Ideal loading/unloading of CZ law in fig. (c).
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3.3.2 Mixed Mode Crack Opening
Having verified loading/unloading/reloading sequences for an arbitrary multilinear CZ law
for pure mode I crack opening, mixed mode loading is considered next. For this purpose, the
same FE model is considered as shown in Fig. 3.3a.

Three verification tests are performed for three different normal-shear opening mode mixity
ratios β. The interface element is loaded quasi statically, by subjecting its nodes to prescribed
displacements. Depending on the value of β, the prescribed displacements UX, UY, and UZ
are set differently. Three values of β are tested: β = [0.00, 0.41, 1.00]. Values of β = 0.00
and β = 1.00 corresponds to pure mode I and pure mode S crack opening, respectively. The
prescribed displacements for the different mode mixity ratios appears from Tab. 3.2. The
separate mixed mode traction and separation points are calculated according to Eq. (2.4.12)
and Eq. (2.4.17) respectively, under the assumption of η = ξ = 1.40.

Mode mixity ratio, β UX UY UZ
0.00 0.00 8.00 0.00
0.41 3.89 5.66 0.00
1.00 5.00 0.00 0.00

Table 3.2: Prescribed displacements for three tests of different mode mixity ratio.

In Fig. 3.5 the solid lines represent the intended CZ law for the interface element, whereas the
light blue crosses again represent outputs from the FE model. Appropriate nodal separations
and tractions are extracted from the FE model according to Tab. 3.1, and plotted as shown
in Fig. 3.5. In specific, EPEL,Y and EPEL,YZ are plotted along the first and second axes δ3
and δs respectively. The work conjugate traction norm σ̄ is calculated from the nodal stresses
S,Y and S,YZ as:

σ̄ =
√

(S, Y )2 + (S, Y Z)2 (3.3.1)

(a) (b)

Figure 3.5: Verification example for 3 mode mixity ratios β.
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The output from the FE model falls on top of the predefined CZ law, the material law for
mixed mode loading is then considered verified. The mixed mode CZ law is defined such that
it is energy consistent with the BK-criterion. This is double-checked below for the CZ law
shown in Fig. 3.5b. Note, the critical energy dissipations appears in the legend of the figure.

G(BK)
c = GI

c + (GII
c −GI

c)B
η ⇔ (3.3.2)

G(BK)
c = 13.9371 + (19.5994− 13.9371)

(
0.40742

1 + 2 ∗ 0.40742 − 2 ∗ 0.4074

)1.40

= 15.0904

(3.3.3)

Extra decimals of β = 0.4074 has been included to arrive at the same result as shown in the
legend of Fig. 3.5b. The energy dissipation calculated using the BK criterion agrees with Gc
in the legend of Fig. 3.5b for the mixed mode CZ law.
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Chapter 4
Inverse Parameter Identification Tool for

CZ Laws

4.1 Introduction
A program called Inverse Parameter Identification Tool for Cohesive Zone Laws (IPIT-CZL)
capable of determining CZ law parameters from experimental data is presented. In brief,
the program receives experimental data from a delamination test, where the data includes
a global structural response as e.g. applied moment versus angle of rotation. In the other
hand, a numerical simulation using the FEM in combination with CZ modelling is meant to
represent the real experiment. However, the simulation requires the definition of a CZ law
to model the behavior of the material at the interface. As the parameters defining the CZ
law are unknown beforehand, those will constitute the design variables, x⃗, of an optimization
problem, that aims to minimize the difference between the global structural response of the
experiment and that of the numerical simulation by making changes in x⃗.

An initial version of the tool was created by the authors of this work in [Jensen and Martos,
2016] and it is further developed and improved by:

- Defining the objective function as a least squares formulation in order to use the Jaco-
bian to calculate the gradient and the Hessian.

- Benchmarking different optimization algorithms.

- Scaling the design variables to avoid an ill-conditioned problem.

- Using an approach for determining an appropriate perturbation size.

- Consistently use the same the equilibrium points of the numerical simulation in the
formulation of the objective function.

In order to get an overview of the program, one can see the flowchart in Fig. 4.1. IPIT-CZL
is formed by a group of MATLAB scripts which defines and solves the optimization problem,
controls the calls to the numerical simulation and supplies it with the design variables. Fol-
lowing the flowchart from the top, an initial guess for the design variables, x⃗0, is provided to
the numerical model which is generated and analyzed with ANSYS. The FE model output
is compared to the experimental data and a residual vector, r⃗(x⃗), is established. It describes
the difference in responses at discrete data points. Then, the residual vector is transformed
into a scalar objective function, f(x⃗), using a least squares formulation. Lastly, the optimiza-
tion algorithm seeks the minimum point of the objective function by iteratively changing the
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design variables until a certain stopping criterion is met. Note that the stopping criteria
are adjusted such that appropriate CZ parameters are found once a converged solution is
obtained within a reasonable time.

Figure 4.1: IPIT-CZL flowchart

The following sections of the chapter present in more details the optimization formulation,
algorithm and settings, how the FE model is built, and experimental set-up used. Please
note that the notation related to optimization is independent from the rest of the sections
in this thesis, e.g. d, here, refers to the search direction whilst, elsewhere, it refers to the
damage parameter. In addition, here the arrow •⃗ is used to identify non physical vectors,
namely arrays, e.g. x⃗ which is a n-dimension vector including the design variables of the
optimization problem. Thereby, the units of x1 could be MPa while for x2 could be kJ/m2.
However, elsewhere in this thesis •⃗ identify a physical vector e.g. the separation vector δ⃗
formed by the two separation components δs and δ3 which are the displacement jumps in
shear and mode I, respectively.
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4.2 Optimization
The present section contains an overall definition of the optimization problem dealt with
in this work. A more thorough description of the algorithms can be found in [MathWorks,
2016, pp. 6.21-6.40], [Nocedal and Wright, 2006], [Waltz et al., 2006] and [Byrd et al., 1988].
The present application intends to establish the CZ parameters for a given specimen based
on the minimum difference between two global structural responses, one measured in the
laboratory and another simulated using the FEM. For the sake of clarity and simplicity, the
global optimization settings and the algorithm selection are presented for an end-loaded DCB
specimen in mode I modeled with a bilinear CZ law, where the critical energy release rate
GIc and the onset traction σ

(1)
3 are the only two design variables involved. Additionally, in

order to fine tune the optimizer and benchmark the different optimization methods available,
it is very convenient to know a priori the value of the sought minimum. For that purpose,
later in this section, the experimental curve Ψ⃗Exp introduced in Fig. 4.1 is replaced by the
structural response of a numerical simulation with known CZ law.

(a) (b)

Figure 4.2: (a) End-loaded DCB specimen (b) Bilinear constitutive law.

Fig. 4.2a shows the analyzed specimen which has a pre-crack a0 = 25 mm and whose length
is L = 100 mm, width is b = 1 mm and thickness is t = 5 mm. Concerning the boundary
conditions, the specimen is fixed in one end and displaced at the crack mouth an amount
CMOD = 5 mm in the y-direction (mode I). The FE model shown in Fig. 4.3 has 1200
linear solid elements SOLID185 with enhanced strain option activated to avoid parasitic
shear1 [ANSYS, 2016] and 225 interface elements along the predefined fracture path. The
formulation of the interface elements corresponds to the UserElem subroutine presented in
Sec. 3.2. The element size in the length direction is 0.33 mm, 1 mm in the width and 1.25
mm in the thickness.

4.2.1 Nonlinear Optimization and Algorithm Selection
Nonlinear optimization implies that the objective function and/or constraints are nonlinear.
It can be classified into direct search methods and gradient-based search methods. In direct
methods, the search direction is based on 0th-order information, i.e. it is purely based on the
objective function history. Whilst gradient-based methods uses 1st- and, when applicable,
2nd-order information, i.e. first and second order derivatives of the objective function f(x⃗)
with respect to the design variables x⃗. The usage of the gradients and Hessians improves the
convergence rate, nonetheless constricts the problem to continuous and twice differentiable

1Enhance strain option adds some internal degree of freedom to the linear element in order to avoid parasitic
shear to develop in bending dominated scenarios.
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Figure 4.3: FE model of the end-loaded DCB specimen, σy is shown.

objective functions [Arora, 2012, p.412]. Hence, here it is assumed that the objective function
is continuous and twice differentiable.

Minimizing the difference between two structural responses using a least squares formulation
involves nonlinear optimization since the objective function is nonlinear. Secondly, the design
variables are bounded avoiding unfeasible scenarios e.g. having σ(i)3 < 0 or, for a multilinear
CZ law, having σ

(i)
3 > σ

(1)
3 , thereby, the optimization is nonlinear and constrained. Fur-

thermore, a gradient-based search method is used as fast convergence is crucial due to the
computational demand of a function evaluation. Note that a function evaluation requires
solving the nonlinear FE problem for the current design variables.

The algorithm selection is confined to the available options in MATLAB, wherein fmincon
is the best suited function for IPIT-CZL as it allows more freedom in the definition of the
objective function, gradient and Hessian compared to other functions. The subroutine fmin-
con includes three types of optimization algorithms: interior-point, trust-region-reflective
and sequential quadratic programming (SQP). The use of a least squares formulation has
the advantage of providing a more accurate approximation of the gradient and Hessian of
f(x⃗) with respect to other formulations of the objective function. Therefore, the last option
is disregarded since the SQP algorithm implemented in MATLAB is unable to import the
Hessian, which it is aimed to be supplied but instead the algorithm calculates it internally
by forward finite difference of the gradients.

The interior-point algorithm included in fmincon is presented in [Waltz et al., 2006]. It is a
line search Newton’s/quasi-Newton’s method that approximates the original inequality con-
strained optimization by a sequence of equality constrained subproblems, which are easier to
solve. The search direction is calculated by solving the Karush-Kuhn-Tucker (KKT) neces-
sary conditions using direct linear algebra, and the size of the step along the search direction
is calculated via line search. The step size varies between 0 and 1, where 1 corresponds to a
full Newton step. This implementation of the interior-point algorithm is able to switch over
to a trust region scheme that uses a conjugate gradient step whenever local nonconvexity or,
Hessian2 or Jacobian3 rank deficiency is met. In those situations, a pure line search interior
algorithm is not able to compute the next design point because, the line search requires the
approximate problem to be locally convex near the current iteration to calculate the step size
(see [Arora, 2012, pp. 418,419]), whereas for rank deficiency or near deficiency, the search

2It is referred to the Hessian of the Lagrangian function H(x⃗) to be later introduced.
3It is referred to the Jacobian of the contraints Jh and Jg to be later introduced.
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direction cannot be determined by direct linear algebra since a singular or near singular ma-
trix has to be factorized [Waltz et al., 2006] [Nocedal and Wright, 2006, p. 23].

The trust-region-reflective algorithm, presented in [Byrd et al., 1988], is a trust region
Newton’s/quasi-Newton’s method that approximate the original objective function with a
simpler function which is minimized in the neighborhood of the current point, which in turn
represents the region of trust. If the candidate point is not reducing the original objective
function, then the size of the trust region is shortened and a new candidate point is sought.
The step used is always limited to be smaller or equal than the size of trust region. When
the Hessian is positive definite, a fraction of the (or a full) Newton step is taken, so that the
superlinear convergence from the Newton steps can be reached [Nocedal and Wright, 2006,
p. 73]. In case that the Hessian or the Jacobian is indefinite, or that the current iterate is
in a local nonconvex region, a step closer to a Cauchy step is taken. This is a step along the
steepest descent direction which in turn ensures progress toward feasibility and optimality
[Waltz et al., 2006] [Nocedal and Wright, 2006, pp. 38-41,71].

Comparing both algorithms, the following pros and cons for each method are found:

• Situations with indefinite Hessian or Jacobian, or local nonconvexity are better ad-
dressed in trust region algorithms [Waltz et al., 2006].

• It could result difficult finding a smooth transition between the line search and the trust
region steps in the interior point algorithm [Waltz et al., 2006].

• Linear inequality constraints are available in the interior point algorithm, but not in
the trust region algorithm implemented in MATLAB.

As discuss in a later section, it is intended to enforce CZ law to be a softening law. This
is done by including linear inequality constraints to the design variables, therefore, only the
interior-point algorithm incorporates all the desired features and thence it is implemented in
IPIT-CZL.

4.2.2 Problem Formulation for the Interior-point Algorithm

This subsection presents a generic definition of the interior-point or barrier method that uses
Newton and conjugate gradient steps. Here, the focus will lie on the understanding of the
overall solution process and the specific algorithm implementation, which MATLAB did not
made available and may slightly differ from the present one as seen for e.g. in the primal-dual
system in Eq. (4.2.12), is out of the scope of this thesis.
A least squares formulation is considered in this work, where the objective function, f(x⃗), in
Eq. (4.2.1) is to be minimized.

min
x⃗

f(x⃗) =
1

2
∥r⃗(x⃗)∥2 = 1

2

m∑
l=1

r2l (x⃗) (4.2.1)

subjected to hi(x⃗) = 0, i = 1...a

gj(x⃗) ≤ 0, j = 1...b

where f(x⃗) is a scalar function, ∥r⃗(x⃗)∥ is the Euclidean norm of the residual vector, x⃗ is a
vector containing the n∗ design variables, m is the number of residual entries, h(x⃗) are the
linear equality constraints and g(x⃗) are the linear inequality constraints. The residual vector
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is defined as shown in Eq. (4.2.2).

r⃗(x⃗) =


ΨNum

1 (x⃗)−ΨExp
1

ΨNum
2 (x⃗)−ΨExp

2
...

ΨNum
m (x⃗)−ΨExp

m

 (4.2.2)

wherein ΨNum(x⃗) is a numerical global structural response obtained through a FE simulation
and ΨExp is an experimental global structural response measured in the laboratory. Thereby,
the difference between the curves ΨNum(x⃗) and ΨExp is minimized.

The interior-point algorithm approximates the original problem in Eq. (4.2.1) by a sequence
of equality constraints subproblems, called barrier subproblems, shown in Eq. (4.2.3). With
this transformation, the inequality constraints have been converted into equality constraints,
and the objective function include an extra logarithmic term, called barrier function, in charge
of penalizing the objective function, whenever a inequality constraint is violated4.

min
x⃗,s⃗

fµ(x⃗, s⃗) = f(x⃗)− µ

b∑
j=1

ln sj (4.2.3)

subjected to hi(x⃗) = 0, i = 1...a

gj(x⃗) + sj = 0, j = 1...b

wherein µ is the barrier parameter which is a small positive scalar controlling the contribution
the barrier function in fµ [Jensen and Bard, 2003] and the convergence of Eq. (4.2.3) to Eq.
(4.2.1) as µ tends towards zero [Robere, 2012], and s⃗ is vector containing the slack variables.
Eq. (4.2.3) is in turn transformed into an unconstrained optimization problem using the
Lagrangian function:

L(x⃗, v⃗, u⃗, s⃗) = fµ(x⃗, s⃗) + v⃗Th(x⃗) + u⃗T (g(x⃗) + s⃗) (4.2.4)

wherein v⃗ and u⃗ are the a- and b-dimensional Lagrange multiplier vectors. The KKT op-
timality conditions for Eq. (4.2.4) are formed by the gradient conditions in Eq. (4.2.5) to
(4.2.7), feasibility check for inequalities in Eq. (4.2.9), switching conditions in Eq. (4.2.8)
and non-negativity of Lagrange multiplier u⃗ in Eq. (4.2.10):

∂L(x⃗, v⃗, u⃗, s⃗)
∂x⃗

= 0 ⇔ ∇⃗f(x⃗) + Jh(x⃗)
T v⃗ + Jg(x⃗)

T u⃗ = 0 (4.2.5)

∂L(x⃗, v⃗, u⃗, s⃗)
∂v⃗

= 0 ⇔ h(x⃗) = 0 (4.2.6)

∂L(x⃗, v⃗, u⃗, s⃗)
∂u⃗

= 0 ⇔ g(x⃗) + s⃗ = 0 (4.2.7)

∂L(x⃗, v⃗, u⃗, s⃗)
∂s⃗

= 0 ⇔ SΛg − µe⃗ = 0 (4.2.8)

feasibility check : sj ≥ 0 j = 1...b (4.2.9)
non-negativity of u⃗ : uj ≥ 0 j = 1...b (4.2.10)

where ∇⃗f(x⃗) is the gradient of the objective function, Jh(x⃗) and Jg(x⃗) are the Jacobian
matrices of the equality and inequality constraints, S and Λg are diagonal matrices containing
the terms in the vectors s⃗ and u⃗, respectively, and e⃗ is a b-dimensional vector containing ones.

4As a slack variable tends towards zero, the corresponding logarithmic term tends to negative infinity.
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The Jacobian matrix of a q-vector function t⃗(x⃗) is described as the matrix containing the
first order partial derivatives of the function with respect to x⃗:

Jt(x⃗) =
∂ti
∂xj

≡


∂t1
∂x1

· · · ∂t1
∂xn... . . . ...

∂tq
∂x1

· · · ∂tq
∂xn

 (4.2.11)

Solving Eq. (4.2.5) through (4.2.10), using the Newton’s method, yields Eq. (4.2.12), known
as the primal-dual system, which in turn is solved for d⃗x, d⃗s, d⃗v and d⃗u using a LDL factoriza-
tion. This last step is relevant as it represents the most demanding computation, regardless
an objective function evaluation, and is used to determine the type of step performed: a
direct step when H(x⃗) > 0 or else a conjugate gradient step.

H 0 JT
h JT

g

0 Λg 0 S
Jh 0 0 0
Jg S 0 0




d⃗x
d⃗s
d⃗v
d⃗u

 = −


∇⃗f + JT

h v⃗ + JT
g u⃗

SΛg − µe⃗
h

g + s⃗

 (4.2.12)

where d⃗x, d⃗s, d⃗u, d⃗v are the search direction for the design variables, slack variables and
Lagrange multipliers respectively, and H ≡ H(x⃗) is the Hessian matrix of the Lagrangian
function L(x⃗, s⃗, v⃗, u⃗) shown in Eq. (4.2.13). For simplicity, the formula above do not include
the parenthesis (x⃗).

H(x⃗) = ∇2f(x⃗) +

b∑
i=1

vi∇2hi(x⃗) +

a∑
j=1

uj∇2gj(x⃗) (4.2.13)

Having found the search direction, the candidate point, the new slack variables and the new
Lagrange multipliers for the next iteration are calculated as:

x⃗+ = x⃗+ αxd⃗x (4.2.14)
s⃗+ = s⃗+ αsd⃗s (4.2.15)
u⃗+ = u⃗+ αud⃗u (4.2.16)
v⃗+ = v⃗ + αvd⃗v (4.2.17)

where αx, αs, αu, αv are the stepsizes which have been calculated by a line search approach.
The candidate point to be accepted as the point for the next iteration needs to generate a
sufficient reduction to a merit function (shown in Eq. (4.2.18)), yet another linearlization of
the objective function which is easier to evaluate than Eq. (4.2.3). Thus, it is possible that
an accepted candidate point would not decrease the original objective function, being more
probable to occur for problems with large number of design variables, as well as, for highly
non-linear problems. The points not fulfilling the aforementioned requirement are refused
and a new candidate is sought.

fµ(x⃗, s⃗) + ν

∥∥∥∥{ h(x⃗)
g(x⃗) + s⃗

}∥∥∥∥ (4.2.18)

The Newton or direct step obtained by solving Eq. (4.2.12) is the first choice, however it is
not always possible to find a solution for such a system. In situations when the Hessian is
not positive definite or the problem is locally non-convex, the algorithm switches over to a
Trust region method that calculates a conjugate gradient step instead. As the primal-dual
system is unsolvable, the alternative is to simplify even further the approximate problem in
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Eq. (4.2.3) by a quadratic function with linealized constraints, shown in Eq. (4.2.19), that
represents the problem in a close region.

min
d⃗x,d⃗s

∇⃗f(x⃗)T d⃗x+
1

2
d⃗Tx∇2Ld⃗x + µe⃗TS−1d⃗s +

1

2
d⃗Ts S

−1Λd⃗s (4.2.19)

subjected to: h(x⃗) + Jh(x⃗)d⃗x = 0

g(x⃗) + Jg(x⃗)d⃗x + d⃗s = 0

The conjugate gradient step is calculated by solving Eq. (4.2.19), where the Lagrange mul-
tipliers are obtained from Eq. (4.2.5), and keeping u⃗ > 0 and s⃗ > 0.

4.2.3 Quasi-Newton approximation. Calculation of 1st and 2nd Order Sen-
sitivities

The previous subsection is defined for a pure Newton method, for the problem at hand deriva-
tives of f(x⃗), which are a necessity for the pure Newton method, are not available. Here,
it is described how a quasi-Newton approximation of the problem can be obtained by using
forward finite difference (FFD) in a least squares formulation. The least squares formulation
is widely used for curve fitting and inverse parameter identification. Its main advantage is
that a good estimate of first and second order information are available by only applying
FFD to one common quantity, the Jacobian of r⃗(x⃗). The existence of this common quantity
can be seen by application of the chain rule of differentiation for the gradient and the product
rule of differentiation for the Hessian.

As mention before, the entries of this m-by-n Jacobian matrix are calculated by FFD of the
residual function, i.e. the change in the residual vector for a given perturbation δx⃗ in the
design variables over the perturbation:

Jr(x⃗)[i, j] ≈
ri(δx⃗j + x⃗j)− ri(x⃗j)

δx⃗j
(4.2.20)

The size of the perturbation is key to obtain a good approximation of the derivative, the
error of this approximation increases as the perturbation size increases, although too small
perturbation size yields to imperceptible change in the residual vector. Thus, it is necessary
to perform a sensitivity study in order to find an adequate perturbation size. For the bilinear
problem shown in Fig. 4.2, the perturbations are varied within the range [1e-1 ; 1e-12]. Note
that while δx1 is under analysis, δx2 is fixed to 1e-6, and vice verse. Furthermore, note that
as mention in the introduction of this section, the optimization problem is simplified by sub-
stituting the experimental response by a numerical response where x1 ≡ GIc = 0.6132 kJ/m2

and x2 ≡ σ
(1)
3 = 12MPa in Sec. 4.2.3 - 4.2.6. This substitution leads to a smoother and more

convex objective function as the experimental noise is removed, and ensures the existence of
at least one local minimum of known value and for which f(x⃗) = 0. Hence, it is easier to
determine which algorithms and parameters perform best as the right solution is known be-
forehand. The results of the sensitivity study can be seen in Tab. 4.1, Fig. 4.4a and Fig. 4.4b.

δx⃗ 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8 1e-9 1e-10 1e-11 1e-12
∇⃗f(x1) -630.77 -669.33 -625.18 -616.58 -607.18 -604.35 -604.48 -605.27 -618.65 -700.86 -623.84 0
∇⃗f(x2) 0.080531 0.038034 0.30479 0.081923 0.080836 0.080384 0.085095 -0.022602 0 0 0 0

Table 4.1: Sensitivity study to find an appropriate perturbation size for x1 = GIc and
x2 = σ

(1)
3 .
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Figure 4.4: Sensitivity study to find an appropriate perturbation size for (a) x1 = GIc and
(b) x2 = σ

(1)
3 .

As seen in the tables and figures above, similar gradients are reached in the range [1e-5 1e-8]
for x1 while for x2 is [1e-4 1e-7]. As a rule of thumb, an intermedium value in the observed
stable range is normally chosen, i.e. not too large nor too small perturbation. Thus, the
perturbation sizes for GIc and σ

(1)
3 are set to 1e-7 and 1e-6, respectively.

Having obtained Jr(x⃗), the gradient and the Hessian can be calculated according to Eq.
(4.2.21) and Eq. (4.2.22), respectively.

∇⃗f(x⃗) = Jr(x⃗)
T r⃗(x⃗) (4.2.21)

H(x⃗) = Jr(x⃗)
TJr(x⃗) +

m∑
l=1

rl(x⃗)Ql(x⃗) (4.2.22)

where Ql(x⃗) are second-order derivatives of each rl(x⃗). In lack of an analytic expression for
r⃗(x⃗) those derivatives cannot be obtained, hence the Hessian is estimated only using the first
term in Eq. (4.2.22):

H(x⃗) ≈ Jr(x⃗)
TJr(x⃗) (4.2.23)

4.2.4 Design Space
In order to picture the degree of convexity of the problem at hand, it is decided to explore
the design space. For the simple bilinear case, a contour and a surface plot are generated,
Fig. 4.5a and Fig. 4.5b, respectively. The grid is made of 99x39 equidistant points in the
design space. Furthermore, a second contour and surface plot are generated, in the range
GIc ∈ [0.1 to 1] and σ

(1)
3 ∈ [1 to 20], to take a closer look in the convex zone, Fig. 4.5c and

Fig 4.5d, respectively. In this case, the grid includes 101x51 points. In Fig. 4.5d, the points
where the objective function is within 0 (dark blue) and 1e-2 (light blue) are colored, the
remaining points are left in white.
In the aforementioned figures, the problem appears to be notably convex, however it is im-
portant to remark that this design space corresponds to the ideal case where the experimental
data has been replaced by a numerical simulation and that there are only two design variables.
Thus, it is expected that IPIT-CZL will deal with problems of higher degree of non-convexity
in real applications, wherein the experimental curve is not simulated and smooth, and more
design variables are used.
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Figure 4.5: (a) Contour plot and (b) Surface plot of the design space. (c) Contour plot
(optimum displayed as a green dot) and (d) Surface plot of the convex area.
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4.2.5 Scaling of the Problem

In a well-conditioned optimization problem there is no domination of some design variables
over others. The associated contour plot would show circular contours and the eigenvalues of
the associated Hessian matrix would be of the same order of magnitude. Looking at Fig. 4.5,
and specially Fig. 4.5c, elliptical contours are observed. Moreover, examining the eigenvalues
of the Hessian, the difference between the highest and lowest eigenvalues is from 2 to 7 orders
of magnitudes. As an example, the Hessian matrix and its eigenvalues for the second iteration
in one of the solutions presented in the next section are included:

H(x⃗) =

[
2885.4 0.45121
0.45121 0.001471

]
⇒ eigenvalues(H(x⃗)) =

{
2885.4

0.0014004

}
These facts point out an ill-conditioned optimization problem where GIc is the dominating
variable. In this case, and as seen in [Jensen and Martos, 2016, pp.41-42], the algorithm find
first a closer estimate of GIc and then starts modifying σ(1)3 due to this issue. To overcome
this situation, some sort of scaling needs to be implemented. Different options are available,
e.g. weighting the residual points, rl(x⃗), differently providing more relevance to meaningful
points; doing a change of variables such that the resulting problem is well-conditioned; or
making use of the optimizers built-in preconditioners. In the present work, it is decided to
use the built-in preconditioners.

4.2.6 Benchmark Test

For sake of comparison and even though the most appropriate algorithm has already been
chosen, the interior-point, the trust region and the former algorithm implemented in IPIT-
CZL, presented in [Jensen and Martos, 2016]5, are benchmarked. The test corresponds to the
bilinear problem in Fig. 4.2. The results from the benchmark test are included in Tab. 4.2.
The starting points have been chosen based on the observed design space and the stopping
tolerances for the minimum allowable change in the step size and in the objective function,
from iteration to iteration, are both set to 1e-20.

Algorithm Starting Point Number of
Iterations

Number of
f. evals.

Time
(h m s) Converged Point f(x⃗)

Trust-region-reflective [0.2 ; 8] 10 34 0 h 15’ 51.12” [0.6132 ; 12] 3e-18
[5 ; 20] 10 34 0 h 14’ 52.58” [0.6132 ; 12] 1.0635e-15
[5 ; 1] 17 55 0 h 27’ 47.67” [0.6132 ; 12] 0
[3 ; 10] 11 37 0 h 18’ 35.07” [0.6132 ; 12] 1.5e-18
[0.7 ; 1] 12 40 0 h 20’ 48.42” [0.6132 ; 12] 2.5e-18
[0.5 ; 20] 7 25 0 h 13’ 17.51” [0.6132 ; 12] 2e-18

Interior-point [0.2 ; 8] 12 40 0 h 18’ 56.92” [0.6132 ; 12] 3.4e-17
[5 ; 20] 16 52 0 h 27’ 6.65” [0.6132 ; 12] 4.7675e-15
[5 ; 1] 19 61 0 h 32’ 48.74” [0.6132 ; 12] 9.107e-15
[3 ; 10] 18 58 0 h 30’ 15.43” [0.6132 ; 12] 5.768e-15
[0.7 ; 1] 11 37 0 h 19’ 21.67” [0.6132 ; 12] 1.95e-17
[0.5 ; 20] 18 43 0 h 30’ 15.43” [0.6132 ; 12] 8.29e-15

SQP [0.2 ; 8] 17 78 0 h 47’ 16.12” [0.6132 ; 12] 1e-17
(former IPIT-CZL version) [5 ; 20] 38 197 1 h 42’ 54.83” [0.6132 ; 12] 5.9648e-14

[5 ; 1] 26 133 1 h 6’ 5.23” [0.6132 ; 12] 1.8e-17
[3 ; 10] 31 152 1 h 13’ 44.62” [0.6132 ; 12] 3.4256e-14
[0.7 ; 1] 23 110 0 h 55’ 32.31” [0.6132 ; 12] 3.7721e-13
[0.5 ; 20] 18 88 0 h 44’ 51.22” [0.6132 ; 12] 0

Table 4.2: Benchmark test results for different optimization algorithms.

5Using a least squares formulation as well, for a reader coming from [Jensen and Martos, 2016] that is
p = q = 2.
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The two proposed algorithms performs substantially better than the previously used SQP,
which in the former IPIT-CZL version did not have the built-in preconditioners activated.
The improvement is partially due to the preconditioners but mostly due to better estimates
on the second order information. Concerning the best performance, trust-region-reflective is
the fastest in five out of six cases. Moreover, summing up all results, its total computation
time is 1 h 51’ 12.37” whilst the interior-point takes 2 h 38’ 44.84”, i.e. 47’ 32.47” differ-
ence. Nonetheless, the inability of the trust region algorithm to include inequality constraints
restrict to the use of the interior-point algorithm. Based on the present results, and if MAT-
LAB includes (in a near future) a new implementation of the trust region algorithm with
inequality constraints, then it is recommended to repeat this benchmark to see whether the
new trust region algorithm still performs better than the interior-point.

4.3 IPIT-CZL Subroutines
Having introduced the overall idea of IPIT-CZL and the optimization problem involved, this
section aims to provide the reader a better understanding of the subroutines included in IPIT-
CZL and the macro files used to create the numerical model. The software used for the FEA
is ANSYS v.17.2 Mechanical APDL. There are four macro files written in Mechanical APDL
language, that can be found in the enclosed compressed folder. A file called FileName.DAT
includes the pre-processing commands i.e. geometry, material, element type, mesh, BCs and
solver settings. It also inputs the CZ parameters stored in a file called FileName.DesVar,
the interface element definition included in UserElemIPIT.DAT, the load steps saved in a file
called FileName.LSfile and the post-processing contained in PlotMomentDisp.MAC. Regard-
ing the MATLAB files, a total of 11 subroutines are used which are shortly described in the
following bullet points.

• Mainprogram.m: This function serves as IPIT-CZL’s main program and thus by
executing it IPIT-CZL starts. Global variables and optimization settings including
number of design variables, algorithm selection, constraints and perturbation sizes are
defined here. Another important task of this function is to create a batch file for
invoking the FEA in ANSYS.

• InitialguessAndBounds.m: Initial guess and bounds for the design variables x⃗ are
declared in this subroutine.

• CZparameters.m: This file inputs the design variables x⃗ and computes the remaining
dependent variables to fully describe a CZ law. The dependent variables are output.
Moreover, it plots a figure containing the CZ law at the current iteration.

• WriteDesVar.m: Reads the design variables and the dependent variables generated
in the previous subroutine in order to generate a FileName.DesVar file with a complete
description of the CZ law. This file is written in Mechanical APDL language such that
it can be directly imported in ANSYS.

• LoadStepFiles.m: This function generates a FileName.LSfile file with the load steps
used in the FEA. Those load steps correspond to the equilibrium points used in the
comparison with experimental data. The main macro file FileName.DAT inputs the
FileName.LSfile file.

• HessianInterior.m: The interior-point algorithm in MATLAB requires the Hessian
matrix to be provided as output of a separate function, handled by fmincon. This
is because there is a contribution from the equality and inequality constraints to the
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Hessian. The contribution, which can be seen in Eq. (4.2.13), depends on the Lagrange
multipliers v⃗ and u⃗ which are internally computed during the optimization process, and

hence they will be provided together in a vector ψ =

{
v⃗
u⃗

}
by fmincon every time it

calls HessianInterior.m. Nevertheless, this work deals with inequality constraints which
are 1st order polynomials, therefore only the second order derivatives of the objective
function are used to compute the Hessian. As the inputs for HessianInterior.m cannot
be changed, to calculate the Hessian, the Jacobian is made available by declaring it as
global variable.

• ReadMonitor.m: In order to detect whether convergence issues arise, this file read the
monitoring file called FileName.mntr, a file that ANSYS generates during the analysis.
The output from this file is a flag which is set to 1 for non-convergence solution otherwise
is set to 0.

• ReadOutputs.m: It opens a given text file and extract the global structural response.
It is used for both experimental and numerical responses.

• PlotResponse.m: As its name indicates, this subroutine generates a plot of the out-
put from the current numerical simulation and the experimental curve. Both global
structural responses are included in the same figure in this manner it is easy to visualize
the progress of the optimization.

• MyANSYSCall.m: Executes the ANSYS batch file and calculates the objective func-
tion.

• MyANSYSCall_ObjAndGrad.m: This file provides fmincon with the objective
function and the gradient. The objective function is obtained by invoking MyAN-
SYSCall.m whilst the gradient is calculated with the Jacobian matrix which is approx-
imated by FFD as shown in Eq. (4.2.20).

4.3.1 Description of IPIT-CLZ
Having presented the idea behind IPIT-CLZ and the subroutines that shapes it, this part of
the section deepens in the program skeleton. Elaborating on Mainprogram.m, MyANSYSCall_
ObjAndGrad.m, HessianInterior.m and MyANSYSCall.m is enough to conceive the program.
An interested reader can find all the subroutines in the enclosed compressed folder.
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Algorithm 1 Mainprogram.m
1: The following global variables are declared: FileName defining the current job name;

nDesVar including the number of design variables; δx⃗ a vector containing the perturbation
sizes and Jr(x⃗) the Jacobian matrix of r⃗(x⃗).

2: [x⃗0, LowBnd, UppBnd] = Call InitialguessAndBounds(nDesVar). This function call gen-
erates the initial guess for the design variables x⃗0 and sets the lower and upper bounds
of the design space.

3: Define the linear inequality constraints gj(x⃗) ≤ 0 in matrix form as Ax⃗ ≤ b⃗ in order to
ensure that the CZ law is a softening law by making the consecutive traction smaller than
or equal to the previous value. E.g. σ(3)3 ≤ σ

(2)
3 .

4: Create the ANSYS batch file used to execute the FEA program in MyAnsysCall.m.

5: Assign perturbation size to each design variable, e.g δx1 = 1e-6 corresponds to the per-
turbation size for the first design variable x1. The perturbation is used to approximate
the Jacobian matrix by FFD.

6: Set the design variable equals to the initial guess: x⃗ = x⃗0.

7: Select the optimization algorithm options: choose algorithm and termination tol-
erances. Call the nonlinear optimization function fmincon: [x⃗, f(x⃗)] = Call
fmincon(@MyANSYSCall_ObjAndGrad, x⃗0, A, b⃗, [ ], [ ], LowBnd, UppBnd, [ ], options).
Wherein the first entry is a call to the subroutine MyANSYSCall_ObjAndGrad.m which
provides the objective function and the gradient for the given x⃗.

8: The optimization program fmincon starts.

9: IPIT-CZL finishes the execution when fmincon provides a minimum.
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Algorithm 2 [f(x⃗), ∇⃗f(x⃗)] = MyANSYSCall_ObjAndGrad(x⃗)
1: [f(x⃗), r⃗(x⃗)] = Call MyANSYSCall(x⃗). Invoke the subroutine MyANSYSCall.m to com-

pute the objective function and the residual vector for the current CZ parameters stored
in FileName.DesVar file.

2: Jr(x⃗) = [ ]. Clear the Jacobian matrix.

3: Calculation of the sensitivities, first order information is obtained. Firstly the Jacobian
is computed by FFD with the perturbations defined in the vector δx⃗ and then gradient
is calculated.

for: DVNo = 1:nDesVar

4: x⃗(DVNo) = x⃗(DVNo) + δx⃗(DVNo)

5: [− , r⃗NEW (x⃗)] = Call MyANSYSCall(x⃗)

6: J(x⃗)( : , DVNo) = (r⃗NEW (x⃗) - r⃗(x⃗))/δx⃗(DVNo)

7: x⃗(DVNo) = x⃗(DVNo) - δx⃗(DVNo)

end

8: ∇⃗f(x⃗) = Jr(x⃗)
T r⃗(x⃗). Gradient is calculated.

9: f(x⃗) and ∇⃗f(x⃗) are read, return to fmincon.

Algorithm 3 [H(x⃗)] = HessianInterior(x⃗, ψ)
1: Global Jr(x⃗). This function, as the previous one, is handled by fmincon thus inputs

and outputs are predefined and cannot be changed. Ideally, the Hessian matrix should
be calculated in the previous subroutine where the sensitivities are computed however,
fmincon for the interior point algorithm is not design like that. Therefore, the Jacobian
matrix is made accessible in this function by declaring it as a global variable.

2: H(x⃗) = Jr(x⃗)
TJr(x⃗). Hessian is calculated.

3: H(x⃗) is read, return to fmincon.
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Algorithm 4 [f(x⃗), r⃗(x⃗)] = MyANSYSCall(x⃗)
1: The dependent parameters to fully describe the CZ law are calculated by calling the

CZparameters.m subroutine: [nn, K, Delta, Tau] = Call CZparameters(x⃗0). Wherein
nn is the number of line segments used in the CZ law, K is the penalty stiffness for the
onset traction, Delta and Tau are vectors containing the separations δ(i)3 and tractions
σ
(i)
3 defining the CZ law for i = 1 to nn.

2: Call WriteDesVar(FileName, nn, K, Delta, Tau). The ANSYS file FileName.DesVar stor-
ing the design variables and dependent parameters is created by invoking WriteDesVar.m.
FileName.DesVar is imported by the main ANSYS macro file FileName.DAT.

3: Call LoadStepFiles(FileName). This function generates the load steps used in the FEA,
which correspond to the equilibrium points used in the comparison with experimental
data.

4: Perform the FEA by executing the ANSYS batch file.

5: [flg] = Call ReadMonitor(FileName.mntr). Scan the monitoring file FileName.mntr and
active the flag flg if the analysis fails to converge.

6: if flg = 1, then an error message is shown to the screen and IPIT-CZL stops.

7: [ΨNum(x⃗)] = Call ReadOutputs(‘ResultFile.txt’). The results from the FEA are stored
in a file called ResultFile.txt. ReadOutputs.m extracts the numerical response and saves
it in two columns of the matrix ΨNum(x⃗). E.g. for a DCB under pure rotation the first
column corresponds to the end-beam rotation and the second to the moment.

8: [ΨExp] = Call ReadOutputs(‘ResultFileExp.txt’). Idem for the experimental data.

9: As the global responses come in discrete points, the numerical and experimental curves
need to be compared at the same locations. To do so, the experimental data is linearly
interpolated. The interpolated values are stored in the matrix ΨExp

Int .

10: r⃗(x⃗) = ΨNum(x⃗)[:, 2]−ΨExp
Int [:, 2]. The discrepancy between the numerical and the exper-

imental responses is stored in the residual vector r⃗(x⃗).

11: f(x⃗) = 1
2

∑m
l=1 r

2
l (x⃗). IPIT-CZL uses a least squares formulation of the objective function.

12: Call PlotResponse(x⃗, f(x⃗)). A graph is created in order to visualize the current discrep-
ancy between the global responses.
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Chapter 5
Assessment of Delamination

5.1 Experimental Setup
A test rig is developed at Aalborg University for performing delamination experiments on
coupon test specimens. The description of this experimental setup is already given in a
previous report [Jensen and Martos, 2016] by the same authors as this report, but is included
here also for completeness and guidance for new readers. Tests are performed on DCB
specimens subjected to pure moment loading. An illustration of the test specimen is shown
in Fig. 5.1a. In the current experiment, pure mode I crack opening is considered, meaning
that the moment ratio M1/M2 = −1. The specimens are UD glass fiber-epoxy laminates with
a pre-crack of length a0 introduced during the lay-up process. Length, width and thickness
dimensions of the test specimen are gathered in Tab. 5.1. Young’s modulus in the x-direction
(specimen longitudinal direction) is measured from a three-point bending test. The remaining
material properties are found in material data books, and is given later on. For now, only
Exx is considered.

Specimen No. Length Width Thickness Initial crack length Exx

- L [mm] b [mm] 2t [mm] [mm] [MPa]
0deg - 1 273.0 24.8 9.0 66.0 21.4×103

0deg - 2 273.0 24.9 9.0 66.0 21.4×103

0deg - 3 273.0 24.9 9.0 66.0 21.4×103

0deg - 5 273.0 24.6 9.0 66.0 21.4×103

Table 5.1: Geometric and material properties for the test series.

The test rig is driven by a tensile testing machine Zwick Z100/TL3S at a constant speed of
5 mm per minute. The rig consists of a pulley-system with a single string that goes around
the whole system twice. The system is illustrated in Fig. 5.1c. The force is transmitted from
the Zwick machine into four strings which travels through the system and reach the moment
arms, as also seen in Fig. 5.1b. Four strings with two roller-pairs reach each moment arm,
hence the force couple M applied to the DCB specimen arms are given in Eq. (5.1.1):

M =
1

2
FZwickd cos(φ) (5.1.1)

Where the parameters d and φ are shown in Fig. 5.1d, which shows the geometry and the
resulting couple at each moment arm. The parameter d is the distance between the edges of
the roller-pairs and is measured to be d = 121mm. The parameter φ is the angle of a moment
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arm. It is noted that FZwick always acts vertically, hence the cosine is needed when calculat-
ing the resulting couple, as only the projection of FZwick onto the perpendicular direction of
the moment arm contributs to M. The angle(s) (one for each moment arm) φ are measured
by inclinometers in absolute value.

(a) (b)

FZwick

0.5·FZwick

0.5·FZwick

M1

M2

2 strings

2 strings

4 strings

(c)

0.5·FZwick
φ

φ
0.5·FZwick

(d)

Figure 5.1: (a) Illustration of DCB specimen under pure moment loading (b) Real exper-
imental set up of the DCB specimen and moment arms (c) Pulley system and connection
to Zwick tensile testing machine (d) A single moment arm, its orientation and the resulting
force couple.

The weight of the moment arms are counter balanced by weights to ensure no shear forces are
introduced to the DCB specimen. Low friction roller bearings support the specimen, which
should be aligned with respect to the moment arms. Any misalignment would disturb the
measurement by introducing unexpected mode mixity. The moment arms are tightly fixed
to the surface of the specimen through a screw/drilled thread connection as shown in Fig.
5.2a. The crosshead displacement of the tensile testing machine and the applied force FZwick

are monitored together with the angles φ during the experiment. Additionally, a clip gauge
is attached to two pins located at the initial crack tip as shown in Fig. 5.2b. The clip gauge
provides a local measure being directly related to the interfacial separations. This clip gauge
monitors the separation at the initial crack tip which is denoted the end opening separation
δ∗ as illustrated in Fig. 5.1a.
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(a) (b)

Figure 5.2: (a) Moment arms grips. (b) Clip gauge mounted in the test set up.

5.1.1 Experimental Results
The experimental data shown here has been provided by the supervisors of this project. The
output from the experiment is the end opening separation, two force and two angle measure-
ments - one associated with each moment arm. The force couple M is calculated from Eq.
(5.1.1). The resulting force couple and angle for the upper and lower moment arm should
ideally be equal. The data for the upper moment arm is considered in the following. Fig.
5.3a and 5.3b shows graphs of moment per width versus end opening separation and angle
of rotation, respectively, for the test specimens presented in Tab. 5.1.
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Figure 5.3: Global structural responses: (a) Applied moment versus end opening separation
δ∗ (b) Applied moment versus angle of rotation

Note that the data for the 0deg - 1 specimen is considarably different from the other tests,
hence this is not choosen as the data set for testing IPIT-CZL. Among these curves, the data
for the 0deg - 5 test is utilized and is considered a reliable data series, since similar responses
for two other test specimens are observed.
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5.2 Finite Element Model

IPIT-CZL is based on comparing outputs from a physical experimental and a simulated ex-
periment. The experiment is simulated numerically by using the FEM. The FE model is
crucial to IPIT-CZL since the methodology relies on minimizing a residual in structural re-
sponse between the numerical model and the physical experiment. Consequently the quality
of the FE model directly reflects the final characterization of the CZ parameters. This sec-
tion describes the FE model with main focus on the elements utilized, the construction of a
proper mesh, load introduction, and model mismatches between the physical experiment and
numerical model.

The software used is ANSYS v. 17.2 MAPDL. The numerical model is written in MAPDL
language and consists of two macro files: A ∗.DAT file which defines the preprocessing steps
and sets up the solution settings. Specifically, the ∗.DAT file defines the model geometry,
specimen material, boundary conditions, element technology, mesh and specifies settings for
the Newton-Raphson solver. The CZ parameters are read from the ∗.DESVAR file. The
second macro file is a ∗.MAC file which performs the post processing steps and writes model
outputs to text files which are later used as input for IPIT-CZL.

The DCB specimen is UD glass fiber epoxy laminate, and is modelled as an orthotropic
material with elastic constants as given in Tab. 5.2. It is noted that only the stiffness
constant Exx is measured experimentally from a three-point bending test, while the remaining
properties are taken from an exercise session for a PhD course at Aalborg University using
the same materials.

Exx Eyy Ezz νxy νyz νxz Gxy Gyz Gxz

[GPa] [GPa] [GPa] [−] [−] [−] [GPa] [GPa] [GPa]

21.4 10 10 0.3 0.07 0.3 4 2.5 4

Table 5.2: Material properties used in the FE model presented in this section.

In the physical experiment a DCB specimen is loaded by pure moments resulting in a pure
mode I crack opening, while end-opening separation, rotations of DCB arms, crosshead dis-
placement and the applied force couple are monitored. The numerical model is displacement-
controlled and the loading is introduced by prescribing equally and opposite rotations at the
end of the two DCB arms. There is a mismatch in the specimen geometry between the numer-
ical model and the physical experiment. This is attributed to the way the load is introduced
in the experiment. The difference is illustrated in Fig. 5.4a and 5.4b. The real dimensions
of the DCB specimen is given in Tab. 5.1. However, some geometric modifications are done
when modelling the DCB specimen in a numerical environment for several reasons. Firstly,
the specimen is initially modelled as a unit width (1.0mm) specimen which obviously is dif-
ferent from the real 24.6 mm. This is due to the computational cost of having a model of
full width when every function evaluation in IPIT-CZL requires running a FE simulation.
Eventhough symmetry can be taken into account, it is still computationally costly. The
influence of the unit width assumption is elaborated on after the CZ parameters has been
characterized using IPIT-CZL based on a unit width model.

Secondly, the effective length of the DCB arms must be reduced a distance a∗0 in the numer-
ical model since the moments are not applied at the real DCB arm ends. The parameter
a∗0 is measured to be a∗0 =47 mm with a tolerance of approximately ±5mm since there is no
clear indication of where the DCB arm starts deflecting and is unaffected by the presence
of the moment arm grippers. The effective length of the specimen in the numerical model
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Figure 5.4: Geometric differences between the experiment and the numerical simulations, due
to the moment introduction in the specimen.

is then calculated as LNum = LExp − a∗0. Similarly, the initial crack length of the numeri-
cal model should be adjusted as: aNum

0 = a0 − a∗0. The compliance of the DCB specimen
depends on the initial crack length, the compliance increases with increasing a0. Note, how-
ever, that the specimen compliance decreases with increasing a∗0. Hence, the a∗0 parameter
is important to be able to make the numerical and experimental structural responses agree.
The a∗0 parameter is adjusted by comparing the initial linear elastic response, before any
opening at the initial crack tip, of the numerical model and the physical experiment. The
final value is determined to be a∗0 = 42.0mm, hence aNum

0 =66.0mm - 42.0mm = 24.0mm, and
LNum =273.0mm-42.0mm=231.0mm.

The FE model contains two element types: One type for modelling the DCB specimen bulk
material, and one type for modelling the potential crack path along the DCB arm interface.
The element type for modelling the DCB specimen is the 3D 8-noded linear SOLID185 ele-
ment with the enhanced assumed strain (EAS) option, being computationally less expensive
than the quadratic elements. The EAS option is a necessity to avoid parasitic shear which else
would develop when using linear elements in a bending dominated deformation. A predefined
crack path is built along the interface between the DCB arms. This interface is modelled
using the user-defined interface elements.

The CZ parameters are controlled by MATLAB. The stiffness of the interface elements before
the interfacial separations exceeds its critical point and material softening starts, are given
by the penalty stiffness parameter K(eq), which is chosen to be equal for all three directions.
The penalty stiffness K(eq) should be large enough to provide reasonable pre-crack stiffness,
hence it should not add too much artificial compliance for pre-crack situations. But at the
same time, it should be small enough to avoid numerical problems such as spurious traction
oscillations in the FE analysis. The value is set to K(eq) = 105 N/mm3 as recommended in
[Bak et al., 2014].

The mesh density is non-uniform throughout the FE model. The mesh is categorized as
being either coarse or fine depending on whether crack growth is expected in the region or
not. The mesh of the FE model is shown in Fig. 5.5. A potential fracture process zone is
identified and has a fine mesh with element sizes of 0.25mm // 0.5mm // 2.25mm in the
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Figure 5.5: DCB model under pure bending, nodal solution, σy, corresponding to the last
substep (φ = 16.3◦). The end at the left hand side is fixed.

length // width // height directions respectively. In the regions of a coarse mesh no crack
growth is expected to take place, and here the element dimensions are 2.26mm // 0.5mm //
2.25 mm. The mesh in the potential fracture process zone is refined sufficiently such that no
convergence problems for the FE model will arise, and the solution quality is independent
of the mesh. It has been reported in [Hansen et al., 2009], that the crack tip region of the
cohesive should be discretized by at least three elements, which is ensured in this FE model.

The loading is introduced by prescribing rotations at the DCB arm ends as illustrated in Fig.
5.4b. Since the FE model is constructed using linear solid elements, having no rotational
degrees of freedom, it is necessary to use multi-point constraint techniques to apply the
rotational loading. The loading is applied quasi statically with a final rotation of each DCB
arm of 16.3◦ in absolute value. In the FE model, the specimen is fixed at its left end even
though this is not the real support according to the experiment. However, in case of pure
mode I crack opening, M1 = −M2, so no boundary conditions are in theory needed since the
applied moments self-equilibrate each other. Nevertheless the left end is simply fixed, since
else the FE model complains about insufficient boundary conditions and possible rigid body
motion. Postprocessing of FE results show that reaction loads at the fixed end are negligible
anyway.
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5.3 Design Problem Formulation for Multilinear CZ Law
Having presented the structure of IPIT-CZL and preliminary studies of its performance for
the simple case of a bilinear CZ law, a multilinear CZ law is now considered. Recalling Sec.
4.2 the objective function is defined as shown in Eq. (5.3.1):

min
x⃗

f(x⃗) =
1

2
|r⃗(x⃗)|2 = 1

2

m∑
l=1

r2l (x⃗) (5.3.1)

Being a least squares formulation of the residual vector r⃗. The residual describes the dis-
crepancy in global structural response obtained from a finite element model and a physical
experiment. These data of moment versus angle of rotation, as discussed in Sec. 5.2. The
design variables x⃗ are CZ parameters. As illustrated in the introductory example with a
bilinear CZ law, various parameters for determining the CZ parameters are available. Previ-
ously the critical energy release rate and the onset traction were chosen as design variables
which completely defined the shape of the CZ law.

For the current problem a multilinear CZ law, as shown in Fig. 5.6, is used to model de-
lamination in a pure moment loaded DCB specimen under pure mode I crack opening. It is
chosen to fix the discrete separation points δ(i)3 and have tractions σ(i)3 as design variables.
The onset traction is fixed at 30 MPa, which corresponds to 80% of the out of plane strength
of the epoxy matrix material which is considered to be a reasonable estimate of the onset of
interfacial damage as a rule of thumb. The last traction is naturally set to zero σ(n)3 = 0MPa.
The number of line segments included in the multilinear CZ law is directly related to the
number of design variables. For a n-order multilinear law there will be a total of n−2 design
variables, as shown in x⃗:

x⃗ = ⌊σ(2)3 σ
(3)
3 ... σ

(n−1)
3 ⌋T (5.3.2)

The objective of IPIT-CZL is to determine the shape of the CZ law. However, the constitutive
model is restricted to be piecewise linear which imposes artificial constraints on the shape
of the CZ law. Nevertheless, these constraints are less restrictive than alternative CZ law
shapes e.g. bilinear, trilinear, trapezoidal, exponential ect. proposed by [Turon et al., 2006],
[Hansen and Lund, 2009], [Tvergaard and Hutchinson, 1992], and [Goyal-Singhal et al., 2004]
respectively.

Usually more line segments are needed in the crack tip region of the CZ law compared to
the bridging region. The idea is similar to creating a refined mesh in regions of high stress
gradients in a structural finite element context and having a more coarse mesh in regions of
low stress gradients. The proper placement of the fixed separation points δi requires physical
insight to the problem at hand, but can often be guided by elaborating on the experimental
data available. Nevertheless, they are to some extent subjectively chosen. This is discussed
further in the next section.
The subjectively selected placement of the separations δ(i)3 should be reconsidered when a
solution has been obtained, one should consider if the final shape of the CZ law is realistic,
and how well the structural response is represented by the numerical model. Additionally, a
post optimality sensitivity study of the placement of the discrete separation points could be
performed. The CZ parameters for the problem at hand is shown in Tab. 5.3.

The design space is bounded by upper and lower limits, ensuring that no design variable
is less than zero nor greater than the onset traction of σ(1) = 30MPa respectively. Initial
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Figure 5.6: Multilinear CZ law for pure mode
I crack opening

Pnt. Nr i: δ
(i)
3 [mm] σ

(i)
3 [MPa]

(1) 3.0E-04 30
(2) 0.0100 x1
(3) 0.0200 x2
(4) 0.0300 x3
(5) 0.0400 x4
(6) 0.0500 x5
(7) 0.0600 x6
(8) 0.0800 x7
(9) 0.1000 x8
(10) 0.2000 x9
(11) 0.5000 x10
(12) 1.0000 x11
(13) 3.0000 x12
(14) 5.0000 x13
(15) 9.0000 0

Table 5.3: Parameters and DV for
15’th order multilinear CZ law

studies of IPIT-CZL with a multilinear CZ law suggests putting up constraints on the design
variables to make sure that the CZ law is monotonically decreasing, that is, ensuring the
CZ law is always a material softening law. This is convenient since small and non-physical
oscillations in the CZ law has been observed in some of the initial tests. The constraints are
implemented as linear inequality constraints through A and b⃗, defined such that e.g. Ax⃗ ≤ b⃗,
and:

x1 ≤ x2 ≤ x3, x2 ≤ x3 ≤ x4 ... (5.3.3)

One should be cautious in imposing such constraints without any physical insight to the
problem at hand. During delamination, various failure mechanisms coexists in the fracture
process zone, and can be of different length scales too. Failure mechanisms in the crack tip
region are usually governed by plasticity, viscoelastic deformation and matrix micro cracking,
while fiber-bridging will occur in the wake of the crack tip.
Two different fiber-bridging mechanisms are commonly encountered in composite materials:
Crack bridging by frictionally restrained long fibers oriented perpendicular to the crack plane
and crack bridging by fibers oriented parallel to the crack plane, denoted as cross-over fiber-
bridging [Sørensen and Kirkegaard, 2006]. In case of frictionally restrained fiber-bridging,
the normal components of interfacial tractions and separations are related through σ3 ∝

√
δ3

[Sørensen and Kirkegaard, 2006]. However, micro-mechanical models in [Spearing and Evans,
1992] suggests an inverse proportional relation between normal components of interfacial
tractions and separations in case of cross-over fiber bridging: σ3 ∝ 1/

√
δ3. Therefore, the

constraints on the design variables should only be imposed if no potential failure mecha-
nisms are omitted by erroneous constraints. The fiber-bridging occurring in test specimens
under consideration in this report are solely of the cross-over bridging type. Consequently
the inequality constraints in Eq. (5.3.3) can be implemented and still adequately model fiber
bridging.

Stopping tolerances for the optimization algorithm are yet to be determined. They constitute
an optimality tolerance and a step tolerance. The former is a termination tolerance for the
gradients and is set equal to its default value of 1e-6. The latter is a termination tolerance
on the step size.
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The step tolerance is of primary importance for the current optimization problem. A lot of
tests have been conducted in order to determine appropriate the step tolerances. It is found
to be convenient to have two values of the step tolerance; a rough value of ϵR = 1e − 4 and
a fine value of ϵF = 1e − 5. The idea of using two stopping tolerances is to use ϵR as an
initial stopping tolerance to find a converged solution in the neighbourhood of an optimum,
and subsequently restart the optimizer from this point using a finer stopping tolerance ϵF to
obtain a better optimum point.
It is noted, that the step tolerance seems small compared to the expected accuracy of the
CZ law to be characterized. However, these are chosen from a lot of tests and seems as a
fine compromise. Larger values makes the optimizer stop prematurely, while smaller values
makes the optimizer search for a minimum for too many iterations.

5.3.1 Setting Up CZ Parameters for IPIT-CZL

In this section, further it is elaborated further on proper placement of δ(i)3 in the multilinear
CZ law for use in IPIT-CZL. The experimental data are used as guidance, together with a
brief discussion of the J-integral. For a DCB specimen loaded by pure moments M1 and M2

as shown in Fig. 5.1a, the path independent J-integral can be calculated with the following
equation under plane stress conditions [Sørensen and Kirkegaard, 2006]:

J =
21(M2

1 +M2
2 )− 6M1M2

4b2t3E
(5.3.4)

For this to be applicable, it is further assumed that the distances from the beam ends to
the fracture process zone are greater than few times the beam height, such that the stress
states at the beam ends are unaffected by the stress field around the fracture process zone;
leaving the beam in a state of pure bending [Sørensen and Kirkegaard, 2006]. This is the
case with the current specimen geometry since 2t = 9.0mm and a0 = 66.0mm. Additionally,
it is assumed that the specimen is made of a homogeneous and isotropic material. In case of
pure mode I crack opening, M1 = −M2 =M , the expression above reduces to the following:

J =
12M2

b2t3E
= CM2 (5.3.5)

Where C is a compliance constant. Hence the J-integral is directly proportional to the ap-
plied moment squared: J ∝M2. This means, that the curves of moment versus end opening
separation in Fig. 5.3a actually also suggests the shape of the R-curve, that is the fracture
resistance J as function of the end opening separation δ∗3 . A zoom-in of the end opening
versus moment curve is shown in Fig. 5.7.

Another important and widely used relation for plane problems is derived in [Sørensen and
Kirkegaard, 2006], and is shown here in case of pure mode I crack opening, under the as-
sumption that J is a potential function, i.e. independent of the path opening history:

σ3(δ
∗
3) =

∂J(δ∗3)

∂δ∗3
Or equivalently J =

∫ δ∗3

0
σ(δ3)dδ3 (5.3.6)

Even though its application is restricted to several assumptions, it gives a guidance of an
underlying and convenient relation between CZ parameters and global structural responses.
This can be used for guidance when formulating the design problem. A straight forward
utilization of this relation is to place the final separation value δ(n)3 where σ3 = 0.0. This
occurs when the J-curve attains its steady state - hence the final separation point δ(n)3 can
be estimated as the end opening separation where the plateau begins in Fig. 5.3a. For this
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reason δ
(15)
3 = 9.0mm in the Tab. 5.2.

Additionally, more line segments are needed in regions where a linear representation of the
CZ law is insufficient. This could be elegantly formulated in terms of higher order derivatives
of the J(δ∗3) curve, provided that a smooth curve fit of the data is available. However,
such an involved procedure is not necessary here. Recalling the integral relation of Eq.
(5.3.6) and considering the R-curve related behaviour in Fig. 5.7, an integrated effect from
0.0 < δ3 ≤ 1.0mm makes the moment curve shape change significantly in this region. Hence
more line segments are added in this separation range, as also seen from the table in Tab.
5.2.
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Figure 5.7: Zoom in: End opening separation versus moment per width for test specimen
0deg - 5.
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5.4 Assessment of Delamination with IPIT-CZL

This section includes the results obtained for the test specimen 0deg - 5. As mention in Sec.
5.3, 13 out of 15 tractions are the design variables included in x⃗.
Initial testing of IPIT-CZL revealed a reasonable solution, which is used as a reference CZ
law in this section. The reference CZ law is shown in Fig. 5.8 and Fig. 5.9. The separation
axis δ3 is split into two parts for illustration purposes: A near crack tip (NCT) region ranging
from [0.0; 0.1]mm and a far bridging (FB) region in the range of [0.2; 9.0]mm.
It is decided to run IPIT-CZL with four initial guesses, which have been chosen based on
the reference CZ law. The initial guesses are shown together with the reference CZ law in
Fig. 5.8 and Fig. 5.9. The first initial guess, IG1, is a CZ law whose crack-tip and bridging
energy1 are larger than those from the reference. IG2 has the crack-tip energy larger but
bridging energy smaller, IG3 has smaller crack tip energy but larger bridging energy and IG4
both crack-tip and bridging energy are smaller than the reference CZ law. It is noted, that
these comparisons of crack tip and bridging energy are only approximate, since there is no
clear border between the crack tip and bridging zone. With these initial guesses, it is aimed
to observe the behaviour of the numerical simulations and the optimization progress towards
the optimum point. The global structural responses corresponding to the reference and initial
guess CZ laws are depicted in Fig. 5.9. The initial guess CZ laws and their corresponding
critical energy release rate, are also gathered in Tab. 5.4.
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Figure 5.8: CZ laws of the reference set and all the initial guesses IG1-4. Left: NCT region.
Right: FB region.

To exemplify the performance of IPIT-CZL, initial guess IG3 is considered in more detail.
IPIT-CZL is started with a step tolerance of ϵR, and converges to an optimum point after 78
iterations. Thereafter, IPIT-CZL is restarted from the optimum point with a step tolerance
of ϵF and after another 33 iterations, IPIT-CZL arrives at a final CZ law for IG3.
The evolution of the optimization process is presented in Fig. 5.10 and Fig. 5.11. Major
changes occur within the first 6 iterations and after 12 iterations the global structural re-
sponse can be considered well represented. Until the 78th iteration, minor reductions in the

1Recall from previous sections, that the fracture energy is directly related to areas under the traction-
separation curve.

81 of 111



CHAPTER 5. ASSESSMENT OF DELAMINATION

0 2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

800

900

1000

Exp
Ref.
IG1
IG2
IG3
IG4

Figure 5.9: Global structural responses of the reference CZ law and all the initial guesses.

objective function and minor changes in the CZ law is observed. Thus, one could suggest
increasing the stopping tolerances to obtain a reasonable solution in less iterations, specially
if the uncertainties related to the experimental data are considered (e.g. the fiber misalign-
ment, the dimensions of the specimen, the location/modeling of the force introduction, etc.)
Nonetheless, that will make IPIT-CZL stop prematurely in some cases, as it has been expe-
rienced.

ID n. Initial guess, x⃗0
[MPa]

Gc[
kJ
m2

]
IG1 [ 30.000 15.000 5.000 3.000 1.500 1.000 0.800 0.800 0.750 0.700 0.500 0.250 0.125 ] 2.700
IG2 [ 15.000 5.000 2.000 2.000 1.800 1.800 1.800 1.800 0.180 0.180 0.180 0.150 0.150 ] 1.526
IG3 [ 5.000 3.000 2.200 2.000 1.900 1.800 1.700 1.600 1.500 1.400 1.300 1.200 1.100 ] 8.632
IG4 [ 5.000 3.000 2.500 2.000 1.600 1.400 1.100 0.850 0.650 0.400 0.170 0.100 0.001 ] 1.090

Table 5.4: The four initial guesses used.

The results obtained for all initial guesses IG1-4 are collected in two tables, the information
regarding the performance of the optimization algorithm is included in Tab. 5.5 and the con-
verged solutions are gathered in Tab. 5.6. An identification code (ID n.) is used to distinguish
the solutions, e.g. for the initial guess 1: IG1 is the initial CZ law, CIG1 is the converged CZ
law based on the rough step tolerance ϵR, and CIG1R is the converged CZ law after restart-
ing IPIT-CZL from the previously obtained optimum point using a fine step tolerance ϵF .
In the solutions provided by the ϵR, there is a good agreement in the critical energy release
rate as shown in Tab. 5.6. However, there are some clear differences between the obtained
CZ laws and global structural responses as depicted in Fig. 5.13a and Fig. 5.12a, respectively.

The principal discrepancies in the CZ laws are seen in the NCT region Fig. 5.12a, whilst,
the CZ laws in the FB region have similar shape. Regarding the structural response in Fig.
5.13, there is a good agreement of all solutions with the experimental data, except in the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10: Evolution of the global structural response for the execution IG3. (a) Initial
guess (b) through (g) 1’st to 6’th iteration (h) converged solution.
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(e)

(f)

(g)

(h)

Figure 5.11: Evolution of the global structural response for the execution IG3. (a) Initial
guess (b) through (g) 1’st to 6’th iteration (h) converged solution.
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region φ : [2◦; 5◦], being the transition between linear elastic and nonlinear response. The
flat part at the end of the numerical curves may appear strange, but is due to the fact that
the steady state fracture toughness has been reached. If the fiber-bridging was a smoother
phenomenon, a clear horizontal line would be seen in the experimental curve, just as in the
numerical simulations. Moreover, recalling Fig. 5.3b, a horizontal line can be insinuated at
the end of the curve 0deg - 5, indicating a steady state response, with a moment value of
M ≈ 600 Nmm

mm between angles of φ ≈ 14◦ and φ ≈ 24◦.

The differences between optimum solutions for all initial guesses IG1-4 vanish in the con-
verged solution obtained after restarting IPIT-CZL using the finer step tolerance ϵF . All
solutions converged to the same global structural response as shown in Fig. 5.13b, and the
linear-nonlinear transition is no longer shown as a kink in the numerical models, but lies on
top of the experimental curve. The same CZ law is consistently reached as illustrated in Fig.
5.12b. Additionally, special attention should be drawn to the critical energy release rate Gc

in Tab. 5.6; all solutions converged to the same value of Gc ≈ 2.3 kJ/m2.

ID n. Number of
Iterations

Number of
f. evals.

Time
[h m s] Stopping criterion f(x⃗)

CIG1 28 406 21 h 57’ 18.78” Step size tolerance 656.43
CIG2 31 448 24 h 25’ 31.09” ” 1502.00
CIG3 78 1106 72 h 34’ 46.26” ” 342.42
CIG4 61 868 53 h 54’ 25.48” ” 294.98

CIG1R 54 770 46 h 42’ 2.22” ” 266.77
CIG2R 43 616 36 h 0’ 50.28” ” 266.87
CIG3R 33 476 27 h 31’ 33.38” ” 265.11
CIG4R 78 1106 68 h 29’ 57.03” ” 265.04

Table 5.5: Results obtained from IPIT-CZL for the selected experiment with four initial
guesses. Part I

ID n. Converged Point, x⃗
[MPa]

Gc[
kJ
m2

]
CIG1 [ 10.316 7.373 5.8149 4.6991 3.7824 2.9618 2.2308 1.5674 1.1013 0.7423 0.3387 0.16724 0.12217 ] 2.293
CIG2 [ 12.902 9.1663 7.1627 5.7115 4.5112 3.4207 2.4552 1.5658 0.95456 0.60921 0.33216 0.18393 0.11069 ] 2.287
CIG3 [ 8.0606 5.9264 4.7953 3.9692 3.2885 2.6776 2.1506 1.6617 1.252 0.82084 0.34326 0.15201 0.12979 ] 2.293
CIG4 [ 7.5081 5.4784 4.4383 3.6975 3.0992 2.5714 2.1327 1.7209 1.3583 0.81005 0.34882 0.14424 0.13372 ] 2.297

CIG1R [ 6.1406 4.3223 4.0728 3.9195 3.3406 2.131 2.0838 2.0476 1.4691 0.75265 0.36395 0.13663 0.1366 ] 2.296
CIG2R [ 6.158 4.3993 4.0805 3.8745 3.2528 2.1668 2.0964 2.0429 1.4676 0.75373 0.36354 0.13676 0.13671] 2.297
CIG3R [ 7.2707 4.1879 3.858 3.7184 3.1613 2.138 2.0844 2.0305 1.4495 0.7594 0.36095 0.1382 0.13818] 2.302
CIG4R [ 7.4007 3.9411 3.8495 3.8175 3.304 2.0741 2.0596 2.0335 1.4534 0.75685 0.36127 0.13819 0.13818 ] 2.302

Table 5.6: Results obtained from IPIT-CZL for the selected experiment with four initial
guesses. Part II
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Figure 5.12: Converged CZ laws of (a) IG1 through IG4 (b) restarted IG1 through IG4.
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Figure 5.13: Converged global structural responses of (a) IG1 through IG4 (b) restarted IG1
through IG4.
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An alternative measure of structural response is available from the experiment in terms of
moment versus end opening separation δ∗. The agreement in this response is investigated
here. This comparison is of interest, since this moment-end-opening measure is independet
of the angular measure used for the characterization of the CZ law. In general terms, there
is a good concordance between the numerical and the experimental response as illustrated
in Fig. 5.14b. However, the transition between linear and nonlinear structural response in
Fig. 5.14b seems to occur prior to the numerical simulation around 250 Nmm/mm than the
experiment around 300 Nmm/mm. One could suggest that some energy should be shifted
from the bridging to the crack tip part of the CZ law, but that contradicts what is seen in
the moment-rotation global structural response in Fig. 5.14a where the responses completely
agree.

The discrepancy in the moment-end-opening curve in Fig. 5.14b could be due to numerous
resons; most likely including different bulk material properties of the specimen in the nu-
merical and experimental model, variations in experimental measurements and 3D effects.
The latter is probably the most prominent source of uncertainty, it is excelled by anticlastic
bending, which leads to an apparently larger interfacial strength on the side of the speci-
men[Joki et al.]. This influences the end-opening measurements δ∗, as these are measured
on the specimen sides, and consequently are delayed with respect to the crack openings at
the specimen midplane. In addition, the specimen in the numerical model has unit width
as opposed to the true width of 24.6mm in the physical experiment. Hence, a disagreement
in Fig. 5.14b should be expected due to 3D effects. Similarly, the anticlastic bending do
not affect the slope of the beam’s longitudinal axis. This could also explain why there is an
agreement for the linear/nonlinear transition in Fig. 5.14a but not in Fig. 5.14b.

Nonetheless, there is another relevant issue concerning the experimental measurement of the
end-opening separation, that explains why a greater apparent interface strength is expected.
The maximum clip gauge tolerance achievable is 0.1 mm since a caliper was used for its cali-
bration and the onset separation is in the order of 1e-4 mm. Therefore even if a displacement
equal to the onset separation take place on the side of the specimen, the measuring device
will not be able to capture it. Thus, despite the fact that anticlastic bending can be included
in the simulations, there will still be differences in the moment-end-opening displacement
responses due to the sensitivity of the measuring device.

The previous conjectures and statements motivate a more thorough analysis of the results.
Sensitivity studies of the global structural response to changes in the CZ law and 3D effects
is the topic of the following chapter, which is crucial to conclude if some of the hypotheses
stated here hold true or not.
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Figure 5.14: Comparison of numerical and experimental global structural responses for all
solutions: (a) Applied moment versus angle of rotation (b) Applied moment versus end
opening separation.

5.5 Progression of IPIT-CZL Optimizer
In this section it is elaborated further on the restart of the optimization process and the
history of design variables, gradients, Hessian matrix eigenvalues, and objective function
values. The optimization process is again presented by considering the third initial guess IG3,
however, results and findings for this section are general tendencies and applies for all initial
guesses IG1-4. During the optimization process, information concerning the convergence rate,
objective function, design variables, gradients and Hessian matrices has been monitored. The
history for two design variables are shown in Fig. 5.15a through 5.15d in terms of the iteration
number nIter. The design variables under consideration are DV1 and DV11, corresponding
to tractions of points (δ

(2)
3 ; σ

(2)
3 ) and (δ

(10)
3 ; σ

(10)
3 ) respectively of a pure mode I multilinear

CZ law. They represent a point in the NCT region and a point in the FB region.
Note the scale of the secondary axis is different for each plot. Additionally, in Fig. 5.15b and
5.15d, a zoom-in is done such that the oscillations for a large range of iteration numbers can
be seen. Initially, the magnitudes of the gradients are several orders of magnitude larger, and
drops significantly within the first 5 iterations, which is illustrated in the small figures inside
Fig. 5.15b and 5.15d.
Fig. 5.15f and 5.15g plots the objective function value as the optimizer progresses. Recall,
that the optimization algorithm is restarted when nIter=78. Fig. 5.15e shows the evolution
of the Hessian matrix condition number, defined as the ratio of the largest and smallest
eigenvalue in absolute value. From all the history plots, four essential observations are noted,
which are discussed in more detail:

(1) The convergence rate is reduced significantly after around N=13 iterations, correspond-
ing to the number of design variables.

(2) After restarting the algorithm, significant changes are again seen and the optimizer
progresses towards the minimum.

(3) Severe zigzagging in positive and negative values of the gradients are observed in some
regions.

(4) There is a large span in Hessian eigenvalues.
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Figure 5.15: History data for initial guess 3.
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The restart of the optimizer at nIter=78 with an initial guess of the latest converged iteration
(x⃗0 = x⃗|nIter=78, shows significant changes in the design variables and the objective function,
and the gradients decreases towards zero. The combined effect of items (1) and (2), suggests
restarting the optimizer for every about (N+1) iterations during the whole optimization pro-
cess, to have effective changes in the design variables towards the minimum, and to do so
within a reasonable number of iterations. Imagine e.g. that the nearly horizontal line from
nIter ≈ 20 until nIter = 78 could be avoided, and how that would be computationally efficient.

The concept of restating optimization schemes and seeing an improvement in the perfor-
mance of the optimizer is not surprising. It is stated in [Arora, 2012], that quasi-Newton
methods needs to be restarted at every (N+1) iteration for general objective functions, such
that x⃗0 = x⃗(N+1), for computational stability. Restarting optimizers after some number of
iterations typically holds for optimizers using second order information, since Hessian approx-
imations may have been calculated with information not valid at the current design point
due to highly nonlinear functions or nonconvexity etc.
Not only second order methods can benefit by a restart. Conjugate gradient methods will
find a minimum in N iterations for positive definite quadratic functions having N design vari-
ables (and so would quasi-Newton methods for that sake). However, for general functions
conjugate gradient methods should be restarted after (N+1) iterations [Arora, 2012], since
invalid direction enforcements of successive design iterates may deteriorate the convergence,
which is solved by a restart.

The optimization algorithm used for IPIT is an interior point algorithm according to [Waltz
et al., 2006], which is able to switch between a quasi-Newton method in combination with
a line search method (QN-LS) to calculate the step size, and a trust-region method with a
conjugate gradient method (TR-CG). The switch between QN-LS and TR-CG depends on
function non-convexity and Hessian rank deficiency, as explained previously in Sec. 4.2.2.
Thus, the optimizer used for IPIT is neither a direct quasi Newton method nor a direct
conjugate gradient method, which should be restarted after (N+1) iterations [Arora, 2012],
however, it relies on both of them. Consequently, restarting IPIT after some iterations may
be beneficial.

This hypothesis is tested, by starting IPIT from IG3, and for every (N+1) iteration the algo-
rithm is restarted such that x⃗0 = x⃗(N+1). It has been observed, that restarting the algorithm
at every (N+1) iteration is effective for sets of design variables that are far away from the
optimum point. However, as the design variables approaches the optimum point, the restarts
become less effective. It is not recommended to restart the algorithm when design variables
are close to the optimum. In one test, the algorithm is restarted two times. It is restarted at
nIter=14 and again at nIter=28, and it gives a converged solution in agreement with those
shown in Fig. 5.13 at nIter=80. Consequently, the restarting of the algorithm reduced the
total number of iterations by 30, and is proven to be effective for initial design iterates which
are still far from the optimum point.

Observation (4) is related to a large span in Hessian eigenvalues. Throughout the iterations,
the condition number of the Hessian matrix is on the order of 1011, as illustrated in Fig.
5.15e, which indeed categorizes the problem as being ill-conditioned. This merely supports
the findings from the initial benchmark tests using a bilinear CZ law in Sec. 4.2.6, but here
in a more extreme case based on the condition number of the Hessian matrix.
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It is noted, that the Hessian matrix is approximated at some design iterate based on the
computed gradients. Consequently, the statements concerning the Hessian matrix are not
exact but suggest tendencies. The Hessian matrix is concerned with second order derivatives,
whether it is approximated or exact, and clearly there is a significant difference in second
order derivatives, indicating a difference in the relative dominance of the design variables.

This can be attributed to a difference in work of separation/energy release rate associated
with each design variable. For instance a change in a design variable in the FB region would
result in a greater change in the energy of the system due to the relatively coarse discretiza-
tion of separation points here, compared to the fine discretization in the NCT region. A
priori the energy in the system is known to be dominant, this is also seen using IPIT-CZL,
which converges to the correct critical energy release rate within few iterations.

Another reason that influences the relative dominance of design variables is the formulation
of the objective function. The objective function is defined as the difference in structural
response at discrete points, shown as blue crosses in the plots of global structural response.
These points are distributed equidistant in the rotation φ-space, but a larger amount of the
moment-rotation curve is associated with the FB region than the NCT region. This is evident
by comparison of Fig. 5.12a and Fig. 5.13a; for relatively large differences in NCT region,
only a small difference is shown in the structural response.
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Chapter 6
Sensitivity Studies and 3D Effects

6.1 Sensitivity Studies of IPIT-CZL
In the previous section, IPIT-CZL was shown to be robust in finding the same optimum
point for four different initial guesses for the specific set-up of IPIT-CZL. During the devel-
opment of IPIT-CZL various assumptions and decisions have been taken, which effect the
characterization of the CZ parameters. Some of these decisions are reviewed in the current
section, sensitivity to these are examined. This serves as a study of the robustness of the
methodology. At first, the following sensitivity studies are undertaken:

(A): Subject the fixed location of δ(i)3 to small variations.

(B): Reducing number of line segments.

(C): Variations in sets of experimental data.

A major source of uncertainties is 3D effects. This topic is given its own special treatment
and is considered in Sec. 6.2.

6.1.1 Redistribution of CZ Separation Points and Line Segments

The design problem is set up, such that only tractions σ(i)3 of the CZ law are treated as design
variables, while the separations δ(i)3 are fixed quantities. This issue was a topic of interest in
Sec. 5.3 and Sec. 5.1. It was argued, that experimental data, as measurements of the end
opening at the initial crack tip, could guide the placement of the fixed separation values. This
suggested the final separation value, and which regions the separation-point density should
be high. However, the specific location of δ(i)3 , the number of line segments in the near crack
tip (NCT) region and the far bridging (FB) region are all user-defined. This subsection is
concerned with items (A) and (B) above, and their influence on CZ parameters obtained
using IPIT-CZL.

At first, the original CZ law obtained using IPIT-CZL for the discretization of separation
points given in Tab. 5.3, and repeated in the ”Original”-column of Tab. 6.1, is compared to
a solution obtained with IPIT-CZL using an alternative discretization of the same number
of separation points. The discretization for sensitivity study (A) is obtained by subjecting
every δ(i)3 in the ”Original” column to a small variation. The resulting separation points are
shown in the (A)-column of Tab. 6.1.

95 of 111



CHAPTER 6. SENSITIVITY STUDIES AND 3D EFFECTS

Separation Pnt.: δ(i)3 Original [mm] (A) [mm] (B) [mm] (C) [mm]
Pnt. Nr. 1 3.000e-04 3.000e-04 3.000e-04 3.000e-04
Pnt. Nr. 2 0.010 0.005 0.010 0.010
Pnt. Nr. 3 0.020 0.015 0.020 0.020
Pnt. Nr. 4 0.030 0.025 0.040 0.030
Pnt. Nr. 5 0.040 0.035 0.060 0.040
Pnt. Nr. 6 0.050 0.045 0.100 0.050
Pnt. Nr. 7 0.060 0.055 0.200 0.060
Pnt. Nr. 8 0.080 0.070 1.000 0.080
Pnt. Nr. 9 0.100 0.090 3.000 0.100
Pnt. Nr. 10 0.200 0.190 9.000 0.200
Pnt. Nr. 11 0.500 0.400 - 0.500
Pnt. Nr. 12 1.000 0.900 - 1.000
Pnt. Nr. 13 3.000 2.500 - 3.000
Pnt. Nr. 14 5.000 5.500 - 5.000
Pnt. Nr. 15 9.000 9.000 - 9.000

Table 6.1: Various distributions of fixed separation points δ(i)3 for a pure mode I CZ law.
Changes compared to the original distribution are marked in bold text.

Secondly, the (B) item is considered. Here, the number of line segments of the CZ law is
reduced by five, resulting in a 10-segmented multilinear CZ law. The separation points used
are shown in the (B)-column of Tab. 6.1.
For the (A) and (B) distributions of separation points, IPIT-CZL is started from initial guess
IG2, according to Tab. 5.4. The converged solution of the sensitivity analysis (A) and (B)
are gathered in Tab. 6.2 and plotted in Fig. 6.1 together with the original solution. The
corresponding global structural responses are shown in Fig. 6.2.

In general, similar results have been obtained, the overall shape of the CZ law is clearly of
general character, and the solutions agrees in terms of total energy and energy distribution
in the NCT and FB regions. Due to the piecewise linear nature of the CZ law, an adjustment
of every traction point σ(i)3 is naturally expected, when the CZ law is reduced from a 15- to
10 segmented CZ law or when small variations in the discrete separation points are given, to
keep the energy consistent.
Regarding sensitivity study (A), one should expect to obtain traction points σ(i)3 in the neigh-
bourhood of the original ones, when separation points are subjected to small variations. This
is also the case as seen from Fig. 6.1. Points in the NCT region, especially σ

(2)
3 and σ

(3)
3 ,

shows the largest differences, but it should also be expected, since the slopes of the line seg-
ments are larger in this region.

In terms of specific details of the CZ law shape, the original CZ law obtained shows a bump
in the region δ3 : [0.02; 0.06] which is most clear in Fig. 5.13a, a similar bump is not seen in
the sensitivity studies (A) and (B). Additionally, the (A) solution shows results in an objec-
tive function value of of f(A) = 253.2 as opposed to the original objective function value of
f = 265.1. This indicates that the distribution of separation points in (A) is actually better
than the original formulation. For completeness, the objective function value of sensitivity
study (B) is f(A) = 388.7, which is rather high, however, there is a small and almost negligible
difference in the global structural response, and a converged solution is obtained in just 42
iterations.
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Traction Pnt.: σ(i)3 Original-CIG2R [MPa] (A) [MPa] (B) [MPa] (C) [MPa]
Pnt. Nr. 1 30.000 30.000 30.000 30.000
Pnt. Nr. 2 6.1580 14.0761 8.4985 7.6138
Pnt. Nr. 3 4.3993 6.0383 4.2935 4.9519
Pnt. Nr. 4 4.0805 4.5556 3.1757 3.9814
Pnt. Nr. 5 3.8745 3.9520 2.4526 3.3753
Pnt. Nr. 6 3.2528 3.3385 2.1457 2.9245
Pnt. Nr. 7 2.1668 2.5686 1.2289 2.5446
Pnt. Nr. 8 2.0964 2.1631 0.3124 2.2286
Pnt. Nr. 9 2.0429 1.9015 0.1773 1.9551
Pnt. Nr. 10 1.4676 1.6511 0 1.6349
Pnt. Nr. 11 0.7537 0.8328 - 0.7156
Pnt. Nr. 12 0.3635 0.4412 - 0.3274
Pnt. Nr. 13 0.1378 0.1424 - 0.1056
Pnt. Nr. 14 0.1367 0.1288 - 0.1002
Pnt. Nr. 15 0 0 - 0

Table 6.2: Tractions σ(i)3 of the converged CZ law for each sensitivity study. The separations
can be seen in the previous table.
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Figure 6.1: Comparison of CZ laws obtained for the different sensitivity studies with the
original result.
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Figure 6.2: Converged solution for the sensitivity studies (A) and (B). Comparison of nu-
merical and experimental global structural responses : (a) Applied moment versus angle of
rotation (b) Applied moment versus end opening separation.

Any shape of a CZ can be approximated by piecewise linear functions, as long as the discriti-
zation is fine enough. The choice of the number of line segments depends on the application,
if only a simulation of global structural responses are needed, or if a study of failure mecha-
nisms is of interest, with the latter being more dependent on the actual shape of the CZ law.
It is a compromise between computation time and application.

6.1.2 Variations in Sets of Experimental Data
Having discuss about the influence of the separation discretization of the CZ law in the pre-
vious subsection, now reproducibility of the results for different sets of experimental data
is of concern. Prior to this analysis, the data set for the test specimen 0deg - 5 has been
uniquely considered. Here, the data set for test specimen 0deg - 3 is used. The differences
with respect to the test specimen 0deg - 5 are illustrated in Fig. 6.3. Note that both test
specimens belong to the same series and share geometry, material properties and test set up,
however as seen in Fig. 6.3a the elastic response differs significantly. This fact is believed to
be due to the uncertainties related to the bending modulus, since the authors have observed
variations up to 5 GPa in similar specimens which were tested in a three-point bending test,
and related to the effective length of the DCB arms as discussed in Sec. 5.2.

A compromised decision needs to be taken, since there are uncertainties related to both
quantities, it is decided to match the initial linear elastic response by changing the parameter
a∗0, as done previously in Sec. 5.2. Accordingly, the initial crack in the simulation will be
aNum
0 = a0 − a∗0 = 66 − 46 = 20 mm. The global structural responses for the converged

solution can be seen in Fig. 6.4 and the original CZ law obtained for the data set 0deg - 5 is
compared with the CZ law obtained for the data set 0deg - 3 in Fig. 6.5, labeled as sensitivity
study (C).
The numerical structural responses present an excellent agreement with the experimental
data 0deg - 3 as can be seen in Fig. 6.4. In regards to the comparison between the CZ
law obtained, there are some variations in each traction σ

(i)
3 with less implications in NCT

region but at FB region all tractions are lower than in the original CZ law, leading to a
significant change in the total fracture energy Gc, which is 2.297 kJ/m2 for the original CZ
law (experimental data 0deg - 5) and 2.112 kJ/m2 for the other one (experimental data 0deg
- 3). Furthermore, the shape of the CZ law in the FB region is identical to the original law.
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Figure 6.3: Global structural responses for test specimen 0deg - 3 and 0deg - 5 (a) Applied
moment versus angle of rotation (b) Applied moment versus end opening separation.
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Figure 6.4: Converged solution using the data set 0deg - 3. Comparison of numerical and
experimental global structural responses : (a) Applied moment versus angle of rotation (b)
Applied moment versus end opening separation.
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Figure 6.5: Comparison of CZ laws obtained for the data set 0deg - 5 (Original) and 0deg -
3 (Sensitivity Study (C))
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6.2 3D Effects
So far in this work, only unitary width models have been dealt with. The goal of this section
is to explore the changes in the CZ law obtained from the optimization program, when a full
width model accounting the variation of the stress σ3 across the width, owing to anticlastic
bending, is used in the simulations.

Let one consider a structure subjected to bending, where there is a linear variation of the
longitudinal stress σx through the thickness with tension and compression at opposite ends.
The Poisson effect alters the cross section such that in the tension zone the material will
shrink, whereas in the compression zone the material will expand. This deformation of the
cross section modifies the curvature perpendicular to the bending direction of the structure,
as illustrated in Fig. 6.6. This phenomenon is known as anticlastic bending.

σx <0

σx >0

 εz>0

εz<0

Deformed

Undeformed

Figure 6.6: Poisson effect leading to anticlastic deformation of the cross section.

In a DCB specimen loaded by pure moments of equal value and opposite signs, both arms
experience the same anticlastic bending and, at the process zone, the cross section of the
laminate starts splitting into two subsections which are mirror images of one another as il-
lustrated in Fig. 6.7. In addition, at the crack front, all the points lying at the interface have
the same contribution to the interface traction σ3 stemming from the bending load. However,
in the central region, the total interface traction σ3 is greater than that at the edges due to
the contribution from the anticlastic deflection, as illustrated in Fig. 6.7b δedge3 < δmiddle

3

and so is σedge3 < σmiddle
3 before the onset of delamination. Therefore, the onset traction will

be reached at the center of the crack front before it is reached at the edges, explaining the
thumb nail shape of the crack front seen in Fig. 6.7a.

(a) (b)

Figure 6.7: (a) DCB specimen loaded by pure moments in pure mode I crack opening (b)
Cutaway of a section in the process zone where the separation δ3 at the edge is larger than 0.

Having introduced a 3D effect and how it affects the delamination propagation, a comparison
of results obtained using IPIT-CZL for a unit- or full width model is regarded. Furthermore,
it is considered of interest to obtain results of a full width model where the Poisson’s ratio
νxz is set to zero, which in principle should give the same result as that from the unit width
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model. The initial guess under consideration is IG4, presented in Sec. 5.4.
The CZ laws obtained from the three models are shown in Fig. 6.9, and the corresponding
global structural responses: Moment versus angle of rotation and moment versus end-opening
separation are shown in Fig. 6.10a and Fig. 6.10b, respectively. Note that the IPIT-CZL
solution for the full width model gets stuck in local minima, even if it is restarted closer to
the solution obtained for unit width model. The reason for this is unknown, but is a topic
for further work.

(a) (b)

Figure 6.8: Isosurface contour plots at angle of rotation φ∗ = 11.41◦, σy is displayed (a) Full
width νxz = 0 model (b) Full width model.
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Figure 6.9: IPIT-CZL solutions: Comparison of CZ laws obtained of the full width, the full
width-zero Poisson’s ratio νxz and the unit width model

Firstly, the IPIT-CZL solutions in Fig. 6.9 are of concern. Besides the solutions for the full
width model, there is a perfect agreement in the FB region and a good agreement in the
NCT region of the CZ laws between the unit width model and the full width with νxz = 0,
as expected.
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Figure 6.10: IPIT-CZL solutions: Comparison of numerical global structural responses of
the full width, the full width-zero Poisson ratio νxz and the unit width model: (a) Applied
moment versus angle of rotation (b) Applied moment versus end opening separation.

As argued in Sec. 5.5, the interface tractions in the NCT region are dominated, in an opti-
mization context, by the tractions in the FB region, ergo it is expected that the optimizer will
have more difficulties to determine the optimum value of those design variables. Regarding
the structural responses in Fig 6.10, no significant differences are seen and both solutions are
considered equally as good.

Since no converged solution for the full width model with non-zero Possion’s ratio is ob-
tained, the global structural responses associated with the light red CZ-law in Fig. 6.9 is not
considered. Nevertheless, the effect of anticlastic bending in the structural response will be
illustrated by comparing the full width models with νxz = 0 and νxz ̸= 0 for a given CZ law.
For that purpose, the CZ law CIG4R shown in Tab. 5.6 is used. Moreover, the unit width
model is included as well, to highlight that there are no differences with respect to the full
width with νxz = 0 model, as presumed.

In Fig. 6.11a, there are no significant differences that can be noticeable from the global
structural responses. Nonetheless, a finer measure of the agreement with the experimental
data is provided by the objective function. The objective function of the unit width model is
265.04 and of the full width with νxz = 0 is 273.93, hence there is only small difference. On
the other hand, the objective function of the full width model is 423.75 which compared to
the 273.93 of the full width with νxz = 0 constitute a significant difference. Furthermore, in
Fig. 6.11b the full width model gets closer to the experimental data compared to the other
two curves, which practically lay on top of each other. The reason is the anticlastic effect
illustrated in Fig. 6.7. It is important to note that the only difference between these two
models is one single parameter the Poisson’s ration νxz. Thereby, it is shown that the global
structural responses are affected by the anticlastic bending, and consequently it is believed
that a different CZ law would be obtained from the optimizer. However, the prove of this is
left as further work due to lack of time, especially for running simulations of full width.
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Figure 6.11: Anticlastic effect: Comparison of numerical global structural responses of the
full width, the full width-zero Poisson ratio νxz and the unit width model for the same CZ
law named CIG4R: (a) Applied moment versus angle of rotation (b) Applied moment versus
end opening separation.
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Chapter 7
Conclusion

In this master thesis a methodology for parameter identification of multilinear cohesive zone
laws for numerical assessment of quasi-static delamination in composite materials is devel-
oped and tested. The parameter identification is done inversely from outputs of a parametric
finite element model and experimental data, and relies on minimization of a residual between
the two responses.

The experimental specimen under consideration is a UD glass fiber DCB specimen showing
sever R-curve behaviour due to fiber-bridging. In order to accurately simulate the delam-
ination propagation for such material systems, a CZ law capable of modelling large scale
bridging failure mechanisms is a necessity. In a previous semester, this has been addressed
by simply extending a bilinear CZ law to a trilinear one. Here, the trilinear CZ law has been
extended to a CZ law having an arbitrary number of line segments, which has been necessary
to model the experimental response adequately.
Additionally, the multilinear CZ law has been generalized to be able to model mixed mode
crack opening. The mixed mode CZ law is formulated as a one-dimensional equivalent CZ
law. The multilinear CZ law is constructed from discrete traction-separation points inter-
connected by lines. Interpolation formulae are defined for these discrete traction-separation
points. Tractions are interpolated using a quadratic interaction criterion, while separations
are interpolated such that the resulting CZ law is energy consistent with the BK-criterion.

The process of parameter identification is done through optimization techniques and is im-
plemented in MATLAB in a program denoted IPIT-CZL. A first draft of IPIT-CZL has been
developed at the previous semester. Here, the optimization problem is ironically enough
optimized, by reformulating objective function as a least squares formulation, allowing the
computation of a reasonable approximation of second order information, which is seen to sig-
nificantly improve the optimizer performance. Subsequently, different algorithms have been
considered by implementing them in IPIT-CZL and running simple benchmark tests.

IPIT-CZL is used for characterization of a 15-segmented multilinear CZ law for the previously
mentioned DCB specimen under pure mode I crack opening. The method succeeds in consis-
tently obtaining the same CZ parameters for different initial guesses. Further studies of the
performance of the optimizer suggests improvements for further work and general guidance
for using the methodology. Ill-conditioning and restart of optimizer. The promising results
prove that in essence the presented methodology works and could be an alternative candidate
to current approaches proposed in the literature based on J-integral. However, this should
be proven by comparison with one of such methods, which unfortunately is left for further
work.

105 of 111



CHAPTER 7. CONCLUSION

Lastly, the robustness and general applicability of the methodology is investigated by con-
ducting sensitivity studies and discuss influences from 3D effects. A dependence was found
to the discretization of the separation points δ(i)3 in the CZ law. However, the dependence
indicates a robust method rather than crucial influence of the separation point locations.
Regarding the influence of the obtained results to the inclusion of 3D effects, the dependence
could not be proven as the optimizer got stuck in local minima, but it is believed that it
cannot be disregarded. Also, the natural variation of this kind of phenomenon is considered
by using different experimental data in IPIT-CZL. Related to this, it is argue that the same
shape of the far bridging region of the CZ law is obtained for the two coupon test specimens
of the series although the total fracture energy differs in approximate 0.2 kJ/m2. Another
key aspect discussed is the ill-conditioning of the optimization problem. It is believed that
the global minimum has not been found yet and by treating the problem and transform it
into an well-conditioned one, the global minimum would eventually be found. Furthermore,
it is believed that the global minimum would be less sensitive to the discretization of the sep-
aration points. In essence, by improving the ill-conditioning issue a more robust methodology
will be obtained.
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Chapter 8
Further Work

During this master thesis plenty of work has been done and main objectives have been
achieved. Nonetheless, a large amount of further development can be foreseen by the au-
thors. Some tasks are specific to the methodology, these are listed first. Thereafter, the
perspective is broaden out to discuss future potential of the current work.

Specific tasks for the current work are listed first, and are sorted by topic. These are mainly
concerned with improving the current methodology, things that have not been done due to
lack of time, and perform further numerical and experimental studies to evaluate assumptions
introduced.

Cohesive Zone Modelling:

- Optimize the code of the user-defined element subroutine.

- Implementation of a deformation-history dependent mode mixity parameter B. Cur-
rently the mode mixity B is based on instantaneous nodal displacement values. How-
ever, it is reported in [Abaqus] to be favorable to introduce deformation history in the
calculation of B in case of large scale fiber bridging.

- Experimental study of the interpolation formulae to be used for predicting mixed mode
equivalent properties.

- Elaborate further on the results of the sensitivity studies; hereby the location of the
separation points in the CZ law and the number of line segments to be used.

IPIT-CZL (Optimizer):

- Investigate the ill-conditioning of the optimization problem further. E.g. can the de-
sign problem be formulated differently to help reducing ill-condition and improve the
convergence rate. Note that built-in functions in MATLAB, as the interior-point algo-
rithm, cannot be modified. Thus, it is very likely that an open source algorithm or a
self-made one will be required for doing such tasks.

- Related to the previous item, it would be beneficial extracting more information about
the algorithm, e.g. printing in screen the search direction, step size and step type
(Newton or conjugate gradient) in order to assess whether ill-conditioning or other
difficulties arise during the optimization problem, and if it does, when does it happen.

- IPIT-CZL has been used for obtaining CZ laws for pure mode I. IPIT-CZL should be
tested for pure mode II and subsequently mixed mode crack openings too.
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CHAPTER 8. FURTHER WORK

- The results obtained using IPIT-CZL should be compared to other approaches for
characterization of CZ laws, e.g. [Hansen et al., 2009].

Experiments and Finite Element model:

- Perform experimental study of the specimen bulk material properties (especially Exx, νxy),
to reduce assumptions in FE model. In order to finally determine the cohesive zone law
for the material system under consideration, the results should be based on multiple
test specimens rather than a single measurement.

- Automate the data extraction and ease the process of data acquisition. For example,
a script could be created to read the raw data file and provide an output file where
spurious data, commonly seen at the beginning of the test, is deleted.

- Search for local measures in the numerical model and the experiment to be used in
the objective function. Possibly combined with a global structural response by using a
multiobjective function.

Future Potential:
Having presented specific suggestions for further work with IPIT-CZL, the perspective is
broaden out to a discussion about the potential of the methodology. A novel methodology
for determination of CZ laws is presented, which in principle puts no restrictions on the shape
of the CZ law, apart from being piecewise linear, however in the limiting case of a fine dis-
cretization of separation points in the CZ law, the CZ law shape is free to vary. In the report
the methodology is proven to be able to determine a 15-line segmented CZ law for a DCB
specimen under pure mode I loading. The CZ law shape contains valuable information of
the nature of the failure mechanisms in the fracture process zone [Sørensen and Kirkegaard,
2006]. Identification of failure mechanisms is important for development of new materials
and microstructural optimization in terms of strength increase and fracture resistance. This
motivates for further work with the current methodology.

In this report, the CZ law shape is determined based on structural response. In terms of
failure mechanism identification, it is likely that local measures in the fracture process zone
are more convenient. However, in principle there are no limitations on the responses from the
numerical model and the physical experiment to use for the parameter identification. Exper-
imental measurements of local response in the fracture process zone can be obtained using
e.g. strain gauges or digital image correlation [Laurin et al., 2012], these could be replace the
current objective function of global structural response, or be combined using multiobjective
function definitions.

In the report, the parameter identification is tested on coupon tests usually used for as-
sessment of fracture related properties. Apart from heavier simulations, nothing cancels the
oppotunity of applying the current method on real structures or submodels of real structures.
The idea of this approach is to perform the CZ law characterization on a specimen experienc-
ing the same deformation history as the engineering structure to be modelled subsequently.
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