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1. Abstract

Prediction of links in networks often requires an effort in
feature engineering and utilization of expert knowledge.
Much of today’s research are primarily domain-specific,
simply tuning variations of basic methods to fit a particu-
lar purpose.

Network embedding is a method to learn low-
dimensional representations of vertices in a network, and
recently such methods have been significantly improved
by borrowing from advancements in the field of natural
language processing.

We propose to apply feature learning on topological
network data and thereby learn network representations
specifically for link prediction in bipartite networks. We
present a novel algorithmic framework for exploiting re-
cent methods of network embedding onto bipartite net-
works with the purpose of predicting links. Applications
of our framework may be in any field having bipartite
network representations.

We demonstrate improvements over state-of-the-art
techniques for link prediction. Besides achieving better
precision, our proposed framework has further advantages
including high modularity, scalability and a by-product in
the form of vertex embeddings, useful for other unrelated
machine learning tasks.

2. Introduction

A bipartite network is a specific class of network consist-
ing of 2 partitions of vertices where every edge has an end
in each of the partitions [1]. This particular type of net-
work is suitable for describing pair-wise relations between
entities e.g. users and items [2]. The networks are applica-
ble to many real-world scenarios including the modeling
of metabolic network of chemicals and reactions [3], dis-
eases and genes [4] and ingredients (food) and flavors [5].
Without loss of generality we will mainly focus on bipar-
tite networks used in social, economic, and information
systems. Such networks may contain information on pref-
erences, opinions and collaboration, commonly present
in the fields of information retrieval and recommender
systems [6].

Working with real-world network structures we are
often challenged by the sparse and high dimensional data.
Bipartite networks (also called bigraphs) contain more in-
formation than its unipartite projections [7], though the
curse of dimensionality is even greater.

We propose an algorithmic framework using semi-
supervised dimensionality reduction methods for the pur-
pose of link prediction in bipartite networks.

Applications of our framework may be in most fields
where bipartite network representations are appropriate,
including in information retrieval, recommender system
and more.

We suggest to employ network embedding algorithms
for dimensionality reduction as part in our framework
due to the many recent advancements in the field [8] [9]
[10] [11] [12]. These non-linear methods construct low-
dimensional continuous vector embeddings of vertices in
a network. An essential property of such vector is that
if 2 vectors are near each other in the embedding space,
their corresponding vertices are (by some definition) closer
related. This is the network equivalent of the Skip-Gram
model [13] for natural language processing where words
appearing in similar contexts (e.g. the same sentences)
have corresponding vector representations that are near in
the embedding space.

In our proposed framework we build a family of net-
works based on the input of a single weighted bipartite
network. We utilize state-of-the-art network embedding
algorithms for constructing low-dimensional vector repre-
sentations of entities (represented as vertices). These vec-
tors are used for constructing a set of numerical features
optimized for link prediction using linear regression. The
outcome is a score proportional to the likelihood of link
existence between pairs of unconnected vertices, which
is the common approach for most link prediction meth-
ods [14]. For example, in some recommender systems a
user might see it fit to retrieve an ordered list of items
he/she is most likely to engage with.

The proposed framework outperforms current state-of-
the-art matrix factorization techniques for link prediction.
Furthermore, our framework has a natural modularity
allowing replacements and extensions of task-specific al-
gorithms such as the method for network embedding,
which may be relevant as future research advances in the
respective field.

Another notable benefit of our framework is the po-
tential multipurpose usage of learned vertex representa-
tions for other downstream machine learning tasks. This
includes multilabel classification of vertices which is the
main focus in most network embedding articles referenced
by this paper.

Our contributions are as follows:

• We introduce a novel algorithmic framework as a
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tool for predicting links in bipartite networks.

• We perform thorough experiments on our proposed
framework and compare with baselines methods
including current state-of-the-art.

• We compare leading techniques in performing net-
work embedding for the purpose of downstream
link prediction.

• We demonstrate our model on 3 real world datasets.

To the best of our knowledge, we are the first to em-
ploy current state-of-the-art network embedding methods
for link prediction in bipartite networks.

The rest of the paper is structured as follows. In Sec-
tion 3, we discuss related work. In Section 4, the problems
and tasks are defined, first conceptually, then formally.
Section 5 contains a detailed description on our solution
to identified problems and their theoretical properties. We
perform thorough experiments in Section 6 with various
evaluation metrics, baseline comparisons, visualization,
and optimization of hyperparameters. Finally, we summa-
rize and conclude in Section 7 and 8.

3. Related Work

In this section, we will discuss work related to our ob-
jective of link prediction, and furthermore work related
to our most essential framework building block, network
embedding.

Link prediction is a problem generally known for its ap-
plication in social networks, though the problem also has
applications in other domains like information retrieval,
bioinformatics and e-commerce [15].

A recent survey by V. Martínez et al. [14] mentions
link prediction as an open and relatively young field of
research. They emphasize that searching for which net-
work structural properties leads to better link prediction
is among the most important issues yet to be disclosed.
In their survey, they observe that most of todays research
in link prediction is domain specific, simply being tuned
variations of basic methods. In line with their work, we
are more focused on a topological-based link prediction
which serves more domains that attribute-based models.
V. Martínez et al. conclude that the main challenge ahead
is to develop scalable models that utilize more than just
local network information while still being applicable on
large real-world dataset.

The recent emergence of high performance, accurate
and scalable network embedding techniques allows for
improvements in link prediction problems as many such
techniques strike a balance between local and global net-
work information. A leap in the field of network embed-
ding was taken when B. Perozzi et al. published their
work, DeepWalk [8]. Their technique was heavily inspired
by recent advancements in natural language processing
where Mikolov et al. introduced the Skip-Gram model,
word2vec [16], which had the ability to embed words
(from sentences) in continuous vector spaces. Perozzi’s
main contribution was to consider vertices in a network
similar to words in a sentence, and found that he could
obtain accurate embeddings of networks.

Since then, many researchers followed and a gener-
alization of DeepWalk was published under the name
node2vec [17]. Both DeepWalk and node2vec were based
on a random walk procedure in the network to which
node2vec contributed by adding a tunable bias in the
walks allowing to configure the trade-off between ho-
mophily and structural equivalences.

More prominent work in the field of network em-
bedding is worth referencing, here among LINE [10],
SDNE [11], and DNGR [12]. The latter 2 are very re-
cent techniques relying on deep learning. Both are further
described in Section 5.2.

Matrix factorization techniques are widely used for link
prediction, especially in the domain of recommender sys-
tems where such techniques can extract latent features to
perform preference predictions [14]. In a paper by D. Liang
et al. [18] they extend a standard matrix factorization tech-
nique, introducing regularizing by entity co-occurrence
counts, and thereby outperform another high-performing
matrix factorization technique (Weighted Matrix Factor-
ization [19]). They empirically demonstrate their model’s
superiority on 3 dataset similar to the datasets included
in our experiments.

4. Problem Definition

In this section, we first describe a conceptual view of
the challenges ahead. Then we formalize multiple sub-
problems that will be solved later, in Section 5. The re-
mainder of this paper will extensively reference our for-
malization while going deeper into individual solutions.
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4.1. Conceptual Definition

We approach the task of link prediction in (un)weighted
bipartite networks. For our input, an undirected bipar-
tite network, we require the weights of edges to be non-
negative representations of the relation-strength between
2 vertices.

Without loss of generality we focus our efforts on net-
works common for social, economic and information sys-
tems. Such networks may contain information on pref-
erences, opinions, and collaboration. Hence, an example
of edge weights in our input network may be a discrete
number of purchases (or views) of products by users in
e-commerce. Another example may be a binary value
representing whether a scientist has authored a specific
papers – or not.

We consider the link prediction problem to be an
equivalent of predicting relations between pairs of en-
tities. E.g. given incomplete information, are we able to
predict whether a scientist has authored a specific paper?
Or if a user is likely to purchase a specific product? etc..

Our approach to link prediction contains network em-
bedding methods. Given a network representation we
must be able to compute low-dimensional vector repre-
sentations of its vertices. Depending on the dataset, these
vectors may be representations of users, products, scien-
tists, papers, etc..

A third and final sub-problem is the link prediction
where we seek utilization of feature vectors to rank vertex
pairs proportionally to their likelihood of being connected
in the future.

The problems described above will be formalized and
further described in the following sections.

4.2. Data Representation by Networks

In Figure 1 we have a weighted network as input which
we denote G(V, E, W) (or simply G), having nodes V =
{v1, . . . , vn} and edges E ⊆ (V ×V) = {(vi, vj)}n

i,j=1. We
may further extend the notation to capture the fact that
it’s bipartite: G(VA, VB, E, W) where V is partitioned such
that V = VA ∪VB and VA ∩VB = ∅.

For each vertex pair in E there exist an element in the
adjacency matrix A such that

aij =

{
1, if (vi, vj) ∈ E
0, otherwise

(1)

Furthermore, for every edge there exists a positive

weight in W such that wij > 0 ↔ aij = 1, otherwise
wij = 0

Our first task is to create a proper representation of
the information contained in the network. The main re-
quirement for the new representation is that it must be a
network with non-negative weights – no requirements to
whether it’s directed or bipartite. One such network we
denote by G′.

4.3. Network Embedding

We will consider the task of embedding networks, which
is defined in the following way.

A function, f , maps vertices of an arbitrary network
G′ to a d-dimensional space, i.e.

f : vi 7→ xi ∈ Rd (2)

where vi ∈ V′ and d� |V′|. Hence, X ∈ R|V
′ |×d

4.4. Link Prediction

A third task is to predict links in G, given vectors that are
representative of a pair of vertices.

Using network embedding methods, we approximate
the weights W of the input network G such that we obtain
approximation Ĝ having weights Ŵ.

A function, g, maps the representative vectors of a pair
of vertices to real number, i.e predicting the edge weight
between vi ∈ VA and vj ∈ VB.

g : (xi, xj) 7→ ŵij ∈ R (3)

Ranking of Vertex Pairs

In practice we are often interested in the relative rank-
ing of vertex pairs rather than binary link predictions.
Most methods for link prediction assigns a score to pairs
of unconnected vertices proportional to the likelihood of
existence of a link between them [14].

Therefore, the objective of g in Eq. 3 is to compute
predicted edge weight, ŵij, proportional to the likelihood
of the (future) existence of edge (vi, vj).

5. Method

Figure 1 is a conceptual overview of our solution to sub-
problems defined in Section 5. It is an algorithmic frame-
work for predicting links in a bipartite network, using
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Figure 1: Conceptual illustration of proposed framework: From raw data to link prediction.

network embedding algorithms on a family of networks.
The 3 arrows (denoted task A, B and C), represent specific
tasks that we will solve in respectively Section 5.1, 5.2, and
5.3.

A key feature of our framework is its modularity. Re-
placeable modules allows for the framework to be updated
continuously as research advances in related fields. For
example, we allow for replacement of network embedding
techniques.

Our solution to problems defined in Sec. 4 involves
first constructing a family of networks, representing in-
put data. Then, for every network, we compute network
embeddings which we utilize to predict links.

In the following sections, we provide details on our
methods together with important theory underlying the
employed techniques. Section 5.1 explains the construction
of derived networks from the input network. Section 5.2
describes the employment of network embedding meth-
ods. Section 5.3 further describes the utilization of network
embeddings to predict links, and Section 5.4 analyzes the
algorithmic complexities of methods described.

5.1. Network Topologies

As input to our framework we have a weighted bigraph.
This bigraph may not in its original representation be
ideal for some network embedding methods. Therefore,
on the basis of the input network, G, we are motivated to
construct a family of networks, G, having different data
representations of the same information.

In the family of networks, G, we have 2 classes: bi-
partite and unipartite. The bipartite networks are con-
structed by modifying edge set and weights of G such
that the resulting network becomes: G(VA, VB, E, W) 7→
G′(VA, VB, E′, W ′). The unipartite networks only contain
the vertices of VB and are therefore a projection of a bipar-

tite network in the form G(VA, VB, E, W) 7→ G′(VB, E′, W ′).
Figure 2 illustrates the concept of network projection.

Figure 2: The principle of projecting a bipartite network onto one
partition of vertices, resulting in a unipartite network.

The set of bipartite- and unipartite networks we de-
note GAB and GB, respectively. We define the family of
networks G = GAB ∪ GB = {G, G′1, . . . , G′N}.

In total, we present 10 networks in in G that are either
modifications or projections of G. All networks are listed
in Table 1.

The 2 classes of networks will in the following sections
be further described along with procedures for construct-
ing individual network structures. Section 5.1.1 describes
the motivation, properties and challenges in creating bipar-
tite networks (#0-5) and Section 5.1.2 similarly describes
for unipartite networks (#6-10).

5.1.1 Bipartite Network Variants

All bipartite networks in G contain all vertices in VA and
VB and similarly all edges in E. The single difference is
the weighting of edges, W.

In Table 1, network #0-5 are all bipartite.
Network #0 is the original weighted bipartite input

and #1 and #2 are only variations hereof with scaled edge
weights.
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# Symbol Pre-scaling Post-processing Weight calc. Weight max.

Bipartite

0 G - - - ∞
1 G′1 logarithmic - Eq. 4 ∞
2 G′2 binary - Eq. 5 1
3 G′3 - Normalization of weighted degrees Eq. 6 1
4 G′4 logarithmic (same as above) Eq. 4, 6 1
5 G′5 binary (same as above) Eq. 5, 6 1

Unipartite

6 G′6 - Count of common neighbors Eq. 7 ∞
7 G′7 - Jaccard index of adjacency vectors Eq. 8, 9 1
8 G′8 - Generalized Jaccard idx. of weight vectors Eq. 10 1
9 G′9 - Cosine similarity of weight vectors Eq. 11 1

10 G′10 - Projection by T. Zhou et al. [7] Eq. 12 ∞

Table 1: Overview of all constructed networks in the family G

Network #1 has all edge weights scaled by

w′ = log (w + 1) (4)

where w′ ∈ W ′ and w ∈ W. The addition of 1 is to
avoid introduction of non-positive edge weights. This
logarithmic scaling is motivated by the fact that many real-
world networks are scale free, i.e. their degree distribution
follows a power law. Hence, some vertices will have a
degree several order of magnitudes higher than others
vertices. Depending on the dataset and the employed
network embedding algorithm we may wish reduce the
power law’s effect.

Network #2 has all edge weights converted to a binary
value of 0 or 1. This is relevant for datasets where edge
weights are of very little or no importance compared the
knowledge of existence of edges, e.g. possibly, a user-
product network should not attribute more importance
to products having 3 views from a user compared to a
single view – the important fact may lie in the difference
between 0 and > 0 views. Binary conversion can be done
easily by

w′ = a (5)

where a is the corresponding element in adjacency
matrix, A.

Network #3-5 has the same pre-scaling as #0-2 in re-
spective ordering but furthermore performs post process-
ing on the scaled weights. This processing involves nor-
malizing the weighted degrees for all v ∈ VA to 1. When
this is performed the following holds

∑
v′∈Nv

w(v, v′) = 1 (6)

where Nv is the set of neighbors to vertex v ∈ VA and
w(·, ·) is the edge weight between two vertices.

This additional step of normalization is for reducing
the influence of vertices with high weighted degrees and
vice versa. For example, in a user-artist network of users
listening to music artists we may not wish to have the most
active music enthusiasts dominate our downstream predic-
tion model completely. Users having only listened to 2-3
artists may also be of great value to our model. We may
say that users are granted equal amounts of ‘authority’ in
the network.

5.1.2 Unipartite Network Variants

Bipartite networks contain more information than their
projections into unipartite networks [7]. However, a more
compact network representation may help utilize certain
network embedding algorithms.

We create a number of 5 unipartite network projections
listed in Table 1 as network #6-10. These are all described
below.

Network #6 is common in recommender system and is
easily computed by setting edge weights between vertices
vi, vj ∈ VB to the number of common neighbors they have
in G (network #0)

w′ij = |Ni ∩Nj| (7)

where Ni is the neighbors of vi and Nj the neighbors
of vj. w′ij is the weight on the edge between vertices vi and
vj in the projected network G′.

Network #7 uses the Jaccard index similarity measure
to set edge weights. We specifically compute the similarity
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between adjacency vectors ai and aj defined in Eq. 1. By
the definition of Jaccard index we compute edge weights

w′ij = J(ai, aj) =
ai · aj

‖ai‖2 + ‖aj‖2 − ai · aj
(8)

This measure of similarity ignores weights by comput-
ing on the column vectors of an adjacency matrix which
are bit vectors.

An equivalent definition bears resemblance to Eq. 7

w′ij = J(Ni,Nj) =
|Ni ∩Nj|
|Ni ∪Nj|

(9)

Network #8 uses the generalized Jaccard index which
includes information on weights contrary to the regular
Jaccard index which works on binary data only, i.e. in-
stead of working on adjacency vectors we consider weight
vectors wi and wj. Edge weights are computed by

w′ij =
∑
|wi |
n=1 min(wi,n, wj,n)

‖wi‖1 + ‖wj‖1 −∑
|wi |
n=1 min(wi,n, wj,n)

(10)

where wi,n is the nth element in vector wi (and similar
for wj) and ‖ · ‖1 is the L1-norm of a vector.

Network #9 uses the cosine similarity measure which
is commonly known for high performance in information
retrieval, comparing text documents. As in network #8,
we compute similarity between vectors wi and wj. Cosine
similarity defines weights by

w′ij = cos(wi, wj) =
wi ·wj

‖wi‖‖wj‖
(11)

where ‖ · ‖ is the L2-distance of a vector.
Network #10 is built on a method by T. Zhou, et. al. [7].

The intuition behind their projection can be understood
as a ‘flow’ of resources between vertices in network G. By
assigning resources to a vertex, and running the resource-
allocation process, the ‘attractors’ of resources are con-
sidered to be central for the starting vertex, which then
becomes connected in G′. In their paper, weights are
defined by

w′ij =
1

k(vj)
∑

vn∈VA

ainajn

k(vn)
(12)

where k(·) is the degree of a vertex.

Performance Considerations

Depending on the utilized dataset, some projections have
a high risk of increasing the average vertex degree sig-
nificantly which affects network complexity (in terms of
|E|). This has consequences for both time- and space com-
plexity. Our solution to this problem is limiting the vertex
degrees to a fixed maximum, i.e. we only allow a fixed
maximum number of edges per vertex selected by highest
weight first. We empirically configured this upper degree
limit to 25 such that no vertex in a unipartite network has
more than 25 neighbors.

Unweighted Input Networks

Some datasets do not have weights on edges, which we in-
terpret as a weight of 1 when a link exists, and 0 otherwise.
In such cases, our network family G becomes smaller and
only network #0 and #3 are kept in the group of bipartite
networks. Furthermore, we can also omit network #8 as
the general Jaccard index becomes ‘regular’ when W = A.
In summary, for unweighted datasets |G| = 6.

5.2. Network Embedding

Equation 2 defined f , mapping a vertex to a continuous
vector of d-dimensions. In our framework, this method of
dimensionality reduction is performed by one of 3 meth-
ods: node2vec [17], SDNE [11] and DNGR [12]. These
methods have all demonstrated high accuracy in multi-
class classification tasks on vertex labels, but has only
superficially touched the link prediction problem. We in-
tend to optimize the method’s hyperparameters for link
prediction tasks.

The 3 network embedding methods will be described
in the following subsections.

node2vec (N2V) and DeepWalk

DeepWalk by B. Perozzi et al. [8] transfers the Skip-Gram
NLP-model onto networks. The core of DeepWalk is the
optimization problem:

min
f
− log Pr({vi−w, . . . , vi−1, vi+1, . . . , vi−w}| f (vi)) (13)

where w is a constant, natural number, defining the win-
dow or context. The set of vertices (i.e. the context) is found
by random walks in the network and then bounded by
the window of size 2w + 1. The equation seeks to learn
a mapping f such that we maximize the probability of
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predicting the context of vi given it’s embedding vector,
f (vi). f is a matrix of size |V| × d for which we optimize
parameters according to Eq. 13 using stochastic gradient
descent (SGD).

node2vec by A. Grover et al. [9], is a generalized ver-
sion of DeepWalk. They essentially propose an improve-
ment involving flexibility in obeying 2 key principles: 1)
representations must embed vertices from the same net-
work community closely together, and 2) representations
of vertices that share similar ‘roles’ in a network must
have similar embedding – the former is useful in networks
that are built on homophily, i.e. networks where similar
entities has a tendency to bond. The latter is referred to as
structural equivalence by the authors, where a pair of ver-
tices, e.g. both being hubs, are considered to be structural
equivalent.

node2vec sets to accomplish these principles by intro-
ducing a tunable bias in the random walk. Compared
to DeepWalk, node2vec has 2 hyperparameters, p and
q, biasing the walk towards capturing more (or less) of
the homophily or structural equivalence properties. When
both these parameters are unity, node2vec resembles Deep-
Walk.

Figure 3: node2vec random walk bias.

The parameters influences the walk as illustrated in
Figure 3: Consider that we have just traversed the edge
(a, v) and we must decide what vertex to visit next, either
b1, b2, or back to a. In the figure, numbers on the edges
are factors denoted α, to which wα is the unnormalized
transition probabilities (w being the edge weight). Let
da,b denote the shortest path distance between the previ-
ous and the next vertex, respectively a and bi. Then, the
formula for α is:

αvb =


1
p , if da,b = 0

1, if da,b = 1
1
q , if da,b = 2

(14)

By tuning p and q, we may control how the walk pro-

gresses, e.g. biasing towards staying close to the starting
node or exploring outwards.

Structural Deep Network Embedding (SDNE)

D. Wang et al. [11] suggest a deep approach to network em-
bedding. Their intuition is to jointly optimize 1st and 2nd
order network proximity by extending the loss-function
of an autoencoder, whose input (and output) is vectors of
the edge weight matrix, W, having length |V|. Such an au-
toencoder will be able to represent the neighborhood of a
vertex (2nd order proximity). To include 1st order proxim-
ity, they extend the loss-function for learning autoencoder
parameters with an objective to penalize distant embed-
ding vectors for adjacent pairs of vertices, and similarly
rewarding distant vectors for non-adjacent vertices.

Deep Neural Networks for Learning Graphs (DNGR)

S. Cao et al. [12] presents another deep approach bearing
resemblance to both DeepWalk-inspired models and mod-
els such as SDNE. Cao’s model replaces random walks
with random surfing and restarts, heavily inspired by the
PageRank algorithm [20]. They use the resulting proba-
bilistic co-occurence matrix for creating vertex representa-
tions whose dimensionality is reduced by stacked denois-
ing autoencoders.

5.3. Link Prediction

After having computed network embeddings stored in
matrix X we then compute weight matrix Ŵ as introduced
in Eq. 3 where ŵij was defined as the predicted weight on
edge (vi, vj).

The procedure for computing Ŵ differs for embed-
dings of bipartite- and unipartite networks, respectively.
The former has embedding vectors for both vertices in
VA and VB. The latter is more difficult as we only have
embedding vectors for vertices in VB. Recapping Eq. 3; to
find ŵij we require vectors xi and xj where vi ∈ VA and
vj ∈ VB. For bipartite networks both of these embedding
vectors can be found as columns in X. However, for uni-
partite networks we need to pre-compute xi as this doesn’t
exist in X when vertices in VA are not represented in the
network. Section 5.3.1 and 5.3.2 elaborate on the complete
procedure for link prediction. Section 5.3.3 extends the
prediction problem to include multiple networks at once.
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5.3.1 Bipartite Network Features

We define mapping g (Eq. 3) as the euclidean metric, i.e.
ŵij is the L2-distance between vector representations of a
vertex pair where vi ∈ VA and vj ∈ VB.

ŵij = g(xi, xj) = ‖xi − xj‖ (15)

5.3.2 Unipartite Network Features

In the beginning of Section 5.3 we brought attention to the
issue of networks in GB not containing vertices of VA but
only those in VB. Therefore, in order to compute predicted
weight as in Eq. 15 we pre-compute a representative vector
of vi ∈ VA, still denoted xi.

We compute xi as a weighted average of the embed-
ding vectors in Ni which is the set of neighbor vertices
of vi ∈ VA in network G. The average is weighted by
corresponding edge weights.

Consider an example with an e-commerce sales net-
work of users and items. The networks in GB would
be networks of items-only projected from the user-item
bipartite network G. In order to use the unipartite item-
networks to predict user-item links we need to compute a
user representation. Using the above method we would
represent a user by the average of embedding vectors of
items, observed to be linked with the respective user – and
weighted by the strength of user-item links (e.g. number
of purchases of a specific item).

5.3.3 Multiple Networks

In above sections it was described how weights are pre-
dicted by a single network in the network family, G. How-
ever, predictive power of our framework is improved by
using multiple networks. The procedure of using multiple
networks for prediction is to construct feature vector, yij,
by concatenation of all single-network weight predictions,
formally

yij = (ŵ0
ij, . . . , ŵ|G|ij ) (16)

where the superscript of ŵ references the respective net-
work in the family G. Hence, we obtain a feature vector
yij 7→ R|G|.

The last step in the link prediction process is ranking
predicted links. If we once again consider vertex pair
(vi, vj) with feature vector yij, we may then approximate
ŵij with linear regression in the form:

ŵij = y>ij β + Eij (17)

where β is a parameter vector containing the regression
coefficients and Eij is the error term.

As stated in Section 5.3, vertex pairs are sorted, ordered
by likelihood of having (future) links between them.

5.4. Complexity Analysis

The scalability of our proposed framework rely entirely on
its sub components. Let’s consider the framework process
from the beginning (recap Figure 1): Given a bipartite net-
work as input we compute various modified and projected
networks. The construction of these networks contributes
with a linear factor (|G|) to both space- and time com-
plexities in all subsequent steps. However, our proposed
network family has a fixed number of maximum 11 con-
tained networks, allowing us to consider this complexity
contribution as a constant.

The network construction phase, i.e. task A, involves
constructing networks using various algorithms having
different complexities. These networks were listed in Ta-
ble 1. Network #1-5 can all be constructed with a time
complexity of O(|E|) and a low constant factor. For all
unipartite networks #6-10 we compute edge weights be-
tween every pair of vertices in VB. Therefore, the time
complexity is significantly higher, O(|VB|2kB) where kB
is the average degree of vertices in VB. Though, the con-
stant overhead for these computations are quite low with
the last network, #10, being the most complex due to its
resource-allocation process.

In the network embedding phase, task B, the employed
methods all have time complexities linear to the number
of vertices and avg. network degree, O(|V′|k) where k is
the average degree of vertices in V′, given that we consider
dimensionality d fixed.

We may consider k (and kB) as constants as many real-
world datasets have a natural limitation in the avg. degree,
e.g. in social networks the number of connected ‘friends’
are usually bounded. Furthermore, to further justify our
assumption, during the network construction phase we
set a fixed upper limit on our network degree with the
purpose of avoiding unnecessary complexity (see section
5.1.2).

In the last step with linear regression, without sub-
sampling training instances, we reach a time complexity
of O(|E|2), if we still consider the number of networks in
G fixed. The constant factor in this last step is insignificant
but we may choose consider less training samples while
computing regression coefficients.
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Overall, projecting graphs looks to have the highest
time complexity without obvious countermeasures, and
thereby being the bottleneck of our framework. Though,
we observe the following: 1) The constant factor overhead
is tiny to which employment on relatively large datasets
are still feasible, 2) each of the projection methods are
straight-forward to parallelize as they can all be locally
computed.

6. Experiments

In this section, we evaluate proposed framework on mul-
tiple real-world datasets. Furthermore, we evaluate the
performance of both a set of network structures and a set
of network embedding algorithms to select the best per-
forming configurations of our framework. We document
the significant improvements over various baselines using
a range of appropriate evaluation metrics.

6.1. Methodology

All optimization procedures and intermediate evaluation
steps are computed using k-fold cross validation. We set
k = 5 which we found to be a good trade-off between the
execution time and the benefits with regards to avoiding
overfitting and obtaining precise results. A ‘6th fold’ was
reserved for final tests, i.e. we partitioned all vertex pairs
from datasets into 6 equally sized parts to which ∼83%
was used for training and validation, and the remaining
test data (∼17%) was used for a final evaluation.

All methods and experiments were performed in a
Python environment on Linux, making use of trending
libraries: Tensorflow, Keras, NetworkX, scikit-learn, etc.
together with various author’s implementations of their
respective network embedding algorithms. Experiments
were run using an Intel Core i7 6700K, 32 GB DDR4 RAM
and a GPU, Nvidia GTX1080 which were utilized by 2 of
3 network embedding algorithms (SDNE and DNGR).

6.1.1 Datasets

A set of 3 network datasets are tested in our experiments.
These datasets all contain bipartite network data and were
selected to maximize coverage of the challenges within the
research field of link prediction. The 3 datasets are:

• LastFM [21]: Contains music artist listening counts
on Last.fm from a set of 2K users. This dataset has
an avg. degree per user node of 49.

• Newman [22]: A network on arXiv co-authorship
in the physics section on condensed matter. Binary
links between authors and papers indicates author-
ship.

• Movielens [23]: A dataset containing 1M user-
movie ratings on a 5-star scale. In line with [18],
we convert this explicit rating to binary such that 4
and 5 stars becomes 1, otherwise 0.

The selected datasets covers various types of informa-
tion we introduced in the beginning of this paper: Implicit
preferences, explicit opinions, and collaboration. Statistics
on the datasets are summarized in Table 2. Rel. indicates
the underlying relationship type between vertex pairs.

LastFM Newman Movielens

|V| 20K 39K 10K
|E| 93K 59K 1M
|VA| 2K (user) 17K (author) 6K (user)
|VB| 18K (artist) 22K (paper) 4K (movie)
Rel. Listen count Authoring Explicit rating

Table 2: Statistics on datasets.

Pre-processing on Datasets

We mentioned our use of 5-fold cross validation and an
extra holdout set for final testing. To properly validate and
evaluate our model we need the users (or authors) from
the datasets to always appear in both our training and vali-
dation set (or test set). Therefore, in our data we keep only
users (or authors) having a minimum of 6 connected enti-
ties e.g. movies. To make sure each user are represented
in every part including the test set, we systematically split
user data uniformly into each partition.

Furthermore, we remove entities (artists, papers and
movies) that have a very low degree. For our datasets
we respectively remove artists listened to by fewer than
5 users, papers authored by only 1 scientist and movies
rated by fewer than 5 users.

6.1.2 Baseline Algorithms

We consider the following 3 baseline models:

• Random: A model where links are predicted by
a completely uniform randomization. The perfor-
mance of this model is expected low and sets a lower
bar for a better comparison perspective.
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• Popular: A model where links are predicted entirely
on the basis of the highest weighted degree for ver-
tices in VB. When networks are scale-free this model
is expected to perform quite well.

• Cofactor [18]: A state-of-the-art matrix factorization
model. This model extends regular matrix factor-
ization of user-item matrices with regularization by
co-occurrence matrices.

We consider the random- and popular model to be
each others extremes in the way that the entropies of the
respective lists of predicted results cannot be further apart.
Though, the cofactor model is expected to be performing
much better in precision.

6.1.3 Evaluation Measures

For evaluation of both intermediate steps in the optimiza-
tion process and the final predicted ranking we compute
the normalized discounted cumulative gain (nDCG), mean
average precision (MAP) and mean reciprocal rank (MRR).

All of the 3 measures stays within the interval [0, 1].

Normalized Discounted Cumulative Gain

nDCG is calculated by first computing the discounted
cumulative gain:

DCGk =
k

∑
i=1

2reli − 1
log2(i + 1)

(18)

where k defines a specific rank position and i therefore
iterated over all the rank positions up to k. reli denotes the
relevance of the instance at the ith position. The relevance
can be binary: 1 for relevant documents and 0 for non-
relevant documents – or it can be weighted by the edge
weights in G. We consider the latter case.

The DCG is then normalized to nDCG by dividing by
the ideal DCG (IDCG), i.e. the DCG scoring in the optimal
setting with a perfect ranking.

nDCGk =
DCGk
IDCGk

(19)

Lastly, we compute the mean over all N queries.

mean(nDCGk) =
N

∑
i=1

nDCGk,i

N
(20)

which we simply refer to as nDCG for brevity.

Mean Average Precision

MAP serves the same purpose as nDCG of evaluating
ranked queries, however, the effect of discounting errors
in lower rankings differs. As opposed to nDCG, MAP only
considers binary relevance.

First, we compute the average precision over the top k
ranking positions

APk =
k

∑
i=1

P(i)
min(m, k)

(21)

where P(i) denotes the precision of the top i ranking po-
sitions and m is the total number of relevant items to be
retrieved.

Then, we calculate the mean of average precisions over
all N queries by:

MAPk =
N

∑
i=1

APk,i

N
(22)

Mean Reciprocal Rank

A final member belonging to the class of ranked query
evaluation is the MRR. As opposed to nDCG and MAP,
MRR only considers the first relevant document in a query

MRR =
1
N

N

∑
i=1

1
ranki

(23)

where ranki is the rank of the first relevant document. If
there are no relevant documents then reciprocal rank is
set to zero.

Measure Properties

NDCG, MAP and MRR are all measures to evaluate on
rankings and they share the common property of reward-
ing relevant items in the top of the lists. MRR only con-
siders the top ranked item and is useful when we are only
interested in the best result of a query, whereas NDCG
and MAP considers more items with a decay on the rank
position of items.

In this paper we mostly prefer NDCG (over MAP) due
to its ability of distinguishing between real valued rel-
evance rather than only binary relevance. Though, we
include MAP for 2 reasons: 1) because of it’s strong estab-
lishment in related research fields, and 2) in some cases
where relevance scores are not compatible, NDCG can be
misleading, and binary relevance is more fit.
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We set k = 100 for all measures in our experiments to
limit the computational cost of evaluation. Any increment
of k would have insignificant influence on the prediction
score due to discounting in each of the measures. For
brevity we denote NDCG100 simply as NDCG, and simi-
larly for MAP and MRR.

6.1.4 Network Embedding Optimization

Our framework contains multiple learning models which
needs optimization. In this Section, we describe the search
for optimal hyperparameters influencing how mapping f
is learned.

Each of the network embedding methods have hyper-
parameters to be optimized, including vector dimension
d. The objective for our employed network embedding
methods are to accurately predict relations on vertex pairs
where an edge is not (yet) observed. To evaluate such
predictions we apply k-fold cross validation such that
network embeddings are computed for k − 1 folds and
evaluated on the validation fold. For bipartite graphs, this
is equivalent to removing 1

k of edges during training and
afterward evaluating on this holdout set of edges. For
unipartite networks this is more abstract as we cannot
simply remove edges in the training set. However, we
still construct a network using the training data and then
construct an entirely new network of the validation data
for evaluation.

We never evaluate the embedding methods on the
training data as the methods are very prone to overfit-
ting, especially when d is high compared to the dataset.
Therefore, we select the hyperparameters that perform
best averaged over k-folds. As an alternative to grid- or
random search algorithms we use tree of parzen estimators
(TPE) [24] for finding the best parameters. We allow for
completely different parameters for each network in G,
including d.

Regression Analysis

In this Section, we describe the procedure for performing
variable (feature) selection. Eq. 16 defined the feature
vector y. This feature vector is fitted by linear regression
in Eq. 17. Linear regression has proven to be efficient for
the output of network embedding techniques, but in our
case may suffer from a collinearity problem where mul-
tiple of the variables are highly correlated. Furthermore,
unregularized linear regression coefficients suffers from
numerical instability and becomes sensitive to noise.

We employ the regression analysis method, least abso-
lute shrinkage and selection operator (lasso) [25], to regularize
the regression coefficients. Lasso (L1-regularization) has
the advantage over L2-regularization in its ability to set
(some) coefficients to exactly 0, and thereby making it
possible to perform variable selection simply by scaling
the regularization term.

Class Balancing

For our model to be able to predict existence of links we
must also learn it when links are not existing. Therefore
we supplement the edge data used for learning regression
coefficients with an equal amount of randomly sampled
non-edges (unconnected vertex pairs).

We experimented with sampling k-times more non-
edges and weighting those samples by the reciprocal of k,
however, the small gain in model stability was not worth
the increased computation time on tested datasets.

6.2. Experiment Results

In this Section, we will present the results of proposed
framework contra baseline models. We will begin by doc-
umenting the variable selection. Next, we document best
performances of fully tuned models, and later dig deeper
into the parameter sensitivity, visualizations, etc..

6.2.1 Variable Selection

Another name for this section could be ‘Network Selec-
tion’ due to the fact that filtering variables, i.e. setting
regression coefficients to zero, allows us to omit the entire
corresponding network from being constructed. When we
e.g. keep only a small subset of variables for prediction
we significantly reduce complexity and thereby computa-
tional load.

There exists a special case in selecting only a single
variable, which would not only reduce the effort in our
network creation phase to a minimum, but also eliminate
the need for linear regression due to the single variable
in itself being sufficient for ranking – a constant factor
(regression coefficient) can at most reverse the ranking.

In Figure 4, the performance (NDCG) is plotted as a
function of the number of selected variables (or networks).
The results in the scatter plot is from the LastFM dataset
using node2vec as the network embedding method. The
variable selection experiment was conducted by adjusting
the lasso regularization term. Observe that performance is
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Figure 4: Performance of link prediction on the LastFM dataset
using node2vec. Number of selected variables are varied
by adjusting the lasso regularization term.
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Figure 5: Performance of link prediction on the Newman dataset
using node2vec. Number of selected variables are varied
by adjusting the lasso regularization term.

best when only 6 networks are utilized. Further inclusion
of networks leads to more noise, affecting performance.

In Figure 5, we perform the same experiment to select
the optimal number of variables, but for the Newman

dataset. Here, there are fewer variables to choose among
because the dataset contains binary edge weights and as
mentioned in Section 5.1.2, many of the networks becomes
redundant. Observe that 5 utilized networks is the optimal
number for this specific dataset.

In the Movielens dataset, the 4 variables selected were
almost similar to those for the LastFM dataset, employing
both unipartite- and bipartite networks.

6.2.2 Link Prediction

Performances are summarized for each model in Table 3
(below). Our proposed framework has been abbreviated
LPFB (Link Prediction Framework for Bigraphs). The sub-
script in LPFB1 indicates we are employing only the best
performing network in G – this was regarded as a special
case in Section 6.2.1. Subscript: ∗ indicates an optimal
configuration of our framework, after performing variable
selection.

Dataset Method MAP NDCG Rec. MRR

LastFM

Random 0.002 0.011 0.039 0.011
Popular 0.040 0.140 0.277 0.145
Cofactor 0.125 0.302 0.504 0.366
LPFB1 0.139 0.326 0.588 0.381
LPFB∗ 0.147 0.339 0.607 0.393

Newman

Random ∼0 0.002 0.010 ∼0
Popular 0.001 0.004 0.015 0.003
Cofactor 0.195 0.319 0.677 0.249
LPFB1 0.292 0.408 0.682 0.368
LPFB∗ 0.373 0.479 0.707 0.457

Movielens

Random 0.002 0.016 0.033 0.022
Popular 0.058 0.195 0.336 0.258
Cofactor 0.126 0.335 0.551 0.396
LPFB1 0.097 0.275 0.461 0.333
LPFB∗ 0.117 0.319 0.513 0.364

Table 3: Performance of proposed framework compared to baselines.

Observe the exceptional results of our model for the
datasets LastFM and Newman, for which we improve by
respectively 18% and 96% over the best baseline model.
Even the simplistic special case, LPFB1, demonstrates su-
periority in predictive abilities. Compared to this special
case model, we are able to perform variable (feature) se-
lection on our network family and improve performance
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on the 3 datasets by respectively 6%, 28%, and 21%, which
demonstrates the usefulness of constructing multiple net-
work structures.

For the Movielens dataset, the Cofactor baseline
model is 8% better performing (in terms of NDCG). The
potential cause of our framework not performing well on
this dataset might be due to improper modeling of the
bipartite input network. We have recreated the same pre-
processing of ratings as suggested by the authors of the
Cofactor model, in which only rating of 4 stars and higher
are kept as a binary indication that a user likes a movie
– this might be optimal for their algorithm, however, we
believe that the great loss of information is not optimal for
our framework, which has a strength in learning by itself,
what’s important and what’s not.

We expect the random model’s performance to be in-
versely proportional to the size of VB. This is the reason
for the decrease in performance in Newman compared to
LastFM and Movielens.

The popular model performs relatively well on datasets
containing preferences and opinions (LastFM and Movie-
lens). However, it performs poorly on the Newman col-
laboration dataset due to the nature of how this network
was formed. In contrast to the other datasets, this spe-
cific dataset is not expected to have formed under the
influence of preferential attachment rules (’the rich gets
richer’), which underlies the formation of scale-free net-
works. In other words, a paper does not have a tendency
to be authored by more scientists simply due to the cur-
rent number of authors the same way as popular music
tends to attract more listeners.

In Figures 6 to 8, the precision at top-k positions is
plotted with a varying k. It is notable how the Newman

results are very different. This is due to the dataset not
being formed according to popularity and preferential
attachments, where the popularity model has almost no
predictive power. Apparently, the highly complex nature
of our framework yields superior results in such cases,
whereas the Cofactor model is more ‘popularity’-driven.

6.2.3 Network Embedding Results

In Table 4 we evaluate the performance of individual net-
work embedding methods.

Emb. algo. Dataset MAP NDCG Rec. MRR

N2V
LastFM 0.147 0.339 0.607 0.393
Newman 0.373 0.479 0.707 0.457
Movielens 0.117 0.319 0.513 0.364

SDNE
LastFM 0.078 0.222 0.444 0.208
Newman 0.292 0.385 0.598 0.360
Movielens - - - -

DNGR
LastFM 0.088 0.244 0.518 0.253
Newman 0.097 0.173 0.397 0.125
Movielens - - - -

Table 4: Best performances of different network embedding algorithms
in proposed framework.

node2vec performs best on all datasets to which we
attribute both its flexibility in adapting to network’s topo-
logical properties (by tuning the random walk bias), but
also to its relatively more successful hyperparameter tun-
ing.

Due to some difficulties with the methods SDNE and
DNGR, explained in the following, we have omitted the
Movielens results to focus on more accurate results in the
remaining 2 datasets.

SDNE and DNGR are deep approaches having mul-
tiple hidden layers in their autoencoders. The task of
learning parameters of such models is computational ex-
pensive. Our setup relied on a GPU for higher efficiency,
however, we met issues in the memory management of
GPU’s, probably due to early development (beta) phases
of required drivers – thus, running experiments on our
GPU-setup required almost constant supervision.

6.2.4 Network Embedding Visualization

We can visualize embeddings in 2D by further reducing
dimensionality on our embedding space using the t-SNE
algorithm [26].

In Figure 9, embedding vectors of network #0 from the
LastFM dataset are plotted. Colored dots are representing
artists, and black crosses represent users. Both users and
artists are distributed in the embedding space, indicating
that every artist has an audience and vice versa. Density-
clustered points are visually apparent, most likely due to
the formation of sub-communities having a similar taste
in music.

The red, yellow, and blue coloring of the artist points
are assigned user-tagged labels, respectively for music gen-
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Figure 6: LastFM prediction preci-
sion at top-k positions.
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Figure 7: Newman prediction preci-
sion at top-k positions.
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Figure 8: Movielens prediction pre-
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Figure 9: t-SNE visualization of embedding space of network #0 from LastFM dataset. Points (embedding vectors) have been labeled with
user-assigned tags according to music genres. Users and artists are represented by respectively black crosses and colored dots.
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res metal, rock, and pop. Notice the separation between
metal and pop artists with rock artists as the separator,
which presumably is well-representative of real-world rela-
tions between genres, e.g. pop-rock or metal-rock pairing
are probably more common than pop-metal – Not to be
confused with the actual genre of ‘pop metal’, which has
very little to do with pop.

Besides genres, there are more latent relations between
artists and users we are able to represent by our unsu-
pervised feature learning approach. Conveniently, the
embedding vectors are a bi-product of our framework to
be employed in other downstream machine learning tasks
other than link prediction, such as multilabel classification
of genres.

6.2.5 Parameter Settings

Table 5 is an example of our bias-parameter settings for the
entire list of embedded networks for the LastFM dataset.
The parameters were introduced for node2vec in Section
5.2. Other parameters were also tuned, including number
of, length, and window size of random walks, however,
these did not deviate significantly from the proposed set-
tings by the node2vec authors.

Table 5: Parameter settings of walk bias in node2vec

Network # In-Out Param. (q) Return Param. (p)

0 0.09 5.36
1 0.77 0.40
2 5.75 4.16
3 0.15 9.07
4 0.96 1.29
5 1.25 4.87

6 0.19 0.08
7 0.37 0.27
8 0.20 12.7
9 0.07 0.29
10 19.8 0.05

Some notable observations can be made from Table 5:
1) Networks with binary edges have a tendency to have
a high setting of q, thereby making random walks more
inclined to staying near the starting point, and 2) both
parameters for network #10 adjusted to extremes which is
notable due to this network being the only directed, which
we may conclude affects behavior significantly.

7. Further Work

Future work may involve finding techniques for reduc-
ing connectivity of constructed networks as a blowup in
network density causes a proportional rise in computa-
tion time. We empirically set an upper bound of vertex
degrees on 25, however, we would like to achieve greater
insight into the effect of this restriction with respect to
final prediction performance.

Furthermore, in the network construction phase, we
observe that many networks are constructed by weight-
equations being much similar, to which we could look into
constructing a generalized equation with tunable parame-
ters to construct network edge weights. Besides potentially
improving prediction this further work could make the
network construction phase more appealing and elegant.

Overall, of the 3 network embedding methods,
node2vec performed best. However, SDNE and DNGR
might not be performing to their full potential for multiple
reasons: 1) The SDNE-implementation was sent directly
by the authors having issues with non-working code frag-
ments and solutions inconsistent with their published
paper. Issues were corrected but at the risk of not recre-
ating the high performance model the authors intended,
and 2) SDNE and DNGR were both able to utilize the
performance of GPU’s but as we had come to realize, such
utilization of GPU’s suffers from instability and crashed
constantly due to poor GPU-memory handling. This made
it difficult to tune hyperparameters which may therefore
not be optimal.

We demonstrated the usefulness of the lasso regression
technique for feature selection. However, lasso inconsis-
tently selected different variables when data was given
as input in random order. Future work should involve
improving variable selection either by running lasso mul-
tiple times to statistically determine the best variables – or
trying other approaches.

8. Discussion and Conclusion

In this paper, we studied the employment of network em-
bedding methods with the purpose of performing link
prediction in bipartite networks. We took a general ap-
proach relying only on topological data, thereby making
our proposed framework applicable to various fields re-
gardless of what is being modeled.

We built a family of networks with a purpose of gener-
ating different representations of information contained in

16



a bipartite network on which we wish to predict links. We
carefully motivated and designed ten networks derived
from the bipartite input network. Then, we optimized a
mapping to compute optimal vector representations for
each vertex in each network belonging to our family. By
means of regression analysis, we selected a subset of net-
works that had maximal predictive power for link predic-
tion, to which we formed a ranking of vertex pairs being
proportional to the likelihood of having an existing edge
between them.

We performed experiments on three datasets consist-
ing of different types of modeled information: (implicit)
preferences, (explicit) opinions, and collaboration. We
demonstrated our framework’s efficiency over various
baseline models, including state-of-the-art matrix factoriza-
tion. Furthermore, by means of visualization, we argued
for the empiric usefulness of computed embeddings for
other unrelated machine learning tasks such as multilabel
classification.

In our experiments, we compared three recent network
embedding methods to which node2vec performed best.
Though, tuning of hyperparameters for the other models,
SDNE and DNGR, could be improved in future work to
provide a more ‘fair’ performance comparison.

In the LastFM and Newman datasets we demonstrated
significant improvements in predictive abilities on respec-
tively 18% and 96% (measured in NDCG-scores). For
the Movielens dataset, however, the Cofactor baseline
method were 8% better. For this latter dataset, we argued
that our framework might see improvements by prepro-
cessing input network information in a way more suitable
for our methods.
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