
Batteries Included 2.0
-Defining Semantics and implementing a Schedule Generator -

Master Thesis

Kristoffer Brodersen & Mads Nielsen/des104f17

Aalborg University
Department of Computer Science



Copyright © Aalborg University 2017



Department of Computer Science
Aalborg University

http://www.aau.dk

Title:
Batteries Included 2.0

Theme:
Distributed, Embedded and Intelligent
Systems

Project Period:
Spring Semester 2017

Project Group:
des104f17

Participant(s):
Kristoffer Brodersen
Mads Broen Nielsen

Supervisor(s):
Kim Guldstrand Larsen
René Rydhof Hansen

Copies: 1

Page Numbers: 101

Date of Completion:
June 2, 2017

Abstract:

This report expands on the Batteries In-
cluded [2] report, in which we describe
a formalism (BATTCIO) for automatic
generation of schedules for satellites.
We further develop the BATTCIO for-
malism with semantics. A specification
of a query language is presented, which
could be used to place further restric-
tions on the generated schedules. We
present an implementation of a sched-
ule generator for BATTCIO, as well as
examples of schedules generated using
the tool. In addition, we will consider
how such a tool might be appropriate for
use-cases other than satellites. Finally
we present the limitations of the tooling,
as compared to more mature solutions.

The content of this report is freely available, but publication (with reference) may only be pursued

due to agreement with the author.

http://www.aau.dk


0.1 Summary

In this project we have worked with implementation of a schedule generator for the
formalism BATTCIO. We did so by first re-visiting the work done in the previous
semester where we states the findings and work in general. The findings where re-
garding how a GomX-3 satellite works and what constraints that are applied to how it
performs tasks. We also investigated battery models in general and chose to go with
a discrete representation and a kinetic battery model. Lastly, regarding the batteries
we also found a proposed wear score function that could help determine the wear
on the battery based on the schedule generated. Then we presented the syntax and
the conceptual GomX-3 model and how the model consists of a set of tasks, actions,
components, opportunities, intervals, a battery and lastly start and end time. Then
the Uppaal implementation was presented, as that would act as a basis for both the
semantics and the implementation. After re-visiting the work in the previous report
we gave the semantics for BATTCIO that would clearly define the behaviour of the
model. The semantics entailed the rules for the four state transitions that happen in
the model: Start a task, preempt a task, drop a task and transition in time. Where
for start task we check component availability, if there is enough power, is the task
within its opportunity, is the task locked and can it lock if need be, and lastly if
the defined dependencies are resolved. For dropping a task the task simply needs to
be defined as droppable in order to do so. And if it does it unlocks the tasks. For
preempting a task we need to make sure that if preempted it can still finish if time
passes one time unit. When time transitions we need to make sure that the battery
does not deplete. That preempted tasks does not miss their opportunity, and if there
is any component overlap.

With the semantics defined we defined a small concept query language to be
used to generate more custom schedules. Here we can put constraints on the re-
sulting schedule such as that a certain task must only complete a certain amount of
times. Other constraints can be on the battery determining the lower bound of charge
throughout the schedule or of we want the schedule to charge as much as possible or
as little as possible. Thereafter we present the implementation of the parser, model,
schedule generator in the language RUST. The gantt chart generator and code gener-
ator were developed in Python. The model implementation were aimed to entail the
same behaviour as the semantics. When generating schedules we have applied two
approaches. A greedy approach that simply aims to start as many tasks as possible
and a branch and bound approach, where the upper bound was decremented every
time a task was not started. The greedy approach quickly results in schedules how-
ever with no guarantees. The branch and bound is more time consuming but also
produces schedules however the defined heuristic results in sub-optimal schedules for
some systems. We further explored the which kind of systems the BATTCIO for-
malism could model and generated schedules for all of these small concept systems.



When generating schedules for these small systems the possibilities, limitations and
behaviour of the model became more apparent.
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Chapter 1

Introduction

The art of ensuring that a certain plan or schedule is the best fitting for a given set of
parameters can be a difficult task. It all depends on the amount of possible schedules
that can be created. Which means that the higher amount of possible schedules
would require for the person deriving these schedules to be exhaustive in his or her
manner of generating these solutions in order to guarantee that the chosen solution
is the best of all possibilities.

This has the risk of becoming a time consuming task if it were to be done man-
ually. Dependent on the system that the given schedule is being generated for, the
importance of achieving the best possible schedule may vary. In a system that is
easily replaceable and relatively cheap one can argue that schedules that are good
enough can be acceptable. However, in systems where the quality of the schedule is
determining whether or not the system is worth using; the schedules must be of a
certain standard. Therefore, if the ability to automate the process of deriving optimal
schedules based on the specific system that are to perform the schedule was possible,
it could greatly reduce the time used to create the schedule. If we look at satellites in
general it could be argued that the better schedules that are derived and submitted
to the satellite, the more value the satellite has. Not only does the construction of
a satellite require large founds but placing the satellite in orbit is also an expensive
part of the process. And once the satellite is in orbit, hands-on maintenance is very
unlikely to occur. Some satellites, like the GomX-3 satellite has schedules uploaded
to them periodically, that determines when it should do which tasks. Furthermore
the satellite is a small satellite with a relatively small amount of power available and
therefore it is vital for the satellite to have the right balance between performing
tasks and recharging to avoid depleting the battery.

The modeling formalism BATTCIO tries to address the issue of generating possi-
ble schedules for a system that relies on a resource such as a battery. An attempt to
implement a model of GomX-3 satellite based on the BATTCIO formalism has been
done in Uppaal, however it exhausted the memory of a consumer laptop rather quickly

1



2 Chapter 1. Introduction

resulting in the inability to generate schedules that are usable. However, a special-
ized schedule generator might be able to generate usable schedules by addressing the
memory exhaustion and develop a model checker that takes it into consideration.

Therefore the problem statement is as follows:

• How can we implement a model and a schedule generator that can generate
extended schedules for systems defined in the BATTCIO formalism on consumer
hardware?



Chapter 2

Preliminaries

This chapter will, in an overview, go through the work done in the previous report.
The previous report focused on designing the syntax of the formalism which was done
based on the how the GomX-3 satellite was constructed and described in Batteries
Included [2]. Furthermore, there was done some research as to which battery models
would be best applicable to use in the formalism. Lastly we implemented the behavior
of the model in the tool Uppaal in order to generate a trace that could be used to
define a schedule with. A more detailed presentation of the findings in the previous
report will be presented in the following sections.

2.1 GomX-3 Satellite

A starting point was taken from the GomX-3 satellite which is shown in figure 2.1.
The GomX-3 satellite is a small satellite that measures 10× 10× 30 centimeters. It
is deployed in low earth orbit and has a set of components that it uses to perform
certain tasks. The tasks that it has performed has varied over time [3], but at some
point it was used to track airplanes over the Pacific and Atlantic sea. It tracked
them, and if the planes were diverting from its original course, it was an indication of
a storm. This is but one of the many different kind of missions that it has undertaken
during its time. However, it is no longer in orbit as it entered the earths atmosphere
the 4Th November 2016 [3].

3



4 Chapter 2. Preliminaries

Figure 2.1: The GomX-3 satellite

We modelled the satellite in the BATTCIO formalism based on the article [1],
where a thorough assessment of the satellite was performed. The satellite had:

• Three antennas

– A Patch antenna
– ADS-B antenna
– UHF antenna

• A Gyroscope

• Solar Panels

• Battery

This is a coarse breakdown of the satellite as there are many more components
in the satellite, however these components are the ones used in its tasks and defined
in the article [1]. A task can be that the satellite must use one of its antennas to
track an airplane. And in order to do so it must change its attitude both before and
after. The changing of attitude, tracking, and then return to its original attitude all
constitutes a task.

The current workflow of how schedules are derived for the satellite is that firstly
an engineer performs the task of manually deriving a schedule. The engineer has a
plan of when each task can be executed and then chooses which opportunities will be
taken when. This results in a schedule. This schedule is then verified through a piece
of software that determines the chance of depleting the battery based on the derived
schedule. If the schedule is considered good enough it is deployed to the satellite for
execution [1].

This was where we presuppose that a model encompassing the behavior of the
satellite and its environment could improve the workflow for the engineer by gener-
ating schedules that could then be verified through their verification software.
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2.2 Battery Inquiry

A satellite such as a GomX-3 satellite has a limited power resource, meaning that it
can deplete it if the tasks that it is performing are not managed correctly. Therefore,
we chose to investigate battery models in general in order to be able to have an as
accurate representation of the battery as possible. Among the investigated battery
models we chose to go forward with a discrete representation of the battery, which can
be meaningful in well understood systems where if you have very precise readings of
how the battery is effected, it can be sufficient. However, the problem with a discrete
model is that is does not encompass the recovery effect [4]. In short, a battery recovers
some power as time passes, meaning that in an actual battery there is more power
over time, compared to a discrete representation.

The other model that we chose to to forward with was the Kinetic Battery
Model(KiBaM) which does encompasses the recovery effect[4]. The drawback of this
model is that it needs more parameters to define its behaviour compared to the dis-
crete representation. The Kinetic Battery model is viewed as the battery consisting
of two wells, where there is power in each of them. One well encompasses the available
charge and the other has the bound charge as shown in figure 2.2a.

(a) The Kinetic Battery Model visualized (b) A graph showing the recovery effect

Figure 2.2: The Kinetic Battery Model and a graph showing the recovery effect[1][4]

The power that is directly available will be drawn from the available charge. As
described the KiBaM encompasses the recovery effect by the notion that the two wells
always goes toward equilibrium. So when power is drawn from the available charge,
power runs from the bound to the available charge. This is shown in figure 2.2b
where the available charge a(t) reacts to the load, I(t) in a direct manner, whereas
the bound charge b(t) reacts to the charge in a(t) more slowly. The rate in which
this happens entirely depends on the specifications of the battery.

Furthermore, we aimed to be able to determine from similar schedules which of
the schedules has the least impact on the longevity of the battery. In order to do
this we would make use of a proposed wear score function(wsf) that makes use of a
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Fast Fourier transformation on the state of charge(soc) over time to get a score that
determines the wear of the battery [8]. This function is useful in the situation where
a set of schedules are generated that are similar in the amount of tasks it completes.
Then the score of these schedules can be compared and then the schedule with the
lowest score function can be chosen.

wsf(S, f) =
2f

n

bn/1c∑
i=0

i|F (S)i|2 (2.1)

Equation 2.1 shows the wear score function where S is the set of state of charge
samples, taken at frequency f and n is the number of samples taken. F(S) is the
Fast Fourier transform function on the set S. This equation results in a number that
in itself does not indicate much. However, compared with other numbers generated
from the same system it can allow for comparison and hereby considerations about
the impact of the longevity of the battery. The lower the score, the lower the wear
on the battery is.

2.3 BATTCIO Formalism

With the gained knowledge of the GomX-3 satellite we derived a formalism wherein
the GomX-3 satellite and its environment can be modelled. We named the formalism
BATTCIO, based on the fact that such a model consists of:

• A Battery

• A set of Actions

• A set of Tasks

• A set Timeframe

• A set of Components

• A set of Intervals

• A set of Opportunities

With this segregation of systems we designed the syntax, that can be seen in
appendix A.2. With the defined syntax we modelled a conceptual GomX-3 satellite
as can be seen in Listing 2.1.
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Listing 2.1 : The conceptual model of a GomX-3 satellite
Component Proce s so rOne ( 2 ) ;
Component ProcessorTwo ( 3 ) ;
Component Gyroscope ( 1 0 ) ;
Component LBand ( 5 ) ;
Component So l a r P a n e l ( 5 0 ) ;
Component XBand ( 3 ) ;

Act ion S lew (Components : {Gy ro scope} Du r a t i o n : 2 ) ;
Act ion Track (Components : {LBand , Proce s so rOne} Du r a t i o n : 2 ) ;
Act ion Communicate (Components : {XBand , Proce s so rOne} Du r a t i o n : 1 ) ;
Act ion Charge (Components : { S o l a r P a n e l} Du r a t i o n : 5 ) ;
Act ion C a l c u l a t e (Components : {Proce s so rOne} Du r a t i o n : 5

| Components : {ProcessorTwo} Du ra t i o n : 5 ) ;

Task Send (A c t i o n s : [Slew , Communicate , S l ew ] ) ;
Task Re c e i v e (A c t i o n s : [Slew , Communicate , S l ew ] ) ;
Task Track (A c t i o n s : [Slew , Track , S l ew ] ) ;
Task Charge (A c t i o n s : [Charge ]

Locks : [Send , Rece i v e , Track , C a l c u l a t e ]
Droppab l e : True
Preemptab l e : True ) ;

Task C a l c u l a t e (A c t i o n s : [ C a l c u l a t e ] ) ;

I n t e r v a l SendRece i v e ( 1 0 , 15 ) ;
I n t e r v a l Track ( 30 , 3 5 ) ;
I n t e r v a l Charge ( 15 , 4 0 ) ;
I n t e r v a l C a l c u l a t e ( 1 0 , 1 5 ) ;

Opportunity ( I n t e r v a l s : SendRece i v e
Task : Send
Dependenc i e s : Track : 1 ) ;

Opportunity ( I n t e r v a l s : SendRece i v e
Task : R e c e i v e ) ;

Opportunity ( I n t e r v a l s : Track
Task : Track
Dependenc i e s : R e c e i v e : 1 ) ;

Opportunity ( I n t e r v a l s : Charge
Task : Charge ) ;

Opportunity ( I n t e r v a l s : C a l c u l a t e
Task : C a l c u l a t e ) ;

Battery (Capa c i t y : 400
I n i t i a l C h a r g e : 400
Type : D i s c r e t e ) ;

S ta r t ( 0 ) ;
Terminat ion ( 4 0 ) ;

A model consists of a set of components that makes use of the battery i.e. they
drain power from a battery. In our concept model it is for instance the component
LBand. These components are used in one or more actions. An action is the use of
one or more components simultaneously in a specified amount of time. In the listing
it can be seen from the action communicate that uses processor one and the lband
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antenna components respectively.
This action can be a part of task where more actions are executed sequentially.

For instance in the task track we can derive that it first slews, then tracks, then slews
back.

This is how we define the internal behaviour of the system, however a BATTCIO
model is also dependent on some external factors that determines when tasks can be
executed. In order to accommodate this we have defined opportunities and intervals.

These opportunities are defined as well in the model by a given interval. There
can be one or more opportunities defined for a task. The interval must be within the
time frame of the “mission”.

In the series of opportunity declarations as can be seen in the listing we see that
we can add intervals to it, define which task it is bound to and define dependencies
between tasks. Second to last we define the battery along with its maximum capacity
and starting state of charge. And lastly the time for the entire period of the system
is defined in the Start and End constructs.

This formalism can describe a GomX-3 satellite along with its environment be-
cause we are able to describe the components, their usages in tasks, along with when
they can perform certain tasks. So, to say that the formalism can model the satellite
is not fulfilling as it also models its environment in regards of when it can perform
its tasks.

2.4 Uppaal Implementation

With the knowledge of the satellite gained and a model of the satellite derived we
implemented the system in Uppaal. This implementation encompassed the behaviour
of the model and therefore we could use to find out if schedules where able to be
generated based on the configuration of the model. The models will be presented,
however not fully detailed. The in-depth presentation of these can be found in [2].

Overall we defined an automaton for each of the language constructs i.e. compo-
nents, actions, tasks, opportunities. Intervals we did not make an automaton for as
it encompassed no real behaviour, only data in the form of a two numbers. Then we
added some helper automata i.e. the Timer in which we also defined the battery, the
scheduler and an orbiter that is very specific to this system.

Figure 2.3 shows the model of a component where it can be either active or
idle. When activated it adds the cost to the current load of the battery and when
deactivated it subtracts the cost.
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Figure 2.3: Simplified template for a component

Figure 2.4 shows how an action is defined. It starts it in the waiting location
and from there can be prompted to transition to the committed location where it
can activate its components. If there is an alternate set of components that can
be activated, those can be done as well. This ensures that if a an action wants to
start a component that is already running, it can’t hereby preventing the task from
starting. From there it can transition to the running location where it resides until
it reaches the end of its duration. It can also be both preempted and dropped from
this location.

Figure 2.4: Template for an action

Figure 2.5 shows the template for a task. It starts in its initial location idle. A
task can be locked when waiting; preventing it from being prompted to start. Once
the task is within its opportunity it can be started. If there are no opportunities
bound to the task it can be prompted to start at any given point. If prompted to
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start it first locks the tasks that needs to be locked and then activates the first action
defined for it and from there resides in the running location. In the running location
it can either be preempted, dropped, finish or start the next action in the sequence.

Figure 2.5: Template for a task

Figure 2.6 shows the opportunity template. From its initial location it can syn-
chronize over the channel task_opportunity if it is within the opportunity. An imple-
mentation specific construct can be seen where it synchronizes on the goal_reached
channel if the amount of specified orbits has been completed. When there is a new
orbit, it transitions back to the the initial location.

Figure 2.6: The template for an opportunity

The template responsible for the time transitions and the battery is defined is
shown in the figure 2.7.
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Figure 2.7: The template for the timer

The second to last figure 2.8 shows the scheduler, which again, is implementation
specific to the GomX-3 system. It makes a non-deterministic choice between starting,
preempting and dropping tasks, and time transition. It has been altered from the
previous report, however maintains the same behaviour.

Figure 2.8: Template for the scheduler

The last figure 2.9 shows the orbiter which is responsible for resetting timers once
an orbit has passed.
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Figure 2.9: The template for the orbiter

With the conceptual GomX-3 model we made the following query:

E <> TaskReceive.GoalReached && TaskTrack.GoalReached

&& TaskSend.GoalReached && TaskCalculate.GoalReached
(2.2)

In the system definition within Uppaal we specified both the amount of comple-
tions needed to complete and the duration of the mission.

To begin with we started with a short time frame for the mission and incrementally
expanded the time until we reached a maximum threshold where the query would
exhausted the memory available to us.

We were able to schedule for 11 orbits, where each orbit takes approximately 40
minutes. The computer that the system was being verified on ran out of memory if
we tried to verify a schedule for more than 11 orbits ahead in time. The results in
the end where as shown in table 2.1.
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Table 2.1: Results, from the previous report [2]

Orbits Nr. of completions each Time Memory
3 1 1.023 s 25.900 KB
5 2 24.292 s 406.316 KB
7 3 81.494 s 1.266.984 KB
9 4 112.210 s 3.107.544 KB
11 5 205.620 s 6.146.136 KB
13 6 Out of memory Out of memory

The results led us to the conclusion that it is indeed possible to generate schedules,
however measures needed to be taken in order to extent the time frame for which we
can generate them.





Chapter 3

BATTCIO Semantics

This chapter will present the semantics that will define a clear behaviour of the
model. Furthermore, the semantics will aid us in the implementation of the schedule
generator as we will have a clear understanding of how the model should behave.

A BATTCIO system consists of a series of sets:

• C ∈ Component = CompName× cost

• A ∈ Action = ActionName× P (Comp)×Duration

• T ∈ Task = TaskName × Actions∗ × Bool × Bool × P (N × N) × P (Task ×
N)× P (Task)

• Battery = Cap× InitialCharge

• End = N

Component is the set of components in the system, which consists of an identifier
and a cost. An action consists of an identifier along with a set of components and a
time, that determines the duration of the action. Task consists of a series of actions
that are to be executed in sequence, a Boolean to determine whether or not the task
is preempt-able, a second Boolean to determine whether or not the task is droppable
and a set of intervals, a set of dependencies and lastly a set of tasks to lock.

So, in short a task is determined by: a series of actions, a Boolean to determine
preempt-ability, a Boolean to determine drop-ability, a set of intervals, a set of de-
pendencies and lastly locks. Battery is the resource from which components draw
power from.

So the system then has a dynamic state consisting of:

S ∈ State = Time× TaskStatus× SoC

Where TaskStatus is the following:

15
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TaskStatus = Task → Bool × Counter × Counter × P (Task × Counter)

×Bool ×Bool ×Bool
(3.1)

Where the first Bool is a Boolean indicating whether or not a task is running,
the Counter is a counter that decrements as time passes while the task is running.
The second Counter is a completion counter that increments every time a task has
completed. The P(Task x Counter) is the dependencies of the task, where every time
the task completes it saves the current completion counter for the tasks that it is
dependent to be compared with later. The last three Boolean’s indicates if the task
status is locked, just preempted and just dropped respectively.

An overview of a taskstatus can be shown as:

TS(T ) = (Running, T imeCounter, CompletionCounter,DependencyCounters,

Locked, JustPreempted, JustDropped)

(3.2)

In the semantics we will present every part of the system as tuples so for instance
a Task will be the tuple

Task ∈ Name×Actions×Bool ×Bool × Intervals×Dependencies× Locks

We will use a construct for sorting out Tasks based on the value of an element in
the tuple:

Where T Where T = (_,_, true,_,_,_,_) (3.3)

Equation 3.3 shows that the task T is a task where the third element in the tuple
is true. This construct is used when generating sets of tasks based on the values of
specified variables in the tuple.

SomeFunction : Task → P (Task)

SomeFunction(T ) =
⋃

T∈Task

T where T = (_,_, true,_,_,_,_) (3.4)

Where Equation 3.4 returns a set of tasks where the tasks are preempt-able.
Furthermore, we will also use a similar construct to retrieve a variable from one

of these tuples:

SomeFunction(T ) = SomeFunctionNext(Depends) where T = (_,_,_,_, depends,_,_)

(3.5)
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Where this function calls a subsequent function that takes the specified variable in
as a parameter.

So for each state there are four possible things that can happen:

• Start a task that is available for start. We will call this rule for StartTask

• Drop a task that is running. Named DropTask

• Preempt a task that is running. Names PreemptTask

• Let the time progress by one increment. Named Time

Where we will for each of the following sections present the semantics for each of
the rules.

3.1 Starting a Task

For a task to start we check for:

• Is the task within opportunity and can it complete within its opportunity

• Is the dependencies resolved

• Is the required components available

• Is the task locked and can it lock the tasks it needs to

• Will the battery be emptied if it is started

Furthermore, there might be more than one task available, and therefore the
system can start any which of the available tasks. There must also be enough time
within the opportunity for the task to complete. Therefore we define a function
AvailTasks that calculates which tasks are available. Five functions determines this,
called CheckOpp, CheckDep, CheckComponents, CheckLocks, and CheckPower. And
lastly there must be enough power on the battery for the task to be able to complete
given the situation.

3.1.1 CheckOpp

In order to check for if the opportunity is upheld we need to make sure that:

• The global time is within an opportunity interval defined for a given task

• That the task will not end passed the end of the interval
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In order to figure this out we need to know the duration of the task, which is
shown in Equation 3.6

DurationTask : Task → N
DurationTask(T ) = DurationActions(acts) for T = (_, acts,_,_,_,_) ∈ Task

where acts ∈ Action

DurationActions(acts) =
i=n∑
i=0

DurationAction(act) For acts = (act0, ..., actn)

DurationAction(act) = d for act = (_,_, d)

(3.6)

Now that we know the duration of the task, as shown in Equation 3.6 we can
determine whether or not the task can start in its opportunity.

The function CheckOpp is defined:

CheckOpp : Task × Time→ Bool

CheckOpp(Task,Gt) = CheckOppInt(intervals,Gt) for T = (_,_,_,_, intervals,_)

CheckOppInt(intervals,Gt) ={
true, if ∃(t1, t2) ∈ intervals, where t1 ≤ Gt ≤ t2 ∧ duration(T ) +Gt ≤ t2

false, otherwise

(3.7)

This function as shown in Equation 3.7 return true if the it can start within its
opportunity, false if not.

3.1.2 CheckDep

As stated some tasks can have dependencies declared on other tasks meaning that
they need to be resolved in order for the task to complete. The dependencies are
monitored by saving the completion counter for each of the dependent tasks the
last time the task completed. So, when we check whether or not the task is ready
we subtract the dependency counter with the corresponding completion counter and
compare it with the dependency declared in the system and determine whether or
not it is resolved.

To begin with we define a function that returns the specified dependencies for a
specific task as shown in Equation 3.8.

GetDependencies : Task → P (Task × N)
GetDependencies(T ) = Deps for T = (_,_,_,_,_, deps,_)

(3.8)



3.1. Starting a Task 19

Thereafter we define a function that returns the counter for the dependency which
will be used to determine whether or not the dependencies has been resolved as shown
in Equation 3.9.

GetDepCount : Task × Task → N

GetDepCount(T, T ′) =

{
counter′, if ∃(T ′, counter′) ∈ GetDependencies(T )

0 otherwise
(3.9)

With the ability to extract the number of times a task must complete as specified
in the system we need to be able to get the current completions for a task as shown
in Equation 3.10

GetCompletions : Task × TaskStatus→ N
GetCompletions(T, TS) = CCounter for TS(T ) = (_,_, CCounter,_,_,_,_)

(3.10)

Thereafter we need to retrieve the dependencies as they were seen the last time
the given task was run as shown in Equation 3.11.

GetLastCounts : Task × TaskStatus→ P (Task × N)
GetLastCounts(T, TS) = lastcount for TS(T ) = (_,_,_, lastcount,_,_,_)

(3.11)

And now, with all of these defined we can check whether or not the dependencies
has been resolved as shown in equation 3.12.

CheckDep : Task × TaskStatus→ Bool

CheckDep(T, TS) =
true, if ∀(T ′, counter′) ∈ GetLastCounts(T, TS) :

GetCompletions(T ′, TS)− counter′ ≥ GetDepCount(T, T ′)

false, otherwise

(3.12)

If the dependency is resolved the function returns true. The functions checks
all the dependency counters for the taskstatus of a task and subtracts the counter
from the amount of current completions and compares with the count for the task
specification.
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3.1.3 CheckComponents

Another check we need to do is that the components in the task must not be in use
beforehand, so we need to check whether or not the task’s components are in use. We
call this function CheckComponents. In order to check if the components are in use,
we need to check which tasks that are active and from there calculate which of the
actions that are running. When we know which actions are running we can determine
which components that are in use and from there check whether or not the needed
components are available.

We need a helper function that returns the set of running tasks as shown in
Equation 3.13.

GetRTask : TaskStatus× Task → P (Task)

GetRTask(TS) =
⋃

T∈dom(TS)

T where TS(T ) = (true,_,_,_,_,_,_) (3.13)

Thereafter we get the action that is currently the active one within the task as
shown in Equation 3.14.

GetActionR : Task × Counter → Action

GetActionR(acts, d) = Where T = (_, acts,_,_,_,_) where acts = acts0 : ... : actsn{
acts0, if d ≥ Duration(Task)−Ad for acts0 = (_,_, Ad)

GetActionR(acts1...actsn, d)if d < Duration(Task)−Ad

(3.14)

Once we have the action we can retrieve the components that the action is occu-
pying as shown in Equation 3.15

GetComponents : Action→ P (Component)

GetComponents(A) = CforA = (_, C,_)
(3.15)

Now that we can retrieve a single active action and its components, we can with
the following function retrieve all the active actions in the system as shown in Equa-
tion 3.16.

GAA : TaskStatus→ P (Action)

GAA(TS) =
⋃

T∈GetRTasks(TS)
GetActionR(T,Counter) for TS(T) = (_, Counter,_,_,_,_,_)

(3.16)

Once we are able to retrieve all the active actions we can retrieve all the active
components with the function defined in Equation 3.17.
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GetActiveComponents : TaskStatus→ P (Component)

GetActiveComponents(TS) =
⋃

A∈GAA(TS)

GetComponents(A) (3.17)

Now that we have retrieved all the active components, we can compare them to
the needed components to determine if they are available.

We make a helper function that retrieves the set of needed components for the
task to start, which is the components needed by the first action in the sequence
shown in equation 3.18.

RetreiveComponents : Task → Component

RetreiveComponents(T ) = RetreiveComponentsActs(acts) for T = (_, acts,_,_,_,_)

RetreiveComponentsActs(acts) = GetComponents(acts0) for acts = acts0, ..., actsn
(3.18)

This function can now be used to define the function where we determine whether
or not the components are available as shown in equation 3.19.

CheckComponents : Task × TaskStatus→ Bool

CheckComponents(T, TS) ={
true if RetreiveComponents(T )

⋂
GetActiveComponents(TS) = {}

false, otherwise

(3.19)

If none of the components needed are in the set of active components the function
true, and false if it does exist in the set of active components.

3.1.4 Check Locks

The task must not be locked, so we define a function in Equation 3.20 that returns
true if the task is unlocked and false if it is locked.

IsUnlocked : Task × TaskStatus→ Bool

IsUnlocked(T, TS) ={
true, if locked = false where TS(T ) = (_,_,_,_,_,_, locked)

false otherwise

(3.20)

Thereafter we have to check that the tasks to be locked are not running, as shown
in equation 3.21.
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CanLock : Task × TaskStatus→ Bool

CanLock(T, TS) ={
true, if GetRTask(TS) ∩ Locks = {} where T = (_,_,_,_,_,_, Locks)

false otherwise
(3.21)

With these two functions 3.20 and 3.21 we will make a function that makes both
of these checks as shown in equation 3.22

CheckLocks : Task × TaskStatus→ Bool

CheckLocks(T, TS) =

{
true, if IsUnlocked(T, TS) ∧ CanLock(T, TS)

false, otherwise

(3.22)

Now we have defined the function that determines if we are locked and able to
lock the required tasks.

3.1.5 CheckPower

Lastly we define the function that checks whether or not the task can complete given
the current situation, as shown in equation 3.48. The function is recursive where it
calls itself again with changed parameters until either the task duration has passed
or the state of charge has gone below zero.

CheckPower : TaskStatus×Battery × N× N→ Bool

CheckPower(TS,B, SoC, TaskCounter) =
true, if TaskCounter == 0 and SoC > 0

false, if SoC < 0

CheckPower(Time(TS), B,ApplyLoad(B,SoC, TS), TaskCounter − 1), otherwise
(3.23)

The functions Time, 3.55, and ApplyLoad,3.56, are defined in Section 3.4 regarding
time transitions. The goal of this function is to determine if there is enough power
on the battery for the task to complete given the current situation.

3.1.6 Available Tasks

With all the functions created that determines whether or not a task is available for
start we can define the set of tasks that can be started.
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Firstly we make a function that determines whether or not a specific task can
start as shown in Equation 3.24.

IsTaskAvailable : Task × Time× TaskStatus×Battery → Bool

IsTaskAvailable(T,Gt, TS,B) =
true, if CheckDep(T ) ∧ CheckComponents(TS) ∧ CheckOpp(T,Gt)

∧CheckLocks(T, TS) ∧ CheckPower(StartTask(TS, T ), B, SoC,Duration(T ))

false, otherwise
(3.24)

The function StartTask that is applied when using the function CheckPower is
defined in Equation 3.33. We use this function to gather the set of available tasks as
shown in Equation 3.25.

AvailableTasks : TaskStatus× Task × Time×Battery → P (Task)

AvailableTasks(TS, T,Gt,B) =
⋃

T∈Tasks

T where IsTaskAvailable(T,Gt, TS,B) = true

(3.25)

Now we have the set of all the available tasks. However, we cannot get the
preempted tasks with this function meaning that we need to define a function that
provides the tasks that are preempted but available for resuming. We only need to
check whether or not the components are available as it would not be in a preempted
state if either opportunities or dependencies were not resolved.

First we need a function to retrieve set of preempted tasks and in order to do so
we need a function that determines if a task is preempted, as shown in Equation 3.26.

IsPreempted : Taskstatus× Task → Bool

IsPreempted(T, TS) ={
true, if Running = false and Counter > 0 for TS(T ) = (Running,Counter,_,_,_,_,_)

false, otherwise
(3.26)

Hereafter we can define the function that retrieves all preempted tasks as defined
in Equation 3.27.

GetPTasks : TaskStatus→ P (Task)

GetPTasks(TS) =⋃
T∈dom(TS)

T where IsPreempted(T, TS) = true
(3.27)
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Now that we have retrieved the set of preempted tasks we need to define the set
of them that can be resumed as shown in Equation 3.28

AvailablePTasks : TaskStatus→ P (Task)

AvailablePTasks(TS) =⋃
T∈GetPTasks(TS)

T where CheckComponents(T ) ∧ CheckLocks(T, TS)
(3.28)

Now that we have defined how we retrieve the set of the tasks that can be started
we can continue to what happens when a task is stared.

3.1.7 Start a Task

When a non-preempted task is started the Boolean flag indicating if it is running is
set to true and the counter is set to the duration of the task. When a preempted
task is started only the Boolean indicating if the task is running is set to true. This
is done by the function defined in equation 3.29.

ActTask : TaskStatus× Task → TaskStatus

ActTask(TS, T ) =
TS[T 7→ (true, Cn,CCounter,DCounter, false, JPbool, JDBool)]

for TS(T ) = (_, Cn,CCounter,DCounter,_, JPBool, JDBool) if IsPreempted(T, TS) = true

TS[T 7→ (true,Duration(T ), CCounter,DCounter, false, JPBool, JDBool)]

for TS(T ) = (_,_, CCounter,DCounter,_, JPBool, JDBool), otherwise
(3.29)

Furthermore, when some tasks are started they need to lock all the tasks, so we
need a function that locks a task, which is shown in equation 3.30.

LockTask : Task × TaskStatus→ TaskStatus

LockTask(T, TS) =

TS[T 7→ (false,Duration,CCounter,DCounter, true, JPBool, JDBool)]

where TS(T ) = (_, Duration, CCounter,DCounter,_,_JPBool, JDBool)

(3.30)

Hereafter we define a function that locks all the tasks that must be locked for a
given task to start as shown in equation 3.31.
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LockTasks : Task × TaskStatus→ TaskStatus

LockTasks(T, TS)(T ′) ={
LockTask(T ′, TS)(T ′) if T = (_,_,_,_,_,_, locks) ∧ T ′ ∈ locks

TS(T ′)otherwise

(3.31)

So, when a task is started it starts itself and locks the tasks that needs to be
locked with the function defined in equation 3.32.

StartTask : TaskStatus× Task → TaskStatus

StartTask(TS, T ) = ActTask(LockTasks(T, TS), T )
(3.32)

With this task defined we can now define the rule for starting a task as shown in
equation 3.33.

StartTask
t ∈ AvailableTasks(TS, T,Gt,B) ∪AvailablePTasks(TS)

(Gt, TS, SoC)→ (Gt, StartTask(TS, t), SoC)
(3.33)

3.2 DropTask

A task can be dropped if it is possible to do so by the definition of the task in the
system. Meaning that in order to drop a task it must both be running and defined
as droppable.

So in order to drop a task we need to get the tasks that are running, droppable
and not just dropped, as shown in equation 3.34

GetRunningDTasks : Task × TaskStatus→ P (Task)

GetRunningDTasks(T, TS) =
⋃

T∈GetRTask(TS)

T where T = (_,_, true,_,_,_)

and TS(T) = (_,_,_,_,_,_,false)
(3.34)

The reason for having the Boolean just dropped is in order to avoid cyclic state
transitions. If it was not there the model would be able to, in some instances, to drop
the task, start it, and drop it again etc.

When a task is dropped it should also release all the locks that it has on other
tasks. Therefore we define a function that unlocks a single task, as shown in equation
3.35
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UnlockTask : Task × TaskStatus→ TaskStatus

UnlockTask(T, TS) =

TS[T 7→ (false,Duration,CCounter,DCounter, false, JPBool, JDBool)]

where TS(T ) = (_, Duration, CCounter,Dcounter,_, JPBool, JDBool)

(3.35)

Then we define the function that unlocks all the tasks that were locked by a given
task as shown in equation 3.36

UnlockTasks : Task × TaskStatus→ TaskStatus

UnlockTasks(T, TS)(T ′) ={
UnlockTask(T ′, TS)(T ′) if T = (_,_,_,_,_,_, locks) ∧ T ′ ∈ locks

TS(T ′) otherwise

(3.36)

And here is the function that drops a specified task as shown in 3.37:

DropTask : TaskStatus× Task → TaskStatus

DropTask(TS, T ) =

TS[T 7→ [false, 0, CCounter,DCounter, locked, JPBool, true]

for TS(T ) = (_,_, CCounter,DCounter, locked, JPBool,_)

(3.37)

So the function that drops and unlocks the tasks is shown in equation 3.38;

Drop : TaskStatus× Task → TaskStatus

Drop(TS, T ) = DropTask(UnlockTasks(T, TS), T )
(3.38)

With this we can define the rule for dropping a task as shown in 3.39.

Drop
t ∈ GetRunningDTasks(T, TS)

(Gt, TS, SoC)→ (Gt,Drop(TS, t), SoC)
(3.39)

3.3 Preempt Task

Preemption is only allowed if the task itself is preempt-able and running but also
if there is at least enough time for the task to complete within its opportunity for
the current time plus one. So, what we do first is get the Running tasks that are
preempt-able as shown in Equation 3.40.
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GetRunningPTasks : TaskStatus→ P (Task)

GetRunningPTasks(T, TS) =
⋃

T∈GetRTask(TS)

T where T = (_,_, true,_,_,_)

and TS(T ) = (_,_,_,_,_, false,_)

(3.40)

We need a function that determines if a task can complete if it is preempted for
one time unit. We do this by first making a function that determines that, based on
a time, if there is enough for the task to finish as shown in Equation 3.41. It is very
similar to the CheckOpp function except that instead of calculating the duration of
the task we make use of the counter that contains the remaining time until the task
finishes.

Preemptable : Task × Counter × Time→ Bool

Preemptable(T,Counter,Gt) = PreemptableInt(intervals, Counter,Gt)

for T = (_,_,_,_, intervals,_,_)

PreemptableInt(intervals, Counter, t) =

{
true, if ∃(t1, t2) ∈ intervals where t1 ≤ Gt ≤ t2 and Gt+ Counter ≤ t2

false, otherwise
(3.41)

With this function we can now determine if it can complete if time passes and
returns the preempt-able tasks. We make use of the function in 3.41 where we add a
one to the third parameter i.e. the global time as shown in Equation 3.42.

PreemptableTasks : TaskStatus× Time→ P (Task)

PreemptableTasks(TS,Gt) = PreemptableTasksC(TS,Counter,Gt)

for TS(T ) = (_, Counter,_,_,_,_,_)

PreemptableTasksC(TS,Counter,Gt) =⋃
T∈GetRunningPTasks(TS)

T where Preemptable(TS,C,Gt+ 1) = true

(3.42)

So, what we do when preempting a task is simply setting the running Boolean to
false and setting the Boolean indicating if the task has just been preempted to true,
while keeping values of the other elements as shown in Equation 3.43.

PreemptTask : TaskStatus× Task → TaskStatus

PreemptTask(TS, T ) = TS[T 7→ (false, duration,CCounter,DCounter, locked, true, JDBool)

for TS(T ) = (_, duration, CCounter,DCounter, locked,_, JDBool)

(3.43)
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It must also unlock all the tasks that it has locked as well, so the function for
preempting a task is given Equation 3.44

Preempt : TaskStatus× Task → TaskStatus

Preempt(TS, T ) = PreemptTask(UnlockTasks(T, TS), T )
(3.44)

And hereby we can define the rule in Equation 3.45

PreemptTask
t ∈ PreeptableTasks(GetRunningPTasks(T, TS))

(Gt, TS, SoC)→ (Gt, Preempt(TS, t), SoC)
(3.45)

3.4 Time

There are a series of conditions that must be upheld in order for time to pass in the
system and these are:

• SoC must not go below zero

• A preempted task must be able to be finish even if time passes

• Global time must not exceed end time

• If a task transitions from one action to another, the components must be avail-
able for it to be used.

• If a task finishes its completion counter must increment and unlock the tasks
it has locked.

• The battery must have the load applied to it

This means that we need functions that check for each of these conditions.

3.4.1 Check Future SoC

We make a function that calculates the load on the battery as shown in Equation
3.46.

Load : TaskStatus→ N

Load(TS) =
∑

C∈GetActiveComponents(TS)

cost for C = (_, cost) (3.46)

With this we can define the function that checks if the soc is depleted below zero
as shown in 3.47.
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CheckSoC : TaskStatus× N→ Bool

CheckSoC(TS, SoC) ={
true, if SoC− Load(TS) ≥ 0

false, otherwise

(3.47)

3.4.2 Check Preempted Tasks

We need to make sure that the preempted tasks can still complete once we transition
in time. This is done with the function CheckPreempt as shown in Equation 3.48.

CheckPreempt : TaskStatus× Time→ Bool

CheckPreempt(TS,Gt) =
true, if ∀T ∈ GetPTasks(TS) Preemptable(T,Counter,Gt+ 1) = true
for TS(T ) = (_, Counter,_,_,_,_,_)

false, otherwise
(3.48)

3.4.3 Check Future Component Availability

In order to check for if there are any component usage overlapping we have to check
which action each task will be performing one time step ahead. Meaning that for all
active tasks we find the actions that will be active in the next time frame and hereby
also their respective components and check if there are any overlaps. This is shown
in Equation 3.49.

CheckFComponents : TaskStatus× Task → Bool

CheckFComponents(TS, T ) =true, if∀T ∈ GetRTask(TS)
⋂

A∈GAA(T ime(TS))

GetComponents(A) = {}

false, otherwise
(3.49)

Now we have made the functions that determines whether or not time is eligible
to pass.

3.4.4 When Time Passes

When the time can pass:



30 Chapter 3. BATTCIO Semantics

• Running tasks counters are decremented by one

• The battery is affected

• Global Time increases by one

A function determines if time can pass is shown in Equation 3.50

CanPass : TaskStatus× N× Time→ Bool

CanPass(TS, SoC,Gt) =
true if CheckSoc(TS, SoC) ∧ CheckPreempt(TS,Gt)

∧CheckFComponents(TS, T ) ∧Gt < End

false, otherwise

(3.50)

We need a function that decrements all the counters for the running tasks. When
a task is finishing we must do some additional work. If a TaskStatus has 1 time left
it must set the dependencies accordingly and increment its completion counter.

The function that generates the updated dependencies is shown in Equation 3.51

UpdateCompletions : TaskStatus× Task → P (Task × N)
UpdateCompletions(TS, T ) = UpdateCompletionD(DCounter)

for TS(T ) = (_,_,_, DCounter)

UpdateCompletionsD(DCounter) =
⋃

T∈DCounter

(T,GetCompletions(T, TS))

(3.51)

We do so by first getting the dependency counter for the finishing task and gener-
ate a set of updated completions for the task. This function is used when transitioning
in time and the counter for a task is 1, meaning that it finishes in the next time tran-
sition, is shown in 3.52.

FinishingTS : Task × TaskStatus→ TaskStatus

F inishingTS(T, TS) = UnlockTasks(T, TS[T 7→
(false, Counter − 1, CCounter + 1, UpdateCompletions(TS, T ), false, false, false)])

where TS(T ) = (_, Counter, CCounter,_,_,_,_)

(3.52)

So the task is finishing if the counter that determines the amount of time left is
equal to one as shown in Equation 3.53
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Finshing : TaskStatus→ TaskStatus

F ishing(TS)(T ′) ={
FinishingTS(T ′, TS) if running ∧ Counter = 1 for TS(T ′) = (running, Counter,_,_,_,_,_)

TS(T ′) otherwise
(3.53)

Now that we have determined what is done when a task finishes we can define the
function that determines what happens for a task that is running but not finishing
which is shown in 3.54

TimeTS : Task × TaskStatus→ TaskStatus

T ime(T, TS) = TS[T 7→ (bool, Counter − 1, CCounter,DCounter, locked, false, false)]

where TS(T ) = (bool, counter, CCounter,DCounter, locked,_,_)

(3.54)

Then we can define the function that time transitions for all running tasks as
shown in 3.55.

Time : TaskStatus→ TaskStatus

T ime(TS)(T ′) ={
TimeTS(T ′, TS) if running = true for TS(T ′) = (running,_,_,_,_,_,_)

TS(T ′) otherwise
(3.55)

Furthermore the just-preempted and just dropped Boolean’s are set to false. Now
that we have defined the behaviour of what happens for running tasks when time
transitions we can define what happens to the battery as shown in Equation 3.56.
We get all the active components and then sum their costs in order to calculate the
load that will be applied to the battery.

ApplyLoad : N× N× TaskStatus→ N
ApplyLoad(B,SoC, TS) ={
Cap, if SoC − Load(TS) > Cap for Battery = (Cap,_)

SoC − Load(TS), otherwise

(3.56)

Here we have defined that if the battery is charged above its maximum capacity,
max capacity is returned. In the case the capacity isn’t reached we return the value
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for the state of charge after the load is applied. The final rule can then be defined
for a time transition as shown in Equation 3.57.

Time
CanPass(TS, SoC,Gt) = true

(Gt, TS, SoC)→ (Gt+ 1, T ime(UpdateCompletions(TS)), ApplyLoad(B,SoC, TS)
(3.57)

So, when time passes we increment the global clock with one, we update finishing
tasks and decrement the counter for non-finishing but running tasks and apply the
load to the battery.



Chapter 4

Query Language

When defining a system, there can be certain requirements for the resulting schedule.
For instance a system might not need to perform the highest possible amount of
tasks. Furthermore, the battery resource could also be in some environment where
either a high average state of charge or low average state of charge is preferred. This
could be a system that is has part of its work scheduled by the BATTCIO formalism
and another part that takes over if needed, for instance if some sort of emergency
emerges that requires the system to act differently. The other aspect can be if the act
of recharging the battery is an expensive action to take you might want to recharge
as little as possible while still performing the specified amount of tasks. A schedule
is in essence a series of states, and it would be these series of states to which we will
put constraints when querying.

There could be a system modelled where we the designers are not interested in
the highest throughput, but rather use the formalism for quick planning. A service
like system could be considered where the tasks that the system performs are services
provided to customers. So, even though the system is able to perform a higher amount
of tasks it might not be needed. Therefore a query language will be defined in order
to generate more customizable schedules.

4.1 Example Model and Queries

In this section we will make use of an example system as defined in Listing 4.1
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Listing 4.1 : a small example system
Component Antenna ( 5 ) ;
Component P r o c e s s o r ( 5 ) ;
Component So l a r P a n e l(−20) ;

Act ion Re c e i v e (Components : {Antenna , P r o c e s s o r} Du r a t i o n : 2 ) ;
Act ion Send (Components : {Antenna , P r o c e s s o r} Du r a t i o n : 4 ) ;
Act ion Recharge (Components{ S o l a r P a n e l} Du r a t i o n : 6 ) ;

Task Send (A c t i o n s : [Send ] ) ;
Task Re c e i v e (A c t i o n s : [ R e c e i v e ] ) ;
Task Recharge (A c t i o n s : [Recharge ]

Droppab l e : True ) ;

I n t e r v a l Send1 ( 6 , 1 0 ) ;
I n t e r v a l Send2 ( 16 , 2 0 ) ;
I n t e r v a l Send3 ( 26 , 3 0 ) ;
I n t e r v a l Send4 ( 36 , 4 0 ) ;
I n t e r v a l Rec e i v e 1 ( 2 , 4 ) ;
I n t e r v a l Rec e i v e 2 ( 12 , 1 4 ) ;
I n t e r v a l Rec e i v e 3 ( 22 , 2 4 ) ;
I n t e r v a l Rec e i v e 4 ( 32 , 3 4 ) ;
I n t e r v a l Charge1 ( 0 , 8 ) ;
I n t e r v a l Charge2 ( 10 , 1 2 ) ;
I n t e r v a l Charge3 ( 16 , 2 6 ) ;
I n t e r v a l Charge4 ( 30 , 4 0 ) ;

Opportunity ( I n t e r v a l s : Send1 ,Send2 , Send3 , Send4
Task : Send
Dependenc i e s : R e c e i v e : 1 ) ;

Opportunity ( I n t e r v a l s : Rece i v e1 , Rece i v e2 , Rece i v e3 , R e c e i v e 4
Task : R e c e i v e ) ;

Opportunity ( I n t e r v a l s : Charge1 ,Charge2 ,Charge3
Task :ReCharge ) ;

Battery (Capa c i t y : 150
I n i t i a l C h a r g e : 150
Type : D i s c r e t e ) ;

S ta r t ( 0 ) ;
Terminat ion ( 4 0 ) ;

A simple approach to this is to simply say how many times a certain task must
be completed in the schedule. This kind of specification would put requirements on
the last state in the generated state trace. The queries means that when the entire
mission time has passed the tasks must uphold the specified query. Meaning, that
the query results in schedules that span the entire mission time and the constraints
of the query are upheld.

For instance in the case of our test program a query could be formed in the
following form:

Receive >= 5

This would result in a schedule where all tasks except receive will complete as
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many times as possible while task Receive has to complete five times or more. This
could result in a set of candidate schedules that the system designer could browse
through in order to find the most wanted one.

Another opposite approach is to say that it must be completed at most 5 times:

Receive <= 5

Like before, all other tasks would complete as many times as possible while receive
would be limited to a maximum completion of five.

Another consideration to take is we have a system where we would like one task
to complete twice as much as another during the entire schedule. In other words, a
balance between tasks might be preferable.

In a large system with a large amount of defined tasks, writing a query that
determines the amount of completions for each task can be a time consuming process.
Therefore we propose a sort of “balancing” query in which we can define how many
times a task completes compared to another task. This is not to be mistaken for
some sort of dependency setting, as that is already possible in the formalism itself. A
dependency clearly defines which tasks and how many times it must complete before
the task can start whereas this balancing in only looks at number of completions in
the end of the schedule.

So, this can be defined in such a way:

Task1 : 2/Task2 : 1

Here we state that for every two times task1 is executed, task2 must also be exe-
cuted once. However, this does not mean: Task1→ Task1→ Task2 , it means that
for every two times Task1 has been completed Task2 must also have been completed
once at any given time when the schedule has reached its end. This is in a system
where strict dependency settings might not yield preferable results.

Another aspect that we can look into in regarding the querying is the battery
resource and what we want to happen there. A series of scenarios can be considered.
One scenario is the case where we want to always have a certain amount of battery
available. In the case of the GomX-3 satellite, there must always be at least 20
percent battery power available [1]. So in a query we can also define this behavior
for the battery:

Battery >= 20%

When setting limiting parameters on the battery in the query it as a constraint
that should be upheld for all the states in the trace schedule.

Another aspect to consider when working with batteries is how they are affected.
As research showed in the report [2] how fast the battery is discharged and how deep
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it is discharged affects the longevity of the battery. Therefore we might be concerned
with how often it should take a recharge opportunity.

As learned depth of discharge had a high effect on battery longevity and therefore
we should be able to express that it should recharge as often as possible:

Battery : HighCR

Where HighCR stands for High Charge Rate. This approach makes best sense if
the user has defined a query with a very exact schedule. If there are not any upper or
lower bounds defined on tasks the resulting scheduling might be one where the only
thing that is performed is the recharge of the battery and not much else.

Another approach might be to charge as few times as possible. This can for
instance be in the case of a system where the task of recharging locks the system from
doing other critical tasks and therefore the desire might be to keep the recharging at
a minimum.

Battery : LowCR

Here LowCR stands for low charge rate.
With these considerations the resulting BNF for the querying is:

〈query〉 ::= 〈taskspec〉 ’;’ 〈query〉
| 〈taskspec〉 ’/’ 〈taskspec〉
| 〈taskspec〉 ’;’
| 〈battspec1 〉 ’;’
| 〈battspec1 〉 ’;’ 〈battspec2 〉
| 〈battspec2 〉 ’;’

〈taskspec〉 ::= 〈ident〉 ’=’ 〈num〉
| 〈ident〉 ’〈=’ <num〉
| 〈ident〉 ’>=’ 〈num〉

〈battspec1 〉 ::= ’Battery’ ’>’ 〈num〉 ’%’
| ’Battery’ ’>=’ 〈num〉 ’%’ ’;’

〈battspec2 〉 ::= ’Battery’ ’:’ ’HighCR’
| ’Battery’ ’:’ ’LowCR’

Here as stated there can be a series of task specifications that determines the
amount of times defined tasks are to be executed. Hereafter the lower bound of the
battery can be set and, if wanted, the charge rate of the battery be set as well.

We can now define a set of relatively simple queries for the test program as defined
in Listing 4.1.
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Listing 4.2 : A small query for the test program that quieries for a schedule where
Task Send and Task Receive completes at least 4 times

Send >= 2 ;
Receive >= 3 ;

Possible schedule derived from query

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Receive

Send

Recharge

Listing 4.2 shows a small query that says the resulting schedule must have both
task Send and Receive completing more than 4 times. Below that is shown a Gantt
chart that contains an example of a schedule that such a query could define. As can
be seen the amount of times that each tasks run are equal to the amount specified
in the query. However, if Task Send had been executed one more time, the resulting
schedule would have been valid as well.

Listing 4.3 : A query that states that we want to charge as much as possible

Battery : HighCR ;

Possible schedule derived from query

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Receive

Send

Recharge

Listing 4.4 queries for the highest charge rate possible for a given schedule. To
make the schedules more easily comparable we omit from making too distinct example
schedules when regarding battery related queries. With a charge rate as high as
possible the system takes every opportunity to charge the battery as it can to keep
it at as close to 100 percent as possible.

Note that this given system can perform tasks while charging.
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Listing 4.4 : A query that says there must always be at least 20 percent power
and have a low charge rate

Battery > 20 ;
Battery : LowCR;

Possible schedule derived from query

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Receive

Send

Recharge

The last query in this section shows a possible schedule where the battery should
charge as little as possible while always being above 20 percentage of charge. This
query could also result in a schedule where the tasks has higher or fewer completions.

Regarding the conceptual GomX-3 satellite that we are using as a main case, the
state of charge must not go below a certain threshold as it will stop performing tasks
to recover if that happens [1]. This means that specifying that the battery must not
go below a certain threshold will in this case be useful. Furthermore, there is a task
that must be taken as often as possible, which means that specifying the amount of
tasks an important task must run can be very useful. The schedule designer would
have to count the amount of times the important task must run, which can be all
possible times, and then specify the query containing that the battery must not go
below a threshold and the important task must complete said number of times.

4.2 Finding the Schedules

In order to find these schedules there are different approaches that can be taken based
on the query which is based on how the implementation of the formalism and schedule
generator will be defined. Since the schedules that we generate must span from the
defined start time to the defined end time, it is not a viable solution to simply stop
exploring the state space once a state has been reached where the tasks has been
completed the specified number of times. Furthermore the goal of this is to provide
a comparative approach where the system designer can compare several candidate
schedules we would need to have a series of schedules that satisfy the query.

Therefore one approach can be to explore the entire state space, and then compare
the query to the termination states in order to see if enough completions has been
done. However, generating entire state spaces for systems that span over a long period
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of time might not be feasible as the state space can in result be too big to have in
memory.

Another approach can be to make use of a state space reducing algorithm that
aims for the specified query. However, as it might not be known initially how many
times a task can be completed by the defined system, some measures must be taken
in order to accommodate this.

Regarding the battery minimum charge that can be defined in the query, a straight
forward approach would be to subtract the specified percentage from the battery
before initiating the state-space generation. A task that recharges is a task that is
defined in the same way as any other task, and therefore a completion counter is also
part of the corresponding task status. Therefore, regarding LowCr and HighCr we
would be choose the states where the charge task has the lowest and highest amount
of completions respectively.
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Implementation

This chapter covers the considerations behind and implementation of the schedule
generator for BATTCIO.

We consider two possibilities for the implementation, one in which a new toolset
is constructed specifically for this problem domain, and one in which existing tooling,
such as Uppaal is used as a back-end.
As mentioned in Section 2.4 the previous Uppaal models were able to produce a
schedule of up to 11 orbits before exhausting the 8GB memory available on the host
machine. This was accomplished in 2̃05 seconds. While it is likely that the length of
the generated schedules could be increased to accommodate the system requirements,
it is also likely to take longer time to do so. One of the benefits of using a tool like
Uppaal as the system back-end is that it is capable of providing guaranteed optimal
schedules.

Contrary to Uppaal, it is unlikely that a the option of creating the domain specific
tool from scratch will be able to provide the same guarantees. However, a tool
designed specifically for this problem domain would be able to follow the BAATTCIO
semantics, as described in Section 3, more closely. If we do not require the guaranteed
optimal schedule, it is then possible that we could explore a lesser part of the potential
state space, but reach an acceptable solution within a shorter time frame. This
behavior would make the tool much more interactive, allowing the operator to quickly
experiment with what is possible during the allotted time frame. Furthermore, the
person that designs the shedules already passes the candidate schedule throuhg a
battery verification software [1]. It could therefore be desirable to generate schedules
quickly if the candidate schedules does not pass their verification software. As stated
in the [2] we had high memory consumption in the Uppaal implementation.

Therefore this is one thing that we want to address in the specialized schedule
generator that we implement. Furthermore we would like to implement this in a
compiled language as that is usually faster than an interpreted one. In order to
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reason on whether or not the specialized tool is taking less space compared to the
Uppaal implementation we would need to implement memory monitors as well, as we
aim to decrease the amount of memory used when generating a schedule.

We have selected the Rust language for the implementation of this tool, based on
the consideration listed below.

• In favor

– High performance [7]

∗ Compiled to LLVM

– Memory safety

– Thread safety

– C bindings

• Opposed

– New language

As stated above Rust is built on the Low Level Virtual Machine (LLVM), allowing
it to take advantage of many optimizations implemented on this platform for popular
C compilers, such as Clang. In addition the Rust language has been shown to be
competitive with C and C++ in a number of benchmarks [5].
The Rust language provides memory safety via its semantics of ownership, movement,
and borrowing of data, which in practice disallows multiple references to the same
physical data, unless explicitly circumvented. In addition to memory safety these
semantics prevent data races between threads, allowing safe concurrency.
This thread safety stems from the move, copy, and borrow semantics inherent in the
Rust language, visualized in Appendix A.3. The move semantic ensures that, at any
given time, a data structure that uses this semantic can only be referenced once. This
facilitates that any data structure allocated on the heap, and thus could conceivably
be altered by multiple concurrent processes at the same time, can only have a single
reference to it. Alternately, data structures that implements the copy semantic, will
always be subject to a deep copy action when used.
In addition to thread safety, these two language features should greatly reduce the
risk of encountering run-time issues, caused by altering data that are used later on
in the system and instead creating a copy of the data that is then altered.

Lastly, the language does provide C bindings, should the need arise to opt out of
using Rust for a specific task.
One of the issue with using Rust is however that it is a relatively young language,
and may be subject to non-backwards compatible updates in the future.
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Based on these criteria, we judge that the Rust language is suitable for the im-
plementation of a schedule generator, due to the performance considerations coupled
with strong memory guarantees.

This chapter will give an overview of the modules of BATTCIO as well as their
implementation.

5.1 Parser

As there, to our knowledge, are no parser generators available capable of generat-
ing a lexer and parser for Rust, we have implemented a rudimentary parser for the
BATTCIO formalism using regular expressions. For each element type in the formal-
ism (task, action, etc.) a series of regular expressions are matched against a statement
in the source code, extracting the relevant information for each statement. As the
language is declarative, i.e. it does not specify how the system will execute, only the
contents of it, we do not need to keep track of scoping rules, etc. and as such we
can implement this simplified parser without regard for creating an accurate abstract
syntax tree. As the the BATTCIO in its current implementation aims to be a proof
of concept product we will not spend significant time on manually implementing a
proper parser, capable of giving the user meaningful errors messages in the event of
syntax errors, however, we recognize that this should be implemented for a complete
version of the BATTCIO suite.

5.2 Model

This section covers the implementation of the semantics set forth in Chapter 3, as well
as the internal representation of a state. This section will firstly bring an overview
as to how we have implemented the representation of the state, the taskstatus and
lastly the system. Hereafter we will present how we have implemented the behaviour
of the four actions that the model can perform: Start a task, preempt a task, drop a
task and transition in time.

5.2.1 State Representation

To represent each state in a simulation we use a combination of two structs, namely
the State and TaskStatus data structures. To ensure that states are not changed in
other parts of the system after they have been created, they should implement the
copy semantics mentioned earlier in this chapter.

State

A State, as seen in Listing 1, consists of three fields for global system time, state of
charge, and task statuses respectively. We use the derive(Copy) and derive(Clone)
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directives to annotate the data structure. Implementing these directives enforces that
the copy semantics be used for this data, but adds the requirement that the maximum
size of the structure can be determined at compile time. This limitation requires that
we set a fixed size for the list of TaskStatus structures, in this implementation we
have chosen a length of 8. To facilitate that there may be less than the maximum
amount of task statuses on a state, we wrap the field in the Option type, meaning
it can be either of type None or Some(TaskStatus), which can then be used for
pattern matching to find all related task statuses.

type time_t = u32;

#[derive(Debug)]
#[derive(Copy)]
#[derive(Clone)]
pub struct State {

pub time: time_t, // Global system
time↪→

pub soc: u64, // State of Charge
pub task_status: [Option<TaskStatus>; 8], // List of task
statuses↪→

}

Listing 1: Implementation of a state

Task Status

Since the TaskStatus data structure, shown in Listing 2, is a part of the State, which
uses copy semantics, TaskStatus must also use these semantics, as a copy occurs
recursively. Each TaskStatus consists of an id of the task it represents a status for,
the global time at which the task was started, an indicator of how long the task has
been running, as well as a list of dependencies. Finally a TaskStatus contains 4 status
fields indication whether or not the task is running, locked, was just preempted, or
was just dropped. A status field indicating if a task is preempted has been omitted,
as this can be deduced from running status and how long the task has been running
(if a task is not running and it has been running for a non zero time, it is preempted).
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type id_t = u16;
type time_t = u32;

#[derive(Clone)]
#[derive(Copy)]
#[derive(Debug)]
pub struct TaskStatus {

t_id: id_t, // ID of the task
running: bool, // Is the task running
locked: bool, // Is the task locked
counter: time_t, // How long has the task been running
start_time: time_t, // When did the task start running
completions: u16, // How many times has the task been
completed↪→

just_preempted: bool, // Was this task preempted at this
time?↪→

just_dropped: bool, // Was this task dropped at this time?
dep: [Option<Dependency>; 4], // Dependencies

}

Listing 2: Implementation of a task status

5.2.2 System

In the BATTCIO implementation, the System struct, seen in Listing 3, represents
the system produced by compiling the formalism described in Section 2.3. In essence,
this struct functions as a lookup table for the schedule generator, keeping track of
the ids, names, and other properties of the individual parts of the system. Since this
structure does not need to be changed during execution as the State and TaskStatus
do, this struct does not need to be copy-able and thus there is no need to assign a
maximum size of each of the vectors containing components, actions, etc. Since this
struct contains all information about the system, this will be where most of the model
behaviour is implemented.
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pub struct System {
pub start: Start,
pub end: Termination,
pub battery: Battery,
pub components: Vec<Component>,
pub actions: Vec<Action>,
pub tasks: Vec<Task>,
pub intervals: Vec<Interval>,
pub opportunities: Vec<Opportunity>

}

Listing 3: Implementation of a system

5.3 Behaviour

As most of the model behaviour is built in the System struct, the implementations of
Component, Action, etc. used in Listing 3, do not contain any significant logic except
for constructors and JSON serializers, and will therefore not be discussed further.
We will present in overview how the behaviour is mapped from both the Uppaal
implementation and also the semantics.

5.3.1 Available Tasks

In the semantics and the Uppaal model, we have defined when a task can start. As
stated in the semantics we check for:

Locked, Preempted or Dropped There are minor differences from the Uppaal
implementation. In Uppaal the Task automaton can be in a locked location, however
there is no Just-preempted and just-dropped indicators as seen in the Figure 2.5 from
preliminaries. This was an additional behaviour that was added in order to not have
circular behaviour, meaning that a task that has just been started can be dropped
and started again within the same time.

Check dependencies In Uppaal we did handled dependencies by defining a counter
for the dependencies. Every time a task completes it increments the dependency
counter. Then a given task can only start if its dependency counters are equal to the
amount specified for the task within its opportunity. Then the counter is reset once
started.
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In Rust and the semantics the dependencies are handled by saving the amount
of completions the tasks that is depended on once completed. When a task needs
to start it gets the difference between its own tracked completions with the current
completions of the tasks it is dependent on and compares that with the defined
dependencies in the system.

Enough power In Uppaal when the task template takes the transition from the
location waiting to running it uses a pre-calculated value for the amount of power
needed to finish to determine if there is a enough power. This value were calculated
and passed a parameter for the task by us, manually. In the semantics and in the
Rust implementation we simulate the start of the task until it has been completed
and checks during that there is enough power until completion of the task.

Can lock In Uppaal this behaviour was given by synchronizing with tasks in the
waiting location over the task_locked channel. If all tasks that needed to be locked
were in the waiting location, the task could lock them all and hereby start. In the
semantics and Rust this behaviour is defined by having Boolean’s for a task that
determines if it is locked or not. If a task is not running it can be locked.

Component availability Within Uppaal and the semantics a task can only start
of the components it needs are available to it. In Uppaal this behaviour is represented
by the automaton Component where it can be either active or idle. Therefore when
starting a task it must activate the components needed, respectively, and if they
are already active the task can not start. In the Semantics we have taken another
approach. We look at the running tasks and from there derive which components
that are active when we want to start a task. The implementation in Rust is more
in line with the semantics than the Uppaal implementation, however, the resulting
behaviour is the same.

Within opportunity In the Uppaal implementation this was checked by the Op-
portunity template, used a synchronize channel to prompt the task automaton to
being able to start. In the semantics and in the Rust implementation this is per-
formed by a function that checks for the defined intervals for a task whether or not
it is within its opportunity. Furthermore, both the Uppaal, semantics and the Rust
implementation checks for if the given task can complete within the defined oppor-
tunity.

Listing 7 and 8 in appendix A.5 shows the rust implementation of all of these
checks. We check for all tasks whether or not they can start and return the set of
id’s that can start, which is later used in order to generate new states.
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5.3.2 Start a Task

When a task is started the following is things happens:

Duration counter In Uppaal this was a parameter that was passed in the initial-
ization of a task, and manually calculated. In the implementation and semantics we
calculate the duration, as defined in the semantics.

Running boolean In Uppaal this was represented by transitioning to the running
state, where in doing so it activates the action, which then activates the tasks.

Apply locks If the task has locks defined it locks all the given tasks. This was done
over synchronization channels in Uppaal, but in the semantics and the implementation
we apply the lock_task function to the tasks that needs to be locked.

Listing 9 in appendix shows the Rust code that starts a task.

5.3.3 Can Preempted Task Start

There is also the case of when a preempted task is started. When doing so, we need
to only check for two things:

Can task lock We need to check whether or not the tasks that should be locked,
can be locked. In Uppaal this behaviour is encompassed in the preempted location.
In order to transition back to running it must lock the needed tasks. In our imple-
mentation and semantics the check is the same as the one when starting a task.

Component availability The same check as when starting a task, where we check
if the components needed are available

Just preempted This is done in order to not start the task again within the same
time frame.

The code for starting both preempted and available tasks is in the appendix
Listing 13

When the function start is applied to a taskstatus it checks whether or not the
counter is equal to zero. If it is the counter is set to the duration of the task, if not,
only the Boolean indicating that it is running is set to true.

5.3.4 Preempt a task

When we check whether or not a task can be preempted we do the following:
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Can complete We want to make sure that if it is preempted it can still finish
within its interval. In the Uppaal implementation this check was not performed, and
could result in behaviour where the task was left in the preempted location.

Just preempted Again, in order to remove circular behaviour where we can end-
lessly transition from preempt to start to preempt etc.

Listing 10 in appendix shows the code that determines whether or not the task
can be preempted.

Listing 14 in the appendix shows the code for preempting a task.
When a task is preempted the Boolean indicating whether or not the task is

running is set to false. This will later be shown to ensure that when time transitions
the counter for the preempted tasks will not decrement.

5.3.5 Drop a task

When dropping a task, all we need to check for is if the task is defined as droppable
in the system. If that is the case, we can drop the task. Furthermore, when a task is
dropped we also need to unlock the tasks that it locked, if any. It is very similar to
the Uppaal implementation, as there was a Boolean value passed in the instantiation
of the template indicating if the task could be dropped as seen in preliminaries figure
2.5

The code that drops a task is shown in appendix Listing 11.

5.3.6 Transition in Time

In Uppaal time could not pass if the battery was depleted, as seen in the timer tem-
plate in figure 2.7 in the preliminaries. Because the semantics and the implementation
is defined differently we need to make some extra checks in order to determine if time
can pass:

Component overlap In the Uppaal implementation, if we had two tasks running
at the same time where each task had actions that shared components at the same
time, Uppaal would simply stop the trace there, as the activation of the compo-
nents would not succeed when starting the next action. In the implementation and
semantics, however, we have to make this check explicitly.

Check preempted tasks In the Uppaal implementation we did not take into
consideration if tasks could complete if preempted. This is a check that we have
decided to add in order to not start a preempted tasks outside its intervals.
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Check power In Uppaal as seem in the aforementioned figure 2.7 if the battery
depleted it would transition to the location battery depleted resulting in a deadlock
of the system i.e. meaning that system cannot progress. In the semantics and in the
implementation we check for whether or not the battery will deplete if we take a time
transition, and of it does, time is not allowed to pass.

The implementation of this behaviour can be seen in appendix Listing 12. If all
of these checks are upheld, the time can pass. Listing 15 shows the code for when
time passes on a state.

5.4 Schedule Generator

Now that the model is implemented, the schedule generator can be implemented. We
will have two ways of generating schedules. We have a greedy naive algorithm that
starts a task whenever possible. Secondly we have a Branch and Bound implementa-
tion where we define a heuristic in an attempt to gain more optimale schedules.

Firstly, however, we present the general approach as to how the state space gen-
eration works.

5.4.1 Generating States

In order to generate all possible states that derives from a specific state, a function
named generate_States is created. Listing 16 in the appendix shows the function.

This function returns a vector containing all the states that can be derived from
the given state.

5.4.2 Generating the State-Space

In order to generate the state-space a crate called id_tree is used. A crate in rust
terms is an external library. This crate is a tree structure data type, where nodes can
contain any type of data where it ,in our case, will contain a state. A node can have
any amount of children, which is needed as there will be states that can generate
more that one state.

The tree is initialised as shown in Listing 4 where the tree is initialized along with
the first root node.



5.4. Schedule Generator 51

let mut tree: Tree<State> = TreeBuilder::new()
.build();

let root_id: NodeId =
tree.insert(Node::new(state),AsRoot).unwrap();↪→

Listing 4: Initialization of the tree and root node

The state that is put into the root node is the initial state based on a given
system. Because we get the sub-states in batches, meaning that we get more than
one, we need to maintain a queue. This queue is of type VecDeque, which is a vector
where popping can occour from both the back and the front, meaning that we can
determine whether or not we want to make the tree in a breadth first approach or in
a depth-first approach.

So, what is done is that the first set of states that are generated from the initial
states is put in a node and this node is then added to the tree under the root node,
and added to the queue as Listing 5 shows.

let generated_states = system.generate_states(state.clone());

for state_c in generated_states {
id_pointer_list.push_back(tree.insert(Node::new(state_c),
UnderNode(&root_id)).unwrap());↪→

}

Listing 5: The first set of generated states are added to the queue id_pointer_list

Now the queue is initialized and the tree, i.e. the state-space, is ready to be
generated.

5.4.3 High Throughput Trace

Now that the way a tree is generated is defined, we can define an approach that
quickly will lead to a schedule, however not a guaranteed optimal schedule.

Listing 17 in the appendix shows the code for generating the trace. We have a
check that compares two states. A better state in this approach is one where a task is
started. Meaning that if there is a state where a task is started among the generated
states, that state is considered the best.
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5.4.4 Branch and Bound

In our branch and bound we add another list of nodes, where the leafs of the tree
will be. A leaf node is when the state that has has been generated has its global time
equal to the termination time specified for the system.

Another addition is that we redefine a state to contain an upper bound as well.
This upper bound will be decremented every time a task is available but not taken,
hereby increasing the sentiment that we want to start as many tasks as possible.

Listing 18 shows the code that generates a statespace using a branch and bound
algorithm.

The heuristic of when to decrement the upper bound is shown in the code in
Appendix Listing 18 and 19. When time passes we check whether for the amount
of starts has decreases in the generated state. This amount is saved to a counter.
If it has decreased we check for if any of the tasks not running in the parent state
are started in the generated state. If it has we decrement the counter for each task
that has started between the two time transitions. We lastly return the counter times
minus one, as that will be the amount subtracted to the upper bounds.

These are the two approaches that have been implemented at the given time, and
both of these will be used to generate schedules in the sections 6 and 7.

5.5 Gantt Chart Generator

Once the core system has generated a viable trace, it is output as a JSON object
containing the description of the system, as well as the trace itself. In order to
generate the visual representations shown in Section 6, this output is put through
a script which generates the image output. Due to its maturity, relative to the
available Rust libraries, we use Python and the Matplotlib library to accomplish this
task. The script runs through the trace array and extracts the state of charge and
status of each task at every point in the trace. This data is then used to generate
a graph of the expected state of charge during the execution of schedule, as well as
a colour coded status bar for each task in the system, indicating whether or not a
task is idle, preempted, locked, or running at any given time. As the Matplotlib
library does not allow creating multi-colour bars as described, we accomplish this by
successively overlaying bars on each other, thereby imitating the desired behaviour.
A shortcoming of this approach is that it does take significantly longer to generate
the Gantt chart this way, making the system loose a bit of its interactivity. As we
create the array containing all the state of charge values in this subsystem, and we
have the desired library support, we calculate a wear score using the WSF described
in Section 2.2.
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5.6 Code Generator

As a proof of concept, we have implemented a crude code generator to show how
one might use a generated trace to also automatically generate executable code that
may be placed on an actual system. Just as the Gantt chart generator, the code
generator runs through all the states of a trace, outputting the desired code for each
change in a tasks status. This implementation outputs a pseudo-code in the form of
‘Time n: Starting/Stopping task: name‘, but could be changed to output a hard-
coded schedule of function calls starting and stopping the corresponding tasks, a
small example of this generated code can be seen in Listing A.1.

This section covered the implementation of the different parts of tool. We have
implemented:

• A parser

• The model

• A Schedule generator

• Gantt Chart Generator

The feature of using queries to generate schedules has not been implemented at
the given time.





Chapter 6

Test of previous program

In this chapter we will use the same model of the GomX-3 satellite used in the Uppaal
implementation from the previous report. We will firstly compare to see if we are
able to generate schedules that entails the same behaviour as the one successfully
generated in Uppaal. Thereafter we will alter the model in order to see which kind
of schedules that the modifications will result in.

We will therefore:

• Compare the exact model

• Compare performance as to see for how long a time span we can generate
schedules

• Limit the battery and tasks in ways to show how the schedule changes

• Do changes in order to compare wear score functions

6.0.1 Generating schedules

We defined the same system in our implementation and attempted the same approach
where we would, at least, monitor the time it took to generate the state-space and
find a trace.

There is a difference, however, as we did not implement the feature where alterna-
tive components can be defined. So in order to circumvent this behaviour we define
the action that had alternative defined, to only be using the alternative component.

The branch and bound approach results in some not optimal schedules when the
intervals for tasks are defined to be longer that the duration of the task. This is likely
because of the way we reduce the upper bound. The resulting schedule can be seen
in Appendix A.2.
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Figure 6.1: The generated schedule for one orbit

In Appendix A.7 the trace derived from Uppaal in [2] is shown. The difference
between the two schedules is that in Uppaal task charge stops charging once the
battery is full. However, it is preempted and left in a preemtped state thoughout the
rest of the trace where in the schedule in Figure 6.1 task charge runs as many times
as possible.

The Gantt chart in Figure 6.1 is the resulting schedule for one orbit based in the
high thoughput approach.

In order to ensure that the dependency behaviour is correct we generate a schedule
for a span of 6 orbits, as shown in figure 6.2, this time with a shortened interval for
the task charge, so it matches the duration of the task.
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Figure 6.2: The generated schedule for six orbits

As can be seen in Figure 6.2 the track task runs twice before the send task is
executed and we can generate an even longer schedule to show that it works more
than the one time. Both high throughput approach and branch and bound resulted
in this schedule.

6.0.2 Comparing Performance

The implementation does not contain the same guarantees as Uppaal provides which
is why comparing with the performance of Uppaal is merely to say what the implemen-
tation is able and unable to. In the previous report the results from the verification
where as follows:

Table 6.1: Results, from the previous report

Orbits Nr. of completions each Time Memory
3 1 1.023 s 25.900 KB
5 2 24.292 s 406.316 KB
7 3 81.494 s 1.266.984 KB
9 4 112.210 s 3.107.544 KB
11 5 205.620 s 6.146.136 KB
13 6 Out of memory Out of memory

With our implementation and the highest throughput method we are able to
query past 13 orbits with the high throughput approach and no more than 13with
the branch and bound approach. Our initial goal was to be able to generate a schedule
for three orbits, as that was the duration of the missions specified for the GomX-3
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Figure 6.3: The generated schedule for three days

Figure 6.3 shows how a schedule for three days looks for this given system. It
is a compact schedule in this page, however it shows that we are able to generate
schedules for a span of 3 days. Because we are able to choose which state is better
we are able to reduce the state space into a single trace. However, there are no
guarantees that can be provided in terms of it is the most optimal schedule, and the
branch and bound approach did not take much space, but were unable to generate a
schedule for more than 13 orbits. At 14 or more we terminated the generation at it
after 7 hours at 14 orbits had not produced results.

To summarize we are able to generate schedules that span for three days, however
these schedules provides no guarantees concerning if it is the most optimal schedule.
The following schedules throughout this section will be generated from the model
where task charge has an interval with the same length as its duration.

6.0.3 Limiting the battery

In this section we will show what happens when the system is limited on its battery
capacity and how often it can charge.

Figure 6.4 shows a system that has a lower battery capacity compared to the
previous system. However, it is still able to complete its tasks in the same manner.
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Figure 6.4: Limiting the battery

Therefore, in figure 6.5 we have further reduced the capacity and as can be seen
it skips the send in this schedule. It does so for the reason that there is not enough
power on the battery for it to complete. The resulting schedules are the same with
branch and bound and high throughput approach.
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Figure 6.5: Limiting the battery to force the skips of tasks

The reason is that we are trying to generate the trace with the highest throughput
and for the task send to be started, the system would have to skip both track and
calculate, in order for send to be started, meaning that the throughput of completed
tasks would be lower.
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6.0.4 Comparing Wear Scores

In this section we generate a schedule and thereafter remove a task in order to lessen
the work the system has to perform and generate a new schedule. Then we compare
the scores.

Figure 6.7 shows a schedule with a wear score of 3.5
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Figure 6.6: A schedule with a wear score of

Figure 6.7 shows a schedule of the same system, where we have omitted the task
calculate which lessens the amount of tasks it can complete. The wear score of the
second schedule is 2.9 which means that this system wears the battery less compared
to the schedule in figure 6.6.
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Figure 6.7: A schedule where the task calculate has been omitted





Chapter 7

Beyond Satellite Scheduling

In the report [2] an attempt was done to model a satellite, however there might be
a series of other systems that can be modelled in BATTCIO. So on this chapter we
will go through brief ideas as to which kinds of systems that might be modelled in
BATTCIO.

7.1 Alternative Resource

The Battery definition in the modelling formalism has until now been regarded as a
power resource powering battery dependent systems.

However, if we were to change this perception to one that considered the battery
definition a resource definition, many kinds of systems could be modelled in this
modelling formalism. For instance, lets say that a construction company are starting
a building project, where they have a limited amount of workers that can perform
a certain task. One such task can be laying the foundation. To do this they would
need a resource, this resource would be cement in this case. What could be used

We would define a component that consumes the resource and one that provides it
in the correct rate. Since we can declare a discrete battery this can also be considered
a discrete resource.

Component Consumption ( 5 ) ;
Component D e l i v e r y(−20) ;

Act ion Work{Components : {Consumption} Du r a t i o n 8 } ;
Act ion D e l i v e r{Components : { D e l i v e r y} Du r a t i o n 1 } ;

Task Working{A c t i o n s : [Work ] } ;
Task D e l i v e r i n g{A c t i o n s : [ D e l i v e r ] } ;

I n t e r v a l WorkHours ( 0 , 8 ) ;

Opportunity ( I n t e r v a l s : WorkHours
Task : Working ) ;

63
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Opportunity ( I n t e r v a l s : WorkHours
Task : D e l i v e r i n g ) ;

Battery (Capa c i t y : 40
I n i t i a l C h a r g e : 10
Type : D i s c r e t e ) ;

S ta r t ( 0 ) ;
Terminat ion ( 0 ) ;

In this model we would define a component that refilled with concrete, and we
would define opportunities for when this concrete could be delivered. The formalism
would then help determine when these shipments of concrete would be needed. A
model like this would be useful in the case where the construction project would
be in a situation where there is limitations to the storage of concrete and we would
therefore be able to “recharge” as little as needed given the query language.
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Figure 7.1: Gantt chart generated by BATTCIO, showing a schedule for concrete delivery with
the high throughput approach

Figure 7.1 shows the schedule generated when using the high throughput ap-
proach.
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Figure 7.2: Gantt chart generated by BATTCIO, showing a schedule for concrete delivery with
the branch and bound approach

Figure 7.2 shows the schedule generated using the branch and bound method.
The reason for this schedule is from the method with which we reduce the upper
bound as the transitions happens. We measure the among of available starts for each
time and it has decreased we check for if a task has started. For each task that has
started we decrement the amount we want to lower the upper bound.

So, when we have a system such as this where two tasks can start at the same
time and again one time transition later, the amount of tasks that can start will
be the same throughout except when we pass the first interval. This results in a
schedule such as this one. We would need to redefine the heuristics of lowering the
upper bounds in order to gain better schedules for models like this one.

7.2 Self Driving Electrical Vehicles

Imagine, some time in the future, a company that provides services with self driving
cars. Electrical cars power consumption differs dependent on the kind of driving that
it performs. So, without any deep analysis of how exactly the cars power consumption
differs we speculate that city driving takes the least amount of power for driving,
country roads take more and highways take the most.

The idea is that if we have a company with a high amount of self driving cars,
but the company wants to share recharging stations between cars, the cars will be
allotted specific time windows in which they can recharge. So, in BATTCIO a model
of a car could be modelled as listing 7.1 shows. The car has three components that
we set as the driving methods, i.e. city, country roads and highway. We assume that
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each kind of driving has a certain function, for instance, in the city the car is used a
taxi to transport people within the city.

Country and highways are used for transporting goods or long taxi services. Elec-
trical cars are moving towards faster and faster charge times and in this model we
are assuming that a car can fully recharge in an hour. The time granularity is set to
1 hour. We would have to lock all other tasks when they are performed. This can be
done in two ways in the model. We can either explicitly declare the locks, or we can
do it component wise by saying we have a components for city driving. A component
for country and one for highway driving. Or, we can define three components that
are adding up in the consumption of the battery. So that we have a “base” component
used for driving, then we have level 2 and level 3 components.

Listing 7.1 shows the model with lock usage and listing 7.2 shows the model
with the use of implicit locks through components. Figure 7.3 shows the generated
schedule for the model. As can be seen the only task that locks correctly is the last
declared task in the listing. That is due to the way the parser generates the system
internally, where if the task is not defined when referenced, it will ignore it.
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Figure 7.3: Gantt chart generated by BATTCIO, showing a schedule for a self driving vehicle.

Listing 7.1 : The model of a driving car
Component C i t y ( 1 0 ) ;
Component Count ry ( 1 5 ) ;
Component Highway ( 2 0 ) ;
Component Charge(−60) ;

Act ion C i t y D r i v i n g (Components : { C i t y} Du r a t i o n : 1 ) ;
Act ion Coun t r yD r i v i n g (Components : {Count ry} Du r a t i o n : 1 ) ;
Act ion HighwayDr i v i ng (Components : {Highway} Du r a t i o n : 1 ) ;
Act ion Charge (Components : {Charge} Du r a t i o n : 1 ) ;
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Task C i t yD r i v e (A c t i o n s : [ C i t y D r i v i n g ]
Locks : [ Count r yDr i v e , H ighwayDr ive ] ) ;

Task Coun t r yD r i v e (A c t i o n s : [ Coun t r yD r i v i n g ]
Locks : [ C i t yD r i v e , H ighwayDr ive ] ) ;

Task HighwayDr ive (A c t i o n s : [H ighwayDr i v i ng ]
Locks : [ C i t yD r i v e , Coun t r yD r i v e ] ) ;

Task Charge (A c t i o n s : [Charge ]
Locks : [ C i t yD r i v e , Count ryDr i ve , H ighwayDr ive ] ) ;

I n t e r v a l Miss ionTime ( 0 , 1 2 ) ;
I n t e r v a l ChargeOpp1 ( 4 , 5 ) ;
I n t e r v a l ChargeOpp2 ( 11 , 1 2 ) ;

Opportunity ( I n t e r v a l s : Mis s ionTime
Task : C i t yD r i v e ) ;

Opportunity ( I n t e r v a l s : Mis s ionTime
Task : Coun t r yD r i v e ) ;

Opportunity ( I n t e r v a l s : Mis s ionTime
Task : H ighwayDr i v i ng ) ;

Opportunity ( I n t e r v a l s : ChargeOpp1
Task : Charge ) ;

Opportunity ( I n t e r v a l s : ChargeOpp2
Task : Charge ) ;

Battery (Capa c i t y : 60
I n i t i a l C h a r g e : 6 0
Type : D i s c r e t e ) ;

S ta r t ( 0 ) ;
Terminat ion ( 1 2 ) ;

As can be seen listing 7.2 shows the model with implicit locks through the com-
ponent usage. Here the there it is not shown that the tasks lock each other, but
they are not executed simultaneously meaning that they would not be able to have
started. Figure 7.4 shows the generated schedule.
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Listing 7.2 : The Car case with implicit locks through components
Component Dr i v e ( 1 0 ) ;
Component LevelTwo ( 5 ) ;
Component Le v e lTh r e e ( 5 ) ;
Component Charge(−80) ;

Act ion C i t y D r i v i n g (Components : {D r i v e} Du r a t i o n : 1 ) ;
Act ion Coun t r yD r i v i n g (Components : {Dr i v e , LevelTwo} Du r a t i o n : 1 ) ;
Act ion HighwayDr i v i ng (Components : {Dr i v e , l eve lTwo , l e v e l T h r e e} Du r a t i o n : 1 ) ;
Act ion Charge (Components : {Dr i v e , l eve lTwo , l e v e l T h r e e , Charge} Du r a t i o n : 1 ) ;

Task C i t yD r i v e (A c t i o n s : [ C i t y D r i v i n g ] ) ;
Task Coun t r yD r i v e (A c t i o n s : [ Coun t r yD r i v i n g ] ) ;
Task HigwayDr i v i ng (A c t i o n s : [H ighwayDr i v i ng ] ) ;

Task Charge (A c t i o n s : [Charge ] ) ;

I n t e r v a l Miss ionTime ( 0 , 2 4 ) ;
I n t e r v a l ChargeOppOne ( 4 , 5 ) ;
I n t e r v a l ChargeOppTwo(11 , 1 2 ) ;
I n t e r v a l ChargeOppThree ( 18 , 1 9 ) ;

Opportunity ( I n t e r v a l s : Mis s ionTime
Task : C i t yD r i v e ) ;

Opportunity ( I n t e r v a l s : Mis s ionTime
Task : Coun t r yD r i v e ) ;

Opportunity ( I n t e r v a l s : Mis s ionTime
Task : H ighwayDr i v i ng ) ;

Opportunity ( I n t e r v a l s : ChargeOppOne
Task : Charge ) ;

Opportunity ( I n t e r v a l s : ChargeOppTwo
Task : Charge ) ;

Opportunity ( I n t e r v a l s : ChargeOppThree
Task : Charge ) ;

Battery (Capa c i t y : 60
I n i t i a l C h a r g e : 6 0
Type : D i s c r e t e ) ;

S ta r t ( 0 ) ;
Terminat ion ( 2 4 ) ;
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Figure 7.4: Gantt chart generated by BATTCIO, using implicit locks, showing a schedule for a
self driving vehicle.

7.3 Generic Planning

Another aspect that we will draw attention to is the use of the model for planning
in general. What can be done here is that we can define components with a power
consumption of zero and then attempt to make a schedule. There is a risk connected
to this being that since the battery is not limiting the state space anymore, we might
produce a too big state space. However, we will still make a small example system
in which we try to generate a schedule for a given system.

The system that we can try to attempt to create is a schedule for workers in
the a working space. The example could be a fair where we have people working at
different parts of the fair.

Listing 7.3 : The model of a working space
Component workerOne ( 0 ) ;
Component workerTwo ( 0 ) ;
Component worke rThree ( 0 ) ;
Component worke rFou r ( 0 ) ;

Act ion WorkOne (Components : {workerOne } Du r a t i o n : 1 ) ;
Act ion WorkTwo (Components : {workerTwo } Du ra t i o n : 1 ) ;
Act ion WorkThree (Components : {worke rThree} Du r a t i o n : 1 ) ;
Act ion WorkFour (Components : {worke rFou r } Du r a t i o n : 1 ) ;

Task WorkOne (A c t i o n s : [WorkOne ] ) ;
Task WorkTwo (A c t i o n s : [WorkTwo ] ) ;
Task WorkThree (A c t i o n s : [WorkThree ] ) ;
Task WorkFour (A c t i o n s : [WorkFour ] ) ;

I n t e r v a l WorkHours ( 0 , 8 ) ;
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Opportunity ( I n t e r v a l s : WorkHours
Task : WorkOne ) ;

Opportunity ( I n t e r v a l s : WorkHours
Task : WorkTwo ) ;

Opportunity ( I n t e r v a l s : WorkHours
Task : WorkThree ) ;

Opportunity ( I n t e r v a l s : WorkHours
Task : WorkFour ) ;

Battery (Capa c i t y : 400
I n i t i a l C h a r g e : 400
Type : D i s c r e t e ) ;

S ta r t ( 0 ) ;
Terminat ion ( 8 ) ;

0
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Figure 7.5: Gantt chart generated by BATTCIO, showing a schedule for a generic work space.

As can be seen the model as of now is limited in the sense that this model would
generate a schedule where all the workers would work throughout the eight hours.
However, if the feature where alternative components could be defined where imple-
mented, a more dynamic schedule could be generated. However, some form of visual
indication as to which components are used by the task would also need to be shown
in the Gantt chart.
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Epilogue

8.1 Evaluation

In this section we will evaluate on the project and the status of the implementation.

8.2 Overview

Initially, in the previous project, we made an implementation in Uppaal with which
we were able to schedule up until 11 orbits.

Based on that we determined that we would implement a seperate model and
schedule generator in order to attempt to overcome the obsticale of the high memory
consumption.

We chose to go forward with a seperate implementation for several reasons. One is
because it would give us more control over the way we generate and traverse the state
space, meaning that we would be able to more freely determine the heuristics of the
approach traversing and generating the state space. For instance when implementing
the branch and bound algorithm. However, this also increased the complexity of the
implementation to us. Furthermore a compiled language could grant some additional
computing speed as there would be no need for interpreting as well. That would
however, require that the code written is also efficient. And lastly, it would be easier
for us to implement other battery models than the discreete model, as Uppaal sets
restraints when working with Real numbers.

We chose to do the implementation in a language that were unfamiliar to us, but
provided us with memory safety, a possibility for safe multi threading, a compiled
language and compile time error handling. These factors were the main beneficiaries
of the choice of language. The unfamiliarity with the language wound up costing us
time by the process of learning to write in it. However with the memory safety that
it provided and compile time errors we can speculate that implementing it in another
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language could have given us other problems that would have wound up costing the
same amount of time.

As of now we are able to generate schedules in two ways from a system. The first
way we do this, i withs a naive greedy approach that simply starts as many tasks as
possible. For some systems this results in good, but in more complex systems where
there are more component overlapping and opportunity overlapping the situation
might change. A system might in the end generate a better schedule if it waited
some time before starting certain tasks.

The other way we do it is with a branch and bound where the heuristic for lowering
the upper bound does in some cases result in sub-optimal schedules dependent on the
model.

8.2.1 Missing alternative components

As of now the feature where alternative components for an action can be defined is
missing. In order to have this be a part of the model, the semantics would need to
have these added, along with the implementation being altered as well in order to
accomodate this feature.

If this where implemented, the model would be a better fitted to generate sched-
ules for a work place, as in Section 7, where it would be able to choose among all the
available components. In the given case a compnent is a worker.

This would also generate the need for displaying in the gantt chart which compo-
nents are being used by the given task.

This also resulted in the fact that we had to do a small rewrite of the test system
used in the previous report in order to acheive comparable schedules.

8.2.2 Missing skipppable

Another difference from the Uppaal implementation is that the tasks can be defined
as skippable or not. This could eventually be defined in the query instead, where a
query can be defined to run a given taks the amount of possible times it can.
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8.3 Conclusion

In this report we have defined the semantics for BATTCIO, defined a query language
for the model and implemented a parser, the model and a schedule generator for the
model. The semantics encompasses almost similar behaviour to the Uppaal imple-
mentation in the previous report with few altercations [2]. The parser, model and
schedule generator are all implemented in the language RUST that provides memory
safety and compile time errors. We have throughout the report made use of a con-
ceptual GomX-3 model defined in the BATTCIO formalism in the previous report
[2].

In order to generate the schedules, two approaches were taken; A naive approach
that started a task if possible and a branch and bound approach that more extensively
sought to generate an optimal schedule. Both of these approaches are able to generate
schedules for the GomX-3 model where the naive approach were able to generate
schedules that spans for more than three days, however with no guarantees of it
being an optimal schedule. However, the generation is done within a few seconds.
The branch and bound approach were able to generate schedules in span for up to 13
orbits, before reaching a situation where the time needed to generate schedules for
more than that is unrealistic.

The schedules are outputted as a JSON data format that can be passed to the
Gantt chart generator and code generator, that we have developed. The Gantt chart
generator is written in Python and uses matplotlib to draw the charts.Additionally
the state of charge over time is also shown in the generated charts. Furthermore,
this generator also generates the wear score function for the task that can be used to
compare schedules and choose the schedule that wears the least on the battery. The
code generator is written in Python as well.

We were able to generate schedules for the GomX-3 satellite, that encompassed
the same behaviour as the Uppaal implementation. Furthermore we made some
altercations to the model where we limited the battery in order to skip tasks which
were successful. Furthermore, we removed a task from the system in order to see if
the wear score was lower for the schedule that did less work, which is was.

We furtherly explored other systems that could be modelled in BATTCIO and
generated schedules af varying quality from those. Among these explorations where
planning for self driving vehicles, planning when to receive a shipment of a needed
resource and generic planning. This exploration gave light to the limitations of the
formalism and implementation as there were schedules generated were sub-optimal.

Overall, the tool is in a proof on concept state where further development is
required to have it working for cases outside the gomx3 case. However, it did succeed
in generating schedules for the initial problem area i.e. satellites.



74 Chapter 8. Epilogue

8.4 Future Work

This section will present what is considered important next steps if further develop-
ment of the tool were to happen.

8.5 QueryLanguage implementation

As of now the query language is not yet implemented. If we were to implement it we
would firstly find a way to define an euclidian distance between two states and use
that in a branch and bound approach to reach the state.

8.5.1 Branch and Bound

Redefining the heuristics of the branch and bound method would be the next step.
Finding an approch that consistently results in optimal schedules would require is
to exactly figure out when the upper bound should decrease. We would need to
determine what the best choice and not decrease the upper bound if the best choice
is taken. As of now there are instances where not starting a task results in the same
upper bound as starting a task as shown in Figure A.2. Here the choice of starting
tasks does not give a better upper bound than not starting one.

8.5.2 More extensive testing

As if now, the implementation is in a proof of concept state meaning that the func-
tionality for generating a schedule is implemented, however generating and comparing
several schedules has not yet been implemented. As of now it initially seems that the
starting of tasks, locks and finishing of tasks are working as exptected. However, we
would need to make systems where the use of preemption and drops would result in
a better schedule.

8.5.3 Implementing KiBaM

The current state of the implementation does not support a Kinetic Battery Model.
That is part because we found it interesting to make a model that we could compare
more or less directly with the Uppaal implementation and it would require another
semantic rule set, as the it requires real numbers. In the current semantics, the
behaviour is based on discrete numbers.

8.5.4 Bundling

As of now, the implementation is not developed with a GUI. This means that when
a system is defined it must be done so in a seperate text editor where no highlighting
and syntactical analysis is done while defining the system. We would need to develop
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a dedicated text editor to acheive highlighting and static analysis of the system. We
would also need some editor to define queries in, along with syntax highlighting and
static analysis. Furthermore the gantt charts are generated by a seperate program.
In order to have a easily useable tool we could bundle the text editor and the query
editor with the gantt chart generator to a single program where all three parts are
incorporated.

8.5.5 The syntax

We needed a redefined syntax for the current implementation based on the fact that
alternative components cannot be declared. However, we have also noticed that there
are some constructions that could be changed for easier definitions.

For instance, when declaring intervals, only one interval can be declared per de-
cleration. In a small system such as the one used in the test program, no problems
occour. However, if a system spans over longer time and therefore has many intervals
bound to an opportunity it is unnecessary to define the intervals to many different
identifiers. What could be done is to define more that one set of intervals per interval
declaration:

I n t e r v a l name ( [ num1 , num2 ] , [ num3 , num4 ] ) ;

Furthermore a small interval calculus has been proposed and can be seen in Appendix
A.1

8.5.6 The Parser

With present implementation of the parser, each statement is processed by a regular
expression, that will either match and add the statement to the system, or it will
not match and ignore the statement all together. This puts all the responsibility
of program correctness on the end user, as a malformed program may not produce
any meaningful error messages until it is executed. In a fully developed version of
the toolkit, a proper lexer and parser should be implemented, to check for program
validity and inform the user accordingly. Additionally, the parser leaves it to the user
to ensure that identifiers are correct and will leave them out of the system if this is
not the case, leading to unexpected schedules being generated.

8.5.7 Testing with actual systems

The systems that have been tested are not representations of real systems, only
concepts. This is meaningful when implementing the checker and schedules. However,
models that really represents the systems may not have a state space as big, because
the battery would more easily be emptied. Our conceptual test model of the GomX-3
satellite has a big battery that is charged fully within one charge opportunity, meaning
that there is not much balancing that needs to be done on the battery. Meaning that



76 Chapter 8. Epilogue

the battery is a factor concerning the state-space, where a high battery capacity and
high charge rate relative to the power a task consumes allows for many tasks to be
executed. This was tested, as we limited the capacity of the battery and the amount
it can charge within a charge cycle.

8.5.8 Reconsider Uppaal implementation

With the semantics defined, it could prove beneficial to make a new implementation
of the Uppaal model, more akin to the semantics. Meaning that instead of having
templates for components, actions, opportuniites, etc. we could make the state have
the same in Uppaal as in the semantics. In the semantics we have attempted to
make balance it towards computational decision making instead of memory decision
making. What it means is that instead of having components represented in the state
as an automaton, we derive what the used components are instead, just as in the
semantics. In essence an attempt to decrease the amounf of automata represented
in the state. This was not done as the Rust implementation and Semantics were
developed and defined concurrently, whereas the idea came to us when it was too late
to attempt a new Uppaal implementation.
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Appendix

A.1 Interval Calculus

Interval Calculus Definition 1 Define

I1 = Interval(S : t1, E : t2) (A.1)

I2 = Interval(S : t3, E : t4) (A.2)

Where I1 and I2 are intevals, from time S to time E, and t1 ≤ t2 and t3 ≤ t4.

Interval Calculus Definition 2 Difference

I3 = I1 \ I2 (A.3)

if t3 ≤ t1 ∧ t1 ≤ t4 ∧ t4 < t2 then

I3 = Interval(S : t4, E : t2) (A.4)

if t1 < t3 ∧ t3 ≤ t2 ∧ t2 < t4 then

I3 = Interval(S : t1, E : t3) (A.5)

if t1 < t3 ∧ t4 < t2 then

I3 =

{
Interval(S : t1, E : t3)

Interval(S : t4, E : t2)
(A.6)
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if t3 ≤ t1 ∧ t2 ≤ t4 then

I3 = ∅ (A.7)

if t4 ≤ t1 ∨ t3 ≥ t2 then

I3 = Interval(S : t1, E : t2) (A.8)

Interval Calculus Definition 3 Union

I3 = I1 ∪ I2 (A.9)

if t1 ≤ t3 ∧ t2 ≥ t3 ∧ t2 ≤ t4 then

I3 = Interval(S : t1, E : t4) (A.10)

if t3 ≤ t1 ∧ t4 ≥ t1 ∧ t4 ≤ t2 then

I3 = Interval(S : t3, E : t2) (A.11)

if t1 ≥ t3 ∧ t4 ≥ t2 then

I3 = Interval(S : t3, E : t4) (A.12)

if t1 ≤ t3 ∧ t2 ≥ t4 then

I3 = Interval(S : t1, E : t2) (A.13)

if t2 < t3 ∨ t4 < t1 then

I3 =

{
Interval(S : t1, E : t2)

Interval(S : t3, E : t4)
(A.14)

Interval Calculus Definition 4 Intersection

I3 = I1 ∩ I2 (A.15)
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if t2 < t3 ∨ t4 < t1 then

I3 = ∅ (A.16)

if t3 ≥ t1 ∧ t3 ≤ t2 ∧ t2 ≤ t4 then

I3 = Interval(S : t3, E : t2) (A.17)

if t1 ≥ t3 ∧ t1 ≤ t4 ∧ t2 ≥ t4 then

I3 = Interval(S : t1, E : t4) (A.18)

A.2 Syntax

〈system〉 ::= 〈declarations〉

〈declarations〉 ::= 〈declaration〉
| 〈declarations〉 〈declaration〉

〈declaration〉 ::= 〈opportunity〉 ’;’
| 〈battery〉 ’;’
| 〈time〉 ’;’
| 〈component〉 ’;’
| 〈action〉 ’;’
| 〈task〉 ’;’
| 〈interval〉 ’;’

〈component〉 ::= ’Component’ 〈identifier〉 ’(’ 〈cost〉 ’)’

〈action〉 ::= ’Action’ 〈identifier〉 ’(’ 〈actionparamslist〉 ’)’

〈actionparamslist〉 ::= 〈actionparams〉
| 〈actionparamslist〉 ’|’ 〈actionparams〉

〈actionparam〉 ::= ’Components:’ ’[’ 〈identifiers〉 ’]’
| ’Duration:’ 〈number〉

〈actionparams〉 ::= 〈actionparam〉
| 〈actionparams〉 〈actionparam〉

〈task〉 ::= ’Task’ 〈identifier〉 ’(’ 〈taskparams〉 ’)’
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〈taskparams〉 ::= 〈taskparam〉
| 〈taskparams〉 〈taskparam〉

〈taskparam〉 ::= ’Actions:’ ’[’ 〈identifiers〉 ’]’
| ’Locks:’ ’[’ 〈lockparams〉 ’]’ !Optional
| ’Droppable:’ 〈Bool〉 !Optional
| ’Preemptable:’ 〈Bool〉 !Optional

〈lockparams〉 ::= 〈identifiers〉
| ’All’
| ’AllExcept’ ’:’ 〈identifiers〉

〈interval〉 ::= ’Interval’ 〈identifier〉 ’(’ 〈number〉 ’,’ 〈number〉 ’)’

〈opportunity〉 ::= ’Opportunity’ ’(’ 〈opportunityparams〉 ’)’

〈opportunityparams〉 ::= 〈opportunityparam〉
| 〈opportunityparams〉 〈opportunityparam〉

〈opportunityparam〉 ::= ’Intervals:’ 〈identifiers〉
| ’Task:’ 〈identifier〉
| ’Skippable:’ 〈Bool〉
| ’Dependencies:’ 〈dependencyparams〉

〈dependencyparams〉 ::= 〈dependencyparam〉
| 〈dependencyparams〉 〈dependencyparam〉

〈dependencyparam〉 ::= 〈identifier〉 ’:’ 〈number〉

〈battery〉 ::= ’Battery’ ’(’ 〈batteryparams〉 ’)’

〈batteryparams〉 ::= 〈batteryparam〉
| 〈batteryparams〉 〈batteryparam〉

〈batteryparam〉 ::= ’Capacity:’ 〈number〉
| ’MaxLoad:’ 〈number〉 !Reserved for later
| ’InitialCharge:’ 〈number〉
| ’Type:’ 〈batterytype〉

〈batterytype〉 ::= ’KiBaM’
| ’Discrete’

〈time〉 ::= ’Start’ ’(’ 〈number〉 ’)’
| ’Termination’ ’(’ 〈number〉 ’)’
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〈identifier〉 ::= 〈String〉

〈identifiers〉 ::= 〈identifier〉
| 〈identifiers〉 ’,’ 〈identifier〉

〈Bool〉 ::= ’true’
| ’false’

〈String〉 ::= 〈Letter〉
| 〈Letter〉 〈String〉

〈Letter〉 ::= ’A’
| ...
| ’Z’

〈cost〉 ::= 〈number〉

〈number〉 ::= 〈digit〉
| 〈digit〉 〈number〉

〈digit〉 ::= ’1’
| ...
| ’0’
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Figure A.1: Visualization of the Rust move/copy/borrow semantics [6]
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A.3 Rust Semantics

A.4 Branch And Bound

pub fn has_missed_opp(&self,system: &System, stateP:State,
stateC: State) -> i32 {↪→

let mut res = false;

let mut counter: i32 = (system.nr_of_starts(stateP) as
i32) - (system.nr_of_starts(stateC) as i32);↪→

if counter > 0 {
for tasksC in system.get_running_tasks(stateC) {

for tasksP in
system.get_not_running_tasks(stateP) {↪→

if tasksC.get_id() == tasksP.get_id() {
counter = counter - 1;

}
}

}
}

counter = counter * (-1);
return counter;

}

Listing 6: The experimental Branch and Bound algorithm used in the implementation
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A.5 IsTaskAvail

// is_task_available
// Part 1
pub fn is_task_available(&self, state: State, status: TaskStatus)

-> bool {↪→

let mut result = true;
let task = self.get_task(status.get_id());

// Check if task is already running, locked by another
task, or has just been preempted↪→

if status.get_running() || status.get_locked() ||
status.get_was_just_preempted() ||
status.get_was_just_dropped() {

↪→

↪→

result = false;
}

let deps_res = self.check_deps(status, state.clone());
// Check if dependecies are met
if result && !deps_res {

result = false;
}

if result && !self.is_power_enough(state.clone(),status)
{↪→

result = false;
}

// Check if the ones that needs to be locked aren't
running↪→

for index in 0..state.task_status.len() {
if let Some(stat) = state.task_status[index] {

if stat.get_running(){
for id in self.get_locks(status.get_id()){

if stat.get_id() == id {
result = false;

}
}

}
}

}

Listing 7: The function determining if a task is available for start - Part 1
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// is_task_available
// Part 2

// Check if componenents are availableLLEVEN CAN START
ACCORDING TO TASK READ↪→

for rcom in self.required_components(status.get_id()) {
for ucom in self.get_used_components(state) {

if rcom == ucom {
result = false;

}
}

}

let (in_opportunity, _, _) = self.task_in_opportunity(state,
status.get_id(),false);↪→

if !in_opportunity {
result = false;

}
return result;

}

Listing 8: The function determining if a task is available for start - Part 2
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pub fn start_task(&mut self, id:id_t, system: &System)
{

for index in 0..self.task_status.len(){
if let Some(mut status) = self.task_status[index]
{

if status.get_id() == id
{

status.start(system.task_duration(id).0);
let lock_ids = system.get_locks(id);
for lock_id in lock_ids {

self.lock_task(lock_id);
}

self.task_status[index] = Some(status);

}
}

}
}

Listing 9: The function starting a task



90 Appendix A. Appendix

fn is_task_preemtable(&self, state: State, status: TaskStatus) ->
bool {↪→

let mut result: bool = false;

if status.get_running() {
let current_time = state.time;
let (_, _, end) = self.task_in_opportunity(state,

status.get_id(), true);↪→

let remaining_time = (end as i32) - (current_time as
i32);↪→

// Check if this task has just been preempted, and if
it has enough time to finish↪→

if let Some(task) = self.get_task(status.get_id()) {
if !status.get_was_just_preempted()

&& task.preemptable
&& (self.task_remaining_time(status) as i32)

< remaining_time as i32 {↪→

result = true;
}

}
}

return result;
}

Listing 10: The function that checks of a task can be preempted
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fn is_task_droppable(&self, status: TaskStatus) -> bool {
let mut result = false;
let running = status.get_running();
if let Some(task) = self.get_task(status.get_id()) {

if task.droppable && running {
result = true;

}
}
return result;

}

Listing 11: The function that drops a task
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fn can_time_pass(&self, from_state:State) -> Option<State> {
let mut new_state: State = from_state.clone();

if( from_state.time >= self.end.time) {
return None;

}

if let Some(newSoC) = self.get_future_soc(from_state) {
if newSoC > 0 {

new_state.time(self, newSoC as u64);
let mut used_c =

self.get_used_components(new_state);↪→

let mut ceck: id_t;
for c in 0..used_c.len() {

ceck = used_c[c];
for m in 0..used_c.len() {

if( c == m ) {
continue;

}
if(used_c[c] == used_c[m]) {

return None;
}

}
}

for tasks in self.get_preempted_task(new_state) {
let (in_opportunity, _, _) =

self.task_in_opportunity(new_state, tasks, true);↪→

if !in_opportunity {
return None;

}
}

}
return Some(new_state);

}
return None;

}

Listing 12: The function determining if time can pass
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pub fn start_task(&mut self, id:id_t, system: &System)
{

for index in 0..self.task_status.len(){
if let Some(mut status) = self.task_status[index]
{

if status.get_id() == id
{

status.start(system.task_duration(id).0);
let lock_ids = system.get_locks(id);
for lock_id in lock_ids {

self.lock_task(lock_id);
}

self.task_status[index] = Some(status);

}
}

}
}

Listing 13: The function that starts a task
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pub fn preempt_task(&mut self, id: id_t)
{

for x in 0..8{
if let Some(mut task) = self.task_status[x]
{

if task.get_id() == id
{

task.preempt_task();
self.task_status[x] = Some(task);

}
}

}
}

Listing 14: The function that preempts a task
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pub fn time(&mut self, system: &System, new_soc: u64) {

self.time += 1;

self.unlock_all();

for index in 0..self.task_status.len() {
if let Some(mut status) = self.task_status[index] {

let running = status.get_running();
if running {

status.time_transition(self.clone());

self.task_status[index] = Some(status);

if status.get_running()
{

let lock_ids =
system.get_locks(status.get_id());↪→

for lock_id in lock_ids {
self.lock_task(lock_id);

}
}

}
}

}
self.soc = new_soc;

}

Listing 15: The function that applies the time transition
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pub fn generate_states(&self, mut from_state: State) ->
Vec<State> {↪→

let mut return_states: Vec<State> = Vec::new();

// States where tasks are started
if let Some(ids) = self.get_available_tasks(from_state) {

for id in ids {
let mut new_state = from_state;
new_state.start_task(id,self);

return_states.push(new_state);
}

}

//where tasks are resumed
for id in self.get_resumable_tasks(from_state) {

let mut new_state = from_state.clone();
new_state.start_task(id, self);
return_states.push(new_state);

}

// Where tasks are dropped
for id in self.get_droppable_tasks(from_state) {

let mut new_state = from_state.clone();
new_state.drop_task(id);
return_states.push(new_state);

}

//where tasks are preemped
for id in self.get_preemptable_tasks(from_state) {

let mut new_state = from_state.clone();
new_state.preempt_task(id);

return_states.push(new_state);
}

if let Some(time_state) = self.can_time_pass(from_state) {
return_states.push(time_state.clone());

}

return return_states;
}

Listing 16: The function that generates states based on a given state
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if max_throughput{

while id_pointer_list.len() != 0
{

if let Some(node_id) = id_pointer_list.pop_front()
{

let mut c_state =
tree.get_mut(&node_id).unwrap().data().clone();↪→

for state_gen in system.generate_states(c_state)
{

if best_state.is_state_better(state_gen)
{

best_state = state_gen.clone();

}
}
id_pointer_list.push_front(tree.insert(

Node::new(best_state.clone()),UnderNode(&node_id)).unwrap());↪→

if best_state.time == system.end.time{
break;

}
}

}

}

Listing 17: Generates a trace where tasks are started when they can
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// Branch and bound algorithm
// Part 1
while id_pointer_list_bb.len() != 0 {}

let length = id_pointer_list_bb.len();
let mut index = 0;
let mut best_ub = 0;
// Determines the one with the lowest bound
for x in 0..length {

let ubb =
treeB.get_mut(&id_pointer_list_bb[x]).unwrap().data().u_b;↪→

if ubb > best_ub {
best_ub = ubb;
index = x;

}
}

//Checks for leaf nodes
let l_length = leaf_node_list.len();
for x in 0..l_length {

if treeB.get(&leaf_node_list[x]).unwrap().data().u_b >
best_ub {↪→

best_found = true;
best_l_index = x;

}
}
if best_found {

break;
}

Listing 18: The Branch and bound algorithm - Part 1
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// Branch and bound algorithm
// Part 2

if let Some(node) = id_pointer_list_bb.remove(index) {
let this_ub = treeB.get_mut(&node).unwrap().data().u_b;
let bbstate = treeB.get_mut(&node).unwrap().data().state;
let generated_states =

system.generate_states(treeB.get_mut(&node).unwrap().data().state);↪→

for states in generated_states {
if states.time == system.end.time {

leaf_node_list.push_front(

treeB.insert(Node::new(generate_node(states,this_ub)),↪→

UnderNode(&node)).unwrap());↪→

}
if bbstate.time < states.time {

if 0 > bbstate.has_missed_opp(&system, bbstate,
states) {↪→

id_pointer_list_bb.push_back(treeB.insert(
Node::new(generate_node_l(states,(this_ub

as i32),↪→

bbstate.has_missed_opp(&system, bbstate, states))),↪→

UnderNode(&node)).unwrap());
} else {

id_pointer_list_bb.push_back(treeB.insert(
Node::new(generate_node(states,this_ub)),
UnderNode(&node)).unwrap());

}
} else {

id_pointer_list_bb.push_back(treeB.insert(
Node::new(generate_node(states,this_ub)),
UnderNode(&node)).unwrap());

}
}

}
}

Listing 19: The Branch and bound algorithm - Part 2
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A.6 Generated Pseudo Code

Listing A.1 : An example of generated code for a small schedule

Time 10 : S ta r t i ng task : Receive
Time 10 : S ta r t i ng task : Ca l cu la te
Time 15 : Stopping task : Receive
Time 15 : Stopping task : Ca l cu la te
Time 15 : S ta r t i ng task : Charge
Time 20 : Stopping task : Charge
Time 30 : S ta r t i ng task : Track
Time 35 : Stopping task : Track

A.7 Uppaal Trace

The trace derived from Uppaal in [2]

1. At time 10 in orbit one the task receive is prompted to start.

2. The task activates the action slew

3. The action slew activates the component Gyroscope

4. Also, at time 10 the task calculate is prompted to start

5. Task calculate prompts action calculate

6. Action calculate prompts Processor two to start, leaving processor 1 open for
the Receive task.

7. At time 12 the gyroscope is released by task Receive

8. The Task receive then activates the components processor 1 and x-band.

9. At time 13 the action communicate is done, whereas the task Receive then
starts the action slew again, resulting in the release of component x-band and
processor 1, and then it acquires the gyroscope component.

10. At time 15 the action slew is done, releasing the component. Furthermore the
task calculate is done resulting in the release of processor 2.

11. At time 15 the task charge is prompted resulting in the lock of all other tasks.

12. At time 17 the Task Charge is preempted.

13. At time 30 task track is prompted to begin hereby acquiring the component
gyroscope
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14. At time 32, the action slew is done, releasing the gyroscope, and the L-band
component is then acquired for the tracking along with the acquiring of the
processor 1.

15. At time 33 the action track is done releasing components processor 1 and l-band.

16. The gyroscope is activated for the action slew.

17. At time 35 it is done slewing resulting in the release of component gyroscope.

18. One orbit passes and the clock is reset

A.8 Gantt charts

Figure A.2: The generated schedule for one orbit
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