S
7 —% .\! }" CAMDA

¢ N
"X . DO SN
J NN
\.4!////:‘.;:'.,;2

— AN N\ \’/

TN~ ¥
AN
fl‘/‘\ «f“ r

X<
/'\‘

VisuAAL

An Application for Visualizing Realistic Mesh Network
Protocol Behavior Through UPPAAL Simulations

SOFTWARE MASTER’S THESIS
GROUP DES103F17
KEVIN HAUGAARD JORGENSEN

NIELS BJORNBAK CHRISTOFFERSEN

RASMUS DAN PETERSEN AALBORG UNIVERSITY
TiM HJERMITSLEV GJ@DERUM STUDENT REPORT

© des103f17, Aalborg University, spring semester 2017.

Department of Computer Science
Selma Lagerlofs Vej 300

DK-9220 Aalborg @
http://www.cs.aau.dk

AALBORG UNIVERSITY
STUDENT REPORT

Title:

VisuAAL: An Application for Visualizing
Realistic Mesh Network Protocol Behavior
Through UPPAAL Simulations

Department:
Distributed and Embedded Systems

Project period:
Spring semester 2017

Project group:
des103f17

Participants:

Kevin Haugaard Jgrgensen
Niels Bjgrnbak Christoffersen
Rasmus Dan Petersen

Tim Hjermitslev Gjgderum

Supervisors:

Jifi Srba

Kim Guldstrand Larsen
Signed copies: 6
Pages: 111

Date of completion:
June 2™ 2017

Abstract:

It can be hard to know the exact behavior of
nodes in a self-configuring mesh network pro-
tocol, when different topologies and dynamics
comes into play. To support this we present the
application VisuAAL. VisuAAL uses UPPAAL as
a backend to run simulations of wireless pro-
tocol models, and helps developers configure,
visualize and understand the protocol beha-
vior in dynamic and randomly generated static
topologies. We also present the language Vi-
SUAAL Query (VQ), which allows developers
control over the coloring of nodes and edges in
the topology based on arithmetic and boolean
expressions using variables in the simulation
state.

We have used VisuAAL to simulate mesh net-
works with hundreds of nodes for a multitude
of different protocol specifications and scena-
rios and show these results. We have also ex-
plored techniques to improve the scalability of
protocols modeled in UPPAAL.

The companies Neocortec and LinkAiders are
working to develop self-configuring mesh net-
work devices that will improve disaster com-
munication. After the end of this project, these
companies are planning to use VisuAAL to ex-
plore their protocol behavior in a project aimed
at disaster relief in the Philippines.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the authors.

http://www.cs.aau.dk

Summary

In a world where IoT becomes more integrated in our every day life, it follows that there
will be increasing amounts of wireless devices that needs to be connected. For these wireless
devices, we need protocols that facilitates correct and efficient communication of data between
nodes. In this project we do not look at creating these protocol ourselves, instead we want to
help developers in the domain specific area of distributed networking protocols, to easily gain
knowledge and overview of their protocols through visualization.

We created an application that visualizes the behavior of distributed network protocol models.
Our application, named VisuAAL, uses UPPAAL as the engine to run simulations and a UPPAAL
model of the protocol that is to be observed. We set a number of requirements to the UPPAAL
model, that works as an interface. An example of a requirement is prefixes of variables, so that
we are able to recognize them, in order to configure and use them for output data.

VisuAAL lets users configure their model, generate dynamic topologies for the model and
visualize the simulations created by UPPAAL. It is essential to be able to configure the model,
since it allows the user to compare different versions of a protocol. This is useful since protocols
may dictate different behavior for nodes under different topologies and topology sizes. Through
VisuAAL, we can generate random topologies and inject them in the model.

In the real world, nodes move and thus the connectivity between nodes can change. We
support this behavior by being able to dynamically change topologies and other variables
during simulations. This we do by updating variables in the model at specific time steps. This
functionality we also use to load location and connectivity data from real devices, and use this
in the model when simulating the protocol model.

When we have a configured model, we run simulations with UPPAAL and use the output to
visualize the protocol model behavior. VisuAAL visualizes the topology with nodes and edges
from the simulations. On this topology different types of data can be shown, based on the
chosen output variables. The user can with the query language VisuAAL Query (VQ), color
nodes and edges based on output variables of the model. The VQ language, allows users to
define how data is presented for the nodes and edges and can for instance be used to visualize
abnormalities.

We did a number of case studies in the project, to see what and how we can visualize different
protocol models. One protocol we tried in our application was the LMAC protocol which is a
MAC protocol that utilizes frames. For the LMAC protocol model developed by Fehnker, Hoesel,
and Mader [12], we visualized the state of the nodes and showed how the number of frames
affect the protocol model’s behavior. AODVv2 is an ad hoc routing protocol. Hofner and Mclver
[23] developed a model of this protocol which we visualized. We focused on the queue of
messages that nodes have. If the queue over time becomes large, there is too much traffic for
the node and it is unable to keep up. We also did two case studies of two protocol models
that we made in [29] based on our understanding of Neocortec’s MAC [27] and Routing [26]
protocols.

In this project we also explored techniques to improve run time scalability of protocol models,
since this can be a obstacle for comprehensive protocols or large topologies.

Preface

This report is a product of a master’s thesis project by four Software students at Aalborg
University, under the Distributed and Embedded Systems department.

It is expected that the reader has knowledge at the same level as a student at the 3™ semester
of the master in Software Engineering at Aalborg University in order for the reader to benefit
the most from reading this report.

Special thanks to Thomas Steen Halkier and Jens Laage Olsen from Neocortec for collabora-
ting with us in this project. They introduced their protocols for us, and helped us understand
them.

Special thanks to Dmitry Ivanov, for being the first active user and giving feedback on
VisuAAL. Also a special thanks to Ansgar Fehnker, Peter Hofner and Rob van Glabbeek for
help in understanding the protocols we use and feedback on some of the results from our case
studies.

Reading Guide

All figures in the report have been created by the authors, unless otherwise specified. The
bibliography can be found at the end of this report on page 113. Appendices starts on page 119.
Bibliographical remarks can be found on page 111.

Appendix F presents an overview of the licensinc of our work, including licensing information
about the libraries we use. In Appendix ZIP the structure for the attached files can be found.

The format of a printed report is ill suited for displaying simulation animations which
make up most of our results. To illustrate the simulation results, we will present and discuss
snapshots of interesting simulations in the paper, and include a link to a video displaying the
simulation. In addition, the serialized simulation files will be available in Appendix ZIP, such
that the simulation can be loaded and run in VisuAAL. In addition, we will include videos of all
simulations, where QR codes can be scanned to access the video.

Contents

1 Introduction
1.1 ProblemDefinition. e
1.2 RelatedWork o o i e

2 Mesh Protocol Theory

2.1 Three Categories of Network Topologies.
2.2 Graph Model of a Network Topology
2.3 Protocol Parametrization

3 Timed Automata & UPPAAL Theory

3.1 UPPAALIntroduction
3.2 Statistical Model Checking
3.3 Requirements for UPPAALSMCModels.
3.4 SimulationQueries e e
3.5 ModelingaSimpleProtocol
4 Requirements to Models
4.1 ModelingTasks o oo it i e
4.2 Compatibility Requirements
4.3 Location and Channel Usage as OutputVariables
4.4 Requirements Appliedto Slotted ALOHA
5 VisuAAL - Implementation Details
5.1 Verifyta. . ..o e
5.2 ComponentsinVisSUAAL i e
5.3 UPPAALModel File Structure
5.4 ConfigurationVariables
5.5 DynamicVariables e
5.6 Creating Dynamic Topologies
5.7 OutputVariables e
5.8 ViSUAAL QUEIY . . ot it e e e e e e
5.9 AverageValuesforSimulations

6 Case Study - LMAC Protocol

6.1 ProtocolOVerview o i i i e e
6.2 Model Overview & Compatibility
6.3 Resultsfor LMAC Protocol e

7 Case Study - AODVv2 Protocol

7.1 ProtocolOVerview o v v it e e e e e e e
7.2 Model Overview & Compatibility
7.3 Resultsfor AODVW2 Protocol v o oo e

N

~N o U1 u»o

(e]

11
12
14
15

19
19
20
21
22

25
25
26
28
28
29
30
31
32
35

37
37
39
43

51
51
53
56

CONTENTS

8 Case Study - Neocortec MAC Protocol 61
8.1 ProtocolOverview 61
8.2 Results-MACProtocol 63
9 Case Study - Neocortec Routing Protocol 71
9.1 ProtocolOverview e 71
9.2 Results-Routing Protocol 72
10 Current Applications of VisuAAL 83
10.1 LinkAiders o e 83
10.2 Energy Consumption 87
11 Model Scalability Experiments 93
12 Evaluation 105
12.1 Conclusiono e 105
12.2 FutureWork . . . oo oo e 108
13 Bibliographical Remarks 111
Bibliography 113
Appendices 119
A Updated UPPAAL Declaration CFG 119
B AODVv2 Model Connectivity Function Change 122
C ANTLR4VQ Syntax 123
D GPSLogExample 124
E Use & Installation Guide for VisuAAL 125
E.1 RunningVisUAAL e 125
E.2 Compilation and Further Development 126
F Licensing 128
ZIP Contents of Attached ZIP 129

Vi

1 Introduction

Computer systems have revolutionized many aspects of the world. From their use in large scale
server parks to mobile phones to small embedded devices, they are a big part of everyday lives.
There seems to be a trend where more and more things can be accessed through the internet
from social profiles to toasters or other smart devices. This latter part is an example of what
we call the Internet of Things (IoT).

The emergence of IoT technology allows computer systems to interact with humans in a
number of new intriguing ways. IoT devices are often dependent on wireless communication,
because it offers them a large degree of freedom in how they fit in with their environment,
but there are also a number of challenges associated with this. As developers we want our
software to function in a predictable and correct way, and as users we want the software we use
to perform as we expect it to. This is also true for the communication protocols that facilitate
wireless communication. Usually, some sort of centralized communication scheme is used,
where a central controller facilitates the communication, but it is also possible to have networks
without a controller, where the nodes of the network are self-configuring and self-maintaining,
known as mesh networks. We deal with mesh networks in this project and will expand on what
defines such a network later in this report.

As mentioned, we depend on wireless communication, IoT technology and mesh networks in
a myriad of ways, and thus it is important that the protocols and applications that use these are
correct and perform according to the specifications set forth for them. Testing large networks
of wireless devices running in parallel is a complicated task, partly because large networks
inherently contain many individual devices and occupy a large physical space, and partly
because collecting data from these many devices is difficult without affecting the connectivity
between devices or altering the performance in other ways. One alternative to testing in this
context, is the use of statistical model checking (SMC) [31] with a modeled network to estimate
the probability of system properties. Formal verification could be used for the same purpose,
but due to state space explosion [32] of such models this does not scale to large systems. SMC
and simulation can be used to gather performance metrics for mesh network protocols and
hereby aid in the further development and improvements of the protocols.

In this project we present VisuAAL, an application that helps visualizing network behavior
based on data extracted from the model checking tool UPPAAL [30]. An example of what our
application can do is shown in Figure 1.1, where the results from 50 simulations are merged and
shown together. Edges between nodes are colored based on how often they were used: Lighter
edges are used less than darker edges. Completely red edges are used by all 50 simulations.

The purpose of VisuAAL is to help developers in the domain of mesh network protocols to
understand how the performance of their protocol is affected by different parameterizations and
alterations. With an existing UPPAAL model of a protocol, the user should be able to retrieve
useful data of the protocol, and be able to compare the behavior of different configurations
and protocols. VisuAAL will allow the user to configure, setup, run simulations and extract the
results of any mesh network protocol model, as long as it fulfills certain requirements.

Different uses of a mesh network protocol might have different areas of interest, thus it is
important that users can configure what to visualize and how to show the data. An example
where this is important is energy consumption; choosing a good configuration is a trade off

INTRODUCTION: Problem Definition

L

» =
3

Figure 1.1: Example result from VisuAAL. Edges between nodes are colored based on
their usage: The more red an edge appears, the more often it is used.

between energy consumption and data throughput. Thus, a developer should be able to
configure the system such that both of these parameters are available, and the correct decision
can be made. By adding another layer of information on top of what is given from UPPAAL, it
should be possible for the users to easily visualize the behavior of their protocol. In addition,
topologies and environments in the real world change over time. These things we support in
VisuAAL.

1.1 Problem Definition

In [29], we experienced how difficult it can be to relate the results retrieved from UPPAAL
directly to performance data, especially in terms of comparing the results of tests and experi-
ments with real devices with this data. This is particularly problematic for users in the domain
of mesh network protocols who are not UPPAAL experts. This is the main problem we aim to
solve in this project, where we will work with adding an additional visualization layer on top of
UPPAAL, resulting in the behavior being represented graphically, based on a selected topology.

From meetings with the company Neocortec [36], who work with mesh network protocols,
we know that there are multiple aspects that are important in an application like the one
we want to make, for it to provide them with value. Neocortec would like to be able to spot
undesired behavior and have enough data about the situation to be able to understand why
a given anomaly occurred. As a way of finding the undesired behavior they proposed that
it would be very interesting if we can generate random topologies and run simulations of
those. Optimally, anomalies should automatically be found and reported based on some specific
predicate. If a topology is found which produces anomalies, it should be possible to make many
runs on this topology with different configurations to analyze why and when the behavior
occurs. Thus, both running the same configuration on many topologies and many different
configurations on the same topology are interesting prospects.

Currently, Neocortec is able to visualize how a network behaves by running their protocol in
real time, but changing the topology to an arbitrary topology is difficult and time consuming.
We want to at least match this functionality, and to do so we will need to visualize data and
map it onto a visualization of a topology. If anomalies are found, it should be possible to extract
specific simulations and visualize them. Additionally it should be possible to visualize many
simulations simultaneously, assuming they have the same topology.

When Neocortec tests their protocol, they often use a network topology consisting of 64

INTRODUCTION: Problem Definition

nodes. Neocortec says that although possible, emulating networks with more nodes becomes
cumbersome and expensive in hardware, and thus doing large scale testing for hundreds or
thousands of nodes is infeasible. This is where simulation is an extremely viable alternative. In
[29], we tested the scalability of two UPPAAL models inspired by Neocortec’s mesh network
protocols, and concluded that they do not scale linearly with the number of nodes. Because
we want to be able to simulate wireless protocols with a high number of nodes in UPPAAL
models, we will also need to look into different modeling approaches which could improve
the scalability of UPPAAL models. While this is not directly related to VisuAAL, it is still an
important subject when we want to perform large scale experiments.

In [29], we show that it is possible to generate queries for UPPAAL models of mesh network
protocols, and when these queries are executed they result in sufficient data to visualize the
state changes of a mesh network protocol in real time. In this project we continue this work, and
to automate this visualization process through VisuAAL. Additionally, we found that running
models with many different configurations is cumbersome in UPPAAL, with one configurable
aspect being the topology. Neocortec has a desire for testing with many different topologies,
and therefore we will look into generating topologies. We will configure models with these
topologies, which can be used to obtain a number of simulations that can then be compared.

Another use-case that Neocortec mentioned is that they want to be able to test how a
configuration works for a given customer. The customer may have special requirements, or may
have some idea of the topology in their system. VisuAAL should then be able to visualize and
give the customer some idea of how the protocol is going to work in their concrete use-case.
This may include dynamic topologies with nodes changing their locations and the connectivity
being dynamic. Specifically, Neocortec will be recording GPS log data as preparation for a
project in the Philippines. This project is performed in collaboration with LinkAiders [33],
who are developing devices to help with disaster relief as a mesh network capable reporting
device. In this context, both Neocortec and LinkAiders are interested in visualizing how the
connectivity changes over time, as the nodes move around, and what this means for the protocol
performance.

There is an significant challenge in how to allow customization of the visualization while
keeping enough generality that different properties may be visualized. We need to accept that
there will be some loss of generalness compared to model checking in general, since we will
be working in the domain of mesh wireless network protocols where a central aspect of the
simulations are the interactions between the nodes in a topology. The topology is of special
interest, in that it is central to visualize how the nodes are connected.

In the following we summarize the challenges and ideas that we will look into in this project:

* Design an application domain specific tool for visualization of mesh network protocols

Parameterize model variables to examine the impact of different configurations

Visualizing UPPAAL results on topologies for one or multiple simulations

Generating realistic but random topologies

Simulating behavior with dynamic topologies

Finding anomalies based on many simulations

Loading topology information from external GPS logs

* Examine and improve scalability of wireless mesh network protocol models

INTRODUCTION: Related Work

1.2 Related Work

In this project we touch upon multiple areas of research. In this section we will discuss these
and go through some of the most important related work in each category.

We work with simulation of networking protocols via UPPAAL SMC. A number of protocols
have been modeled in UPPAAL [12, 13, 14, 23]. In [12, 13, 14, 23], UPPAAL models are
used to check safety properties, and the results of this are mostly represented as graphs, either
extracted directly from the graph-builder in UPPAAL or through some other graphing tool
applied to the same data. Using this approach to further examine the behavior of the protocols
over time is difficult, and mapping this data representation to a network topology is difficult.
Our work differs from this, in that we work with visualization directly in a topology centered
representation, to provide an overview that more closely represents the reality being modeled.

Van Hoesel and Havinga [52] work with simulation of three different MAC and Routing
protocols to examine the lifetime of communication networks on a large scale. Where the
other papers we have talked about have used UPPAAL to examine protocols, Van Hoesel and
Havinga [52] use OMNet++ [38] to implement the protocols and examine the behavior of
random topologies consisting of 46 nodes with various operational parameters, including the
message density. Alnuaimi, Shuaib, and Jawhar [2] present a Simulink [35] model of the Zigbee
protocol, modeling the physical and MAC layers from this protocol, and use these models to
simulate the performance of this protocol under various operational parameters. Our work
differs from both of these approaches, in that we use UPPAAL models as the backend for our
simulations. By using UPPAAL, we allow the user a formalism that can be used in both VisuAAL
and standard UPPAAL for further exploration.

Our work also deals with much larger network topologies than what we have seen previously.
When the amount of data becomes very large, visualization becomes a big issue, as it becomes
difficult to get an overview of the network. Applications such as DISCO [15] and Gephi [16]
provide elegant visualization of large amounts of data, and are thus also related to our work
in this regard, but not specialized for network protocol experimentation, and are purely for
visualizing data.

2 Mesh Protocol Theory

As mentioned in Chapter 1, we will be working exclusively with mesh networks in this project.
In this chapter we explore what defines a mesh network protocol, as well as the related concepts
of graph representation, dynamic networks and parametrization.

Chapter Organization This chapter is organized as follows:

e In Section 2.1 we introduce the notion of mesh networks,
* in Section 2.2 we present a way to represent wireless networks as graphs,

* in Section 2.3 we define the terms of parametrization and observation in relation to mesh
network protocols.

2.1 Three Categories of Network Topologies

There are different types of networks, which exhibit different characteristics in regards to
how the networks operate and which opportunities they provide. Baran [3] proposes three
categories which can describe these different topologies.

Centralized is a network where all nodes are connected to a central node which will then
handle or forward all communication.

Decentralized network contains nodes in a hierarchic structure where the work normally done
by the central node in a centralized network is shared amongst several nodes.

Distributed in this form of network all nodes are connected with all other nodes in its range,
thus possibly providing more than one path to each node.

The categories are exemplified in Figure 2.1, where the term Station is equal to what we call
Node, and Links represent the edges between nodes. We will use these terms interchangeably
throughout this section.

The three categories of topologies differ in how much the individual nodes know about the
rest of the network. In a Centralized and Decentralized network, it can be easier to schedule
when to send data in order to reduce the risk of collisions because some nodes have a lot of
knowledge about the network, which can be exploited to have master nodes that dictate the
transmission schedules of their connected nodes, typically through some hierarchical structure
based on the connectivity of nodes. This is not the case for a Distributed network, where each
node only has knowledge of its first hand neighbors. Because nodes in distributed networks
dictate their own transmission schedule in collaboration with their first hand neighbors they
are fault tolerant if a node suddenly stops working, e.g. runs out of power. In a distributed
network another route through other neighbors can typically be found, whereas the same is
not always possible with the centralized or decentralized approach since a single faulty node
or link can disconnect the network.

In this report we will deal exclusively with distributed networks, and use the term “Mesh
network” interchangeably with this.

MESH PROTOCOL THEORY: Graph Model of a Network Topology

Centralized Decentralized Distributed

fil I| r-l

/ f @ —Link

- Station

Figure 2.1: Visualization of three different approaches to communication protocols.
Original by Baran [3].

2.2 Graph Model of a Network Topology

In order to model the sensor networks we want to work with, we need to be able to make a
number of abstractions over the complex real life scenarios we wish to model. The relationship
between nodes in a wireless network can be naturally modelled as a graph (V, E), where V
is the set of vertices and E C V x V is the set of edges in the graph. In this case the vertices
each represent a node, and two vertices v; and v, are connected by an edge if the transmitter
of v; can send to the receiver of v,. The reader should note that only nodes that contain a
transmitter can have outgoing edges, and only nodes that contain a receiver can have incoming
edges.

The edges in such a graph are assigned weights which correspond to some relevant aspect of
the communication in the network, e.g. the transmission speed or the reliability of a specific
communication link. Which aspect is used for the weights on edges depends on which aspect
of the network performance is being modeled.

The topology of a network is the specific configuration of nodes and wireless links that are
available in the network. The network topology illustrated in Figure 2.2a, shows how a wireless
network of 4 nodes and the ranges of their transmitters can be represented by the graph shown
in Figure 2.2b.

2.2.1 Dynamic Networks

Until now we have only discussed networks where the nodes and edges have been static. In
reality, however, many factors affect the network graph, and many of these can change. Thus
we need to consider what it means when a network is dynamic.

When we have wireless communication, the nodes can often move around in physical space.
In regards to the graph representation, the physical location does not matter, but when the node
moves, new nodes may come into range or remove themselves from range of a node, which
affects the connectivity as described in Section 2.2. In these cases, new edges may appear, or

MESH PROTOCOL THEORY: Protocol Parametrization

(a) Simple network with 4 nodes and (b) Graph corresponding to network
their ranges

Figure 2.2: Example network and graph describing it

be removed, and the weight of an edge may also change. In addition, in a general network
graph nodes may be introduced or removed entirely, representing how new nodes may join or
leave the network over time.

In general, modeling dynamic networks as graphs is straightforward, and many mesh network
protocols are specifically designed for use in dynamic environments.

2.3 Protocol Parametrization

When we deploy mesh networking protocols, we want the protocol to have the best possible
performance. Performance in this context can be many things, for instance power consumption,
message throughput, reliability and other factors. Which factors are used depends on the
goal of the protocol. The performance of mesh networking protocols is often dependent on
the environment they are deployed in and the network they are meant to operate under. For
instance, a protocol that provides excellent performance in a low node density network will
not necessarily perform equally good in a high node density network, where the chances of
collisions may be much higher. In order to allow developers to tune the protocol to the context,
most protocols have a number of configuration parameters, which change the operation of the
protocol, and thus the performance obtained. These parameters can for instance be the number
of time slots in the Slotted ALOHA protocol or the number of re-transmissions to perform before
giving up on a given edge.

Selecting the correct parameters for a given use case is often highly dependent on developer
experience, since there are an enormous number of environmental factors that need to be taken
into account. Predicting the expected performance is thus difficult, but at the same time may
have a huge impact on whether a network performs in a fashion that is acceptable to the user.

When we enter the realm of modeling mesh networking protocols, the configuration parame-
ters are also important, because the goal of simulation is often to find how the configuration
parameters affects the performance of the protocol, and to predict the performance that can be
expected. In modeling, however, the developer is also responsible for modeling the environment,
and thus there are also parameters to set that relate to the environment in which the modeled
protocol will run. This can include and affect many things, depending on the abstraction level.
A few examples are: The topology, physical location of the nodes and changing connectivity

MESH PROTOCOL THEORY: Protocol Parametrization

caused by traffic.

In summary, parametrization is important in the context of mesh network protocols, and
must be handled in VisuAAL.

In addition, in order to understand how a mesh network protocol behaves, there are certain
measurable aspects that describe the observable behavior. When we change the configuration
parameters of the protocol, we are looking at the observable behavior to understand how
the change affected the protocol performance, and when we examine protocols in different
environments, it is the observable behavior that defines the performance.

When we examine networks, we need to take the goal into account, because what is important
is defined by the goal. Thus selecting observable phenomenon is highly dependent on the
protocol in question, as well as the goal of the particular network. Examples of observable
phenomena are: The slot chosen in a time division scheme or the amount of time a node is
idle.

3 Timed Automata & UPPAAL Theory

In this chapter we explore the theoretical background for the modeling related work we will
perform in this project. Specifically we explore the background for Timed Automata, UPPAAL
and how these concepts are applied in the field of modeling communication protocols.

Chapter Organization This chapter is organized as follows:
* In Section 3.1 we provide the definitions for UPPAAL that we will need in this project,
* in Section 3.2 we present Statistical Model Checking (SMC) in UPPAAL,
* in Section 3.3 we summarize the requirements in order to use SMC features,
* in Section 3.4 we describe how we can use UPPAAL to simulate protocols,

* in Section 3.5 we present a simple model of the Slotted ALOHA protocol.

3.1 UPPAAL Introduction

UPPAAL [9] is a tool used to create, reason about and verify models using the formalism of
Timed Automata (TA). A common example is to verify whether a model is deadlock free. In
this section we take a look at a simple UPPAAL model and afterwards how to verify properties
for the model.

To understand the UPPAAL models that will be used later in this project, we need a basic
understanding of the parts that make up a model. A UPPAAL model is described as a network
of TA, where each TA is described as an instantiation of a Template, and a network of TA is thus
the parallel composition of these instantiations. The precise definition of a TA is out of scope
for this report, but has been described in detail in other papers [5, 9, 30].

In this report we will not go into detail about the theoretical details of UPPAAL, but will
rather take a more pragmatic view of the application of UPPAAL as a modeling tool. In order
to do so, we need to introduce the notation used, which we will do through a simple model
with 2 templates. Figure 3.1a presents one of these. It contains 2 locations with the names
initial and final. The initial location in a template is identified by the double circle. The
two locations are connected by an edge, which can be taken when synchronization is initiated
on the send channel. send? indicates that synchronization must be initiated by another process,
and that the edge can only be taken as the result of synchronization on the given channel.
send! indicates that synchronization is initiated when this edge is taken.

The second template from the model is shown in Figure 3.1b. This template has only a single
location, sender, with a looping edge. Note that this edge has a guard, which ensures that
the edge is only enabled when the time clock is greater than 3. Additionally the location has
an invariant, meaning that we can only be in the location when the invariant holds. In this
example the invariant ensures that time cannot become larger or equal to 5. Because of the
invariant and guard, the synchronization with the send channel will happen between 3 and 5
time units. When the edge is taken, the clock time is reset to 0, and the loop starts over.

TIMED AUTOMATA & UPPAAL THEORY: UPPAAL Introduction

~
time > 3
send!
time =0
initial final
end? sender
© O time < 5
(a) Template 1. Simple template with (b) Template 2. Template that initiates
2 locations and 1 edge. synchronization.

Figure 3.1: The pink label is a location invariant, dark red labels are location names, the
light blue label is a synchronization, the dark blue label is an update, and the green
label is a guard.

If we instantiate a Process 1 from Template 1 and a Process 2 from Template 2, the processes
will do a channel synchronization between 3 and 5 time units. Process 1 will then move to
the final location. Note that because we use broadcast semantics, Process 2 will be able
to continue to take the looping edge at a point in time between 3 and 5 time units, even
though there are no processes that can receive the synchronization. Additionally, the broadcast
semantics mean that if two processes were instantiated from Template 1, they would both be
able to progress to their final locations at the same time as result of the same synchronization.

Each template has its own local declarations, which can contain several types of variables
and functions that can be used in the model. Clocks, such as the clock time used in Template 1
and 2 are examples of such variables, and represent continuous real time information about
the delay transitions that happen.

The state of a model describes the valuations of the variables (and clocks) and the active
location of each process at a point in time during a model run. The state space of a model is the
set of all such states. The semantics of a UPPAAL model is given as a Timed Labeled Transition
System (TLTS), where the states are given as (£, v), where £ is a location, and v is a valuation
of the variables and clocks of the system. From a given state in this TLTS there are two types of
transitions, delays transitions and discrete transitions. A delay transition d increases all the
clocks in the system by d time units. A discrete transition has an action a that represents either
an input synchronization ?, output synchronization ! or internal transition and leads to another
location, while possibly changing variables, depending on the updates attached to the edge,
where the action was attached. Following the two transitions types defined:

)5S ,v)

€, v) ', v)

UPPAAL uses continuous time, and stores it in a finite number of zones [4]. A zone describes
a range of clock valuations, where the set of possible actions in the system is the same. For a
process instantiated from Template 1 in Figure 3.1b there are two zones, one where time < 3
and one where 3 < time < 5.

10

TIMED AUTOMATA & UPPAAL THEORY: Statistical Model Checking

3.2 Statistical Model Checking

In newer versions of UPPAAL, a statistical model checker is included, called UPPAAL SMC [6].
This extension makes it possible for us to do statistical queries based on simulations and use
these to estimate the probability that a query is fulfilled within a certain timebound, based on a
number of simulations run on the system. Applied to network protocols, this could for instance
be used to estimate the probability of a collision happening within 100 time units. UPPAAL
SMC estimates this probability by generating stochastic runs through the system. The number
of these runs that fulfill a given predicate versus the number of runs that do not, can be used
to estimate the probability that the predicate is true with a certain confidence.

The concept of generation can be briefly exemplified through the model from Figure 3.1a and
Figure 3.1b, where the two templates will select a possible delay. Template 1 has no invariant
in the initial location, meaning that it will select a delay from a exponential distribution such
that it will favor shorter delays. Template 2 has an invariant, and thus is unable to delay beyond
a certain bound. It will thus select from a uniform distribution up to the bound imposed by
the invariant, unless other is specified. Whichever template has chosen the shortest delay will
decide, that all processes will do this delay, whereupon an available action will be performed.
The exact method by which runs are generated, as well as the semantics have been explained
in depth by David et al. [7].

Statistical model checking is good at quickly estimating the probability of some predicate
being true without exploring the entire state space. This allows queries to run on bigger models
compared to exhaustive verification where the entire state space is explored, because only a
single trace through the system is considered at a time in SMC. This alleviates many of the
problems with state space explosion commonly experienced with traditional model checking.

UPPAAL SMC also allows probabilistic weights on edges, which indicate a probabilistic
choice between a number of edges. Figure 3.2 shows a small UPPAAL SMC example which
has weighted edges. The probability of selecting the edge to location A is 20% whereas the
probability of going to location B is 80%. These probabilities are very useful when we are
modeling wireless network protocols, because there is always a probability for a message being
lost because of the nature of wireless communication.

80, - QB
0

Figure 3.2: UPPAAL SMC example using probability weights on edges

Probabilistic queries use a new syntax, which is described in depth by David et al. [7]. A
simple example is provided below, where ¢ is a predicate and N is an upper bound of how
many time units are explored:

Pr[<=N] ¢ What is the probability that ¢ is true within N time units?

A concrete example of queries could be the following, using the model from Figure 3.2. Note
that the bound is set to 1 time unit. Because the initial location is committed, the edge must be
taken without any delay, and thus we can guarantee that the transition has occurred after 1
time unit. We obtained the following results from running the queries:

11

TIMED AUTOMATA & UPPAAL THEORY: Requirements for UPPAAL SMC Models

Pr [<=1] (<> Process.A) Result: [0.192, 0.212] with 95% confidence

Pr [<=1] (<> Process.B) Result: [0.789, 0.809] with 95% confidence

[0.789, 0.809] indicates that the (unknown) probability is estimated to be between 78.9%
and 80.9% with 95% confidence. Note that UPPAAL estimates the probability based on a
number of runs, and therefore cannot provide exact probabilities. For both queries we use a
confidence of 95%, which is the default setting in UPPAAL. As expected, we can see that there
is around 80% probability of ending in location B and around 20% for location A. It is possible
to alter a number of parameters in UPPAAL, and thus affect the wanted confidence and other
variables [9].

In conclusion, using UPPAAL SMC is beneficial since it can provide an estimate of the
probability of a predicate, making it more practical for use with large models.

3.3 Requirements for UPPAAL SMC Models

UPPAAL SMC imposes three main requirements to models compared to a regular UPPAAL model
which are relevant for this project:

* SMC models must exhibit Input Determinism
* SMC models must exhibit Independent Progress

* Priority between channels or processes is disallowed in UPPAAL SMC.

3.3.1 Input Determinism

A model exhibits input determinism if it describes a deterministic Timed Automaton (TA). David
et al. [7] discusses Priced Timed Automata (PTA), which are TA where it is possible to have
different clock rates in different locations. Thus, a regular TA is a PTA, where the rates are the
same in all locations. We simplify and formulate David et al. [7]’s definition of deterministic
PTA as: For all locations ¢ and input synchronizations i in an input deterministic model, the
location £’ obtained after receiving any input synchronization must be the same for all edges
originating in £, that is:

if (€, v) > (€1, v1) and (€, v) > (£, v,), then £, = €, and v; = v,

To exemplify this, Figure 3.3a illustrates part of a model that violates input determinism
in two different ways. Suppose there is a template that will output on the syncro channel at
some point in time. When this happens, the model can take one of two different edges. This
violates input determinism because the two edges lead to two different resulting locations,
either the left or the right. In addition, the two edges result in a different valuation, because
the variable test will have either the value O or 1. In this case, there is a trivial fix, which is
shown in Figure 3.3b, where an extra committed location is inserted. The synchronization will
always result in moving to this new location, and the updates are retained in the original edges.
Because the model is constructed such that there is no interleaving with other processes to take
into account, this fix works. One must be careful to ensure that this is fulfilled in general.

12

TIMED AUTOMATA & UPPAAL THEORY: Requirements for UPPAAL SMC Models

test=0 test=1
O © O
syncro? syncro? o
test=0 test =1 syncro:
O O O
&7
(a) Template from model that violates (b) Template from model that fulfills
input determinism input determinism

Figure 3.3: Two version of template from model before and after input determinism fix.
Note that there is another template in the full model emitting the synchro synchroni-
zation.

3.3.2 Independent Progress

A model exhibits independent progress if it is always possible for a process to delay or do an
action without being dependent on other processes. Note that the action can be any output
action or the internal transition. David et al. [8] define a model with independent progress
as the following: “an implementation cannot ever get stuck in a state where it is up to the
environment to induce progress. So in every state there is either an output transition (which is
controlled by the implementation) or an ability to delay until an output is possible. Otherwise a
state can delay indefinitely. An implementation cannot wait for an input from the environment
without letting time pass.”. This has the implication that if a location has an invariant, we must
ensure that there always exists a way for the template itself to leave the location before this
invariant is broken.

Formally, we can say that for any state (£, vo) of the model and any delay d € R, there
must exist a sequence of alternating delays and output actions or internal transitions (here
referred to as a; ...a,_;) of the form

d d . d, Z
(€0, v0) = (€0, v1) = (€1,v2) = ... == (y, Vn2) = (nmy, Vo), such that » di=d
i=1

To exemplify this, we show two templates in Figure 3.4, one which violates independent
progress and one which does not, both with same behavior. Again, assume that there is a
template emitting on the syncro channel, and that the shown template synchronizes exactly at
two model time units. For the first of the two models, UPPAAL will refuse to execute queries
against it, since it sees no way to ensure that the syncro synchronization occurs within the 2
model time units allotted for it.

We know of no general way of transforming a model to ensure independent progress, but
in many cases it is solved by not mixing clocks in invariants and an external template that
initiates a synchronization. Often the invariant can be removed, since the synchronization
of initiating template forces the receiver to progress. If no synchronization comes, and no
invariant is present, the receiver can simply delay indefinitely.

13

TIMED AUTOMATA & UPPAAL THEORY: Simulation Queries

t<=2
: syncro? : @ syncro? O
(a) Template from model that violates (b) Template from model that does not
independent progress violate independent progress

Figure 3.4: Atemplate (a) that violates independent progress and a template (b) with
same behavior as (a) but does not violate independent progress, assuming another
template initiates synchronization at time 2

3.3.3 Priority Relationships between Processes and Channels

In classic UPPAAL it is possible to set priorities between channels and between processes [50].
When applied to channels this means that if two edges are enabled with channels a and b being
on each edge respectively, the channel with the highest priority will be fired. In the same way,
processes may be prioritized, such that a higher priority process will progress before lower
priority ones. This is disallowed in UPPAAL SMC.

3.4 Simulation Queries

The inclusion of statistical model checking in UPPAAL allows for simulation queries which we
will use extensively in VisuAAL.

In UPPAAL a simulation is a single run of the model. The result of a simulation is a sequence
of data points which represents the values over time of chosen variables which are included in
the simulation query. In UPPAAL the result of simulations are visualized in a graph.

To illustrate this, we will use the model template from Figure 3.5 and present the data
resulting from a simulation query of this template.

time == time ==
data--, data++,
time =0 time <= 2 time =0

Figure 3.5: Template that manipulates the variable data every 2 model time units

The template in Figure 3.5 is a simple template with a single integer variable data that is
initialized to 10. Every 2 model time unit, the template either increases or decreases data. We
can then run the following simulation query on the template:

simulate 1 [<=10] { data }

14

TIMED AUTOMATA & UPPAAL THEORY: Modeling a Simple Protocol

If we deconstruct this query, there are three main parts:
* simulate 1 means that we run a single simulation of the model
* [<=10] indicates that the simulation is timebound to 10 model time units
* { data } is the list of variables to watch during the simulation

Since this is a single simulation of the model, there can be many different outcomes of
the simulation, one of the outcomes can be seen in Table 3.1 and graphically visualized in
Figure 3.6.

11.0
10.7]
10.4
10.1
9.8
9.5
9.2
8.9
8.6
8.3

8.0
0 1.7 3.4 5.1 6.8 8.5 10.2 11.9
time

E data

value

Figure 3.6: Visualized result for simulation query, that is timebound to 10 model time
units

Time | O 2 2 41 4 6 6 8 8 | 10 | 10 | 12
Value | 10 | 10 | 9 9 8 8 9 9 | 10|10 | 11 | 11

Table 3.1: Raw data for simulation query, that is bound to 10 model time units

3.5 Modeling a Simple Protocol

In order to more easily demonstrate how the theory presented in Chapter 2 and Chapter 3
can be used to create a model for a communication protocol, we will now present a simple
implementation of the Slotted ALOHA protocol [45]. Slotted ALOHA is a time division based
protocol, which facilitates transmission and reception of messages in a wireless network. A
single transmission/reception round in this protocol for S slots is described in pseudo code
form in Listing 3.1.

15

TIMED AUTOMATA & UPPAAL THEORY: Modeling a Simple Protocol

selected « randomly select slot €{1,2,...,S}
for each slot current €{1,2,...,S}:
if selected = current
Transmit
else
Receive

Listing 3.1: Simple pseudo code for Slotted ALOHA

Recall that only one node may transmit at the same time, otherwise collisions will occur.
Further notice that in this protocol, the risk of collision is directly linked to the number of slots
and neighbors for each node. We have created a simple model which represents this protocol
in UPPAAL. This model has two templates, which each have an instantiation for every node.
The templates both have a parameter id, and can be seen in Figure 3.7 and Figure 3.8.

timer <=2

(M send!
, ©
timer == timer =
5 prepare nodes‘
prepare_nodes timer = sender_id = id

current_slot = slot
&& current_slot < NR_SLOTS current_slot++,

listening[id] = true } L
\/ listening[id] = false
© O ©

&/
current_slot == slot
&& current_slot < NR_SLOTS

slot=s

current_slot =0
current_slot >= NR_SLOTS

Figure 3.7: Template for Slotted ALOHA sender

The transmission template seen in Figure 3.7 starts by selecting a slot from the committed
initial location, and then moves to the top-most location through either the edge annotated
with 5 or 2, depending on whether the node has to receive or transmit, respectively. When the
time of the slot is over, the sender templates loops back to prepare for the next slot. Note that
we use a modeling trick to force all nodes to prepare for the next slot by synchronizing on the
prepare_nodes channel. If we did not do this, some nodes may still not have left the previous
location, and is then not ready to synchronize on the send channel as they should. When all
slots have passed, all nodes loop back to their initial location and start over.

The receiver template seen in Figure 3.8 is simpler. It start in the bottom-right location, and
when a node is to receive a transmission, it moves to the other location. Here, any additional
messages in this slot are received, and if more than one neighbor sends in the slot, the collision
is recorded.

This model, although simple, provides an overview of the number of messages being sent
and lost due to collisions in a network. As a sample of the data that can be extracted, consider

16

TIMED AUTOMATA & UPPAAL THEORY: Modeling a Simple Protocol

connected(sender_id)
send? send?
local_received_count++ connected(sender_id)

&& listening(id] == true
[l local_received_count++

prepare_nodes?
receive_or_collision()

Figure 3.8: Template for Slotted ALOHA receiver

the topology shown in Figure 3.9. This topology can be represented by the incidence matrix
where each node is connected to the four closest nodes, such that node 7 is connected to nodes
0,1, 5 and 6.

To simulate, and thus sample the successful transmission ratio for node 0 in this topology
and the protocol configured to 8 slots, we can use the following query in UPPAAL:

simulate 1 [<= 1000] {received_count[0], collision_count [0]}

When we ran this query, we got the results shown in Figure 3.10, which shows how the
number of slots resulting in successful reception and in collisions accumulate over time for
node 0. Because of the way the Slotted ALOHA protocol works, there will almost always be
some amount of loss, when neighbors choose the same slot. By looking at this data, one could
imagine trying to increase the number of slots available in the model, and thus experiment
to find an acceptably low amount of lost messages. Recall, however, that this only gives data
for a single simulation, and that one must be careful to not compare behavior from a single
simulation of each configuration. We will not be experimenting further with the Slotted ALOHA
protocol in this chapter.

This example shows how a model for a protocol can be constructed, and how UPPAAL can
be used to extract useful information about the behavior of the protocol. This simple model is
capable of representing a topology, and represents our understanding of the Slotted ALOHA
protocol. We will return to the Slotted ALOHA protocol later in this report.

17

TIMED AUTOMATA & UPPAAL THEORY: Modeling a Simple Protocol

’s) 3

Figure 3.9: Topology for Slotted ALOHA example. Note that all edges are bidirectional.

140
120
100

80
60 E= received_count[0]
] collision_count[0]

value

40
0

0 250 500 750 1000
time

Figure 3.10: Graph for messages received and collisions recorded in Slotted ALOHA
protocol model. This graph is extracted from UPPAAL directly.

18

4 Requirements to Models

In this chapter we will present the requirements for a model to be compatible with VisuAAL
and a few tricks to change the model so that channel and location usage may be visualized in
VisuAAL. In addition, we continue the Slotted ALOHA example from Section 3.5.

Chapter Organization This chapter is organized as follows:

* In Section 4.1 we describe central concepts to wireless communication protocols which
the user needs to encode when modeling,

* in Section 4.2 we describe the general requirements for compatibility between a UPPAAL
model and VisuAAL,

* in Section 4.3 we explain how channel and location usage can be enabled for visualization
in VisuAAL,

* in Section 4.4 we apply the changes needed to make the Slotted ALOHA protocol model
compatible with VisuAAL.

4.1 Modeling Tasks

In the realm of wireless communication protocols there are a number of concepts that are
central. These concepts will have to be considered when modeling wireless communication
protocols, and thus they are of interest to us as we want to visualize the behavior of such
protocols.

In modeling wireless communication protocols there is a distinction between modeling the
protocol based on some specification and modeling the environment in which the protocol
operates. This distinction also affects the modeling tasks that must be completed in order to end
with a model that can provide the answers wanted, and in our case can support visualization.
Therefore we will discuss these tasks individually.

In modeling the environment for a wireless communication protocol there are many environ-
mental factors that can be applied, but there are two tasks that are central and necessary for
visualization of the protocol; the topology and the number of nodes for the network that the
protocol operates in. The topology represents the directed graph describing which nodes are
connected to each other, the number of nodes naturally describes the number of nodes in this
graph. In this graph, an edge between nodes a and b exists if a is able to receive messages
from b. This graph is typically directed, because usually the range from a node is decided by
the transmitter in the node. Because each node has their own transmitter, the ranges of nodes
might not be identical, and since the connectivity depends on the range of nodes, the topology
graph might not be directed.

The protocols themselves have two main classes of variables that are of relevance for vi-
sualization, configuration variables and output variables. Configuration variables set up the
parameters for protocols, and output variables encode the aspects of the protocol that the user

19

REQUIREMENTS TO MODELS: Compatibility Requirements

wants to investigate. Output variables are used in queries for UPPAAL to execute simulations
that can be used to visualize the behavior of protocols.

4.2 Compatibility Requirements

Ideally VisuAAL should support an arbitrary UPPAAL model of a distributed network protocol.
In practice however we need a link between the model itself and VisuAAL. This link we define
as a set of requirements for models that VisuAAL supports. By assuming that the models adhere
to these requirements, we are more easily able to recognize variable identifiers, which we need
in order to configure the model and to generate and run queries for variables.

In this section we list the requirements to model, which models must fulfill to be compatible
with VisuAAL.

SMC model As we are using UPPAAL SMC, the model must be compatible with this.

Configuration Variables Variables that should be configurable from VisuAAL should be pre-
fixed with CONFIG . All configuration variables must be instantiated in a single line in
their declarations.

Number of Nodes There must be a variable called CONFIG NR NODES, which describes the
number of nodes in the network. This must be a constant variable of integer type. This
variable is used for various things such as initializing the correct number of node processes
and array sizes.

Topology We need a definition of connectivity between nodes specified as a 2-dimensional
int or bool array. The array must be instantiated in a single statement, and it must be
named CONFIG connected[CONFIG_NR NODES][CONFIG_NR NODES]. All values in the
array must be integers, even if the type of the elements is bool. It must be placed in
global scope, and not in a function. It must be a non-constant array.

Output Variables Variables used to output data should be prefixed with OUTPUT , so that
we can use them in queries. If the output variable is an array, it should be a 1- or 2-
dimensional array of size CONFIG_NR_NODES in each dimension. It is only possible to use
non-constant variables of the built-in types: bool, int, double and clock.

Template Parameter If there are parameterized templates in the model which are not instan-
tiated in the system definition, the parameter must be a bounded type which scales with
the number of nodes, so that the number of processes are dependent on the number of
nodes, such as int[1,CONFIG_NR NODES].

Time Conversion Constant It is possible to specify how model time units are converted to
milliseconds. If the variable is not declared, we will assume that 1 mtu = 1 ms. This
can however be overwritten using the CONFIG MODEL TIME UNIT integer constant. As
an example, assigning this variable to 20, indicates that 1 mtu = 20 ms.

Since we can alter the topology and thus also the number of nodes through VisuAAL, the

model needs to scale with the number of nodes. This makes variable instantiation difficult
when the variables are arrays of a size that scales with the number of nodes. For example,

20

REQUIREMENTS TO MODELS: Location and Channel Usage as Output Variables

instantiations of arrays of size CONFIG_NR NODES may require the instantiation to be changed
as well, because the initialization is specific to a number of nodes. An easy solution to this, is
to use a function to instantiate such arrays initially in templates. A special exception to this is
the topology, where VisuAAL will handle the configuration when a new topology is needed.

In order to compare different models and configurations, we want to include configuration
management. For any interesting mesh protocol model there will be configuration parameters
that affect how the model behaves, and changing these parameters can help developers under-
stand how different settings and environments affect the performance, which is one of the key
goals of modeling the network protocol.

By only including prefixed variables in VisuAAL, we let the model creator choose which
variables that are configurable and create variables for outputting data as well. This means
that the user of VisuAAL only needs to know about those chosen variables.

A configuration variable must be instantiated in a single statement. We have chosen this
limitation so that we can immediately parse the initial value.

Assuming that these requirements are fulfilled for a model, VisuAAL will be able to visualize
the behavior for it.

4.3 Location and Channel Usage as Output Variables

It is not immediately possible in VisuAAL to visualize the locations of templates as we do not
include this in a simulation output. If it is desired to visualize when the current state includes
a specific location, it is possible to have a boolean variable for the location. For all incoming
edges to the location, the boolean variable should be changed to true and all outgoing edges
from this location should change the variable to false. If the variable is located in a template
with an instantiation for each node, VisuAAL can visualize the variable for each node. An
example of how it can be done, can be seen in Figure 4.1.

OUTPUT _active = 1 QUTPUT active =0
active

OUTPUT _active = 1 OUTPUT _active = 0

Figure 4.1: Example of how a location can be modeled as an output variable

In regards to visualizing channels, we can follow a similar approach. An example of how it
can be done can be seen in Figure 4.2, where the topmost locations are from one template, and
the bottommost locations are from another. We assume the model instantiates a process for
each node with the parameter id, which then communicates over the channel broadcast. If
we want to simply visualize whether a channel has been used, we create a two dimensional
array of size CONFIG_NR NODES in both dimensions, since it will be possible for each node to
transmit to each other node. We call this array OUTPUT broadcast[]1[].

The template that initiates synchronization with broadcast! should somehow transfer its
own id to some global variable, in our case we call this sender_id. When the receiving nodes
perform their update, they will receive the updated sender id, and then mark the proper

21

REQUIREMENTS TO MODELS: Requirements Applied to Slotted ALOHA

index in OUTPUT broadcast. This will log whether the broadcast channel has ever been used
between two nodes. If one is interested in resetting the array, this can be done with a committed
location from the receiver.

sender_id =id broadcast!
" =N
O © O

broadcast?
OUTPUT _broadcast[id][sender_id] = true

o o

Figure 4.2: Example of how a broadcast channel can be modeled as an output variable

4.4 Requirements Applied to Slotted ALOHA

If we return to the model for the Slotted ALOHA protocol, which was presented in Section 3.5,
we can illustrate how this model can be made compatible with VisuAAL. In this simple model,
we modeled a topology with 8 nodes, which means that we had a variable CONFIG_NR_NODES,
as well as a topology definition. The complete global declaration from the model after it has
been made compatible can be seen in Listing 4.1.

One requirement we had to fulfill was that the number of templates must scale with the
number of nodes. This is handled by the typedef on Line 3 in Listing 4.1, which ensures that
the correct number of processes is being instantiated because an id_t parameter has been used
for the two templates in the model.

O NN O U1 AWN

I T e e e e e T e T
= O OV 0 NN O L1 A W N = O

const int CONFIG_NR NODES = 8;
const int CONFIG_NR SLOTS = 8;
typedef int [0, CONFIG NR NODES-1] id t;
broadcast chan send, prepare nodes;
int OUTPUT received count[CONFIG_NR NODES];
int OUTPUT collision count[CONFIG NR NODES];
int sender id = 0;
bool listening[CONFIG NR NODES];
clock timer;
int CONFIG connected[CONFIG NR NODES][CONFIG_NR NODES] = {
{0,1,1,0,0,0,1,1},
{1,0,1,1,0,0,0,1},
{1,1,0,1,1,0,0,0},
{0,1,1,0,1,1,0,0},
{0,0,1,1,0,1,1,0},
{0,0,0,1,1,0,1,1},
{1,0,0,0,1,1,0,1},
{1,1,0,0,0,1,1,0}
}s

Listing 4.1: Updated global declarations for Slotted ALOHA

22

REQUIREMENTS TO MODELS: Requirements Applied to Slotted ALOHA

We have created two configuration variables, CONFIG_NR NODES and CONFIG NR SLOTS,
where the latter variable defines the number of slots that nodes can choose from. We have
renamed the two variables used in Section 3.5, so that they are output variables. The new names
are OUTPUT received count and OUTPUT collision count, and they maintain a counter for
every node for the number of slots that resulted in successfully receiving a message and the
number of slots that had a collision in it respectively. Note that these are placed in global scope
such that we can index them with the node id. While having this in global scope is not strictly
necessary, it enables us to present the variables in a single listing here. They could also have been
placed in the receiver template, but as single variables. The access would then have been re-
ceiver(id).OUTPUT received count for instance, instead of OUTPUT received count[id].
Both these solutions are compatible and possible in VisuAAL.

With regards to the topology, it was already encoded as an int array, and placed in the correct
scope, and thus all we had to do was to rename it to CONFIG_connected in order for the model
to be compatible with VisuAAL.

23

5 VisuAAL - Implementation Details

As mentioned in Chapter 1, the overall goal of this project is to allow visualization of protocol
behavior through UPPAAL and UPPAAL models. In this chapter we will present an overview
of VisuAAL, which is a tool aiming to solve this. We will present the interfaces of VisuAAL
components, and present the features and some implementation details of VisuAAL.

Chapter Organization This chapter is organized as follows:
* in Section 5.1 we explain our choice of verifyta as UPPAAL executor,
* in Section 5.2 we introduce the components of VisuAAL,
* in Section 5.3 we describe how UPPAAL model files are stored,
* in Section 5.4 we explain special configuration variables and how they can be updated,
* in Section 5.5 we present how we can make dynamic changes to the protocol models,
* in Section 5.6 we present a format of a special log file, used to specify dynamic topologies,
* in Section 5.7 we describe how we parse the output variables,

* in Section 5.8 we go in depth with VisuAAL Query and how this can be used to customize
visualization,

* in Section 5.9 we show how we calculate average simulations, that can show data from
multiple simulations simultaneously.

5.1 Verifyta

We want to include simulation facilities in VisuAAL. For this we use UPPAAL to run the simulati-
ons and provide the results to VisuAAL. We have explored two approaches to this, a command
line tool and a Java library. Using the UPPAAL Java libraries in VisuAAL is problematic because
of licensing issues. Additionally, the library has dependencies to the user interface from UPPAAL,
which is problematic. An alternative is a stand-alone command line tool included in the UPPAAL
installation called verifyta. Verifyta is used to run queries for a model, and writes the output
back to the command line. Verifyta takes two parameters: A model and a file containing one or
more queries as input. This allows us to run simulations as an external application, and without
requiring the full user interface from UPPAAL. The downside of verifyta is that it returns the
output as text, and we will need to parse this output in order to use it in VisuAAL. Since verifyta
is an external application, the user would need to point to an existing UPPAAL installation,
which also alleviates the licensing issues. For the above reasons we use verifyta in VisuAAL.

25

VISUAAL - IMPLEMENTATION DETAILS: Components in VisuAAL

5.2 Components in VisuAAL

To use verifyta in VisuAAL, we need a number of components to interface with verifyta and
handle the modeled protocol. In Figure 5.1 an overview of these components are illustrated.
Note that this is a dependency graph to illustrate the interdependencies of the components in
VisuAAL. The following sections briefly explain the responsibilities and requirements for each
component.

Configurator Visualizer
Dynamic Topology Variable VisuAAL Simulation
Variables Generator Configurator Query Visualizer
[
Backend
A
GPS Log UPPAAL Query Simulation
Parser Parser/Writer Generator Parser

e |

y 2 2 \ 4 v

External Components
A

GPS Log UPPAAL Model Verifyta

Figure 5.1: Overview of components. The arrows represents dependencies, such that if
a component has an arrow to another component, the first is dependent on the other
component.

5.2.1 Configurator

The Configurator component is responsible for all the changes that we can do to the UPPAAL
model before we execute the queries. This includes modifying configuration variables, altering
the topology and dynamic updates. Their responsibilities include:

Dynamic Variables The user is able to add dynamic updates, which represents assignments
of variables in the model at specific times. This can be used to alter the behavior of the
protocol over time, to test how environmental changes over time affect the network. It
could for instance be used to modify the topology over time.

Topology Generator When working in the realm of distributed network, the topology is of
high interest. We have therefore created a rather elaborate topology generator. The user
pans to a location in Google Maps [19], where the nodes should be added. The area
from Google Maps is divided in a grid, where each cell is customizable with the mean
and deviation for standard deviations from which the number of nodes and the range in
meters on the nodes are drawn. The nodes in each cell are spread according to a uniform
distribution, and the connectivity function is constructed according to which nodes are
within other nodes’ transmission range. After generating a topology, the user can move
the nodes around if adjustments are needed.

26

VISUAAL - IMPLEMENTATION DETAILS: Components in VisuAAL

Variable Configurator The user can update the initial value of the different configuration
variables through the program.

5.2.2 Visualizer

The Visualizer component is responsible for presenting the results for the user. To allow a
wide range of visualizations, it is possible for the user to describe how the results should be
presented. There are two subcomponents in the Visualizer component:

VisuAAL Query (VQ) This component contains a parser and interpretor for the VQ language,
which is a small language we created to make it possible for users to specify how and
what variables of a protocol model they want visualized. This language will be explained
in depth in Section 5.8.

Simulation Visualizer This component visualizes what happened in different simulations. It
visualizes the topology and given a time stamp, it will present the values at that time.
The edges and nodes in the network is colored based on a VQ expression. The topology
is shown as a graph using the library GraphStream [22].

5.2.3 Backend

The Backend component contains multiple subcomponents which read from a UPPAAL model
and interpret the details we need, as well as create queries for a model and parse the output to
something that can be visualized.

GPS Log Parser Component which parses a special GPS Log file, and generates dynamic
updates which changes the topology during the simulations.

UPPAAL Parser/Writer This component can parse and update the declarations in a UPPAAL
model. All declarations is written in a C-like language. We use ANTLR4 [40] to parse
and update declarations.

Query Generator After the user has configured the model and the topology, this component
will generate a query which is used to gather results from UPPAAL. This component will
also start the UPPAAL Executor.

Simulation Parser After UPPAAL has calculated simulations, this component will parse the
output and provide the data to the visualizer component.

5.2.4 External Components

The external components represents the components which we have not created but only
employ.

GPS Log A special log file, which includes a nodes location and neighbors at a given time. The
format is described in depth in Section 5.6.

UPPAAL Model This component is the users UPPAAL model in XML format. It should satisfy
the requirements that we set forth in Chapter 4.

27

VISUAAL - IMPLEMENTATION DETAILS: UPPAAL Model File Structure

UPPAAL Executor This is the UPPAAL engine, where we use the verifyta executable. We
provide the model and a query to verifyta and it returns the result as text.

5.3 UPPAAL Model File Structure

A UPPAAL model file is stored in XML format and contains declarations, templates, system
declarations and optionally queries. In order to configure models, we need to be able to
parse and modify UPPAAL model files. Additionally, we will need to parse and write the
different declaration blocks, which are written in a C-like language. We use the CFG shown in
Appendix A.

As mentioned, we provide verifyta with a model and a query file. Each line in the query
file must contain a valid query for the model. Because we use verifyta in VisuAAL, we need to
provide such a query file, and to create this we need to know the variables that are needed to
get the desired query results. We use the output variables to generate valid simulation queries
for verifyta.

5.4 Configuration Variables

For configuring a UPPAAL model, we extract all global and local declarations. UPPAAL models
typically have many variables, but typically, only some of them are relevant for configuring the
protocol. These we call configuration variables. We filter all instantiations from the model to
only consider those that are prefixed with CONFIG .

There are three special configuration variables that have a certain meaning in VisuAAL:

CONFIG_NR_NODES This required variable encodes the number of nodes in the topology

CONFIG_connected This required array variable must be defined as a two dimensional array
of int or bool type which specifies the connectivity between nodes. The indices must be
initiated with O or 1, even if the array is of bool type.

CONFIG_MODEL_TIME_UNIT This is an optional integer configuration parameter, which can be
used to specify the relation between model time units and milliseconds. A value of 30
indicates that a single model time unit encodes 30 milliseconds. We do not support
having a model time units cover only a fraction of a millisecond. This variable affect
the visualization, so that we may display the correct number of milliseconds of real time
covered.

5.4.1 Updating Configuration Variables

When the user configures variables in VisuAAL, those changes must be propagated in the
UPPAAL model. We do this using a lexer we created with ANTLR4 [40], which parses and
changes the declarations block where the changed variable was declared. When we reach the
instantiation rule of the updated variable we replace the original value with the updated value.
This is also used to configure the model with a given topology.

All changes to the model are made to a temporary file, which is also used when executing
queries. This allows the user to experiment with configurations, but retain the original model.

28

VISUAAL - IMPLEMENTATION DETAILS: Dynamic Variables

The user can choose to save a configured model, and overwrite the original model if this is
wanted.

5.5 Dynamic Variables

For VisuAAL we want to add the functionality that allows the user to update variables at specific
time steps during simulations. This could for instance be used to alter the topology over time,
to see how the protocol behaves in specific preprogrammed and repeatable scenarios.

We define a variable update as a triple: (time,variable,value), representing a specific
time to perform the update, the variable name to alter, and the value that should be assigned.
Typically, there will be multiple such updates, which we may write for n updates as:

((timel, variable,,value,), (time,,variabley,value,), ..., (time,,variable,, valuen))

To support this, we need to modify the model in question such that there is a process that
changes the variables at the given time steps. For the above n updates, this can be accomplished
with the template shown in Figure 5.2, which uses the clock visualizer updater clock. All
updates are sorted on time when generating the template. The template is automatically added
to the system declaration, such that it is included in the model.

The approach we have chosen comes with the limitation that the template is only able to
change global variables, since the variables in other templates are not in scope of the new
template.

@ visualizer updater clock < time,

visualizer updater clock = time;
variable; < value,

() visualizer updater clock < time,

visualizer updater clock = time,
variable, < value,

visualizer updater clock = time,_,
variable,_; < value,_,

n

<> visualizer updater clock < time

visualizer updater clock = time,
variable, < value,

©

Figure 5.2: Generic template to update variables over time

If the model can make an action at the exact same time as a dynamic variable is set to change,
a choice between the two actions is made. An example could be that the dynamic update
specifies that an link between two nodes are lost at time 5. If the protocol then checks for this
connection at the exact same time, the connection can either exist or not, depending on the
interleavings of the actions. Optimally we would always perform the change to the dynamic

29

VISUAAL - IMPLEMENTATION DETAILS: Creating Dynamic Topologies

variable first, but this is not easily done in UPPAAL, without changing the existing templates,
which we want to avoid as it would be complex to manage the templates in a general way. In
classical UPPAAL it is possible to add a higher priority to specific processes [50], which would
have been the preferable solution. However, as mentioned in Section 3.3 these priorities are
not supported in UPPAAL SMC. Due to time constraints we do not look into how this can be
solved.

5.6 Creating Dynamic Topologies

During this project, We were approached by Neocortec [37] and LinkAiders [33] regarding
their shared project. They would like to to simulate the behavior of their protocols, based on
some real-life examples of how the topology could look like. To support this, we have created a
format for a log file, which should contain information about which neighbors each node has,
and where it was located at that time. The information in the file, can easily be mapped to
topology changes in a model and GPS coordinates we can use to visualize in VisuAAL. Using
VisuAAL, it is then possible to change the topology during a simulation, based on a log file,
using the same structure to alter the model as presented in Section 5.5. Each line in the GPS
Log file should be formatted as follows:

timestamp; nodelID; gpsLat; gpsLng; neighborID1 RSSI1 neighborID2 RSSI2..

The following guidelines apply for the log file:

* Timestamps are represented in millise- * Whitespace is used to separate neighbor
conds node IDs and RSSI

* The lowest time stamp will be used as a * All neighbor node ids should be followed
start time, and will be subtracted from by their corresponding RSSI

all other log entries
* RSSI can be a negative or positive inte-

* All node IDs are integers, starting from ger

0 without skipping a number
* If the same neighbor is present multiple
times in the neighbor list, the latest RSSI

¢ ; should be used as data separator will be used

* The neighbor list can be empty

* Newlines are used to separate log entries * Lines starting with // are ignored

Following is an example of a line from such a log file. At time 28 node 9 has the GPS location
(57.0112724, 9.9959301) and has the neighbors with IDs 5, 2 and 11 with RSSIs -40, -54 and
-68 respectively:

28; 9; 57.0112724; 9.9959301; 5 -40 2 -54 11 -68

Based on the neighbor list, it is possible to generate dynamic updates of neighbor connections
in the network topology. Additionally when presenting results which uses a GPS log, we also
change the result view, to update the topology accordingly and also to move the nodes to the
locations specified in the log file.

30

VISUAAL - IMPLEMENTATION DETAILS: Output Variables

5.7 Output Variables

In order to visualize the behavior of communication protocols, we need to execute a UPPAAL
query. By default, all output variables are included in queries for simulations, so that the user
will be able to choose between them when visualizing model simulations. When we parse
output variables, the valid output variables must fulfill the following 3 requirements:

* Types of output variables must be int, bool, double or clock
* Variable names must have OUTPUT _ prefix

* Qutput variables must be non-constant

The most restrictive of these requirements is that the type must be one of the built-in types,
since creating records from these types is a common practice in UPPAAL modeling. We have
chosen to limit ourselves from records types and only support the built in types, in order to
spend more time on other aspects of VisuAAL. In addition, every use case that we are aware of
for a record type output variable can be emulated by placing local variables directly either in
global scope or local scope.

We require a prefix, since we want to provide the user with a list of possible output variables
and allow them to choose which variables to track, and we do not want to provide the user
with all possible variables in the model. We have chosen a simple prefix, OUTPUT , as this is
easy to understand, does not limit expressiveness and is easy to parse.

All output variables must be non-constant, since constant variables never change during the
simulation, visualizing these over time is pointless.

5.7.1 Output Variable Arrays

We allow the use of arrays as output variables, to signify variables that are bound to either
node or edge behavior. Such variables may be placed in two different scopes: Local template
scope or global scope. They are defined in the following manner, based on the scope:

Node Variables Variables bound to nodes
Template Scope Single variable
Global Scope 1-Dimensional array of size CONFIG_NR NODES

Edge Variables Variables bound to edges
Template Scope 1-Dimensional array of size CONFIG_NR NODES
Global Scope 2-Dimensional array of size CONFIG_NR NODES in both dimensions

If an output variable is a 1-dimensional array and is placed in global scope we require the
array to have exactly CONFIG_NR NODES elements, so that there is an index for each node. If a
global array is a 2-dimensional array, we require each dimension to have CONFIG_NR NODES
elements, such that there is an output variable for each potential edge in the network. In this
case, the first index represents the source node of the edge, and the second index represents
the destination node.

31

VISUAAL - IMPLEMENTATION DETAILS: VisuAAL Query

If an output variable array is placed in local scope, it must be a 1-dimensional array, and it
must have CONFIG_NR NODES elements. In this case, each index is an edge from the node itself
to the node of the index.

Arrays of any other dimensionality, of any other type or with any other number of elements
will not be considered as valid output variables.

If an array is selected as output variable, all elements are added to the query, even though
not all indexes might be used, during a simulation. We cannot know beforehand which indexes
are needed.

5.8 VisuAAL Query

In order to let the user define how edges and nodes are visualized, we create the VisuAAL Query
(VQ) language. The reason we create a language for this, is that it is a very generic way for the
user to define a node and edge visualization based on a set of variables with values. We choose
to visualize behavior for node and edges in VisuAAL using coloring.

The user is able to define a mapping from values to colors, either as a gradient or specific
colors. For gradients, we let the user set a minimum and maximum bound, and a color for each
bound. The user then provides an arithmetic or boolean expression involving 1 or more output
variables. This expression is evaluated to a number value, and based on this value, a gradient
color is chosen to color either edges or nodes based on the user input. When the user maps
specific colors to values, a number of colors and values for those are specified in addition to a
default color that all other values map to.

This can be used to visualize the states in simulations. It could as an example be used
to indicate the state of a network at a glance, for instance idle nodes marked gray or the
connectivity of edges being marked with a gradient color of red to indicate how reliable the
connection is.

5.8.1 VisuAAL Query - Syntax

A VQ expression contains two essential parts; a mapping between colors and values and an
expression that can be evaluated and mapped to a color.

We will present the syntax in Extended Backus-Naur form (EBNF), and the entire syntax for
VQ is also available in ANTLR4 format in Appendix C. Precedence of VQ expression operators
are standard, such that multiplication having higher precedence than addition for instance.
The full precedence can be seen in Appendix C. To improve readability of the syntax in this
report, we use () to denote optional rules, as we use [and] in our syntax for literals. Recall
that { } denotes zero or more repetitions in EBNFE.

The color literal used in the syntax, includes the built in colors used by the library Grap-
hStream [21], with only a few examples are shown in the syntax. The expression e of the
VQ syntax includes a number of operators, real number constants ¢, boolean constants b and
variables x. ID is an identifier mapping to a real number value. This will be further defined in
the semantics.

32

VISUAAL - IMPLEMENTATION DETAILS: VisuAAL Query

Following the syntax is shown:

vq ::= gradient e | colorse | e
gradient ::=[color (: c), color (: c)]
colors ::=[color : ¢, {color : c,} color : *]
ex=(e)|ejopey| —el|le|le; ?2ey i es|c|b|x
color € {red, green, blue,...}

op € {*, /[, +, =<, <=, >, >=, ==, | =, &&, ||}
ce R

be {true, false}

x€ ID

We will also show the syntax for coloring through an example. There are two ways to define
the colors, which are then followed by an expression e. The first way defines two colors with a
minimum and maximum bound for a gradient color as shown in Equation 5.1. Values outside
of these bounds will round to the closest bound. In the second way we can define a number of
colors that are all mapped to values, in addition to a default color for all other not mapped
values, as shown in Equation 5.2.

[white:0, black:50] e (5.1
[red:0, blue:1, green:2,black:*] e (5.2)

5.8.2 VisuAAL Query - Semantics

We will now go through the semantics of the VQ language. We do however only formally define
the semantics for the expression here, and presents the coloring specification semantics through
examples afterwards.

Following we define two functions, for mapping an ID to a real number and evaluating an
expression to a real number, where Exp is the set of all expressions:

v:ID —- R
[]:Exp— R

Next we present how constants and variables are evaluated:

[[C]]v =c

-
1 = railse

[[xﬂv =v(x)

33

VISUAAL - IMPLEMENTATION DETAILS: VisuAAL Query

Following we present the semantics for the expression operations in VQ:

[(e)]y = [el

[[_e]]v = _[[e]]v
[[le]] — L if Heﬂv =0
Y 0 otherwise
ler * ex], =[esly x [ealy
[e1 / e2]y = [er]y + [eal,
[er + ex]y =[esly + [e2ly
ler — ez, =T[ely — [ea],
= L if [[elﬂv < [[ezﬂv
[er < e], = {0 Cherise
_ |1 if [er]y < [eo]y
[e; <= e,], = {0 g
_[1 el > el
[er > ey, = {0 Cherice
= = 1if [[el]]" = [[eZ]]v
[er >= e,], = {0 -
== _)1 iffe], = ey
e == ezl = {0 otherwise
_ |1 if [eq]y # [eo]y
lert= ealy = {0 otherwise
[[el && eZ]]v = {1 if Hel]]v. 7& 0A [[62]]1/ 7é 0
0 otherwise
le Nl ey, =4+ flealy #0V [e], #0
P 0 otherwise
IIE ?e,: e]] — [[62]]1; if[[el]]v 750
R [es], otherwise

5.8.3 Visualizer Query - Example

In this section we show an example, where we have a gradient and an expression:
[white:0, black:50] x * (y - z) + 20

The query sets the minimum bound to 0 with the color white, and the maximum bound to
50 with the color black. There is then a simple arithmetic expression operating on the three
variables x, y and z. In Figure 5.3, we construct a syntax tree for the expression of the VQ above,

34

VISUAAL - IMPLEMENTATION DETAILS: Average Values for Simulations

Figure 5.3: Example of a syntax tree for an expression of the VQ language

0 32 50

Figure 5.4: VQ gradient example

where we can see how the precedence puts the parenthesis and its contents at the bottom, so
that it will be evaluated before being used by other operators, when the evaluation is done as a
depth first tree walk through the syntax tree.

These variables in the expression would be bound to output variables. Suppose x, y and z
are output variables that bind to a single node. Then, an evaluation of the expression can be
used with the color specification gradient shown in Figure 5.4 to give a shade of gray, which
the node will then be colored as.

For the concrete valuation x:4, y:10, z:7, the expression is evaluated as follows:

4% (10—7)+20=32

Thus, the color at the 32 mark would be selected for the node, as seen in Figure 5.4.

5.9 Average Values for Simulations

When you run many simulations, it is often beneficial to consider the behavior in each simulation,
as well as the average behavior of multiple simulations. It can be hard to get an overview of a
protocol’s behavior, if it is only possible to visualize one simulation at a time. To solve this, we
introduce a special simulation, which contains an average of the data point values for each
variable of all simulations and presents it as a single simulation. From this point we refer to
this as an average simulation.

All the values for data points that we visualize are handled as real numbers, and thus we
do not differ between data types of the output variables. We calculate the average simulation
by taking the average of the data points, whenever a data point changes, as illustrated in

35

VISUAAL - IMPLEMENTATION DETAILS: Average Values for Simulations

Figure 5.5. The illustration includes two simulations and the average simulation of these. For
the two simulations, the value is different at different points in time. This is generalized, such
that each data point is weighted with 1/n, where n is the number of simulations, and when a
data point arises, the weighted value is added to the value for the relevant output variable in
the average simulation. This generates an average of the values over time, which encompasses
all the simulations generated.

The average simulation is generated just after a simulation is completed by UPPAAL, and thus
it is included in the simulation file for later analysis. We only support an average simulation
over all simulations, and not for an arbitrary subset of simulations.

The average simulation can be handled as a normal simulation in VisuAAL and can be
visualized with the same VQ expressions as the other simulations. Note that since we have a
data point whenever the variable changes in any simulation, we will in most cases have more
data points in an average simulation compared to a normal simulation, which could prove a
bottleneck for updating the GUI for large amounts of data and large topologies. To alleviate
this, we collapse data points at the exact same time stamp into one data point, which handles
all the data points for that time stamp.

Simulation 1

Time

Figure 5.5: Conceptual diagram of simulations 1 and 2, and the average simulation of
these

36

6 Case Study - LMAC Protocol

In this chapter we will briefly describe the Lightweight Medium Access (LMAC) protocol [52].
We will not delve into details in this section, but rather we will give an introduction to the
protocol and present a model representing it, and applying VisuAAL to obtain visualization of
the behavior of the LMAC protocol. For a more thorough walkthrough of the protocol, we refer
to Van Hoesel and Havinga [52].

Chapter Organization This chapter is organized as follows:
* In Section 6.1 we briefly describe the terms used in the LMAC protocol,

* in Section 6.2 we glance over a UPPAAL model representing it, and go through the
changes needed to make the model compatible with VisuAAL,

* in Section 6.3 we present the results obtained from applying VisuAAL to the model.

6.1 Protocol Overview

The LMAC protocol was first proposed by Van Hoesel and Havinga [52] and is designed for low
power distributed networks; specifically distributed sensor networks.

The LMAC protocol uses Time Division Multiple Access, where time is divided into slots. If
nodes in the LMAC protocol select unique slots, they can communicate collision free. In this
protocol, certain special nodes act as gateways, which are nodes that can receive messages.
Other nodes can relay messages, but are unable of being the final destination for messages.
Nodes can only select a slot which none of their neighbors have selected, but will otherwise
select randomly from a predetermined range of slots. For this to work, all nodes must retain
information about their neighbors, and in which slots the neighbors will send their messages.
When a node detects that no neighbors are to send and the node itself does not have to send, it
sleeps in a low power mode.

There is a chance of nodes selecting the same time slot, which may have been selected by
another node during this time. If this happens, the LMAC protocol depends on a third party to
inform the two colliding nodes of the situation, after which the colliding nodes will back off for
a time dependent on the unique identification number of the node, and then select a random
uncontrolled slot.

Van Hoesel and Havinga [52] propose using a hop-distance scheme to achieve routing in
the LMAC protocol. In such a scheme, nodes retain information about how many hops all
their neighbors have to a given gateway in a routing table, and regularly broadcasts its own
hop-distance for each gateway, where the number of hops to gateway is one more than the
minimum hop distance of any of its neighbors. These broadcasts are called synchronization
signals. Synchronization signals also include information about the next transmission time to
ensure local synchronization of listening and transmission periods, as well as the node id for
the transmitting node. When a data package needs to be sent to a gateway, a node will look
in its routing table and find the neighbor with the lowest hop-distance toward the gateway

37

1
2
3
4
5
6
7
8
9

10
11
12
13

CASE STUDY - LMAC PROTOCOL: Protocol Overview

I

Initialize
Sleep
Receive Construct
Sync Signal
|
Log if collision Transmission

Figure 6.1: Sketch of transitions between the modes of operation for the LMAC protocol

and then constructs an address package marking which neighbor was supposed to receive the
message.

Gateways are required for the network to be initialized, since when the network starts, the
nodes have to be synchronized for this protocol to work. Normal nodes are unable to start
up before they have received a synchronization signal from another node. To get the network
started, gateways broadcast a message, which is in turn received by the one-hop neighbors
of the gateway, which will in turn further transmit this synchronization signal to the two-hop
neighbors of the gateway and so forth. In this manner, the network is initialized.

The reception period is split into two main parts, with the latter again being split in two parts.
In the first part synchronization signals are received, and in the second part data packages are
received, but only if the address package sent before it matches the node id. Otherwise, the
node goes to sleep to preserve power.

Transmission is likewise split in two, with the first part dedicated to transmitting a synchro-
nization signal and the second part dedicated to transmitting data packages.

We describe our understanding of the LMAC protocol in three components each handling a
mode of operation, and a fourth component being used to construct the synchronization signal.
This behavior is described in pseudo code form in Listing 6.1, which loosely represents the
LMAC protocol. The transitions between the three different modes of operation and sleep is
sketched in Figure 6.1.

Initialization:
Receive synchronization signal
Update neighbors with hop distances
Construct and broadcast synchronization signal
Sleep until time to send or receive

Transmission:
Construct and broadcast synchronization signal
g < Destination gateway for data package
n < Neighbor with lowest hop distance to g
Construct and broadcast address package addressed to n
Broadcast data package
Sleep until time to send or receive

38

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

CASE STUDY - LMAC PROTOCOL: Model Overview & Compatibility

Receiving:
Receive synchronization package
Update neigbors with hop distances
Receive address package
If collision in slot
Log collision in slot
If address package = myid
Receive data package
If syncronization signal indicated collision in this nodes’ selected slot
While no free slots available
Sleep for random backoff period
Listen and detect free slots
If such a slot exists, randomly select one
Sleep until time to send or receive

Construct synchronization signal:

Add node ID to synchronization signal

Add A time until next transmission

for each gateway g in the network:
h < Lowest hop-distance toward g of any neighbor
Add h+1 to synchronization signal for g

If collision has been logged
Add collision slot to synchronization signal

Sleep until time to send or receive

Listing 6.1: Pseudo code for LMAC protocol

6.2 Model Overview & Compatibility

In this section we will quickly go through the UPPAAL model developed by Fehnker, Hoesel,
and Mader [12], with special focus on the changes we had to make in order to make the model
compatible with VisuAAL.

The initial model developed by Fehnker, Hoesel, and Mader [12] represents the LMAC
protocol, which was briefly sketched in Section 6.1. For a complete explanation of the model,
we refer to [12]. The purpose of the protocol model is to explore topologies where there can
be unresolved collisions. Recall that nodes select time slots in which to transmit. This may
lead to collisions where multiple nodes transmit on the same time slot. One essential feature
of the LMAC protocol is that a third party is needed to detect collisions, and it is this feature
that Fehnker, Hoesel, and Mader [12] examine. There are some topologies where the LMAC
protocol fails to recover from collisions, and the goal for Fehnker, Hoesel, and Mader [12] is to
improve the protocol iteratively, such that the number of problematic topologies decreases.

For our case study we have chosen to use the latest version of the model available on Ansgar
Fehnkers’ webpage [11], model 13. To get a feeling of the size of this model, all the templates
can be seen in Figure 6.2. We do not expect these to be readable at the scale used in this report.
Note that the gateway and node templates are similar in structure, but differ in the initial
locations and variable instantiation values.

Fehnker, Hoesel, and Mader [12] present their results in a tabular form, where the state of
each node, including the slot it has selected is visualized with colors and text. This table shows

39

CASE STUDY - LMAC PROTOCOL: Model Overview & Compatibility

‘ (c) Scheduler
(a) Node template (b) Gateway template template

Figure 6.2: The original LMAC model developed by Fehnker, Hoesel, and Mader [12].
The main difference between the node and gateway template is that gateway has
selected a slot from the very beginning.

how the model progresses over time to illustrate unresolved collisions. Thus, these results can
certainly be extracted from the model as it is.

Visualization wise it would be interesting to look into the state of nodes, and the time
slot chosen by each node. This is all information that binds to a single node, which changes
during normal operation of the protocol model. Additionally, Fehnker, Hoesel, and Mader [12]
examines all topologies of sizes 4 and 5 in their paper. A framework that allows automatic
topology generation and testing would thus clearly be beneficial for them, although fully
enumerating all topologies quickly becomes unmanageable as the number of nodes grows, as
they also remark.

6.2.1 LMAC Protocol Model

Before we are able to handle the model in VisuAAL, we need to ensure that it is compatible with
UPPAAL SMC. In their paper, Fehnker, Hoesel, and Mader [12] use ordinary UPPAAL syntax
to model the protocol, since the goal of the modeling is to do exhaustive search, rather than
statistical model checking. This allows the model to be used with ordinary queries as explained
in Section 3.1, but we have found that the model is incompatible with UPPAAL SMC, and thus
also incompatible with SMC-only queries, such as probabilistic queries and simulation queries.

Luckily, the model is compatible with UPPAAL SMC, except for two issues. The two main issues
that make this model incompatible with SMC are: lack of input determinism and independent
progress.

A minor issue is that the topology in this model is transposed, in relation to our requirement.
To solve this, we changed every lookup in the topology, such that instead of accessing CON-
FIG connected[id 1][id 2], we access CONFIG connected[id 2][id 1].

The template gateway is similar to the node template, and thus all the same changes that
we make to one template has to be replicated in the other.

40

CASE STUDY - LMAC PROTOCOL: Model Overview & Compatibility

6.2.2 Ensuring Input Determinism in the LMAC Model

The requirement of input determinism is violated in the LMAC model in the location waiting,
as shown in Figure 6.3a, where there are four outgoing edges, which all require the tick?
synchronization to be taken. tick! is broadcast from the scheduler template, which broadcasts
every 2 time units. Taking the top right edge will end in the location waiting, whereas taking
the other three edges will result in the location listening0, and the valuations are different
as well. UPPAAL SMC will not accept this construction, and thus we need to rewrite it. Luckily,
this is fairly trivial with the guards and updates being fairly similar. We have updated this part
of the model with the construction shown in Figure 6.3b which shares the same behavior as the
original. In this new model, we use a single location, receivedTick so that all outgoing edges
from waiting lead to the same location. A guard is added to the edge, so that tick? may only
be received if it matches one of the edges where this was possible before, and receivedTick is
made committed, so that all nodes in this location will have to move out before time can pass,
and before any other template may progress, but with no control over the interleaving of when
each node does so.

counter=0,

counter=0, waiting mode=1

mode=1 counter<3*frame-1 t<=2
waitin tick?
t<=2 g ‘ counter++ counter<=3*frame-1 counter<3*frame-1

tick?
counter==frame-1 counter==2*frame-| counter==3*frame-1 receivedTick
tick? tick? tick?

counter=0, counter=0, counter=0,

mode=2 mode=2 mode=2

counter++

counter == frame-1 ||
counter == 2*frame-1 ||

counter == 3*frame-1
counter=0,

mode=2

listening0 listening0
t<=2 t<=2
(a) Excerpt from LMAC model. The pro- (b) Excerpt from updated LMAC model. No-
blematic location is the location named tice that thewaiting location is still mar-
waiting, and indicated with orange fill- ked with orange as in Figure 6.3a. The
color. new location is named receivedTick.

Figure 6.3: Excerpt from LMAC model. Shows how we fix input determinism.

We want to argue more why that this transformation is valid and that the resulting model
performs identically to the original. To do this, we need to ensure that no conflicting interleaving
can happen, and that all transitions available before are available after, and vice versa.

Introducing a new location is always dangerous, because it may lead to interleaving issues
with other templates. However, in this case there will be no issues since the new location
receivedTick is a committed location, such that no other nodes may progress before this node
exits the location. Recall that the model must process all processes in a committed location
before we can do anything else. Thus the only interleavings we have to consider are with other
processes in committed locations. Notice that there may be multiple nodes in a committed
location as a result of broadcast semantics on the tick? synchronization, but no nodes can

41

CASE STUDY - LMAC PROTOCOL: Model Overview & Compatibility

be in committed locations before the synchronization. Further notice that only local variables
are used in the transformed edges, and that no outgoing synchronization is used on these. In
summary, no matter which interleaving with other processes is chosen, no delay transition can
occur, and the transformation does not result in a new synchronization and is unable to affect
the global variables, and thus the transformation does not introduce any changes that allow
the process to affect other processes that did not exist before the transformation.

Having ensured that only the local scope and template behavior can have been affected by
the transformation, we now need to ensure that the behavior that was available before the
transformation is also available after, and that no new behavior is introduced. By looking at
the edges transformed, it is trivial to see that the edges after the transformation provide the
same traces from from location c to location listening@ as before, with the caveat that any
time the tick? synchronization is used, the receivedTick location must be visited after the
transformation.

Thus, the behavior has been preserved by the transformation, but the resulting model exhibits
input determinism, since receiving the tick? synchronization in the waiting location, will
always result in ending in the receivedTick location.

6.2.3 Ensuring Independent Progress in the LMAC Model

We need to ensure independent progress in the LMAC model. We defined this in Section 3.3.
As mentioned, a simple scheduler template is used which broadcasts on the tick! channel
every 2 model time units. Every non-committed location in the templates node and gateway
have the invariant t<=2, except for the initial location and the ready location, where the
former has no invariant and the latter has t<=1. Progress from locations with invariants is
ensured since the tick? synchronization is ensured every two time units. However, because the
synchronization is initiated from another template the requirement for independent progress is
not fulfilled. It is simply impossible to end in a situation where a template is stuck in a location
with no possible way to progress for more than 2 time units. In addition, if there were, this
template would result in a deadlock, and testing for deadlock in the model proves that no such
deadlock exists. Despite this, the static code check in UPPAAL is unable to detect that this
model will progress, and rejects the model as soon as a SMC query is executed.
To make the model execute SMC queries, we see two options:

* Either we can rewrite the model such that it is not relying on the external scheduler by
moving the clock t to local scope in each template, and adding a reset of this clock to
every edge that has a tick? synchronization.

¢ Otherwise we could circumvent the static code check of UPPAAL SMC, and allow it to
start and run simulations while understanding that if a template ends in a location where
no progress can be made, the simulation will break.

We have chosen the second solution because we estimate that introducing a clock in the
model for each template will have a larger impact on the performance of the model than the
changes needed for the second option. Additionally, we feel that the second option is the least
invasive change we can make to the model, and thus also the least likely change to introduce
errors in the model. We added an edge with the guard t>2 to every location with the invariant
t<=2. This edge will obviously never be enabled, and thus this change is unable to affect the

42

CASE STUDY - LMAC PROTOCOL: Results for LMAC Protocol

TIMELOCKED .

counter=0, counter=0,

waiting OUTPUT_mode=1 waiting OUTPUT_mode=1 >2 J
t<=2 t<=2
counter<=3"CONFIG_frame-1 counter<3*CONFIG_frame-1 counter<=3"CONFIG_frame-1 counter<3*CONFIG_frame-1

tick? counter++ tick? counter++

receivedTick receivedTick

counter == CONFIG_frame-1 ||
counter == 2*CONFIG_frame-1 ||

counter == 3*CONFIG_frame-1
counter=0,

counter == CONFIG_frame-1 ||
counter == 2*CONFIG_frame-1 ||

counter == 3*CONFIG_frame-1
counter=0,

OUTPUT_mode=2 OUTPUT_mode=2 52)
listening0 listening0
t<=2 t<=2
(a) Excerpt from LMAC model that does not (b) Excerpt from updated LMAC model. The
have independent progress. This is the red location indicates the new error loca-
same figure as Figure 6.3b. tion.

Figure 6.4: Excerpt from LMAC model, before and after we handle independent progress

behavior of the model but is accepted by the static code checker in UPPAAL. This is exemplified
in Figure 6.4b.

6.2.4 Renaming Variables in the LMAC Model

In order for VisuAAL to detect the configuration and output variables of the model we have
renamed a number of variables. The changes are summarized in Table 6.1. The variables do
not need to be moved to different scopes or changed in any other way than this rename in order
for the model to be parsable by VisuAAL. Thus, this does not affect the model functionality in
any way.

Original Variable Name New Variable Name

Topology can_hear[][] CONFIG_connected[][]
Number of Nodes number of nodes CONFIG _NR NODES
Configuration Variable frame CONFIG frame
. collisions OUTPUT collisions
Output Variables ot - ot
mode OUTPUT mode

Table 6.1: Renamings necessary in the LMAC protocol model

6.3 Results for LMAC Protocol

In this section we will describe how we are able to extract valuable information about the
performance of the LMAC model through visualization.

The LMAC protocol model has a large focus on discovering which topologies can end in
perpetual collisions between nodes [12]. Thus, when we do visualization the main focus will

43

CASE STUDY - LMAC PROTOCOL: Results for LMAC Protocol

be on visualizing topologies where there are unresolved collisions. Whereas Fehnker, Hoesel,
and Mader [12] performs exhaustive search of all topologies of size 4 and 5, we will instead be
doing simulations. This enables us to handle much larger topologies than in the paper with
hundreds of nodes, at the cost of only exploring a single trace through the system at a time.
This means that we are unable to guarantee topologies as collision free, but we will be able to
show large topologies and how nodes keeps colliding.

In order to do so, we will track the OUTPUT mode variable in all gateway and node processes,
and thus track the state of each node. The OUTPUT mode variable can have the values shown in
Table 6.2, where each value describes the shown mode of operation.

Value Explanation

Node is initializing. No frame has been selected, and node is

0 waiting for initial Synchronization Signal.

Node is waiting for a random back-off time before selecting
a new frame.

2 Node is listening to detect free frames
3 Node has obtained a frame and is in normal operation mode

1

Table 6.2: The values and explanations of each mode of operation in the LMAC protocol
model. Note that the gateway node starts in mode 3, and that normal nodes start in
mode 0.

In order to visualize the state of nodes in a simulated network, we write the following VQ
expression:

[red:1, blue:2, green:3, black:*] node.OUTPUT mode + gateway.OUTPUT mode

By summing the OUTPUT mode variables in gateways and nodes we are able to use the same
VQ to visualize both these nodes. Note that the first part of the sum will evaluate to O for
gateway nodes, and the second part will evaluate to O for other nodes, since the gateway node
IDs and other node IDs are disjoint. Thus, for node ID 0, there will be an instantiated gateway
process, but no normal node processes, and vice versa for the other node IDs in the model.
When there is no instantiated process with a given name for a given node ID, the referenced
variables are evaluated to 0. Thus, the sum in the VQ will evaluate to the mode for a unique
node.

As per the pseudo code from Listing 6.1, nodes may select a frame, and then be forced to
back off and select a new uncontested frame due to collisions with the neighbors. When this
happens, the mode in a node will go from mode 3, through mode 1 and 2 and then select a
free frame, if one exists, whereupon mode 3 will be selected again. In our visualization we will
see this as color changes from green to red to blue, and back to green if a frame is available. If
no frame is available the node will cycle trough mode 1 and 2, until a frame is free. This will
be seen as flickering between red and blue.

In our visualization, stable green nodes are nodes that have obtained a frame and which do
not collide with their neighbors, and flickering nodes have two causes: either this is a result of
nodes not having a free frame available or else it is nodes selecting the same free frame. The

44

CASE STUDY - LMAC PROTOCOL: Results for LMAC Protocol

first cause may happen when there are more neighbors to a node than there are frames, such
that all the frames are occupied. The second cause may happen for instance if only one frame
is available for two connected nodes, and the nodes select the same back-off period. Then the
nodes will select the only available frame, which will result in a collision. If this is reported,
the nodes will relinquish the frame, and the whole process may repeat.

Both of these situations are interesting, and in our visualization we can see that the first cause
will result in red and blue flickering on a node, whereas the second cause will be characterized
by flickering between red, blue and green, since the nodes actually end in mode 3 when they
select the frame, but will soon be forced to relinquish it.

To run our simulation we generate a random topology. This topology has 126 nodes and
is connected. There are areas with high connectivity and places where single nodes connect
smaller sub graphs. The topology is shown with the results in Figure 6.6 and Figure 6.8 for the
two experiments we will run on the LMAC model.

45

CASE STUDY - LMAC PROTOCOL: Results for LMAC Protocol

Experiment 6.1 - Initial Configuration

In the first experiment for the LMAC protocol model we will use a configuration with 6 frames,
and see how the protocol behaves in a time bound of 10000 Model Time Units (mtu). Recall
that all nodes in the LMAC protocol model progress every 2 mtu, and thus this is equal to
5000 synchronizations on the tick channel. We do not know whether this is intended to be
translated directly to milliseconds, but in our experience, this is not an unrealistic expectation.
The query took close to 4 hours to execute on a standard laptop.

Because there are only 6 frames, there will be situations in the used topology, where there
are simply too many nodes competing to obtain a frame, and thus some nodes will be unable
to do so. Recall that nodes cannot relay messages across the network before they obtain a valid
frame.

An interesting situation can be seen in Figure 6.6, where a number of the nodes are colored
blue and red since they are not in possession of a frame. A summary can be seen in Table 6.3.
Most of the green nodes are stable, and are thus not in conflict with other nodes. The results
are shown in Figure 6.5, or the entire simulation can be seen by loading the simulation file
LMACResultl.sim from Appendix ZIP.

Figure 6.5: Visualization on the results from Experiment 6.1
which uses 6 frames. Note that the video plays the simu-
lation at 5% of real time, such that it is easier to follow
the progression.

The QR Code will redirect to the following link:
https://youtu.be/FhTTV cCHEw

From the video in Figure 6.5, we can see that the initial message is sent to all nodes in
the network during the first 10 seconds of the video. If a node stays in a green state, it
has successfully obtained a frame. It will try to obtain a new frame, if a collision happens.
Furthermore, we can see that many nodes flicker as discussed previously. This is because
the number of neighbors in some areas are quite large, thus the 6 available frames are not
enough for all nodes to actually obtain a frame. If a node does not obtain a frame, it will never
participate in the the network.

nodes Node mode State Explanation

58 % 1: green Selected a frame
30% 2: blue Listening for free frame
12% 3:red Waiting random time before selecting a new frame

Table 6.3: Summarization of what is shown in Figure 6.6 at time 4161.3 ms

46

https://youtu.be/FhTTV_cCHEw
https://youtu.be/FhTTV_cCHEw

CASE STUDY - LMAC PROTOCOL: Results for LMAC Protocol

Figure 6.6: Snapshot from first LMAC result experiment. Note that this shows the state
at 4161.3 ms. Nodes colored green have successfully obtained an available frame.
Nodes colored blue or red, have still not obtain a frame.

47

CASE STUDY - LMAC PROTOCOL: Results for LMAC Protocol

Experiment 6.2 - Increased Number of Slots

In order to try and alleviate the problems with nodes not being able to obtain a frame, one
might try to increase the number of frames available. We will triple the number of frames to 18,
and see how this affects the nodes. We expect to see all nodes obtain frames, and turn green in
a visualization rather quickly. This experiment took close to 2 hours to complete on a standard
laptop.

The results are shown in Figure 6.7, or the entire simulation can be seen by loading the
simulation file LMACResult2.sim from Appendix ZIP.

Figure 6.7: Visualization on the results from Experiment 6.2
which uses 18 frames. Note that the video plays the simu-
lation at 5% of real time, such that it is easier to follow
the progression.

The QR Code will redirect to the following link:
https://youtu.be/qgRVBKOpeEtk

As expected, the nodes rather quickly obtain a frame. Figure 6.8 shows the state at 1185 ms,
where it is clear that all nodes have obtained a frame, and no conflicts are occurring any more,
thus all nodes participate in the network. By using visualization, we are able to obtain a clear
overview of the behavior of the protocol, and how this is affected by configurations.

A summary of the state shown in Figure 6.8 are shown in Table 6.4.

nodes Node mode State Explanation

100 % 1: green Selected a frame
0 % 2: blue Listening for free frame
0 % 3: red Waiting random time before selecting a new frame

Table 6.4: Summarization of what is shown in Figure 6.8 at time 1185 ms

48

https://youtu.be/qRVBK0peEtk
https://youtu.be/qRVBK0peEtk

CASE STUDY - LMAC PROTOCOL: Results for LMAC Protocol

Figure 6.8: Snapshot from second LMAC result experiment. Note that this shows the
state at 1185 ms. All nodes have successfully selected an available frame.

49

7 Case Study - AODVv2 Protocol

In this section we explore the Ad Hoc On-demand Distance Vector Version 2 (AODVv2) proto-
col [42], an ad hoc routing protocol. We will present an overview of this protocol, as well as a
model describing it and use this model to visualize the behavior of the protocol.

Chapter Organization This chapter is organized as follows:
* In Section 7.1 we describe the AODVv2 protocol in broad terms,
* in Section 7.2 we provide an overview of the AODVv2 protocol model,

* in Section 7.3 we present the resulting visualizations and results gained.

7.1 Protocol Overview

In this section we will present an overview of the terms used in the AODVv2 protocol, as
described by the internet-draft available on the document tracker for The Internet Engineering
Task Force (IETF) by Perkins et al. [43]. Note that this protocol was formerly known as the
DYMO protocol, but that this was renamed to AODVv2 in 2012, according to the internet-draft
available from IETF [42]. Being an internet draft, this protocol is still under development,
and thus the descriptions in this report is based on the most recent description at the time of
writing. The purpose of this section of the report is to introduce the protocol in broad terms,
such that we may use a protocol model based on this protocol later in the project. For the more
complete specification of the protocol, we refer to [43].

The AODVv2 protocol is a routing protocol, which extends the traditional AODV protocol [44].
Thus, in order to describe the AODVv2 protocol, it is beneficial to understand the original AODV
protocol. The AODV protocol is an Ad Hoc routing protocol, meaning that it is designed for
routing in highly mobile, dynamic networks and mesh networks. Again, we will not give the
complete specification for this protocol, but rather give the basic understanding of the terms
and concepts of this protocol, such that we can reason about the visualizations we create later.
For the complete specification of AODV, we refer to Perkins, Belding-Royer, and Das [44].

As the AODV protocol applies to mesh networks, nodes using the original AODV protocol
initially have no knowledge of the topology of the network. In AODV a data payload is called a
Packet. When a node wants to transmit a packet to a given destination, it must thus discover a
route to it. This is done by flooding the network with what is known as a Route Request. This
contains the ID of the original sender node as well as the ID of the destination node that the
route request concerns. When the route request is propagated forwards, each node that acted
as a relay for the route request, notes that it now knows a route to the original sender, if none
was known before, and subsequently it continues the broadcast of the route request. When the
route request reaches a node that knows a route toward the destination node, a Route Reply is
transmitted back through the reverse route of the route request was sent. All nodes on this
path populate their routing tables with the neighbor that they received the route reply from as
the shortest path from them to the destination node.

51

CASE STUDY - AODVV2 PROTOCOL: Protocol Overview

Destination Next Hop A:B A:C
AIAY B:B C:.C
RREQ RREQ RREQ
®) ®) © (®
RREP RREP RREP
D:B A:A A:B
B:B D:C B:B
C:.C D:D

Figure 7.1: The concept behind AODV Route Request (RREQ) and Route Reply (RREP)
messages. This figure is a copy of Figure 3 from Ahirwar, Verma, and Daksh [1].

From a single route request, all nodes affected by the route request know how to transmit to
the originator through a fastest path at that time, and all nodes on the resulting route reply
return path know how to transmit to the destination node as well. Note that in a dynamic
network, the fastest path might change.

This concept is illustrated in Figure 7.1, where the tables above and below show the state of
the routing tables of each node as the route request and route reply messages are propagated
respectively. Pay special attention to the nodes B and C, which at the end hold routes not
only to the nodes involved in the route request and route reply, but in fact to all nodes in the
network.

There are also other types of messages, like Route Error which is used to flood the network
when a link breaks, such that all routes depending on it can be invalidated. We will not
elaborate further on these other types of messages.

According to Sommer and Dressler [46], the primary difference in the AODVv2 protocol
over the AODV protocol is that it extends the route request and route reply messages, such
that path accumulation is employed as they are being propagated. Instead of holding only the
original node that transmits a message, a route request or route reply is decorated with all the
nodes that it passes through on the way to the destination or original sender respectively. This
means that more data is collected during the flooding process, which helps nodes along the
path detect routes to all nodes that the message has passed through on the way. By allowing
the nodes to obtain routes to all these nodes on reception of the message, the need for route
request messages is reduced in the system, since more routes can be obtained in one go. Thus,
a needed route may already be known when it would otherwise need to be requested. This
comes at the cost of larger network packages, and potentially superfluous routes being added.

In the explanation for their model, Héfner and Mclver [23] further elaborate that the AODVv2
protocol has some differences in the way sequence numbers are handled compared to the
original AODV protocol. Sequence numbers are used to track how old a route request message
is, where in the original all route requests was saved in a queue [23]. Furthermore, AODVv2
generates bidirectional routes, in the sense that all nodes on a route know how to reach all
other nodes on the route as a result of the path accumulation and the way route replies are
handled [23].

52

CASE STUDY - AODVV2 PROTOCOL: Model Overview & Compatibility

7.2 Model Overview & Compatibility

We will now present the AODVv2 (or DYMO) model developed by Héfner and Mclver [23].
The goal of developing this model was to compare the performance of the AODVv2 protocol to
the AODV protocol in a number of settings, and as thus the model is a complete representation
of the protocol. There are three templates:

dymo contains the main node logic, and maintains the routing tables. This template is
instantiated for each node.

queue handles a FIFO queue of size M, which stores messages that are to be sent. This template
is instantiated for each node.

tester provides a way of configuring PKT transmission scenarios. This template is only instan-
tiated once.

onnected(sip,
Ksip]lip]?
addmsg(msg_global)

i(sip.if

roqlsiol?
addmsg(msg_global)

newpkt{ip][tip]?
addmsg(createpk!(tip.ip)) }

(b) Queue template

Y N | —— Ho=time_betwoen_meq-time_sproad,_ i\

time_spread

(c) Tester template

(a) Dymo template

Figure 7.2: The original AODVv2 model developed by Hofner and Mclver [23]

To get a feeling of the size of this model, all the templates can be seen in Figure 7.2. Note
that we do not expect this to be readable, but instead to give some sense of scale for the reader.
The model is quite complicated, in that the main template, dymo, has 20 locations, and is
rather verbose. However, one of the issues that we are trying to mitigate is that the user of
VisuAAL may not know how to model in UPPAAL, and thus this model serves as an excellent

53

CASE STUDY - AODVV2 PROTOCOL: Model Overview & Compatibility

example for testing what kind of visualization can be gained without knowledge of UPPAAL
modeling.

An obvious candidate for observable behavior in the protocol, is the number of messages
that must be sent from each node. When a message is propagated around the network, it is
added to a queue construct for each node, and thus, the flow of messages in the network can be
visualized as the number of messages (Not only packets, but also route requests, route replies
and route errors) waiting for transmission in each location is changed. This can be tracked
as the global array nodebuffersize, which has as many elements as there are nodes plus an
additional default node object.

7.2.1 AODVv2 Compatibility

The AODVV2 protocol model as presented by Héfner and Mclver [23], is already an SMC
compatible model. Thus, we only have to make it VisuAAL compatible.

This model contains an oddity that causes problems in VisuAAL; the node ids always start
from 1 in this model, but all arrays are instantiated with a Oth element, which serves as a
default “node”. While there is no inherent problem with doing this, this approach becomes
problematic when we try to read and write the topology. In this model, row and column O in
the topology array are special in that the values are 0. There are no node 0 instantiations of
the templates. This conflicts with the requirements we have set forth. We expect the topology
to be a two-dimensional array with each dimension having the same number of elements as
there are nodes in the network. While there are additional elements in all the arrays in this
model as a result, the topology is especially important, since we generate this and parse it
before the simulation is run, and are thus reliant on this being of the correct form. We need
the instantiated array to be of this form, in order for the model to be compatible with VisuAAL.

Luckily, all access to the topology array is done through the function is_connected(int i,
int j), meaning that we are able to have an array of the correct form and emulate the first
row and column, by looking at the input variables, since these entries always will be 0. This is
shown in Appendix B.

There were a few minor time locks that occurred, due to inconsistencies in the guards in
the system. We have attempted to fix these, but will not go through these fixes, as this quickly
becomes much too detailed for the scope of this report. The resulting model is included in
Appendix ZIP.

In addition, there are three other minor changes that we want to make:

* Remove the routing table parameter form the dymo template
* Change the tester template to transmit more messages
* Rename variables

The following sections will provide an overview of these changes.

7.2.2 Removing Parameter From dymo Template

The dymo template takes two parameters, a unique ip number, ip, and a reference to a routing
table, &rt. The routing table references a global routing table of the form rtentry art[N][N],
where N is the number of nodes+1. Thus, each node has its own routing table which can

54

CASE STUDY - AODVV2 PROTOCOL: Model Overview & Compatibility

contain information about every other node in the network, but the routing tables are stored in
global space. The templates are instantiated in the system declaration of the model such that
each template is instantiated explicitly. The dymo template receives two parameters: a node id
ip and a reference to art[ip].

This is problematic, because the instantiations of processes does not automatically scale when
CONFIG_NR NODES is changed. The templates in the original model must rather be instantiated
in the system declaration, making it incompatible with our tool, as described in Section 4. In
order to change this, we have replaced all uses of this local reference parameter with a direct
lookup in the global routing table, which is what the reference provided anyway. Thus, every
usage of rt has been replaced with art[ip], and the parameter has been removed. This means
that the explicit instantiation in the system declaration can be removed and replaced by simply
specifying the template name instead of the process names, which will instantiate a process for
every node identifier. This is exemplified in Listing 7.1 and Listing 7.2, which shows the system
declarations before and after the changes.

// Place template instantiations here.
al=dymo(1,art[1]);
alg=queue(l);
a2=dymo(2,art[2]);
a2g=queue(2);
a3=dymo(3,art[3]);
a3g=queue(3);
1| // Place template instantiations here.
system tester,al,alq,a2,a2q,a3,a3q; 2 system tester,dymo,queue;

O 0 NN O L1 AWN -

Listing 7.1: Original DYMO model Listing 7.2: Modified DYMO model
system instantiation system instantiation

7.2.3 Changing tester template

Hofner and Mclver [23] uses the model to explore a large number of topologies, and uses the
tester template to set up and execute scenarios. In the model we downloaded, tester initially
asks node 1 to transmit a packet to node 2, and after a period of time to transmit a packet from
node 1 to node 3.

Having a template that dictates when the environment asks the nodes to transmit packets is
a good idea, since this is separate from the protocol behavior itself, but the simple behavior
configured in the original model makes for boring visualization. To make for more interesting
visualization, we have changed the tester template such that it continuously injects packets in the
network, by periodically randomly selecting a source and destination node, and inject a packet
to the source node, to transmit. The period between each injection, as well as the transmission
speed of every other aspect of the model, is governed by the variables time between rreq
and time spread.

This change to the tester substantially changes how the model operates, and makes it difficult
to repeat simulations, but it also results in lively communication on the network and means
that the visualization looks more like a realistic scenario, at least in our opinion. If a specific
scenario is needed, the model may be reconfigured by changing this template.

55

CASE STUDY - AODVV2 PROTOCOL: Results for AODVv2 Protocol

7.2.4 Renaming Variables in the AODVv2 Model

VisuAAL needs to be able to read the topology, the number of nodes and a number of other
variables. The renamings we have performed are summarized in Table 7.1. The variables do
not need to be moved to different scopes in order for the model to be VisuAAL compatible.

Original Variable Name New Variable Name

Topology topology[1[] CONFIG connected[][]
Number of Nodes N CONFIG NR NODES

: . CONFIG MAX SEQ NR
Configuration _ .

. time between rreq CONFIG time between rreq
Variables o - - = -
time spread CONFIG time spread

Output Variables nodebuffersizel] OUTPUT nodebuffersizel]

Table 7.1: Renamings necessary in the AODVv2 protocol model

7.3 Results for AODVv2 Protocol

In this section we will present an example visualization for the AODVv2 protocol. In this case
study, we are interested in the traffic in a network using the AODVv2 protocol, and as such we
will try to visualize the number of messages waiting for transmission on each node over time.

We generate the topology shown in Figure 7.4, where a few nodes must mediate all trans-
missions between the top and bottom subgraphs. The top and bottom subgraphs have 23 and
21 nodes respectively. The precise configuration resulting in this topology is not important,
what is important is that this topology should result in a lot of traffic across the bridge nodes.
In a topology where a few nodes act as bridges between highly connected clusters of nodes, we
expect that the bridge will have a much larger backlog of transmissions than other nodes. The
goal of this is to visualize to what degree this happens in a topology, and also to see how this
changes over time, as the nodes discover routes. When routes are created, there are less need
for route requests and route replies, meaning that less transmissions in total will be needed to
transmit a given packet. Recall that the tester template is set up to inject a new packet at a
random time between 35 and 55 mtu, with a uniform distribution.

Because of the way the tester template is set up, the destination and transmitter nodes should
be selected from a uniform distribution over node ids. Thus, packets sent from one subgraph
will either need to be sent to a node within their own subgraph, in the bridge or in the other
subgraph. The transmissions to the other subgraph have to go through the bridge. There should
be approximately the same probability of a node from the top selecting a destination in the top
as a destination in the bottom, and vice versa for the bottom sending to the top. There are 48
nodes in the topology.

As explained in Section 7.2, we will track the messages waiting to be sent through the output
variable OUTPUT nodebuffersize, which results in an integer value of the size for each node’s
queue.

56

CASE STUDY - AODVV2 PROTOCOL: Results for AODVv2 Protocol

Experiment 7.1 - AODVv2 Experiment

In this visualization, a gradient from a light color to a strong color is appropriate, since we
want to highlight large differences between the number of messages in the queue. We construct
the following VQ expression to distinguish this:

[lightgray:0, red:25] OUTPUT nodebuffersize

This will mark nodes with O messages waiting with a light gray color, and nodes with
25 messages accumulated red. 25 just so happens to be the maximum queue length in the
simulation we ran, and thus we have chosen it as the upper bound for the gradient. Figure 7.4
shows a screenshot at time stamp 1000 mtu, where the bottom of the bridge is clearly illuminated
in red, as a result of many messages waiting for transmission here. The simulation is bounded
at 1000 mtu, where a packet is injected every 35 to 55 mtu, meaning that there are between
18 and 28 packets being sent in the simulation. It took VisuAAL roughly 3 minutes to run the
simulation with 48 nodes in the topology. The entire simulation can be found in Figure 7.3, and
the simulation file can be found in Appendix ZIP, where it is called AODVv2 result 1.sim.

E Figure 7.3: Visualization of Experiment 7.1. The more red
a node appears the more messages are in the message
queue.

The QR Code will redirect to the following link:
https://youtu.be/D8vg5gCmHi4

Intuitively we expected that the bridge would almost constantly be congested. Since we
have set the model up so that messages are sent to random destination, we expected that many
messages would accumulate at the ends of the bridge, because these nodes have many incoming
edges from the subgraph they belong to, but only a single edge toward the other subgraph.
When we look at the simulation, an interesting trend emerges. There does indeed seem to be
congestion on the ends of the bridge, but there is actually congestion within the subgraph as
well. This surprises us, as there is no mechanism as far as we are aware for nodes refusing a
message for the queue. Since the transmitter and destination nodes are randomly selected, we
would not expect any congestion as such within the subgraph. We believe the reason behind
the congestion in the subgraphs to be linked to the flooding that happens during route request
messages, combined with the complex interactions that result from the routing tables being
updated. Recall that as soon as a node knows the wanted destination for a route request it will
respond with a route reply without the route request needing to reach the destination. Further
recall that the routing tables are updated when nodes act as relays for route request and route
reply messages, and that routes to nodes are thus rather quickly propagated.

To see if this was simply a fluke of of the simple simulation, or whether there seems to a
general trend of congestion with multiple simulations, we ran the same simulation but for 100
different runs, so that we could examine the average simulation. This took approximately 1
hour and 10 minutes to execute on our Linux server. We use the same topology as before, but
the following VQ:

[green:0, red:11] OUTPUT nodebuffersize

57

https://youtu.be/D8vq5gCmHi4
https://youtu.be/D8vq5gCmHi4

CASE STUDY - AODVV2 PROTOCOL: Results for AODVv2 Protocol

Figure 7.4: Screenshot from simulation for AODVv2 protocol model at 1000 mtu

58

CASE STUDY - AODVV2 PROTOCOL: Results for AODVv2 Protocol

Figure 7.5: Screenshot from average simulation of 100 simulations for AODVv2 protocol

model at 1000 mtu

59

CASE STUDY - AODVV2 PROTOCOL: Results for AODVv2 Protocol

Note that we in this VQ have changed the colors to be a gradient from a green to red, to
emphasize the changes. We have also decreased the max value in the VQ since the highest
average value was around 11.

A screenshot from this simulation can be seen in Figure 7.5, and the video of the simulation
can be seen in Figure 7.6. The simulation file is called AODVv2_ result 2.sim. In the average
of the 100 simulations, we can see that the nodes in each end of the bridge have more messages
in the message queue than the average node in the network. Furthermore the nodes located
towards the center of the subgraphs always have a tendency to have many messages in the
message queue.

Figure 7.6: Visualization of Experiment 7.1 repeated with
100 simulations, showing the average simulation. The
more red a node appears the more messages are in the
message queue.

The QR Code will redirect to the following link:
https://youtu.be/ZLIgu-2hOyE

We contacted the authors of the model, and presented an earlier version of VisuAAL showing
a similar simulation for a similar topology to them. Rob van Glabbeek replied that he was
surprised to see congestion happening in the areas where it did, just as we were. Specifically,
he wrote the following:

I find your visualisation very interesting, as it shows congestion in a realistic
situation. One of the perhaps surprising outcomes I see is that congestion
happens all over the place; it is less centered in the narrow corridor than one
might have expected.

Rob van Glabbeek [17]

By using visualization we could quickly get an overview of a quite complex situation. We
realized that the behavior of the protocol model is different from what we and the author of
the protocol model expected.

60

https://youtu.be/ZLJgu-2h0yE
https://youtu.be/ZLJgu-2h0yE

8 Case Study - Neocortec MAC
Protocol

In this section we look at a Medium Access (MAC) protocol model that we created in [29]
based on our understanding of Neocortec’s MAC Protocol [27]. We want to stress that the
model and our understanding of the protocol is not the same as Neocortec’s protocol, since
we do not have all the details. We based our understanding of the protocol on the patent
for the MAC protocol owned by Neocortec [27], as well as conversations with Neocortec, but
there are substantial discrepancies not only in which features we have included, but also in
the configurations we run. This means that the results we obtain can not be compared to
Neocortec’s implementation. When we refer to the MAC protocol in this chapter, we are talking
exclusively about our understanding of it.

We will not explain the details of the MAC protocol, since it includes some confidential
information. We will however present an overview which should be sufficient to read and
understand the experiments that we present. For more detail we refer to [29], where we
explain the protocol and the model that we created in greater detail.

We will not present the model for the MAC protocol in this report, since the confidential
details are implemented in the model, but it is available in Appendix ZIP. To give a sense of
the model size, we remark that the model has 7 templates. 6 of the templates are instantiated
for every node in the system. The templates each have between 5 and 10 locations.

The model of the MAC protocol is SMC compatible and for this reason it is only required to
rename configuration and output variables. We will not further discuss changes to the model.

Chapter Organization This chapter is organized as follows:
* In Section 8.1 we briefly describe the terms used in the protocol,

* in Section 8.2 we present some experiments and the results obtained from applying
VisuAAL to the model.

8.1 Protocol Overview

The MAC protocol used by Neocortec serves the purpose of broadcasting data to neighbor
nodes. The key thing is that it happens in intervals, such that the nodes can sleep as much as
possible in order to save energy.

Figure 8.1 shows an abstract overview of the MAC protocol. Initially a node performs an
initial full beacon scan, and then periodically performs full beacon scans, beacon scans, sends
data and receives data. Whenever a node is not performing one of these tasks it goes into a
low-power sleep mode. When doing beacon scans the node listens for other nodes that it can
schedule data transmissions for and can be synchronized to. The beacon scan is divided into
beacon slots where the node either receives or sends scheduling information. Since the nodes
sleep in between tasks, they need to be synchronized, to know when to wake up for the next

61

CASE STUDY - NEOCORTEC MAC PROTOCOL: Protocol Overview

I

Initial Full
Beacon Scan

Full Beacon Scan Beacon Scan
> Sleep <
Send Data Receive Data ‘

Figure 8.1: Abstract flowchart over Neocortec MAC protocol. Original from [29].

task. The node can only receive user data from neighbors if the node has received schedule
information of when the neighbors are going to send this data.

Beacons

To allow a network of nodes to function without a central node, the MAC protocol takes
advantage of synchronizing nodes to other nodes’ beacons. Beacons are short synchronization
messages for nodes within range. A beacon is sent from a node to inform other nodes when it
will be transmitting data packages. The nodes receiving a beacon then schedule when to listen
for data transmissions from this node.

Beacon Scan

For the beacon method to work, each node needs to know when beacons are transmitted. This
is where the synchronization of nodes becomes important. If the nodes are synchronized in
regards to the start time of a beacon period, it is possible to have a beacon scan wherein the
nodes transmit and receive beacons, as shown in Figure 8.2. This transmission and reception
happens in a number of slots, and the beacon scan is significantly shorter than that of a beacon
period. By knowing when the transmission should start, and how many nodes are going to
transmit, it is possible for the nodes to turn off their transceivers outside of the scheduled
beacon transmission times. Periodically the beacon period is replaced by a full beacon scan, to
discover new neighbors.

Beacon Slots

Each beacon scan is split into a number of beacon slots. When a new beacon scan begins, each
node chooses a random beacon slot from a preconfigured set of possible slots. Each node then
transmit their own beacon in their selected slot, and receive beacons of other nodes in the
remaining slots. This method of choosing slots is similar to the Slotted ALOHA protocol [28].

62

CASE STUDY - NEOCORTEC MAC PROTOCOL: Results - MAC Protocol

4

Ay
Lbin

e BEACON_PERIOD ' BEACON_PERIOD '

BEACON_SCAN BEACON_SCAN BEACON_SCAN

Time

Figure 8.2: Beacon scans for a node and how they relate to beacon periods. BEA-
CON_SCAN denotes the length of the beacon scan, and BEACON_PERIOD denotes the
time between two beacon scans. Originally published in [29].

Full Beacon Scan

In order for nodes to discover networks that they are not connected to, the protocol utilizes
special beacon periods called full beacon scans, which work like normal beacon periods, except
that the node keeps listening for beacons outside the beacon scan. The node listens for beacon
transmissions that start at other times than the nodes own beacon schedule. The node can
schedule data transmissions from nodes of other networks and potentially synchronize to
another network. Note that a beacon scan is still performed during a full beacon scan, and that
the length of a full beacon scan is exactly equivalent to that of a beacon period.

Initial Full Beacon Scan

When a node is first enabled, the node does not have any knowledge of its neighbors, and to
obtain this and to start networks quickly, the protocol does a initial full beacon scan. This is a
special beacon scan, where a node tries to discover a network to connect to. In order to do so,
it performs a number of full beacon scans interleaved with normal beacon periods, to faster
discover neighbors that are out of sync.

Scheduled Data Transmissions

The data schedule of a node is independent of the beacon schedule for the protocol. A node
has a unique preconfigured data interval between data transmissions. This interval is retained
throughout the life of the node, such that the period between each scheduled data transmission
from a node is constant, but different from other nodes. The purpose of having different data
intervals for each node is to avoid nodes repeatedly colliding.

8.2 Results - MAC Protocol

In this section we will present the results obtained from visualizing the Neocortec MAC model.
There are two main aspects we want to visualize, one for nodes, and the other for the edges
between nodes.

Both of these aspects will be visualized on a randomly generated topology of size 61 nodes,
which can be seen in Figure 8.4.

For nodes, we want to visualize which slot they have taken, such that it is possible to see
how prevalent the problem of nodes selecting the same beacon slot is. If nodes choose the

63

CASE STUDY - NEOCORTEC MAC PROTOCOL: Results - MAC Protocol

same beacon slot, they will have a collision in their next beacon period, and thus any nodes
listening to both will receive neither transmission.

This is done by tracking the output variable OUTPUT chosen_slot, which is an integer
between 0 and the largest allowed slot. We use a configuration with 8 beacon slots.

For edges, we want to observe when nodes discover each other. We want to see whether a
node is aware of each of its neighbors, which gives an overview of the available communication
channels for the nodes.

The array OUTPUT data is scheduled tracks whether a node is aware of a neighbor’s next
data transmission, in the sense that OUTPUT data is scheduled[x][y] > 0 is true if x is aware
of the data transmission coming from y, and thus will x wake up to receive the data transmission
from y. By tracking this, we get an overview of which nodes will be able transmit to which
nodes, and thus of the connectivity of the network.

Technically, we are able to show both edge visualization and node visualizations at the same
time, but to improve readability in this report, we have chosen to split it over two experiments.

As a third experiment, we want to highlight some of the features of the MAC protocol, which
help with power preservation and how we can visualize this. The experiment visualize the
different operating modes on each node, to get a better overview of how the nodes interact
with each other.

Experiment 8.1 - MAC Protocol - Node Visualization

To visualize the beacon slots in each node, we will use the following VQ, such that nodes will
be colored uniquely according to the slot they have chosen. If nodes do not have a chosen
slot, they will be colored black, the default color for nodes. This is for instance true during the
initial beacon scan.

[red:0, orange:1, yellow:2, green:3, blue:4, purple:5,
wheat:6, gray:7, black:*] OUTPUT chosen slot

We run the visualization up to 60000 mtu, which takes 15 minutes to run in VisuAAL. This
can be seen in real time in Figure 8.3, or on the included simulation file in Appendix ZIP named
MAC result.sim.

Figure 8.3: Visualization of Experiment 8.1, which visualizes
what slot each node has selected. If the node is colored
black, it will not transmit a beacon.

The QR Code will redirect to the following link:
https://youtu.be/fc6pMlLsOro

Figure 8.4 shows a snapshot from time stamp 7074.8 ms. An enlarged version of part of
the top right part of this figure is presented in Figure 8.5, to illustrate how nodes 55 and 59
have chosen the same beacon slot, 5, and are thus both marked purple. This will lead to a
collision on the next beacon scan. By using visualization, a quick way to understand how the
nodes select their slots is obtained, and it is visible how different configurations change the
probability of adjacent nodes selecting the same slot.

64

https://youtu.be/fc6pMlLs0ro
https://youtu.be/fc6pMlLs0ro

CASE STUDY - NEOCORTEC MAC PROTOCOL: Results - MAC Protocol

In addition, we have observed that getting the nodes synchronized can be difficult, such
that their beacon periods start at the same time. The timings between the nodes can be seen
graphically in the visualization, as nodes select a slot at the beginning of every beacon period,
and thus the changing colors in each node marks the beginning of a beacon period. When
the simulation is played back, more nodes become synchronized over time, and thus blink
synchronously.

Figure 8.4: Snapshot from Experiment 8.1. This shows the state of which nodes have
selected what slot at time stamp 7074.8 ms.

Figure 8.5: Enlarged and cut version of Figure 8.4

65

CASE STUDY - NEOCORTEC MAC PROTOCOL: Results - MAC Protocol

Experiment 8.2 - MAC Protocol - Edge Visualization

In this experiment we will show how the nodes become aware of their neighbors’ scheduled
data transmissions. This can be used to see the connectivity of the network, since only by
scheduling data transmissions may the nodes ever send data packages through the network.
The following simple VQ uses the fact that the gradient is optional to color edges red when the
source node is aware of the coming scheduled data transmission from the destination node,
and black if not:

OUTPUT data is scheduled

We use the same simulation as Experiment 8.1, and present a snapshot with this new VQ in
Figure 8.7, which shows which nodes are prepared to receive data at time stamp 17084.5 ms.
The full visualization can be seen on Figure 8.6 where it is replayed in real time.

On Figure 8.7 we can see that we have two disconnected networks, which cannot commu-
nicate. Recall that the red edges visualizes edges where data can be transferred. This clearly
shows the importance of the full beacon scans in order to discover unsynchronized networks
and enable data transmission across the whole network.

E 1 Figure 8.6: Full visualization of Experiment 8.2. It shows
ﬁ"il which of the nodes’ neighbors that have been scheduled

!'- to receive data from.

The QR Code will redirect to the following link:

https://youtu.be/Y5DMfAp8f3A

In addition to this, we visualized both VQ expressions simultaneously from Experiment 8.1
and Experiment 8.2 as shown in Figure 8.8.

Figure 8.8: Visualization of Experiment 8.1 and Experi-
ment 8.2 in the same video.
The QR Code will redirect to the following link:
https://youtu.be/ 1QshtxUayU

66

https://youtu.be/Y5DMfAp8f3A
https://youtu.be/Y5DMfAp8f3A
https://youtu.be/_lQshtxUayU
https://youtu.be/_lQshtxUayU

CASE STUDY - NEOCORTEC MAC PROTOCOL: Results - MAC Protocol

Figure 8.7: Snapshot from Experiment 8.2. This shows the state of which nodes have
scheduled their neighbors data transmission at time stamp 17084.5 ms.

Experiment 8.3 - MAC Protocol - State of Nodes

In this section we look at how we can visualize the state of each node. Ivanov [25] have
annotated the protocol model with power consumption which we can use to distinguish the
state of each node. The model is configured to have a 20 mA current draw when transmitting and
19 mA when receiving. In reality, the current draw for these two states should be approximately
the same, but in order to illustrate the current draw in the visualization and explain the
concept, we have introduced this difference in power draw. Additionally the current draw when
sleeping is 0.5 wA. We are not claiming that this is a perfect annotation to show precise energy
consumption, but these values are based on data from the CC1110 transceiver datasheet [47].
We have come to understand that Neocortec use a transceiver very similar to this. Note that
there are many factors to consider for the current draw for different operating modes and thus
realistically there is not only one value for e.g. transmitting.

In this experiment we want to highlight some of the features of the protocol, where one
of the main purposes is to save energy. We use the following VQ expression for the variable
OUTPUT battery i which describes the current draw, where nodes turn red when transmitting,
blue when receiving and green when sleeping:

[red:20, blue:19, green:*] OUTPUT battery i
For the experiment we generate a topology with 66 nodes. We simulate the protocol model
for 50000 ms, which takes around 30 minutes of query execution time. We show a cut snapshot

visualization of the simulation in Figure 8.9. Note that this is only part of the topology, as the
entirety of the topology is not important yet. The visualization is shown at time 33475 ms,

67

CASE STUDY - NEOCORTEC MAC PROTOCOL: Results - MAC Protocol

where we can see one of the interesting features about the MAC protocol model. Nodes are
only listening when they know a neighbor is going to transmit data. We can see this because
the nodes far from the red transmitting node are green, thus still asleep, while the closer blue
nodes are listening. The blue nodes are all neighbors with the red transmitting node. The full
simulation is shown in Figure 8.10. The simulation can be also loaded into VisuAAL and shown,
it is found in Appendix ZIP named Energy state.sim.

N

Figure 8.9: Snapshot at time 33475 ms. The red node is transmitting, blue nodes are
receiving and green nodes are sleeping.

Figure 8.10: Energy usage of nodes is visualized for the Ne-
ocortec MAC protocol model in 10 % of real time. Nodes
send for only a period of 2 ms, making it hard to see.
The QR Code will redirect to the following link:
https://youtu.be/hPTHiciuhqgQ

As expected the nodes sleep most of the time, and once in a while they wake up to either
send and receive beacons or data. Interestingly, we are able to use the current draw data to
visualize the behavior of the nodes in terms of sleep, transmission and reception, and in this
way understand how the nodes interact. The simulation shows how the nodes only listen to
those of their neighbors, that have scheduled data transmissions via beacon scans.

If we consider the current draw as an indicator of the state of the nodes, a few interesting
things about the protocol behavior can be gleamed from looking at this simulation. One thing
that can be seen in the simulation is how initially nodes all perform the initial full beacon
scan, where all nodes turn blue with some offset and after three periods begin to transmit.
This happens during the first few seconds of the simulation. We will not present a snapshot of
this observation, but we invite the reader to either watch the video in Figure 8.10 or load the
simulation.

68

https://youtu.be/hPTHiciuhqQ
https://youtu.be/hPTHiciuhqQ

CASE STUDY - NEOCORTEC MAC PROTOCOL: Results - MAC Protocol

At time 45212.1 ms, a beacon scan happens as shown in Figure 8.11, where around half the
nodes participate. For this snapshot we added the following VQ expression for edges, to show
which nodes that have scheduled their neighbors:

[lightgray, black] OUTPUT data is scheduled

The nodes doing a beacon scan are particularly interesting, considering that this can almost
only happen when all participating nodes are synchronized, and following the same schedule.
We can see that there are 4 disconnected networks in the snapshot, where the entire top right
network is synchronized. Here we can again see the need for full beacon scans, that will allow
nodes to discover other networks.

In Section 10.2 we go more in depth with the energy consumption of the nodes and how we
can visualize that.

Figure 8.11: Snapshot simulation at time 45212.1 ms. Red nodes are transmitting,
blue nodes are receiving and green nodes are sleeping. Black edges indicate where
neighbor nodes are aware of each other.

69

9 Case Study - Neocortec Routing
Protocol

In this chapter we look at the Routing protocol model that we created in [29], which is based
on our understanding of Neocortec’s Routing protocol [26]. We want to stress that the protocol
model and our understanding is not equal to Neocortec’s protocol, since we do not have all
the details. We based our model and understanding of the protocol on the patent for the
Routing protocol owned by Neocortec [26], as well as conversations with Neocortec, but there
are substantial discrepancies not only in which features we have included, but also in the
configurations we run, which are not the same as Neocortec use.

This means that the results we obtain can not directly be compared to Neocortec’s protocol.
When we refer to the Routing protocol in this chapter, we are talking exclusively about our
interpretation of Neocortec’s Routing protocol.

We will not present the model nor explain every detail of the Routing protocol, since it
contains confidential details. We will however present an overview which should be sufficient
to read and understand the experiments that we present. For more detail we refer to [29],
where we explain the Routing protocol and our model of it in great detail.

To give a sense of scale, we remark that the model has two templates, where one, the
SetupTemplate, is instantiated once, and the other, Node is instantiated for every node. The
SetupTemplate has two locations, and is used to instantiate arrays. It performs this instantiation
at time O and is never active again. The Node template has 8 locations and 18 edges. The
model of the Routing protocol is SMC compatible and for this reason it is only required to
rename the output and configurable variables which are desired for visualization. The changes
to the model are trivial and we will not discuss these changes further.

Chapter Organization This chapter is organized as follows:
* In Section 9.1 we briefly describe the Routing protocol,

* in Section 9.2 we present the results obtained from applying VisuAAL to the model.

9.1 Protocol Overview

The goal of the Routing protocol is to route data from one node to another. For this protocol
there are normal nodes and sink nodes. When data is routed, only sink nodes can be a final
destination. All the nodes have only the information of which neighbors they have, and which
intermediate node to send to in order to reach each sink node in the network. The routing
information for nodes is contained in a routing table, and is updated regularly.

An important detail is that the nodes’ data transmission schedules are not synchronized.
The nodes all randomly select offset for transmission, meaning that nodes will likely have a
different transmission delay compared to their neighbors’, such that collisions between them
eventually are resolved.

71

CASE STUDY - NEOCORTEC ROUTING PROTOCOL: Results - Routing Protocol

9.1.1 Race Numbers

The protocol uses race numbers, which are broadcast from sink nodes at regular intervals
and flooded through the network. Receivers of a race number store it if the number is the
newest race number from the sending sink node. Since nodes store the race number only if
it is newer than the currently stored race number, it will most likely be a fastest route to the
sink node. For instance if a node receives a race number from a neighbor and later receives
the same race number from another neighbor, it knows that the first received sender is likely
a fastest route toward the sink node. Note that this may change due to nodes sending at
different intervals. The race number is incremented for every race number the sink node sends
through the network, with the added caveat that when a maximum race number is reached,
the race number is reset, such that a cyclical scheme is used to transmit race numbers. Note
that only sink nodes increment race numbers, and the ordinary nodes simply retransmit their
race number at regular intervals.

9.1.2 Routing Table Construction

Each node maintains a routing table with race numbers with an entry for each sink node in
the network. Each entry of this routing table contains the id of a sink node, the newest race
number received for this sink node and the neighbor that sent this race number. When a node
needs to transmit a data package to sink node s;, it transmits directly to the node specified by
the routing table at s;, and in this way propagates the data toward the sink node. Note that
this means that the protocol (and model) assume bidirectional communication.

9.2 Results - Routing Protocol

We will now visualize the behavior of the Routing protocol model which we presented in [29].
For these experiments, we want to again stress that the configuration variables we use are in no
way representative of the parameters used by Neocortec, and have been chosen by us for our
model. Thus, the results we obtain give information about our understanding of the protocol
and our model only. The first thing we will look into is the progression of race numbers and
the second is the routing of a package to a sink node.

Experiment 9.1 - Routing Protocol - Race Number Visualization

To track race number progression in simulations we add some output variables to the model
to support this. For this experiment, we setup the model with 2 sink nodes that will flood
the network with race numbers. The largest allowed race number is 5 in this configuration.
The variable Node.OUTPUT first sink race and Node.OUTPUT second sink race contains,
for every node, the race numbers of the first and second sink nodes which have id 0 and 1
respectively.

We use the following VQ expression to visualize when nodes have received a race number
from the sink nodes. The expression uses 3 conditional operators in order to differ between the
combinations of data. The expression returns 3, which is the color green, if a node has received
a race number from both sink nodes. The expression returns 2, which is the color red, if a node
has only received a race number from the first sink node. The expression returns 1, which is the

72

CASE STUDY - NEOCORTEC ROUTING PROTOCOL: Results - Routing Protocol

color blue, if a node has only received a race number from the second sink node. In the other
case where nodes have not received any race numbers, the value is O with the color lightgray.

[blue:1,red:2,green:3,lightgray:*]

Node.OUTPUT first sink race > -1 && Node.OUTPUT second sink race > -17 3
: Node.OUTPUT first sink race > -17 2

: Node.OUTPUT second sink race> -171

: 0

In Figure 9.2 and Figure 9.3 we show two snapshots of a simulation of the routing protocol
after 3 and 5 seconds respectively, with the VQ described above. The topology contains 63 nodes
in total and it takes less than a minute to generate the simulation. The full visualization video
can be found in Figure 9.1, and in Appendix ZIP where we have also included the simulation
file, which is named routing exp 1 a unmodified.sim.

Figure 9.1: Visualization of Experiment 9.1 which visualizes
when nodes receive race numbers from sink nodes. Ple-
ase note that the video is shown in 50 % real time, and
the first 8 seconds are shown.

The QR Code will redirect to the following link:
https://youtu.be/H3vAnQpw3VE

The visualization of the model shows some interesting aspects of the protocol model. Nodes
send all race numbers at some specified interval. We can see when simulating the model, that
the interleavings of these intervals affect how fast the race number progress in the network.
From the visualization we can see there is a sequence of nodes where they all send right after
the node before it, such that a race number can pass several nodes in a very short time frame,
compared to when nodes wait an entire interval before sending the race numbers.

In the model the nodes do not initialize until they receive the first race number. After the
initialization, the nodes send a race number after waiting exactly its sending interval. Because
of this, the propagation of race numbers is slow to begin with, since that for every jump of a
race number, the entire interval of each node will pass. When nodes are already initialized
the interleavings of intervals can cause race numbers to propagate faster. In a scenario where
nodes cannot lose packages, the slowest propagation of race numbers happens when for every
jump, the following node waits its entire interval before sending it.

We believe that race numbers will initially propagate faster in the network, if they from
the start follow the intervals with the random interleavings between nodes. We made a small
change to the model to test this, where nodes follows their intervals from the beginning. When
a node receives the first race numbery, it will instead of waiting an entire interval, only wait the
remaining time for the current interval.

We continue the experiment with the topology shown in Figure 9.2. The simulation of the
revised model, which is included in Appendix ZIP named routing exp 1 b modified.sim,
shows that the race numbers progress faster to begin with. From our visualization we can
see for the original model, it takes around 6 seconds to propagate race numbers from both
sink nodes to all nodes. For the revised model it takes around 5 seconds to propagate the race
numbers to all 63 nodes.

73

https://youtu.be/H3vAnQpw3vE
https://youtu.be/H3vAnQpw3vE

CASE STUDY - NEOCORTEC ROUTING PROTOCOL: Results - Routing Protocol

Figure 9.2: Visualization of the Routing protocol at time 3 s. Red nodes: received race
number from first sink node. Blue nodes: received race number from second sink
node. Lightgray nodes: Received no race number.

Figure 9.3: Visualization of the Routing protocol at time 5 s. Red nodes: received race
number from first sink node. Blue nodes: received race number from second sink
node. Green nodes: received race number from first and second sink node.

74

CASE STUDY - NEOCORTEC ROUTING PROTOCOL: Results - Routing Protocol

These results are only based on few simulations that we visualized, and in order to support
these results we load the models in UPPAAL, and run a number of UPPAAL queries on both
models, that estimate the probability of all nodes having received a race number from both sink
nodes. Following is the UPPAAL query, where we run it with different time bounds x, where x
is either 3, 4, 5, 6, 7 or 8 seconds converted to model time units:

Pr [<= x] (<> forall(i:node id) Node(i).OUTPUT first sink race > -1 &&
Node (i) .0UTPUT second sink race > -1)

The results are shown in Table 9.1, which clearly shows that this small change in behavior of
the protocol model will decrease the time it takes to propagate the first race number of sink
nodes to the entire network. The visualization with the same VQ on the revised model can be
seen in Figure 9.4.

Figure 9.4: Visualization of Experiment 9.1 which visualizes
when nodes receive race numbers from sink nodes. This
simulation uses the revised model. Please note that the
video is shown in 50 % real time.

The QR Code will redirect to the following link:
https://youtu.be/-BiDkfUcU5g

We were not aware of this behavior when we created the model, and this experiment shows
how even authors of the model can discover details about what is going on in the model with
help from VisuAAL by visualizing the behavior of a model.

Time bound (s) Original model result Revised model result

3 [0,0.097] [0,0.097]
4 [0,0.097] [0.333,0.433]
5 [0,0.097] [0.874,0.974]
6 [0.334,0.434] [0.903,1]
7 [0.893,0.992] [0.903,1]
8 [0.903,1] [0.903,1]

Table 9.1: Probability estimate of all nodes receiving a race number from node 0 and
node 1 within a time bound. Standard UPPAAL settings are used for running the
queries.

Experiment 9.2 - Routing Protocol - Data Routing Visualization

The purpose of the Routing protocol is to route the data using a fastest path. Note that this
might not be the path with the fewest links, but rather is the route where the package arrives
the quickest. To obtain an heuristic of this, the race numbers are used, so that the reverse route
of the fastest race number transmission is used. Further notice, that the route that the race
numbers take is dependent on the internal timings in the nodes, and their transmission offsets,

75

https://youtu.be/-BiDkfUcU5g
https://youtu.be/-BiDkfUcU5g

CASE STUDY - NEOCORTEC ROUTING PROTOCOL: Results - Routing Protocol

2 b . - .
2) . Source”
. . i)
— *UK b /g‘" D ?;‘\ =
X /g‘ \ N / & @
\. ~ N\ / b <
A Y, \
2NN]
& N\ -
\\ o 4 I
z‘u \ 7 S\ \“ 115
e H . i
% j o 2
| S
[3 73 / ‘ B e — f// 8
o VS /0{ S — ‘»:’f—ﬁ ali— 116 “
s 8
/ o . \ e |
oy V7. 4 o .
b \ I AN . b
A\ . N\ L] |
" \ AN |
\ o
\ L
/H . \.\ 108 |
/ ® e bt . 07, —
b 10% & ‘e e // 11
" /i 12, s
. / / 2 [} N 7
" -
i 4)) Yo s
| 3 5 » 10s b T
W . A iy s
. Jm 3y
/ ./ (] . a7 Lo
L 101
s f . b 3 *
i 3 prd @ ¢
. I\ e .
B? | ‘& 22
| .
5 . 33
g
)// . .
& 2 o
. . .
@ : o 8 ey A
- .
o o & o 100 .
. a7
Destination o :
b 3 .
L] - 94

Figure 9.5: Visualization of the Routing protocol at time 20 s, with a maximum race
number of 5. Edges turn red when at least one of the 5 simulations includes the edge
in aroute.

which are randomly selected on startup. We will now take a look at how we can visualize the
route that a data package takes through the network. As an example, we will make node 122
send a single data package to sink node 0, in a topology with 123 nodes in total. To track where
the data has been sent, we add the output variable OUTPUT sent data_to, that we can use to
mark edges when data is sent from a node to a neighbor. In the simulation, race numbers are
flooded in the network and as soon as node 122 receives a race number from node 0, it sends
a data package back. In order to show paths from several simulations we use the simulation
average of 5 simulations. It takes around 20 minutes to run the simulations. In Figure 9.5 we
show how the data is routed for the 5 simulations. For the VQ we want to show every edge
that is included in a route from node 122 to node 0 across the simulations. If an edge is part of
a route in a single simulation, the output variable OUTPUT sent data to is 1. Since we have
5 simulations making up the average simulation, the corresponding output variable will thus
have the value x/5, where x is the number of simulations that exhibit this edge. To show all
edges that are part of a route, we use the following VQ expression, where an edge will be gray
if it is not used, and red otherwise:

[gray,red] OUTPUT sent data to >0

The full visualization video can be seen in Figure 9.6 and in Appendix ZIP, where it is named
routing exp 5racenumber.sim. In the snapshot in Figure 9.5, we can see that there is a
wide variety in the routes chosen, and that there are a number of edges where the routes use
both directions, which should never happen, because using such a loop will always result in a
longer route in a static topology. This is especially visible in the top left corner, where the edge

76

CASE STUDY - NEOCORTEC ROUTING PROTOCOL: Results - Routing Protocol

. .
. = . e Su .
b
. . s, ource®
80 ° Vi 13 =
. / i
.. 5 T3 e —
2 =7
/ b
/
/ -
. v /
CoE -1 N
2) Vi ®
/
. /
. y .
b . /
. 5 e .
" 2 S &
o g pe = Nipa o e
24 81 R o .o 118
P 48 T]
- ®
.
a7 4.a 5 e %
. s . . -
[} L]
. 3 L
by
b
. .
11 Y. . 4 108 ~
. b 2 L & .
14/ o 75 e
[] / 43 (]
b / 5 0
[2 . . o8
3 L, $ > 2
»
b4 e
/ . . 4 o
; 3 & o
. e, 101
i . . &7 o
S 3 36 .
o N 65 a.z o
% \ 2
b . L,
7 9 'S .
g a8
'3 . . .
1 L] 95
@ & -
VA [. o
0 0 b4 i " .
Destination - :
b % .
e - 9 =

Figure 9.7: Visualization of the Routing protocol at time 20 s. One simulation with a
which reaches the sink node. Edges turn red when they are included in the route
towards the sink node.

between 29 and 59 has been used both directions, with two incoming edges but only a single
outgoing edge.

!I Figure 9.6: Visualization of Experiment 9.2. Edges are colo-
red red when they are included in one of the five simula-
tions.

The QR Code will redirect to the following link:
https://youtu.be/Pod2-R2w5bo

In addition, by switching between the simulations, we can see that several of the simulations
do not reach the sink node. The reason is that the maximum race number is too low for the
topology used. We know that the maximum race number needs to be set at a sufficiently large
value, such that a node can differ between when a race number is newer than the previous.
The issue of not being able to distinguish between race numbers, and thus not sending through
the optimal route, was one of the issues that we explored in [29]. Recall that the maximum
race number for this experiment was 5. If we look at Figure 9.7, we can see a simulation where
a route was chosen that actually reaches the sink node within the allocated 30 seconds. While
this route does make a detour initially and bounces between nodes in the top, the message is
received by node O after 20 seconds.

7

https://youtu.be/Pod2-R2w5bo
https://youtu.be/Pod2-R2w5bo

CASE STUDY - NEOCORTEC ROUTING PROTOCOL:

Results - Routing Protocol

Be

Destination

*
94

. .
2 o SM
— ource®
. i . e —
] . ~ .
5 \.‘Jﬂ
1
/)
e
o . \
2 \
. * g . \
» ; \
" 119 \
\
5 .
. & e
L —3 L] \
59 s 90 \
. =T \
° \
-~ 5 ek e \
e & ——0 |
] Ee |
a7 z \ o & ‘
15 . o ®
\
. L3 . |
b b \W |
“m\ . |
. o \\\ ~. “
50 2 () x or ~—3
10 4 @ e bl
. 112, o
43 ™ \
78 L
by . - o ®
. . .
51 el
. . 4 *®
3 o 7y
e 3 01
. . e ®
26 s
& .
b
.
. 2
9
.)
7
.
. ”]
20 '
& .
L
® i 100 .
o

.

@
L]
102

Figure 9.8: Visualization of the Routing protocol at time 20 s. One simulation with a
route that does not reach the sink node. Edges turn red when they are included in the
route towards the sink node.

One of the other 5 simulations that did not reach the destination within the 30 seconds is
shown in Figure 9.8. Note the direction of the colored edges, which show how the package
was transported around the network.

In order to show how a larger race number range affects the protocol behavior, we configure
the model such that the maximum race number is 10, and run 5 new simulations. The result
from this is visualized in Figure 9.10, which uses the same VQ expression. For these simulations
all 5 simulations reach node 0 within the time bound, and we do not see any loops in the
utilized routes. The full visualization video can be found in Figure 9.9 and the simulation file
is included in Appendix ZIP, where it is named routing exp 1lOracenumber.sim.

Figure 9.9: Visualization of data routing with 10 race num-
bers. Edges are colored red when they are included in

one of the five simulations.

The QR Code will redirect to the following link:

https://youtu.be/4QsclFrwaKo

This experiment illustrates how we can use VisuAAL to see the concrete effects of configuring
the Routing protocol model. In addition it illustrates how a specific topology might be explored,
such that given a precise model, companies like Neocortec can confidently say how a given
configuration will behave in a given use scenario.

78

https://youtu.be/4Qsc1FrwaK0
https://youtu.be/4Qsc1FrwaK0

CASE STUDY - NEOCORTEC ROUTING PROTOCOL: Results - Routing Protocol

By

S
s
L

. | .
b | & 109
| 3 L
o | 72 7
| Aot |\ o
71\ =
. | / \ &
AN ". - / \‘- < bR
e 50" / azy
0 / < e N "
4 / \ 7 12
[.
L) | 45 \o
! |/ . g .
ll 4
l % 2 - 105 o Tos
5 @
n: 5t
° /g y | v
A\ /) °
/ Y / a8 1 7 56793
V. [o
D g
—— - / T 38,
~ / g
~ N | / s .
\ |
S \ y
—_— .
5 o b
! 'Y

EL
L}

.
100 L]

Destination) . C !
L] []

Figure 9.10: Visualization of the Routing protocol at time 20 s, with a maximum race
number of 10. Edges turn red when at least one of the 5 simulations includes the edge
in a route.

Experiment 9.3 - Routing Protocol - 50 Simulations

In Experiment 9.2 we discovered that if we use up to 10 race numbers, we would not generate
incorrect routes towards the sink node. However, we made this conclusion on just 5 simulations.
We will not be able to check that this can never happen for the given topology, since the model
is far too big for standard model checking. Instead, in this experiment, we want to base that
conclusion on more data. We have thus simulated 50 runs of the Routing protocol, with the
same topology and configuration, and will illustrate the behavior on a larger data set. This
was executed over the span of 4 hours on our Linux server. The simulation file is attached in
Appendix ZIP named routing exp 3 50sims.sim.

When we use a larger data set, manually inspecting all the routes to ensure that they conform
becomes difficult, because they may overlap such that it appears there are incorrect routes or
loops. Thus, Figure 9.11 shows the average of the simulations (as described in Section 5.9),
such that we can get an overview of which edges are more often used in a route across the
simulations. Figure 9.12 shows a snapshot at time 30 seconds. Note that this simulation is
different from the ones shown so far, in that we are interested not only in which edges are
used, but also the frequency of their use. We expect that most of the simulations follow the
same route, such that a darker color is used along the direct route, with the edges close to the
direct route being less frequently used. We also expect no loops in the routes obtained.

We have used two VQ’s. The first is as following:

Node.OUTPUT first sink race

This will change the color of a node from black to red when it has received a race number from

79

CASE STUDY - NEOCORTEC ROUTING PROTOCOL: Results - Routing Protocol

sink node 0. Recall that the race numbers are flooded before any messages are sent, and by
visualizing the race number on the nodes, we are also able to see how the propagation of race
numbers progress across the 50 simulations.

The second VQ is as following:

[ghostwhite, red] OUTPUT sent data to

This will change the edges from the color “ghostwhite” to a gradient of red. It just so happens
that “ghostwhite” is almost the same color as our background, rendering unused edges invisible.
The more often the edge is used in a route towards the sink node 0, the more red it will appear.

Figure 9.11: 50 simulations of the Routing protocol with
a 123 node topology. Nodes are colored red when they
receive a race number. The more often a edge is used in a
route for data transmissions, the more red it will become.
Note that the video shows the simulation being played
at 50% of real time.

The QR Code will redirect to the following link:
https://youtu.be/OhWEznyqTr8

We can see in the visualization how all routes from node 122 are heading towards sink node O.
The majority follow the same edges, however, there are some lightly colored edges, which show
the diversity of the routes. There are no loops, and it appears that all 50 simulations managed
to send the data package to the sink node within 30 seconds. Interestingly, it seems that there
is consensus among the simulation about the first few edges, where almost all simulations
have chosen the same edges toward the left, except for the choice between nodes 120 and 121
where the simulations seem to split between the two candidates. All simulations use node 113
after this. Now that we have 50 simulations, we can with higher confidence say that 10 race
numbers is a better configuration than 5 race numbers for this topology and setup.

80

https://youtu.be/0hWEznyqTr8
https://youtu.be/0hWEznyqTr8

CASE STUDY - NEOCORTEC ROUTING PROTOCOL: Results - Routing Protocol

5o

Destination

©@,

e

2@

20

20

e

=]

e

L]

20

20

20

L)

13
[]
88
e o
g0 110
e
108
[]
i
[
108
L]
2y) P
B 112
[]
105
[
67
[]
6
L
o8
.
95
-
89 P

L)
114

®
Source ™

L]
118

°
107

100 °

Figure 9.12: Snapshot of the simulation presented in Figure 9.11 at 30 seconds. Nodes
are colored red when they receive a race number. The more often a edge is used in a
route for data transmissions, the more red it will become.

81

10 Current Applications of VisuAAL

In this chapter we will describe the users that already are using VisuAAL or have planned to do
SO.

Chapter Organization This chapter is organized as follows:
* In Section 10.1 we present the collaboration with Neocortec and LinkAiders,

* in Section 10.2 we present a modified version of the MAC protocol model introduced in
Chapter 8 which contains information about the battery level.

10.1 LinkAiders

Neocortec currently have a collaboration with the company LinkAiders to improve communica-
tion availability in disaster areas, specifically to allow coordinators a fast and efficient overview
of the impact of disasters that may occur.

As mentioned, LinkAiders and Neocortec work toward building devices which can be used
across large areas in the Philippines during natural disasters. When a disaster hits the area, the
infrastructure is very often destroyed, thus normal telephones cannot be used. The device from
LinkAiders, which is called Reachi, will help in this regard, by having the Reachis themselves
work as a large scale mesh network. By providing relief workers in the affected areas with
Reachis, they will be able to report the status of their area more quickly than what is currently
possible, allowing an overview of the impact that the disaster caused, which enables more
effective relief help. Neocortec’s role is to provide the mesh networking capabilities for the
Reachi using a special long range module, and thus the Reachi will use the protocols that
Neocortec developed. LinkAiders develop the user interface and design all other aspects of the
Reachi.

LinkAiders expect to deploy thousands of devices across the Philippines!, where a few of
them will act as sink nodes. These sink nodes have a satellite uplink, and reports directly to
the coordinators, so that the disaster relief can be directed to where it is needed the most. A
prototype version of the Reachi can be seen in Figure 10.1.

At the time of writing, prototypes for the Philippines project are being developed and tested.
We were approached by Neocortec and LinkAiders because they are performing tests where
they deploy devices and log the internally reported connectivity and locations of the devices.
Neocortec informed us that it would be in their interest to visualize how the nodes have moved,
and how the protocol has dealt with this change in topology. In addition, they want to simulate
how their protocols would behave, based on this realistic topology, and to compare this with
the observed behavior. In the prototypes, a special log file is generated for each node in regular
intervals. This log file will contain information regarding the node location and neighbor
connectivity. Based on these log files, we will be able to calculate a topology, annotate the

!Neocortec published more information here: https://gallery.mailchimp.com/
0ba00e8442e65e6e68d594bb8/files/1903658f-e0fd-4d71-af9b-b04688e4fa2a/65K. pdf

83

https://gallery.mailchimp.com/0ba00e8442e65e6e68d594bb8/files/1903658f-e0fd-4d71-af9b-b04688e4fa2a/65K.pdf
https://gallery.mailchimp.com/0ba00e8442e65e6e68d594bb8/files/1903658f-e0fd-4d71-af9b-b04688e4fa2a/65K.pdf

CURRENT APPLICATIONS OF VISUAAL: LinkAiders

Figure 10.1: Prototype version of the Reachi from LinkAiders website [33]

model when the topology changes, and also visualize the movement of the nodes. Unfortunately,
the tests will not be done before we finish our project, so the following tests are only based on
dummy data. More specific details of this GPS log can be found in Section 5.6.

10.1.1 Contribution to LinkAiders

Our tool is able to provide LinkAiders with an overview of how the connectivity changes over
time in their test, and at the same time a tool to simulate how the protocol behaves in real-life
scenarios. This will allow LinkAiders to not only visualize their test, but also to examine the
effects of different configurations.

LinkAiders are initially only interested in visualizing the GPS data they obtain from their
tests. Each node will log its GPS coordinates, the internal neighbor list, and the RSSI for the
connection to each neighbor neighbor. When the nodes move around, the neighbor list changes,
and the RSSI, which is a measure of the connectivity strength, will also change over time. Our
goal is to load this in VisuAAL, and show how the topology changes over time, so that Neocortec
and LinkAiders will be able to more easily visualize the network based on the logged data, and
through this gain additional knowledge of the data. To our understanding, they are not initially
interested in simulating the protocol behavior on top of the topology that arises from the GPS
log data, and thus we need only show the topology over time with RSSI values on the edges.

To do this, we create an empty model for this purpose. The model has a single template
with a single location and no edges. The only other content in the model is a topology and the
required CONFIG_NR_NODES variable. This does not affect the number of templates, since there
will be no variables attached to nodes in this model. Thus, when the dynamic updates templates
are added, there will be only two templates in the model being used for the simulation, ensuring
that the limiting factor in the instantiation and simulation time is the dynamic update template.

Since LinkAiders have not completed their tests at the time of writing, we generate a GPS
log file with the required format, where there are 98 stationary nodes, and 2 nodes which log
their location every second up to 500 seconds. The node moves 7 meters for every second in
average. Node O starts in the bottom right corner and moves toward the top left corner, whereas
node 1 starts in the bottom left corner and moves toward the top left corner. In our data,
the moving nodes are connected to all neighbors within 400 meters, based on the euclidean

84

CURRENT APPLICATIONS OF VISUAAL: LinkAiders

distance between nodes. We calculate a signal strength between neighbors, such that nodes
that are close to each other have a high signal strength. This signal strength can be used as an
output variable in VisuAAL. In Figure 10.2 this experiment is shown at time 222555 ms. The
simulation took 10 seconds to generate on a model which has no actual protocol. The only thing
that can be observed on this simulation, is the output variable OUTPUT RSSI. A snapshot of the
simulation can be seen in Figure 10.3, but we strongly recommend the reader to view the video
to see how the topology changes. The first 50 GPS log entries from the entire log file can be
found in Appendix D. The entire file with all 50100 log entries, which we used to generate the
dynamic topology can be found in Appendix ZIP. The log is called GPSLog dynamic 0 1.txt
and the simulation file is called DynamicPathing100Nodes500000ms.sim.

j Figure 10.2: Topology with 100 nodes, where two of them
- move dynamically around. The more red an edge appear,
the higher signal strength.

The QR Code will redirect to the following link:
https://youtu.be/qTRV6itAv30

=]

b b =9 4
. [29 R = [& i
17 s T\]]
9 M 74 | a1 M
\ .- 53 A\l
4 - ‘s‘a . P Sy 2‘1 \ e
& 28 o N i
L] \, ik
’ by RN I
an o ‘e \\
g > . 12 |
= ol il b—
] v I\ 70 4
L]
9 | .
.
18
.
- &t . 2
90 7 51
[3 33
0
.
- 96
.
i
[} \ .. i o
i \ 748 it 47
¥ ° pr: SN 7
o 92 . . ‘o
a0 44/ &
[
&t
48! L]
=] ™
¥ . /0
6 [
2 o S [0
! b
[] \
=
[b [
7%
1 w 5 %
] \
i fi 2 \ 2
l/ .
e AN
| it -4 3 ‘ \
asx ||
;v% 1l L] s ax
\\) m
H b 5
-
7 | = .
b e
= i

Figure 10.3: Snapshot from Figure 10.2 showing signal strength

10.1.2 Performance Data for GPS Log Loading

LinkAiders and Neocortec are interested in simulating the protocol behavior using a realistic
topology recorded from a GPS log for longer periods than we typically have done in our project.
In [29] we discovered that this is not trivially accomplished since it takes much time to generate

85

https://youtu.be/qTRV6itAv3o
https://youtu.be/qTRV6itAv3o

CURRENT APPLICATIONS OF VISUAAL: LinkAiders

these simulations, depending on the size of the topology needed. We showed that our protocol
models based on our understanding of Neocortec’s MAC and Routing protocols are able to
simulate data for 100 nodes at approximately the same pace as real time, thus it takes as long
time to generate the simulation data, as the simulation data spans. Generating data for long
periods of time is beyond the scope of this project.

Instead of attempting to generate simulations for long periods of time, we will try to stress
the system in other aspects to see which limitations apply. This should give us an idea of what
VisuAAL can reasonably be expected to do. In relation to the experiment LinkAiders perform,
we have generated a GPS log file with 50100 log entries simulating 100 nodes, where two of
them move. Each node logs its position, all neighbors and their RSSI for every 50 ms. All in all,
there are 1686 dynamic updates in the file, where an edge has changed. If we include the RSSI
changes and the coordinates of all nodes at all times, which are not propagated to the model,
there are 453190 updates.

We are able to parse and handle the discussed log file in VisuAAL without any considerable
slowdown. If we use the MAC Protocol model based on Neocortec’s MAC protocol with a 100
node topology, loading, parsing and propagating the changes to the XML model is performed
in a matter of seconds. Executing a query bounded at 1000 ms is done on Windows 10? in 75
seconds, and 5000 ms is done on Windows in 226 seconds.

To try and push the log file size further, we generate a log file with 15 nodes that are all
moving, and where all nodes move to random locations at all times. Thus, the connectivity
changes constantly, and there will be a huge number of dynamic updates to be propagated to
the model. There are 20160 log entries in this file. This file results in 86338 locations for the
dynamic update template in the model. These annotations to the model have a consequence
on the run time during simulation, and an especially big impact on the memory usage for the
model. The Windows version of UPPAAL is a 32-bit application [51], and in our experiments,
it has been impossible for us to run simulations on a model with this many dynamic updates,
before UPPAAL runs out of memory. However, the Linux version of UPPAAL is 64-bit, and here
VisuAAL is able to read, parse and perform simulations with the same log file. The execution
time for a simulation bound to 10000 ms on this model on the Linux server was 1,112,855 ms,
or approximately 18.5 minutes.

We executed a second query with a 1 ms time bound on the same model and machine, and
found that this finished in 1,108,741 ms, meaning that if the exact same amount of time was
used to load the model for these two runs, the vast majority of time was spent doing this.

Based on this, we conclude that the main limitation in regards to reading and using GPS
log files is dominated by the memory usage of the resulting model, and the model load time.
It seems that the simulation execution time is not affected in as large a degree as these other
factors. While Chapter 11 explores how the simulation run time can be improved further for
mesh network protocols, improving the memory footprint and model load times are beyond
the scope of this report.

10.1.3 Parallel Computation of Simulations

One issues with VisuAAL is that it will still take a long time to simulate the protocol when one
wants to simulate multiple days or even weeks of real time of a large realistic topology. However,

2Intel Core i7-3610QM

86

CURRENT APPLICATIONS OF VISUAAL: Energy Consumption

once a simulation has been run, it is saved for later analysis, meaning that the simulations
could be performed on a remote server, from which the results can be extracted on completion.

Since all the versions of UPPAAL and verifyta we have used are single-threaded, having a
solution where verifyta is run on a remote device or through some other wrapper can also
be exploited to run many simulations in parallel, and thus use all the cores on the remote
server to speed up simulation. Since all the simulations are calculated independently of one
another, executing a query where N simulations are needed can be emulated by having N
concurrent processes execute one simulation at a time, and combining the data from each
process. Using this approach comes at the added cost of having each process instantiate the
model and maintain this in memory for each process. VisuAAL supports this idea of executing
verifyta in parallel in the sense that one can start many verifyta processes through VisuAAL,
running in parallel with different models and parameters at the same time. When a process
finishes, the data processing is also performed concurrently, and a tab is opened with the results.
Thus, VisuAAL can be used to have many experiments running concurrently. We do however
not support combining the data from separate processes, but this could easily be extended in
the future.

One issue that must be overcome in this regard is the verifyta initialization time and closely
related, the memory consumption. When UPPAAL executes queries, it will take the model
specification and compile this into a format in memory that can be used for running queries.
Once this is done, the query can be executed. In our case the verifyta initialization is never
finished on the 32 bit Windows version of UPPAAL, since we exhaust the addressable memory
allocated to the verifyta process. For simulations, this same model is used to execute all
the simulations, meaning that the setup time is independent of the number and length of
simulations that must be executed. This is important when we want to consider parallelization,
where the model is shared among the simulations being executed.

If the simulation execution time is dominated by the verifyta initialization time, having each
process construct and maintain their own model is problematic, but if not, parallelization can
be achieved with little additional work. The verifyta initialization time largely depends on
the model. For simple models and sufficiently long simulation bounds, it might make sense
to construct a model for each process, but in the concrete case examined in Section 10.1.2,
verifyta initialization took ~ 99.996% of the total query execution time, and in this case sharing
the model and executing the queries sequentially will be far superior to having a model for
each query.

10.2 Energy Consumption

We introduced the MAC protocol in Chapter 8 and the model of it that we created in [29]. Ivanov
[25] has as part of his student project added energy consumption to the model, based on the
kinetic battery model [34]. One issue that Ivanov discovered, is that it is very time consuming
to simulate a model that includes the kinetic battery model. Instead Ivanov annotated the
MAC protocol model with the current draw for nodes that should be expected based on the
state of the model, i.e. if it is transmitting or sleeping. He then does post-processing based
on the current draw of nodes, and computes the analytical solution of the energy model. The
post processing is performed in an application that wraps verifyta. The wrapper has the same
output format as verifyta, such that it can be used by VisuAAL directly.

We will now briefly explain how the kinetic battery model works, based on [34]. The kinetic

87

CURRENT APPLICATIONS OF VISUAAL: Energy Consumption

Bound Charge

Available Charge

T —— Current Draw
Rate Factor

Figure 10.4: lllustration of a battery where a is a number between 0 and 1, describing
the split between available and bound charge

battery model, models a battery as having an available charge and a bound charge. We can
always draw energy from the available charge, but cannot draw energy directly from the bound
charge. When the available charge is reduced however, energy from the bound charge will
slowly flow to the available charge. If a lot energy is drained over a short period of time, it
could drain the available charge completely. Instead the energy usage should be balanced,
in order to use the bound charge efficiently. Ivanov [25] calculates the available and bound
charge in the wrapper and outputs it appended to the UPPAAL output.

An overview of the Kinetic Battery Model is shown in Figure 10.4. Note that the flow of
energy between the bound and available charge is dependent on the Rate Factor, the capacity
of the battery and the ratio of capacity in the bound and available charge.

We will now visualize the energy usage of nodes and how the available charge behave during
simulation. We have from the output of Ivanov’s wrapper three output variables:

OUTPUT _battery_i The current draw
OUTPUT _battery_a The available charge

OUTPUT battery_b The bound charge

10.2.1 Battery Charge Level

In this experiment, we look at the energy usage for nodes in the MAC protocol. We setup
the kinetic battery model for nodes to follow the specifications of the VARTA CR2450 battery
provided by Ivanov [25]: The nodes have approximately a total charge of 2.47 x 10° mAms,
where 5.3 % of the charge is the initial available charge and a rate factor of 3.34x107%/ms,

The specifics of how the energy flows and how fast, is out of the scope of the project, and it
is sufficient to know that energy does flow over time at a rate dependent on the ratio between
the bound and available charge and the capacity in each. For more information see [25, 34].

We configure the model to have a 20 mA current draw when transmitting or receiving and a
current draw when sleeping of 0.5 uA. We are not claiming that this is a perfect annotation
to show precise energy consumption, but these values are based on data from the CC1110

88

CURRENT APPLICATIONS OF VISUAAL: Energy Consumption

transceiver datasheet [47]. We have come to understand that Neocortec use a transceiver very
similar to this. Note that there are many factors to consider for the current draw for different
operating modes and thus realistically there is not only one value for e.g. transmitting.

For this experiment we expect the nodes that have many neighbors to use the most energy,
because they wake up to listen for neighbor data transmissions often. Due to the complex
relationship between the bound charge and the available charge, the available charge may over
time either increase, decrease or stay balanced. For instance if the protocol models nodes has a
balanced energy usage, we expect that the nodes will draw sufficient amount of energy, that
is transferred from the bound charge, and the full charge of the battery will be used, without
draining the available charge completely.

The intention was to do this experiment for 100 simulations, that each run to 3600000
model time, which equals 1 hour. We ran the simulations for approximately 12 hours, and
it provided a lot of data. Afterwards VisuAAL should collect the data from verifyta, but an
exception occurred. We have not executed such a large experiment before, and did not use an
efficient way to store the many gigabytes of textual data we received from verifyta. We think
this can be easily fixed, however due to time constraints we cannot rerun the experiment for
100 simulations.

Figure 10.5: Snapshot of the average simulation at time 1 hour. The shown VQ ex-
pression shows a gradient between red and green based on the available charge of
nodes.

Instead we look at the average of 10 simulations, which took about an hour to simulate. In
Figure 10.5 we present a snapshot at time 1 hour. We use the following VQ expression, which
shows the available charge for the nodes. We use a gradient where the lower bound that is red,
is the lowest available charge of all nodes at time 1 hour and the upper bound is green, which
is the initial available charge of nodes.

89

CURRENT APPLICATIONS OF VISUAAL: Energy Consumption

[red: 109900000, green:131800000] OUTPUT battery a

The full simulation is shown in Figure 10.6 and the simulation is available in Appendix ZIP
where it is named energy 10.sim.

Figure 10.6: Video of the average simulation for 1 hour, run-
ning in 120 times real time. The shown VQ expression
shows a gradient between red and green based on the
available charge of nodes.

The QR Code will redirect to the following link:
https://youtu.be/hGfMwwO7xWw

As expected, we can see from the results that the nodes with few neighbors uses little energy
compared to the nodes with many neighbors. For instance node 14 that has no neighbors, used
the least amount of energy and node 5 which has 6 neighbors used the most amount of energy.
In Table 10.1 and in Figure 10.7 we show the difference of charge levels for nodes compared
to the initial available charge level. These differences we can use to get an idea of how fast the
nodes will run out of energy, where in a continued simulation, we expect the nodes would run
out of energy at different times.

We are unable to conclude from this experiment whether there are other hidden parameters
that affect the battery drain, such as the activity of second order neighbors, but we can conclude
that there seems to be a trend that nodes with more neighbors use more of their available
charge.

The result thus shows interesting information about how the amount of neighbors affects
the available charge level of nodes. Note that in order to run simulations with energy usage as
we presented in this section, the wrapper created by Ivanov [25] is needed, which we do not
include in the appendix. The simulations that we included in Appendix ZIP however, can be
loaded to visualize the simulations that we ran for our experiment.

15% [~ -
10% [~ —
0% . l T

0 1 2 3 4 5 6

Number of neighbors

Percentage of Available Charge Used

Figure 10.7: Average percentage of the available charge used for nodes with different
amount of neighbors. Note that there were no nodes with 2 neighbors in the topology.

90

https://youtu.be/hGfMww97xWw
https://youtu.be/hGfMww97xWw

CURRENT APPLICATIONS OF VISUAAL: Energy Consumption

Node id # Number of Neighbors Available Charge / Initial Available Charge

5 6 L112E+8/1 30518 A 84.35%
7 3 1.214E+8/1 30518 & 92.08%
14 0 1.281E+8/1 30518 & 97.16%

Table 10.1: Sampled available charge level of a few nodes relative to the initial available
charge, at time 1 hour

91

11 Model Scalability Experiments

VisuAAL’s run time is directly dependent on UPPAAL and the scalability of the models that
are used. In [29] we discovered that the models we created did not scale very well in terms
of simulation run time with the number of nodes. In this chapter we will do a number of
experiments to find out why and how we can avoid the scalability issues.

Chapter Organization This chapter is organized as follows:

* In Experiment 11.1 we experiment with scalability for a model of a standard approach,
that instantiates 2 templates for each nodes,

* in Experiment 11.2 we try to eliminate factors that causes long run time, in this case we
look at removing channel synchronization,

* in Experiment 11.3 we try to eliminate the factor of many node instantiations,
* in Experiment 11.4 we introduce UPPAAL execution order in the model,
* in Experiment 11.5 we add execution order by having asynchronous nodes,

* in Experiment 11.6 we model all nodes through two templates in addition to adding
execution order,

* in Experiment 11.7 we compare an optimized Slotted ALOHA protocol model to the
unoptimized version from Section 3.5.

Intuitively when a model is simulated, the time it takes for a single node to perform its
actions should not be affected by the size of the topology as long as the node has the same
amount of neighbors. If this is the case for a model, then when adding more nodes to the
topology without increasing the average number of neighbors for nodes, the simulation run
time should increase linearly with the number of nodes in the topology. In [29] we presented
two models of distributed network protocols, where we show that the models do not scale
linearly for simulations. To gather more information about the issue, we perform a number of
experiments to see how UPPAAL behaves in various scenarios with hundreds of nodes. Note
that the following experiments are run on a laptop’. All the experiments are run 10 times for
1000 time units. The reason for running several simulations is that there is a small overhead
when initializing the models in UPPAAL, which we try to minimize. We cannot see how long
the initialization takes out of the total simulation run time. It is due to time constraints that we
only do 10 simulations for every experiment, but increasing this would minimize the overhead
even more.

Intel Core i7-3630QM 2.4GHz processor, 8 GB RAM

93

MODEL SCALABILITY EXPERIMENTS

Experiment 11.1 - Two Templates for Each Node

N !
timer == send[id]?
timer=0
send[id]!

timer <=2

y, O y,
(a) Sender (b) Receiver

Figure 11.1: Templates used in Experiment 11.1. Sender and receiver templates that
each is instantiated once for each node, with a node id as input.

In Figure 11.1 two UPPAAL templates are shown for the model that we use in this experiment.
There is a sender and a receiver for every node. For every node the sender synchronizes with
the corresponding receiver every 2 model time unit. The channels used are global and the clock
is local for each node. Each node in the model is unaffected by the other nodes, and adding
more nodes should not change other nodes’ behavior. The model is simplified a lot in terms of
neighbor connections, but it is sufficient for the experiment, since the requirement is that all
nodes have the same number of neighbors for all simulations.

We now look at the simulation run time when we scale the model up to 500 nodes. In
Figure 11.2 these experiment results are presented. The plot with filled circular marks is the
results for this experiment. We show how long it takes to simulate the model with different
number of nodes. The filled circular plot clearly shows that this model does not scale linearly
with the number of nodes. Instead it has a tendency that looks like a quadratic scaling.

Experiment 11.2 - Removing Communication between Templates

To further examine the scaling issue shown in Experiment 11.1, we do an experiment with no
channel synchronizations. We do this as to eliminate factors that might be responsible for the
scaling issue. We remove the receiver template from the model of Figure 11.1 and remove the
send channels, and let every node only reset its own clock every 2 time unit. Each template
instantiation is now completely independent.

The plot with square marks in Figure 11.2 shows the simulation run time scaling for this
model. The tendency of the data is the same as the previous experiment, however they differ
with what seems to be a linear factor. The scaling issue however is still present, but the result
gives us a clue; that the problem might be the instantiation of templates for each node.

94

MODEL SCALABILITY EXPERIMENTS

1,000 |- |—®— Experiment in 11.1
—m— Experiment in 11.2
—a— Experiment in 11.3
800 —®— Experiment in 11.4

—— Experiment in 11.5

600

400

Simulation runtime (s)

200

50 100 150 200 250 300 350 400 450 500 550

Number of nodes

Figure 11.2: Results for Experiment 11.1, Experiment 11.2, Experiment 11.3, Experi-
ment 11.4 and Experiment 11.5. Note that results for Experiment 11.3 and Experi-
ment 11.4 is almost on top of each other. For all data points, 10 simulations are run
for 1000 model time units.

Experiment 11.3 - Multiple Nodes in a Constant Number of
Templates

e Y r 2

timers[id] == 2
send[id]!
timers[id] = 0 send[id]?

@ forall (id : id_t) timers[id] <= 2) @)

(a) Sender (b) Receiver

Figure 11.3: Templates used in Experiment 11.3. Sender and receiver templates that
handles all nodes actions.

In this experiment we create a model with a constant number of templates being instantiated.
In Figure 11.3 we show the templates for the model. The model mimics the behavior of the
model from Experiment 11.1, but uses selects to do the actions of all nodes alternately. id_t is
the integer type for node id’s and timers is an array of clocks for all nodes. The sender has
an invariant that requires all nodes to have their corresponding clocks less than or equal to
2. The edge then has a select over all node ids, and the nodes with a timer equal to 2 then
synchronizes on their send channel with the receiver alternately. The receiver has a select over
all node ids, and synchronizes over the selected send channel.

95

MODEL SCALABILITY EXPERIMENTS

In Figure 11.2 the plot with triangular marks is the result for this experiment. It clearly
performs better than the model with many instantiated templates, but it still does not scale
linearly. From this experiment we know that it is not necessarily the many instantiated nodes
that is the problem.

Experiment 11.4 - Incorporating Execution Order in the Model

The models from the first 3 experiments have a thing in common; at every 2 time unit, UPPAAL
has to choose in which order the nodes progress. If n is the number of nodes, and if UPPAAL
considers all possible states before progressing a node, then to let all nodes progress it will take
n+(n—1)+---+2+1 time, which is O(n?) run time. In this experiment we look into how we
can progress all nodes in linear time. We expect this is possible by adding an order of when the
nodes are progressed, so that UPPAAL for every node that should be progressed, only has a
single choice.

nodeld == CONFIG_NR_NODES

nodeld =0,
t=0 nodeld < CONFIG_NR_NODES
tick[nodeld]!
O s nodeld++
=y & tick[id]?

(a) Scheduler (b) Node

Figure 11.4: Templates used in Experiment 11.4. The scheduler template that progresses
and the node template that synchronizes to the scheduler.

In Figure 11.4 we show two templates for a model, where the scheduler template acts as a
discrete clock for the nodes. At every 2 model time unit, it tells every node to progress. The
nodes cannot have individual clocks with invariants and guards, if they are required to progress
when a scheduler tells it to, because we will have issues with independent progress. With this
approach however, the schedule of nodes is completely controlled by the scheduler template,
as they are forced to synchronize with it.

In Figure 11.2 the plot with marks of circles with a cross within, shows the simulation run
time for the experiment is shown. This experiment also did not run in linear time, and it adds
to the presumption that we cannot instantiate a template for every node and get linear scaling.

Experiment 11.5 - Execution Order With Asynchronous Nodes

Before we discard the idea of instantiating a template for every node we have this experiment
with asynchronous nodes. This is another idea for how node actions can be sequentialized.
To induce the order we let the nodes purposefully be out of sync. If all nodes for instance
can have up to 1 model time unit offset in time compared to other nodes and with the same
interval between when they perform actions, this imposes an order for the nodes actions that
UPPAAL will follow. This mirrors real devices in that the nodes would not be able to be 100%
synchronized here due to manufacturing differences, clock drifts and other factors. Using this

96

MODEL SCALABILITY EXPERIMENTS

idea to ensure sequential order between the nodes in a model could potentially reduce the
simulation run time in addition to adding details to the model.

To test this, we use the same model as in Experiment 11.1, except that we added a new
location for the sender. This new location lets the node wait up to 1 model time unit and then
starts the cycle as in the original model. This initial delay will likely be different for each node,
since they select from the uniform distribution between 0 and 1 model time units. Since the
original cycle maintains exactly 2 model time units, this offset will be retained throughout
the lifetime of the model. The receiver template is the same as in the original model. The
updated sender is shown in Figure 11.5. In Figure 11.2 the diamond marked plot is the result
of this experiment. This approach unfortunately still has quadratic scaling with the number of
nodes, even though the nodes’ actions are ordered. The experiments point towards the need of
modeling all nodes in a constant number of templates to improve the scalability.

s R
timer ==
timer=0
send[id]!

initial

timer <=1

. <=9
@ f\tlmer)
timer=0 N\

Figure 11.5: Template used in Experiment 11.5. Sender template, one instantiated for
each node. The nodes are not synchronized, thus UPPAAL will progress the nodes in
order.

97

MODEL SCALABILITY EXPERIMENTS

Experiment 11.6 - Execution Order for Multiple Nodes ina
Constant Number of Templates

In Experiment 11.3 we learned that we can reduce the run time by modeling all nodes as a
constant number of templates. In this experiment we will model all nodes in two templates
in addition to ordering the node’s actions. The templates for this experiment are shown in
Figure 11.6.

nodeld == CONFIG_NR_NODES
nodeld =0,
timer=20

initial timer ==
timer <=2 © C

nodeld < CONFIG_NR_NODES
send! send?
nodeld++

(a) Sender (b) Receiver

Figure 11.6: Templates used in Experiment 11.6. Two templates handling every node,
where the nodes actions are ordered

Whenever the clock timer reaches exactly 2, the sender template moves to the next location,
where all nodes are progressed in order, to synchronize with the receiver on the send channel.
The results of simulating the model 10 times for 1000 model time units, can be seen in
Figure 11.7. For this approach we get linear scaling, and we could even run 1000 nodes in just
10 seconds. Note that in this small example, the nodes only synchronize on the send channel,
but in a real protocol we would need to manage neighbor connections based on a topology. If
we can do this in constant time, this method can be useful, and we will look further into this in
the next experiment.

T T T
|~ | —@— Experiment 11.6

Juy
(=}

Simulation runtime (s)
wu
T
|

0 | | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1,000 1,100

Number of nodes

Figure 11.7: Result for Experiment 11.6. Simulations of a simple model that is sequenti-
alized. For the experiment, 10 simulations are run for 1000 model time units, for each
data point.

Even though this approach scales very well compared to the other approaches, it does set

98

MODEL SCALABILITY EXPERIMENTS

rather restrictive limits to the model. In the simple example shown, every node can perform an
action every 2 second. However if we want the nodes to have individual clocks and schedules,
as is often the case for distributed network models, it becomes hard to create a model with this
approach, for the following reasons:

* We cannot instantiate a template for every node, since we have not been able to achieve
linear scaling in any experiment where the number of templates scales with the number
of nodes.

* We cannot use an invariant on all the clocks and a select over the number of nodes as
in Experiment 11.3. For all nodes to progress it must take at most linear time. A select
over the number of node ids does not have an order, and is thus quadratic in time. In
addition by using the invariant over all clocks, we need to know which node that causes
us to leave the location, however we cannot do this in constant time, because we need
either the select or to iterate over the nodes.

* We do not know of a way of letting nodes perform actions in more complex orders, for
instance if a node performs a task on a schedule with a different period than that of other
nodes, which causes different interleavings of node actions each time the actions must
be performed.

These findings may not hold in the general case, but we have not been able to find a way to
obtain linear scaling without these restrictions.

Experiment 11.7 - Slotted ALOHA

In order to see if we can use the approaches described in the previous experiment to create a
UPPAAL model of a simple protocol, we have created an improved model, in terms of simulation
run time, that is based on the model presented in Section 3.5 which is a Slotted ALOHA protocol
model [45].

In Figure 11.8 we show the sender template of the model and in Figure 11.9 we show the
receiver, which both have a single instantiation, that covers all nodes. The sender starts by
choosing a random slot for each node. It then proceeds to iterate over all the slots, which is 8
in this experiment. In each slot we iterate over all nodes, and if the slot of the active node is
chosen it synchronizes on the send channel with the node’s id. It should take linear time to
complete a period with the 8 slots, since we iterate over all nodes once at the start, and then
once for every slot, where the nodes’ actions are ordered.

The receiver waits to synchronize on a channel either when a slot is done or a node sends a
message. When a message is sent, the receiver iterates over all neighbor id’s of the sender node.
It then tracks how many times a node receives a message in a slot, to account for collisions.

99

MODEL SCALABILITY EXPERIMENTS

8: End slot and reset
nodeld == CONFIG_NR_NODES
slot_done!
9: End per\od nodeld = 0, N
timer == 2 && timer =0, senderld =0,
slot == CONFIG_NR_SLOTS slot++ nodeld++ @ sendinodeld]!
&
N
— 5: Prepare sending
223:;3 “OCONF'G—NR—NODES nodeld < CONFIG_NR_NODES
lot=0 && slot == slots[nodeld]
(slo (O)—senderld = nodeld C
il " [5:Bogn sor) h
timer <= 2 3: Begin slot
timer == 2 &&
slot I= CONFIG_NR_SLOTS
1 Choose random slots
nodeld < CONFIG_NR_NODES
nodeld < CONFIG_NR_NODES 84 slot 1= slots[nodeld]
slots[nodeld] = s, nodeld++
nodeld++

Figure 11.8: Sender template for the improved Slotted ALOHA protocol model

’4: Reset and handle collision dataﬁ
slot_done? 3: Stop receiving (No more neighborsﬁ
updateCollisionsAndReceived() CONFIG_sparse_connected[senderld][count] == -

~
1: Start receiving
send[senderld]?
count=0
/@
’2: Receive for all neighborsﬁ

CONFIG_sparse_connected[senderld][count] != -1
receiveMsgAndHandleCollisions() Y,

Figure 11.9: Receiver template for the improved slotted ALOHA protocol model

In this experiment we need to let nodes send a message to all neighbors in constant time, if
we are to scale linearly in simulation run time with the number of nodes. To do this we created
a sparse matrix for the neighbor connections. Whenever a node sends a message, it will take
constant time to send to all neighbors, as long as we have a limit of the number of neighbors.
For this experiment all nodes have 5 neighbors, and it will take only 5 iterations whenever a
node sends.

Following we will compare the results of the improved Slotted ALOHA protocol model to the
original Slotted ALOHA protocol model presented in Section 3.5, in order to gain an idea of
how these techniques might affect an actual protocol model. The original Slotted ALOHA model
does not use any of the modeling techniques that we have just presented for optimization.
Thus, the original model instantiates a receiver and a sender template for all nodes, does not
sequentialize the flow and does not use a sparse matrix.

In Figure 11.10 and Figure 11.11 we show the simulation run time for the improved Slotted
ALOHA protocol model compared to the run time of the original Slotted ALOHA protocol
model. We show two different scales, since there is such a huge different in simulation run
time. Additionally the results are shown in Table 11.1.

100

MODEL SCALABILITY EXPERIMENTS

—e— Experiment 11.7 - Improved model
—a— Experiment 11.7 - Original model

60

40

20

Simulation run time (s)

Number of nodes

C
0 100 200 300 400 500 600 700

800 900 1,000 1,100

Figure 11.10: Simulation run time for the improved Slotted ALOHA model compared
to the original Slotted ALOHA model. Note the Y-axis goes to 90 seconds. For both
models, 10 simulations are run for 1000 model time units, for each data point.

T T T T T T
40,000 - | —e— Experiment 11.7 - Improved model

—a— Experiment 11.7 - Original model

20,000

Simulation run time (s)

® |

| | Py

0 100 200 300 400 500 600 700

Number of nodes

800 900 1,600 1,100

Figure 11.11: Simulation run time for the improved Slotted ALOHA model compared to
the original Slotted ALOHA model. Note the Y-axis goes to 45000 seconds. For both
models, 10 simulations are run for 1000 model time units, for each data point.

101

MODEL SCALABILITY EXPERIMENTS

Number of nodes Improved (s) Original (s) Ratio

50 2.1 28.8 13.5
75 3.2 69.4 21.9
100 4.2 127.2 30.3
125 5.3 201.4 37.7
150 6.4 301.1 46.9
200 9.6 554.5 57.9
300 14.9 1334.6 89.5
500 30.0 5487.6 182.9
1000 86.2 42922.2 497.9

Table 11.1: Simulation run time for the improved Slotted ALOHA model compared to
the original Slotted ALOHA model. For both models, 10 simulations are run for 1000
model time units, for each data point.

Received messages >150 messages >160 messages

Probability - Original [0.80, 0.91] [0.41, 0.51]
Probability - Improved [0.78, 0.88] [0.43, 0.53]

Table 11.2: The probability of node 0 receiving more than 150 and 160 messages within
1000 model time units, for both Slotted ALOHA models. The models uses 8 slots with
50 nodes and each node has the next 5 nodes as neighbors. The queries are run with
default statistical parameters in UPPAAL.

The simulation run time for the improved model is not linear, but compared to the original
version, it is much faster to simulate. The results clearly show that the optimizations make a
huge difference in terms of simulation run time, and for 1000 nodes we reduce the simulation
run time by almost a factor 500. Even though both models are simple, we show a number of ways
that improve models allowing us to simulate them much faster. The approach unfortunately
sets limits to the model, but in cases like the one shown in this experiment, the modeling task
is doable.

To show that the models are comparable to some degree we run a probability query in
UPPAAL for both of the models, comparing the number of messages that node 0 receives in the
two models. This only goes part of the way toward showing that the models are equivalent,
but it gives an indication. Due to time constraints, we will not examine whether they are
equivalent.

For the comparison, we estimate the probability of node O receiving a total of 150 and 160
messages withing 1000 model time units, for both the models. In Table 11.2 the estimated
probabilities are shown. The data shows that the amount of messages received by node 0 is
roughly the same for the two models. We do not expect completely identical results, since we
use statistical model checking.

In conclusion, when modeling if we avoid situations where UPPAAL can do actions for

102

MODEL SCALABILITY EXPERIMENTS

multiple nodes simultaneously by sequentializing the model behavior, we can greatly decrease
the simulation run time. Additionally we can use a sparse matrix for neighbors, that will give
performance improvements for topologies with few neighbors.

103

12 Evaluation

In this chapter we conclude on our project and look at what work that further would be relevant
to work with.

Chapter Organization This chapter is organized as follows:
* In Section 12.1 we conclude on our project; VisuAAL, experiments and results,

* in Section 12.2 we describe the work that further could be done for our project.

12.1 Conclusion

In a world where IoT becomes more integrated in our every day life, it follows that there
will be increasing amounts of wireless devices that needs to be connected. For these wireless
devices, we need protocols that facilitates correct and efficient communication of data between
nodes. In this project we do not look at creating these protocol ourselves, instead we want to
help developers in the domain specific area of distributed networking protocols, to easily gain
knowledge and overview of their protocols through visualization.

We created an application that visualizes the behavior of distributed network protocol models.
Our application, named VisuAAL, uses UPPAAL as the engine to run simulations and a UPPAAL
model of the protocol that is to be observed. We set a number of requirements to the UPPAAL
model, that works as an interface. An example of a requirement is prefixes of variables, so that
we are able to recognize them, in order to configure and use them for output data.

VisuAAL lets users configure their model, generate dynamic topologies for the model and
visualize the simulations created by UPPAAL. It is essential to be able to configure the model,
since it allows the user to compare different versions of a protocol. This is useful since protocols
may dictate different behavior for nodes under different topologies and topology sizes. Through
VisuAAL, we can generate random topologies and inject them in the model.

In the real world, nodes move and thus the connectivity between nodes can change. We
support this behavior by being able to dynamically change topologies and other variables
during simulations. This we do by updating variables in the model at specific time steps. This
functionality we also use to load location and connectivity data from real devices, and use this
in the model when simulating the protocol model.

When we have a model that is configured, we run simulations with UPPAAL and use the
output to visualize the protocol model behavior. VisuAAL visualizes the topology with nodes
and edges from the simulations. On this topology different types of data can be shown, based
on the chosen output variables. The user can with the query language VisuAAL Query (VQ),
color nodes and edges based on output variables of the model. The VQ language, allows users
to define how data is presented for the nodes and edges and can for instance be used to visualize
abnormalities.

105

EVALUATION: Conclusion

Case Studies

We did a number of case studies in the project, to see what and how we can visualize different
protocol models. The LMAC protocol is a MAC protocol that utilizes frames. For a node, the
goal is to select a frame wherein it can transmit data without colliding with neighbor nodes.
For the LMAC protocol model developed by Fehnker, Hoesel, and Mader [12], we visualized the
state of the nodes and showed how the number of frames affect the protocol model’s behavior.
With few frames in a dense network, we can see that the nodes will collide often and will
rarely settle for a specific frame. If we then increase the number of frames, we can see how all
nodes selects and successfully keeps a frame to transmit data in. If we know in which topology
the protocol is being used, we can easily select a fitting number of frames and see how this
change affects the behavior. We presented a visualization of LMAC protocol model to one of
the authors of the model, who responded with the following:

I showed the visualizations yesterday to Angelika Mader, one of the co-authors
who also happens to share a course with me this semester, and we were quite
impressed. It took us a while to recall how LMAC worked, but the visualization
actually helped.

Ansgar Fehnker [10]

AODVV2 is an ad hoc routing protocol. Hofner and Mclver [23] developed a model of this
protocol which we visualized. We focused on the queue of messages that nodes have. If the
queue over time becomes large, there is too much traffic for the node and it is unable to keep
up. We created a topology that we thought would cause problems, where a lot of the messages
has to go through a few nodes. As expected the queues of the nodes with a lot of traffic becomes
large. VisuAAL gave a clear overview and it was easy to detect and visualize this behavior. We
presented a visualization of AODVv2 protocol model to one of the authors of the model, who
responded with the following:

I find your visualisation very interesting, as it shows congestion in a realistic
situation. One of the perhaps surprising outcomes I see is that congestion
happens all over the place; it is less centered in the narrow corridor than one
might have expected.

Rob van Glabbeek [17]

In [29] we created models based on our understanding of Neocortec’s MAC [27] and Routing
[26] protocols. We want to stress that the model and our understanding of the protocol is not
the same as Neocortec’s protocols, since we do not have all the details. For the MAC protocol
model, we visualized the slots that are chosen by nodes, and the discovery of neighbors. The
MAC protocol utilizes synchronization and must synchronize to its neighbors to schedule a
data transmission and is thus of high importance. We have modeled this as an output variable,
which makes us able to visualize when data transmissions are scheduled. For the Routing
protocol model, we show for a configuration with 2 sink nodes, how the race numbers progress
in the network and how important it is to choose a maximum race number that is sufficiently
large for the topology. For the topology in the routing experiments we discovered with a max
race number of 5, the data could be routed in circles and not reach the sink node. When we

106

EVALUATION: Conclusion

then increase the maximum race number to 10, a route to the sink node is taken. This clearly
shows that a bad configuration of this could have large consequences.

Scalability of Protocol Models

Since we directly use the simulation feature of UPPAAL, we are dependent on time it takes to run
simulations. Therefore we made a number of experiments concerning scalability of simulation
time for protocol models in UPPAAL. We know from [29] that the Neocortec protocol models
we created do not scale linearly with the number of nodes. In this project we tried a number
of things to make simple models scale linearly with the number of nodes. We concluded that
by sequentializing the actions performed by UPPAAL, the simulation time can be significantly
decreased. We made two versions of a simple model of the Slotted ALOHA protocol. One
version that follows the same approach as the models from our case studies and one where the
flow was sequentialized. We then simulated both models with for instance 1000 nodes for 1000
model time units 10 times. The non-sequentialized model took 42922 seconds to simulate,
while the sequentialized version took 86 seconds, which is almost a factor 500 difference. The
approach does however set requirements to the model, which may not be suitable for large
and complex models.

VisuAAL Usages

LinkAiders [33] and Neocortec [37] work in collaboration to create wireless devices, called
Reachis, to be used during natural disasters in the Philippines. They intent to use thousands
of devices, and are interested in simulating and learning more about the protocols and the
physical locations of the devices. To support this, we have enabled VisuAAL to load a log file
with location and connectivity data from their prototypes and use this topology to run it with
their protocol. We did some initial experiments, to see how large log files we can handle with
VisuAAL, but since the prototypes are not yet developed, we will not get to try it with the real
log files. In order to load large UPPAAL models which contains many updates, we need to run
the Linux version of UPPAAL which is 64-bit. On Linux we managed to load models with 86337
connectivity updates.

In [29] we created a MAC protocol model based on our understanding of Neocortec’s MAC
protocol. Ivanov [25] extended this model with energy consumption based on a kinetic energy
model and created a wrapper for verifyta to output the data. We used this model and wrapper
with VisuAAL to visualize the battery charge levels for the MAC protocol model, which gave
insight in the energy consumption during the startup of the protocol. During the startup we can
see that the energy use of each node seems to be dependent on the number of neighbors, such
that many neighbors give a high energy consumption. This shows that we can use VisuAAL to
track yet another type of data from a model, that gives useful insight in the model and protocol
behavior.

107

EVALUATION: Future Work

We asked Ivanov for a comment for this report regarding VisuAAL, and the following is his
response:

Your visualization tool provides a comprehensive picture with flexible customi-
zation. It helps to assess the simulation results empirically and find weaknesses
in the protocol and flaws in the model implementation. It’s a huge aid for both
protocol designers and common users.

Dmitry Ivanov [24]

In conclusion, we have created a domain specific application capable of visualizing behavior
of mesh network protocol models. VisuAAL is generic, such that any protocol in the domain can
be visualized, as long as the model follows the few requirements. If the model is UPPAAL SMC
compatible, it is rarely more than renaming of some variables that is needed before it is VisuAAL
compatible. VisuAAL provides insight and overview of protocols, for different configurations
and topologies, that would be cumbersome to get from actual devices.

12.2 Future Work

This section presents some interesting aspects which could be extended or improved upon. The
tool is open-source and can thus easily be extended. We refer to Appendix E for a guide on
how to get started on continuing our development.

12.2.1 Case Studies

Only a few people have used VisuAAL at this time. Feedback from multiple users could be very
useful, both to improve the usability but also to get some pointers from users on what should
be the focus for further development.

It could be interesting to have users using our tool to actually try to discover or explore
a problem in their protocol, or maybe just use it while improving their protocol in different
aspects.

12.2.2 Dynamic Topology in Topology Generator

Right now, it is only possible to generate a dynamic topology if one uses the GPS log functionality.
However, a more user-friendly approach could be to add this functionality in the topology
generator. Using a timeline, the user should be able to specify which changes to the topology
that should occur at a specific time by dragging nodes around.

12.2.3 Automatic Error Detection

One of the ways that VisuAAL can help protocol developers, is when a developer is trying
to find errors in his protocol. That can be done by writing a VQ which is satisfied when we
reach some state which the user has specified as an error state, and then manually inspecting
if the visualization marks any nodes or edges with this error state. It could be beneficial to
add functionality which based on a VQ, could find the simulations and present the time in the

108

EVALUATION: Future Work

simulation where such occurrences took place, such that the user does not have to look through
the simulations manually.

12.2.4 Additions to VisuAAL Query

Right now, we have two different types of VisuAAL Queries (VQ) when it comes to coloring.
That could be greatly improved upon.

Instead of only allowing a gradient or some fixed colors, a combination could be added. An
example could be to write a VQ that colors nodes with a gradient from red to blue, except if
they are exactly one value that maps to the color green. Another example is to have multiple
gradients, for instance from red to blue to yellow with multiple bounds.

In addition, GraphStream [22] allows many different ways to customize the graph. Instead
of only changing the colors on edges or nodes as we do now, for instance the thickness of edges
or the size of nodes could be changed. One could even add such that a node does not have
to be round, but may be symbolized as a triangle. This could add great value to visualization
of protocols like LMAC or the Routing protocol model inspired by Neocortec where there are
different types of nodes.

Another addition to VQ could be to add min and max as reserved keywords which would
map to the lowest or highest value for a given variable in a simulation across all nodes or edges.
Currently, the bounds for VQs have to be set manually, meaning that the user has to either know
these bounds beforehand, or manually inspect the simulation and find them before writing the

VQ.

12.2.5 Increased Parsing Possibilities

In Section 4.3 on page 21 we described how the user can model locations as output variable.
In UPPAAL it is possible to write queries, that check if we are in a given location, adding this
directly in VisuAAL is possible. It might be useful if we were able to parse location names,
perhaps with a prefix, and thus help the user to more easily examine this for models.

In Experiment 12.7 on page 99 we presented an improved model of the Slotted ALOHA
protocol, which defines the topology differently than what we can parse right now. The
improved version uses a sparse matrix. This type of topology representation is easy to parse,
and it could be very beneficial in future protocol models.

12.2.6 User Interface

The user interface of VisuAAL is not as intuitive as we would like it to be. While this is an
expert system where some amount of training is to be expected, there are certainly areas where
the interactions should be better. It could be beneficial to let multiple users use VisuAAL, and
analyze how the user interface could be improved.

There are essentially two kinds of features in VisuAAL. One is to generate a scenario the user
wants to test. A scenario would include configuration, topology and dynamic updates. The
other feature is to show results from (previous) simulations and investigate how the protocol
model behaves, using VQs to describe the desired outputs. We have thought about making
a more clear split of features in VisuAAL, so that these two types of functionalities become
separate.

109

EVALUATION: Future Work

Additionally it would be beneficial to improve the result view with more sophisticated
features like time control to be able to highlight details that require precise timing and zoom
functionality which could help when analyzing larger topologies.

12.2.7 Run UPPAAL Remotely

Sometimes the simulations take a long time to complete. One way to reduce the simulation
run time, could be to use a remote computer to run the simulations on. As an example, there is
a super computer at AAU which could be beneficial to use when running simulations.

We have already worked a bit on this, by creating a web service which is hosted on the
machine which executes the queries. When it receives a special web request in which the model
and the query is included, it will start running verifyta, and return the answer when done.
However, the part that uses this web service is not included in VisuAAL.

The source code for the tool, which runs UPPAAL remotely can be found here:

https://github.com/lajtmaN/RemoteUPPAAL

12.2.8 Background in Simulations

When the user generates a topology using the topology generator in VisuAAL, the user can
relate the nodes’ locations to a physical location shown on Google Maps. This is also the case
when the user loads a GPS log file. However, the physical location is only visualized in the
topology generator tab. To improve user experience, it could add great value if the Google
Maps background was shown on the simulation results as well. We are unable to implement
this at the moment, because of technical limitations of the Google Maps library we use. Due to
time constraints we have not looked further into the solution to this, but a possible solution
could be to use a static image based on the map from the topology generator.

110

https://github.com/lajtmaN/RemoteUPPAAL

13 Bibliographical Remarks

Because this report is written as the result of a multi-semester project, some parts have been
reused from our report from last semester [29], and a few parts have been used multiple times
in this report. The following lists the affected sections, and details the changes we have made
to them in this report.

* The summary on page ii is based on text from other places in this report, including the
abstract and the conclusion.

* Section 2.1 and Section 2.2 (excluding Section 2.2.1) are adapted versions from [29].

* Section 3.1 and Section 3.2 have been adapted from their respective uses in [29] for use
in this report, with expanded examples and improved spelling.

* Section 8.1 and Section 9.1 are greatly shortened versions of the respective introductions
to the MAC and Routing protocol by Neocortec presented in [29].

Also note that the models based on Neocortec’s protocols were constructed in large during
the last semester, with this semester being focused on extending, configuring and visualizing
them.

111

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Ahirwar, Dilip Kumar, Verma, Prashant, and Daksh, Jitendra. “Enhanced AODV
Routing Protocol for Wireless Sensor Network Based on ZigBee”. In: Advances in
Computer Science and Information Technology. Networks and Communications:
Second International Conference, CCSIT 2012, Bangalore, India, January 2-4,
2012. Proceedings, Part I. Ed. by Meghanathan, Natarajan, Chaki, Nabendu, and
Nagamalai, Dhinaharan. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 97-102. 1SBN: 978-3-642-27299-8. DOI: 10.1007/978-3-642-27299-8 11.
URL: http://dx.doi.org/10.1007/978-3-642-27299-8 11.

Alnuaimi, M., Shuaib, K., and Jawhar, I. “Performance Evaluation of IEEE
802.15.4 Physical Layer Using MatLab/Simulink”. In: 2006 Innovations in In-
formation Technology. Nov. 2006, pp. 1-5. DOI: 10.1109/INNOVATIONS.2006.
301905.

Baran, P “On Distributed Communications Networks”. In: IEEE Transactions
on Communications Systems 12.1 (Mar. 1964), pp. 1-9. 1SSN: 0096-1965. DOI:
10.1109/TCOM. 1964.1088883.

Behrmann, Gerd et al. “UPPAAL implementation secrets”. In: International Sym-
posium on Formal Techniques in Real-Time and Fault-Tolerant Systems. Springer.
2002, pp. 3-22.

Bengtsson, Johan et al. “UPPAAL—a tool suite for automatic verification of
real-time systems”. In: Hybrid Systems III. Springer, 1996, pp. 232-243.

Bulycheyv, Peter E. et al. “UPPAAL-SMC: Statistical Model Checking for Priced
Timed Automata”. In: Proceedings 10th Workshop on Quantitative Aspects of
Programming Languages and Systems, QAPL 2012, Tallinn, Estonia, 31 March
and 1 April 2012. 2012, pp. 1-16. DOI: 10.4204 /EPTCS.85.1. URL: http:
//dx.doi.org/10.4204/EPTCS.85.1.

David, Alexandre et al. “Statistical Model Checking for Networks of Priced Timed
Automata”. In: Formal Modeling and Analysis of Timed Systems: 9th Internati-
onal Conference, FORMATS 2011, Aalborg, Denmark, September 21-23, 2011.
Proceedings. Ed. by Fahrenberg, Uli and Tripakis, Stavros. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 80-96. 1SBN: 978-3-642-24310-3. DOI:
10.1007/978-3-642-24310-3 7. URL: http://dx.doi.org/10.1007/978-3-
642-24310-3 7.

David, Alexandre et al. “Timed I/O Automata: A Complete Specification Theory
for Real-time Systems”. In: Proceedings of the 13th ACM International Conference
on Hybrid Systems: Computation and Control. HSCC ’10. Stockholm, Sweden:
ACM, 2010, pp. 91-100. 1SBN: 978-1-60558-955-8. DOI: 10.1145/1755952.
1755967. URL: http://doi.acm.org/10.1145/1755952.1755967.

113

https://doi.org/10.1007/978-3-642-27299-8_11
http://dx.doi.org/10.1007/978-3-642-27299-8_11
https://doi.org/10.1109/INNOVATIONS.2006.301905
https://doi.org/10.1109/INNOVATIONS.2006.301905
https://doi.org/10.1109/TCOM.1964.1088883
https://doi.org/10.4204/EPTCS.85.1
http://dx.doi.org/10.4204/EPTCS.85.1
http://dx.doi.org/10.4204/EPTCS.85.1
https://doi.org/10.1007/978-3-642-24310-3_7
http://dx.doi.org/10.1007/978-3-642-24310-3_7
http://dx.doi.org/10.1007/978-3-642-24310-3_7
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1145/1755952.1755967
http://doi.acm.org/10.1145/1755952.1755967

BIBLIOGRAPHY

[9]

[10]
[11]

[12]

[13]

[14]

114

David, Alexandre et al. “Uppaal SMC tutorial”. In: STTT 17.4 (2015), pp. 397-
415. pOI1: 10.1007/5s10009-014-0361-y. URL: http://dx.doi.org/10.1007/
s10009-014-0361-y.

Fehnker, Ansgar. E-mail correspondence May 02, 2017.

Fehnker, Ansgar. LMAC Protocol model. URL: https://sites.google. com/
site/fehnker/lmac.

Fehnker, Ansgar, Hoesel, L. E W. van, and Mader, A. H. “Modelling and Verification
of the LMAC Protocol for Wireless Sensor Networks”. In: Proceedings of the 6th
International Conference on Integrated Formal Methods, IFM 2007, Oxford, Britain.
Ed. by J. Davis and J. Gibbons. Lecture Notes in Computer Science. Springer
Verlag, July 2007, pp. 253-272.

Fehnker, Ansgar et al. “Automated Analysis of AODV Using UPPAAL”. In: Tools
and Algorithms for the Construction and Analysis of Systems: 18th International
Conference, TACAS 2012, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 — April 1, 2012.
Proceedings. Ed. by Flanagan, Cormac and Konig, Barbara. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 173-187. ISBN: 978-3-642-28756-5. DOTI:
10.1007/978-3-642-28756-5 13. URL: http://dx.doi.org/10.1007/978-
3-642-28756-5 13.

Fehnker, Ansgar et al. “Topology-Based Mobility Models for Wireless Networks”.
In: Quantitative Evaluation of Systems: 10th International Conference, QEST
2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings. Ed. by Joshi,
Kaustubh et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 389-
404. 1SBN: 978-3-642-40196-1. DOI: 10.1007/978-3-642-40196-1 32. URL:
http://dx.doi.org/10.1007/978-3-642-40196-1 32.

Fluxicon. Disco. URL: http://fluxicon.com/disco.
Gephi. The Open Graph Viz Platform. URL: http://gephi.org.
Glabbeek, Rob van. E-mail correspondence May 18, 2017.

GNU Organization. GNU LESSER GENERAL PUBLIC LICENSE. 2017. URL: https:
//www.gnu.org/licenses/lgpl-3.0.en.html.

Google Inc. Google Maps. Accessed: May 2017. URL: https://maps.google.com.

Gosling, James et al. The Java® Language Specification. 2017. URL: https:
//docs.oracle.com/javase/specs/jls/se8/j1s8. pdf.

GraphStream. GraphStream - CSS reference. 2017. URL: http://graphstream-
project.org/doc/Advanced-Concepts/GraphStream-CSS-Reference/.

GraphStream Team. GraphStream - A Dynamic Graph Library. 2010. URL: http:
//graphstream-project.org/.

https://doi.org/10.1007/s10009-014-0361-y
http://dx.doi.org/10.1007/s10009-014-0361-y
http://dx.doi.org/10.1007/s10009-014-0361-y
https://sites.google.com/site/fehnker/lmac
https://sites.google.com/site/fehnker/lmac
https://doi.org/10.1007/978-3-642-28756-5_13
http://dx.doi.org/10.1007/978-3-642-28756-5_13
http://dx.doi.org/10.1007/978-3-642-28756-5_13
https://doi.org/10.1007/978-3-642-40196-1_32
http://dx.doi.org/10.1007/978-3-642-40196-1_32
http://fluxicon.com/disco
http://gephi.org
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://maps.google.com
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
http://graphstream-project.org/doc/Advanced-Concepts/GraphStream-CSS-Reference/
http://graphstream-project.org/doc/Advanced-Concepts/GraphStream-CSS-Reference/
http://graphstream-project.org/
http://graphstream-project.org/

BIBLIOGRAPHY

[23]

[35]

Hofner, Peter and Mclver, Annabelle. “Statistical Model Checking of Wireless
Mesh Routing Protocols”. In: NASA Formal Methods: 5th International Symposium,
NFM 2013, Moffett Field, CA, USA, May 14-16, 2013. Proceedings. Ed. by Brat,
Guillaume, Rungta, Neha, and Venet, Arnaud. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 322-336. 1SBN: 978-3-642-38088-4. DOI: 10.1007/978-
3-642-38088-4 22. URL: http://dx.doi.org/10.1007/978-3-642-38088-
4 22.

Ivanov, Dmitry. E-mail correspondence May 24, 2017.

Ivanov, Dmitry. “Kinetic Battery Model for Wireless Network Protocols with Power
Consumption Scheme Approximated by Polynomials”. Unpublished manuscript.
2017.

Jaeger, Morten Gravild Bjerregaard. “Method and System for Routing Informa-
tion in a Network”. Patent 2012/0213227 Al (US). Aug. 2012. URL: https:
//www.google.com.au/patents/US20120213227.

Jaeger, Morten Gravild Bjerregaard. “Wireless Network Medium Access Cont-
rol Protocol”. Patent 2012/0120871 Al (US). May 2012. URL: https://www.
google.com/patents/US20120120871.

Jeong, Dong Geun and Jeon, Wha Sook. “Performance of an exponential backoff
scheme for slotted-ALOHA protocol in local wireless environment”. In: [EEE
transactions on vehicular technology 44.3 (1995), pp. 470-479.

Jorgensen, Kevin H., Christoffersen, Niels B., Petersen, Rasmus D. and Gjgderum,
Tim H. Applying Statistical Model Checking to Wireless Mesh Network Protocols -
A Case Study in Neocortec Protocols Using UPPAAL. Jan. 2017.

Larsen, Kim G, Pettersson, Paul, and Yi, Wang. “UPPAAL in a nutshell”. In:
International Journal on Software Tools for Technology Transfer (STTT) 1.1 (1997),
pp- 134-152.

Legay, Axel, Delahaye, Benoit, and Bensalem, Saddek. “Statistical model
checking: An overview”. In: International Conference on Runtime Verification.
Springer. 2010, pp. 122-135.

Lin, Fuchun J, Chu, PM, and Liu, Ming T. “Protocol verification using reachabi-
lity analysis: the state space explosion problem and relief strategies”. In: ACM
SIGCOMM Computer Communication Review. Vol. 17. 5. ACM. 1987, pp. 126-
135.

LinkAiders. LinkAiders. [Accessed May 30, 2017]. URL: http://www. linkaiders.
com/.

Manwell, James E and McGowan, Jon G. “Lead acid battery storage model for
hybrid energy systems”. In: Solar Energy 50.5 (1993), pp. 399—-405. 1SSN: 0038-
092X. DOI: http://dx.doi.org/10.1016/0038-092X(93)90060-2. URL: http:
//www.sciencedirect.com/science/article/pii/0038092X93900602.

MathWorks. Simulink. URL: https://mathworks.com/products/simulink.

115

https://doi.org/10.1007/978-3-642-38088-4_22
https://doi.org/10.1007/978-3-642-38088-4_22
http://dx.doi.org/10.1007/978-3-642-38088-4_22
http://dx.doi.org/10.1007/978-3-642-38088-4_22
https://www.google.com.au/patents/US20120213227
https://www.google.com.au/patents/US20120213227
https://www.google.com/patents/US20120120871
https://www.google.com/patents/US20120120871
http://www.linkaiders.com/
http://www.linkaiders.com/
https://doi.org/http://dx.doi.org/10.1016/0038-092X(93)90060-2
http://www.sciencedirect.com/science/article/pii/0038092X93900602
http://www.sciencedirect.com/science/article/pii/0038092X93900602
https://mathworks.com/products/simulink

BIBLIOGRAPHY

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

116

Neocortec. Meeting at Neocortec March 02, 2017.
Neocortec. neo.cortec. [Accessed May 23, 2017]. URL: http://neocortec.com/.
OMNeT++. Discrete Event Simulator. URL: https://omnetpp.org.

Oracle. JRE 8 Download. 2017. URL: http://www.oracle.com/technetwork/
java/javase/downloads/jre8-downloads-2133155.html#close.

Parr, Terence. ANTLR. http://www.antlr.org/. Accessed: April 2017.

Parr, Terence. ANTLR 4 License. 2017. URL: http://www.antlr.org/license.
html.

Perkins, Charles E. et al. Ad Hoc On-demand Distance Vector Version 2 (AODVv2)
Routing. Internet-Draft draft-ietf-manet-aodvv2-16. Work in Progress. Internet
Engineering Task Force, May 2016. 84 pp. URL: https://datatracker.ietf.
org/doc/html/draft-ietf-manet-aodvv2-16.

Perkins, Charles E. et al. Ad Hoc On-demand Distance Vector Version 2 (AODVv2)
Routing. Internet-Draft draft-perkins-manet-aodvv2-00. Work in Progress. In-
ternet Engineering Task Force, Mar. 2017. 83 pp. URL: https://datatracker.
ietf.org/doc/html/draft-perkins-manet-aodvv2-00.

Perkins, Charles, Belding-Royer, Elizabeth, and Das, Samir. Ad hoc on-demand
distance vector (AODV) routing. Tech. rep. 2003.

Roberts, Lawrence G. “ALOHA Packet System with and Without Slots and Cap-
ture”. In: SIGCOMM Comput. Commun. Rev. 5.2 (Apr. 1975), pp. 28-42. ISSN:
0146-4833. DOI: 10.1145/1024916.1024920. URL: http://doi.acm.org/10.
1145/1024916.1024920.

Sommer, C. and Dressler, E “The DYMO Routing Protocol in VANET Scenarios”.
In: 2007 IEEE 66th Vehicular Technology Conference. Sept. 2007, pp. 16-20. DOI:
10.1109/VETECF.2007.20.

Texas Instruments. CC1110 Overview Page. [Accessed May 30, 2017]. URL: http:
//www.ti.com/product/CC1110-CC1111.

The Apache Software Foundation. Apache License. 2017. URL: https://www.
apache.org/licenses/LICENSE-2.0.

The Eclipse Foundation. Eclipse Public License - v 1.0. 2017. URL: https://www.
eclipse.org/legal/epl-v10.html.

UPPAAL. UPPAAL with Priorities. June 2015. URL: http://www.it.uu.se/
research/group/darts/uppaal/priority.shtml.

Upsala University and Aalborg University. UPPAAL Home Page. 2017. URL: http:
//uppaal.org/.
Van Hoesel, Lodewijk FW and Havinga, Paul JM. “A lightweight medium access

protocol (LMAC) for wireless sensor networks: Reducing preamble transmissions
and transceiver state switches”. In: (2004).

http://neocortec.com/
https://omnetpp.org
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html#close
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html#close
http://www.antlr.org/
http://www.antlr.org/license.html
http://www.antlr.org/license.html
https://datatracker.ietf.org/doc/html/draft-ietf-manet-aodvv2-16
https://datatracker.ietf.org/doc/html/draft-ietf-manet-aodvv2-16
https://datatracker.ietf.org/doc/html/draft-perkins-manet-aodvv2-00
https://datatracker.ietf.org/doc/html/draft-perkins-manet-aodvv2-00
https://doi.org/10.1145/1024916.1024920
http://doi.acm.org/10.1145/1024916.1024920
http://doi.acm.org/10.1145/1024916.1024920
https://doi.org/10.1109/VETECF.2007.20
http://www.ti.com/product/CC1110-CC1111
http://www.ti.com/product/CC1110-CC1111
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.eclipse.org/legal/epl-v10.html
https://www.eclipse.org/legal/epl-v10.html
http://www.it.uu.se/research/group/darts/uppaal/priority.shtml
http://www.it.uu.se/research/group/darts/uppaal/priority.shtml
http://uppaal.org/
http://uppaal.org/

Appendices

117

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

UPDATED UPPAAL DECLARATION CFG

A Updated UPPAAL Declaration CFG

We converted the CFG found in the UPPAAL help menu to ANTLR4 [40] g4 format, shown in
the following listing.

grammar uppaal;

xta :
declaration :
instantiation :

systemBlock :
system :
parameterList :
parameter :
functionDecl :
procDecl :

procBody :

declaration* EOF;

functionDecl | variableDecl | typeDecl | procDecl ;

ID '=' ID ’(' arglList ")’ ’;’
ID ':=" ID '(' argList ")" ';’

instantiation* system ;
"system’ ID ((',"|’'<") ID)* ’;’

"(" (parameter

(

ro

type ('&")? ID arrayDecl* ;
type ID parameterList block ;
"process’ ID parameterList '{’' procBody '}’

(functionDecl | variableDecl | typeDecl)* states (commit)?

— (urgent)? init (transitions)? ;
states :
: ID ('{' expression '}')? ;

stateDecl

commit :
urgent :
statelList :
init :
transitions :
transition :

transitionOpt

transitionBody :
guard :

sync :

assign :
typeDecl :
typeldlList :
variableDecl :
declId :

initialiser :

fieldInit :

arrayDecl :

type

"state’ stateDecl (',’ stateDecl)* ';’

"commit’ statelist ';’' ;
'urgent’ stateList ';’ ;

ID ('," ID)* ;
"init’ ID ;' ;

"trans’ transition (',’ transitionOpt)* ’;

ID '-'" ID transitionBody ;
: transition | '-’ ID transitionBody ;
"{" (guard)? (sync)? (assign)? '}’

r.r

"guard’ expression ;' ;
"sync’ expression ('!' | '?') ';' ;

’

"assign’ exprList ;' ;

"typedef’ type typeldList (',' typeIdList)* ’;’

ID arrayDecl* ;

type declId (',’ declId)* ’;’' ;

ID arrayDecl* (
ID arrayDecl* (

expression
"{’ fieldInit (

’

’

=' initialiser)?
1

;=" initialiser)? ;

", fieldInit)* '}’

(ID ':")? initialiser ;

"[" expression ']’ ;

: prefix ID (range)?

prefix ’struct’

"{" fieldDecl+ '}’

,' parameter)*)? ')’

’

’

119

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

UPDATED UPPAAL DECLARATION CFG

120

fieldDecl

fieldDeclId :

prefix :
range :

block :

statement

caseExpr

exprList
expression

type fieldDeclId (',’ fieldDeclId)* ';' ;
ID arrayDecl* ;

(("urgent’)? (’'broadcast’)? | ('const’)? | ('meta’)?) ;

ro

"[" expression ',’ expression ']’ ;

"{" (variableDecl | typeDecl)* statement* '}’ ;

block

expression ';’

"for’ '(’ exprList ';’ exprList ’;’ exprList ')’ statement
"for’ r(r D ’:’ type ')' statement

while’ '(' exprList ')' statement

'do’ statement ’'while’ '(' exprList ")’ ';’
"if" '(' exprList ')’ statement ('else’ statement)?
"break’ ;'
"continue’ ;'

"switch’ '(’' exprList ")’" '{’' caseExpr+ '}’

"return’ ’;
"return’ expression ’;’

r.r

"case’ expression statement*
"default’ ’:’ statement*

o

expression (',’' expression)* ;
ID

NAT

FLOAT

"true’

'false’

ID '(" argList ")’

expression '[’ expression ']’
"(' expression ")’

expression '++’

"++' expression

expression '--'

'--' expression

expression assignOp expression
unaryOp expression

expression rel expression
expression binIntOp expression
expression binBoolOp expression

expression '?’' expression ':’' expression
expression .’ ID

expression '\'’

"exists’ '('ID ':' type ')’ expression
"forall’ '('ID ':' type ')' expression

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112

UPDATED UPPAAL DECLARATION CFG

arglList :
assignOp :

unaryOp :
rel :
binIntOp :
binBoolOp :

ID :

NAT :

FLOAT :

WS :

BLOCK COMMENT :
LINE COMMENT :

(expression (',' expression)*)? ;
I=I | ’ =I | I+_I | I__I | I*_I | I/=I | ’Q°=’
I|=I | I&=I | I/\=I | I<<_I | I>>=I ;
I_I | Il’ | I+I .

3 ’
l<l | I<=l | I==l | I|=l | I>=I | I>I .

1

I+I | I_I | I*I | I/I | ’O/c’ | I&I | I|I | A '<<'
I&&I | I||I ;

[a-zA-Z 1([a-zA-Z0-9 1)* ;

[0-9]+ ;

[0-9]+("."[0-9]+)? ;

[\n\t\r]l+ -> channel(HIDDEN) ;
'/*' %7 "%/’ -> channel (HIDDEN) ;
'//’ ~[\r\n]* -> channel (HIDDEN) ;

121

—_

AODVV2 MODEL CONNECTIVITY FUNCTION CHANGE

B AODVv2 Model Connectivity
Function Change

bool isconnected(IP i, IP j) {
return(topology[il[]j]l==1);
}

Listing B.1: Original isconnected function

bool isconnected(IP i, IP j) {
if(i=01]] j =20){
return false;

}
return(CONFIG_connected[i-1][j-1]1==1);

Listing B.2: Updated isconnected function

122

O 0N O U1 AWN -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

ANTLR4 VQ SYNTAX

C ANTLR4 VQ Syntax

Here we present the full syntax for the VQ language in ANTLR4 [40] g4 format, for help in
understanding the language and especially the parser for further development. The precedence
of expressions is higher for the topmost rules compared to the lower rules, such that for

instance * has higher precedence than +.

grammar vq;
query
(gradient | colors)? exp EOF;
gradient
"[" oneGradient ',’ oneGradient ']’;
oneGradient
: ID ':" NEG? FLOAT
| ID;
colors
"[" color+ ID ':" "%’ "]’;
color
: ID ':' NEG? FLOAT ',’;
exp
(" exp ")’
| <assoc=right> op ='-' exp
| <assoc=right> op ='!" exp
| exp op=('*" | '/') exp
| exp op=("+" | ’-") exp
| exp op=('<’ | '<=" | ">" | ">=") exp
| exp op=('==" | "!=") exp
| exp op="&&" exp
| exp op="|]" exp
| <assoc=right> exp '?’' exp ':’ exp
| ID
| ID '.’ ID
| FLOAT
| BOOL
BOOL : 'true’ | 'false’;
NEG 3 Y=sYp
ID : [a-zA-Z]1([a-zA-Z0-9])*;
FLOAT : [0-9]+('."[0-9]+)7;
WS : [\n\t\r]l+ -> channel (HIDDEN);

#par
#unOp
#unOp
#binOp
#binOp
#binOp
#binOp
#binOp
#binOp
#condOp
#id
#idDot
#float
#bool

123

W oOo~NOOULE WN B

U U bsS BESEBREBEPRAPERAEAPEPREPPWWWWWWWWWWNNNNNNNNNNRERERERERERERERRERRE
H O OO NOUE, WNHFHFOUOWONOURE,R WNRMFEHFOOWONOUEE, WNHFHOQOWOOLONOUEA, WNRHO

GPS LOG EXAMPLE

DG

The following listing contains the first 50 entries of the 50100 entries long GPS log file to
generate the dynamic topology shown in Section 10.1.1. The entire GPS log file, can be found

PS Log Example

on Appendix ZIP and is named GPSLog dynamic 0 1.txt.

0;0;57.010
1000;0;57.
2000;0;57.
3000;0;57.
4000;0;57.
5000;0;57.
6000;0;57.
7000;0;57.
8000;0;57.
9000;0;57.

10000;0;57.
11000;0;57.
12000;0;57.
13000;0;57.
14000;0;57.
15000;0;57.
16000;0;57.
17000;0;57.
18000;0;57.
19000;0;57.
20000;0;57.
21000;0;57.
22000;0;57.
23000;0;57.
24000;0;57.
25000;0;57.
26000;0;57.
27000;0;57.
28000;0;57.
29000;0;57.
30000;0;57.
31000;0;57.
32000;0;57.
33000;0;57.
34000;0;57.
35000;0;57.
36000;0;57.
37000;0;57.
38000;0;57.
39000;0;57.
40000;0;57.
41000;0;57.
42000;0;57.
43000;0;57.
44000;0;57.
45000;0;57.
46000;0;57.
47000;0;57.
48000;0;57.
49000;0;57.
50000;0;57.

124

966;9.968164;45 21 49 5 76 68 83 21 94 63

010983408;9.96817346156909;45 22 49 5 76 68 83 21 94 64
0110637654277;9.96828975499679;45 26 49 10 76 73 83 24 94 67
0110128812554;9.96827480682454;45 25 49 8 76 71 83 22 94 65
0109336375218;9.96842480255822;45 29 49 10 76 70 83 19 94 63
0110335370602;9.96847814655822;45 32 49 14 76 74 83 23 94 66
0110509450602;9.96861071505864;45 36 49 17 76 76 83 22 94 66
0109843770559;9.96866405905864 ;45 37 49 17 76 74 83 20 94 63
0110017850559;9.96880736394921;45 41 49 20 76 74 83 19 94 62
0109531848477;9.96886070794921;45 42 49 20 76 72 83 17 94 60
0110461603577;9.96891405194921;45 45 49 23 76 75 83 20 94 62
0111513494315;9.96905517702299;45 51 49 29 76 76 83 22 94 63
011224790017;9.96905248843746;45 52 49 31 76 78 83 24 94 65
0111440538503;9.96910583243746;45 52 49 30 76 75 83 21 94 61
0112095267797;9.96920724136686;45 56 49 33 76 75 83 21 94 61
0111636897951;9.96919734038224;45 55 49 32 76 74 83 20 94 60
0110894051442;9.96934237703312;45 58 49 32 76 69 83 16 94 55
0111053662501;9.96939716792718;45 60 49 34 76 68 83 15 94 54
0111767892591;9.96945051192718;45 63 49 36 76 68 83 17 94 54
0112116889811;9.96952134764924;45 66 49 39 76 67 83 16 94 53
0112290969811;9.96963806486359;45 69 49 41 76 64 83 15 94 50
0112422353113;9.96968713919374;45 71 49 42 76 63 83 14 94 49
0112779083556;9.96972221814943;45 72 49 43 76 62 83 14 94 48
0113536780977;9.96971720040735;45 74 49 45 76 63 83 17 94 50
0113710860977;9.96975370401628;45 75 49 46 76 62 83 16 94 49
0114295042506;9.96976603786337;25 1 45 76 49 48 76 63 83 17 94 49
011390736796;9.96987555731791;25 1 45 79 49 48 76 59 83 14 94 46
0114935872209;9.96992890131791;25 5 45 82 49 52 76 58 83 16 94 45
0114235000028;9.97006974053603;25 5 45 84 49 50 76 53 83 11 94 40
0114409080028;9.9701419653349;25 6 45 87 49 51 76 51 83 9 94 38
0114583160028;9.97012313362154;25 7 45 87 49 52 76 51 83 10 94 39
0114544625521;9.97017647762154;25 7 45 88 49 52 76 50 83 9 94 37
0114951979291;9.97025314899851;25 9 45 90 49 53 76 47 83 8 94 35
0115126059291;9.97033564465536;25 11 45 92 49 54 76 45 83 6 94 32
0115300139291;9.97046218900166;25 12 45 92 49 54 76 41 83 3 94 28
0116236098406;9.97043934509013;25 15 45 95 49 57 76 42 83 6 94 30
0116177535095;9.97049268909013;25 15 45 94 49 57 76 40 83 4 94 28
0116471677799;9.97054603309013;25 17 45 94 49 57 76 38 83 3 94 26
0116645757799;9.97052581293689;25 17 45 95 49 58 76 39 83 4 94 27
0115926724475;9.9706684682693;25 16 45 89 49 55 65 2 76 34 94 22
0116945288592;9.97080626068103;25 20 45 86 49 56 65 7 76 30 94 18
0117011929393;9.97087034860099;25 20 45 84 49 56 65 10 76 28 94 16
01171556303;9.9709206546917;24 0 25 21 45 82 49 55 65 11 76 26 94 15
0116341970306;9.9709739986917;24 1 25 18 45 80 49 52 65 12 76 24 94 12
0116516050306;9.97100242173092;24 2 25 19 45 80 49 52 65 14 76 23 94 12
0115752392032;9.97114953955828;24 6 25 16 37 0 45 74 49 47 65 18 76 18 94 6
0115156574099;9.97127987335163;24 9 25 14 37 4 43 0 45 70 49 43 65 21 76 14 94 2
0115330654098;9.97128815615444;24 10 25 15 37 543 14569 49 4365227613941
0114671751742;9.97142479839006;24 13 25 12 37 9 43 4 45 64 49 39 65 25 76 9
0114803194071;9.97147387862291;24 15 25 12 37 11 43 6 45 63 49 38 65 27 76 7
0114974788712;9.971526974087;24 17 25 12 37 13 43 8 45 61 49 37 6529 76 5

Listing D.1: GPS Log Example

USE & INSTALLATION GUIDE FOR VISUAAL

E Use & Installation Guide for VisuAAL

The flowchart in Figure E.1 sketches how we intend VisuAAL to be used for loading models
and simulations.

Load UPPAAL Model Load Simulation

Generate Topology Setup Config Variables

Configure Model

Load GPS data Setup Dynamic Variables

Configure Simulation Para-
meters and Run Simulations

Select VQ to display

Simulation Visualizer

Enter new VQs

Figure E.1: Flow chart for intended application use

E.1 Running VisuAAL

All members in our project groups have been using computers running Windows 10 as operating
system during development and in addition we have used a Linux server to run VisuAAL. Thus
we have only tested VisuAAL for those operating systems. We do not guarantee that it works as
expected on other platforms. To run VisuAAL install and download the following:

JRE 8 As VisuAAL is written in Java SE 8 [20], it is required to have Java SE Runtime Envi-
ronment 8 [39] (JRE 8) installed. When JRE 8 is installed one can simply execute the
VisuAAL. jar which starts VisuAAL.

UPPAAL - Verifyta To do simulations it is required to have the verifyta executable installed,
that comes with UPPAAL [51]. VisuAAL will prompt you when it needs to know where it
is located.

Download Application The latest version can be downloaded at: https://github.com/
lajtmaN/VisuAAL/releases

125

https://github.com/lajtmaN/VisuAAL/releases
https://github.com/lajtmaN/VisuAAL/releases

USE & INSTALLATION GUIDE FOR VISUAAL: Compilation and Further Development

Following is a guide to using VisuAAL.

10.

11.

12.

13.

. Download and install UPPAAL (we have used 4.1.19 exclusively): http://uppaal.org/

. Download and install Java SE Runtime Environtment (JRE) (we have used Java 8 update

121 exclusively): http://www.oracle.com/technetwork/java/javase/downloads/
server-jre8-downloads-2133154.html

. Download the newest version of VisuAAL: https://github.com/lajtmaN/VisuAAL/

releases

Extract the downloaded zip folder

Run VisuAAL.jar from the extracted zip folder
Click Load Model or Simulation

Find your model, if you do not have one yourself you can load either DYMO or LMAC,
located in the UPPAAL Models folder

After a model is loaded it can be configured, a topology can be generated and the updated
model can be saved by pressing the Save Model button in the top right

When the desired configurations are made, a simulation can be run in the simulation
tab, by specifying model Time Bound, Number Of Simulations, which topology to use
(generated or topology specified in the model) and optionally a name for the simulation

If the verifyta path has not yet been chosen, VisuAAL will prompt and ask for the path. It
is found in the installation folder of UPPAAL/bin-Win32 or UPPAAL/bin-Linux.

UPAALL will run, and when finished the result will be opened in a new tab. At the same
time, the result will be saved in a folder called simulations, where you started the
program. The new simulation will have the name set previously, or as default be named
Result. Any previous file with the same name will be overwritten.

In the Result tab one can write queries in Display and these can be saved using the
Export VQ’s functionality. In the VQ Help, you can also see which variables that can be
used for both edges and nodes.

To load a previous simulation, press Load Model or Simulation and change the file type
in the window to a simulation file, and locate the file you want to load.

E.2 Compilation and Further Development

In order to compile VisuAAL for further development, we recommend the following tools and
sources:

IDE IntelliJ IDEA Integrated Development Environment: https://www.jetbrains.com/idea/

JDK 8 Java Development Kit 8: http://www.oracle.com/technetwork/java/javase/

126

downloads/index- jsp-138363.html

http://uppaal.org/
http://www.oracle.com/technetwork/java/javase/downloads/server-jre8-downloads-2133154.html
http://www.oracle.com/technetwork/java/javase/downloads/server-jre8-downloads-2133154.html
https://github.com/lajtmaN/VisuAAL/releases
https://github.com/lajtmaN/VisuAAL/releases
https://www.jetbrains.com/idea/
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html

USE & INSTALLATION GUIDE FOR VISUAAL: Compilation and Further Development

Dependencies It is important that dependencies are handled in the IntelliJ IDEA for VisuAAL
to be compiled. The dependencies are included in the IntelliJ project file.

VisuAAL Source Code https://github.com/lajtmaN/VisuAAL

VisuAAL Javadoc https://lajtman.github.io/VisuAAL

127

https://github.com/lajtmaN/VisuAAL
https://lajtman.github.io/VisuAAL

LICENSING

F Licensing

Since VisuAAL is dependent on a number of libraries, VisuAAL is also under the license restricti-
ons of these libraries.
Below is the list of libraries we use and what license they are under.

ANTLR4 BSD 3-clause License [41]
GraphStream GNU Lesser General Public License v3 [18]
JUnit Eclipse Public License 1.0 [49]

GMapsFX Apache License, Version 2.0 [48]

Neither 4 of these licenses impose that we release our software under a special license, and
for this reason we are free to choose a license as long as it does not conflict with our needs. We
choose to use Apache License, Version 2.0 [48] for VisuAAL, because it is one of the licenses that
we are dependent on, and because it seems to fulfill our needs.

128

CONTENTS OF ATTACHED ZIP

ZIP Contents of Attached ZIP

Along with the report a zip folder is included with the following contents:
@/

I o =T o Yo X o o This report
| VisuAAL/
hVisuAAL GitHUD v Link to GitHub repository
binaries/
h VASUAAL . JAT ettt The executable for VisuAAL
lib/
| LMAC/
k Tmac513 SMCmodified.xml.....covviiiiiiiinnnninnnnns Model for the LMAC protocol
SIMULAtionsS/.vvviiiiiiiinneennnn, Contains the simulations for the LMAC protocol
| AODVv2/
hdymo_SMCmodified XML Model for the AODVv2 protocol
simulations/........cccevvvvnnns Contains the simulations for the AODVv2 protocol
| _LinkAiders/
topology only.Xml...c.uiiiivinnnnnrnnennnns Model with nothing else than topology
GPSLOg dynamic 0 L. tXT.viiiiiiiiiiiiirierrnnnnnnnnnnnnnnnns GPS Log file example
SIMULAtIONS/ vivviiiiiiin i ees Simulations with dynamic topology

For the printed versions of the report, additional confidential files are included. The file
structure for this version is as follows:

@/

....................................... All the previously mentioned files are also included

MAC BNEIGY/ ettt Contains a simulation with energy

MAC/

hmac_model 411 Model for the MAC protocol
simulations/.....ccoviiiiiiinnnnnnn. Contains the simulations for the MAC protocol

Routing/
routing model. XmU....uuuuuiiiiiineeeeeneennenennnns Model for the Routing protocol
routing model revised.xml............... Model for the revised Routing protocol
simulations/......covviviinnnnnn. Contains the simulations for the Routing protocol

129

	Cover
	Title Page
	Summary
	Preface
	Reading Guide
	Contents
	1 Introduction
	1.1 Problem Definition
	1.2 Related Work

	2 Mesh Protocol Theory
	2.1 Three Categories of Network Topologies
	2.2 Graph Model of a Network Topology
	2.3 Protocol Parametrization

	3 Timed Automata & UPPAAL Theory
	3.1 UPPAAL Introduction
	3.2 Statistical Model Checking
	3.3 Requirements for UPPAAL SMC Models
	3.4 Simulation Queries
	3.5 Modeling a Simple Protocol

	4 Requirements to Models
	4.1 Modeling Tasks
	4.2 Compatibility Requirements
	4.3 Location and Channel Usage as Output Variables
	4.4 Requirements Applied to Slotted ALOHA

	5 VisuAAL - Implementation Details
	5.1 Verifyta
	5.2 Components in VisuAAL
	5.3 UPPAAL Model File Structure
	5.4 Configuration Variables
	5.5 Dynamic Variables
	5.6 Creating Dynamic Topologies
	5.7 Output Variables
	5.8 VisuAAL Query
	5.9 Average Values for Simulations

	6 Case Study - LMAC Protocol
	6.1 Protocol Overview
	6.2 Model Overview & Compatibility
	6.3 Results for LMAC Protocol

	7 Case Study - AODVv2 Protocol
	7.1 Protocol Overview
	7.2 Model Overview & Compatibility
	7.3 Results for AODVv2 Protocol

	8 Case Study - Neocortec MAC Protocol
	8.1 Protocol Overview
	8.2 Results - MAC Protocol

	9 Case Study - Neocortec Routing Protocol
	9.1 Protocol Overview
	9.2 Results - Routing Protocol

	10 Current Applications of VisuAAL
	10.1 LinkAiders
	10.2 Energy Consumption

	11 Model Scalability Experiments
	12 Evaluation
	12.1 Conclusion
	12.2 Future Work

	13 Bibliographical Remarks
	Bibliography
	Appendices
	A Updated UPPAAL Declaration CFG
	B AODVv2 Model Connectivity Function Change
	C ANTLR4 VQ Syntax
	D GPS Log Example
	E Use & Installation Guide for VisuAAL
	E.1 Running VisuAAL
	E.2 Compilation and Further Development

	F Licensing
	ZIP Contents of Attached ZIP

