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Abstract:

This master thesis describes the initial design
and implementation of a controller for an
assisting upper body exoskeleton with two
degrees of freedom; elbow- and shoulder
flexion/extension. This project limits itself
to only implementing control on the elbow-
joint.
The thesis includes the derivation, parame-
terization and validation of a dynamic model
describing the exoskeleton arm. Further a
model of the human torque output in the el-
bow joint is derived. The joint torque is mod-
eled using the Hill Muscle Model, in conjunc-
tion with electromyography and joint angle
measurements.
After an experimental comparison of differ-
ent controller structures, a controller is im-
plemented using a hierarchical structure that
separates exoskeleton controller design into
three layers. One that directly controls the
actuators, one that handles the interaction
between user and exoskeleton, and one that
tracks the intention of the user. The three lay-
ers are implemented as computed torque con-
trol, admittance control and joint torque esti-
mation, respectively.
Quantitative tests have not been performed,
but qualitative tests indicate that the im-
plemented controller feels natural, and the
user reported that the controller was assist-
ing when lifting a dumbbell disc.

This thesis can be used as basis for further re-

search intro electromyography-based upper

body exoskeleton control, as the methods pre-

sented also are applicable in estimating and

controlling other joints as well.
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Resumé

Projektet involverer design af et kontrolsystem til et exoskelet til overkroppen. Projektet har begrænset
sig til udvikling af et kontrolsystem til albueleddet.

Projektet baserer sig på et elektromekanisk system udviklet på AAU’s Institut for Mekanik og
Produktion, som en del af det EU-understøttede AXO-SUIT projekt.

Udvikling af exoskelet-kontrol er et forskningsområde i udvikling, og der er derfor ikke nogen
endelige standardiserede løsninger på hvordan man bedst styrer et exoskelet. Projektet præsenterer
to forskellige kontrolsystemer: et hvor et estimat af momentet i det menneskelige led bliver sat som
reference direkte til motoren, og et der bygger på en hierarkisk struktur med tre lag. De tre lag
består af en task-level controller, som estimerer hvad brugerens bevægelses-intention er, en high-level
controller som håndterer interaktionen mellem bruger og exoskelet og en low-level controller der
sørger for at aktuatorerne udfører det nødvendige arbejde.

Til brug i task-level controller inkluderer specialet en implementering og parametrisering af
et estimeringssystem som ud fra brugerens elektromyografi og led-vinkel kan estimere momentet i
albueleddet. Estimeringssystemet baserer sig på Hills muskel-model og SENIAM’s metoder til filtrering
af elektromyografiske signaler. Parametrene til modellen er fundet eksperimentelt og tilpasset til den
enkelte bruger.

High-level controlleren er implementeret som en admittans controller, der tager det estimerede
moment som input og genererer en hastighedsreference som low-level controlleren skal følge. Forskel-
lige metoder er evalueret eksperimentelt, og den som brugeren sagde var mest komfortabel blev
valgt.

Low-level controlleren er implementeret som en PID computed torque controller. Denne type af
controller bruger feedback-linearisering for at fjerne al ulineær dynamik i systemet, og kræver derfor en
god model af systemdynamikken. En dynamisk model af exoskelettet er derfor udledt, parametriseret
og valideret, til brug i computed torque controlleren.

Til projektet er der udviklet både en hardware og software implementering af kontrol-systemet.
Hardware implementeringen bygger på brushless-controllere fra MAXON, samt et passende interface
til dem. Til det formål er der udviklet og produceret to PCB’er. Softwaren til controlleren er udviklet
til at køre på en indlejret Linux platform, som også har mulighed for at køre i realtid.

Den samlede 3-niveau controller er testet på albueleddet, med kvalitative evalueringsparametre.
Brugeren rapporterede at bevægelser føltes kontrollerbare og responsive, og der var god understøttelse
under løft af en håndvægtsskive.

Projektet er derfor et godt bidrag til Aalborg Universitets forskning i exoskeletter og danner et
solidt grundlag for videre forskning i elektromyografi som basis for kontrol af exoskeletter.

iii





Preface

This master thesis is written by group 17GR1035 at Aalborg University and concludes the masters
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A thanks is extended to the two Ph.D. students at Aalborg University Muhammad Raza-Ul Islam
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Figure 1: The members of group 17GR1035 from left to right: Morten Rechter, Bjarke Nørskov Roe
- Poulsen, Lasse Bromose.
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AAU Aalborg University.
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List of Symbols and Notation

Notation

∆ The prefix ∆ indicates a change or dif-
ference

ẋ Time derivative is denoted with a dot

M Matrices are denoted with bold capital
letters

sign (a) Function to get the sign of a. Returns
1 or −1

Ā× B̄ Cross-product is indicated with a ×

v̄ Vectors are denoted with a line above
the symbol

v̄T The transpose of a matrix or vector is
indicated with a raised T

a b Multiplication symbols are omitted

xd References trajectories are indicated by
subscript d for desired

Symbol Names

α Filter parameter

β Filter parameter

δ Electromechanical Delay [s]

ε Efficiency [%]

η EMG signal

λ Eigenvalue

B Moment of inertia
�
kgm2

�

IC Moment of inertia
�
kgm2

�

Im Moment of inertia
�
kgm2

�

M Moment of inertia
�
kgm2

�

L The Lagrangian [J]

ω Angular velocity [rad/s]

ωn Natural Frequency [rad/s]

φ Gaussian tuning parameter

ψ Filtered Electromyography signal

ρ Density [kg/L]

σ Slope parameter

τ Torque [N m]

θ Joint angle [rad]

υ Electromyography envelope

ψ̄ Model uncertainty

ē Angular position error [rad]

F̄ Friction torque [N m]

Ḡ Gravitational torque [N m]

ḡ Gravitational force vector
�
m/s2

�

n̄ Feedback linearization torque [N m]

ū Input signal

V̄ Centrifugal and Coriolis torque [N m]

ȳ Measurement

ξ Percentage of fast muscle fibers [%]

ζ Damping factor

A Degree of nonlinearity

a Activation Signal

b Viscous friction coefficient

C Filter parameter

d length [m]

E Normalized mean square error

F Force [N]

i Current [A]
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x Abbreviations

K Kinetic energy [J]

Ki Integral gain

Kp Proportional gain

kt Motor torque constant [N m/A]

Kv Differential gain

kv Motor velocity constant [V/(rad/s)]

L Constant length [m]

l Length [m]

La Armature inductance [H]

m Mass [kg]

N Gear ratio

r Length [m]

Ra Armature resistance [Ω]

S Shape parameter

t Time [s]

Ts Sampling time [s]

U Potential energy [J]

Um Motor voltage [V]

Uemf Back EMF voltage [V]

v Linear velocity [m/s]

VC E0
Contractile velocity [m/s]
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Introduction 1
The concept of assistive robotic suits goes far back in the science fiction literature. Be it Marvel Comics’
Iron Man or Lucasfilm’s Darth Vader, the idea of using electromechanics to improve human motion has
been around for decades. Innovations made in battery technologies, micro processors and electrical
actuators in recent years have accelerated the development of real-world assistive robotic suits, or
powered exoskeletons, significantly.

Early development within the field of powered exoskeletons was heavily focused on military
applications. The first attempt of developing an exoskeleton started in 1965, and the suit was named
Hardiman. It was co-developed by the United States military and General Electric. Development of
Hardiman went on until 1969, and within those years, they created a prototype. The prototype proved
somewhat successful, but had a number of issues (including stability, weight and power consumption)
which led to the end of the project [1].

Since then some of the focus has shifted - while there is still research and development that fo-
cuses on military applications, rehabilitation and motion enhancement is gaining increasing amounts
of attention. Recently, SuitX has gained a lot of attention, because of a story about a Steven Sanchez,
who had a BMX accident in 2005, and has been paralyzed from the belly and down, who, with the
help of SuitX is able to walk again [2].

Development of exoskeletons for rehabilitation is a growing business. Companies all over the
world are developing exoskeleton systems to enhance human movement. Several, like ReWalk, Ekso
Bionics and, Parker Hannifin from the US, as well as REX Bionics from New Zealand focus on walking,
and assisting patients with spinal chord damage or other types of lower body paralysis. Other systems,
like the French Hercule by RB3D, the Korean DSME, or Japanese CYBERDYNE, focus on supporting
an able-bodied wearer during different work tasks, such as lifting goods, using heavy power tools, or
support during stressful working positions.

While only one of the mentioned companies is based in the EU, this is likely to change in the
future. The European Commission decided in 2014 to fund the largest civilian-funded robotics in-
novation programme, SPARC, with ¤700.000.000 [3]. SPARC is divided into several topic groups,
including a healthcare group [4]. The healthcare group is divided into three topics; Clinical Robotic,
which aims to support the clinical staff and assist in e.g diagnosis and surgical intervention. Reha-
bilitation, where patients have a direct interaction with a robot, that will enhance recovery. Assistive
Robotics are robots which primary function is to assist either patients or their carer.

One of the current research projects within assistive robotics is the AXO-SUIT, which Aalborg
University (AAU) is part of. It focuses on the development and construction of a full body assistive
exoskeleton. The purpose of AXO-SUIT is to increase the endurance of wearers with weak muscles,
such as elderly people. This will reduce the fatigue of the wearer and allow him or her to continue
working on low-intensity tasks for extended periods of time. [5]

The AXO-SUIT research team at AAU is working on the upper body with focus on the arms, and
have already built a prototype called the AXO-arm, shown in Figure 1.1, which this project is based
on.

1



2 Chapter 1. Introduction

Figure 1.1: The AXO-arm, developed at AAU Department of Mechanical and Manufacturing
Engineering.

In recent years, several upper body exoskeleton designs have been proposed. In [6] the authors
describe a 7-Degrees of Freedom (DOF) exoskeleton arm where the joints are actuated by motors
pulling wires connected to the mechanical joint. The motors are at the base of the arm, and reel in
the wire to follow muscle contractions and let it go when the muscle relaxes. Arms of this type can be
relatively light, but of course the base of the arm gets quite heavy and complex, because the motors
still have to be somewhere in the system.

In [7] a similar wire system is used. However, instead of reeling the wire in and out using
motors, this paper suggests pneumatic muscle actuators. They consist of a rubber tube connected to
pressurized air. Increasing the pressure in the tubes makes them contract and releasing the pressure
makes them relax. Actuators of this type have many advantages, including a low weight, cost effective
production, and mechanical properties that are similar to real muscles.

On the prototype of the AXO-arm, the joint actuators are placed directly in the joints of the arm
and it only has 2 DOF, with a motor controlling each joint. This design reduces the complexity of
the mechanical system at the base of the arm, and also of the arm itself, since there is no need for
running steel cable from one joint to the other. However, this design choice has the disadvantage of
increasing the weight of the arm itself, since the wearer is carrying the weight of both the mechanical
construction and the motors.

A vital part of controlling an assisting exoskeleton is measuring the intent of the wearer. This
intention measurement should act as a control reference for the exoskeleton. If the exoskeleton were
to simply mimic the motion of the wearer, the use of one or several Inertial Measurement Unit (IMU)’s,
attached to the wearer, might be sufficient. However, the exoskeleton needs to assist the wearer, for
example in case a lift is to be performed that the wearer is not strong enough to do. In that case, a
measurement of muscle activity or neural muscle activation is desired.

A popular sensor choice for exoskeleton control is the surface Electromyography (EMG) sensor.
It is used both in [6], [8], and in the commercial lower limb exoskeleton from CYBERDYNE. The EMG
sensor measures the electrical potential in a muscle, with respect to some reference. Only surface
EMG is considered here, as an intramuscular EMG is deemed too invasive for the purposes of the
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AXO-arm.
A muscle that is relaxed does not show any electrical activity [9], when the muscle is contracting

it is possible to measure the electric impulse that is sent from the brain. The measurement of this
phenomenon is called electromyography.

The use of electromyographic sensors in [6] is of particular interest as the authors use the EMG
signal and the user’s arm joint angles to estimate the intended joint torque. They do so using a system
that they call a Myoprocessor which is capable of online torque calculations based on the level of
neural activation and a dynamic muscle model.

Available at the Section of Automation and Control at AAU is the Myo Band, shown on Figure 1.2,
that is developed by Thalmic Labs. It is a commercial EMG-based sensor band for estimating hand
gestures. It provides high quality EMG measurements with an 8 bit resolution[10], and a sample
rate of 200 Hz[11]. It consists of 8 pods that are placed evenly around the wearers forearm, each
containing an EMG sensor. The pods are connected to one another with an expandable band, assuring
a comfortable and secure grip around the arm.

Figure 1.2: The Thalmic Labs Myo Band [12]

The finish and ease of use of the Myo Band makes it a compelling choice for this project. It also
has a built in gyroscope and accelerometer which might prove useful in position estimation, this can
be sampled at 50 Hz. However, it is made for use for the forearm, which might make it difficult to
detect shoulder movement, which is is desirable in this project. It is, however, possible to mount the
Myo Band on the upper arm instead, possibly assisting in shoulder movement detection.

The AXO-SUIT development team at AAU is in the process of developing a new type of sensor.
Like EMG it seeks to measure the level of muscle activation. It is based on force sensitive resistors
(FSR), which is a variable resistor where the resistance decreases when force is applied to it. A series
of FSRs are mounted on the inside of a non-expanding nylon armband, and then strapped around
the arm. When the muscles are activated they tense up and push outwards onto the FSRs reducing
the resistance in the FSRs.

FSRs are relatively cheap components and unlike the Myo Band, there are no limitations on the
circumference of the arm that it mounts around. However, there are no commercial solutions readily
available, so a potential solution requires design, implementation, and testing before use.

As the research in the FSR band is still ongoing, with no published results regarding its intention
estimation capabilities, the Myo Band is the superior choice. Its ease of use, and the repeated use of
EMG technology in the litterature also supports this choice.



4 Chapter 1. Introduction

Project Summary

The focus of this master thesis will be on controlling the 2 DOF AXO-arm, using EMG measurements
obtained using the Myo Band. It will work from the problem statement:

How can an EMG based control system be implemented on a 2 DOF upper body exoskeleton,
to allow a natural and supporting motion of the wearer?

The project contains a detailed description and model of the AXO-arm, and implementation of a
human joint torque estimation technique. These two form the basis for design of a controller that is
implemented and tested.



System Description 2
The current setup of the AXO-SUIT consists of two joints; an elbow joint and a shoulder joint. For
this project a Myo Band has been added, which includes EMG sensors. A microprocessor for control
has also been added. The setup is shown in Figure 2.1, and the components are described in the
following sections.

Microprocessor

AXO-arm

Human armEMG Sensor

ū

ȳ
η Mechanical

interaction

Figure 2.1: Overview of the AXO-arm system.

The vector ū contains the input signals to the two joints. Vector ȳ contains the sensor measure-
ments from the joints. The EMG sensor block measures muscle activation levels, and transmits them
to the microprocessor in the vector η.

Of course there is an interaction between the AXO-arm and the human arm in Figure 2.1, in
that the two are strapped together.

2.1 AXO-arm

The AXO-arm block in Figure 2.1 consists of several subsystems. There is the electromechanical
system with the motors, gears, and the physical arm. Then there is the electronics, with motor drivers
and sensors. Each joint has a motor driver, that measures the motor velocity using a built in hall
sensor, and measures the applied current. There is also an absolute encoder in both joints to measure
the angle. A diagram of the AXO-arm setup is shown in Figure 2.2, where θ , θ̇ , and ia correspond
to the vector ȳ in Figure 2.1. The angle and angular velocity, θ and θ̇ , are measured, as well as the
armature current, ia.

5



6 Chapter 2. System Description

Driver

Power

Hall Sensor

Shoulder Joint

θ0

ū0
[ia,0 θ̇0]

Driver

Power

Hall Sensor

Elbow Joint

θ1

ū1
[ia,1 θ̇1]

Figure 2.2: The electrical wiring of the AXO-arm.

2.1.1 Elbow Joint

The elbow joint consists of a MAXON EC45 motor with a 50:1 Harmonic Drive gear1. The MAXON
motor is controlled by an ESCON 50/5 Servo Controller. There is a NOVOHALL RFD4000 position
encoder located at the joint, providing measurements of the joint angle. The position encoder has a
measuring range of 0◦ to 360◦, with a resolution of 12 bit. The measurement is output as an analog
voltage between 0.25 V to 4.75 V.

As a safety precaution to protect the wearer of the AXO-SUIT, the movement of the elbow joint
is limited to angles between 0◦ (fully stretched) and 147◦ (fully flexed), as shown in Figure 2.3a.
The red line indicates the maximum flexion angle and the black line indicates the joint at 0◦ which
is also protected by a mechanical stop.

2.1.2 Shoulder Joint

The shoulder joint is very much like the elbow joint but with a bigger motor. A MAXON EC60 motor
with a 50:1 Harmonic Drive gear, and it is also controlled via a ESCON 50/5 controller. The angle of
the shoulder joint is also measured using the NOVOHALL RFD4000. The shoulder joint also has limited
movement to protect the wearer. It can move between −10◦ and 190◦ as shown on Figure 2.3b.

0◦

(a) Limits of the elbow joint.

0◦

(b) Limits of the shoulder joint.

Figure 2.3: The mechanically allowed movement ranges of the two joints of the AXO-arm. The red
lines indicate limits and the black lines indicate 0◦. On the elbow joint, 0◦ and maximum extension

coincide.

1The model CSD-25-50-2A-GR is used in both the shoulder- and elbow joint.
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2.1.3 Motor Driver

The motors are controlled using ESCON controllers. ESCON 50-5 drivers are chosen for controlling
the motors. This motor driver is a rather advanced system that takes care of several motor control
tasks. The key features are [13]:

• It generates the current signals to each of the three phases of the Electric Cummutator (EC)
motor.

• It measures the motor velocity using built in hall sensors, and is able to provide its measured
value as an analog voltage.

• It measures the current drawn by the motor. It sums the current of the three phases to get a
single value in stead of three. It provides an analog voltage that represents the current.

• There is an on-board control system that allows control with either a velocity- or current refer-
ence. It is also possible to operate the motor in open-loop but only with a velocity reference.
The references to these controllers can be set either using an analog voltage or a Pulse Width
Modulation (PWM) signal.

• The reference signal can only be positive, so the driver also needs a direction signal. It is set
with a digital signal that is either logical high or low. Logical high is between 2.4 and 36 V

• Finally, it is possible to enable and disable the motor with a digital pin.

2.1.4 Hardware Implementation

While the AXO-arm setup currently consists of two Maxon EC motors, a near-future upgrade will add
one more motor to increase the DOF. The ESCON 50-5 drivers should for ease of use be connected
to a motherboard PCB. For this purpose, a motherboard with room for three ESCON 50-5 drivers has
been developed and produced. It is shown on Figure 2.4, and a diagram can be found in Appendix D.

Figure 2.4: The triple ESCON motherboard. The small ribbon cables are for the HALL sensor and
encoder on each motor. The wide ribbon cable is for interfacing with a micro-controller.

The motherboard is designed according to the guidelines in [13]. It suggests a 220µF electrolytic
capacitor on the supply voltage for each driver, along with a TVS2 diode and a fuse. It also recommends

2Transient voltage suppressor.
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adding a motor choke to reduce the emission of electromagnetic interference [13]. It has been chosen
to apply a motor choke of 22µH, along with an appropriate RC-filter on each phase. The component
values are found in [13] and shown on Figure 2.5.

22µH

150 pF

330 pF

Motor Coil
ESCON
Output

Figure 2.5: The motor choke. A circuit like this is attached to every phase of the motor.

The 40-pin ribbon cable contains all the control inputs and analog outputs from the three ESCON
drivers, as well as the analog output voltages of the encoders. The encoder signals are divided on the
motherboard to move them from 0 V to 5 V to 0 V to 3.3 V. This setup makes it possible to attach any
micro controller to the other end of the ribbon cable, and interface with the AXO-arm.

The chosen micro controller for implementing the controller is a UDOO Neo. It is a single board
computer that seeks to combine what is great about Arduino and what is great about the Raspberry
Pi. It has a Freescale i.MX6 SoloX processor, that combines two Arm cores in a single chip; a Cortex
A9 and an M4. The UDOO has an on-board wireless card with WiFi and Bluetooth. For connecting the
micro controller with the ribbon cable, a micro controller shield has been made, shown in Figure 2.6.
Light emitting diodes show if the motors are enabled and which direction they are moving.

Figure 2.6: This shield functions as the link between the UDOO Neo and the motherboard ribbon
cable. It is here attached to the micro controller.

A diagram of the shield can also be found in Appendix D.
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2.2 Muscle Sensors

To estimate muscle movement and activity a Myo Band has been purchased. The Myo Band contains
8 different medical grade stainless steel EMG sensors and a 9-axis IMU. The Myo Band provides a
Bluetooth interface.

The developers behind the Myo Band, Thalmic Labs, provide a library to interact with the Myo
Band, unfortunately the library is only available for Microsoft Windows and Apple OS X. They did
however, also release a description of the protocol used to communicate with the Myo Band, described
in two blog posts on their developer blog, [14] and [11]. They also created a GitHub repository with
related datatype definitions [15]. With this information, it is possible to communicate with the Myo
band without using their official library, and interact with the Myo band from e.g. a Linux system.

For this project an OS independent interface module has been implemented. It is build around
the Bluetooth Low Energy (BLE) interface specified by the aforementioned blog posts and data types.
A detailed description of the implementation can be found in Appendix C.





Requirements 3
Specifying requirements for exoskeletons is not a well-researched area. Since the mechanical part of
the system directly interfaces with a human being, the majority of the requirements are functional,
and thus difficult to distill into mathematically verifiable answers. In this chapter we describe the
functionalities of the AXO-arm, and formulate a set of system- and performance requirements that
support the functionalities.

3.1 Functional Requirements

As mentioned in Chapter 1, the focus of the AXO-SUIT project is to strengthen users who have weak
muscles. A common example of a weak-muscled individual, that is also used in the graphics on the
AXO-SUIT website [5], is an elderly person trying to get by on his or her own. The focus of the
AXO-arm controller is to assist the user in his or her movements, by transferring some of the load on
the muscles onto the AXO-arm construction.

It is of course important that the operation of the AXO-arm is not dangerous to the user. The
possible range of motion of the AXO-arm should therefore not extend beyond the range of motion of
a human user, i.e. it should not be possible to bend the elbow backwards. Ideally the AXO-arm should
be able to operate in the entire human range of motion, but the system that is available at AAU at the
time of writing only has 2 DOF, resulting in a system that only allows movement in a vertical plane.

The following list contains a breakdown of the functional requirements.

1. The AXO-arm must accurately follow the motion of the user during free motion, and not impose
extra resistance when moving around. Operation has to feel natural.

2. The AXO-arm must support the user when a load is applied, for instance if something is picked
up.

3. The AXO-arm should be safe to use and not injure the user by forcing the joints into positions
that are not allowed by normal human motion.

3.2 Technical Requirements

3.2.1 Motion Control

Motion tracking is an essential part of the exoskeleton design. The motion controller should be able
to track trajectories, generated by the user, in both angle and angular velocity domain, and should
do so in a sufficiently fast manner. A power spectral analysis of movement in the elbow joint was
performed in [16] and found a maximum voluntary movement frequency of 4 Hz to 6 Hz. Since the
AXO-arm will be mounted on a human arm, having zero steady-state error on the position is not
critical, as the feedback loop that consists of the user will compensate for this. However, in the torque
domain, zero steady state error is critical since an exoskeleton that attempts movement when the user
is not attempting to move is undesirable. Motor torque control is an inner loop relative to the position
controller. A rule of thumb when designing cascade controllers, is that the inner loops should be at
least 5 times faster than the outer loops [17]. The requirements for the motion tracking controller
are:

11
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• A closed loop bandwidth of 6 Hz or more on the position controller.

• A closed loop bandwidth of 30 Hz or more on the torque controller.

• No torque steady-state error.

• A sample rate of at least 10 times the desired closed loop bandwidth, on both torque and
position controller. [18]

• No overshoot on the position control.

• Gain margin of at least 10 dB, and a phase margin of at least 45◦ on the position control.

3.2.2 Model

A standard way of controlling serial manipulators is using feedback linearization which is a model
based control technique where all nonlinear terms are canceled by the input signal. For this purpose,
a dynamic model of the system needs to be developed, and it needs to be sufficiently precise to allow
for a well performing feedback linearized controller. The model must have a precision that results in
a fitness, measured using Normalized Mean Squared Error (NMSE), of at least 0.8, when it is applied
to a measurement series. This precision should allow the model to track the mechanical system with
good precision when used inside a feedback loop. NMSE is a normalized measure of fitness that can
take on values in the range E ∈]−∞, 1], where 1 is a perfect fit. If the NMSE is zero, then the fit is
no better than that of an affine approximation. The calculation of NMSE is shown in Equation (3.1),
where x is the measurement data, x̂ is the estimate from the model.

E = 1−
����
����

x − x̂
x −mean(x)

����
����
2

(3.1)

3.2.3 Intention Tracking

The primary input signal to the AXO-arm is measurements from EMG sensors. This measurement will
be used to estimate the force exerted by the user and in extension thereof, the desired motion. Some
amount of learning is to be expected from the user, who will adapt his or her behavior while using
the AXO-arm. However, when it comes to estimating the load on the user’s muscles, the estimator
does need to be close to reality. It is thus chosen to demand a precision of the estimated joint torques
that results in a NMSE of at least 0.75.

3.2.4 Load Transfer

The purpose of the AXO-arm is to increase the stamina of the user when working under load. The
AXO-arm must therefore be capable of transferring the load from the muscles and onto the electrome-
chanical system. It is chosen to transfer 50 % of the load onto the electromechanical system.

3.2.5 Safety

The AXO-arm needs to be safe to operate. The joints must therefore not be able to move into positions
that impossible to reach for humans. Since the AXO-arm for now only has two degrees of freedom:
elbow flexion/extension and shoulder flexion/extension, these are the two joints to consider. Accord-
ing to [19] the elbow joint can move between 0◦ (fully stretched) and 150◦ (fully flexed), and the
shoulder can move between −60◦ and 180◦ if we place 0◦ where the arm is hanging down the side
of the body. The movement of the AXO-arm should thus not exceed these angles.

There is no ISO standard on exoskeletons yet, so the technical standard on collaborative robots,
TS15066 [20], is used in this project. It states that the quasi static physical contact force between an
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operator and a machine can at most be 160 N on the forearm, and 150 N on the upper arm, before it
results in a minor injury. A minor injury is specified a severity of 1 on the Abbreviated Injury Scale.
For a transient contact force the maximal force is doubled. The interaction force between the user
and the AXO-arm must thus not exceed these values. This force can be translated into maximum
joint torques using the length of the links, the gear ratio, and the gear efficiency. The two links are
227 mm and 330 mm long, so the maximum allowed output torque on the elbow and shoulder joint,
respectively, are

τmax,elbow = 0.227m 160 N = 36.32 [N m] (3.2)

τmax,shoulder = 0.330m 150 N = 49.5 [N m] (3.3)

TS15066 further states that the operator of a collaborative robot should at all times have the means
to at any time and by a single action stop the robot. The means to stop the robot could be an enabling
device or an emergency stop button.





Part I

Mechanical Modeling

An important part of controller design involves knowledge of the system that is to be controlled.
This part contains a kinematic and dynamic model of the AXO-arm, including both electrical and
mechanical parts. It also describes how the models are parameterized and finally there is a verification
to asses the model validity.





Forward Kinematics 4
Kinematics is a branch of mathematics that describes the motion of objects relative to each other. It
is therefore a useful tool when modeling serial manipulators.

Forward kinematics is a method for relating the Cartesian coordinate and orientation of the
end effector to the base of the serial manipulator. This means that the tool frame can be described
with relation to the base frame. In most serial manipulator cases, the known variables are the joint
configurations. Forward kinematics is a method for relating the joint variables to the position and
orientation of the end effector. A frame in this context is a coordinate system. The base frame is where
the AXO-arm has a fixed base and the tool frame is the most outer point of the robot arm, where a tool
is usually placed. To understand forward kinematics, first the idea behind transformation matrices is
explained since these are the cornerstones of forward kinematics and relates the coordinate systems
of two neighboring joints. This is followed by an explanation of a standard way to construct these
transformations matrices called The Denavit-Hartenberg Convention. With this tool, the transforma-
tion matrices for the current setup are found and by combination of these, the forward kinematics is
constructed. [21]

4.1 Terminology

To ease the description of the forward kinematics, here is a small section on terminology and notation.

Frame
A coordinate system that is attached to a point on the serial manipulator. Coordinate frame A
is denoted {A}.

Transformation matrix
A matrix, b

a T ∈ R4×4, that transforms points from one frame to another. The use of sub- and
superscripts indicates from- and to which frame the transformation is done. 0

1T is thus the
transformation matrix from frame {1} to {0}.

Translation vector
A vector, b p̄a,ORG ∈ R3×1, that is part of the transformation matrix and describes the translation
of one frame relative to another. 0 p̄1,ORG is the translation from the origin of frame {1} to {0}.

Rotation matrix
A matrix, b

aR ∈ R3×3, that is part of the transformation matrix and describes the rotation of one
frame relative to another. 0

1R is the rotation from frame {1} to {0}.

Point Position
A vector, a p̄ ∈ R3×1, that describes the position of a point relative to frame {a}. 1 p̄ is a point
position relative to frame {1}.

Origin of a Frame
aŌ ∈ R3×1 describes the origin of a frame. 1Ō is the origin of frame {1}.

17
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4.2 Transformation Matrices

The purpose of transformation matrices is visualized in Figure 4.1, where a point 1 p̄ is defined with
respect to the coordinate system frame {1}. If the point needs to be defined in the other coordinate
system, frame {0}, a rotation and a translation needs to be done, to get the representation of the
point as 0 p̄.

x0

y0

z0

x1

y1

z1

0 p̄
x1

y1

z1

1 p̄

Figure 4.1: The figure illustrates how a point 1 p̄ that is attached to the frame {1}, needs to be
rotated and translated for the point to belong to the frame {0} instead.

To describe the rotation and translation mathematically, Equation (4.1) is used. Here the trans-
formation matrix 0

1T consists of a rotation matrix 0
1R, a translation vector 0 p̄1,ORG(x , y, z), a 01×3

zero row and a 1, which equals the mentioned size 4× 4. The last row was added to avoid having a
singular transformation matrix. To make multiplying with a position vector possible, a 1 should be
added to it before multiplication.

�
0 p̄

1

�
= 0

1T

�
1 p̄

1

�
=

�
0
1R 0 p̄1,ORG

01×3 1

� �
1 p̄

1

�
(4.1)

4.3 Denavit Hartenberg Convention

The Denavit Hartenberg convention is used as a standard way of describing the transformation from
one coordinate system to another. To make such a transformation, first the coordinate systems (one per
joint in the setup) have to be placed in a specific manner. Next, parameters describing translation and
rotation are determined. Finally by inserting the parameters in a standard matrix the transformation
is constructed. The Denavit Hartenberg convention used is the classical one, also described in [22].
The Denavit Hartenberg rules for placing the coordinate systems of the setup are shortly stated below
(where only the rules relevant for the current setup are listed):

Step 1 Place the joint z axes, z0, z1, z2... zn, so that the joints rotate around their associated z axis.

Step 2 Place the base frame (origin 0O) on the z0 axis and place the x0 and y0 axis to make right-
handed coordinate system.

Step 3 Place the origin iO where the axis zi and zi−1 common normal intersects zi .

Step 4 Place x i where the common normal between zi−1 and zi goes through iO and also in that
direction.

Step 5 Place yi so that the right-hand frame is completed.

With those rules, coordinate systems are placed on top of the robot arm as shown in Figure 4.2.
Since there are two revolute joints and one tool frame in the setup, three z axes are placed (z0, z1
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and z2). Since the tool frame placement is not specified by the rules above and has no function (no
rotation or translation), the associated z2 axis can be placed in a desired manner, which is why it is
simply placed parallel to the other z axis, so that the x2 axis can still obey step 4. For the base frame
there are no rules for placing the x axis, and is therefore chosen to point downwards in the direction
of gravity.

x0

y0

z0

{0}

x1

y1z1

{1}

x2

y2
z2

{2}

Figure 4.2: The coordinate systems are placed on the setup with the use of Denavit Hartenberg
approach.

The Denavit Hartenberg notation uses following parameters to construct the transformation
matrix.

• ai: Distance from the intersection of the x i and zi−1 axis to the origin iO along x i .

• di: Distance from the intersection of the x i and zi−1 axis to the origin i−1O along zi−1.

• αi: The angle between zi−1 and zi measured around the x i axis.

• θi: The angle between x i−1 and x i measured around the zi−1 axis.

When using the stated rules, it is seen in Figure 4.3 that the lengths a1, a2 and angles θ1 and
θ2 are present and of relevance, while the lengths and angels di and αi are zero.

x0

y0

z0

{0}

θ1 x1

y1z1

{1}

θ2

x2

y2
z2

{2}a1

a2

Figure 4.3: The variable lengths a1, a2 and angles θ1 and θ2 are placed with the use of the Denavit
Hartenberg approach.
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The Denavit Hartenberg approach is smart and simple because the method limits itself to only
deal with rotations around the x and z axis as well as only the translations in the direction of the x and
z axis. By placing the coordinate systems according to the specified rules, all rotation and translation
about the y axis is avoided. The way of setting up the coordinate systems fits with a standard
transformation matrix which can be used in all cases as long as the rules are followed. With the
parameters and the standard transformation matrix, a transformation describing the translation and
rotation between frame {2} and {1} can be created as well as one for frame {1} and {0}. The Denavit
Hartenberg standard matrix is shown in Equation (4.2) where one inputs the found parameters ai ,
di , αi and the joint variable, θi , to get the transformation between frame {i} and {i − 1}.

i−1
i T =




cos(θi) −sin(θi)cos(αi) sin(θi)sin(αi) aicos(θi)
sin(θi) cos(θi)cos(αi) −cos(θi)sin(αi) aisin(θi)

0 sin(αi) cos(αi) di

0 0 0 1


 (4.2)

4.4 Forward Kinematics of the Robot Arm

The parameters of importance for the current setup are also shown in Table 4.1 for overview:

joint i ai αi di θi

1 330mm 0 0 θ1

2 227mm 0 0 θ2

Table 4.1: The table gives an overview of the parameters that are used for the Denavit Hartenberg
matrix.

With Equation (4.2) and Table 4.1 the following transformation matrices are derived:

0
1T =




cos(θ1) −sin(θ1) 0 a1cos(θ1)
sin(θ1) cos(θ1) 0 a1sin(θ1)

0 0 1 0

0 0 0 1


 (4.3)

1
2T =




cos(θ2) −sin(θ2) 0 a2cos(θ2)
sin(θ2) cos(θ2) 0 a2sin(θ2)

0 0 1 0

0 0 0 1


 (4.4)

The transformation of the end frame relative to the base frame can now be derived as shown in
Equation (4.5) which concludes the forward kinematics.

0
2T = 0

1T 1
2T =




cos(θ1 + θ2) −sin(θ1 + θ2) 0 a1cos(θ1) + a2cos(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2) 0 a1sin(θ1) + a2sin(θ1 + θ2)

0 0 1 0

0 0 0 1


 (4.5)



Dynamic Model 5
This chapter explains the dynamics of the AXO-arm. The dynamic model is based on the Euler
Lagrange Formulation, which is a method for modeling a serial manipulator [21][23][22]. The chapter
will be structured according to following:

• First the Euler Lagrange equation is described.

• Second the potential and kinetic energy of the links are derived.

• Then the Lagrange D’Alambert Principle is used to add actuator- and friction torques to the
model.

• Lastly, a model of the electric motors and their attached gears is derived.

5.1 The Euler Lagrange Equation

The Euler Lagrange Formulation is an energy based way of modeling a mechanical system, and in this
case the serial manipulator. A central part of the formulation is to make use of the Euler Lagrange
equation, since that is a tool for constructing a dynamic model of a mechanical system when the
energy of it is known. The Euler Lagrange equation is explained in this section, while the energy of
the serial manipulator is described in Section 5.2 and Section 5.3. To understand the Euler Lagrange
equation, first generalized coordinates are explained, which are used in the calculations.

Generalized Coordinates

To understand generalized coordinates, consider first a group of particles that are connected and
together form an object. In the case of a serial manipulator, these particles could be links. If the
motion of every particle is a result of the force applied, and all particles are to be considered when
describing the motion of the object, it would be very comprehensive. The reason is that the connection
between the particles would make up constraints in the calculation of the system configuration at
any given moment which is computationally complex.

To simplify the calculations, we can describe the configuration of the system in generalized
coordinates, which is a smaller variable set (specific for the system). A popular choice of generalized
coordinates when describing serial manipulators is the set of joint parameters, θ̄ . The AXO-arm has
only revolute joints, and the joint variables are therefore angles. This reformulation allows us to
describe the equations of motion of the system with respect to joint angles. [23]

The Euler Lagrange Equation

The model of the serial manipulator is based on the Euler Lagrange formulation. The Euler Lagrange
equation is therefore explained in this section. To do that, first the Lagrangian,L , is defined as shown
in Equation (5.1).

L (θ̄ (t), ˙̄θ (t)) = K(θ̄ (t), ˙̄θ (t))− U(θ̄ (t)) [J] (5.1)

21



22 Chapter 5. Dynamic Model

Here U is the potential energy and K the kinetic energy. It should be noticed that the potential
and kinetic energy are both described in generalized coordinates. A serial manipulator can contain
several links. θ̄ (t) and ˙̄θ (t) are therefore vectors.

θ̄ (t) =




θ1(t)
θ2(t)

...

θn(t)




[rad] (5.2)

˙̄θ (t) =
dθ̄ (t)

dt
=




θ̇1(t)
θ̇2(t)

...

θ̇n(t)




[rad/s] (5.3)

The key concept of the Euler Lagrange equation is that a mechanical system will always move along
the path, that consumes the least amount of energy. The Euler Lagrange equation is derived by
minimizing the Lagrangian. The Euler Lagrange equation is stated in Equation (5.4).[24] [23]

d
dt
∂L (t, θ̄ (t), ˙̄θ (t))

∂ ˙̄θ (t)
− ∂L (t, θ̄ (t),

˙̄θ (t))
∂ θ̄ (t)

= 0 [J] (5.4)

To make use of Equation (5.4) to describe the dynamics of the system, first the kinetic and potential
energy of the links has to be derived. It should be noted that the Euler Lagrange equation stated
in Equation (5.4) is only valid for conservative systems, but the equation will in Section 5.4 be
expanded to include non-conservative forces.

5.2 Potential Energy

To describe the potential energy of the AXO-arm, first a single link is considered, followed by a
description of the whole arm. Potential energy is only related to gravity. In Denmark the gravitational
acceleration is g = 9.816 m/s2, resulting a gravitational force vector,

0 ḡ =




9.816

0

0


 ,

�
m/s2

�
(5.5)

which is shown with brown on Figure 5.1.

CoM

x0

y0

z0

x i

yi

zi

0 ḡ

0 p̄Ci
mi

Figure 5.1: The gravity vector ḡ affects the body in its Center of Mass (CoM).
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The link, with mass mi and position 0 p̄Ci
described in base frame, is affected by gravity in the

x direction. The vector 0 p̄Ci
is the position of the CoM of the link. An equation of the link potential

energy is formulated as:

Ui = − mi
0 ḡT 0 p̄Ci

[J] (5.6)

The point 0 p̄Ci
is a function of the joint angles of the serial manipulator. For deriving 0 p̄Ci

Equa-
tion (4.1) is used. For clarity Equation (4.1) is shown below in a simpler form:

0 p̄Ci
= 0

i R i p̄Ci
+ 0 p̄i,ORG (5.7)

Here the rotation matrix 0
i R is dependent on the joint angles. With the potential energy of a single link

derived, the total potential energy of the AXO-arm related to the base frame can be calculated using
Equation (5.8). The energies can be summed because they are all defined in the same coordinate
frame.

U =
N∑

i=1

Ui =
N∑

i=1

mi
0 ḡT 0 p̄Ci

[J] (5.8)

5.3 Kinetic Energy

The second half of Equation (5.1) is the kinetic energy in the serial manipulator. To describe it, a
single link is considered at first, followed by a description of the whole arm. Kinetic energy depends
on both linear (0 v̄Ci

) and rotational velocity (0 ˙̄θi); here Figure 5.2 shows these two types of velocity.
Both velocities are related to the link CoM.

CoM

x0

y0

z0

x i

yi

zi

0 v̄Ci

0 ˙̄θi

Figure 5.2: The velocity of the link is both related to a linear (0 v̄Ci
) and angular velocity (0 ˙̄θi)

about the center of mass.

As described in [23] the kinetic energy is expressed as in Equation (5.9). Here 0ICi
(θ̄ (t)) is the

inertia of the link about its CoM related to the base frame. The link mass is mi .

Ki =
1
2

mi
0 v̄T

Ci

0 v̄Ci
+

1
2

0 ˙̄θT
i

0ICi
0 ˙̄θi [J] (5.9)

To obtain the linear velocity of the CoM with respect to the base frame, 0 v̄Ci
, Equation (5.7) is used

again since 0 v̄Ci
= d

dt

�
0 p̄Ci

�
:

0 v̄Ci
=

d
dt

�
0 p̄Ci

�
=

d
dt

�
0 p̄i +

0
i R i p̄Ci

�
[m/s] (5.10)
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As given in Equation (5.11) The rotational velocity, 0 ˙̄θi, of joint {i} with respect to the base frame,
is calculated as the sum of all previous joint velocities j and the local angular velocity itself i. Every
rotational velocity has to be related to the base frame which is done using the rotational matrix R.

0 ˙̄θi =
0 ˙̄θi−1 +

0
i−1R i−1 ˙̄θi =

i∑
j=1

0
j−1R j−1 ˙̄θ j [rad/s] (5.11)

Note that the local angular velocity i−1 ˙̄θi is not defined with relation to the link CoM, but the link frame
{i}. This is because the orientation of the link CoM is the same as the link frame and angular velocity
is only dependent on orientation. Like the angular velocity, the link inertia is also only dependent
on the orientation. Therefore in order for it to be described with respect to the baseframe, only a
rotation of the inertia tensor is needed as shown in Equation (5.12). Here i ICi

is the inertia tensor
of link i, around the CoM defined in frame {i}. It should be noted that the inertia tensor is constant
when described in its local frame.

0ICi
(θ̄ ) = 0

i R(θ̄ ) i ICi
0
i RT(θ̄ ) [N m] (5.12)

With an expression of the link kinetic energy, the Kinetic energy of the AXO-arm can be calculated
as the sum of all the link kinetic energies:

K =
N∑

i=1

Ki =
N∑

i=1

�
1
2

mi
0 v̄T

Ci

0 v̄Ci
+

1
2

0 ˙̄θT
i

0ICi
0 ˙̄θi

�
[J] (5.13)

5.4 The Euler Lagrange Formulation Including Non-conservative
Torques

In Section 5.1 the Euler Lagrange equation with the conservative torques was shown as Equa-
tion (5.4). This is only a model of the conservative forces in the system, created by the potential-
and kinetic energy. A conservative force is one where energy does not enter or leave the system, e.g.
when potential energy is added by elevating an object, the same amount of energy can be released
by dropping it. The aim of this section is to include non-conservative torques such as friction and
actuator torque in the model. The Lagrange-D’Alembert Principle is used to include non-conservative
torques in the Euler Lagrange equation. By letting Q̄ contain all the non-conservative torques, the
Euler Lagrange equation can be modified into:

d
dt
∂L (θ̄ , ˙̄θ )

∂ ˙̄θ
− ∂L (θ̄ , ˙̄θ )

∂ θ̄
= Q̄ [N m] (5.14)

Now by use of the results from Section ??, the Lagrangian can be described in terms of the kinetic
and potential energy:

d
dt
∂ (K(θ̄ , ˙̄θ )− U(θ̄ ))

∂ ˙̄θ
− ∂ K(θ̄ , ˙̄θ )− U(θ̄ )

∂ θ̄
= Q̄ [N m] (5.15)

By calculating the derivatives of Equation (5.15), we get:

M(θ ) ¨̄θ + V̄ (θ̄ , ˙̄θ ) + Ḡ(θ̄ ) = Q̄ [N m] (5.16)
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The elements derived from solving the derivative are divided between M , V̄ , and Ḡ where:

• The M matrix contains all the terms from the derivation that is multiplied by the rotational
acceleration θ̈ . The terms contain parts of the link inertia tensors and link masses and as a
whole M describes the inertia of the system.

• The V̄ vector contains all the elements that the angular velocity is a part of. It describes how
centrifugal forces and Coriolis fictive forces are influencing the AXO-arm as torques.

• The Ḡ vector contains the elements that are only dependent on the angular position. The Ḡ
vector is derived purely from the potential energy and describes how the gravitational force is
effecting the AXO-arm as torques.

Next the non-conservative torques(external torques) contained in Q̄ are shown in Equation (5.17),
where the F̄ vector describes the friction of the system and τ̄in is a vector describing the actuator
torques.

Q̄ = τ̄in − F̄( ˙̄θ ) (5.17)

Finally the derived result of the Euler Lagrange equation with non-conservative torques included is
written in Equation (5.18).

τ̄in = M(θ ) ¨̄θ + V̄ (θ̄ , ˙̄θ ) + Ḡ(θ̄ ) + F̄( ˙̄θ ) (5.18)

It should be noted that the motor internal dynamics are not included in the equation yet, which is
the aim of the following section.

5.5 Addition of the Motor Internal Dynamics to the AXO-arm
dynamics

This section contains a model of the motors that are used in the AXO-arm. It is structured in the
following way:

• First the motors for the AXO-arm setup are described and it is explained how these can be
approximated with a DC motor model.

• It is presented how a current controller can benefit the AXO-arm model and how it influences
the motor dynamics.

• The effect of the gear on the motor dynamics is accounted for.

• It is studied how the motor dynamics can be implemented in the AXO-arm dynamics to express
a final equation of the robot arm dynamics.

5.5.1 Motor Modeling

This section presents the motor model that is used in this project. In each of the actuated joints reside
a brushless Direct Current (DC) motor, or equivalently EC motor. The brushless motors are of the
type Maxon 412825 and 40268. The main structural difference between brushed and brushless DC
motors is that in the brushed case, the coil is on the rotor and the magnet is on the stator, and in
the brushless case the magnet is on the rotor and the coils are on the stator. Having the coils on the
stator gives a lower friction because there is no need for electrical connection between stationary
and moving parts. This also reduces the wear on the motor, and improves the efficiency. [25]
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Controlling the EC motor takes more effort than a DC motor. Typically, as is also the case in this
project, EC motors have three phases, each connected to a set of coils. The principle of operation
relies on the three phases being connected to AC power where each line is 120◦ separated in phase.
This allows the EC motor to move the magnetic field from one coil to the next. The turn direction is
determined by the relative phase displacement between adjacent coils.

The dynamic model of an EC motor is similar to that of a regular DC motor. A regular DC motor
model is based on the equivalent electrical and mechanical system shown in Figure 5.3. The following

+
− MUm

Ra La

Uemf

ia
+

−
Im

θ

τ f

τL

τm

Figure 5.3: Electrical model of a DC motor, and a rotational free body diagram of the motor axle.

equations define the dynamics.

Um(t) = ia(t) Ra + La
d
dt

ia(t) + Uemf (t) [V] (5.19)

Im(t) θ̈ = τm(t)−τL(t)−τ f (t) [N] (5.20)

Uemf (t) = kv θ̇ (t) [V] (5.21)

τm(t) = kt ia(t) [N m] (5.22)

τ f (t) = b θ̇ (t) + sign
�
θ̇ (t)

�
τc(t) [N m] (5.23)

The motor back emf, Uemf , is modeled in Equation (5.21) as being linear in motor velocity, θ̇ . The
motor torque, τm, is linear in the coil current, and the friction is assumed to consist of viscous friction
and coulomb friction, as shown in Equation (5.23). The torque from the attached load is denoted
τL . Equation (5.19)-(5.20) show the total model of both the electrical and the mechanical system
of a DC motor.

The expansion of the DC motor model to make it fit that of an EC motor, includes taking into
account the three phases in the EC motor. Thus, there are three electrical diagrams equivalent to
that of Figure 5.3, but each with an ia and Um that is phase shifted 120◦. An example of the three ia
signals is shown in Figure 5.4. In the EC motor case, the model equations are:

Umn
(t) = ian

(t) Ra + La
d
dt

ian
(t) + Uemf (t), where n ∈ {1, 2,3} [V] (5.24)

Im(t) θ̈ =
3∑

n=1

�
τmn

�−τL(t)−τ f (t) [N m] (5.25)

Uemf (t) = kv θ̇ (t) [V] (5.26)

τmn
(t) = kt ian

(t), where n ∈ {1,2, 3} [N m] (5.27)

τ f = bθ̇ + sign
�
θ̇
�
τc [N m] (5.28)
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Figure 5.4: The shape of the current signals in the different phases.

As Figure 5.4 indicates, the sum of the three ia signals is constant. Therefore, once the generation
of the three different drive signals to the coils is in place, the model can be simplified to that of a
regular DC motor.

5.5.2 Mode of Operation

The motors are controlled using ESCON 50-5 drivers. This type of driver allows operation with either
velocity or current reference signals. For this project, current control is desired since the current is
proportional to the torque that the motors apply, as seen in Equation (5.22). Therefore, by controlling
the current, the torque is also controlled.

As mentioned in Section 2.1.3, the ESCON drivers do not support open loop current control.
It is therefore necessary to implement a closed loop current controller. A block diagram of the DC
motor is shown in Figure 5.5a, and it is expanded to include the current controller in Figure 5.5b.
For simplicity, the friction is kept as a linear term τ f = bωm, but in the next section, it again takes
the form of Equation (5.28). Note that in this section ωm is the rotational velocity of the motor axle
(θ̇ (t)).

The block CC , in Figure 5.5, is the current controller, and in the present case with the two
motors, the auto tuned controller parameters are shown in Table 5.1. The controllers are auto tuned
with Maxon Studio and for both motors a PI controller is used.

Time Constant Proportional part

Maxon 412825 631µs 260

Maxon 402687 658µs 1260

Table 5.1: PI Controller Parameters found by autotuning in Maxon Studio

With the current controller and its parameters known, it is next studied how the current controller
effects the dynamics of the motors. In figure Figure 5.5c the DC motor block diagram including the
current controller is rearranged. By doing that, the system can be seen as two parts in series. The first
part is from a torque reference τref to a motor torque τm and the second part is the pure mechanics
from τm to ωm. Since the current controller time constants are very fast and the electrical time
constants of the motors are also assumed to be very fast, a hypothesis is that the first part of the
block diagram from τref to τm can be approximated as a gain of 1, if kt is known. This of course
has to be justified since the assumption about the fast time constants is uncertain and also because
it is seen that the mechanics of the motor is also a part of the transfer function from τref to τm. To
justify the hypothesis, measurements of the motor current are captured in order to find time constants
of the transfer function from τref to τm. The current reference is also saved in order to define the
initial time. Additionally the motor velocity is measured to find a time constant of the whole motor
dynamics from τref to ωm. By comparing the two time constants it can be justified whether the time
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(b) DC motor blockdiagram including current control
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(c) Rearranged blockdiagram showing where to measure

Figure 5.5

constant of the transfer function from τref to τm is sufficiently fast and insignificant to approximate
the transfer function from τref to τm as a gain of 1.

From the measurement report in Appendix A it is seen that the electrical time constant is around
50 to 60 ms, while the mechanical time constant is at least 500 to 600 ms (for both joints). The time
constant of the transfer function from τref to τm is thus deemed insignificant when compared to the
mechanical time constant, which reduces the block diagram in Figure 5.5c to only consist of the
motor mechanics as shown in Equation (5.29). To summarize, by using current control, the electrical
part of the motor can be neglected in the model, so that the focus is only on the mechanics.

ωm

τre f
=

1
kt

kt
1

Ims+ b
=

1
Ims+ b

(5.29)

The mechanical equation given in Equation (5.29) is of course not the true one because of the
simplified friction, but is simply stated to give an idea of why the electrical part vanishes from the
equation. The true mechanics of the motor are given in Section 5.5.1 where the equation used further
is Equation (5.20). Additionally it should be noted that in this section, the motor was without any
load for simplicity, but since the AXO-arm is a load, it is added in the following section.
From Appendix A, also notice that there is no steady state error from τref to τm, which means that
the steady state requirement described in Section 3.2.1 is fulfilled.

5.5.3 The Gears’ Effect on the Motor Dynamics

In this section the gears are included in the mechanical model, to couple the motor dynamics and
the AXO-arm dynamics. On each of the motors, a gear is attached. It is harmonic drive gear with a
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ratio of 50/1. It is modeled merely as a gain on the motor angle, velocity, acceleration and torque.

θ =
1
50
θm [rad] (5.30)

θ̇ =
1
50
θ̇m [rad/s] (5.31)

θ̈ =
1
50
θ̇m

�
rad/s2

�
(5.32)

τin = 50τm [N m] (5.33)

Where θ is the angle of a joint on the AXO-arm, or equivalently the output angle of the gear.
With basis in Equation (5.20), τL is studied. It is the torque applied from the load and since

the load is the AXO-arm, it must include some inertia. Therefore the AXO-arm loads the motor with a
torque that is equal the product of inertia, joint angular acceleration and the gear ratio. By expanding
τL , Equation (5.20) can thereby be reformulated as:

Im θ̈m + θ̈ IL
1
N
= τm −τ fm

(θ̇m) [N m] (5.34)

Where Im and IL are motor- and load inertia, N is the gear ratio, θ̇ and θ̈ are the angular velocity
and -acceleration of the AXO-arm and θ̇m and θ̈m are the angular velocity and -acceleration of the
joint motor. As seen in Equation (5.34), θ̈ IL

1
N is the torque from the inertia part of the load. The

friction torque of the motor τ fm
(θ̇m) is kept as a function for simplicity and because it is modeled

as nonlinear. For the load inertia torque, the inverse gear factor 1
N is multiplied to transform it into

torque on the motor axle. Using Equation 5.30–5.33 we get:

τm = θ̈ Im N + θ̈ IL
1
N
+τ fm

(θ̇m) [N m] (5.35)

τm = θ̈
1
N
(Im N2 + IL) +

1
N
τ fm
(θ̇ N) N [N m] (5.36)

τm N = θ̈ (Im N2 + IL) +τ fm
(θ̇ N) N [N m] (5.37)

Where Equation (5.37) is the final result of this section, since the gear is now implemented in the
motor dynamics.

5.5.4 Implementing the Motor Dynamics in the AXO-arm Dynamics

To include the motor dynamics given in Equation (5.37) into the AXO-arm dynamics given in Equa-
tion (5.18), these equations are at first compared. For clarity both equation are restated below:

τm N = θ̈ (Im N2 + IL) +τ fm
(θ̇ N) N [N m] (5.38)

τ̄in = M(θ̄ ) ¨̄θ + V̄ (θ̄ , ˙̄θ ) + Ḡ(θ̄ ) + F̄( ˙̄θ ) [N m] (5.39)

It is important to note that Equation (5.38) is the mechanical model for a single motor, while Equa-
tion (5.39) is the vector valued model of the entire AXO-arm system without motor dynamics. Parts
of the system are therefore described by both equations. The load term, IL , corresponds to a row of
the M matrix, and the friction torque, τ fm

, corresponds to a row of F̄( ˙̄θ ). The motor inertia, Im, can
easily be added to the total system inertia matrix, M , due to the motor being placed in the origin
of the joint coordinate system. Equation (5.38)-(5.39) can thus be combined to form the complete
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model of both the serial manipulator and the attached motor dynamics, where N is a diagonal matrix
with gear ratios on the diagonal and Im is a diagonal matrix with motor inertias on the diagonal:

τ̄in = τ̄m N [N m] (5.40)

τ̄m N = (Im N2 +M(θ̄ )) ¨̄θ + V̄ (θ̄ , ˙̄θ ) + Ḡ(θ̄ ) + F̄( ˙̄θ N) N [N m] (5.41)

which can also be written as Equation (5.42).

¨̄θ = (Im N2 +M(θ̄ ))−1(τ̄m N − V̄ (θ̄ , ˙̄θ )− Ḡ(θ̄ )− F̄( ˙̄θ N) N)
�
rad/s2

�
(5.42)

To make Equation (5.42) more intuitive, it is shown as a block diagram in Figure 5.6. Equa-
tion (5.42) is the final result of this chapter since it describes the entire AXO-arm dynamics.

N

N

∑ × ∫ ∫

−V̄ (θ̄ , ˙̄θ )

−Ḡ(θ̄ ) −F̄( ˙̄θ N)

�
Im N2 +M(θ̄ )

�−1

τ̄m

¨̄θ ˙̄θ θ̄

Figure 5.6: Block of the AXO-arm model. Rounded edges indicates that the block is a function of
the input signal
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Having found a dynamic model of the exoskeleton arm, it is now necessary to parameterize it. This
chapter describes which parameters that are known and which we need to estimate using measured
data. Section 6.1 presents an overview of the model parameters, and how they each are determined.
Some of the model parameters will be estimated using white-box parameter estimation and others will
be calculated from production drawings. The model we use for the white-box parameter estimation is
summarized in Section 6.1.1. After that, Section 6.2, accounts for the parameter estimation tests that
are conducted and the parameters are calculated. Lastly, a validation of the model and parameters is
done.

6.1 Model Parameters

The inputs to the dynamic model in Chapter 5 are torques. The motors and their drivers do not allow
torque input, as written in Section 2.1.3. However, they do allow current control. In Chapter 5 we
state that the torque of a DC-motor is proportional to the current with the torque constant kt . It is thus,
indirectly, possible to set torque inputs to the system if kt is known, and the controller on the ESCON
driver is properly tuned. The torque constant for the motors can be found in the datasheet, but due
to tolerances, it is deemed best to determine these experimentally. It is thus one of the parameters
that will be estimated. [26]

The parameters that describe the physical dimensions of the system matrix, M , and the vector,
V̄ , are calculated from the CAD drawings. In the CAD drawings we find the CoM, and tensor matrices,
which can be transformed to the global reference frame, using kinematics. We assume that the parts
are machined sufficiently precise for the mass, center of mass, and inertia to fit with the CAD models.

Gravitational force is assumed constant and equal to 9.816m/s2 pointing downwards in the
global reference frame.

The friction force in the system is unknown. Chapter 5 suggests a friction model in the motor
that consists of viscous friction and coloumb friction. It turns out, that this type of model fits the
system quite well, as shown in Section 6.2. To summarize, it is necessary to estimate the following
parameters:

• Motor torque constant, kt for each of the two motors.

• Viscous friction coefficient b for each of the two joints.

• Coloumb friction τc for each of the two joints.

6.1.1 Model for White-box Parameter Estimation

Serial manipulators are a well-researched subject, with a known closed for model structure. It is there-
fore chosen to estimate the parameters using a white-box method, which is a system identification
technique where unknown parameters are fitted to a known model.

To simplify the white-box model used for experimental estimation of torque constant and friction,
the AXO-arm has been disassembled into its two joints and corresponding links. This allows us to
neglect any effect of one joint on the other, and since we are not estimating any inertias with this
experiment, disassembling the arm will not pose any problems. Furthermore, to remove the effect of
gravity on the measurements, the two joints are placed on the side so that they move in a horizontal

31
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plane. In that configuration, the joints have vertical axes of rotation, and it is therefore reasonable to
assume no influence from gravity. A photo of the configuration is shown in Figure ??. The motion of
a single joint can now be described by following differential equations.

Figure 6.1: Foto of the elbow joint during testing. It is mounted so it moves in a horizontal plane.

Im θ̈m(t) = τm(t)−τ f (θ̇m, t) [N m] (6.1)

τm(t) = kt ia(t) [N m] (6.2)

τ f (t) = b θ̇m(t) + sign(θ̇m(t))τc [N m] (6.3)

The sign function is implemented as the sigmoid function. The makes the model continuous, and
thus improves simulation speed. It also solves the problem of defining sign

�
θ̇
�

m when θ̇m = 0.

sgm(θ̇m,σ) =
2

1+ exp(−σ θ̇m)
− 1 (6.4)

shown in Figure 6.2.
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Figure 6.2: The sigmoid function used in stead of sign, to keep differentiability. The parameter σ
determines the slope, and here σ = 1.

Using the sigmoid function results in the need to estimate one more parameter:σ. Once measure-
ments of ia and θ̇m are made, it is possible to obtain θ̈m by numeric differentiation and the parameters
kt , b,τc , andσ can be found by fitting the model to the measurements. To reduce measurement noise,
which numeric differentiation is quite sensitive to, the velocity measurements are filtered before the
differentiation takes place. Firstly, the ESCON 50-5 drivers that measure the velocity are configured
to output not the raw velocity measurements, but what Maxon Motor calls Averaged Speed. This is
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the velocity measurements, filtered by a first order low-pass filter with a cut-off frequency of 5 Hz
[27]. Then, after the measurements are saved to the computer, the velocity signal is filtered using a
moving average filter with a window size of 5.

6.2 Estimation Experiment and Results

The parameter estimation test is described in Section 6.2.2. The joints are individually actuated, and
parameters are estimated one joint at a time. Before the experiments can be conducted, considerations
have to be made with regards to the choice of input signals.

6.2.1 Choice of Input Signal

Two types of input signal have been chosen for the test. It is stated in [28] that sine wave inputs
and square pulse inputs are good and popular choices. Due to the physical angle limitations on the
AXO-arm, described in Section 2.1, it is desirable to choose a signal that is symmetric around zero,
to make sure that the movement stays within the possible operating region. The recommended type
of square pulse train in [28] is one with random period, but constant amplitude. To generate this
signal, it is necessary to set a maximum period that does not allow movement all the way from the
center of the valid region to the edge of the valid region. This signal period is found experimentally.
For the generation of a sine-signal, a frequency sweep is suggested, to evaluate the system response
at several input frequencies. Examples of the input signals are shown in Figure 6.3.
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Figure 6.3: Examples of the two input signals for parameter estimation tests. Both types of signals
were 60 s long, these plots only show an excerpt.

The amplitude and period limitations of the input signals are chosen to avoid hitting the me-
chanical end stops of the joints. The square pulses therefore have a maximum width of 1 s for the
shoulder joint and 0.5 s for the elbow joint. To verify the linearity of the system, the test is conducted
at three different amplitudes, for both joints. The sine sweeps are chosen to have linearly increasing
frequency in range 5 Hz to 0.02 Hz for the shoulder motor and 10 Hz to 1 Hz for the elbow motor.
The elbow motor needs higher frequencies because it accelerates faster due to the smaller load, and
its operating region is smaller. The sine sweeps are applied at two different amplitudes. A summary
of the input signals is shown in Table 6.1.

6.2.2 Experiments

A series of experiments have been conducted to obtain measurements that allow finding parameters.
The AXO-arm has been disassembled so that parameters can be calculated for one joint at a time. The
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Shoulder Elbow

Frequency Range [Hz] Amplitudes [A] Frequency Range [Hz] Amplitudes [A]

Square Pulse 0 to 0.5 1.1, 1.3, 1.5 0 to 1 0.5,0.6,0.7

Sine Sweep 0.02 to 5 1.3, 1.5 1 to 10 0.6,0.7

Table 6.1: Signal frequencies and amplitudes of the parameter estimation tests.

test setup is shown in Figure 6.4 and is the same for both shoulder- and elbow joint measurements.
The PC initiates motion and logs the system response. The vector ū contains current reference signals
and ȳ are measurements of joint angle, angular velocity and motor armature current.

ESCON 50-5 Microcontroller

PC

iref

[ia θ̇]

Power θ̇ θ

ȳ ū

Figure 6.4: The test setup when estimating parameters for a single joint.

The two joints and links that make up the AXO-arm are individually mounted on a table. The
signals described in the previous section are applied, and measurements of current, angle, and angular
velocity are obtained. Each signal is 60 s long.

6.2.3 Friction Parameters

To get the parameters for the friction model,

τ f = b θ̇m +τc sgm(θ̇m,σ), [N m] (6.5)

the current and velocity is measured when the acceleration is zero. This dataset is extracted from
the data obtained by applying the input signals described in Section 6.2.1. The measured current
and velocity is extracted whenever the acceleration is zero. In this case, the dynamics of the motor is
governed by

τm = τ f [N m] (6.6)

kt ia(t) = b θ̇m(t) +τc sgm(θ̇m(t),σ) [N m] (6.7)

For this part of the parameter estimation, we choose to not find kt , but instead find the parame-
ters: b

kt
, τc

kt
, and σ, because in this section, we only seek to parameterize the friction model. It is

also not possible to find kt , because Equation (6.7) is over-parameterized. The MATLAB function
lsqcurvefit() is used to find the parameters that best fit the model to the measured data of ia and
θ̇m. The pseudo-inverse could also have been used to find the least squares solution to the curvefitting
problem, however, lsqcurvefit() allows constraints on the parameters. This lets us make sure
that they are positive, and thus keep their physical meaning.
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The function lsqcurvefit() is a least squares data-fitting function. When supplied with a
model, F(ū, par), and a measured input-output sequence, (ū, ȳ), and an initial guess of the parameters,
par, it will find the parameters that minimize the Mean Squared Error (MSE):

E(par) =
1
N

N∑
(F(ū, par)− ȳ)2 (6.8)

The default solver options are used.
Figure 6.5 shows how the friction model compares to the measurements on both motors. The

uneven sample density comes from the fact that the points are an extract of a larger set of measure-
ments. Recall that we only use the current and velocity at times when the acceleration is zero. This
method is used to get as many samples as possible. Simply measuring the current at different constant
velocities, is a problem because the joint movement of the AXO-arm is limited, so the motor may not
reach a constant velocity before hitting a mechanical end-stop. Table 6.2 shows the parameters that
describe the friction model.
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Figure 6.5: Relationship between armature current and velocity, when the acceleration is zero.
This data is used to fit a friction model consisting of coloumb friction and viscous friction.

b
kt

�
A

rad/s

�
τc
kt
[A] σ [·]

Shoulder 0.0030 1.0245 0.1383

Elbow 0.0007 0.5394 0.0889

Table 6.2: Friction parameters for the two joints on the AXO-arm.

6.2.4 Motor Constant

Having derived a suitable model of the friction in the joints, this section describes how the motor
torque constant, kt , is estimated. In the previous section, we found a model for the current consumed
by friction, this is denoted i f (θ̇m). The model is now reduced to

Im θ̈m(t) = τm(t)−τ f (θ̇m) [N m] (6.9)

τm(t) = kt ia(t) [N m] (6.10)

τ f (t) = kt i f (θ̇m) [N m] (6.11)
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Since i f is known, it is straightforward to fit the model to the data, to obtain the motor torque constant,
kt . Once again, the MATLAB function lsqcurvefit() is used to fit the model to the measurements.
The fitness between the model and the data, measured as NMSE, is Es = 0.901 and Ee = 0.804 for
the shoulder- and elbow joint respectively. Changing the model slightly, to allow a different torque
constant for i f (θ̇m) and ia(t) improves the model substantially. The model is now changed into

Im θ̈m(t) = kt ia(t)− k f i f (θ̇m) [N m] (6.12)

This method is unsupported by literature but it merely amounts to a scaling of the friction model, to
also fit it to the data where the acceleration is nonzero. The NMSE is now Es = 0.971 and Ee = 0.927,
which is a significant enough improvement that the modification is accepted.

Table 6.3 shows the parameters. Interestingly, the motor torque constants specified in the data
sheets of the motors are 0.114 N m/A and 0.131 N m/A, so the estimated values are reasonable. The

kt [N m/A] b
�

N m
rad/s

�
τc [N m] σ [·]

Shoulder 0.0708 194.69× 10−6 0.066 0.1383

Elbow 0.0764 44.05× 10−6 0.0359 0.0889

Table 6.3: Motor and friction parameters for the two joints on the AXO-arm.

data used for these parameter estimations is 5 min long. It is thus infeasible to show all of it here.
However, we have chosen a few excerpts where we compare simulated and measured data. This is
shown for the elbow joint in Figure 6.6 and the shoulder joint in Figure 6.7. On both of the figures,
the two top graphs is with a random period square pulse train and the two bottom graphs are with a
sine sweep input. The motion of the tests correspond to realistic human movement. The velocities
are in the range −100 rad/s to 100 rad/s on the input side of the gears, resulting in an actual joint
velocities of −2 rad/s to 2 rad/s.

On the plots in Figure 6.6c and Figure 6.7c something strange is going on. Some of the periods
have a much smaller amplitude than the others. It is not clear what creates this phenomenon, but
maybe the friction is not completely time invariant and operation in open loop is therefore not
completely predictable. This phenomenon is not investigated further.

Overall, though, Figure 6.6 and Figure 6.7 show that the model fits generally well with the
data, and the estimation error is rarely above 10 rad/s to 15 rad/s, which on the output of the gear
corresponds to an actual joint velocity error of 0.2 rad/s to 0.3 rad/s. The data shown in Figure 6.6
and Figure 6.7 is a comparison between the model and the data that the parameters have been fitted
to. In the following section, a validation using new data is made.

6.3 Parameter Validation

Before the model of the complete AXO-arm is validated, this section seeks to validate the parameters of
the motor model. This is done by comparing simulations with measurements, but using a data set that
has not been used for parameter fitting. Extracts from these data sets are shown in Figure 6.8. The
model still fits the measurements well. The validation gives a NMSE fitness between the measurements
and the simulation of Ee = 0.968 and Es = 0.953 for the elbow- and shoulder joint respectively, thus
meeting the requirement of an NMSE of at least 0.8 on the mechanical model. The motor model
parameters are therefore accepted for use in the following chapter that validates the model of the
entire AXO-arm.
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Figure 6.6: Comparison of simulated and measured velocity of the elbow motor. Blue is
measurement, red is simulation.
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Figure 6.7: Comparison of simulated and measured velocity of the shoulder motor. Blue is
measurement, red is simulation.
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Figure 6.8: Comparison of measurements and simulations using a data-set that has not been used
for parameter fitting.



Verification of the Dynamic Model 7
In Chapter 6, actuator parameters are found that match the model when the motors are modeled
individually. To check that the found parameters also fit well with the full mechanical model found in
Chapter 5, this chapter aims to verify the model by comparing real measurements with model simu-
lations obtained with the found parameters. In Section 7.1 and Section 7.2 the measurements and
simulations are explained. In Section 7.3 the aim is to verify the model by comparing measurements
and simulations. Lastly Section 7.4 introduces final improvements of the model by small parameter
adjustments.

7.1 Measurement of Exoskeleton Planar Movement

In Chapter 6, the AXO-arm was disassembled to remove as much of the dynamics as possible. For
the model verification in this chapter, it is put back together. The AXO-arm is attached to a platform
in such a way, that the joints’ coordinate systems match the arrangement given in Chapter 4. Both
joints rotate around horizontal axes and the serial manipulator therefore moves around in a vertical
planar space. The AXO-arm attached to the platform is shown in Figure 7.1.

Figure 7.1: The serial manipulator is tightly attached to the platform to avoid interfering
oscillations when measuring. The forearm link is bubble-wrapped to avoid damaging it, if it hits the

table.

With the mechanical setup in place, the electrical setup is shown in Figure 7.2. By using this
setup, the motors can be actuated simultaneously, while measuring current, angle, and angular velocity
of each motor. The inputs from the PC are given by the vector ū, containing current reference signals
for each motor. The micro controller then applies the current reference signals, ire f to the ESCON
drivers, and measures the actual applied current, ia, the velocity, θ̇ , and the position, θ , in each joint.
These measurements are then returned to the computer in the vector ȳ . The inputs and outputs with
a subscript (1) belongs to the shoulder motor and driver, and those with (2) the elbow motor and
driver. Since the model parameters are known, the measured current can be converted to torque,
τ= ia · kt , for use in the mechanical model simulations.
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Figure 7.2: Schematic showing the configuration between PC, micro controller, ESCON drivers and
serial manipulator.

7.1.1 Choice of Input

As concluded in Chapter 6, sine wave and square pulse inputs are good choices for inputs. These types
of signals are therefore used again, but in simpler forms because of the mechanical limitations of the
AXO-arm. It is observed that when applying a square pulse or sinusoidal input, the arm tends to drift in
joint positions towards the mechanical end stops, since gravity is now effecting the setup and because
the serial manipulator is actuated in open loop with no control of position. To get an acceptable
measurement, drifting is almost avoided by choosing constant signal frequencies and difference in
amplitude depending on direction, which unfortunately neglects sine sweep and random period
square pulse signals as options. Constant period signals are therefore chosen for both the square
pulse and sinusoidal input and their period is chosen appropriately (found by experiments) to avoid
the mechanical end stops. The chosen inputs are described in Table 7.1, and shown in Figure 7.3.
The sampling period is 10 ms for both inputs and outputs.

Shoulder Elbow

Frequency [Hz] Amplitude [Nm] Frequency [Hz] Amplitude [Nm]

Square Pulse 0.5 -0.8 to 6 1 -1.9 to 2.1

Sinusoid 0.25 -2.3 to 6 1 -2.4 to 2.6

Table 7.1: Shape and amplitude of the two different input signals to the joint actuators of the
AXO-arm.

7.2 Simulation of Exoskeleton

With a description of how to obtain the verification measurements, the simulation part of the verifi-
cation is described in this section. To be able to verify the model by comparing measurements and
simulations, the simulations in this section have been made with the same inputs as in Section 7.1.1.
To be able to simulate the joint angles and angular velocities of the exoskeleton, the model derived
in Chapter 5 Equation (5.42) is used and written here again for clarity:

¨̄θ = (Im N2 +M(θ̄ ))−1(τ̄m N − V̄ (θ̄ , ˙̄θ )− Ḡ(θ̄ )− F̄( ˙̄θ N) N)
�
rad/s2

�
(7.1)

= f (θ̄ , ˙̄θ , τ̄m)
�
rad/s2

�
(7.2)
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Figure 7.3: This figure shows the two inputs for the measurements. The blue curve is motor
1(shoulder) and the red curve is motor 2(elbow). The current reference signals are converted to

torque using the torque constants.

The inertia tensor matrices of the two links, 1IC1
and 2IC2

, that are part of M , are below:

1IC1
=




1.237× 10−3 −5.512× 10−6 2.358× 10−3

−5.512× 10−6 2.105× 10−2 5.844× 10−7

2.358× 10−3 5.844× 10−7 2.090× 10−2




�
kg/m2

�
(7.3)

2IC2
=




8.178× 10−5 0.001× 10−9 −2.650× 10−5

0.001× 10−9 1.069× 10−3 0

−2.650× 10−5 0 1.118× 10−3




�
kg/m2

�
(7.4)

Since the links of the serial manipulator are only rotating around the joints’ z axes the model only
uses entry 3,3 (also written as the Izz element of i ICi

). These values will not change since they are
found from CAD drawings that are assumed to be sufficiently precise in the real setup.
Regarding the actuator-inertias Im these are found partly from CAD drawings and the data sheets
[29] and [30], since they consists of both the motor inertia and a part of the gearbox. The Im values
are stated below:

Im =

�
1.492× 10−4 0

0 0.463× 10−4

� �
kg/m2

�
(7.5)

Where entry 1,1 describes the inertia in the shoulder, and entry 2,2 the elbow. With the inertias stated
the parameter list is expanded as shown in Table 7.2. In Chapter 6 the model is parameterized using
the velocities on the motor axle, but in this chapter we use the joint velocity on the output of the
gears. The viscous friction in Table 7.2 is therefore scaled using the gear ratio, N = 50.

kt [N m/A] b
�

N m
rad/s

�
τc [N m] σ [·] Izz [kg m2] Im [kg m2]

Shoulder 0.0708 9.73× 10−3 0.066 0.1383 2.090× 10−2 1.492× 10−4

Elbow 0.0764 2.20× 10−3 0.0359 0.0889 1.118× 10−3 0.463× 10−4

Table 7.2: Motor, friction and inertia parameters for the two joints on the AXO-arm.
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For simulation purposes the model is rewritten into State Space form:

� ˙̄θ
¨̄θ

�
=

� ˙̄θ

f (θ̄ , ˙̄θ , τ̄m)

�
(7.6)

To be able to simulate with input sequences that are identical to the measurements, it is chosen to
simulate using the Forward Euler method which is advanced according to:

�
θ̄ (k+ 1)
˙̄θ (k+ 1)

�
=

�
θ̄ (k)
˙̄θ (k)

�
+ Ts

� ˙̄θ (k)

f (θ̄ (k), ˙̄θ (k), τ̄m(k))

�
(7.7)

There Ts is the sampling time (10 ms) which is equal to the sampling time in Section 7.1.1.

7.3 Comparison of Measurement and Simulation Results

This section shows the comparison between measurements and simulation. In Figure 7.4 the angles
and angular velocities of the motors, when applying sinusoids, are shown. The red curves represent
simulations, while the blue curves are measurements. As shown, the frequencies of simulations and
measurements are similar, while the amplitudes are not. In the same manner, the results when apply-
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Figure 7.4: Angles and angular velocities of the motors, when applying the sinusoids described in
Section 7.1.1.

ing square pulse signals are shown in Figure 7.5. Here the observations are the same, namely that the
frequencies fit but the amplitudes do not. Another observation is that the joint angle measurements
and simulations tend to drift apart over time. This is not surprising since small model uncertainties
turn into large deviations when they undergo the double integration that happens between the input
signal and the joint position. The performance of the model will thus be evaluated by comparing
measured and simulated velocity. The quality of the fit is evaluated using MATLAB’s implementation
of NMSE.
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Figure 7.5: Angles and angular velocities of the motors, when applying the square pulse signals
described in Section 7.1.1.

The NMSE for the velocity data presented in Figure 7.4 and Figure 7.5 is E = 0.533. This
statistic is not satisfactory, so an additional parameter fitting of the motor model is performed in the
following section.

7.4 Improvements of the Mechanical Model

The comparison of the simulation and measurements make it clear that the model needs to be
improved. In Chapter 6 the AXO-arm was disassembled and the joints were mounted with a vertical
axis of rotation. This could result in a different friction torque, than when the gear is mounted
with a horizontal axis of rotation since this loads the gear differently. It is therefore attempted to
recalculate the parameters of the friction model. Several combinations of friction parameter updates
were attempted, but the lowest NMSE was obtained by adjusting the Coulomb friction parameters,
τc and σ. The NMSE is now improved to E = 0.845, which meets the model precision requirement
from Chapter 3.

Like in Chapter 6 we use the MATLAB function lsqcurvefit() for parameter estimation. A
comparison of the updated model output and measurements are shown in Figure 7.6 and Figure 7.7.
The amplitudes of the measurements and simulations are now much more similar, yet joint angles
are still drifting. It also seems that some of the Coulomb friction dynamics is not correctly captured
by the model. However, the monotony of the model is correct, and much of the dynamic behavior is
captured well.

Using the verification data for parameter fitting means that a different validation dataset needs
to be obtained to avoid over-fitting. Therefore, a final validation of the model is made by comparing
the response of the model, to measurements that have not been used for parameter fitting. This
new data-set is made with an input-signal that is similar to what we have previously used. A plot
comparing the model and the measurements are shown in Figure 7.8, and show that the model
is performing just as well as with the data that it is fitted after. This is also backed by the NMSE,
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Figure 7.6: Angles and angular velocities of the motors when the parameters τc and σ are
adjusted. The input for both simulation and measurement are given in 7.3

E = 0.826. The final parameters for the mechanical model are shown in Table 7.3. While there is
significant drifting in the position modeling, the model should still be sufficient when used as part of
a feedback loop and it is therefore verified.

kt [N m/A] b
�

N m
rad/s

�
τc [N m] σ [·] Izz [kg m2] Im [kg m2]

Shoulder 0.0708 9.73× 10−3 4.82 0.0475 2.090× 10−2 1.492× 10−4

Elbow 0.0764 2.20× 10−3 0.36 0.1299 1.118× 10−3 0.463× 10−4

Table 7.3: Final motor, friction and inertia parameters for the two joints on the AXO-arm.
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Figure 7.7: Angles and angular velocities of the motors when the parameters τc and σ are
adjusted. The input for both simulation and measurement are given in 7.3
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Figure 7.8: Comparison between measurements and simulations. The measurements have not been
used for parameter estimation.





Human-Exoskeleton Interaction 8
An important and difficult part of designing an exoskeleton lies in the human-robot interaction. This
project will not develop any mechanical solution to this problem, however, it will contain a description
of the solution that is currently in use at AAU and it will also describe how the attachment of a human
arm will influence the dynamics of the AXO-arm.

8.1 The Mechanical Connection Between the AXO-arm and its User

The AXO-arm is not yet mobile. That means that the shoulder joint is rigidly attached to a mechanical
reference. At the time of writing, that reference is a wall. The AXO-arm has a two links that correspond
to a forearm and an upper arm. Using a plastic shell with plastic tighteners, the AXO-arm can be
attached to a user. The mount is shown attached to a user in Figure 8.1. It is made of ≈ 3 mm plastic,
so we will assume a rigid connection between the user and the AXO-arm. We will thus treat any force
that is exerted by the user as an external force applied to the AXO-arm.

(a) (b)

Figure 8.1: The AXO-arm mounted on a user.

8.2 Modeling the Effect of the Arm on the System Dynamics

When modeling the human arm in interaction with the AXO-arm, two different approaches are
immediately apparent. The first assumes that the exoskeleton should control the motion of the user,
with no effort from the user. Such a control would imply that the AXO-arm can find the exact desired
trajectory, without the user moving, and then the AXO-arm moves the user. This would be the case if
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the exoskeleton was to be used by a paralyzed person, and would require the inertial, gravitational,
and frictional terms of the human arm to be included in the dynamic model.

The other approach recognizes the feedback control that a human is exercising on its limbs.
In this scenario, the user is capable of moving his arms by himself, and during regular motion, the
AXO-arm is following the user more than it is carrying him. Modeling the human arm is thus not
as crucial to the operation, since the dynamics are compensated for by the user. It might still prove
useful to estimate the weight of a potential potential payload that the user is carrying.

The purpose of the AXO-arm is assisting weak muscled users during light weight tasks. The
latter approach to modeling the human is therefore chosen, where the user is assumed to compensate
for most of his own weight, and the electromechanics are thus modeled alone. The present dynamic
model is therefore not expanded to include the dynamics of the human arm.



Part II

Muscle Modeling

This part of the project presents a way to describe the motion of an arm, from EMG signals. It relies
on modeling the force that a muscle exerts and the connection between the muscle and the joints.
After describing the model, we parameterize it and verify it experimentally.





Muscle Model 9
In this chapter the biomechanics of a general human skeletal muscle is studied. The aim is a model
that estimates the torque produced in a joint by some muscle, given a joint angle and a measured
EMG signal. The muscle model will be used as part of the AXO-arm control loop. The user’s estimated
joint torque will be used to generate references trajectories for the AXO-arm.

In this chapter the model is general and is therefore a basis for the next chapter, which aims
to identify relevant parameters to make a specific model for each muscle of relevance in the current
setup. The general muscle model that needs to be constructed is shown in Figure 9.1 and it is based
on the works of [6]. Two parts need to be studied, namely muscle force and muscle shape. Each
section will have a summary of the unknown parameters that need to be estimated to make the model
work and make it muscle specific. Furthermore this chapter also includes an explanation of which
specific arm muscles are of interest for the current setup.

Muscle Force

Muscle Shape

×EMG

Angle

Muscle length

Force

Moment arm

Torque

Figure 9.1: General Muscle Model. [6]

The contents of this chapter are therefore:

• General description of skeletal muscles.

• Modeling of muscle force and emphasizing of relevant parameters.

• Modeling of muscle shape and emphasizing of relevant parameters.

• Choice of muscles, relevant for the setup.

9.1 Biomechanics of a Skeletal Muscle

Skeletal muscles refer to the type of muscle that is responsible for human movement. The ends of
the muscle are attached to bones, allowing the muscles to manipulate the human body. Movement is
created when a muscle contracts, thereby manipulating the bones that it is attached to, resulting in
a rotation of the adjacent joints. Functionally, the muscle consists of two parts: the muscle belly and
the tendon that binds it to the bone. [31]

Skeletal muscles are divided into two groups: parallel and pennate muscles. The difference
between the two is the structure of the muscle fibers and the tendons. In a parallel muscle, the fibers
run mostly parallel, and connect to a tendon in each end. A muscle fiber can shorten roughly 50 %
to 60 %, so the parallel muscles are capable of significant shortening, compared to pennate muscles.
The fibers of parallel muscles can be up to 90 % of the total muscle length. [31]

A pennate muscle consist of several tendons that extend along the length of the muscle. The
muscle fibers that attach to the tendons are thus shorter and pull in several different directions. Due
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to the fibers of pennate muscles being shorter, this type of muscle has a smaller range of motion than
a parallel muscle. [31]

Muscles are capable of activating the skeletal joints by contracting. When the muscle-belly
contracts a pull is created on the bones, resulting in a torque in adjacent joints. The distance between
the attachment of the muscle to the joint determines the range of motion that the muscle controls
and the torque it is able to provide. The approach that is chosen for modeling muscles in this project
is based on [6], and divides the model into two parts, as indicated on Figure 9.1. One part that seeks
to model the force that a muscle exerts, and one part that models the shape of the muscle and how
it interacts with the joints.

9.2 Modeling Muscle Force

This section describes the muscle force part of Figure 9.1. To model the force generated by the
muscles, the Hill Muscle Model is used. This type of model describes the force generated by the
muscles, based on the length (i.e contraction) of the muscle, and the contractile velocity [31]. It takes
into account the viscoelastic properties of the muscle-fiber and the tendons.

The Hill model consists of three parts, Contractile Element (CE), and two elastic elements, Serial
Element (SE) and Parallel Element (PE). The combination of CE and PE makes up the dynamics of
the muscle belly, while SE accounts for the dynamics of the tendons at each end of the muscle. The
force generated in the muscle can be expressed as:

F = FSE [N] (9.1)

= FC E + FPE [N] (9.2)

where FC E , FPE and FSE are the force generated in each element, respectively.

C E
SE

PE
F

Figure 9.2: Hill’s Muscle Model

The following subsections describe a method for modeling these three elements.

9.2.1 Model of the Contractile Element

The force exerted by CE is the active generation of force in the muscle. It is modeled as a fraction of the
maximal contractile force, FC Emax

, as proposed in [6]. Three factors determine the size of the fraction:
the normalized force-length relationship, f (∆lC E), the normalized force-velocity relationship, g(vC E),
and the muscle activation signal, a(t).

FC E = a(t) f (∆lC E) g(vC E) FC Emax
[N] (9.3)
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Force-length Relationship

The force-length relationship is a positive function that has a maximum in some optimal muscle fiber
length. In [6] it is suggested to approximate it as the Gaussian function in Equation (9.4).

f (∆lC E) = exp


−1

2



∆lC E
LC E0
−φm

φv




2
 [N] (9.4)

∆lC E = lC E − L fs [mm] (9.5)

The force-length relationship thus becomes a function the of length of the muscle fibers, ∆lC E , the
slack length of the fibers, L fs , and the optimal length of the muscle fibers, LC E0

. The parameters φm
and φv have no physiological interpretation, they are simply tuning parameters to fit the mean and
variance of the Gaussian. An example of f (∆lC E) is shown in Figure 9.3a.

Force-velocity Relationship

The force a muscle can exert decreases with the contraction velocity. The force-velocity relationship
is therefore a decreasing function when the magnitude of the velocity grows. The active movement
that a muscle can do is to contract, so the velocity of the contractile element is always negative. It is
approximated by Equation (9.6) which is a normalized function that is minimal when the contractile
velocity, vC E , grows in negative direction. [6]

g(vC E) =
0.1433

0.1074+ exp
�
−1.3 sinh

�
2.8 vC E

VC E0
+ 1.64

�� [N] (9.6)

VC E0
=

1
2
(a(t) + 1)

�
2 LC E0

+ 8 LC E0
α
�

(9.7)

The force-velocity relationship depends on the contraction velocity, vC E , the maximal contraction
velocity, VC E0

, the optimal length of the muscle fibers, LC E0
, the percentage of fast fibers in the muscle,

α, and the activation of the muscle, a(t). An example of g(vC E) is shown in Figure 9.3b.
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Figure 9.3: Example of the force-length and force-velocity functions
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The Activation Signal

The muscle activation signal, 0≤ a(t)≤ 1, is a function of the EMG measurements and is a measure
of the degree of recruitment of the muscle when neurally activated. The EMG signal undergoes some
processing before it can be used as a muscle activation level. The processing is shown graphically in
Figure 9.4.

Notch Filter
Anti-aliasing

High-pass
filter

Rectification

Low-pass
filter

Normalization
Excitation

Model
Activation

EMG

ψ(t) υ(t)
a(t)

Sampling

Figure 9.4: The different processing steps necessary for converting EMG signals into a muscle
activation level.

The notch filter removes 50 Hz noise which is present anywhere in the vicinity of electrical
installations. This, along with an anti-aliasing filter is implemented by Thalmic Labs on the Myo Band.
The high-pass filter removes any DC offset. The rectification along with the low-pass filter functions
as an implementation of a linear envelope. The high-pass and low pass filters have been designed
according to [32]. Specifically the high-pass filter is a forth order Butterworth filter with a cut-off
frequency at 30 Hz and the low-pass is also a fourth order Butterworth with a cut-off frequency of
6 Hz. The low-pass filtered signal is normalized with respect to the maximum values the Myo Band
can measure which is 128, the highest absolute value of a signed 8-bit integer. According to [32]
it is recommended to add a second low-pass filter, or as they call it a muscle excitation model, as a
difference equation of the form Equation (9.8). It is a second order integrator, that results in the
signal υ(t). This signal reflects the way that muscles react to neural excitation, where the nerve signal
builds up its effect on the muscle when repeated, and it takes into account the electromechanical
delay from the EMG-signal to muscle movement. The muscle excitation model is implemented as the
difference equation:

υ(t) = ξψ(t −δ)− β1υ(t − 1)− β2υ(t − 2) (9.8)

where δ is the electromechanical delay from stimulation to muscle response. The variables ξ, β1, and
β2 are filter parameters. The filter, Equation (9.8), should be near critically damped and with unit
gain to approximate the nature of the skeletal muscles. Imposing the constraints Equation (9.9)-
(9.10), ensures that the filter is damped if the design parameters, C1 and C2, are chosen as either
negative or with opposite signs with |C1| > |C2|. The constraint Equation (9.11) ensures that the
filter has unit gain.

β1 = C1 + C2 where |C1| ≤ 1 and |C2| ≤ 1 (9.9)

β2 = C1 C2 (9.10)

α= 1+ β1 + β2 (9.11)

The activation function shown in Equation (9.12) is a widely accepted estimate of the activation
of the muscle [32][33].

a(t) =
eAυ(t) − 1

eA− 1
(9.12)
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Here A is the degree of nonlinearity[moosavi_ehsani], and 0 ≤ υ(t) ≤ 1 is the EMG signal after
integration [32]. Examples of the relation between a(t) and υ(t) are shown in Figure 9.5.
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Figure 9.5: Example of the relation between a(t) and υ(t). [32]

9.2.2 Model of the Serial Element & Parallel Element

The Hill Muscle Model attempts to relate muscle models to a spring, mass and damper system, where
SE and PE act as nonlinear springs. In [6] they use a different approach to model this type of spring.
They drop the connection to mechanical springs, as their model is expressed in terms closer to the
biology of the arm. It approximates the relation shown in Figure 9.2 by Equation (9.13), using the
relevant muscle parameters. The force of the passive spring elements of the hill model becomes a
function of the change in muscle or tendon length, ∆lPE,SE , the maximum passive force, FPE,SEmax

,
the shaping parameter S, the maximum length and change in length of the muscle, Lmax and ∆Lmax ,
the slack length of the muscle and tendon, Lms

, Lts
. The equations below describe the implementation

of this non-linear spring model, and how it depends on the muscle parameters.

FPE,SE =
FPE,SEmax

eSPE,SE − 1

�
e

SPE,SE
∆LPE,SEmax

∆lPE,SE − 1
�

[N] (9.13)

FPEmax
= 0.05 FC Emax

[N] (9.14)

∆lPE = lPE − Lms
[mm] (9.15)

∆LPEmax
= Lmax − (LC E0

+ Lts
) [mm] (9.16)

FSEmax
= 1.3 FC Emax

[N] (9.17)

∆LSEmax
= 0.03 Lts

[mm] (9.18)

∆lSE = lSE − Lts
[mm] (9.19)

This concludes the model of the Muscle Force part of Figure 9.1. Following is a summary of the main
conclusions.

The different parts of Equation (9.3) are accounted for, using approximations for the force-
length and force-velocity relationships. A model for the level of activation, a(t), is found as a function
of the EMG signal, η(t).

The passive elastic parts of the muscle are also modeled, using Equation (9.13), which models
the passive spring force as a function of the length of the muscle. The resulting force of the muscle can
therefore be modeled as the sum of the two curves on Figure 9.6a, and when that curve is evaluated
over the force-velocity relationship, we get the surface plot in Figure 9.6b. This plot shows that the
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force a muscle can exert, depends not only on how well trained the subject is, but also on the type of
movement and the pose of the joints.
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(b) Surface plot of the force, F(∆l, v), with a(t) = 1

Figure 9.6

9.3 Dynamics of Muscle Length and Moment Arm

The calculation of muscle force includes an estimated relationship between the muscle length and the
force it can exert. Therefore, it is necessary to estimate the length of a given muscle. The length of the
muscles in the arms can be estimated using the arm joint angles. In [34], the length of 13 arm muscles
are determined as polynomial functions of joint angles. For example, the length of biceps brachii can
be approximated by a fourth order polynomial of the elbow joint angle plus a first order polynomial
of the shoulder angle. In Figure 9.7a the change in length of biceps brachii is plotted as a function
of the elbow angle where the shoulder angle is assumed to be 0◦. Similar functions are presented
in [34] for shoulder flexion/extension, elbow flexion/extension, wrist flexion/extension, and wrist
radio-ulnar motion. These have been implemented for use in the muscle estimator. Naturally, the
length of a given muscle mainly depends on the joint that the muscle can manipulate.
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(a) The change in length of biceps brachii as a
function of the elbow angle. The shoulder
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(b) The Moment arm of biceps brachii as a
function of the elbow angle. The shoulder

extension/flexion is assumed to be 0◦.

Figure 9.7

Similarly, [34] presents the length of the moment arms in the joints as polynomial functions
of joint angles. This is useful for converting the force generated by the muscles to torque in the
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adjacent joints. The moment arm, rm, is defined as the perpendicular distance between the muscle
and the joint it exerts force upon. Its estimation is necessary to convert the force vector of a muscle
to a joint torque. The moment arm, rm, depends on the angle of activation, θa of the muscle force,
F̄ . A visualization of the moment-arm is shown in Figure 9.8. In Figure 9.7b are the relationship
between the angle of the elbow and length of the moment arm of biceps brachii with relation to the
elbow shown, but [34] also contains polynomial estimations of the moment arms of the other 12
arm muscles it describes, thus providing all the necessary knowledge to implement the block Muscle
Shape in Figure 9.1.

F̄
rm

θa

F̄rm

θa

F̄rm

θa

Figure 9.8: The moment arm is defined as the perpendicular distance between the muscle force
vector and the joint. As the figure shows, it changes with the joint angle.

9.3.1 Finding the Length of the Muscle Fibers

In Section 9.3 it is shown, that the length of the muscles can be estimated by the joint angles. The
muscle model needs the length of the muscle, and either the length of the muscle fibers, or the length
of the tendon. Hence, it is investigated how the length of the muscle fibers and tendon can be found.

The structure of the Hill Model shown in Figure 9.2 is equivalent to the structure that is used
in [6], where the SE is in series with the CE, as shown in Figure 9.9. Looking at this model structure
it follows that the force generated by the CE and SE are the same (Equation (9.20)). Furthermore,
the length of the muscle is the sum of its parts, that is, the length of the muscle is the length of the
muscle fibers and the length of the tendon (Equation (9.21)).

The contractile velocity is also used in the model in the force-velocity function (Equation (9.6)),
it is impossible to measure the contractile velocity in a non intrusive manner, hence the velocity is
approximated with a differential approximation using the length of the fibers (Equation (9.22)).

C E
SE

PE

F

Figure 9.9: Another representation of Hill’s Muscle Model [6].
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F = FSE + FPE = FC E + FPE =⇒ FSE = FC E (9.20)

lPE = lSE + lC E =⇒ ∆lPE =∆lSE +∆lC E (9.21)

vC E =
∆lC E[n]−∆lC E[n− 1]

ts
(9.22)

These relations with forces and lengths, as well as the differential approximation, can be used to
numerically estimate ∆lC E by using a root finding method on Equation (9.23).

0= FSE(∆lPE −∆lC E[n])− FC E(∆lC E[n], ∆lC E[n− 1]) (9.23)

The bisection method is selected as it doesn’t require computing the derivative, and guarantees
convergence provided it is possible to straddle the root.

With∆lPE found via the joint angles, and∆lC E numerically found, all the non-constant variables
needed in the model are found. Before the model can be used in conjunction with the AXO-arm, the
muscles that carry the most information about the movements of interest need to be identified.

9.4 Choice of Muscles

Before the muscle model can be implemented to calculate joint torques on the user of the AXO-
arm, it should be investigated which muscles are of interest. The two DOF on the AXO-arm allow
flexion/extension of the elbow- and shoulder joint.

9.4.1 Elbow Joint Muscles

The primary elbow flexors are biceps brachii, brachialis and brachioradialis (Figure 9.10) and the
primary extensor is the triceps brachii[31]. The flexor pronator teres and the extensor aneconeus could
also provide useful information, however these are located near the elbow joint, and will be hard to
measure with the selected Myo Band sensor, they are therefore disregarded. A brief description of
the chosen muscles follow below.

Biceps brachii is a large muscle attached to the humeral and the radioulnar articulations. As the
muscle is connected to these articulations contraction of the biceps brachii will affect the corresponding
joints, namely the humeroulnar and humeroradial joints [31].

Brachialis is a monoarticular muscle, i.e. a “elbow only” muscle, and does not have any influence in
forearm pronation and supination. It can only be used for elbow flexion [31].

Brachioradialis is located near the wrist extensors, and even shares an innervation with them, yet it
is still considered an elbow flexor, and there are ongoing discussions about its role regarding elbow
supination and pronation [31].

Triceps brachii is the biggest muscle related to extension of the elbow joint, and has no influence on
supination or pronation of the arm. It is attached to two places on the humerus with the lateral head,
and the medial head. It is also attached on the scapula with the long head. All three heads meet up,
and are attached to a common place on the ulna [31].

9.4.2 Shoulder Joint Muscles

According to [35] the muscles responsible for shoulder extension are latissimus dorsi, teres major and
deltoid and for flexion it is coracobrachialis and deltoid, shown on Figure 9.10.
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Latissimus dorsi is a large back muscle, attached to the spine, pelvis and humerus. It has a supportive
role in shoulder flexion [31].

Teres major is attached to the scapula and humerus. It supports shoulder extension [31].

Deltoid is a group of muscles that is attached to scapula and clavicle in one end and to humerus in
the other. Deltoid has a supporting role during shoulder flexion [31].

Coracobrachialis is a shoulder flexor that is hidden behind biceps brachii in Figure 9.10a. Its purpose
is not well studied, but it is thought to be a shoulder flexor [31].

Coracobrachialis
Biceps brachii

Brachialis

Brachioradialis

(a) Front of a human body showing the muscles in
the arm.

Triceps brachii

Deltoid
Teres major

Latissimus dorsi

(b) Back of a human body showing the muscles in
the arm.

Humerus

Radius Ulna

Scapula

(c) Front of a humans right arm, showing the
bones.

Figure 9.10:

The project will be limited to focus on control of the elbow joint. The muscles responsible for
shoulder joint movement, such is deltoid and latissimus dorsi are not measurable using the Myo Band,
because it is strapped around the arm. The scope of the project is therefore narrowed to focus on
elbow joint movement. To measure the EMG activity of biceps brachii, brachialis and triceps brachii
are a Myo Band placed on the upper arm of the test subject. The Myo Band is attached to the subject’s
upper arm such that pod 4 is placed on biceps brachii. As brachialis is placed directly under biceps
brachii are the same pod used for brachialis. With the placement of pod 4 is it natural that pod 8 is
used for triceps brachii, as it is placed directly on that muscle. To measure brachioradialis are a Myo
Band placed on the lower arm, with pod 4 on-top of brachioradialis, with these two Myo Bands it is
possible to estimate the torque generated in the elbow joint, as the sum of torques of the selected
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muscles, M , once the muscle model have been parameterized (Equation (9.24)).

τ̄joint =
∑

m∈M

Fm rm [N m] (9.24)

where F is the muscle-force and r is the perpendicular distance from the muscle-force vector to the
joint.

Summary

The main takeaway of this chapter is that muscle force estimation is inherently difficult. Even in
the presented method, there are many obstacles. The parameters are not easily obtainable, and the
variables, such as muscle length or contraction velocity are not easy to measure. Many of the models
are heuristic estimations of the biomechanic dynamics that needs optimization and fitting to be of any
use. Before moving on to finding the parameters, this last section of the chapter gives an overview of
the entire model that allows calculation of joint torques based on EMG measurements.

As shown in Figure 9.11 the muscle model has four main parts:

• EMG Processing

• Muscle length calculation

• Joint moment arm calculation

• Muscle force calculation

EMG
Filtering

Figure 9.4
Excitation
Eq (9.8)

Activation
Eq (9.12)

×Numeric Estimation
Eq (9.23)

f (∆lC E)
Eq (9.4)

d
dt

g(vC E)
Eq (9.6)

FC Emax

Muscle Length
Section 9.3

θ

FPE(∆lPE)
Eq (9.13)-(9.19)

∑

Moment Arm
Section 9.3
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Figure 9.11: The calculation model of the joint torque contribution of a single muscle.

When the total joint torque is calculated, the torque contributions from all the flexors are added, and
the torque contribution of the extensors are subtracted, as shown in Figure 9.12.
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Bracioradialis

Triceps Brachii

∑

θ •

•

•

EMG •

•

+
+
+
−

τelbow

Figure 9.12: How the total joint torque is calculated from the individial muscles. The EMG signal
comes from differnet sensors for different muscles, but are lumped together here for simplicity.

This concludes the chapter on modelling the biomechanics that generate torque in the elbow
joint. In the following chapter, a method for estimating all the unknown paramaters of the model is
presented, and after the parameters are found, the validity of the model is evaluated experimentally.
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In the muscle model there is a number of unknown parameters. This chapter describes the process of
estimating these parameters. Section 10.1 summarizes which parameters need to be estimated and
Section 10.2 presents a white-box estimation method for finding the parameters of the muscle model.
Lastly, Section 10.4 shows the parameters that were found, and validates the result for further use
in the controller.

10.1 Model Parameters

The muscle model consists of three parts:

• Generation of the activation signal (Section 9.2).

• Force estimation based on the activation signal (Section 9.2.1).

• Conversion from force to torque (Section 9.3)

A list of all the unknown muscle parameters is shown in Table 10.1.

Name Symbol Unit Equation

Maximum contractile force of CE FC Emax
N 9.3

Maximum muscle length Lmax m 9.16

Optimal length of CE LC E0
m 9.4, 9.6

Tendon slack length Lts
m 9.16, 9.19

Percentage of fast muscle fibers ξ % 9.7

Shape parameter of SE or PE SSE , SPE · 9.13

Gaussian tuning parameters φm, φv · 9.4

Electromechanical Delay ψ s 9.8

Degree of nonlinearity of activation function A · 9.12

Filter parameters C1, C2 · 9.9–9.11

Table 10.1: Table of all muscle parameters that need to be estimated. There is one of each
parameter per muscle.

Most of the parameters are person dependent, and reasonable initial guesses are difficult to find.
However we do know something about the Electromechanical Delay (EMD).

In [36] the EMD of biceps brachii and triceps brachii are found as 41± 13ms and 26± 11ms, re-
spectively. These values are used as initial guesses in the parameter estimation. The EMD of brachialis
and brachioradialis are given the same initial value as biceps brachii.

The estimation of parameters for the muscle model consists of a minimization of the MSE be-
tween the estimated human joint torque and the measured joint torque. The measurement procedure
is described in Appendix B. The muscle model estimates a joint torque from the joint angle and the
EMG. The optimization problem is thus shown graphically in Figure 10.1.

63
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Figure 10.1: The structure of the parameter optimization of the muscle model.

The parameters are optimized for two different models. The one shown in Figure 9.12, and a
reduced model with only the primary extensor and flexor; (biceps bracii and triceps brachii). This is
partly to reduce the dimensions of the estimation (26 vs 52 parameters), and partly to test if we can
get a good enough estimate of the joint torque in the elbow with only one Myo Band.

These two models are compared and it is evaluated whether this simplification results in an
acceptable trade-off.

10.2 Choice of Estimation Algorithm

It is in [6] suggested to estimate the optimal parameters using a Genetic Algorithm (GA). This
method handles large search spaces well and it has a small risk of converging to only locally optimal
solutions. In this project, a different population-based optimization algorithm called Particle Swarm
Optimization (PSO) is used. This is chosen on the basis of the findings of [37], and [38].

In [37], the performance of an implementation PSO and GA is evaluated. They found that for
most problems, the solutions were equally good. Generally PSO was found to produce a more stable
solution (smaller variance in the result over multiple runs) with faster convergence. Similar results
were found in [38], where their PSO and GA estimate reached very similar parameters, but PSO
converged after only 10 generations where GA converged after 25 generations. Based on this, PSO is
chosen to estimate the muscle parameters.

A detailed description of the PSO algorithm is presented in the following section.

10.2.1 Particle Swarm Optimization

The PSO algorithm started as an attempt to simulate the flocking behavior of bird flocks and shoals
of fish, which was later modified to an optimization algorithm. A key aspect within the swarm of
birds and fish is the flow of information. If a predator approaches, the swarm is moving in a cohesive
way, almost as if it was a single individual. [39]

PSO is built around these concepts, and each particle within the swarm moves around based on
it’s own knowledge, as well as the knowledge of the swarm (in the simplest implementation). Each
particle can be viewed as a member of a flock. The location of each particle represents a possible
solution to a given problem, and to evaluate the performance of the location a fitness function is
needed.

Each particle saves their personal best location, and communicates it with the rest of the swarm.
Within the swarm the best location off all the current and previous locations are saved. The particles
move around independently with this information available, and adjusts their courses based on it. To
avoid early convergence the course adjustments have random perturbations added to them.
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Equation (10.1)-(10.2) show the updating step of the particles’ position and velocity for an N -
dimension optimization problem with M particles.

v̄ i[k+ 1] = w v̄ i[k] +φp r̄p (p̄i − x̄ i[k]) +φγ r̄γ (γ̄− x̄ i[k]) (10.1)

x̄ i[k+ 1] = x̄ i[k] + v̄ i[k+ 1] (10.2)

x̄ i , v̄ i , p̄i , γ̄ ∈ RN (10.3)

r̄p, r̄γ ∈ U N (0, 1) (10.4)

i ∈ 1, 2, ...M (10.5)

Where x̄ i[k] and v̄ i[k] are the location and velocity of the ith particle at time k, w is an inertia
factor. The vector p̄i is the “personal best location” of particle i and φp is the influence factor of the
personal best. Similarly γ̄ is the best location in the swarm and φγ is an influence factor of the global
best. The random vectors r̄p and r̄γ ensure pseudo-random movement of the particles, to avoid early
convergence. The algorithm is shown in Algorithm 1 [40]. The fitness() function is minimal
when the fit is optimal.

Algorithm 1 The standard Particle Swarm Optimization algorithm

Initialize a population of particles with random positions and velocities
while Termination condition not reached do

for Each particle i do
for Each dimension n do

Update position and velocity (Equation (10.1)-(10.2))
end for
if fitness( x̄ i)< fitness(p̄i) then

p̄i ← x̄ i

end if
if fitness( x̄ i)< fitness(γ̄) then
γ̄← x̄ i

end if
end for

end while

10.3 Method

Before the parameters can be estimated, a set of input-output measurements needs to be obtained.
In this case, the input is the EMG signal and joint angle, and the output is joint torque. At the health
department at AAU a Kin Com machine is located. The machine can be used to measure the force (or
torque) generated in a joint. Two Myo Bands have been used to measure the EMG signal; one on the
forearm and one on the upper arm. The test setup and procedures are described in Appendix B.

Once the input-output data is collected, the parameter estimation has been performed using a
library called Parallel Global Multiobjective Optimizer (PaGMO) [41]. It is maintained by the European
Space Agency, and they also provide Python-bindings for the optimization algorithms. The library can
run several solvers in parallel, and has several implementations of optimization algorithms, including
PSO.

The library is based around inheritance, and it includes an abstract base class for optimization
problems. To estimate parameters for the activation filters and muscle models a concrete problem has
been implemented. The implementation overrides the objective function which will be minimized,
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and a function that informs the solver about constraints. The objective function instantiates the
muscle models and activation filters, and runs a full simulation with the current parameter guess. <
As described in Appendix B the Myo Bands start logging before the Kin-Com. This is because it takes
a while to connect to them, but this has the added effect of allowing the EMG filters to settle before
logging the data from the Kin-Com. The EMG signal is passed through a series of filters that are
implemented as difference equations. The data that is used for parameter fitting thus has meaningful
filter outputs right from the start.

The torque estimates from all six exercises (3 flexion and 3 extension) are appended to each
other to form a single vector, allowing us to calculate the MSE between the simulated and measured
torque.

Both the torque estimates from the simulations are appended together to form a single time
series, and the torque measurements are as well. The MSE between them is then computed, and the
MSE between the simulations and the measured are used as the result of the fitness function, that is
minimized by the PSO.

In Section 9.2.1 two constraints are mentioned, which of course should be included in the
optimization problem, it has been done by overwriting the constraint function with:

• A constraint for C1 and C2 that ensures that either are both negative, or they have opposite
signs with |C1| > |C2|.

• A constraint that ensures that the max length (Lmax) is bigger than the sum of the optimal fiber
length (LC E0

) and the tensor slack Lts
length.

The two different models (the full 4 muscle mode, and the reduced 2 muscle model) have been
estimated using this setup. Each model has been optimized with 200 different initial guesses with
25 particles, and 500 iterations, as this configuration provided a good trade-off between the quality
of the solution and the computation time. The default parameters of the PSO algorithm in PaGMO
were used, they can be found in [41].

10.4 Estimation Experiment and Results

In this section the overall results of the parameter estimation are discussed, and the performance of
the reduced muscle model (with only 2 muscles) is compared to the full muscle model. The estimation
is based on 3 extension and 3 flexion exercises, with 10 repetitions each.

10.4.1 Activation Signal

A slight modification to the filter processing described in Section 9.2.1 – the EMG signal is re-sampled
using the Fourier method with a rectangular window. It is re-sampled to a 100 Hz signal before the
high-pass filter. This is to easier align the EMG signal with the angles and torques measured on
the Kin-Com, which samples at 100 Hz. For each activation signal, four parameters are estimated:
the EMD, d, the two design parameters, C1 and C2, and finally the degree of non-linearity, A. The
estimated values for the two different models are shown in Table 10.21.

On Figure 10.2 the glsEMG signal from the Myo Band and the estimated activation signal from
the first 10 s of an extension are shown. Figure 10.2a shows the EMG signal and Figure 10.2b the
corresponding activation signals It is evident on Figure 10.2a that the Myo Band is saturating. On
Figure 10.2b are the 4 muscle model on the left side, and the 2 muscle on the right side. It can be
seen that the EMG and activation signal is significantly higher for triceps than the others, which is
expected as triceps is the primary extensor.

1Due to an implementaion error, C1 and C2 in the two muscle model do not keep the constraints from Section 10.3. A
better result might be obtained from a new parameter estimation.
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Four Muscle Model Two Muscle Model

Triceps Biceps Brachialis Brachioradialis Triceps Biceps

C1 -0.62 -0.06 -0.71 -0.92 -0.87 0.42

C2 -0.55 -0.59 -0.55 -0.16 0.24 -0.87

A 0.24 0.56 0.97 0.05 0.26 0.34

δ [s] 0.03 0.07 0.08 0.01 0.02 0.05

Table 10.2: Estimated parameters for the activation filters in the muscle models.
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Figure 10.2

Similarly the first 10 seconds of an flexion exercise are shown in Figure 10.3. The EMG signal
from the Myo Band is shown on Figure 10.3a, with the related activation signals in Figure 10.3b –
again with the 4 muscle model on the right side. It is apparent that the information about brachiora-
dialis is lost in the 2 muscle model, further is it apparent that the activation signal to brachialis is very
close to the activation signal of biceps. This is likely due to the placement of brachialis, right under
biceps.

The activation level seems generally low considering that the test subject was working as hard
as he could against the Kin-Com machine. This could be caused by the low EMG signal range of
the Myo Band (shown in Appendix ??). This is an undesired trait of the Myo Band but no attempts
to overcome this limitation has been made, as the overall result of the parameter estimation are
satisfactory.
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Figure 10.3

10.4.2 Torque Estimation

For the Hill Muscle Model nine parameters were estimated per muscle. The estimated values are shown
in Table 10.3. Some of the parameters are a lot higher than expected, and unrealistic from a biological
point of view. For the normalized force-length ( f (lC E)) and force-velocity (g(vC E)) function, this is
likely due to the freedom the optimization algorithm had, where no bounds were added, and the only
constraints it had was those mentioned in Section 8.1b. The large values for FC Emax

could be due to the
low activation signal, recall that the model of the contractile element is FC E = a(t) f (lC E)g(vC E)FC EMAX

Four Muscle Model Two Muscle Model

Triceps Biceps Brachialis Brachioradialis Triceps Biceps

SPE 2.91 14.12 1.32 16.61 9.19 8.71

SSE 1.61 9.92 9.34 15.52 12.24 6.25

α 0.95 0.93 0.99 0.74 0.89 0.84

φm 0.54 0.11 0.94 0.93 0.15 0.84

φv 0.75 0.20 0.14 0.92 0.36 0.75

FCEmax
[N] 4293 1511 3121 4692 3485 5158

Lmax [mm] 581 864 790 306 630 812

LCE0
[mm] 191 148 233 124 220 199

Lts
[mm] 323 203 280 102 226 156

Table 10.3: Parameters for the Hill Muscle Model
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On Figure 10.4 it is evident that the two different models estimate roughly the same, y is
the measured torque, ŷ4 and ŷ2 are the model responses to the EMG. This is expected as only one
extensor is included in each model, namely triceps brachii. The effect of reducing the model is more
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(b) Individual torque estimations for the 4 muscle model of Figure 10.4

Figure 10.4

evident in Figure 10.5, where the 2 muscle model doesn’t fit the measured data as well as the 4
muscle model does. Looking at the different models at Figure 10.5b, with the 4 muscle model on the
right and the 2 muscle model on the left, it is clear that this is due to the reduction of the model, and
the loss of brachioradialis. Even though the performance of the 2 muscle model is clearly worse then
the 4 muscle model, it is still performing quite well with a fitness of E = 0.78 compared to a fitness
of E = 0.83. With both models performing better than required (as described in Section 3.2.3), both
are accepted for further testing against a verification data set.

10.5 Parameter Validation

To verify the parameters a verification data set has been captured. The set contains measurements
from two extension and two flexion exercises. An excerpt of the data is shown in Figure 10.6. The
overall performance is very satisfactory, of both the 4 muscle model, and 2 muscle model, with a
fitness of E = 0.88 and E = 0.85 respectively, measured using NMSE.

As the performance of the 4 muscle is not significantly better then the 2 muscle model, will the
2 muscle model be used, as it is both computationally cheaper, and doesn’t require an additional Myo
Band.
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(b) Individual torque estimations for the 4 muscle model of Figure 10.5. Uses the same coloring scheme as
Figure 10.4b

Figure 10.5

With the muscle model and mechanical model parameterized and evaluated we are now ready
to evaluate appropriate control strategies.
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Part III

Controller Design

Having created a model of not only the AXO-arm, but also of the human arm, this section will describe
the design and implementation of a control system on the AXO-arm.





Control Strategy 11
This chapter accounts for the structure of the chosen controller. A brief study of the state of the art of
exoskeleton control is done after which the controller structure is shown. In the following chapters,
the different parts of the controller are designed.

Several control topologies for exoskeletons exist. In [42] a hierarchical structure is suggested,
which splits exoskeleton control into three layers: task-level control, high-level control, and low-level
control. The task-level controller concerns itself with the generation of reference trajectories when
the user is performing a specific task. The high-level controller controls the interaction between the
user and the exoskeleton, and the low-level controller is the system that directly interacts with the
exoskeleton and controls the actuators to accomplish the orders of the high-level controller.

Two different approaches are presented in this project, both using a hierarchical structure. Since
the muscle model that is described in Chapter 9 outputs a joint torque, it seems logical to apply this
directly to the motors, in a Human Joint Torque Controller. To remove as much of the physical load
of the AXO-arm on the user, it is chosen to use feedback linearization for this controller, and simply
apply the estimated joint torque as the input to this. This structure has two hierarchical layers, the
muscle-estimator and the feedback linearization. It is implemented and tested in Chapter 13.

A controller that follows the method in [42] is also implemented and tested. In the case of
exoskeletons for rehabilitation and training, where repetition of different predefined exercises is
desired, [42] suggests a structure with a trajectory generator as the task-level controller, impedance
control as the high-level controller and force or torque control as the low-level controller. This system
would create a response that seeks to follow the trajectory demanded by the task-level controller, but
allows the user to create some deviation using the impedance controller. Impedance control creates
a force reference from a position error, and thus makes the system act as a spring that tries to pull
the user towards the reference trajectory. The inner loop would be a force controller that makes the
exoskeleton apply the force that is demanded by the high-level controller.

If, on the other hand, a trajectory is not known beforehand, [42] recommends a control scheme
based on admittance control. In this configuration, the task-level controller is the user, the high-level
controller is an admittance controller and the low-level controller is a position controller. Admittance
control is, in a sense, the inverse of impedance control. Instead of generating a force reference from
a position error, it generates a position trajectory from a force input. Admittance control is a popular
choice in assistive exoskeleton control, such as in [43], [44], and [45]. The structure with position
control as the low-level, admittance control as the high-level and the operator as the task-level is
chosen for use in this project. Using the EMG-based model of joint torque from Chapter 10, the
output of the operator becomes a torque. Since the motors are placed in the joints, it makes sense to
keep the variables in joint space. The structure is shown in Figure 11.1.

Human
Operator

Admittance
Controller

Position
Controller

τ̄r
θ̄d

˙̄θr

īa

• •

θ̄

˙̄θ

Figure 11.1: The three levels of control on the AXO-arm controller.

The three level control structure has been implemented on the UDOO Neo platform. This is
a convenient choice because there is a powerful Arm Cortex M4 (200MHz) core that is capable of
running software in real time. It also has an Arm Cortex A9 core (1GHz) that runs a Linux distribution.
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The Linux system can interface with the Myo Band and log data for performance analysis.
It is chosen to implement the feedback linearization on the real time core, and the joint torque

estimator and admittance controller on the Linux core. The distribution of the controller is shown in
Figure 11.2.

Myo Band

Muscle
Model

Admittance
Controller

PID
Controller

Feedback
Linearization

Ü

τm
θd

θ̇d

y

ia•
θ• θ̇••

A9 Core M4 Core

Figure 11.2: The structure of the control loops implemented on the UDOO Neo.

With the Human Joint Torque Controller, the software implementation is similar, but the signal
τd is connected directly to y . A detailed description of the software implementation can be found in
Appendix E.

The following chapter describes the design and test of the two suggested controllers from the
inside out. First a position controller is designed as a computed torque PID controller with feedback
linearization. After that, the controller that applies the torque from the muscle model directly to
the motors is described in greater detail and tested. Finally, the admittance controller is designed to
create angle and angular velocity references from the input torque to the system.
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In the previous chapter, the overall controller structure was described. In this chapter, the position
control is designed, implemented, and verified, followed by the high-level controllers in the following
chapters.

First, the position control strategy is presented and its stability is analyzed. After that follows a
section on model uncertainties and how to handle them in the design, and finally the controller is
given values and verified using a trajectory that mimics human movement.

12.1 Computed Torque Controller for Position Control

A standard method of implementing trajectory following on a serial manipulator is computed torque
control [21][22]. It is a model-based control scheme that relies heavily on feedback linearization.
The feedback linearized system is shown in Figure 12.1.

N
∑ × ∫ ∫

n̄(θ̄ , ˙̄θ ) B(θ̄ )−1

Serial manipulator
and motor

¨̄θ ˙̄θ

−
N−1

∑×
n̄(θ̄ , ˙̄θ )B(θ̄ )

Feedback
linearization

τ̄mτ̄ θ̄ȳ

Figure 12.1

The main idea is to apply an input that cancels all the nonlinear dynamics of the system such
that it becomes linear and thus easier to control using well known solutions. Recall that the dynamics
of the entire serial manipulator are described by,

¨̄θ = B(θ̄ )−1(τ̄− n̄(θ̄ , ˙̄θ ))
�
rad/s2

�
(12.1)

B(θ̄ ) = Im N2 +M(θ̄ ) [N m] (12.2)

n̄(θ̄ , ˙̄θ ) = V (θ̄ , ˙̄θ ) + Ḡ(θ̄ ) + F̄( ˙̄θ · N) N [N m] (12.3)

which is also stated in Equation (5.42). Using the control law,

τ̄= B(θ̄ ) ȳ + n̄(θ̄ , ˙̄θ ) [N m] (12.4)

yields a system that from the reference, ȳ , to joint position, θ̄ , is merely a double integration so ȳ = ¨̄θ .
Obviously this is only the case when all the dynamics of the system is modeled perfectly.

Computed torque does not only contain feedback linearization. A double integrator in itself
is only marginally stable. Computed torque control uses PD-control to track position and velocity
trajectories. If we apply PD-control on the joint positions of the AXO-arm, a diagram of the resulting
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controller is shown in Figure 12.2, where θ̄d , ˙̄θd , ¨̄θd make up the desired trajectory and K p and K v
are symmetric positive definite matrices. [46]

AXO-arm

∫ ∫

∑

∑ ∑

Kp

K v

¨̄θ ˙̄θ

−
θ̄

−

N−1
∑×

n̄(θ̄ , ˙̄θ )B(θ̄ )

Feedback
linearization

τ̄m

Controller

ȳ

θ̄d

˙̄θd

¨̄θd

Figure 12.2: Computed torque control of the AXO-arm. The section from Figure 12.1 called Serial
manipulator and motor is for simplicity reduced to the block called AXO-arm.

The closed-loop form of the computed torque system is defined as

ȳ = Kp (θ̄d − θ̄ ) + K v (
˙̄θd − ˙̄θ ) + ¨̄θd

�
rad/s2

�
(12.5)

Due to the feedback linearization, the dynamics from ȳ to ¨̄θ correspond to a gain of one, so ȳ = ¨̄θ .
We can therefore write

0= Kp (θ̄d − θ̄ ) + K v (
˙̄θd − ˙̄θ ) + ( ¨̄θd − ¨̄θ )

�
rad/s2

�
(12.6)

If we define the angle tracking error, e, as

ē = θ̄d − θ̄ [rad] (12.7)

˙̄e = ˙̄θd − ˙̄θ [rad/s] (12.8)

¨̄e = ¨̄θd − ¨̄θ
�
rad/s2

�
(12.9)

then the closed-loop system becomes,

0= Kp ē+ K v ˙̄e+ ¨̄e
�
rad/s2

�
(12.10)

�
˙̄e
¨̄e

�
=

�
0 I

−Kp −K v

��
ē
˙̄e

�
(12.11)

where the poles, or eigenvalues, of the system can be found from the roots of the characteristic
equation:

det

��
0 I

−Kp −K v

�
−λI

�
= λ2 +λK v + Kp [·] (12.12)

= 0 (12.13)

It is seen that by choosing Kp and K v positive definite, the poles of the system will be in the
left half of the complex plane resulting in a stable system.
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12.1.1 Uncertainty of the Model

The computed torque scheme explained above, builds upon the assumption of the AXO-arm being
perfectly modeled. However the model is of course not perfect, which can also be seen in Chapter 7.
Therefore, the uncertainties of the model have to be taken into account to guarantee that the AXO-arm
position control works as intended.

The model is thus expanded to also include uncertainties:

B̂(θ̄ ) = B̃(θ̄ ) + B(θ̄ )
�
kg/m2

�
(12.14)

ˆ̄n(θ̄ , ˙̄θ ) = ˜̄n(θ̄ , ˙̄θ ) + n̄(θ̄ , ˙̄θ ) [N m] (12.15)

Where elements with ˆ are parts of the estimated model used in the feedback linearization and
elements with ˜ are the deviations from the true model. The feedback linearization control law
including uncertainties is formulated as:

τ̄= B̂(θ̄ ) ȳ + ˆ̄n(θ̄ , ˙̄θ ) [N m] (12.16)

Next the model equation given in Equation (12.1) is combined with the uncertain feedback lineariza-
tion:

¨̄θ = B
�
θ̄ )−1(B̂(θ̄ ) ȳ + ˆ̄n(θ̄ , ˙̄θ )− n(θ̄ , ˙̄θ )

� �
rad/s2

�
(12.17)

¨̄θ = B(θ̄ )−1B̂(θ̄ ) ȳ + B(θ̄ )−1 ˜̄n(θ̄ , ˙̄θ )
�
rad/s2

�
(12.18)

¨̄θ = ȳ +
�
B(θ̄ )−1B̂(θ̄ )− I

�
ȳ + B(θ̄ )−1 ˜̄n(θ̄ , ˙̄θ )

�
rad/s2

�
(12.19)

¨̄θ = ȳ − ψ̄(θ̄ , ˙̄θ )
�
rad/s2

�
(12.20)

The uncertainty of the system is expressed by ψ̄(θ̄ , ˙̄θ) = (I − B(θ̄)−1B̂(θ̄)) ȳ − B(θ̄)−1 ˜̄n(θ̄ , ˙̄θ). By
inserting the control law given in Equation (12.5), a new system equation is derived:

¨̄θ = Kp (θ̄d − θ̄ ) + K v (
˙̄θd − ˙̄θ ) + ¨̄θd − ψ̄(θ̄ , ˙̄θ )

�
rad/s2

�
(12.21)

ψ̄(θ̄ , ˙̄θ ) = Kp (θ̄d − θ̄ ) + K v (
˙̄θd − ˙̄θ ) + ¨̄θd − ¨̄θ

�
rad/s2

�
(12.22)

ψ̄(θ̄ , ˙̄θ ) = Kp ē+ K v ˙̄e+ ¨̄e
�
rad/s2

�
(12.23)

It is seen that while the ideal system in Equation (12.6) is not influenced by uncertainties, the system
in Equation (12.23) is directly influenced by the uncertainty ψ̄(θ̄ , ˙̄θ ).

To check how the computed torque controller handles this uncertainty, the steady state error is
studied. The uncertainty behaves non-linearly and is dependent on θ̄ and ˙̄θ , but for the next argument
assume that the AXO-arm has settled and the uncertainty therefore is constant (since θ̄ and ˙̄θ are
fixed). The system in Equation (12.23) is first Laplace transformed:

ē(s)
ψ̄(s)

=
1

Kp + K v s+ s2
[·] (12.24)

When the uncertainty is constant it can be seen as a step input to Equation (12.24). A step has the

transfer function ψ̄
s . By the final value theorem, the steady state error is then:

lim
t→∞ ē(t) = lim

s→0
s ē(s) = lim

s→0

ψ̄

s
s

Kp + K v s+ s2
=
ψ̄

Kp
[rad] (12.25)



80 Chapter 12. Position Control

As seen, the computed torque controller suffers from a constant steady state position error, under
the assumption of a constant uncertainty. This error can be made arbitrarily small by using a large
proportional gain in the controller, but at some point, the actuator will be saturated. During movement
of the AXO-arm, the uncertainty is not constant but dynamically changing with the system and
therefore the position error is only expected to be worse under this condition.

With the system and its uncertainty analyzed, next appropriate gains for the controller are chosen
and the system should is tested to study how the uncertainty affects the system. Before that, however,
it is relevant to study which references are most suitable for the system, when its performance is
evaluated.

12.2 Reference Trajectory

A common method for quickly showing performance of a feedback controller is its ability to track
a step input. However, a step response is in this case not very meaningful as the purpose of the
controller is to follow smooth trajectories, and it is therefore expected that the system error is always
small. The performance of the controller will thus be evaluated by looking at how it tracks a trajectory
that mimics human movement. The findings of [47] show that planar movement of the human arm
follows bell shaped velocity trajectories. They estimate with good accuracy the trajectory of human
motion using only knowledge of the start position, end position, and the duration of the movement.
They do this by minimizing the L2 norm of the jerk, the derivative of acceleration, over the trajectory.
An expansion on the work of [47] is the method presented in [48]. They propose a bang-bang control
approach to the jerk reference, in an attempt at minimizing the L∞ norm of the jerk instead of the
L2 norm. Their model is not only simpler than that of [47] but it also predicts the trajectory of the
human arm with greater accuracy.

The test trajectory chosen for visualizing and evaluating controller performance in this chapter
is position and velocity references generated using a bang-bang jerk reference. Specifically, we choose
a position reference signal that starts in 0 rad and ends in 1.57 rad with a duration of 2 s. According
to [48] the required jerk reference is

...
θ (t) =





J 0≤ t ≤ T
4

−J T
4 ≤ t ≤ 3 T

4

J 3 T
4 ≤ t ≤ T

(12.26)

where J is the magnitude of a square jerk reference and T is the time duration of the trajectory. The
magnitude of the jerk is found using the initial and final position and the duration of the trajectory.

J = 32
θ f − θi

T3
(12.27)

The position, velocity, acceleration and jerk of the reference trajectory is shown in Figure 12.3. And
this reference trajectory will be used to evaluate the performance of the controller. Not only does it
mimic human behavior better than an step response, but it also allows larger control gains without
saturation on the input signal because there are no jumps in the position and velocity reference
signals.
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Figure 12.3: The position and velocity reference for evaluating controller performance. The
references for position, velocity, and acceleration are generated by integrating the jerk reference

signal.

12.2.1 Choice of Computed Torque Controller Gains

With the trajectories found, next, to check if the model uncertainty is actually affecting the real
system, the controller gains Kp and K v are chosen. The performance is evaluated by its ability to
track the minimum jerk trajectory described in Section 12.2. With these measurements, the steady
state errors are studied to see the impact of the real uncertainties and to clarify if any controller
strategy improvements are necessary.

For choosing the controller gains, the characteristic equation shown in Equation (12.12), is
studied. It can be compared with the general form:

λ2 +λK v + Kp =ω2
n + 2 ζ ωnλ+λ

2 [·] (12.28)

By choosing Kp =ω2
n and K v = 2 ζ ωn the equations are similar. The natural frequency is ωn and

ζ is the damping factor. With ζ > 1 the system becomes overdamped, which means that it settles
slowly but with no oscillations or overshoot. The opposite case is by choosing ζ < 1 (underdamped);
here the system has complex conjugate poles which induce oscillations but a fast settling time. The
compromise between over and underdamped is to choose ζ = 1, which makes the system critically
damped and thereby induce no oscillations and a faster settling time compared to the overdamped
system. [49]
Oscillations are not wanted in the configuration but a fast settling time is also attractive, which is
why a damping factor of 1 is chosen. This choice changes Equation (12.28), to:

λ2 +λK v + Kp =ω2
n + 2 ωns+ s2 [·] (12.29)
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If all elements of Equation (12.29) are kept positive (and therefore also Kp and K v), the poles of
the system are always located in the left half plane. An expression of the poles are:

ω2
n + 2 ωns+ s2 = (s+ωn)

2 [·] (12.30)

With Kp =ω2
n and K v = 2 ωn a relation between the gains are:

K v = 2
Æ

Kp [·] (12.31)

To summarize; by choosing the controller gains positive and by using the relation Equation (12.31),
the system is stable and critically damped. Since it is found in Section 3.2.1 that the maximum
voluntary movement frequency should be at least 6 Hz, an immediate choice of gains would be some
that allow the system to follow this 6 Hz movement. This however caused the system to behave too
violently. Experimentally some more appropriate gains were found, which unfortunately cannot meet
the requirement in Section 3.2.1:

Kp Kv ωn

Shoulder 100 20 10

Elbow 100 20 10

Table 12.1

Here the natural frequency corresponding to the found gains, is also given. The natural frequency
of 10 corresponds to a bandwidth of 10

2π = 1.6Hz. With the chosen controller gains, the measurements
shown in Figure 12.6 were obtained. Since the position references were 1.57 rad for both shoulder
and elbow, Figure 12.6 clearly shows that steady state errors are present. The system can therefore
be improved.

12.2.2 PID Computed Torque Control

To remove the steady state error of the position control, PID control is implemented. In this section, it
is therefore studied how this controller handles the uncertainty of the AXO-arm model. Additionally,
for choosing controller gains and testing the system, the characteristic equation of the system is found.
With the integral part, the control law changes to:

ȳ = K i

∫
(θ̄d − θ̄ ) dt + Kp (θ̄d − θ̄ ) + K v (

˙̄θd − ˙̄θ ) + ¨̄θd

�
rad/s2

�
(12.32)
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Figure 12.4: Both joints experience steady state error on the position control.
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This control law combined with the model and feedback linearization with uncertainty given in
Equation (12.20), gives the following closed loop system:

¨̄θ = K i

∫
(θ̄d − θ̄ ) dt + Kp (θ̄d − θ̄ ) + K v (

˙̄θd − ˙̄θ ) + ¨̄θd − ψ̄(θ̄ , ˙̄θ )
�
rad/s2

�
(12.33)

ψ̄(θ̄ , ˙̄θ ) = K i

∫
(θ̄d − θ̄ ) dt + Kp (θ̄d − θ̄ ) + K v (

˙̄θd − ˙̄θ ) + ¨̄θd − ¨̄θ
�
rad/s2

�
(12.34)

ψ̄(θ̄ , ˙̄θ ) = K i

∫
ē dt + Kp ē+ K v ˙̄e+ ¨̄e

�
rad/s2

�
(12.35)

As seen, the system is identical to the computed torque scheme with PD controller (Equation (12.23)),
with exception of the integral part. By studying the steady state error, it is proven that this controller
removes the steady state position error caused by an uncertainty. The system is first Laplace trans-
formed:

ē(s)

ψ̄(θ̄ (s), ˙̄θ (s))
=

s
K i + Kps+ K v s2 + s3

�
s2
�

(12.36)

Next the steady state position error is found with the assumption of a constant uncertainty, ψ̄s :

lim
t→∞ ē(t) = lim

s→0
s ē(s) = lim

s→0

ψ̄

s
s2

K i + Kps+ K v s2 + s3
= 0 [rad] (12.37)

As seen, the steady state error is as expected 0. To check the controller in practice, gains are selected,
and with measurements the PID controller is verified.

The system characteristic equation is also found by use of the control law given in Equa-
tion (12.32). This time however, when combining the model and control law, the uncertainty is
not considered. This results in the system equation:

0= K i

∫
ē dt + Kp ē+ K v ˙̄e+ ¨̄e

�
rad/s2

�
(12.38)

�������

˙̄ε
˙̄e
¨̄e

�������
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0 I 0

0 0 I

−K i −Kp −K v






ε̄

ē
˙̄e


 (12.39)

Here ε̄ is the integrated position error. The eigenvalues of the system is found by:

det







0 I 0

0 0 I

−K i −Kp −K v


−λI


= λ3 +λ2K v +λKp + K i = 0 [·] (12.40)

The roots of Equation (12.40) are the poles of the system and can be compared with the general
form [17]:

(s+ Γ ωn)(ω
2
n + 2 ξ ωns+ s2) = Γ ω3

n + (1+ 2 Γ ξ)ω2
n s+ (Γ + 2 ξ)ωn s2 + s3 [·] (12.41)

By choosing K i = Γ ω3
n, Kp = (1 + 2 Γ ξ)ω2

n and K v = (Γ + 2 ξ)ωn, the Equation (12.41) and
Equation (12.40) are similar. Again by choosing the gains to be positive and the damping factor to
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be ξ= 1, the system is stable and overshoot is avoided since all the system poles become real. The
system denominator changes to:

(s+ Γ ωn)(ω
2
n + 2 ωns+ s2) = (s+ Γ ωn)(ωn + s)2 [·] (12.42)

By use of Equation (12.42) a relation between the gains is formulated as:

K i = Γ ω3
n [·] (12.43)

K v = (Γ + 2)
�

K i

Γ

� 1
3

[·] (12.44)

Kp = (1+ 2 Γ )
�

K i

Γ

� 2
3

[·] (12.45)

By choosing Γ = 1, and following the requirement from Chapter 3, ωn should have a bandwidth of
6 · 2π= 37.7 rad/s. This choice however result in very high gains which causes the system to behave
too violently. Instead the controller gains in Table 12.2 are found experimentally, which unfortunately
do not fulfill the bandwidth requirement from Chapter 3.

Kp Kv Ki ωn Γ

Shoulder 108 18 216 6 1

Elbow 108 18 216 6 1

Table 12.2

The Bode plot of the feedback linearized system with PID control is shown in Figure 12.5.
Since the controller is the same for both feedback linearized joints, the Bode plots of the joints are
identical. We thus only show one. The gain margin is infinite, and the phase margin is around 135◦,
more than meeting the stability requirements of Chapter 3. The PID controller is implemented and its
minimum jerk trajectory following capabilities are tested and shown on Figure 12.6. The performance
is satisfactory, even though the bandwidth requirements are not met.
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Figure 12.5: Bode plot of the PID controlled and feedback linearized joints.



12.2. Reference Trajectory 85

47 47.5 48 48.5 49
·103

0

0.5

1

1.5

Time [s]

θ
[r

ad
]

Shoulder

Measured
Reference

47 47.5 48 48.5 49
·103

0

0.5

1

1.5

Time [s]

θ
[r

ad
]

Elbow

Measured
Reference

Figure 12.6: With PID control, the error is guaranteed to go to zero, but it is at the cost of a slower
settling time.





Human Joint Torque Control 13
In Chapter 9 a method of estimating the joint torque of the user is presented. The quality of this
estimate is deemed good enough for use in exoskeleton control. A logical approach for exoskeleton
control would be to apply this reference torque directly on motors of the feedback linearized AXO-arm.
The proposed controller structure is shown in Figure 13.1 where Kτ is a gain that allows tuning the
controller. Before the proposed controller can be tested, some considerations are made with regard
to the criteria for success in the tests.

Muscle
Model

Kτ × ∑ N−1

n(θ , θ̇ )B(θ )

AXO-arm

∫ ∫

Feedback
Linearization

τd τ τm θ̈ θ̇• θ

••

η

Figure 13.1: The structure of the proposed feedback linearized torque control of the ELBOW joint
of the AXO-arm

13.1 Controller Testing Considerations

Testing the AXO-arm is a subjective process where the user is describing how the motion feels. Key
aspects of the test are responsiveness, ease of control, and resistance.

Responsiveness is the measure of how quickly the AXO-arm responds to the user’s deliberate motions.
The user will feel it if the movement of the arm is delayed compared to his intention.

Ease of control is a subjective validation of the correctness of the AXO-arm’s movement. Does it start
and stop when intended? Or is it forcing involuntary movement of the user? Does the user feel as if
he is in control or not?

Resistance relates to how the motions feel. Is the exoskeleton imposing extra resistance when the user
is moving, or is it supporting the motion?

The controller is tested by having the user perform a controlled flexion-extension movement
where the elbow joint is moved in the sequence 0-45-90-45-0◦. Naturally, since the user is not a
machine, we don’t expect the angle to hit exactly 45◦ and 90◦, but they are guidelines for the user. The
measured position and velocity trajectories of such tests should match the way the user moves without
the AXO-arm attached. A measurement of the elbow joint angle, measured using a potentiometer, is
shown in Figure 13.2. Note that the user in this case makes no overshoot and settles on a 45◦ step
in around 1 s. The position signal is s-shaped, as it is expected from Figure 12.3. There is significant
steady state error, but that is due to the user not knowing the exact angle of his joint.
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Figure 13.2: Elbow joint motion without the exo-skeleton attached.

13.2 Testing the Torque Controller

The torque controller has been implemented and tested on the AXO-arm. The controller Kτ was tuned
to feel as comfortable as possible for the user. A gain of Kτ = 2 proved to give the fastest possible
response without being too fast and uncontrollable for the user. The position and velocity responses
of an attempted motion like the one shown in Figure 13.2, as well as the estimated human joint
torque are shown in Figure 13.3.
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Figure 13.3: The position and velocity responses using the torque controller Kτ = 2. There is
significant delay between the applied torque and the velocity and position response. The plots share

the same time axis.

The measurements show that there is a significant delay between the applied torque reference
and the responses in velocity and position, visible at both 3.5 s and 7.5 s. So while the motion is
quite well controlled, this delay is uncomfortable and it would vastly improve the user experience
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if it was reduced. To reduce the delay, admittance control is suggested. It is a popular choice in the
literature on assisting robotics in general and exoskeletons in particular [43][50][44]. The admittance
controller generates velocity- and, in some configurations, position-references from the measured
interaction force between the user and the exoskeleton [43]. The effect of the admittance controller
is thus comparable to that of a cascade controller, as the admittance controller requires inner loops
for position and velocity tracking. The following chapter describes the design, implementation and
test of admittance control.





Admittance Control 14
14.1 Admittance Control

The position control scheme described in Section 12.1 and Section ?? has for each serial manipulator
joint the angular position, angular velocity and angular acceleration as references. While the position
control aims at tracking these references, the references themselves have to represent human arm
movement caused by a torque applied in the joints. This means that the references follow a trajectory
that is dependent on the torque output from the muscle model described in Chapter 9. As described
in the papers, [43], [50] and [44], admittance control is a good approach to generate references from
an input force or torque. In all three papers, the admittance controller generates a velocity reference
from a torque input. In [43] the velocity reference is integrated to generate a position reference in
addition to the velocity reference. In [44] several different structures of the admittance controller is
suggested, but the actual structure of the controller is not clear.

The literature agrees on the outer controller structure, namely that the interaction force is the
input for the admittance controller while the angular velocity reference is the output. In this project,
the human joint torque is used as the input to the admittance controller, since, if the human arm and
the exoskeleton are perfectly coupled, that would be the interaction force.

The clear difference between the papers lies in the internal controller structure of the admittance

control and therefore the transfer function A(s) = θ̇d
τ . It was claimed in [44] that they used admittance

control, but the actual implementation is not clear. The methods of [43] and [50] are briefly described
below, along with their strengths and weaknesses.

14.1.1 Low-Pass Admittance

In [50] a controller with the transfer function shown in Equation (14.1), is suggested. Here M
represents the inertia of the human arm, while B is the friction.

A1(s) =
θ̇d

τ
=

1
M s+ B

[rad/(N ms)] (14.1)

Figure 14.1 shows the admittance filters response to a torque pulse, where the input amplitude and
controller parameters are all chosen to be 1. The velocity reference rises, but converges back to zero.
This admittance filter thus acts as a low-pass filter on the torque reference. It also means that the
position of the AXO-arm remains at a constant position after the torque pulse is finished.
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Figure 14.1

This controller compensates for gravity, since the wearer does not have to produce a constant
torque to stay at a certain position. Reaching a specific position can still be a problem, but it might
only be a matter of tuning the controller parameters to the user. Since this controller structure does
not include the generation of a position reference, the motion controller developed in Section 12.2.2
needs to be modified to be pure velocity control while still meeting the bandwidth requirements of
Chapter 3.

14.1.2 P Admittance

In [43] a simpler approach is presented. They suggest using a constant gain from joint torque to
velocity reference.

A2(s) =
θ̇d

τ
=Kc [rad/(N m s)] (14.2)

When simulating the transfer function, the results shown in Figure 14.2 are obtained. Again the
input amplitude and controller parameter are both chosen to be 1.
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Figure 14.2

The results are similar to those shown in Figure 14.1 and therefore has most of the same pros
and cons. This controller is more easily implemented, but might also introduce some discomfort since
the transition from movement to standing still is very abrupt.
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14.2 Choice of Admittance Control Method

The admittance controller topologies of Section 14.1 are implemented and tested on the elbow joint
of the AXO-arm. This section presents a review of the different methods, backed with measurements.
It also presents a novel approach for implementing the admittance controller, that borrows from [50],
but decreases the response time using the position tracking system developed in Chapter 12.
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Figure 14.3: Responses of two of the different suggested admittance control strategies, tuned to the
user’s satisfaction. The two lower rows, θ̇ and θ , are measurements, not reference signals.

Strangely, the desired torque on the with the third method is significantly larger than the other two.
This is likely due to slight differences in placement of the Myo Band.

Before the low-pass admittance controller suggested by Section 14.1.1 is implemented, a new
computed torque structure is needed. In Section 12.2.2, the controller was left as a PID position
controller. In the case of this controller, however, only a velocity controller is need. Using proportional
control, the closed loop feedback linearized velocity control system becomes:

θ

θd
=

Kd

Kd + s
(14.3)

The controller has been designed to comply with the requirements listed in Section 3.2.1,
namely that; the closed loop bandwidth should be 6 Hz = 37.7 rad/s, and a gain margin of at least
10 dB. The proportional controller gain is thus chosen to be Kd = 37, resulting in a closed loop
bandwidth of 36.9 rad/s. The gain margin is infinite, and the phase margin is 180◦.

The admittance controller has been tuned, and the best performance was achieved with Equa-
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tion (14.4).

A1(s) =
10

s+ 10
(14.4)

That admittance controller results in the response shown in Figure 14.3a. The controller felt quite
responsive. It stays in place when the user is not moving, as expected. The movement sequence of
0-45-90-45-0 ◦ is well preserved, with significant steady state errors, which is caused by the user. The
user further reported that the AXO-arm felt controllable, and moved without large resistance. There
is, however, a small delay between the torque reference and the velocity response. This effect was
felt by the user, but is not visible in the plot.

The relatively good performance of this controller also makes logical sense, because torque is
linear in acceleration, so creating a velocity reference by integrating torque is logical.

When using the P admittance controller described in Section 14.1.2, the arm moves faster than
with the low-pass admittance controller. The best response was found with a A2(s) = 2, but the
integral action on the position reference creates a noticeable and undesired delay in the movement.
Overshoot on the position is also clearly visible in Figure 14.3b, which is undesirable.

The position response shown in Figure 14.3b is not as good as the one created by the PI
admittance controller. However, there is a slight, but noticeable delay between the joint torque
reference and velocity response when using the low-pass admittance controller. It might not be
visible on Figure 14.3a, but the test subject felt it during use. To reduce the delay between muscle
activation and AXO-arm motion, a third and novel approach is suggested. In this approach, the
admittance filter from Equation (14.4) is kept, but instead of using only velocity control in the
computed torque controller, the PID position controller is used, and a reference trajectory generation
system is implemented to get at position reference from the velocity. While generating position
references by integrating the velocity reference might seem the most logical choice, Figure 14.3b
shows that this method results in delays and overshoot on the motion, the delay is only expected to
increase with the addition of a low pass filter in front of it. Instead, the position reference generator
is implemented by moving the current measured position one time-step forward. The calculation of
the position reference at time k is

θd(k) = θmeas(k) + Ts θ̇d(k) [rad] (14.5)

This controller is compared to the two others in Figure 14.3c. The movement of the AXO-arm is now
initiated immediately after the reference torque increased, and the user experienced an increase in
responsiveness. The admittance control system is thus implemented using the third method, with the
transfer function A1(s) in Equation (14.4), and a position reference generated relative to the current
position as shown in Equation (14.5). The structure of the resulting admittance controller is shown
in Figure 14.4

Position Control
and AXO-arm

Muscle Model
10

s+10

ΣTs

τd •
θ̇d

θd

θmeas

Figure 14.4: Admittance controller scheme

A position response similar to that of Figure 14.3a could have been achieved with the AXO-arm
turned off, because the user can move the joint even without the help of the motors. The torque
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produced by the AXO-arm is therefore shown in Figure 14.5, along with the estimated human input
torque. The applied motor torque is calculated from the current measurements, τm = kt ia N . While
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Figure 14.5: The joint torque produced by the motor. The input torque has a sudden drop at 11.5 s,
the point where the joint moves to 0 rad and hits the mechanical stop. The flat part of the negative

torque is due to the maximum current limit on the elbow motor.

there is some delay between the human joint torque and the motor torque, it is significantly smaller
than when using pure torque control as shown in Figure 13.3. The admittance control system is thus
accepted for use in the verification section, where its capability of supporting the user when under
load is examined.





Part IV

Verification and Conclusions

This part tests and verifies the implemented control system and concludes on the project as a whole.





System Verification 15
The admittance controller that was developed in Chapter 14 should be verified against the require-
ments of Chapter 3. The model-requirements were verified in their respective chapters, Chapter 7
and Chapter 10. The position controller is verified during the initial tests in Chapter 12. This chapter
thus evaluates the performance of the EMG-based control system, and its ability to not only follow
the user and not be in the way, but also supporting the user when loaded. The chapter also comments
on the safety related requirements of Section 3.2.5.

15.1 Assisting Control

The requirements specify that the AXO-arm system must carry 50 % of the load attached to the
user. To formulate this more precisely, if the user is holding a load with some mass, the AXO-arm
controller must apply an upwards force on the hand that is equal to half of that mass. To verify the
supporting features of the controller, two trajectories are captured. One where there user follows
the reference trajectory described in Section 13.1 without a load, and one where the hand is loaded
with a dumbbell disc weighing 560 g. These two motions are shown in Figure 15.1.
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Figure 15.1: The two movements used to test the support of the AXO-arm controller. While there is
a different in angles and velocity, they are well aligned in time

While the human joint movements differ slightly in angle and velocity, they are aligned in time.
This allows us to compare the controller performance without having to tamper with the time axis.

To compare the two motions, we will look at the applied motor torque, τm, and at the estimated
human joint torque, τd , of both motions. The difference between them should be equal to half the
load that is added by the dumbbell disc.

The motor torque, τm is calculated from the current, ia(t) using the motor constant, kt , and the
gear ratio, N .

τm = ia(t) kt N [N m] (15.1)

The load torque is calculated using the weight, mw, of the dumbbell disc, the length of the test subject’s
forearm, l, and the gravitational acceleration, g. The load also has an inertia term, calculated as a
point mass that is translated the length of the subjects forearm away from the elbow joint. The
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dynamics of the load weight w.r.t. the elbow is described by

τw = Iwθ̈ +τg [N m] (15.2)

τg = sin(θ )mw l g [N m] (15.3)

Iw = mw l2
�
kg m2

�
(15.4)

Where τw is the resulting elbow joint torque from the added weight.
The human input torque, τd , during the two test motions is shown in Figure 15.2a, and in

Figure 15.2b the applied motor torque is shown. Upwards motion is indicated with lines terminated
by × and downwards motion is indicated with •.
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(a) The estimated human joint torque.
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(b) The torque applied by the motor.

Figure 15.2: The motor- and human joint torque during the exercise. Lines terminated by ×
indicate upwards motion and •indicates downwards motion.

By comparing the torques of Figure 15.2, and keeping in mind the trajectory shown in Figure 15.1
several observations can be made.

The motor primarily outputs a torque when the load is lifted. It appears that the motor output
torque drops when the AXO-arm is holding the load at constant angles. This could be due to the static
joint friction not being properly compensated for. In fact, since the coulomb friction is implemented
using a sigmoid function, the friction calculated from the feedback linearization at exactly 0 rad/s is
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zero. It thus seems that when the AXO-arm is stationary, the friction of the elbow joint is capable of
holding, not only the mass of the user’s arm, but also the dumbbell disc.

An strange phenomenon, visible at around 7 s to 10 s, on both Figure 15.2a and Figure 15.2b
is that a nonzero τd , results in a τm close to zero. This could mean that something in the computed
torque controller creates an offset. Recall that the computed torque controller consists of a PID
controller and feedback linearization. Contributions from the proportional, integral, and derivative
part of the PID are shown in Figure ??, along with the resulting acceleration reference, y .
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Figure 15.3: The different contributions of the PID computed torque controller during movement
with load. For some reason, the integral part gets negative, and stays negative, resulting in an

acceleration reference y ≈ 0 at 7 s to 9 s. The integral contribution looks like it has a lower
resolution than the other signals. This is due to the error signal having a finite resolution and the I

gain being the largest - thus resulting in a blocky graph.

Strangely, the contribution from the integral part of the controller gets negative, and does not
return to zero over the entirety of the measurement. This is likely due to an implementation error,
but due to time constraints it has not been investigated further.

At the beginning of the first motion downwards, at 10 s to 12 s on Figure 15.2, it appears that
the direction of the motion has the opposite sign of the human joint torque and motor torque. It
appears to be the case for both movement with the dumbbell disc, and movement without it. This
means that during this downwards movement, the user is actually working against the exoskeleton to
move it downwards. The user did not report this as uncomfortable, which might be because gravity
on the arm helps with downwards movement. The reason for this anomaly is not investigated further,
but it could easily be the muscle model that estimates a joint torque that is incorrect.

When the joint angle becomes close to 0 rad the AXO-arm accelerates. This is visible on Fig-
ure 15.1 at around 15.5 s. It seems that the muscle-model has a strange behavior around this angle
which results in a large negative torque reference.

Looking at the motor torques during upwards movement, as in Figure 15.4, it is seen that,
during the first lift, the motor applies more torque when the user is carrying the dumbbell disc than
when he is not, but in the second, the two are more similar. In the first upwards movement, it looks
like the difference in torque between movement with and without the load is close to the torque that
is added by the load, τw. This is not the case for the second lift though.

The velocity of the loaded movement was highest during the first movement, and the velocity
of the free movement was highest during the second movement, so the differences in applied motor
torque could also be attributed to this difference in velocity.
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Figure 15.4: Motor torque during upwards movement, next to the load torque of the added weight.

The data presented here is not sufficient to verify if the AXO-arm controller applies half the
torque needed to lift the load. While the controller is definitely helping with the lift, as seen on
Figure 15.4, at the time of writing there are still too many unknowns in the system to verify the
control system.

15.2 Safety Features

The mechanical construction of the AXO-arm allows elbow flexion/extension in the range 0◦ to
147◦ and shoulder flexion/extension in the range −10◦ to 190◦. This means that the AXO-arm is
mechanically forced to stay within the the joint limits specified by [19], except of the case of maximal
shoulder flexion where the AXO-arm is able to move 10◦ outside. No remedy has been implemented
for this, but a future iteration of the mechanical construction should take this into consideration.

The requirements also specify a maximum output-torque on the joints to avoid injuring the
wearer. It is based on the technical standard for collaborative robots [20]. The elbow and shoulder
motors have maximum continuous torques of 0.319 N m and 0.134 N m, respectively [51][52]. The
gears have a maximum efficiency of ε= 80% [53]. The maximum continuous output torque of the
two gears is thus

τmax,shoulder = 0.319N m ε N = 12.76 [N m] (15.5)

τmax,elbow = 0.134N m ε N = 5.36 [N m] (15.6)

which is well within the bounds. N is the gear ratio.
In accordance with [20] the user should at all times have the means of stopping the AXO-arm.

This feature has not been implemented, but should be easily doable by adding an emergency stop
button that disconnects the ON-signal of the ESCON drivers. It could also cut power to the system,
but deactivating the motors is a more elegant solution as it allows the system to take further action.
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In this chapter, the project is concluded with considerations on possible improvements, and an overall
evaluation of the result of the project.

Perspectives

Several choices for implementation and methodology were made in the course of the project. This
section summarizes what could have been done differently to improve on the project.

16.0.1 The Choice of EMG Sensor

The Myo Band is an easy, quick and handy tool for gathering EMG data but it has its limitations. The
Myo band is meant for the lower arm, but for some people it is also possible to attach to the upper arm.
However, since it is an armband, it is not possible for the Myo band to measure the EMG of shoulder
muscles. Therefore another solution is needed, if other AXO-arm joints than the elbow, should be
controlled. Additionally, the Myo Band is made for gesture recognition where the full characteristics
of the EMG signal is not needed, but rather the difference in activity between the pods. A consequence
of this is that the EMG signal is often saturated during use, and the resolution is only 8 bit. It is also
clear that the Myo Band was not designed for real-time use. It has been observed that the we are
only receiving EMG measurements with a somewhat irregular sample-rate over the BLE interface.
The actual rate was found to vary between 75 Hz and 85 Hz, and not reaching the 100 Hz advertised
in the data sheet. Clearly, the choice of EMG sensor can therefore be questioned.

16.0.2 The Muscle Model

The muscle model described in Chapter 9 and Chapter 10 is deemed satisfying, but some of the
found parameters are unrealistic. An example is the maximum force of CE, FC Emax

, which is found
to be more than 4000 N. The reason might be that the activation signal a(t) is lower than expected,
possibly due to the often saturated EMG measurements.

Regarding the muscle model parameters, these are individual for each person wearing the
exoskeleton. New parameters therefore have to be found each time a new person wears the suit
and the parameter optimization can take several days to complete. To ease this process a future
improvement is to design and implement a calibration program that is used every time the suit is
attached to a person or at least every time a new person is wearing it. The calibration program should
quickly estimate the necessary model parameters and to do this a faster parameter estimation is
needed, possibly with a reduced search space.

Other methods for muscle modeling could also be investigated, such as machine learning ap-
proaches or maybe commercial muscle simulation systems, such as the AnyBody Modeling System.

The dynamics of the EMG is dependent on many factors so the EMG processing could be ex-
panded to take into account more signal properties than what is included in the present work. Since
it is chosen to use non-invasive surface electrodes an immediate consequence is the crosstalk which
occurs when signals from different muscles propagate to the skin [54]. It is not taken into account
by the muscle model, but it is a potential source of error. A similar problem that is not taken into
account is the choice of hand orientation during elbow movement. If the user’s palm points upwards,
the EMG signal of biceps brachii is different from when the user points his palm downwards.

Additionally the EMG signal varies dependent on fatigue in the muscle [55]. So, clearly, a very
advanced model could be devised when using EMG.
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A commonly used method for compliant control of robots that interact with humans is to measure
the interaction force between the user and the robot with either FSRs as in [56] or with strain gauges.
While the EMG sensor has the advantage of detecting human movement before it happens, the large
amount of information in the signal makes it difficult to work with. Combining the EMG with direct
interaction force measurements is an option that might produce better results than using the EMG
alone.

Modeling of muscles and human motor control is an area that is heavily researched these years.
The AXO-SUIT project is part of SPARC, which works towards improving health care robotics the
European Union [5]. Modeling muscle dynamics and human motion for use in exoskeletons is thus
part of the SPARC area of research[57].

16.0.3 The Mechanical Construction

For future improvements it is of course relevant to include control of more joints than only the elbow.
Including more joints would increase the DOF and therefore be of better help to people with muscle
disabilities. During the course of the project, a mechanical engineering team working on the AXO-arm
has increased its DOF to 4. Two joints are thus added; an actuated joint capable of shoulder abduction
and adduction, and a joint that is not actuated allowing medial and lateral rotation. The two added
joints are shown on Figure 16.1.

Figure 16.1: The AXO-arm with the two additional joints that are added for increased mobility.

Another possible improvement for the mechanical structure is to lower the coulomb friction in
the motor gears. The high coulomb friction is an annoying factor when controlling low velocities
since the movement is not as smooth as wanted. Therefore a possible solution is to study other types
of gearboxes or completely change the mechanical setup such that the joints are actuated differently.

The motors actuating the mechanics can introduce violent movements, when not controlled
correctly. Since some errors are first noticed when the controller is implemented on the real system,
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an emergency stop would be a good idea to prevent damaging the mechanics or injuring the user. An
emergency stop is also required by the technical standard for collaborative robots [20].

16.0.4 Reflections on the chosen Microcontroller

Early in the project it was chosen to work with the UDOO Neo controller board. It was chosen in part
to try working with a new technology, and in part because it is a nice and compact system that has both
a proper operating system and the capability of real time software execution. In practice, however,
the platform is too unstable to be recommendable to others. The UDOO communicates with a host
computer using an emulated ethernet port over USB, which has proved extremely unreliable. The
Arduino interface to the M4 core works fine, but it is difficult to debug as the interfacing capabilities
are limited. During the course of the project, the AXO-arm has also been outfitted with two additional
DOF, resulting in four additional analog signals to be measured. The UDOO Neo only has six ports on
its ADC, so using it for control of the expanded AXO-arm is not possible without an external ADC. A
superior choice would have been an industrial grade interface card, and a regular laptop or desktop
computer.

Conclusions

This project set out to create a control system for the ongoing AXO-arm project at AAU. For this
purpose, the electromechanical AXO-arm system is modeled, and the model is parameterized and
verified against measurements. Using feedback linearization and PID control, a position controller for
the AXO-arm is developed, allowing fast and precise tracking of trajectories. To connect the AXO-arm
and its user, a general EMG-based model of the torque in a human arm joint, based on the works of
[6], is developed. A model of the elbow joint using EMG-measurements obtained with a Myo Band
is parameterized and verified against measurements. To make the Myo Band usable on Linux-based
platforms, an open source python library for gathering EMG- and IMU-measurements from it has
been developed.

Several ways of connecting the muscle model to the AXO-arm are attempted. Control by simply
applying the estimated torque to the feedback linearized system is compared to two different imple-
mentations of admittance control. The admittance controller that proved most comfortable was one
where the torque is low-pass filtered to generate a velocity reference for the PID controller, and a
simple position trajectory generator creates the position reference. This structure results in a system
that is easy to control, and supports the user when lifting a load.

While the problem statement in Section 1 asks for a controller for both joints on the AXO-
arm, the limited placement possibilities of the Myo Band only allows parameterization of a model
of the elbow joint. However, the method presented in this work for obtaining joint torque and EMG-
measurements is adaptable to also include shoulder movement. This upgrade requires EMG-sensors
with more versatile placement options, but the works of [6] and [34], combined with the parameter
estimation algorithm suggested in this thesis, makes the addition of shoulder joint control possible.

The test in Chapter 15 proved somewhat successful. While the test lacks a quantitative measure
of the support of the AXO-arm controller, the user did report that the controller was responsive and
supportive during the lift of a dumbbell disc.

The findings of this thesis can thus function as a good basis for further work in exoskeleton
controller design. The hierarchical controller based on [42] adds structure to the exoskeleton con-
troller design process, while still remaining open to interpretation and individualized solutions. The
AXO-arm development at AAU is with the addition of this master thesis, one step closer to increasing
the quality of life of users with reduced muscle strength, reducing their dependence on help from
the government, and possibly allowing them to remain a part of the workforce longer.
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Measurement Report - Motor
Measurements with Current Control A

This measurement report is used for Section 5.5.2. The purpose is to apply (and save) a current step
input to both of the motors Maxon 412825(for shoulder) and 40268(for elbow) and measure their
current and velocity, since this is used for comparing the time constants of velocity and current. This
is done with three different amplitudes of the step input for generality. The motors have attached
a small load/arm but are running independently of each other and are not attached to each other
in any way, which means individual measurements for each motor. The motors are also using the
auto-tuned current controller given in Section 5.5.2.
The general test setup for each motor is shown in Figure A.1. For each of the two motors, the rotation
of the load is limited mechanically by an end-stop. Therefore a problem while doing the measurements
can be that the velocity might not have time enough to reach steady state and get the full step response.
In order to capture as much of the step response as possible the load is therefore rotated from its
minimum joint angle to its maximum and with a relatively low velocities, but not so low that the
result of the measurements losses too much generality. The motors were fixed on a table in such a
way, that only horizontal movements were possible, which neglects gravity as an interfering factor.

Figure A.1: Test setup

A.0.1 Results

For the elbow joint motor the input steps are 0.5 A, 0.55 A and 0.6A as shown in Figure A.2a, Fig-
ure A.3a and Figure A.4a. With armature currents below 0.45 A the static friction is too high for
the motor to start moving, therefore, values above this are chosen. The maximum allowed current is
0.95 A.
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constants of the current response is approximately

367− 307= 60ms.

0 50
0

1,
00

0

1,
50

0

2,
00

0

0

2

4

Time ms

Ve
lo

ci
ty

ra
d/

s

Elbow - Square Pulse Input

Measured

(b) The measured velocity is settled at time ≈ 1500ms.
The time constants of the velocity response is

approximately 912− 307= 605 ms.

Figure A.2

0 50
0

1,
00

0

1,
50

0

2,
00

0

0

0.2

0.4

0.6

0.8

Time ms

A
rm

at
ur

e
C

ur
re

nt
A

Elbow - Square Pulse Input

Measured
Input

(a) At the time 306ms the input step is applied. The
measured current is settled at time 487ms. The time
constants of the current response is approximately

356− 306= 50ms.

0 50
0

1,
00

0

1,
50

0

2,
00

0

0

2

4

Time ms

Ve
lo

ci
ty

ra
d/

s

Elbow - Square Pulse Input

Measured

(b) The measured velocity is unfortunately not settled
at the time that the load reaches the end angle, which
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Figure A.3



113

0 50
0

1,
00

0

1,
50

0

2,
00

0

0

0.2

0.4

0.6

0.8

Time ms

A
rm

at
ur

e
C

ur
re

nt
A

Elbow - Square Pulse Input

Measured
Input

(a) At the time 306 ms the input step is applied. The
measured current is settled at time 446ms. The time
constants of the current response is approximately

366− 306= 60ms.

0 50
0

1,
00

0

1,
50

0

2,
00

0

0

2

4

Time ms

Ve
lo

ci
ty

ra
d/

s

Elbow - Square Pulse Input

Measured

(b) The measured velocity is unfortunately not settled
at the time that the load reaches the end angle, which

in the plot can be seen as the velocity going to zero fast.

Figure A.4

For the shoulder joint motor the input steps are 1.1 A, 1.3A and 1.5 A as seen in Figure A.5a,
Figure A.6a and Figure A.7a. In Maxon studio a offset of 1A is implemented. The maximum allowed
current is 2 A
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Figure A.5
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(b) The measured velocity is unfortunately not settled
at the time that the load reaches the end angle.

Figure A.6
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(b) The measured velocity is unfortunately not settled
at the time that the load reaches the end angle, which

in the plot can be seen as the velocity going to zero fast.

Figure A.7

A.1 Conclusion of the Experiment

Regarding the motor Maxon 40268(for elbow), the results are shown in Figure A.2, Figure A.3 and
Figure A.4. As observed besides the amplitude, all 3 measurements are very similar which indicate
that the result is general. Even through the velocity responses are not all settled, it can clearly be
observed that the time constants of the velocity responses are much larger than the time constants of
the current responses. Also the input current are in all cases of different amplitude the same as the
measured current, which implies unit gain from input current to measured current.
The results for the motor Maxon 412825(for shoulder) are very similar. The shoulder joint results
are shown in Figure A.5, Figure A.6 and Figure A.7 and again these indicates that the results are
general. Again even through the velocity responses are not settled, it can clearly be observed that
the time constants of the velocity responses are much larger than the time constants of the current
responses. Also the results showing input current and measured current imply unit gain with zero
steady state error.



Measurement Report - Elbow Muscle
Measurements for Parameter

Estimation B
To be able to estimate the parameters of the different muscle models described in Chapter 9, data
is needed. Here the inputs and output of the combined muscle model shown in Figure B.1 needs to
be measured and saved since these data vectors represent the data for parameter estimation. The
inputs of the combined muscle model are joint angle and EMG signals, and the output is the elbow
joint torque. As seen in the figure, the signal EMG1 is input for two muscle models. The reason for

Muscle:
Biceps Brachii

Muscle:
Brachialis

Muscle:
Bracioradialis

Muscle:
Triceps Brachii

∑

Angle

EMG1

EMG2

EMG3

+
+
+
−

τel bow

Figure B.1: The figure shows an approach for combining the different muscle models that are
related with elbow joint movement.

doing this is that Biceps Brachii and Brachialis is located almost in the same place on the upper arm.
This means that their muscle potential is also going to be measured with the same EMG sensor.
The reason for the torque produced by the muscle model of Triceps Brachii to be subtracted from the
other muscle models, is their difference in joint direction. With the objective clear an explanation of
the material list, equipment setup, measurement procedure and results are presented in the following.

B.1 Material List

The materials used for the measurement are:

• 2 Myo Armbands (for measuring EMG)

• Kin-Com 125AP machine (for measuring angle and torque)

• USB Portable Diskette Drive (for extracting data from the Kin-Com)

• Diskette

• Computer (for extracting data from the Myo armbands)
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B.2 Equipment Setup

In this section the setup is described, such that it is known how to attach the Myo armbands to an
arm and how to position a person in the Kin-Com.

B.2.1 Myo Armbands

The Myo armbands are placed on the right arm in such a way that they can capture the EMG of all
four muscles. The position of the muscles are shown in Section 9.4. One Myoband is placed on the
lower right arm where the sensor pod number 4 is placed on top of the muscle Bracioradialis and
with the USB connector pointing towards the shoulder, as shown in Figure B.2b. The numbering of
the sensor pods are shown in Figure B.2a. The second Myoband is placed on the upper arm, again

(a) Numbering of sensor pods. The USB connector
is in bottom on the sensor pod number 4. [11] (b) The two Myo Bands mounted on an arm

with the USB connector pointing towards the shoulder. Sensor pod number 4 is placed on top of the
muscle Biceps Brachii and thereby also covers the muscle Brachialis. This position should roughly
make pod number 1 or 8 fit with the position of the muscle Triceps Brachii.

B.2.2 Kin-Com

The Kin-Com is a machine wherein a person is placed to do a certain exercise, with the options
of measuring joint angle, joint angular velocity and limb force during the exercise. The Kin-Com is
shown in Figure B.3 and as seen both the seat and dynamometer (measure device) has to be adjusted
for the specific setup, which in this case is to measure elbow force (which will later be converted to
torque) and angle. To obtain the position of seat and dynamometer the Kin-Com computer is used,
since it can guide the user through the positioning for a certain exercise. After guidance from the
computer, adjustments are done manually to make the machine setup more comfortable; an example
is the maximum and minimum elbow angle during the exercise. After the positioning, the test person
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Figure B.3

is placed in the seat where his arm is fixed in the dynamometer as shown. Here it is important that
the elbow is placed such that it rotates around the dynamometer rotor axis.

B.3 Measurement Procedure

In this section; first it is explained how to obtain measurement data using the Myo armbands, and
secondly the Kin-Com. The Myo armband and Kin-Com measurements have to run simultaneously for
the muscle parameter estimation to be valid. Unfortunately the Kin-Com machine does not put at time
stamp on the saved measurement data, which induce the problem of how to compare the Kin-Com
data with the Myo armband data. Fortunately since the Kin-Com offers joint angle measurements,
and the Myo armbands offer accelerometer data(which is angle dependent), these data are used to
align the Myo armband and Kin-Com measurements in the most optimal way.

For obtaining the Myo armband data the following steps are followed:

1 By use of the Myo armband setup described in Appendix C, the two armbands can communicate
with a computer where IMU and EMG data are collected.

2 With the computer setup ready, the armbands are attached on the right arm of the testperson
as described earlier.

3 On the computer the measurements are first initiated when it is clear that the Myo armbands
are turned on and that contact has been established between the computer and armbands.

For obtaining the Kin-Com data the following steps are followed:

1 On the Kin-Com computer an isokinetic elbow flex/extend exercise is started.

2 Either a flex or extend exercise is chosen (the entire measurement has to be done for both).

3 With the testperson ready he either begins to flex or extend his arm corresponding to the choice
of exercise. While the testperson constantly does this the Kin-Com dynamometer begins to steer
the testpersons arm in a rotating movement up and down with constant velocity. 10 times the
arm is steered up and down and the measurement ends.

4 The measurements are saved on the Kin-Com and extracted with an diskette.
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To make sure that both Kin-Com and Myo armband data is present for all 10 arm movement repetitions,
the Myo armbands should begin measuring earlier than the Kin-Com. With both procedures followed,
such that measurement data is obtained simultaneously from the Myo armbands and Kin-Com, only
more measurement data can improve the parameter estimation. Therefore three extend and three
flex exercise measurements are obtained in total. Regarding to the Kin-Com force measurement, it
can be converted to measured elbow torque by use of Equation (B.1).

τ= F · l (B.1)

Where F is the force measured, τ is the torque measured and l is the distance from the Kin-Com
rotor the Kin-Com force sensor. The distance l is measured to 0.22m.

B.4 Results

In the following the data obtained from measurements are shown.

B.4.1 Correlating the data

First the accelerometer data from the lower arm Myo armband is shown in Figure B.4. This data is
used for correlating the Kin-Com and Myo Band data. Since the gravitational acceleration measured
in the armband is angle dependent it looks very similar to the joint angle data shown in Figure B.5a.
That is why the accelerometer data and the joint angle data is used to align the Kin-Com and Myo
Band data. Notice the minor spaces between the data lumps; this is done purely for the reader to
notice the data representing the three extend exercises followed by the three flex exercises.
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Gravitational acceleration from lower arm Myo armband

Figure B.4

B.4.2 Measurement Data for Parameter Estimation

The Kin-Com and Myo armbands data for parameter estimation are shown in the following graphs
Figure B.5a, Figure B.5b, Figure B.5c, Figure B.5d, Figure B.6a and Figure B.6b. Note that upper
arm POD1 and POD8 EMG data are very similar and therefore both capture the Triceps Brachii EMG
very well:
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Figure B.5
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(a) POD4 EMG measured by upper Arm Myo Armband
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Figure B.6: POD8 EMG measured by upper Arm Myo Armband



PyMyo C
For the purpose of this project a small Python module, named PyMyo, for the Myo Band has been
implemented. It was implemented partially due to lack of official Linux support, and to be able to
connect to multiple Myo Bands simultaneously.

Thalmic Labs has released a BLE specification 1, describing the protocol they use to communicate
with the Myo Band in their official libraries. The specification consists of a C-header file, defining a
number of structures and enums. To map these to a Python representation two different implemen-
tations of a Foreign Function Interface have been considered; the standard module ctypes and CFFI
from the people behind PyPy.

CFFI was chosen as it is faster than ctypes (in runtime), and the developers of CFFI try to not
impose limits on the user’s interpreter. This is a part of the goal of the project: “Attempt to support
both PyPy and CPython, with a reasonable path for other Python implementations like IronPython
and Jython.”2, whereas ctypes only supports CPython.

To communicate with the Myo Band the BLE interface provided by bluepy 3 is used.

C.1 Implementation

When a new PyMyo object is created, it scans for BLE devices, and if a Myo Band is found, and
attempts to connect to it. With a successfully connected Myo Band the method enable_services(...)

can be called. It will send a BLE request to get a UUID for all available services, and enable services
based on the arguments passed to the method. When a service is enabled all the characteristics of
the service are enabled. Once services have been enabled a callback function is set, which will be
invoked every time a new BLE packet is received from the Myo Band.

1https://github.com/thalmiclabs/myo-bluetooth
2https://cffi.readthedocs.io/en/latest/#goals
3http://ianharvey.github.io/bluepy-doc/

121

https://github.com/thalmiclabs/myo-bluetooth
https://cffi.readthedocs.io/en/latest/#goals
http://ianharvey.github.io/bluepy-doc/


122 Appendix C. PyMyo

C.2 Usage

The API provided by PyMyo is described blow, with a small example following

• constructor - The constructor takes 3 optional arguments;

– iface - The ID of the interface to use (iface). Defaults to to 0.

– on_emg - A callback function that is invoked whenever a EMG measurement is received.
Defaults to a small pretty print function.

– on_imu - A callback function that is invoked whenever a IMU measurement is received.
Defaults to a small pretty print function.

• connect - Scans for devices and connects to a Myo Band (provided at least one was found).

• enable_services - This method takes 3 arguments, and enables services on the Myo Band accord-
ingly

– emg_mode - Enum value from the BLE specification. Defaults to emg_mode_send_emg.

– imu_mode - Enum value from the BLE specification. Defaults to imu_mode_none.

– classifier_mode - Enum value from the BLE specification Defaults to classifier_mode_disabled.
(Not supported)

• set_sleep_mode - Enables or disables automatic sleep the Myo Band.

• waitForNotifications - Inherited from bluepy. Yield the thread until a BLE notification is received.

A small example with a simple print function as callback for both EMG and IMU is shown below.

1: on_measurement = lambda measurement: print(measurement)
2: m = PyMyo(iface=’0’, on_emg=on_measurement , on_imu=on_measurement)
3: m.connect ()
4:
5: m.enable_services ()
6:
7: while True:
8: m.waitForNotifications ()

PyMyo is freely available as beerware (i.e. under beer license), and can be found on github, at
https://github.com/lbromo/PyMyo.

https://github.com/lbromo/PyMyo


PCB Diagrams D
Triple ESCON 50-5 Motherboard
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Software E
As mentioned the software is running on two different cores; a real-time Cortex M4, and an A9
application core. In the following sections the software on each core is described, and finally the
inter-core communication protocol is designed to enable message passing between the cores.

E.1 Real Time Software

The software that runs on the real time (M4) core on the UDOO consists of 2 main tasks. One that
handles communication with the Linux core, and one that runs the feedback linearized controller.
Both the controller and communication task runs with a frequency of 200 Hz. They are setup using
Message Queue eXecutive (MQX), which provides an interface for setting up hardware timers with
µs resolution, that invoke a callback function.

The two cores communicate with each other using a hardware serial connection. The develop-
ment team at UDOO did develop an internal multi-core communication module that runs in software,
however, there is a known issue with it; it can become slow if the two cores are not synced up, and
in some cases completely hangs. A workaround has been suggested; if the A9 core is actively reading
when the M4 core sends a message, it should be faster. It does speed things up a bit, but there are still
issues with the internal communication 1. Therefore a hardware serial connection is chosen. Even
though a hardware serial connection was chosen in the end, the message protocol between the two
cores is defined with the limitations in mind, í.e. designed as a request-reply pattern. The details are
are shown in Section E.3.

E.2 Linux Program

On the A9 cure the muscle model and admittance controller is running. A high-level overview of the
implementation is shown on Figure E.1.

Muscle Model

Activation Filter Hill Model

Admittance Control M4 Handler

Muscle Creator

IIR Filter

Figure E.1: Overview of the implementation.

1See issue 14: https://github.com/UDOOboard/linux_kernel/issues/14
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The Activation Filter (Figure E.2) handles the communication with the Myo Band, through PyMyo
(Appendix C). This is done by the observable EMG object, where each Activation Filter can subscribe
to be notified whenever a new EMG measurement is received. The Activation Filter internally filters
the EMG vector, first by selecting the appropriate Myo Band pod, using the enum class EMGPOD, and
then running the filters (via IIR filter), adding new measurements, and filter outputs to the deques.

Muscle Model

Actication Filter

PyMyo

EMG

- observers : List<Observer>
- register_observer(Observer)

- unregister_observer(Observer)

+ notify_observers(*args, **args)

+ on_emg_measurement(*measurements)

EMG Logger

- log_file : String

- fs : File

+ notify(observable, emg_measurements)

Activation Signal

- A : float

- pod : EMGPOD

- x, y, e, u : deque

- hp_num, lp_den : List<flaot>
- u_num, u_den : List<float>

- filter(emg_value)

+ notify(observable, emg_measurements)

+ get_activation_level() : float

EMGPOD : enum

+ BICEPS_BRACHII : int

+ BRACHIALIS : int

+ BRACHIORADIALIS : int

+ TRICEPS_BRACHII : int

Figure E.2: Implementation of the Activation Filter.

The Hill Muscle (Figure E.3) contains an Activation Signal, a MUSCLE NAME together will the esti-
mated parameter (for the given MUSCLE NAME). It can be used to estimate both the force and torque
generated by the muscle; both tasks the current angles on the joints, and the torque estimate further
requires the joint of which the torque should be estimated. From the angles and joint the muscle
length and moment arm are estimated (via. Muscle Utils), and then the Hill Model is used to estimate
the force. As multiple muscles are needed to be able to control the arm, a creational pattern is used.
The Muscle Creator takes a file of estimated parameters, and creates the appropriate Activation Filters
and Hill Models. This is used by Admittance Control.

The Admittance Control estimates the joint torque and translates those to velocity and position
references (using the IIR filter), which are passed to the M4 Handler.

The M4 Handler sends references to the real-time core, and logs the measurements that are sent
from the real-time core to a buffered file. A buffered file was chosen to reduce the time spent on disk
I/O. It buffers the input until either of the following three events occurs; 4KB data is in the buffer,
flush is called or close is called. On any of these three events the buffer is written to the disk, and
cleared. The same buffer used to get the current angles of the AXO-arm, this is all done in a separate
thread.
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Muscle Model

Hill Model

Muscle

- act : Activation Signal

- name : MUSLCE NAME

- Muscle params : float

+ get_force_estimate(angles : list<float>) : float

+ get_torque_estimate(angles : list<float>, joint : MUSCLE JOINT) : float

MUSCLE NAME : enum

+ TRICEPS_BRACHII : int

+ BICEPS_BRACHII : int

+ BRACHIALIS : int

+ BRACHIORADIALIS : int

MUSCLE JOINT : enum

+ ELBOW : int

+ SHOULDER : int

Muscle Utils

+ get_muscle_value(muscle : MUSCLE NAME, angles : list<flaot>, joint : MUSCLE JOINT)

Figure E.3: The implementation of the Hill Model

E.3 Inter Core Communication Protocol

The inter core communication protocol have been designed with the limitations of the UDOO Neo
in mind – it has been designed as a request-response pattern, where the M4 core doesn’t transmit
anything, before getting asked by the A9. This is due to issues with the implementation of the Multi
Core Communication module.

The following messages have been defined:

New reference:
The A9 core can send a new reference message at any moment. No response is allowed from the M4
core. The message is defined as:
R<θ1d

>,<θ2d
>,<θ̇1d

>,<θ̇2d
>.

Measure:
The A9 core requests a new measurement, and the M4 send measurements.

A9 requests - M,
M4 response - S,<time>,<shoulder id>,<θ1d

>,<θ̇1d
>,<integrated error>, <θ1>,<θ̇1d

,<shoulder current

>,<shoulder pwm value>,<shoulder pwm direction>,<elbow id>,<θ2d
>,<θ̇2d

>,<integrated error>, <θ2>, <θ̇2d
,<

elbow current>,<elbow pwm value>,<elbow pwm direction>

Each floating point number, that is all except time, joint ids, pwm values and pwm directions are
multiplied by 100 and cast to an int before sending the message. This have been chosen as transmitting
floating point numbers sent over a serial port is not trivial.
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