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Abstract:

Convolutional neural networks are the
state of the art in computer vision
tasks thanks to breakthrough architec-
ture innovations in the past few years
such as the “Inception” architecture.
Large datasets of annotated images,
necessary to train CNNs are scarce. 3D
models can be used to generate syn-
thetic datasets of rendered images in a
fast and automated way.
This thesis investigates how amplify-
ing a small dataset of natural images
with a much larger dataset of rendered
images improves the classification ac-
curacy of an Inception-V3 CNN re-
trained with transfer learning. Two
image datasets of Lego bricks are gen-
erated for the experiment: a large syn-
thetic dataset generated from a Lego
3D model and a small dataset of pho-
tos.
Results show that the amplified
dataset produces a worse classification
accuracy compared to no augmenta-
tion by 82% versus 68% after the aug-
mentation. This observation cannot be
extrapolated due to differences found
between the natural and synthetic data
that might have affected the recognis-
ably. Despite of that, synthetic datasets
still have a lot of potential in situations
where image datasets are difficult to
obtain. Further research should inves-
tigate how improvements in the ren-
dering process influence image recog-
nition.

http://www.en.cph.aau.dk/


The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.



Contents

1 Introduction 3
1.1 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Generating Synthetic Datasets 7
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Theoretical Framework for Synthetic Dataset Generation . . . . . . . 8

3 Image Classification with CNN and Transfer Learning 11
3.1 Introduction to CNN and Transfer Learning . . . . . . . . . . . . . . 11

3.1.1 Introduction to Neural Networks . . . . . . . . . . . . . . . . 11
3.1.2 Introduction to Convolutional Neural Networks . . . . . . . . 12
3.1.3 Introduction to Transfer Learning . . . . . . . . . . . . . . . . 13

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Implementation and Experiment 21
4.1 Generating the Lego dataset . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Software Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.3 The 3D Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.4 Synthetic Dataset Specifications . . . . . . . . . . . . . . . . . 24
4.1.5 Implementation in Blender . . . . . . . . . . . . . . . . . . . . 24
4.1.6 The Photographic Dataset . . . . . . . . . . . . . . . . . . . . . 26

4.2 Image Classification Experiment . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 Initial Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Determining the proportion of train and test images . . . . . 29
4.2.3 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.4 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.5 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



Contents 1

5 Results and Discussion 35
5.1 Comparison of Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Confusion Results in Case A . . . . . . . . . . . . . . . . . . . . . . . 37

6 Conclusion and Future Work 41

Bibliography 43

A Proof of Concept Dataset 47

B Python Generation Scripts and Lego Datasets 49

C Raw Test Data 51





Chapter 1

Introduction

Introduction to Domain and Concepts Artificial neural networks are a method
of machine learning. A Convolutional Neural Network (CNN) is a specific type
of artificial neural network where the activation of the neuron corresponds to a
convolution operation [18].

In the field of Computer vision, image classification1 is a computer vision task
to recognise the object in an image from a list of object classes [16]. Image classi-
fication can be implemented with CNN, in fact, CNNs are the state of the art in
many computer vision tasks including image classification [6, 23]. In the recent
years, CNNs have been subject to significant architectural improvements and task-
specific optimisations such as the GoogLeNet architecture or Inception-V3 [22, 23].
Figure 3.1.3 illustrates an example of image recognition and localisation using a
CNN.

A CNN needs to be trained prior to performing a task. Training a CNN for
image recognition requires a dataset of annotated images which needs to be large
to prevent overfitting. A common training dataset is ImageNet which has 12 mil-
lions of images with 1000 classes, ImageNet is also the dataset used in ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) which is a reference in image
recognition performance.

Transfer learning is a machine learning technique to apply knowledge learnt
for a specific task and apply it to a different but related task. Transfer learning
is used in image recognition tasks to reduce the required amount of training data
by leveraging previously trained CNNs. The optimal size of the training dataset
for CNN transfer learning depends on several factors, which are explained in sec-
tion 3.1.3 but for a modern CNN implementation such as Inception-V3, a good
approximation is one thousand images per class [15], whereas a regular training is
optimal with a dataset size in the order of millions.

1Also referred to as Image recognition, where image recognition is more generic and may include
other kinds of computer vision tasks such as detection [2] (RCNN).

3



4 Chapter 1. Introduction

Figure 1.1: Copied from [12]: “Recognition and localization results of our method for a Pascal VOC
test image. Output maps are shown for six object categories with the highest responses.”

Introduction to Dataset Availability Limitation There is a limited availability of
images datasets [12] and generating new ones is time consuming and can be eco-
nomically expensive. Ignoring for now synthetic datasets – which are explained in
chapter 2 – generating a dataset equals to photographing or scanning one or many
objects or object categories (e.g. cars) with a large number of repetitions, where
each repetition has some variation, for example different cars, from different an-
gles, or a character handwritten by different people. Another possibility is to reuse
existing images from, for example, an image search engine; in which case there
is less control over the quality, the representativeness, and the proper annotation
of the data without a thorough review. ImageNet uses flickr together with other
search engines.

Sometimes, even when allocating sufficient time and economic resources, it
may not be possible to generate a dataset because the object or objects to capture
no longer exist or are not available. For example, a running criminal (from whom
only a few or no images are known) will not willingly go to a photography studio
to take photos for a dataset of his face.
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Introduction to Solution, Value, and Application Examples Synthetic datasets
can be generated from 3D models by means of rendering several 2D images with
small variations of the 3D model in terms of, for example, position, lighting, back-
ground, among others. This method can drastically reduce the costs of generating
datasets and even offer a solution to situations where generating a dataset was
deemed impossible due to the lack of data.

In the same way, a small photographic dataset can be augmented with images
synthetically generated from 3D models of the objects in the dataset. This augmen-
tation, can provide the necessary volume of images to work with CNNs in optimal
conditions.

Creating 3D models requires skills (e.g. 3D artists) and equipment (such a 3D
scanners [4]) therefore it can be expensive and time consuming. Nevertheless, low-
cost techniques are becoming more common, for example using a kinect camera
[5].

After obtaining the 3D model, the rest of the process to generate a synthetic
dataset consists of rendering the 3D model into 2D images several times with small
variations from one rendered image to the next. This process can be automated
and the type and degree of variation can be configured. Re-usability is a very
important factor, which means that once effort has been put upon implementing
an automated synthetic dataset generation process, reusing it with another 3D
model comes at a very small effort.

These facts make the technique especially efficient at generating synthetic datasets
from 3D models that already exist. For example, a furniture company that has digi-
tised its catalogue into 3D models of the furniture and furniture parts, could imple-
ment machine learning applications at a relatively low cost. Potential applications
include “augmented reality interactive assembly guides”, “industrial assembly line
manufacturing”, “teaching musical instruments”, or “medical interventions”.

A major uncertainty regarding the use of synthetic datasets for training or ap-
plying transfer learning to a CNN is whether the CNN can recognise natural im-
ages from knowledge learnt from synthetic images.

Introduction to Research This thesis investigates how re-training a CNN with
a relatively small photographic dataset by means of transfer learning compares in
recognition accuracy to re-training the same CNN with the only difference of using
a dataset amplified with synthetically rendered images.

There are two main steps required to carry on this research. First, generating
a synthetic dataset for training, and a small photographic dataset for testing. The
second step consists of applying transfer learning to a CNN with the synthetic
dataset and perform an image classification test with the photographic dataset.
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1.1 Structure of the Thesis

The next two chapters “2 - Generating Synthetic Datasets” and “3 - Image Clas-
sification with CNN and Transfer Learning” explores these two main topics of
the thesis form a theoretical perspective. Especial emphasis is put on the transfer
learning technique.

Chapter “4 - Implementation and Experiment” explains in detail the imple-
mentation work, design and execution of the experiment. It is based on theory
explained in chapters 2 and 3. The chapter is divided into two sections: “4.1 -
Generating the Lego dataset” and “4.2 - Image Classification Experiment”.

More detailed, in “4.1 - Generating the Lego dataset” I present the framework
and the tool to generate synthetic datasets and its application to generate the Lego
dataset from a 3D model. “4.2 - Image Classification Experiment” goes through
from the initial steps of becoming acquainted with CNN and image recognition,
the implementation with the machine learning framework TensorFlow, and the
design of the experiment.

Chapter “5 - Results and Discussion” presents and analyses the results. And fi-
nally in chapter “6 - Conclusion and Future Work” I draw conclusions and suggest
areas for further research that could be done in this subject.



Chapter 2

Generating Synthetic Datasets

2.1 Related Work

As explained in chapter 1, a fundamental part of this thesis is to use a 3D model
to generate an annotated dataset of rendered 2D images similar to figure 2.1. This
section is a review of several academic research projects that generate synthetic
datasets for a similar machine learning purpose. The table in Figure 2.2 com-
pares the method and randomisation parameters used by other authors in similar
projects.

My project has many similarities with [15]. They generate a dataset of rendered
2D images with orientation labels. The original size of the dataset is 80K rendered
images which they further augmentate to 2 million images in order to retrain more
network layers. This information helped decide the dataset size for this project.
The goal of their experiment is to train a CNN model to estimate the orientation of
the object (in this case chairs).

I use some of the procedures described in [13] to develop my theoretical frame-
work for rendering the 2D images. They generate a dataset from rendered 3D
models of cars and planes randomising: position, pose, lighting, and background
(which they refer to as “real-world variation”). The dataset is used to compare the
classification performance of a simple V1-like image recognition model between
the synthetic dataset versus a “natural” dataset. In my case, the machine learning
unit (consisting of a CNN) is more sophisticated and should have a much better
prediction power.

[24] creates a dataset of synthetic face images by rendering 3D face models and
presents a Support Vector Machine (SVM) face component-based face recognition
system. The SVM is trained with the synthetic images and tested with real pho-
tographic images. The experiment in this thesis is similar in the sense that it also
uses synthetic images for training and photographic images for testing, but I use a
CNN instead of SVM, and the training dataset will be a synthetically augmented

7



8 Chapter 2. Generating Synthetic Datasets

dataset instead of a purely synthetic one.

Figure 2.1: Copied from [13]: “3-D models rendered onto three types of backgrounds—white noise,
phase-scrambled scene images (noise), and intact scene images.”

2.2 Theoretical Framework for Synthetic Dataset Genera-
tion

As mentioned in the introduction, the image dataset is generated to apply transfer
learning on a CNN model by re-training part of the neuron layers. I need to know
how many images are needed, which parameters should be randomised, and what
image resolution is best. This section explains the reasoning and references on
deciding how to generate such dataset.

Size of the Dataset From [15] we know that a dataset size of 80K images would
allow me to retrain 2 layers on the RCNN model from Caffe Model Zoo. A size of
2 Millions is enough to train the entire model from scratch.

[3] applies knowledge transfer on a LeNet5 CNN architecture [8]. They use 400
samples for each 20 classes for the initial training of the model. For the knowledge
transfer they ran 5 trials “with training sets of 1, 5, 10, 20 and 40 samples/class”.
The dataset in this case consists of 62 classes of handwritten characters correspond-
ing to ‘0’-’9’, ’A’-’Z’ and ’a’-’z’. They extract two subsets of 20: one for the initial
training and another for knowledge transfer.

The dataset sizes of these two references are very different. Looking at the
nature of the images, this thesis is more similar to [15] which uses images of chair in
different orientations. In addition [3] explains that they intentionally use a smaller
training dataset than usual. Therefore a size of 80K images is a good reference
value for my experiment.
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Randomisation parameters [13] defines real-world variation as variation in posi-
tion, pose (or orientation), lighting, and background. Based on that definition, my
dataset generation method will apply variation in those same attributes.

Image Resolution From the literature (summarised in Figure 3.13) the image res-
olution (in pixels) used to train the CNN, varies from 28x28 up to 299x299. Some
experiments measured how the classification performance falls with a reduction of
the initial resolution. [23], for instance, shows how a resolution of 299x299 obtains
a classification accuracy of 76,7% while 151x151 reaches 76,4% and 79x79 a 75,2%
using inception-v3 as the CNN model.

In this thesis research I will use an inception-like architecture, possibly “inception-
bn”, “googlenet” or “inception-v3”. We know from the literature that experiments
using these networks often choose a resolution of 224x224 or 299x299 for the case
of [23].

Considering all the above, the dataset will be generated on a resolution of
448x448. This value is larger that any of the values used in previous research
therefore I can scale the images down to match any those resolutions if needed.

Reference Dataset name Dataset type Image resolution Color Light randomisation Background Orientation randomisation Position randomisation Scale randomisation

[9]
NORB with 
transformations

Photographic on a 
studio

96x96 (originally 
640x480) No Yes

Highly cluttered 
images + 

distracting objects Yes Yes Yes

[13] Their own Synthetic 150x150 No Yes
Scene, noise or 

phase scrambled Yes Yes Yes

[15]
Their own based on 
ShapeNet 3D models

Synthetic + 
Natural scene 
images for testing Up to 255x255 No Yes

Synthetic clutter 
background Yes No No

Me Lego

Synthetic + 
fotographic for 
test 448x448 Yes Yes Natural scenes Yes Yes Yes

Figure 2.2: Dataset generation parameters comparison from references [9, 13, 15] and my own im-
plementation.





Chapter 3

Image Classification with CNN and
Transfer Learning

3.1 Introduction to CNN and Transfer Learning

As seen in chapter 1, image recognition can be implemented with CNNs. Thanks
to important architecture optimizations introduced in the last few years, CNNs are
today the state of the art in image classification tasks [22]. In this thesis I use a
CNN to perform the image classification task. The way I use the CNN is different
from a regular setting in two ways: 1) Transfer learning is used to partially retrain
the network1. 2) The training dataset consists of synthetic images.

3.1.1 Introduction to Neural Networks

An Artificial Neural Network (ANN) is typically defined by three types of param-
eters:

• The interconnection pattern between the different layers of neurons.

• The learning process for updating the weights of the interconnections.

• The activation function that converts a neuron’s weighted input to its output
activation.

Several connection patterns are possible but a neural network is commonly
represented as a forward fully connected network where each neuron in a layer
is connected to all the neurons in the following layer, as shown in figure 3.1. The
connections between neurons are weighted, the learning process of the network
modifies the weights by iteratively feeding the training data into the network. Each

1Along the thesis, I often refer to the CNN as network to avoid filling up the text with the acronym
CNN but unless otherwise specified, the network is always a convolutional, neural one.

11
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training operation consists of calculating the output error and slightly adjusting
the weights to reduce the error in the next iteration. Each element in the training
dataset can be used several times for training to achieve convergence. Finally,
the activation function2 is a predefined function such as the “hyperbolic tangent”,
“sigmoid” or the “The Rectified Linear Unit” (ReLU) [19, 11].

Figure 3.1: Copied from [19]: “A 3-layer neural network with three inputs, two hidden layers of
4 neurons each and one output layer. Notice that in both cases there are connections (synapses)
between neurons across layers, but not within a layer.”

3.1.2 Introduction to Convolutional Neural Networks

In image processing, a convolution operation consists of an input image processed
with a convolution matrix that generates an output image. In this operation, each
pixel of the input image plus its N surrounding pixels are multiplied with the con-
volution matrix to create a resulting convoluted image where result of the matrix
multiplication determines the value of one pixel in the output image; figures 3.2
and 3.3. The value of N depends on the size of the convolution matrix, for example
on 3x3 convolution N = 1 [17, 14].

Figure 3.2: Calculating one pixel in a convolutional operation

A convolutional neural network is a type of neural network where the activa-
tion function in some of the neuron layers is a convolution: the “convolutional
layers”. A convolutional layer has several convolution matrices (also known as
filters or kernels) [21]. Figure 3.4 is an example of a CNN layer.

2http://www.cse.unsw.edu.au/ billw/mldict.html (The Machine Learning Dictionary)

http://www.cse.unsw.edu.au/~billw/mldict.html
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Figure 3.3: Example of a convolution filter applied to an image

Figure 3.4: Copied from [21]: “First layer of a convolutional neural network with pooling. Units of
the same colour have tied weights and units of different colour represent different filter maps”

3.1.3 Introduction to Transfer Learning

Transfer learning is a method to extend the domain of knowledge of a neural
network. This means that a network can learn to recognise more classes [3] or it
can be re-purposed for a task similar to what it was originally trained for [15].
For example, a CNN able to recognise cats and dogs could be re-trained to extend
its knowledge and be able to recognise rabbits too. Or it could be re-trained to
distinguish between lions and wolfs instead, but reusing some of the knowledge
acquired in learning to recognise cats and dogs.

A prerequisite for transfer learning is a trained network. Applying transfer
learning equals to selecting one or more neuron layers and re-training their con-
nection weights with new data in the domain that the network should learn. The
rest of the layers remain unaltered. Transfer learning requires less data in the
training dataset compared to a regular training process.

Reasons for using transfer learning are primarily scarcity of data and time re-
quired to train a CNN from scratch [22].
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• Retraining an entire CNN from scratch requires a lot of data. ImageNet
database for instance has 1,2 Million images.

• A CNN is trained within a week using a few high end GPUs.

The choice of how many and which layers should be opened for re-training
depends in large measure to the size of the new dataset and how similar it is to
the original dataset [20]. Transfer learning in multiple layers with a relatively small
dataset yields a high risk of overfitting; size references in relation to the number
of layers can be found in Figure 3.13. The bottom layers3 of a CNN contain more
specific features of the data whereas the top layers are more generic, in practice
this mean that when the new dataset is similar to the original one, best results are
obtained re-training the bottom layers and locking the top ones since they represent
generic features that would still apply.

Examples from Literature

Transfer learning was used to fine tune the weight of four layers of the CNN “Caffe
Model Zoo”. The CNN had 5 conv layers and 3 FC layers plus one Softmax loss
layer and it was pre-trained with ImageNet [15]. 2 millions of images were used
for the fine tuning of the top four neuron layers. The network learnt to recognise
the orientation of chairs with 16-classes corresponding to to orientation ranges.
Synthetic images were used for training.

Another example, [3] compares how the number of retrained layers affects the
classification performance of CNN with transfer learning. They compare the accu-
racy with training sets of 1, 5, 10, 20 and 40 samples per class against retraining 1
to 5 layers (the network has 5 layers so 5 equals to training from scratch); figure 3.5
with accuracy results from that experiment. Their network has been pre-trained
to recognise handwritten digits and it learns new digits with transfer learning;
figure 3.6 shows the CNN architecture that they use.

3.2 Related Work

This section introduces breakthrough developments in CNNs; the table in Fig-
ure 3.13 compares the references reviewed for this thesis in terms of dataset fea-
tures and the machine learning parameters that were used. CNN breakthrough
developments in chronological order are:

3Some references in the literature present the network as a bottom-up flow in which case top
layers correspond to bottom layers from this thesis and vice versa.
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Figure 3.5: Copied from [3, p. 107]: “Comparison of learning curves showing accuracy vs. number
of retained levels for various numbers of samples per class in the training set. Curves show, from
top to bottom, results for 40, 20, 10, 5 and 1 sample per class. Each point represents the average of 5
trials on a testing set with 1,000 character samples.”

Figure 3.6: Copied from [3, p. 107]: “Architecture of our net, which is a slightly modified version of
LeNet5.”
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1. LeNet-5 1989 [7]

2. NIN 2013 [10]

3. GoogLeNet 2014 [22]

4. Inception-V3 2015 [23]

LeNet 5 Significant architecture developments in chronological order start with
LeNet-5 (1989) that introduces a standard structure of CNNs: “stacked convolu-
tional layers (optionally followed by contrast normalisation and max-pooling) are
followed by one or more fully-connected layers” [7].

Network In Network Network in Network architecture (2013). Within the do-
main of Convolutional Neural Networks (CNN), Network In Network (NIN) con-
sists of “micro neural networks with more complex structures to abstract the data
within the receptive field”. NIN architecture replaces CNN convolutional filters
with micro neural networks, which are a “more potent nonlinear function approx-
imator that can enhance the abstraction ability of the local model”; figure 3.7.

Figure 3.7: Copied from [10, p. 2]: “Comparison of linear convolution layer and mlpconv layer. The
linear convolution layer includes a linear filter while the mlpconv layer includes a micro network.
Both layers map the local receptive field to a confidence value of the latent concept.”

[10] presents a NIN structure consisting of a stack of mlpconv layers, on top of
which lie the global average pooling and the objective cost layer. Sub-sampling lay-
ers can be added in between the mlpconv layers as in CNN and maxout networks.
Mlpconv layers model the local patches better, and global average pooling acts as a
structural regulariser that prevents overfitting globally. NIN “demonstrated state-
of-the-art performance on CIFAR-10, CIFAR-100 and SVHN datasets” at the time.
Figure 3.8 is a representation of the overall structure of NIN.

GoogLeNet (Inception Architecture) [22] Introduces “a new level of organisation
in the form of the Inception module” (2014), an evolution of the NIN architecture.
At the same time they increased the depth of the network. Optimisations in the
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Figure 3.8: Copied from [10, p. 4]: “The overall structure of Network In Network. In this paper the
NINs include the stacking of three mlpconv layers and one global average pooling layer.”

network compensate the computational cost of a deeper network which allowed
for a “significant quality gain at a modest increase of computational requirements”.
GoogLeNet is a particular implementation of the Inception architecture that was
submitted and won ILSVRC 2014 image recognition competition.

The Inception architecture applies the principle of NIN: in [22] implementa-
tion NIN can be viewed as additional 1x1 convolutional layers followed typically
by the rectified linear activation. The “1x1 convolutions have dual purpose: most
critically, they are used mainly as dimension reduction modules to remove com-
putational bottlenecks, that would otherwise limit the size of our networks” [22].
Figure 3.9 represents a convolutional layer with the additional 1x1 covolutions

Figure 3.9: Copied from [22, p. 5]: “Inception module with dimension reductions.”

They also reflect on the importance of additional 1x1 convolutional layers to
obtain affordable computational costs: 1x1 convolutions perform a reduction in
the filter dimension space prior to the expansive 3x3 or 5x5 convolutions. For
example, consider having an input of size (F, W, H) feeded to the 1x1 convolution
(C). F is the number of convolutional filters and W and H the spatial dimensions;
C has F1 filters. The output size would be (F1, W, H) [1].
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Inception-V3 The Inception architecture is hard to adapt to new use cases due
to its complexity. Nonetheless, [23] unveils some design principles to guide the
modification of Inception. They present Inception-V3 (2015), a continuation of the
Inception family with some design improvements, better classification results and
the ability to perform well with low-resolution images; figure 3.10 compares the
recognition performance with the image resolution. I use Inception-V3 for the
experiment presented in this report.

Figure 3.10: Copied from [23, p. 8]: “Comparison of recognition performance when the size of the
receptive field varies, but the computational cost is constant.”

An innovation that reduces the computational cost of Inception-V3 is the fac-
torisation of convolutions with Large Filter Size: they replace 3x3 convolution with
3x1 convolution followed by a 1x3 convolution. This is 33% less expensive to com-
pute; see figure 3.11 for an example of a 3x3 convolution factorisation.

Other architecture improvements are the use of “Auxiliary Classifiers” that “Im-
prove the convergence during training by combating the vanishing gradient prob-
lem in very deep networks”, “Efficient Grid Size Reduction” and “Label smooth-
ing”. Inception-V3 has better than state-of-the-art performance on the ILSVRC
2012 classification benchmark; figure 3.12.
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Figure 3.11: Copied from [23, p. 4]: “Mini-network replacing the 3x3 convolutions. The lower layer
of this network consists of a 3x1 convolution with 3 output units.”

Figure 3.12: Copied from [23, p. 4]: “Single-model, multi-crop experimental results comparing
the cumulative effects on the various contributing factors. We compare our numbers with the best
published single-model inference results on the ILSVRC 2012 classification benchmark.”
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Chapter 4

Implementation and Experiment

This chapter explains the implementation work and the execution of image classi-
fication experiment. It is divided in two sections, first the method for the synthetic
image dataset generation. Second the experimental work using that image dataset.

4.1 Generating the Lego dataset

I generate the synthetic image dataset based on a 3D model of a Lego fire truck.
This method is based on the literature research from the section “2.2 - Theoretical
Framework for Synthetic Dataset Generation”.

The dataset and the Blender project to generate it are available1 online on
GitHub and “blender.stackexchange” community for other researchers who want
to reuse the images for further experimentation or use the Blender generation script
to create new datasets.

4.1.1 Software Tools

I compared 3D modeling and rendering software: Blender, Autodesk Maya and
POV-Ray and ended deciding for Blender. POV-Ray was rejected for having worse
rendering capabilities and because it uses a descriptive language instead of pro-
gramming. The decision between Maya and Blender was made in favour of Blender
based on having a popular online community where I would be able to obtain sup-
port. Blender includes an API in python programming language and a scripting
mode which allows me to automate the rendering process with randomised pa-
rameters with a simple script that can be reused with different 3D models.

1The link to GitHub: https://github.com/ernestbofill/lego-image-dataset and to the Blender
community: http://blend-exchange.giantcowfilms.com/b/2204/
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4.1.2 Proof of Concept

In order to develop, test and tune the Blender generation script, I made several
attempts to generate very small datasets. The proof of concept is a set of a 100
rendered images with automated changes in orientation and light (Appendix A
with those 100 images). It uses a sample 3D model of a train from a website of free
3D models2. Figure 4.1 shows some rendered images from the proof of concept.

Figure 4.1: Images from proof of concept dataset with random lighting and orientation.

4.1.3 The 3D Model

The 3D model is a Lego “Fire Ladder Truck” downloaded from a website with free
Lego 3D models3. I also bought the physical product to create the photographic
dataset. The reason for choosing Lego is to recreate an assembly situation where
the image recognition engine would assist the building process (as this was a sug-
gested use case in the Introduction). Figures 4.2 and 4.3 show an image of the
Lego product and a pre-selection of bricks (later referred to as parts or classes) for
the dataset.

2http://www.3dxtras.com/ (Download page of the train 3D model
3http://www.eurobricks.com/ (Download page of the Lego 3D model)

http://www.3dxtras.com/content.php?page=3dmodels_detail&prodid=8025
http://www.eurobricks.com/forum/index.php?/forums/topic/41226-key-topic-official-lego-sets-made-in-ldd/&page=186#comment-2621997
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10 bricks are selected for the dataset from the complete product. To export and
use the 3D model in Blender I used the software tools “Lego Digital Designer” and
“LegoDraw extention for Blender”. The 3D model is a close representation of the
real bricks but qualities such as colour or behaviour under certain light condition
vary slightly. It is uncertain how these variations will influence the capacity of
the CNN to recognise photographic images from knowledge learnt with synthetic
images.

Figure 4.2: The selected Lego product.

Figure 4.3: Some preselected Lego bricks from the 3D model laid out in the “LegoDraw” 3D model-
ing software. Ten of these were finally used for the dataset.
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4.1.4 Synthetic Dataset Specifications

This section exposes the attributes of the synthetic dataset (specifications) in terms
of name, size of the dataset, number of classes and variation between rendered
images. The decision for these attributes is based on related work in the same
research field, for example I incorporate the definition of “real world variation”
from [13] and chose the size of the dataset from [15]. These are my synthetic
dataset specifications:

• Name of the dataset: “Lego-10-6k”

• Method: Rendered images from a 3D model.

• Size: 60K images.

• Classes: 10 classes where each class is a different Lego brick.

• Light randomisation: The direction and intensity of light is randomised be-
tween a minimum and maximum intensity. There is a base lighting in all
directions. Randomised lights are applied on top of that base light.

• Orientation randomisation: The object is randomly rotated up to 360 degrees
in any direction.

• Position randomisation: The object varies the position slightly by randomly
moving up, down, left, right, forward and backward.

• Distance randomisation: The object is slightly scaled up or down creating the
effect of varying distance.

4.1.5 Implementation in Blender

The dataset generation implementation in Blender approximates real world vari-
ation in an automated manner using Blender’s scripting functionality. This auto-
mated variation from one rendered image to the next makes it possible to generate
a large dataset of synthetic images within an affordable time. It also meets the cri-
teria from the dataset specifications in the previous section 4.1.4. This implemen-
tation results in a Dataset Generation script in Python which is published together
with the dataset and included in Appendix B.

Randomising Light 6 light sources are positioned equidistantly around the ob-
ject: front, back, right, left, above and below. These sources are Blender’s light
emitting panels. Initially each of these panels has an emission strength of 2. Fig-
ure 4.4 shows the light sources positioned around the object in Blender. Light
randomisation is achieved in the following way:
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• For each rendering iteration either 1 or 2 of the 6 light sources are selected
randomly.

• The emission strength value of the selected lights is set to a random value
ranging from a minimum of 1 up to 20 with a step of 1.

• The rest of the lights are left with an emission strength of 2 to create a basic
lighting and avoid regions with complete absence of light.

• The camera rotates around the object in any direction up to 360 degrees with
a step of 1 degree. This way the lights can illuminate from any direction in
relation to the camera (although they preserve the distance from each other
at all times).

• Each rendered image has an almost unique lighting setting.

This setup is intended to replicate a real situation where there is a general
strong light reflected in all directions: which would make objects have at least a
little bit of light in all their surfaces. This could emulate a daylight situation or
an artificially well lit room. In addition there would be one or two sources of
directional light that will disturb an otherwise smooth lighting. These could be the
sun or other strong light sources.

This lighting setup is imperfect: it only covers a limited number of scenarios
and it is not an accurate representation of the real world because it lacks sur-
faces for the light sources to reflect and the object does not cast shadows. It is
uncertain how this imperfection will impact the CNN training and classification
performance.

Figure 4.4: Blender project setup with the Lego brick, the light emitting panels and the camera; all
prepared for rendering
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Randomising Orientation, Position and Scale The object is randomly rotated
up to 360 degrees in any direction with a step of 1 degree. It is also randomly
scaled a maximum of +/- 20% to recreate the perception of different distances.
In addition, the object is not completely centered; it is shifted from the center
randomly according to a normal distribution with mean = 0 (the center of the
image) and sigma = 0, 7. With this I want to recreate a natural situation where a
hypothetical photographer aims at having the object in the middle of the picture
but naturally deviates slightly. Figure 4.5 shows a sample of two rendered images
from the same object with observable differences in orientation, position and scale.

Figure 4.5: Comparison of two rendered images with different orientation, position, scale and light-
ing.

Randomizing background There are 6 background images with photos of na-
ture; Figure 4.6. Unlike the other parameters, the number of backgrounds settings
is limited to 6 options instead of thousands. The reason is that it is very time
consuming with this process to have several backgrounds, therefore variation is
compromised due to time constraints.

Each background is used the same number of times and it is uncertain how the
repetition of the same backgrounds will impact the CNN training and classification
performance.

4.1.6 The Photographic Dataset

The photographic dataset is a collection of photographic images of the same Lego
bricks. It is fundamental for the image classification experiment (Section 4.2) as it
will be used to train the network – amplified with synthetic images – and also used
as the test dataset. These are the specifications of the photographic dataset in in
terms of number of images, background, light conditions, position and orientation:

• Name of the dataset: “Lego-10-photo-60”.

• Method: photos taken with an iPhone 6 camera.
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Figure 4.6: The same object rendered on top of each one of the 6 different background images used
for the synthetic dataset

• Size: 600 images.

• Classes: 10 classes where each class is a different Lego brick.

• Location: 10 different indoors placements; Figure 4.7.

• Light randomisation: 10 corresponding to 10 locations where photos are
taken. In addition each photo varies slightly despite being in the same lo-
cation.

• Orientation randomisation: 6 orientations for each place: “front”, “top”,
“back”, both “sides” and “bottom”. The orientation is never straight but
a little bit from the side therefore showing multiple faces of the object.

• Position and distance randomisation: The object is quite centred and the shot
is close so that object takes most of the camera visible range (similar to the
synthetic images).

4.2 Image Classification Experiment

This section explains the image classification experiment and the process to prepare
and execute it. As it was explained in the Introduction, I want to find out how
amplifying the train dataset with the artificially rendered images compares with
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Figure 4.7: Samples from the photographic dataset, each one taken on a different location

a much smaller training dataset of photographic images in terms of recognition
accuracy.

4.2.1 Initial Steps

I did some preliminary experiments in order test my machine learning environ-
ment. Next I will summarise these initial attempts and how they led to a working
configuration.

Initially, I was using an AAU server with mxnet4 deep learning framework and
Jupyter’s python interface. I followed an example to train a CNN with the mnist
dataset. Then I modified the parameters to use a subset of Lego dataset with two
classes instead of mnist but the training accuracy was around 50% which indicated
there was an error. This problem added to some other difficulties that I was having
to implement a proper training configuration with mxnet made me decide to try a
different framework.

At this point I started using TensorFlow as the machine learning framework
running on my private computer (hardware and system details in Section 4.2.4).
I ran some preliminary experiments based on a tutorial by Google5. One of
these preliminary experiments consisted on applying transfer learning on the Lego
dataset reduced to only two classes and 1800 instances per class. Then, a prediction
test with 10 photos of the Lego bricks on the re-trained network.

The results were promising. Trainings experiments reached 96% and 98,4%
validation accuracy respectively. The prediction results were not as good, it classi-
fied 9/10 images correctly where 2 of the correct classifications had a low margin;
Figure 4.8, Figure 4.9 and Figure 4.10

4https://github.com/dmlc/mxnet
5https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/

https://github.com/dmlc/mxnet
https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/
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Figure 4.8: Preliminary classification test with 10 images and 2 classes, showing the predicted prob-
ability for each combination of image and class. Image m-n where m is the class and n the image
number

Figure 4.9: Confusion matrix of the preliminary classification test with 10 images and 2 classes

4.2.2 Determining the proportion of train and test images

After that initial experiment from the previous Section 4.2.1, I wanted to test my
machine learning setup and the Lego dataset more before performing the final
experiments. The main objective was to determine a good proportion of train
and test images within the very limited amount of photographs (60 per class).
These results would help optimise the test cases A, B and C presented in the next
Section 4.2.3 cases later in the report. For now, Figure 4.11 shows the compared
configurations and it’s results.

4.2.3 Test Cases

Three test cases will be analysed and compared. The tests are designed to show
the difference between training the network with a small photographic dataset,
a dataset augmented with synthetic images and a dataset composed of synthetic
images only. Figure 4.12 shows the distribution of photographic and synthetic data
for each test case; the train data is different in every case but the test dataset is the
same. The proportion of train and test data is based on the findings from the
preliminary research explained in the previous Section 4.2.2.
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Figure 4.10: Test images for the preliminary classification test with 10 images and 2 classes

Figure 4.11: Different proportions of train and test images and the classification accuracy calculated
as the averaged probability of the correct classification
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Train dataset
Case A

Photographic images per class: 30
Synthetic images per class: 0

Case B
Photographic images per class: 30
Synthetic images per class: 1800

Case C
Photographic images per class: 0
Synthetic images per class: 5400

Test dataset
Cases A, B, C

Photographic images per class: 30 (Different ones than the training dataset,
divided randomly for train and test)

Train:

Test:

Case A Case B Case C

Case A Case B Case C

Legend:

Lego synthetic 
images

Lego photos

Figure 4.12: The dataset distribution of synthetic and photographic images for the test cases

4.2.4 Tools

The experiment runs on a Linux virtual machine by the vitalisation software Vir-
tualBox. This virtual machine has allocated 5GB of RAM and 4 CPU cores of type
“Intel Core i7” running at 2,4GHz. The machine learning framework is Tensor-
Flow6 by Google using Python as the programming language. The source CNN is
Inception-V3 (see Section 3.2) trained with ImageNet [16]. The training dataset is
the Lego synthetic dataset with 10 classes and the test dataset is the Lego photo-
graphic dataset with the same 10 classes.

4.2.5 Transfer Learning

The transfer learning configuration for this experiment keeps the weights of all
layers except the second last one (“linear”); Figure 4.13. This layer is replaced with

6https://www.tensorflow.org/

https://www.tensorflow.org/


32 Chapter 4. Implementation and Experiment

a “softmax” layer with the same input size. The bottom layers have to do with more
concrete features than the top ones, therefore one can assume that weights in the
top layers that have been trained with different images will also work on the new
set. The retraining of this new layer will estimate 20480 parameters corresponding
to weights and biases.

The reason to train just one layer instead of 2 or more is the limited number
of training images. According to [15] 80k training images are needed to retrain 2
layers in a similar CNN model. In my experiment, test case A has only 300 images,
B has 18.300 and C 54000. Possibly C would benefit from training a second layer.

Figure 4.13: Copied from [23]: The Inception-V3 layers. Highlighted is the layer replaced and
retrained in my transfer learning implementation

4.2.6 Analysis

I want to compare the accuracy with the different training sets in cases A, B and
C. The accuracy is determined by the sum of correctly classified images divided
by the total tested images: acc = correct/total. The best performing case will be
analysed further to understand how factors such as shape, colour or transparency
have an impact on the recognisably of the images.

The analysis is performed on Matlab and the raw data can be found in Ap-
pendix C. These are the analysis steps:

1. Evaluate the accuracy of test case separately with the formula acc = correct/total.
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2. Continue with the best performing case which is analysed further.

3. Look at the confusion matrix and take the top 4 most confused classes.

4. A qualitative analysis of the most confused classes considering factors such
as colour, shape or transparency and whether they are likely to be the reason
for a higher confusion.





Chapter 5

Results and Discussion

5.1 Comparison of Test Cases

The accuracy for case A is 82%, case B is 68% and case C 60,67%; Figure 5.1. Case
A, where the network was trained with 300 photographic images yields the best
performance despite the relatively small amount of training data. In case B, with
18K synthetic images added to the 300 photos, the performance drops 14, 00pp
(percentage points). Finally, in Case C, trained exclusively with a much larger
number of synthetic images, has the worst result with 7, 33pp less than case B.

Figure 5.1: Test results.

These results suggest that the CNN is not as good at recognising the object
from knowledge learnt from synthetic representations compared to learning from
photographic data. In case B, despite the photos being part of the training dataset,
a much larger number of synthetic images would dilute the effect of the photos
instead of adding value to the training, but it still performs better than C with no
photos at all.

Another plausible explanation for these results are the differences in the ran-
domisation of the background, lighting, orientation, position and distance between
the photos and rendered images; Figure 5.2. The synthetic images have a per-
fect randomisation of orientation whereas the photos have less variation. Position
and distance variations appear to be similar in the two datasets. In the rendering
process, lights are randomised in terms of intensity and direction, nevertheless a
qualitative difference compared to a real world image is noticeable: primarily, the
reflections on the object tend to be more white compared to the photos and there

35
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is a lack of walls and other elements around the object for the light to bounce back
(which is partially compensated with the inclusion of several light sources around
the object). In addition, the synthetic images do not cast any shadows. On the other
hand the photos have 10 light conditions with small variations in each single take.
The 10 light conditions correspond to the 10 different locations chosen to take the
photographs, in some there is only natural light while in others artificial light from
a bulb is dominant. Finally, comparing the backgrounds: in the synthetic dataset
there are 6 random backgrounds placed behind the image, those backgrounds are
images of landscapes and they have no connection with the object; it is as though
the object was floating in the middle of those landscapes. In the photographic
dataset there are 10 different backgrounds corresponding to the 10 places where
the photos were taken, most of them are more uniform compared to the synthetic
dataset and there is always a connection with the object since the object rests on
top the surface that is on the background.

Figure 5.2: Differences in the randomisation parameters between the synthetic dataset and the pho-
tographic dataset.

Based on those differences between the synthetic dataset and the photographic
dataset, it could be that the CNN can actually recognise the features of the object,
but is confused with variations in the context. Backgrounds could be particularly
responsible for this problem since the variation is smaller than the other parameters
(6 variations for the synthetic images and 10 for the photos). Because of that, the
network might have learnt features from the background images.

A final consideration, the test accuracy in case C is still 6 times better than that
of a random classifier (accuracy: 10%) and may be a suitable image recognition
method in absence of photos or more realistic representations to train the CNN.
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Figure 5.3: Comparison of backgrounds. On top, the 6 backgrounds found in the synthetic dataset.
Below, a sample of 6 backgrounds found in the photographic dataset (the photographic dataset has
10 backgrounds in total)

5.2 Confusion Results in Case A

This section takes a closer look at the best performing experiment, which is Case A.
I want to analyse which classes are confused with what others and try to establish
patterns.

Figure 5.4: Confusion Matrix for Case A

There are 2 clear patterns based on the confusion matrix; Figure 5.4

• Confusion between Lego brick No. 4 and Lego brick No. 5 (classes 4 and 5)

• Confusion between Lego brick No. 2 and Lego brick No. 8 (classes 2 and 8)

The confusion between classes 4 and 5 is likely to be the result of strong sim-
ilarities in shape and colour; Figure 5.5. The only difference between the two is
that class 4 is 1/3 longer than 5 and they are by far the most confused Lego bricks
with a 46% of wrongly classified photos in class 4 and a 57% miss-classification
in class 5. When observed from a perfectly frontal perspective the two objects are
completely indistinguishable, nevertheless the CNN also confused many instances
where the shape of the object could be clearly recognised.

Those images confused with class 8 tend have similar backgrounds with abun-
dant elements in it. It it possible that the background is a major factor in this
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Figure 5.5: Examples of confusion between classes 4 and 5. On top, instances of 4 classified as 5.
Below, instances of 5 classified as 4.

Figure 5.6: Examples of images miss-classified as class 2 and a true class 2 highlighted on the top
left corner.

confusion, but it is unclear how; Figure 5.7. Finally for the images confused with
class 2, in most cases it is a class 8 miss-classified as 2. Class 8 has the same colour
as 2 and from certain perspectives a similar shape too; Figure 5.6. The incidence of
images confused with class 2 is 1,85% (5 out of 270) and for class 8 is 2,96% (8 out
of 270).
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Figure 5.7: Examples of images miss-classified as class 8 and a true class 8 highlighted on the top
left corner.
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Conclusion and Future Work

This thesis aims to find out whether re-training a CNN with a small dataset that has
been synthetically augmented – thus becoming a much larger dataset – increases
the classification performance compared to no augmentation. This performance
has been measured in terms of classification accuracy. The results of the experiment
are contrary to that hypothesis since the synthetically augmented dataset registered
a worse classification performance.

This observation cannot be extrapolated because it could be the product of
specific conditions in the experiment. For the CNN re-trained with a large syn-
thetic dataset to outperform one re-trained with a small number of photographs
the synthetic dataset should have a higher level of realism in terms of, e.g., light,
colour or background. It is yet to determine which features have more influence
in the results but a more realistic representation of the object could improve the
performance of the synthetic dataset.

The preparation of this experiment required the generation of a vast amount
of annotated synthetic images. Rendering synthetic images proved to be fast, au-
tomatable, versatile and adjustable. In practice this means that a high-end com-
puter could render ∼100.000 images within a week without human intervention.
Because of that, this dataset generation technique can be very useful either to am-
plify existing data or to create new datasets. ‘

In future work, it would be useful to determine a threshold where the num-
ber of photographic images is so small that amplifying with the synthetic data
improves the classification accuracy. In the same direction, experimenting with re-
training a second or even more layers of the network and whether that improves
the result. A CNN should perform better retraining more than one layer, but as
more layers are opened for transfer learning, more data is needed to achieve opti-
mal results.

Another element for further research is the influence of the different features
that make the synthetic images realistic. Some features could be more important

41
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than others, and more effort should be put upon them. For example, in this re-
search I suspect the diversity of background images is too small and it might have
had a negative impact on performance. Additional experiments with a dataset
modified to include more background settings would clarify the relevance of this
matter and offer guidance on generating image datasets in the future.

Assuming that both the rendering realism and the CNN transfer learning pro-
cess can be optimised: the augmentation of training datasets by synthetically ren-
dered images can provide a cheap and effective way to introduce machine learning
in several domains, especially when 3D models are already available. This could be
the case of for example, vehicles, furniture, tools, electronics or architecture among
many others.
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Appendix A

Proof of Concept Dataset

Proof of concept synthetic dataset of a 100 images:
https://www.dropbox.com/s/5zffzh6m60q3dw0/sample-dataset.zip
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Appendix B

Python Generation Scripts and Lego
Datasets

The python generation scripts to generate a synthetic image dataset in Blender and
the Lego datasets:

https://github.com/ernestbofill/lego-image-dataset
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Appendix C

Raw Test Data

The test results as a csv files:
https://www.dropbox.com/s/zvde03p3502yowj/raw_data.zip
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