
Master Thesis
- Implementation of Stereo Vision Engine -

Project Report

Group 1072

Aalborg University
Electronics and IT



Copyright c© Aalborg University 2016



Electronics and IT
Aalborg University

http://www.aau.dk

Title:
Implementation of Stereo Vision Engine

Theme:
Master Thesis in Signal Processing and
Computing

Project Period:
Spring Semester 2016

Project Group:
1072

Participant(s):
Tomas Brandt Trillingsgaard

Supervisor(s):
Peter Koch

Copies: 1

Page Numbers: 78

Date of Completion:
December 16, 2016

Abstract:

In this report, a fast high-precision stereo
vision engine for implementation on an
FPGA is studied. Different aspects of
stereo vision and obstacles within this
area are explored. Two stereo vision al-
gorithms: Efficient Edge Preserving Stereo
Matching and Fast Cost-Volume Matching
have been studied and implemented in
Python. A discussion concerning the al-
gorithms computational complexity and
stereo matching quality results in the
choice of Efficient Edge Preserving Stereo
Matching for further implementation. A fi-
nal implementation was not achieved but
the challenges of implementing an expo-
nential function and the challenges with
memory usage with large images were
studied and solutions were found.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with

the author.

http://www.aau.dk




Contents

Preface vii

1 Introduction 1
1.1 Introduction to stereo vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 HSA Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Delimitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Report Structure and Design Process . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Application Analysis 7
2.1 The Basic Principle of Stereo Vision . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Epipolar Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Color space and grayscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Disparity precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Occlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Occlusions filling result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Wrap-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Design and test specification 19
3.1 Requirement specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Test specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Algorithm design 23
4.1 Efficient Edge Preserving Stereo Matching (EEPSM): . . . . . . . . . . . . . . 24
4.2 Fast Cost-Volume Matching (FCV): . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Simulation and comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Theoretical Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Choosing an algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 Wrap-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



vi Contents

5 Platform analysis 39
5.1 Platform trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Zynq Z-7020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Hardware utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Wrap-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Design methodology 45
6.1 Wrap-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Architecture design 49
7.1 Parallelism Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2 Allocation and Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.3 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.4 Implementation challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.5 Wrap-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Acceptance test 65

9 Conclusion 67

Bibliography 71

A Allocation test 73
A.1 General procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2 Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.3 Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.4 Adder/Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.5 Multiplier - LUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.6 Multiplier - DSP48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.7 Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B Middlebury data set 77



Preface

This thesis has been written by Tomas B. Trillingsgaard, who is a student at the Signal
Processing and Computing Master’s Program, Aalborg University. The thesis serves as
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tables can be also be found in the back of the thesis on 72. Unless otherwise described,
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Formulas and calculations are also numbered according to their location and referenced
in the same way as figures and tables.

Aalborg University, December 16, 2016

Tomas Brandt Trillingsgaard
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vii





Chapter 1

Introduction

In this chapter, the project is introduced and motivated. Furthermore, a brief description is
presented for stereo vision and the use for it at HSA Systems, the company with whom the
work has been conducted. Lastly, this chapter also describes a delimitation of the project
and report.

1.1 Introduction to stereo vision

(a) Wheatstones stereoscope seen from the
front

(b) Wheatstones stereoscope seen from
above

Figure 1.1: Illustration of Wheatstone’s stereoscope from [23]

In 280 A.D the greek mathematician Euclid discovered that the perception of depth is
caused by each eye receiving a dissimilar image of the same object. Throughout history,
different people have been working on this concept. In 1833 Sir Charles Wheatstone began
to mimic depth perception and forced the perception of depth by developing the stere-
oscope and his work on this is discussed in [23]. Figure 1.1 shows some illustrations
of Wheatstones stereoscope. This stereoscope functions by using either two drawings or
photographs where the point of view is displaced horizontally by a short distance. These

1
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images are placed on the two surfaces marked E’ and E on figure 1.1a (p. 1). A’ and A on
the same figure is two mirrors angled at 45◦ which reflect the images to the viewer. When
the viewer move close enough to the mirrors A’ and A then the images will be isolated to
each eye. This mimics the normal human depth perception and should trigger the brain
to accept the images as a single 3D image. [22]

Around 1970, computer vision began appearing and a significant part of this research area
is focused on stereo vision: the measurement of depth mimicking the human vision using
two cameras [21]. The ability to measure depth enables a computer to distinguish between
objects and hence to better interact with and react to the world. This project adds to this
research by discussing various aspects of obtaining real time execution without neglecting
the quality of the stereo matching.

1.2 HSA Systems

(a) PV650C[11] (b) Pharma lay-flat media [11]

Figure 1.2: Some products from HSA Systems

HSA Systems is a danish company with an R&D department in Aalborg, which develops
and manufactures high-resolution inkjet printer systems and a range of other products.
Figure 1.2 shows two examples of these printer systems. These systems print labels, bar
codes etc. on packages and verify the quality print.

HSA Systems wishes to track packages going through their printer systems. A strategi-
cally placed stereo vision camera will provide knowledge of how many and where these
packages are in the printer system. In case of errors and the like, the printer system is then
able to notice when the conveyor belt in their system is empty and ready to reset. This is
a significant improvement to the current solution at HSA Systems where no knowledge of
locations of packages is available except for a single camera scanning labels. Currently in
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case of errors the conveyor belt is set to run for a set time until it is assumed that the belt
is empty.

Currently some products exist which can produce real time depth images such as the Asus
Xtion PRO [3] but these 3D sensors have a low depth resolution due to using small image
resolution i.e. VGA (640× 480).

For detecting packages a high depth precision is not needed since packages normally are
larger boxes (above 2× 2× 2 cm) but HSA Systems would like to develop a stereo vision
camera which also can be used for future assignments where depth precision requirement
is higher. Hence HSA Systems have given the requirement for the stereo vision system to
have very precise depth measurements of ≤5 mm at distances between 0.5-1.5 m .

1.3 Motivation

The area of stereo vision has been researched thoroughly and accurate algorithms have
been developed but most algorithms are very computationally complex. Some real time
algorithms have been developed but these focus on low resolution images. As described
HSA Systems wishes for a stereo vision system which can execute in real-time (10 fps) for
current assignments while also having a high depth precision for the future assignments.

1.4 Problem description

As mentioned earlier HSA Systems wishes for stereo vision system which can track pack-
ages going through their printing systems and for future assignments. This project will
attempt to develop a stereo vision system which can execute real time and have a high
depth precision. This system should be implemented on an FPGA.
It is therefore essential that the following questions are asked, and in part we will try to
answer them:

• What obstacles occur within stereo vision?

• Which stereo vision algorithms exist, both being computationally efficient and at the
same time providing good vision results?

• How can an architecture be designed and optimized for executing a stereo vision
algorithm?

1.5 Delimitation

This project is mainly concerned with the design and implementation of a hardware ar-
chitecture on an FPGA. Therefore, we will not focus on developing a new stereo vision
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algorithm. Limitations and issues with stereo vision algorithms will be analyzed but a
simpler solution will be used for most obstacles.

1.6 Report Structure and Design Process

The A3 model is a basic design model originally suggested by teaching staff at AAU and
is illustrated on figure 1.3. The model consists of three design domains which can be
explored and the report is structured after this model. These domains are Application,
Algorithm, and Architecture.

Figure 1.3: A3 model

The search for a solution starts in the application domain where the problem, the applica-
tion and the specifications are explored. Chapter 2 (p. 7): Application Analysis will explore
the Application domain and the resulting specification for the application are presented in
chapter 3 (p. 19). The problem and application - which has been specified by HSA Systems
- is specified in this chapter and will be explored further in chapter 2 (p. 7).

As represented by the solid arrows on figure 1.3, there are several possible algorithms that
may match a specific application and specification. Similarly, several architectures may be
used to implement a given algorithm. Exploration of the algorithm is described in chap-
ter 4 (p. 23) .

Chapter 6 (p. 45) will describe a methodology to traverse from an algorithm in the algo-
rithm domain to some hardware architecture in the architecture domain.

Notice the dashed arrows in figure 1.3. These arrows show that when exploring one
domain new information might arise which calls for changes in a former domain, and
requiring a new iteration through the domains. This basically illustrates that the design
process is iterative and thus typically requires several synthesis/evaluation loops before a
satisfactory solution is found. In this context "satisfactory" means either compliance with
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the specification or "best possible".

Chapter 8 (p. 65) specifies how the testing is done to determine whether the found solution
complies with the requirements in chapter 3 (p. 19). Chapter 9 (p. 67) concludes the project
and its findings.





Chapter 2

Application Analysis

This chapter will explore the application domain in the A3 model described in section 1.6
(p. 4) and it is the domain marked on figure 2.1. First, the basic principles of stereo vision
will be described and then other aspects such as color versus grayscale etc. are analyzed.
The results from this chapter will be used in chapter 3 (p. 19).

Figure 2.1: A3 model with the application domain marked

2.1 The Basic Principle of Stereo Vision

A standard stereo vision setup consists of two similar cameras placed horizontally at a
specified distance from each other. This distance is called the baseline. Figure 2.2 (p. 8)
shows an example of this setup.

Figure 2.3 (p. 8) shows how a scene is seen by the camera, is inverted in the optical center
and projected onto the image sensor in the camera. The original image plane is located
at the position of the image sensor but it is inverted compared to the scene captured.
To simplify comparisons to the real world, an image plane can be placed opposite of
the optical center at the same distance from the center and this image plane will not be

7
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(a) Seen from the front

(b) Seen from above

Figure 2.2: Illustration of a standard stereo vision setup

inverted.

(a) Location of the optical
center and image sensor

(b) Location of the image
plane

(c) This illustration will be
used to to explain disparity

Figure 2.3: Illustration of going from camera to image plane

Figure 2.4a (p. 9) shows that a single camera is not able to differentiate between two points
at the same angle from the optical center at different distances. Figure 2.4b (p. 9) illustrates
how adding the second camera allows differentiating between the two points.
Figure 2.5 (p. 9) shows how the distance to a point can be calculated from the difference
in x-positions on the image plane (the disparity). Figure 2.5a (p. 9) and 2.5b (p. 9) shows
how the disparity changes depending on the distance to the point. Figure 2.5c (p. 9) shows
the point in the scene (p), where line of sight crosses the image planes (i1 and i2) and the
optical centers (c1 and c2). From these points two similarly angled triangles can be created.
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(a) Seen from a single camera (b) Seen from two cameras

Figure 2.4: Example of two points in a scene at different depths

One between p, i1 and i2 and the other triangle between p, c1 and c2. For similarly angled
triangles the ratio between the height and the bottom width is the same for each triangle
and hence the following equation can be formed:

b
z
=

L
z− f

=
b− (x1 − x2)

z− f
(2.1)

x1 − x2 is also called the disparity, d, and equation 2.1 can be simplified:

z =
b · f

d
(2.2)

(a) Disparity for a point far
way

(b) Disparity for point close (c) Illustration of triangles
used for calculating the dis-
parity

Figure 2.5: Illustration of how to calculate depth from disparity

In equation 2.2 b and f are known (b is the baseline and f is the focal length) hence only
the disparity is needed to find z. So to find the distance to a point, the location of the point
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in the two images should be found and the displacement may be computed.

This explains the basics of stereo vision. The rest of this chapter will venture into other
areas of stereo vision and describe the difficulties and solutions for each area.

2.2 Epipolar Geometry

Section 2.1 assumes that the stereo image planes are ideal, align exactly and being parallel
with the baseline but in a real scenario the cameras will have small imperfections and
variations which will make the image planes not perfectly align.

Figure 2.6: Non-rectified stereo pair [14]

Figure 2.6 shows a pair of stereo images. As seen when searching for a corresponding
point in the second camera (e.g. the top of the bottle) then a 2D search area is needed. To
simplify the search epipolar geometry can be used.

Figure 2.7: Illustration of epipolar geometry

Epipolar geometry occurs when a scene is seen from two different views. Figure 2.7 illus-
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trates epipolar geometry. An epipole is the projection, on one camera’s image plane, of the
optical center of the other camera and is noticed on figure 2.7 (p. 10) as the points where
the line between the centers crosses the image planes. The red line going through pl (the
projection of point P on the image plane) and the epipole is called an epipolar line and a
corresponding epipolar line can be found on the other image plane. When searching for
the corresponding point in the other image the search can be simplified from a 2D search
to a 1D search along the epipolar line. To simplify the search further, the image can be
rectified.

Rectification will transform the stereo images to remove lens distortion and make them
into standard form. The standard form is helpful since all epipolar lines then will be hor-
izontal and this simplifies the search for corresponding points to search along the x-axis.
Figure 2.8 shows the stereo image pair from figure 2.6 (p. 10) but rectified. As seen, the
corresponding points can now be found by following the horizontal lines or the x-axis.

Figure 2.8: Rectified stereo pair [14]

The issue with rectification is that it is difficult to get a perfect match with the stereo setup
since every camera and its lens will be unique and require an all new manual calibration.
HSA Systems theorizes that a system can be developed which instead of rectifying the
image will find the epipolar lines for each epipole and feed this information to the stereo
cameras.

In this project stereo image pairs from Middlebury Vision Test sets [18] will be used. These
image pairs are rectified, and rectification of image will not be discussed further in this
project.

2.3 Color space and grayscale

Colors can be represented in many different ways digitally using color spaces. Two of the
most common color spaces are grayscale and RGB. Some studies have investigated what
impact different color spaces can have on the result from a stereo vision algorithm.
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Measure Type Correct [%] Time

Ncc G 52.3 52
C 55.2 141

D1 G 49.5 63
C 51.6 140

PRATT G 29.1 86
C 45.2 225

ISC G 44.9 126
C 52.6 245

SMPD2 G 49.9 569
C 56.5 2109

Table 2.1: Part of table containing results from [5]

For this project the impact of color spaces have not been studied but instead the findings
in [5] are used. This study describes the impact of color spaces on stereo matching by
investigating 9 color spaces and 3 different methods. Table 2.1 shows parts of the results
from [5]. In this table the Measure column is the algorithm used, Type specifies whether
it is grayscale (G) or color (C) with the best color space used, the Correct column is the
percentage of correct matches and Time is the execution time. The article concludes that
using color always results in better matching, but from table 2.1 it is seen that using
grayscale lowers the execution time significantly compared to using color. In most cases
without significant impact on the matching results.

Since the main focus of the project is on a fast stereo vision algorithm and minding the
results from table 2.1, it is decided to use grayscale images if the tradeoff is not too signif-
icant.

2.4 Disparity precision

The depth resolution depends on different things in the stereo camera setup: the camera
resolution, the focal length, the baseline etc. HSA Systems requires that the system has a
≤5 mm depth resolution between 0.5 m and 1.5 m.
The sensor which will be used for a final product is a Sony IMX264 since this sensor is
used in the company’s smart camera products. This sensor has a resolution of 2464×2056,
a pixel size of 3.45 µm and a frame rate of 35.7 fps. Full specifications of the sensor can be
found in [19]. HSA Systems requires that the baseline is ≤10 cm.
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To calculate the precision equation 2.2 (p. 9) is used. This equation is repeated here:

z =
b · f

d
(2.3)

The disparity, d, of equation 2.3 is expressed in pixels and may be converted to mm by
using the the pixel size (psize) of the camera sensor. A focal length f should be chosen so
the scene at max distance will be 1.5×1.5 m and figure 2.9 shows the relationship between
scene size and focal length.

Figure 2.9: Illustration of the relationship between sensor size, scene size, focal length and distance

Since the two triangles in the figure are similar the focal length can be determined using:

f =
z · ssensor

sscene
(2.4)

Where z is the distance, ssensor is the size of the sensor which depends on pixel size and
resolution and sscene is the size of the scene. Since the camera resolution is not square a
focal length for both horizontal and vertical scene size have to be calculated and the lowest
focal length is chosen.

fh =
1500 · 2464 · 0.00345

1500
= 8.5mm (2.5)

fv =
1500 · 2056 · 0.00345

1500
= 7.09mm (2.6)

A focal length of 7.09 mm is chosen and this results in a scene size of 1798×1500 mm. With
the baseline and focal length determined, it can be calculated when the disparity precision
is ≤5 mm.
The derivative of z with respect to d gives the precision at a specific disparity.

z′ = − b · f
psize × (d2)

(2.7)
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Inserting the known values and the wanted precision the disparity d is found to be 202, 73
but since the disparity is an integer this value should be rounded up to 203. This results
in a disparity precision of −4.99 mm and the distance where this precision is achieved is
at 1012.35 mm. This does not comply with the requirement from HSA Systems. Using
sub-pixel refinement a precision of 10 mm can be used to achieve the same precision. This
precision is achieved at a disparity of 144 and the precision is then −9.91 mm at the dis-
tance 1427 mm. This still doesn’t comply with the requirement.
To improve the precision further either the resolution, the baseline or the focal can be
changed but each requires another requirement to fail. The resolution requires a new cam-
era sensor. The baseline need to be at least 11 mm larger. The focal length needs to at least
0.73 mm higher but this results in a scene size of 1631×1361 mm.

It is chosen to reduce the scene size to 1631×1361 mm and use a focal length of 7.82 mm.
This results in a precision of 10 mm at ≈1500 mm so sub-pixel refinement has to be used.
The resulting disparity range will be 303. Figure 2.10 shows the disparity precision at
different distances with the chosen baseline, focal length, and sensor.

Figure 2.10: Disparity precision in the distance range 0 5−1.5 m

2.5 Occlusions

Occlusions occur when an object closer to the camera setup entirely or partially blocks
an object behind it. Figure 2.11 (p. 15) illustrates two cylinders seen by a stereo camera
setup where occlusion occurs. Figure 2.11a (p. 15) shows that the blue cylinder is only
partially visible to the right camera because the red cylinder hides some of the blue cylin-
der (marked with red) while the left camera can see the whole of both cylinders. When
searching for corresponding points in the occluded area issues occur. As illustrated by the
arrow on figure 2.11b (p. 15), the edge of the blue cylinder can not be found and it will
result in calculating a wrong disparity value.

There exist different types of occlusions: partial occlusions, self-occlusions, border occlu-
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(a) Stereo camera setup with two cylinders
in the scene seen from above

(b) Image seen by each camera in fig-
ure 2.11a

Figure 2.11: Illstration of occlusions

sions and total occlusions. Partial occlusions are when an object is only partially obstructed
as seen on figure 2.11. Self-occlusion occurs on round surfaces such as faces, and balls and
as seen on figure 2.12a the surfaces marked with red can be seen by one camera but not
the other camera. Border occlusions occur when an object or part of an object is outside
the view of one camera but not the other camera as seen with the blue object on figure
2.12b. Total occlusion is when an object is completely hidden by an object in the view of
one camera but not in the view of the other camera and an example of this is seen with
the red object on figure 2.12b.

(a) Illustartion of self occlusion seen from
above

(b) Illustration of total and border occlusions
seen from above

Figure 2.12: Illustration of different types of occlusions

Occluded points can be found by running stereo matching again but switching which
camera is used as the reference and then compare the disparity values found for each
direction. When occluded areas are found these can be filled using different methods.
For this project the findings from [12] is used which will be described in section 2.5.1
(p. 16) to 2.5.4 (p. 17). The methods will only be briefly described in this report and a
more thorough description can be found in [12]. All these methods assume that the stereo
matching is using the left image as reference i.e. the points in the left image are searched
for in the right image.
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2.5.1 Neighbor’s Disparity Assignment (NDA)

This is one of the simpler methods to fill occlusions. It functions by selecting an oc-
cluded point, pL, then finds then nearest non-occluded point, qL, to the left when filling
non-border occlusion. With border occlusion, the nearest point to the right is found in-
stead. This method assumes that this non-occluded point is part of the same surface as
the occluded point (this can be seen on figure 2.11) and the disparity value from qL can
be assigned to pL. This method has some issues. In cases of total occlusions (see figure
2.12b) wrong disparity values will be given to the total occluded object since it is not a part
of the nearest surface with non-occluded points to the left. In cases with self-occlusions
the occluded area should have disparity values close to the disparity values of the non-
occluded points to the right (This will be the area of the surface which is in view of both
cameras) but using NDA will give the occluded area disparity values corresponding to the
background.

2.5.2 Diffusion in Intensity Space (DIS)

This method is inspired by diffusion. Diffusion is the movement of molecules or atoms
from a high concentration region to a low concentration region.

After detecting occluded regions with cross-checking during stereo matching, the diffusion
energy for the region is approximated. This method is dependent on the stereo matching
algorithm because it uses the energy from the last iteration to determine initial diffusion
energy for the area. But a change to the method can be made to make it independent from
the stereo matching. The initial diffusion energy will be 0. Then the diffusion energy for
an occluded point E(pL) is calculated by basically integrating the energies of non-occluded
points with the same disparity value in the neighborhood of the occluded point pL. The
disparity value which results in the lowest diffusion energy will be given to pL. This is
repeated for each occluded point until every point have been filled.

2.5.3 Weighted Least Squares (WLS)

In this method, all the non-occluded and filled occluded neighbors in a neighborhood
around the occluded point is considered valid points and is used as control points in in-
terpolation. But since the neighborhood contains both foreground points and background
points and the occluded point is expected to be a part of the background then the back-
ground points should have higher influence than foreground points.

Therefore a weighted least square problem is set up where the residual error term is
weighted so non-occluded points belonging to foreground objects will have a lower influ-
ence on the least square problem than points belonging to the background. To distinguish
between foreground points and background points it can be assumed that the color inten-
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sity between objects is significantly different.

2.5.4 Segmentation-based Least Squares (SLS)

This method is an alteration of the WLS method. The biggest difference between WLS and
SLS is that SLS only uses non-occluded points as control points. The control points is a
subset of the non-occluded neighboring points. The control points are segmented from
the neighborhood by applying different constraints: visibility constraint, disparity gradi-
ent constraint, and color similarity cues.

First find occluded points which have at least one non-occluded neighboring point. Then
these points are sorted by a priority which is found by checking the homogeneity i.e color
similarity between the occluded point, pL and the neighboring non-occluded points.

When the occluded point with the highest priority is found then some initial control points
from the neighborhood are needed. First only points from the background is wanted
therefore only points in the neighborhood which have a disparity value lower than the
foreground. The nearest non-occluded point to the left of the occluded point is assumed
to be part of the background, lpLb , and the nearest non-occluded point to the right is as-
sumed to be part of the foreground, lpL f . But narrow objects in the foreground will make
the non-occluded point on either side of the occluded area be part of the background.
So some constraints are setup to get all the background points. The constraints will find
every point which has a disparity value close to the background points lpLb or lower than
the foreground points lpL f .

All points in the neighborhood, which satisfies these constraints, is assumed to be part
of the background but might contain points from multiple background surfaces. It is as-
sumed, from looking at the data sets from [18], that the neighborhood only contains points
from either one background surface or two background surfaces. If the difference between
highest and lowest value is too high then this new neighborhood contains two objects and
have to be divided into two neighborhoods. This is done by grouping all points with dis-
parity values close to the lowest disparity and all points with disparity values close to the
highest disparity. Then it can be determined which group the occluded point belongs to
by looking at color distance to each group.

With these control points found a least square problem can be set up using these control
points for finding the disparity value of the occluded point.
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2.6 Occlusions filling result

In [12] it is found that SLS gives the best result followed by DIS, NDA, and WLS but the
runtime SLS is slower than NDA and WLS and faster than DIS. Since the project focuses
on implementing a fast stereo algorithm and focuses more on the stereo algorithm itself,
NDA is chosen as the method to fill occlusions since it is the better performing of the two
faster methods.

2.7 Wrap-up

To conclude this chapter the findings for each area in stereo vision will be examined and
it will be specified which solution will be used from this point.

Rectification of Images

This project will not delve further into the subject of rectification. Instead data sets from
[18], will be used in this project as they are already rectified.

Color Space

The result from [5] shows that color spaces in most cases are slightly better than using
grayscale images but the computational complexity is much higher. This result depends
on the algorithm used therefore when an algorithm has been chosen a test should check
if grayscale images perform much worse than using color images and what the impact on
run time is.

Resolution and Disparity Precision

To have a disparity precision of 2 mm at 1500 mm using Imaging Source DMK 72BUC02
cameras with a resolution of 2592×1944 and a pixel size of 2.2 µm a lens with a focal
length of 10 mm should be used together with subpixel refinement.

Occlusions

4 different methods to fill occlusions were described and from these NDA is chosen since
it is the better performing of the two faster algorithms.



Chapter 3

Design and test specification

This chapter elaborates on the requirements for the system and derives a test specification
which will describe how to test for the requirements.

A way to identify the performance of a design using different design metrics is the cost
function. The cost function specifies the overall cost of a design and is a function of the
different design metrics:

C = f (A, T, P, N, S) = a1 · A + a2 · T + a3 · P + a4 · N + a5 · S (3.1)

where A is area, T is time, P is power, N is numerical properties, S is the stereo matching
result from Middlebury test and ai tells the importance of the associated metric.
It is the task of the system designer to minimize this cost. And due to ai the cost function
can be changed to fit the priorities of the application.

For this thesis, the number one priority is the time metric since it is required that the al-
gorithm should be executable in real-time. The stereo matching metric is also important
since it describes the quality of the resulting disparity map i.e. the number false dispar-
ity values. Numerical properties are 3rd most important metric since this can affect the
result from the algorithm since the cost value may have added noise. Area is not as im-
portant because if the target FPGA is too small then HSA Systems will use a larger FPGA
but larger area often equals more expensive hardware. Power is not important either since
the stereo setup is intended as a part of industrial systems hence power is easily accessible.

An ordered list of priorities for the design metrics in this project:

1. Time

2. Stereo matching result

3. Numerical properties

4. Area

5. Power

19
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In this thesis, the cost function will be used when e.g comparing the different algorithms
found in chapter 4 (p. 23).

3.1 Requirement specification

This section will contain a table with the requirements for the system. Each parameter will
be given a number, a value which should be met, the unit for the value, additional infor-
mation for the requirement and a reference to where the discussion for the requirement
can be found.

No. Parameter Value Unit Additional Information Source

1 Frame rate ≥ 10 fps
Section 1.3
(p. 3)

2
Disparity
precision

≤ 5 mm
• Either directly or using

subpixel refinement
• In the range 0.5-1.5 m

Section 1.2
(p. 3)

3
Camera
resolution

2464×2056 pixels
Section 2.4
(p. 12)

4 Pixel size 3.45 µm
Section 2.4
(p. 12)

5
Focal
length

7.09 mm
Section 2.4
(p. 13)

6 Scene size 1.5×1.5 m
Section 2.4
(p. 13)

The algorithm should be implemented on a Xilinx Zynq Z7020

3.2 Test specification

This section will describe how the system can be tested in order to ensure that the require-
ments are fulfilled.

Requirement 1: frame rate can be tested by running the finalized implementation and
measure the runtime which should be ≤100 ms.

Requirement 2: disparity precision. This requirement can be tested if a working stereo
camera setup is developed.
HSA Systems has produced a depth precision test object with small depth differences. The
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object is shown on figure 3.1. The object consists of five sets of steps with each stair having
different depth increment. Looking at 3.1b the set of steps at the bottom have a depth
difference of 5 mm between each step. The set of steps just above have a depth difference
of 4 mm between each step. This pattern continues and results in the top set of steps to
have a depth difference of 1 mm. The small shapes in the middle of each step have a depth
difference of 0.5 mm alternately protrude from or recess into the steps.

(a) 3D model of depth precision test object (b) Picture of 3D printed depth precision test
object

Figure 3.1: Depth precision test object

Placing this object at a specific distance the depth precision can be tested. If the steps in
lowest set of steps can be distinguished from each other in the disparity map then the
depth precision is ≤5 mm.
If the implementation can distinguish between the lowest set of steps and the object is
placed at 1.5 m from the camera setup then the requirement is fulfilled. The rest of the
steps help determine if the camera have a better precision than required.
The Middlebury test set does not contain images where specific areas contain depth in-
crements of 2 mm and therefore these images can not be used for testing this requirement
and calculations 2.4 (p. 12) are used instead.

Requirement 3: camera resolution is fulfilled by choosing the correct camera hardware but
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is essential to be fulfilled for requirement 2 to be fulfilled.

requirement 4: pixel size is fulfilled by choosing the correct camera hardware but is essen-
tial to be fulfilled for requirement 2 to be fulfilled.

requirement 5: focal length is fulfilled by choosing the correct camera hardware but is
essential to be fulfilled for requirement 2 to be fulfilled.

Chapter 8 (p. 65) will perform the available tests.



Chapter 4

Algorithm design

This chapter will explore the algorithm domain in the A3 model. It is the domain marked
on figure 4.1. This chapter will describe the two stereo vision algorithms, Efficient Edge
Preserving Stereo Matching (EEPSM) and Fast Cost-Volume Matching (FCV). Lastly, a simula-
tion of each algorithm is conducted and described and the results of these simulations are
compared and from this, an algorithm is chosen.

Figure 4.1: A3 model with the algorithm domain marked

After the application analysis, a search for a fitting stereo vision algorithm can begin. Dur-
ing an internship at HSA systems a standard normalized cross-correlation (NCC) stereo
matching algorithm was developed. An issue with the NCC algorithm is that it is not
accurate near edges resulting in false matching around edges. For this project HSA sys-
tems wishes to find an algorithm which can be fast and is edge preserving. After some
research, two algorithms were found. These algorithms are Efficient Edge Preserving Stereo
Matching and Fast Cost-Volume Matching. The description of these algorithm comes from
[6] and [10]. The pseudo code for the EEPSM is created by us while the FCV pseudo code
comes from [9] with some details added by us.
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4.1 Efficient Edge Preserving Stereo Matching (EEPSM):

This algorithm is described in [6]. This algorithm first calculates a cost for each pixel
and disparity. This cost is a combination of the sum of absolute differences (SAD) and
hamming distance of the census transform around each pixel. First the SAD is calculated:

CSAD
d (x, y) =

3

∑
i=1
|Il(x, y, i)− Ir(x + d, y, i)| (4.1)

where i is the color (either red, green, or blue), Il(x, y, i) is a pixel in the left image or the
reference image, and Ir(x + d, y, i) is a pixel shifted by the disparity, d, in the right image
or the target image.
This cost only uses the differences in color in a single pixel from each image and not a
window around the pixel. Next the cost for a census transform is calculated.

CCENSUS
d (x, y) = Ham(CTl(x, y), CTr(x + d, y)) (4.2)

Where Ham(x1, x2) is the hamming distance between two bit strings and CT(x, y) is the
census transform around the pixel at x, y of the grayscale version either the left image or
the right image. The census transform converts the pixels in window around a center pixel
into a bit string. Figure 4.2 shows a 3×3 census transform. If the intensity (grayscale value)
of a pixel is higher than the center then it is converted to 1 and 0 otherwise and then bits
are inserted into a bit string.

Figure 4.2: Illustration of census transform

When the two cost values have been calculated they can be combined to a single cost value.

Cd(x, y) = α · CSAD
d (x, y) + (1− α) · CCENSUS

d (x, y) (4.3)

With the cost calculated the next step in the algorithm is to aggregate the cost. This is done
in 3 steps. First step is to calculate permeability weights. Permeability is known from bio-
medicine and describes the ability to transfer molecules through a cell membrane. The
permeability weights are inspired by this and describes how well the color transfers from
one pixel to another pixel and is expressed as:

µ(x, y) = min(e
−∆R

σ , e
−∆G

σ , e
−∆B

σ ) (4.4)
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Where ∆R, ∆G, and ∆B is the difference in the specified color between two neighboring
pixels and σ is a smoothing factor.

The permeability weights should be calculated for each direction: up, down, left, and right
and an example of the permeability of the downwards direction is shown in equation 4.5.

µD(x, y) = min(e
−|Il(x, y, 1)− Il(x, y− 1, 1)|

σ , e
−|Il(x, y, 2)− Il(x, y− 1, 2)|

σ ,

e
−|Il(x, y, 3)− Il(x, y− 1, 3)|

σ )

(4.5)

The next step is to aggregate the cost in equation 4.3 (p. 24) horizontally and this is
achieved by using successive weighted summation (SWS) of the cost values along the left
and right direction. The weights used in this summation will be the permeability weights
for the right and left directions. The SWS for the right direction is expressed as:

CR
d (x, y) = Cd(x, y) + µR(x− 1, y)CR

d (x− 1, y) (4.6)

CR
d (x, y) = Cd(x, y) +

x−1

∑
i=1

(
Cd(x− i, y)

i

∏
j=i

µR(x− j, y)

)
(4.7)

From equation 4.7 it is noticed that the cost, CR
d (x), will be affected by cost values from

pixels to the left of point x but the permeability weight ensures that only pixels close to
point x and with similar color will have a large influence. When there are large changes in
color it is assumed that the pixels will belong to a new object and therefore it ensures that
only pixels from the same object have an influence on the cost.

When aggregating the right SWS the algorithm starts in the left side and equation 4.6 is
used as an update rule while moving in the right direction. A similar update rule exists
for the left SWS. When the left SWS and the right SWS have been performed then these
can be combined to a horizontal SWS:

CH
d (x, y) = CR

d (x, y) + CL
d (x, y) (4.8)

When the horizontal aggregation have been completed then vertical aggregation can be
performed. The vertical aggregation is similar to horizontal aggregation but instead of
using the cost Cd(x) it uses the cost from horizontal aggregation, CH

d (x, y), and moves in
the vertical directions, up and down. The two update rules for vertical aggregation and
the combined vertical SWS is shown below:

CU
d (x, y) = CH

d (x, y) + µU(x, y− 1)CU
d (x, y− 1) (4.9)

CD
d (x, y) = CH

d (x, y) + µD(x, y + 1)CD
d (x, y + 1) (4.10)

CV
d (x, y) = CU

d (x, y) + CD
d (x, y) (4.11)
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The cost from vertical aggregation, CV
d (x, y), will be influenced by the cost from pixels

belonging to the same object as pixel at (x, y) in greater or lesser degree. This cost can
be used for minimization along disparity estimates with a winner take all approach. For
occlusion perform a left-right cross check e.i. run the algorithm with the reference and
target image changed around.

Through testing α in equation 4.2 (p. 24) is chosen to be 0.4, the windows size of the census
transform is chosen to be 3× 3 and σ in equation 4.4 (p. 24) is chosen to be 38.1. These
values have been determined through empirical observation.

EEPSM psuedo code

Input:
left image: Il
right image: Ir

disparity estimate: d
Output:
filtering output: q
Steps:

1. CSAD
d = fSAD(Il , Ir,d)

CCENSUS
d = fHam( fCENSUS(Il), fCENSUS(Ir,d))

2. Cd = αCSAD
d + (1− α)CCENSUS

d

3. µD = fperme(Il , down)
µU = fperme(Il , up)
µL = fperme(Il , le f t)
µR = fperme(Il , right)

4. CL = fSWS(Cd, le f t)
CR = fSWS(Cd, right)

5. CH = fSWS(CL, CR, horizontal)

6. CU = fSWS(Cd, up)
CD = fSWS(Cd, down)

7. CV = fSWS(CU , CD, vertical)

4.2 Fast Cost-Volume Matching (FCV):

This algorithm is described in [10]. As the algorithm in section 4.1 (p. 24) this algorithm
calculates an initial cost and then aggregate this cost. The initial cost for this algorithm
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is also a combination of the sum of absolute differences and another cost. Instead of a
cost based on census transform and hamming distance this algorithm uses difference in
the gradient along the horizontal axis. The following equations show the different cost
function for this algorithm and equation 4.14 shows the combined initial cost. First the
SAD cost is calculated and this equation is similar to equation 4.1 (p. 24).

CSAD
d (x, y) =

3

∑
i=1
|Il(x, y, i)− Ir(x + d, y, i)| (4.12)

Then the gradient cost is calculated.

CGrad
d (x, y) = ∇x Ig

l (x, y)−∇x Ig
r (x + d, y) (4.13)

Where ∇x is the gradient along the x-axis and Ig
l and Ig

r is the grayscale version of each
image. When these cost values have been calculated they can be combined to a single cost
value:

Cd(x, y) = α · CSAD
d (x, y) + (1− α) · CGrad

d (x, y) (4.14)

When the initial cost has been found it will be aggregated. The fast cost-volume algorithm
will aggregate the cost values using a guided image filter.

C′d(xi, yi) = ∑
xj,yj

W(xi ,yi),(xj,yj)(I)Cd(xj, yj) (4.15)

Where C′d(xi, yi) is the aggregated cost in pixel xi, yi with disparity estimate, d, xj, yj is
pixels in a square window around xi, yi, and W(xi ,yi),(xj,yj)(I) is the filter weights based on
a guidance image, I. Section 4.2.1 will describe how the filter weights are found.

This aggregate cost can then be used for minimization along the disparity estimates with a
winner takes all approach. For finding occlusion a left-right cross check will also be used
here.

4.2.1 Guided Image Filter

This filter is described in [8] and [9] and this section simply summarizes their findings.
To describe the guided image filter a standard linear translation-variant filtering process is
defined:

qi = ∑
j

Wi,j(I)pj (4.16)

Where i and j are pixel indexes, q the filter output, Wi,j(I) is a filter kernel which is func-
tion of a guidance image I, and p is a input image.
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The guided image filter is defined as a linear model between a guidance image, I, and a
filtering output, q:

qi = ak Ii + bk, ∀i ∈ ωk (4.17)

where i and k is pixel indexes, ωk is a square window centered at k, and ak and bk is linear
coefficients which are assumed to be constant in the window, ωk.
How to determine ak and bk is described in [9] and the solution is given by the following
equations:

ak =

1
|ω| ∑i∈ωk

Ii pi − µk p̄k

σ2
k + ε

(4.18)

bk = p̄k − akµk (4.19)

Where |ω| is the number of pixels in the window ωk, µk is the mean of I in window ωk, p̄k
is the mean of input image p in window ωk, σ2

k is the variance of I in the window and ε is
a regularization parameter which will penalize large ak.

With ak and bk determined the filter output can be calculated:

qi =
1
|ω| ∑

k|i∈ωk

(ak Ii + bk) (4.20)

∑k|i∈ωk
ak = ∑k∈ωk

ak because of symmetry in the square window and then the equation
can be rewritten as

qi = āi Ii + b̄i (4.21)

Where āi and b̄i are the average coefficients for all windows that overlaps the pixel i and
are expressed as āi =

1
|ω| ∑k∈ωk

ak and b̄i =
1
|ω| ∑k∈ωk

bk.

The guided image filter is used for its edge preserving property. The edge preserving
property can be explained with the case where I = p then:

ak =
σ2

k
σ2

k + ε
(4.22)

bk = (1− ak)µk (4.23)

And if ε = 0 then ak = 1 and bk = 0 but if ε > 0 then two cases can occur. If the pixel is
in an area where I have a high variance in the window ωk then σ2

k � ε and this results in
ak ≈ 1 and bk ≈ 0. Instead if the pixel is in an area where I is flat in the window ωk then
σ2

k � ε and this results in ak ≈ 0 and bk ≈ 1.
When these values are averaged then if the pixel are in a high variance area then the output
is q ≈ p and if it instead is in a flat area the output is the average of surrounding pixels
q ≈ p.
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FCV - grayscale - psuedo code

Input:
left image: Il
right image: Ir

disparity estimate: d
radius: r
epsilon: ε

Output:
filtering output: q
Steps:

1. CSAD
d = fSAD(Il , Ir,d)

CGRAD
d = fGRAD(Il , Ir,d)

2. Cd = αCSAD
d + (1− α)CGRAD

d

3. µI = fmean(Il)

µp = fmean(Cd)

ρI I = fmean(Il · Il)

ρIp = fmean(Il · Cd)

4. σI = ρI I − µI · µI

covIp = ρIp − µI · µp

5. a = covIp/(σI + epsilon)
b = µp − a · µI

6. µa = fmean(a)
µb = fmean(b)

7. q = µa · Ii + µb

The guided image filter described in this section and shown in the FCV psuedo code above
is using grayscale images. To use color images then some changes have to be added to the
guided image filter. Equation 4.24 will then become:

qi = aT
k Ii + bk, ∀i ∈ ωk (4.24)

Where Ii is a 3×1 color vector and ak is 3×1 coefficient vector. Then the guided image
filter will be:

ak = (Σk + εU)−1

(
1
|ω| ∑

i∈ωk

Ii pi − µk p̄k

)
(4.25)

bk = p̄k − aT
k µk (4.26)

qi = āT
k Ii + b̄i (4.27)

where σk is the 3×3 covariance matrix of I in window, ωk and U is the 3×3 identity matrix.
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FCV - color - psuedo code

Input:
left image: Il
right image: Ir

disparity estimate: d
radius: r
epsilon: ε

Output:
filtering output: q
Steps:

1. CSAD
d = fSAD(Il , Ir,d)

CGRAD
d = fGRAD(Il , Ir,d)

2. Cd = αCSAD
d + (1− α)CGRAD

d

3. µI,r = fmean(Il,r)

µI,g = fmean(Il,g)

µI,b = fmean(Il,b)

µp = fmean(Cd)

µIp,r = fmean(Il,r · Cd)

µIp,g = fmean(Il,g · Cd)

µIp,b = fmean(Il,b · Cd)

4. σI,r,r = fmean(Il,r · Il,r)− µI,r · µI,r

σI,r,g = fmean(Il,r · Il,g)− µI,r · µI,g

σI,r,b = fmean(Il,r · Il,b)− µI,r · µI,b
σI,g,g = fmean(Il,g · Il,g)− µI,g · µI,g

σI,g,b = fmean(Il,g · Il,b)− µI,g · µI,b
σI,b,b = fmean(Il,b · Il,b)− µI,b · µI,b
covIp,r = µIp,r − µI,r · µp

covIp,g = µIp,g − µI,g · µp

covIp,b = µIp,b − µI,b · µp

5. Σ = fΣ(σI,r,r, σI,r,g, σI,r,b, σI,g,g, σI,g,b, σI,b,b)

covIp = [covIp,r, covIp,g, covIp,b]

a = covIp · finv(Σ + epsilon ·U)

b = µp − ar · µI,r − ag · µI,g − ab · µI,b

6. µa,r = fmean(ar)

µa,g = fmean(ag)

µa,b = fmean(ab)

µb = fmean(b)
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7. q = µa,r · Ii,r + µa,g · Ii,g + µa,b · Ii,b + µb

Through testing α in equation 4.14 (p. 27) is chosen to be 0.11, the windows size of the
guided image filter is chosen to be 19× 19 and ε in equation 4.25 (p. 29) is chosen to be
0.0001. These values have been determined through empirical observation.

4.3 Simulation and comparison

With each algorithm described the algorithms have been implemented in Python for sim-
ulation and comparison. The code for FCV is inspired by example matlab code from [10].
The code for EEPSM is written by us using the description in this chapter. None of the
Python implementations have been optimized further to ensure that run on multiple cores
etc. It should also be noted that the simulations are using floating-point values.

The simulation were performed on a MacBook Pro, Retina, 15-inch (mid 2015). This ma-
chine have the following specifications.

• OS: OS X El Capitan - version 10.11.6

• Processor: Intel c©CoreTM i7-4770HQ

• Memory: 16 GB 1600 MHz DDR3

• Python version: 2.7.12 | Anaconda 2.5.0

• Relevant Python packages: Numpy v1.10.4, matplotlib v.1.5.1

For testing data sets from [18] are used. The stereo pairs are: Tsukuba, Cones, Teddy and
Motorcycle and they are shown on figure 4.3 (p. 32). More information about the data sets
is seen in appendix B (p. 77).

The runtime and stereo matching quality results from the simulations are presented in
table 4.1 (p. 34) and table 4.2 (p. 35) while figures 4.4 (p. 33) to 4.7 (p. 34) shows resulting
disparity maps. The results are discussed starting by discussing the visual result for each
test set. Afterwards the calculated results, i.e run-time and number of false estimates, are
discussed

Looking at the Tsukuba test results on figure 4.4 (p. 33) the FCV result seems better than
the EEPSM result. The background seems more smooth on EEPSM result compared to the
FCV result. Looking at the edges of objects FCV performs better in this test set. This is
especially seen with the lamp. The silhouette of the lamp is sharper on the FCV result
than on the EEPSM result and the sticks holding the lamp is missing in some areas in the
EEPSM result.
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(a) Tsukuba [15] (b) Cones [16]

(c) Teddy [16] (d) Motorcycle [17]

Figure 4.3: Middlebury data set - left images [18]

Looking at the Cones test results on figure 4.5 (p. 33) the EEPSM result seems better than
the FCV result. The border occlusion filling in the left side are filled better on the EEPSM
result. The occlusions are filled using the same method in both algorithms so any differ-
ences will come from the accepted matching results near the occluded area. Looking at
the cones in the FCV result some of them have areas which jump in disparity value while
the cones in the EEPSM result seems smooth. Some of the occlusions near the cones intro-
duces more errors in the EEPSM result when compared to the FCV result. Looking at the
box and cup in the lower right corner the result from EEPSM is better. The cup and box are
smooth in EEPSM whereas in FCV there is some noise and in the EEPSM result, more of
the sticks in the cup is found than in the FCV result. At last looking at the crisscross area
in the right side of the background the EEPSM result is better. The holes in the surface are
sharper in the FCV result but it have some errors when getting closer to the upper right
corner whereas in the EEPSM result the whole surface is smooth.

Looking at the Teddy test results on figure 4.5 (p. 33) the EEPSM result seems better than
the FCV result. Again the border occlusion in the left side is filled better in the EEPSM re-
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(a) Ground truth (b) FCV (c) EEPSM

Figure 4.4: Tsukuba [15]

(a) Ground truth [16] (b) FCV (c) EEPSM

Figure 4.5: Cones [16]

sult when compared to FCV. Both seems to have equal results when comparing the teddy
in front and the chimney on the house. The roof in the FCV result have an area with false
disparities and the edge of the roof near the gable is not as sharp as in the EEPSM result.
The area behind/around the teddy on top of the house have errors in both results. The
area is prone to giving errors due to the repetitive texture on the wall. The area to the left
of the teddy is better in the FCV result while the area to the right is better in the EEPSM
result.

Looking at the Motorcycle test results on figure 4.5 the EEPSM result seems better than
the FCV result. Once again the border occlusions have been filled better in the EEPSM
algorithm. Looking at the ground, it is very smooth in the EEPSM result whereas in the
FCV result large areas of the ground have errors like the lower left corner of the image.
Looking at the background the FCV result has a large area with wrong disparity values
while EEPSM seems smooth. The bench in the background is captured better in the FCV
result where the holes and the silhouette are sharper when compared to the EEPSM result.
Looking at the shelf unit in the background the FCV result has some areas with errors.
Looking at the motorcycle is can be noticed that holes in the wheels and around the mo-
tor are present in either result. The side mirrors are captured better in the EEPSM result
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(a) Ground truth [16] (b) FCV (c) EEPSM

Figure 4.6: Teddy [16]

(a) Ground truth [17] (b) FCV (c) EEPSM

Figure 4.7: Motorcycle [17]

where they are sharper and one of the side mirrors isn’t present in the FCV result. The
rest of the motorcycle are more smooth in the EEPSM result while FCV have small areas
with errors.

Image Resolution FCV EESPM

Tsukuba 384× 288 180 s 86 s
Teddy 450× 375 542 s 245 s
Cones 450× 375 559 s 260 s
Motorcycle 741× 497 1434 s 625 s

Table 4.1: Run time for different stereo pairs

Table 4.1 shows the runtime for each algorithm process each test set. From this, it is seen
that EEPSM is more computationally efficient when compared with FCV. EEPSM is more
than twice as fast as FCV at processing each test set. The main difference in runtime comes
from the aggregation of the initial cost values. The SWS in EEPSM is less complex than
the guided image filter in FCV.
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Image Resolution FCV EESPM

Teddy 450× 375 8.4 % 5.8 %
Motorcycle 741× 497 14.3 % 8.3 %

Table 4.2: Percentage false disparity estimates

Table 4.2 shows the number falsely estimated pixels. As seen the EEPSM algorithm per-
forms better in this area too. One of the main contributors to the difference in percentage
of errors seems to be the errors near borders and the ground in the motorcycle test set.

4.4 Theoretical Complexity

The simulations of the algorithms might have unknown factors which can affect the per-
formance e.g. the programmers knowledge of the algorithms and programming skills.
To ensure a more precise estimation of the performance of the algorithms the theoretical
computational complexity have been calculated.

Table 4.3 shows the number of addition, multiplications, divisions and comparisons used
per pixel.
It should be noted that the exponential function in the EEPSM algorithm is not a simple
function to implement in hardware therefore it will be approximated here with a power
series:

ex =
∞

∑
n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ . . . (4.28)

In section 7.4.1 (p. 56) the challenges of implementing exponential function in hardware is
discussed and from this section it is found that 23 terms of the power series is needed to

achieve an approximation error ≤ 0.001 for values in the interval [− 255
38.1

;
0

38.1
]. The power

series approximation with 23 terms is used in the calculation of the theoretical complexity
instead of the exponential function. From the table it is noticed that the FCV requires a

type add/subtract multiplication division

EEPSM C 8768 · N 5460 · N 0
G 7372 · N 3133 · N 0

FCV C 296031 · N 63630 · N 303 · N
G 104838 · N 16059 · N 303 · N

Table 4.3: Complexity of each algorithm, where N is the number of pixels

lot more operations per pixel when compared to EEPSM. This is mainly due to the guided
image filter which have a window size of 19× 19 which results in a lot of addition and
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multiplication for each single result. It is also seen that with EEPSM the change between
color and grayscale doesn’t reduce the number of operations by a large factor while with
FCV this change reduces the number of operations by a lot. This is due to the EEPSM
algorithm only using color during initial cost and finding permeability weights while in
FCV the use of color makes the guided image filter require far more operations.

I/O communication can also have a influence on the performance hence the memory
reads and writes for each algorithm have also been calculated and the result is shown in
table 4.4. It should be noted that when calculating reads and writes for the FCV that the
mean function is assumed to be a running window.

type reads writes

EEPSM C 6402 · N 2731 · N
G 5778 · N 2731 · N

FCV C 9740 · N 5766 · N
G 4861 · N 3033 · N

Table 4.4: Memory reads and writes used by each of the algorithms, where N is the number of pixels

From table 4.4 it is seen that the change from color to grayscale in EEPSM doesn’t change
the number of reads by much and the number of writes remains the same. This is due to
the EEPSM algorithm only using color in a few functions. On the other hand, it is noticed
that the FCV algorithm reduces the number of reads and writes by much. This is because
of color being used in a lot of functions in the guided image filter. When using color
EEPSM uses less I/O communication when compared to FCV while when using grayscale
FCV uses fewer reads than the EEPSM algorithm but still uses more writes. From the
results in this table EEPSM generally performs better.

4.5 Choosing an algorithm

One of the algorithms described in this chapter should be chosen for further implementa-
tion on a FPGA. This choice is based on the results from section 4.3 (p. 31) and section 4.4
(p. 35).

Starting with the computational efficiency table 4.1 shows that the Python implementa-
tion of the EEPSM algorithm is more than twice as fast as the FCV algorithm (run-time is
reduced by 52-56%). To ensure that these results are not affected by unknown factor e.g.
the programmer’s programming skills, the theoretical computational complexity is also
used. Table 4.3 (p. 35) and 4.4 shows the number of operations and I/O communication
per pixel. This shows the same result. The reason that EEPSM is faster is due to the ag-
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gregation each uses. The SWS requires far fewer operations when compared to the guided
image filter especially when using color.

The quality of the resulting disparity map should also be taken into consideration when
choosing an algorithm. The visual inspection of the results shows that EEPSM algorithm
generally results in better disparity maps in all except for one of the test sets which is the
Tsubuka test set. But this test set is the least important since it is the set with the lowest
resolution and the images for a prototype will have a much higher resolution. In some
situations, FCV gives a bit better result than the EEPSM algorithm i.e. the holes in the
bench in figure 4.7 (p. 34). Table 4.2 (p. 35) shows that the EEPSM algorithm results in
disparity maps which are closer to the ground truth when compared to the FCV algorithm
results (between 31-42% fewer false estimates).

Referring to the cost function from chapter 3 the two main factors to consider when choos-
ing an algorithm is time and stereo matching quality with time having the highest priority.
Considering these two factors and the results which are summarized in this section the
EEPSM algorithm is chosen.

4.6 Wrap-up

Two edge preserving stereo vision algorithms have been described. The algorithms have
been simulated using Python and floating point. To support the results from the simula-
tions their theoretical complexities has been calculated. The results show that the EEPSM
algorithm has a lower execution time and matches better than the FCV algorithm. Consid-
ering these results and the cost function in chapter 3 the EEPSM algorithm is chosen to be
implemented on a FPGA.





Chapter 5

Platform analysis

In this chapter the hardware platform provided for this project is described. For this
project, HSA systems have provided a Zedboard Development Board [4]. This board is
used for this project since it contains a Zynq Z-7020 SoC from Xilinx, which HSA Systems
uses for multiple products.

5.1 Platform trade-off

When designing embedded systems the choice of platform is important. Different plat-
form exists each with their own advantages and disadvantages. Figure 5.1 illustrates the
relation between design time and flexibility for some general platform types, inspired by
[1].

Figure 5.1: Relation between design time and flexibility for general platform types.

From figure 5.1 it is seen that there is a clear trade-off between a general-purpose proces-
sor (GPP) and an application specific integrated circuit (ASIC). The other platforms fall in
between these two.

39
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A GPP is a popular choice due to its short design time and high flexibility. It is optimized
for data manipulation, control flow, and sequential performance. However in the area of
signal processing applications usually have a high number of computations and a high
level of inherent parallelism. This makes a GPP not the best platform for such applica-
tions. For these applications, more specialized platforms can be used such as a DSP or
FPGA. A DSP includes optimized computational units which can be used for real-time
signal processing. But DSPs require the designer to have a better knowledge of the specific
DSP platform when designing for it. The DSP is still limited by the number of compu-
tational units on the platform. This is where an FPGA is strong. An FPGA consists of a
high number of logic gates and interconnections between them and with this specialized
architectures can be designed which can completely utilize the inherent parallelism in an
algorithm.

In later years new platforms have emerged which combines some the general platforms.
This is clearly seen with platforms such as Zynq Z-7020 which is a GPP combined with an
FPGA.

HSA Systems has chosen that the platform for this project will be a Zedboard which
contains a Zynq Z-7020 since this chip is used in other of the company’s products. This
project will mainly only use the programmable logic of the Zynq SoC since the project
description states that the focus is on an FPGA implementation.

5.2 Zynq Z-7020

The Zynq SoC contains an ARM R© Processing system and 7 series programmable logic
(FPGA). Figure 5.2 (p. 41) shows an overview of the Zynq Z-7000 architecture. From this
figure, it can be noticed that the programmable logic is located at the bottom and all the
connection to the rest of the system is seen. In the upper right of the overview, the ARM R©

cores are located. In this project, the GPP part of the SoC will be used for OS and likewise
assignments while the algorithm will mostly be implemented in the programmable logic.

Part Quantity

Programmable logic cells 85,000

Look-Up Tables 53,200

Flip-flops 106,400

Block Ram 4.9 MB

Programmable DSP slices 220

Table 5.1: Programmable logic - Zynq 7020 [24]
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Figure 5.2: Architectural Overview [24]

In table 5.1 (p. 40) the logic elements available in the Zynq Z7020 are listed. Table 5.2
shows some additional specifications for the Zedboard platform. This information will be
used when designing the hardware architecture in chapter 7 (p. 49).

Part Quantity

Memory - DDR3 512 MB

Memory - QSPI 256 MB

Oscillator - PS 33.333 MHz

Oscillator - PL 100 MHz

Table 5.2: Additional specifications for Zedboard [4]

5.3 Hardware utilization

In this section, the hardware utilization of the Xilinx Vivado software and the Zedboard
is explored. The software used is the Vivado HL Design Edition 2016.2. To get a simple
approximation of the hardware utilization some simple systems have been generated in
software, synthesized and implemented. Simple systems with a specified functional unit
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have been created using the Block Design system in Vivado. 100 copies of the specified
functional unit were added. The reasoning for 100 copies is to ensure that the contribution

Figure 5.3: Example of block design in vivado

from control signals and wiring is minimized. With a block design generated it can be
synthesized. In Vivado there are 2 steps. The first step is synthesize where the software
figures out which hardware is needed for the system and then the next step is implemen-
tation where the software optimize the hardware use for the platform it is implemented
on. To complete the implementation step the design have to fit the target hardware so the
design must not exceed the number of available I/O ports etc. When generating the block
design IP blocks from Xilinx were used and for most FUs inputs and outputs of 16 bits
were used. Each output needs to be connected to its own port and this will result in the
implementation step to fail since too many I/O ports are used. Connecting the outputs
to temporary signals and not using these signals will result in the implementation step to
optimize and remove all the adders since the output aren’t used. Instead, a Slice IP can be
used to strip every bit but MSB. This results in every block only having an output size of
1 bit and the I/O usage have been lowered enough for the implementation to succeed. Then
the hardware utilization can be found in the software. These values are then divided by
100 to get a rough approximation of how much hardware each functional unit requires.
Appendix A (p. 73) describes more thoroughly the procedure for these tests and table 5.3
shows the result.
Looking at the results it is noticed that the multiplier implemented with LUT requires a
lot of LUTs and FFs when compared to adder/subtracter while it only requires a single
DSP if implemented using DSP48 elements. From this, it is decided that the 220 DSP48
elements should mainly be used for multiplication.
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LUT FF BRAM DSP48

Adder 15 15 - -
Adder/Subtracter ≈ 16 15 - -
Subtract 15 15 - -
Multiplier - LUT 352 36 - -
Multiplier - DSP48 - - - 1

Table 5.3: Number of logic elements used in average for each FU

5.4 Wrap-up

The first section discusses the trade-off between platforms and which platform will be
used in this project which is a Zedboard. The second section describes the specifications
of the Zynq Z7020 and some additional important specification of the Zedboard. Lastly,
the utilization of the hardware for different functional units using the Vivado software
was analyzed. From this, it is noticed that the limited number of DSP48 elements should
mainly be used for multiplications since it uses more logic elements than additions and
subtractions.





Chapter 6

Design methodology

This chapter will describe a method for traversing between the algortihm domain and
architecture domain in the A3 model described in section 1.6 (p. 4) and the red lines in
figure 6.1 shows where this movement occurs.

Figure 6.1: A3 model with the movement from algorithm domain to architecture domain highlight

In [7] the Gajski-Kuhn Y-chart is described and it is illustrated on figure 6.2 (p. 46). This
chart is a structured design method which can help organize the design processes for cre-
ating a dedicated hardware system. The chart consist of 3 domains: Behaviour, Structure,
and Physical. The circles in the chart illustrates the different abstraction levels and follow-
ing the arrows on the domain lines the abstraction levels increases.

The behavioral domain describes the functional behavior of the system. Going from the
highest abstraction level to the lower abstraction level this domain starts being described
by algorithms and at the lowest level the behavior is described with differential equations.

The structural domain describes the system in terms of components and their interconnec-
tion. Going from the highest abstraction level to the lower abstraction levels this domain is
first described using larger components such as platforms or CPUs and at the lowest level

45



46 Chapter 6. Design methodology

Figure 6.2: Illustration of the standard Gajski-Kuhn Y-chart [7]

it will be described with transistors.

The physical domain describes how the system is physically put together and is at the
highest abstraction levels described using chips, boards etc. and at lower levels, it will be
described using transistor layout.

(a) Illustration of the Gajski-Kuhn Y-chart
showing the bottom-up methodology [7]

(b) Illustration of the Gajski-Kuhn Y-chart
showing the bottom-up methodology [7]

Figure 6.3: Illustration of different methodologies

Using the Y-chart for structuring the design process can guide the design process through
different design methodology. Two basic methodologies are bottom-up and top-down.

The bottom-up methodology starts at the lowest abstraction level and moves through the
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3 domains designing the system. Then it goes up a level and uses the results from the
lower level to design next level. The bottom-up methodology gives full control of even the
smallest details and the final cost function is available earlier. But designing at the lowest
abstraction level can quickly be overwhelming and time-consuming due to all the details
available at the lowest level. The bottom-up methodology is shown on figure 6.3a (p. 46)

Top-down methodology instead starts at the highest abstraction level and designs the sys-
tem going between the behavioral and structural domains and then go an abstraction level
down and at the lowest level the system will be described in the physical domain. Since it
starts at a higher abstraction level the design process is simpler and it is easier to optimize
the system because amount of details to consider is less than at the lower abstraction lev-
els i.e. it is easier designing a system connecting blocks/subsystems than it is connecting
transistors. An issue with this methodology is that the exact cost function for the system
is only available at the end of the design process when the design is finalized at the lowest
abstraction level but is should be noticed that at higher abstraction levels an estimate of
the cost function can be used. The top-down methodology is shown on figure 6.3b (p. 46).

Figure 6.4: Illustration of the Gajski-Kuhn Y-chart showing the FPGA methodology [7]

Another methodology is the FPGA based methodology shown on figure 6.4 which is a
variation of the top-down methodology. The methodology is based on the fabric of FPGA
which consists of a large amount of Look-Up Tables (LUT). The top-down methodology is
used at the system and processor abstraction levels where the processing and communi-
cation elements are expressed using LUTs. The design begins by mapping the application
onto a platform and then custom components are expressed using LUTs. Once every
component has been defined the whole design is flatten to LUTs and BRAMs and the
tools provided by the FPGA supplier performs component placement and routing. This
methodology have the same weaknesses as the normal top-down methodology and in ad-
dition to those weaknesses it is also unknown for the designer how the provided tools



48 Chapter 6. Design methodology

maps and connects the elements.

The Y-chart has been used for many years and therefore is well known but technology
have evolved and the Y-chart have become less applicable in some cases. As discussed
in chapter 5 platforms for hardware and software co-design such as the Zynq platform
have appeared. The Y-Chart is insufficient for these designs because the segregation of
hardware and software is not naturally modeled on the chart. For these designs, new
design models have been developed and one of these is the Rugby model [13]. The model
is not described in this project since it will not be used. As discussed in chapter 5 this
project will only focus on a FPGA design hence the GPP part of the Zynq platform is
mostly ignored. Due to this the Y-chart and the FPGA methodology can and will be used
for modeling the design for this project.

6.1 Wrap-up

The Y-chart and different design methodologies have been described and it is chosen to
use the Y-chart and FPGA methodology to model the design for this project. If the GPP
part of the Zynq were to be used in collaboration with the FPGA fabric another model
such as the Rugby model should have been used but an FPGA implementation is the focus
of this project and hence the Y-chart is used.



Chapter 7

Architecture design

This chapter will explore the architecture domain in the a3 model described in section 1.6
(p. 4) and it is the domain marked on figure 7.1. The design process in this chapter starts
by creating a block diagram of the chosen algorithm.

Figure 7.1: A3 model with the architecture domain marked

A block diagram of the EEPSM algorithm is illustrated on figure 7.2 (p. 50). This block
diagram is based on the pseudo code in section 4.1 (p. 26). The init. cost block contains
step 1 and 2 of the pseudo code, the µ block contains step 3 of the pseudo code, the horz.
aggre contains step 4 and 5, the vert. aggre. block contains step 6 and 7 and the minimization
block will contain the minimization of the cost values to find the disparity values. This
block diagram is created to divide the system into smaller subsystems. This is equal to
go down an abstraction level i.e. synthesize in the Structure domain of the Y-Chart. This
division into subsystems help limit size of systems which the different analyses and design
processes is used on.

To develop an FPGA hardware a finite state machine (FSM) and a data path are wanted.
Before designing an FSM some processes and analyses should be performed. These pro-
cesses are:

49
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Figure 7.2: Block diagram of the EEPSM algorithm

• Parallelism analysis

• Allocation and scheduling

• Assignment

Due to time constraint for the thesis, a final implementation was not achieved but the
design process is shown at a lower abstraction level with the SAD cost block which is a
part of the init. cost block in figure 7.2.

(a) Init. Cost block diagram (b) Cost SAD block diagram

Figure 7.3: Block diagrams

7.1 Parallelism Analysis

The inherent parallelism of the system has been analyzed to find out which improvements
can be made.

To find the parallelism in the system precedence graphs (PG) have to be created. With sim-
ple subsystems, the precedence graphs can be created by looking at the system from end
to start and for each operator find out which signal is needed and have to be calculated
before.
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Figure 7.4: Synchronous data flow graph of the SAD cost block

Another method is to create a synchronous data flow graph (SDFG) and from the SDFG
a matrix, Γ, can be created. This matrice expresses the relationship between the in- and
outputs from each node in the SDFG and is called the topology matrix. An example of an
SDFG is illustrated on in figure 7.4. In this example the topology matrix is then:

nodes

Γ = arcs



1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 −1 0 0 1 0 0
0 0 0 0 0 0 1 −1
0 0 0 −1 0 0 0 1


(7.1)

If rank(Γ) ≤ s− 1 where s is the number of nodes then a positive integer vector q can be
found such that Γ · q = 0. The resulting q is:

q =



1
1
1
1
1
1
1
1


(7.2)

This q vector expresses how many times each node have to be executed within a period.

With Γ and q a periodic admissible sequential sequence (PASS) can be found. This tells a
sequential sequence in which the nodes can be executed and with it, a periodic admissible
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parallel sequence (PAPS) can be generated. To find the PASS generate a randomly ordered
list of all the nodes, L. For each α ∈ L test if can be executed i.e. if data is available. If
it can be executed then add it to the PASS, ϕ. This is repeated for each node and if every
node have been scheduled in the PASS the number of times specified by q then continue
to the next step.
For this example let L = {1, 2, 3, 4, 5, 6, 7, 8} then checking node 1 the data is available and
is added to ϕ. After checking every node in L once, ϕ will be {1, 2, 5, 6, 7, 8}. Since
node 3 and 4 is missing in ϕ then repeat the process. After this iteration ϕ will be
{1, 2, 5, 6, 7, 8, 3, 4}. The PASS is only a sequential schedule but tells nothing about prece-
dence relations and parallelism. For this, the precedence graph is used and it can be
generated with the PASS found. Take one node at a time in the PASS and add it to the
precedence graph and determine the precedence links. Figure 7.5 shows the progress to-
wards a precedence graph.

(a) With only the 2
first nodes included

(b) With only the 4 first nodes
included

(c) With all the nodes in the SAD cost
block

Figure 7.5: Precedence graph of the SAD cost block

The first figure shows the precedence graph when only the two first nodes from ϕ. When
the next two nodes are added it is noticed how these are added next to node 1 and 2 since
they have no precedence links to those nodes. The last figure shows the final precedence
graph which can be used as a PAPS.

With the precedence graph found the next step towards a hardware design can be fulfilled.

7.2 Allocation and Scheduling

To develop a Finite State Machine (FSM) we need to know which hardware is allocated
and when each operation is scheduled. This enables us to define some states for the FSM.
From section 7.1 some a precedence graph are found and this graph shows how many FUs
can run in parallel.
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To create the FSM specification we need to introduce time into the precedence graphs to
establish some states. To achieve this scheduling is used. There exist different methods for
scheduling and some of these are:

• Resource Constrained (RC)

• Time Constrained (TC)

7.2.1 RC scheduling

For both methods the first step is to create as soon as possible (ASAP) and as late as possi-
ble (ALAP) schedules. Then for the RC scheduling a ready list is created. This list contains
a list of operations which are ready for scheduling and sorted by mobility. The mobility,
M(op), expresses the difference between the states in which the operation, op, have been
scheduled in ASAP and ALAP schedules, e.i. SALAP(op)− SASAP(op).

Figure 7.6 shows an example of an ASAP and an ALAP schedule. As seen on the figure
node 1-6 are part of the critical path and therefore mobility is 0 for each of these nodes.
Nodes 7 and 8 both have a mobility of 1.

(a) Example of ASAP schedule (b) Example of ALAP schedule

Figure 7.6: Illustration of ASAP and ALAP schedules for SAD cost block

With mobility found for each node/operation then, a ready list can be generated. Add
every ready node and then sort them by mobility. In the start the list would look like this:
1. node 1 (M(−1) = 0), 2. node 5 (M(−5) = 0) and 3. node 7 (M(−7) = 1).

If the system has 2 ALU available then node 1 and 5 can be scheduled to state 1 since
they are higher on the ready list and there is no free ALU for the remaining node. The
scheduled nodes are removed and the ready list is updated with newly available nodes.
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The list is still sorted by mobility and will now look like this: 1. node 2 (M(|.|2) = 0), 2.
node 6 (M(|.|6) = 0) and 3. node 7 (M(−7) = 1).

Then nodes 2 and 6 are scheduled into state 2 since they have lower mobility than the rest
of the ready list. The list is updated again and will look like this: 1. node 3 (M(+3) = 0)
and 2. node 7 (M(−7) = 1).

Nodes 3 and 7 are scheduled into state 3 and the list is updated again: 1. node 8
(M(|.|8) = 1).

This is repeated until all nodes have been scheduled and the result is seen in figure 7.7.
This schedule uses 1 states more than the ASAP and ALAP but it reduces the cost since it
uses 1 less ALU compared to the ALAP and ASAP schedules.

Figure 7.7: RC schedule of the SAD cost

With this scheduling the allocation is performed before scheduling since the scheduling is
constrained by how many FUs have been allocated.

7.2.2 TC schedule

The RC schedule improves the area cost of the architecture while the TC intends to improve
the computational performance of the implementation. First, a maximum number of states
is decided and then ASAP and ALAP schedules are generated and mobility ranges are
found. Then some probabilities are assigned to each operation. These probabilities express
the probability for the specified operation to be scheduled in each state in its mobility range
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e.g. node 7 in 7.6 (p. 53) have 1/2 probability for being scheduled in each of state 1-2 if the
maximum number of states is kept at 4. Figure 7.8 shows the probabilities for each node
in figure 7.6 (p. 53).

Figure 7.8: Probabilities for each operation in figure 7.6 (p. 53)

These probabilities can then be used to generate a force-directed schedule. With this
scheduling the allocation of FUs is done after the schedule is found.

7.3 Assignment

When a schedule have been found and some hardware have been allocated the hardware
can be assigned. During the assignment process, the nodes are assigned to the allocated
FUs. A lifetime analysis can also be performed the allocate register and assign the variables
to these registers.
For the example, this step is skipped and it is chosen to directly implement an FSM from
the ALAP schedule and let the Vivado software optimize the design. The resulting RTL
architecture is shown on figure 7.9. Due to time constraint the design process will stop at
this point.

Figure 7.9: SAD cost - RTL schematic
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7.4 Implementation challenges

Some challenges were noticed at the higher abstraction levels and these will be described
in this section.

7.4.1 Exponential function

The exponential function is a high computational complex function which can be hard to
implement. VHDL does not have an easy function to implement it and Xilinx Vivado does
not have an IP core block with an exponential function. So another way to implement this
function has to be found.

The exponential function can be defined by a power series:

ex =
∞

∑
n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · (7.3)

An approximation of the exponential function can be found by using a finite number of
terms from power series definition. More terms results in a better approximation.

The input values for the exponential function will be in the range of
[
− 255

σ ; 0
σ

]
where σ

through experiments have been chosen to be 38.1 so the values will be in the interval
[−6.69; 0].

Figure 7.10: Approximation error with respect to x value and number of terms seen from two views. Error
values have been limited to the range [0; 1]

Figure 7.10 shows the absolute error between the correct exponential value and the ap-
proximation with respect to the x value and number of terms used. It is noticed that a
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higher absolute value of x requires a higher amount of terms i.e. an x value of -1 requires
at least 7 terms to have an error ≤ 0.001 while an x value of -6 requires at least 21 terms to
achieve same precision.

Figure 7.11: Exponential values for approximation and the correct value with respect to x value and number
of terms seen from two views. The values have been limited to the range [−1; 1]

Figure 7.11 shows the result from the approximation (red surface) and the correct exponen-
tial values (blue surface). From this, it is noticed that the approximation at a low number
of terms starts alternating between high positive and negative numbers when increasing
the number of terms. The alternating positive and negative are due to the definition of xn

in equation 7.3 and x being negative, and the large difference between the approximation
and the correct result at a low number of terms is due to xn in the same equation starts out
larger than the n! but n! grows quicker than xn when increasing the number of terms used.

To ensure that the error is ≤ 0.001 at an x value of -6.69 then 23 terms have to be used and
then the error is 0.00029. This power series could be implemented in hardware as a series
of multipliers and adders. The ·

n! of equation 7.3 can be implemented as multiplication
with 1

n! . But this implementation introduces an issue. Looking at the last term where
n = 23 and using the x value -6.69 the term is: (−6.69)23 · 1

23! . This term alone will use 24
multipliers and the result from (−6.69)23 requires 65 bits for representing the final result
as an integer and 1

23! requires 75 bits for representing it as a fixed-point value. This seems
unfeasible to implement in hardware so alternative implementations have to be found.

There exist different methods to implement an exponential function. It can be imple-
mented using a CORDIC engine and there is an IP core block of CORDIC available through
Vivado. A CORDIC engine can calculate hyperbolic and trigonometric functions using it-
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erative operations working on one bit at a time. The exponential function can be expressed
using hyperbolic functions:

ex = cosh x + sinh (7.4)

The strength of the CORDIC is that it requires a low amount of hardware since it is an
iterative algorithm but looking at computation performance other methods are better [20].
One method which is better is using a look-up table containing the results. A look-up table
can have a better computational performance but can require a high amount of memory
[20]. The x value in ex depends on the difference in intensity between two pixels hence the
x value can only be 256 different values. A ROM containing these values needs address
width of 8 bits. The only variable number which the exponential function depends on is
the difference between intensity of two pixels. This difference can be used as the address
to the memory cell containing the exponential value corresponding to that value i.e. if the
difference is 3 then the memory cell at address 3 should contain exp(−3/σ). The exponen-
tial values can be calculated before and just be inserted into the look-up table. To ensure
that the lowest result, which is e−6.69 = 0.0012, will not be 0 at least 11 bits are needed.
A look-up table of that size seems feasible to implement in hardware and therefore this
solution is chosen.

Figure 7.12: Schematic of ROM containing look-up table containing exponential values

A ROM containing the exponential values have been described in VHDL and synthesized
for the Zedboard platform using Xilinx Vivado. Figure 7.12 shows a schematic of the im-
plementation and table 7.1 (p. 59) shows how much hardware the implementation utilizes.
From this, it is seen that a feasible implementation can be given with a look-up table.

7.4.2 Memory Issue in the EEPSM algorithm

The EEPSM algorithm has a challenge with large images and disparity ranges such as
those in this project in that it requires a large amount of memory for containing the cost
of each pixel at each disparity value. Considering all the variables in the pseudocode in
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logic element Utilization [·] Utilization [%]

LUT 32 0.06
FF 11 0.01

Table 7.1: Hardware utilization for ROM containing exponential values

section 4.1 (p. 26) and a variable size of 1 byte, keeping all these variables in memory will
require 13.8 GB.

Algorithm steps 1 2 3 4 5 6 7
Right image

Left image
SAD cost
Cen. cost

Combined cost
Permeability weights

Left aggregation
Right aggregation

Horizontal aggregation
Top aggregation

Bottom aggregation
Vertical aggregation

Table 7.2: Lifetime for variables in the EEPSM algorithm

Table 7.2 shows the lifetime of variables in the EEPSM algorithm. The algorithm steps in
the table correspond to the steps in the pseudocode. From this, it can be seen that a maxi-
mum of 5 variables is needed to be kept in memory at the same time. This is at step 2 and
this step requires 4.6 GB. It is not feasible to implement with this memory requirement
since the Zedboard only has 512 MB DDR3 memory and 256 Quad-SPI Flash memory. The
algorithm has to be changed to require less memory. Referring to the A3 model with this
new knowledge the design process will go back to the algorithm domain and modify the
algorithm to reduce memory usage. Referring to the Y-chart the design process will per-
form some iterations in the same abstraction level in the behavioral domain. Two methods
to decrease the memory usage have been considered.

The first method suggests cutting the input images into smaller sub-images. This is illus-
trated on figure 7.13 (p. 60). Figure 7.13b (p. 60) shows an example where the images are
divided along each axis and results in K× L sub-images. Performing the algorithm on one
sub-image at a time reduces the memory usage by a factor proportional to K× L so in the
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(a) Full images

(b) Dividing the images along both y and x axes

(c) Dividing the images along the y axis

Figure 7.13: Illustration of dividing the images into smaller sub images

case of K = L = 3 the memory usage could be reduced to 515 MB. But some problems can
occur when dividing this way. Looking at the triangle object in figure 7.13b it is seen that
the top of the triangle in the left image is in the rightmost column of sub-images while
it is in the middle column of sub-images in the right image. This will result in a false
matching when processing the sub-image containing the triangle top. To solve this issue
the original image can instead be divided along the y-axis as illustrated on figure 7.13c.
Since the stereo matching only occurs along the x-axis, this way of dividing the image will
not affect the matching the same way. The triangle top is, as seen in the figure, in the same
sub-image. But it will require smaller rows to acquire the same reduction in memory as if
dividing on both axes, since the reduction factor is proportional to L. Using the example
in figure 7.13c, where L = 3, the memory will only be reduced to 1.5 GB so L have to be
higher. It should be noted that with this method the stereo matching near borders between
sub-images will be a bit worse than if working on full images since the aggregation will
not include the cost values across the border.
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(a) Along both axes (b) Along y-axis

Figure 7.14: Image pyramid downsampling

The second method to reduce memory use is using an image pyramid. An image pyramid
is a down- and upsampling method which is often used in the computer vision field. It
works by convolving the image with a gaussian kernel and then remove the even rows and
columns which provide an image with a size reduced by a factor 4. This process can be re-
peated to downsample further. Each downsampled image is called a level in the pyramid
where level 0 is the original size of the image, level 1 is the image downsampled once, etc.
The original image size is reduced by a factor 2level+1 at each level. Figure 7.14a illustrates
an image pyramid with 2 levels. A strength of this method is that beside memory usage
reduction, fewer pixels are processed and this will result in the algorithm being faster.
Using the figure as an example the memory usage at level 2 is reduced to 579.4 MB.

Since pixels are removed then data is lost and the disparity precision will be lower than
with the original images. The most important data are those along the x-axis since the
stereo matching occurs along this axis. To avoid losing this data the image pyramid could
be modified to only downsample along the y-axis. This is illustrated on figure 7.14b. With
this modified image pyramid the size of the original image is reduced by a factor 2level at
each level. Using the example on figure 7.14b at level 2 the memory usage is reduced to
1.16 GB. This method introduces some pre- and post-processing. The images have to be
upsampled again after the algorithm has processed the image. The standard method for
upsampling using an image pyramid is to double the size of the current image by insert-
ing rows and columns of 0 next to each pixel or in the case of the modified version only
rows will be inserted. Then the image is filtered with a gaussian kernel. An issue with
this method is that since the upsampling is performed on the disparity map the calculated
disparity values can be changed by the filtering. This is unwanted and instead of filtering
the image, it has chosen to interpolate the rows containing 0 using linear interpolation.
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Comparison of methods

First, it is calculated how much the images should be divided or downsampled to reduce
the memory usage below 512 MB and then the python simulation created in section 4.3
have been modified to use one of the two methods. The changes in stereo matching and
runtime are presented in table 7.3 and figure 7.15 shows the resulting disparity maps.
For memory usage of method 1 to go below the available memory on the Zedboard, it has
to be divided into at least 10 sub-images and the memory usage will then be 463.5 MB.
It should be noted that the image division results in the lower and upper border of each
sub-image the disparity is equal to 0. This is resolved by setting the lower border equal to
the row just above it and the upper border equal to the row just below it. This equal to a
nearest neighbor interpolation.
For method 2 to go below the available memory it have to be downsampled 4 times and
then the memory usage is equal to 289.7 MB.

Method false matches [%] ∆ false matches runtime [s] ∆ runtime [s]
None 8.3 - 625 -

1 8.2 -0.1 593 -32
2 27.9 +19.6 44 -581

Table 7.3: Runtime og matching changes from each memory usage reduction method when using Motorcycle
image set.

(a) No method used (b) Method 1 used (c) Method 2 used

Figure 7.15: Resulting disparity maps using different memery usage reducing methods

From the results, it can be seen that method 2 reduce the runtime by a large margin but
the blurring in the image is too extensive and results in a lot of false matches. It also
introduces some large blocks of errors seen in the lower left corner of the disparity map.
Downsampling by only one level results in a fine disparity map with false matches equal
to 9.5% but already at level 2 the disparity map quality has degraded a lot and results in
false matches to be 15.2%. Method 1 doesn’t change neither the runtime or matching by
much and therefore this method is chosen to reduce the memory usage. The decrease in
false matches comes mainly from the top and bottom border of the disparity map since
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when using no method the algorithm doesn’t change these borders and they are equal to
zero whereas method 1 copies the line just above the bottom and below the top. If the
same functionality is added to the original algorithm the false matches will be 7.9%. The
reduction in run-time is believed by us to come from the python script processing smaller
matrices.

7.5 Wrap-up

A final FPGA implementation was not achieved due to time constraint for the thesis. But
the basic process for design an FPGA hardware implementation is described.
Some challenges emerged during design at higher abstraction levels. One of these chal-
lenges were the implementation of exponential which was implemented using a lookup-
table since the range of values were low. And another of these challenges is the memory
usage due to large images and a high disparity range. The reduce the memory it were
found that dividing the images into sub-images were feasible.





Chapter 8

Acceptance test

A final implement were not achieved due to time constraint for the thesis project so a final
acceptance test can not be preformed. This chapter will be left blank for this reason.
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Chapter 9

Conclusion

This chapter concludes on the project. In chapter 1 (p. 1) it was specified that the goal of
this project was to design and implement a stereo vision algorithm and some questions
were to be researched:

• What obstacles occur within stereo vision?

• Which stereo vision algorithm exist, both being computationally efficient and at the
same time providing good vision results?

• How can an architecture be designed and optimized for executing a stereo vision
algorithm?

The findings for each question will be discussed for each question below. In the end of
chapter 1 (p. 1) the A3 model were described and in chapter 6 (p. 45) the Gajski-Kuhn
Y-chart were described. These models were used for structuring the report and project. In
the end of this chapter the use of these models will be discussed.

1 What obstacles occur within stereo vision?

In chapter 2 (p. 7) the basics of stereo vision were researched along with some challenges
stereo vision brings along with it. With occlusions being a significant subject when dis-
cussing stereo vision, occlusions and the different types of occlusions were discussed and
different methods to find and fill these occlusions were researched. From this research,
it was found that some methods for filling occlusions exists. Four methods were looked
at in [12]. These methods where neighbor’s disparity assignment, diffusion in intensity
space, segmentation-based least square and weighted least square. The results from that
article were used to conclude that a simple occlusion filling method (neighbor’s disparity
assignment) would be used for this project since the focus is on execution time and the
improvement in matching was not high enough for neglect the runtime of the simpler
method.
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Another subject researched in chapter 2 (p. 7) was the depth precision. HSA Systems
requires a high depth precision for future assignments. HSA Systems specified a sensor
they wanted to use for the stereo vision system and it was calculated whether the wanted
precision where possible to achieve. It was found that the required depth precision was
possible to achieve by sacrifice the vertical scene size and using sub-pixel refinement.
Other subjects researched where rectification of images and the impact from color spaces.
The challenges with rectification were described but for this project, it was not researched
further since the test images used are already rectified. For the subject of color spaces
the foundings in [5] were used. From this, it was concluded to use grayscale images if
the impact on stereo matching quality were not too significant since grayscale images can
speed up the runtime but will always have worse stereo matching quality.

2 Which stereo vision algorithm exist, both being computationally
efficient and at the same time providing good vision results?

There exists a lot of stereo vision algorithms but HSA Systems reduced the search to algo-
rithms with a focus on edge preserving algorithms to ensure a good distinction between
objects. Two efficient algorithms which preserve the edge were found and these were: Effi-
cient Edge Preserving Stereo Matching and Fast Cost-Volume. In chapter 2 the algorithms
were described and then an algorithm were chosen to be used in this project. For choosing
an algorithm both algorithms were simulated in Python and the run-time of each algorithm
and the quality of the resulting disparity map were compared. To ensure that the program-
ming skills of the author don’t affect the choice of algorithm to use further in the project
the theoretical computational complexity of each algorithm were calculated. Both the sim-
ulation and the theoretical complexity calculations show that the Efficient Edge Preserving
Stereo Matching algorithm is better than the Fast Cost-Volume both when comparing the
computational complexity and the quality of the resulting disparity map. Efficient Edge
Preserving Stereo Matching was chosen due to the results of the comparison.

3 How can an architecture be designed and optimized for executing
a stereo vision algorithm?

With an algorithm chosen, the design process towards an architecture could begin. The
platform given by HSA Systems was a Zedboard which contains a Zynq Z7020 SoC. The
Zynq Z7020 SoC contains both a general purpose processor and an FPGA. This project
only focuses on an FPGA implementation hence the GPP part of the platform were not
used since this was stated in the project description from HSA Systems. The GPP part
was reserved for HSA Systems in case they wanted to use it for other applications in their
products.



69

A final FPGA implementation was not achieved in this project but the steps towards an
implementation such as scheduling and allocation were described in 7. It is concluded
the architecture design and optimization process for the EEPSM algorithm can follow the
general procedure for FPGA design. In the design process, we went through in this project
some challenges emerged: the implementation of exponential function and memory usage.

The EEPSM algorithm uses exponential function and this function isn’t trivial to imple-
ment. Different estimates and approximations were looked at: using a power series, using
CORDIC and using a lookup table. The power series implementation was unfeasible since
it required too many terms and too large constants. Among the CORDIC implementa-
tion and the Lookup table implementation, it was found that the lookup table would fit
this project the best. This is due to CORDIC being an iterative algorithm and hence will
result in higher runtime while lookup table only required an acceptable amount of logic
elements since the quantity of numbers used in the exponential function is limited.

Another challenge which emerged was a significant memory usage. The algorithm re-
quires saving a lot of copies of the cost images due to the aggregation step. This resulted
in the algorithm to require above the available memory on the platform. The algorithm
was changed to reduce the memory usage. Two different alterations were considered: Cut-
ting the images into sub-images or down-sampling using image pyramids. The alteration
was compared and it were found that the down-sampling altered the resulting disparity
map too much to be acceptable while the sub-image alteration didn’t affect the algorithm
much and hence it were chosen to cut the original images into sub-images.

It can be concluded that to implement a stereo vision algorithm using large image sizes
then memory usage can be a challenge and have to be optimized. The large images re-
quired for a high depth precision also introduces a high disparity range.

If the project were to be recreated we would ask to change the project description to include
hardware/software co-design implementation instead of only a hardware implementation.
This would require learning new theory about hardware/software co-design and use other
design models such as the Rugby model [13]. The ARM R© Processing system contains a
NEON engine which is a general-purpose SIMD engine [2]. The NEON engine works
with its own pipeline, register and execution hardware hence it can execute operations
parallel with the GPP. The instruction set for the NEON engine include instructions such
as MAC by vector, vector minimization, vector multiplication etc. These operations can be
multiple parts of the algorithm such as aggregation, SAD, and minimization when finding
the disparity value. The inclusion of a GPP can also simplify the memory management.
Large images and high disparity ranges require a lot of memory management. The GPP
could handle the memory management by controlling pointers to pixels which can be sent
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to architecture in the FPGA.

Evaluation of Design Models

To structure the report the A3 model were used. This model works in three domains and
helps limit focus in each domain. i.e. in the first part of report only focus on the applica-
tion, the second part focus on the algorithm and the last part focus on the architecture.
The limiting of focus area can help simplify parts of the design process and limit some
of the workload i.e. when researching solutions for occlusion filling the details of imple-
mentation in architecture is not considered. This helps to limit the details needed to be
considered.

To structure the design process of a hardware architecture the Gajski-Kuhn Y-chart were
used. This model can help to limit the design process into different domains and abstrac-
tion levels. The journey around in the model can be done in different ways i.e. starting at
low abstraction levels and moving up in abstraction levels or start at high abstraction levels
and moving towards lower levels. It was chosen to follow an FPGA methodology where
the design process starts at highest abstraction levels when you have reached a wanted
level of abstraction the FPGA software is used to synthesize the design and giving a final
implementation.

The models helped to structure the project work and in chapter 7 (p. 49) at some occasion
examples of information in later domains in the A3 model requires the design process to
backtrack into earlier domains to solve challenges.

The Gajski-Kuhn Y-chart were feasible for this project since it focuses on a hardware design
but if the GPP part of the Zynq SoC were to be used then the Y-chart would be insufficient
since the segregation between hardware and software is not naturally modeled in the Y-
chart.
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Appendix A

Allocation test

This appendix will explain how the average allocation of logic elements for each functional
unit is found.
The result is used in table 5.3 (p. 43) in chapter 7. The table is repeated here in table A.1

LUT FF BRAM DSP48

Adder 15 15 - -
Adder/Subtracter ≈ 16 15 - -
Subtract 15 15 - -
Multiplier - LUT 352 36 - -
Multiplier - DSP48 - - - 1
Divider ≈ 177 82 0.5 7

Table A.1: Number of logic elements used in average for each FU

A.1 General procedure

This section will describe the general procedure to find the utilization of logic elements
for the specified FUs.
First a new project is created in Xilinx Vivado 2016.2. All the settings are set to standard
except for the target which is set to ZedBoard Zynq Evaluation and Development Kit.
Then a block design is created and a single IP of the wanted type is added. Then for
each input and output a port is generated. The inputs are connected to the corresponding
ports and between the output of the IP and the corresponding port a Xilinx Slice IP core is
inserted which strips every bits except one (MSB) from the output and this IP is connected
to the output and the port. This is done to not use to many I/O ports which will make
. Using TCL commands the IP block is copied 99 times and for each copy a new slice
and output port is generated and connected to the copy. The inputs are all connected
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the original corresponding ports except for the divider FU where each copy will have its
own input ports. When everything have been connected then Vivado is set to generate
top-level HDL wrapper for the block design. Run synthesis and implementation and after
completion check the utilization table under the project summary. Note these values, go
to the block design and change one of the slices to full output width. Then run synthesis
and implementation again and notices if there is a difference in LUT utilization. The LUT
utilization is this value minus the LUT value from the former run + 1. These values should
be divided by 100 and inserted into table A.1 (p. 73).
The following sections will describe the specific settings for each FUs.

A.2 Adder

This FU uses the Xilinx Adder/Subtracter v12.0 LogiCORE IP. The IP is set to implement
using Fabric. The inputs are set to a width of 15 bits, mode is set to add and the output is
set to 15 bits and latency is set to 1. All control signals are disabled.

A.3 Subtract

This FU uses the Xilinx Adder/Subtracter v12.0 LogiCORE IP. The IP is set to implement
using Fabric. The inputs are set to a width of 15 bits, mode is set to subtract and the output
is set to 15 bits and latency is set to 1. All control signals are disabled.

A.4 Adder/Subtract

This FU uses the Xilinx Adder/Subtracter v12.0 LogiCORE IP. The IP is set to implement
using Fabric. The inputs are set to a width of 15 bits, mode is set to add subtract and the
output is set to 15 bits and latency is set to 1. All control signals beside the ADD signal
are disabled.

A.5 Multiplier - LUT

This FU uses the Xilinx Multiplier v12.0 LogiCORE IP. The IP is set to construct the mul-
tiplier using LUTs and is set to optimize for speed. The inputs are set to a width of 18
bits and the output is set to 36 bits and pipeline stages is set to 1. All control signals are
disabled.

A.6 Multiplier - DSP48

This FU uses the Xilinx Multiplier v12.0 LogiCORE IP. The IP is set to construct the mul-
tiplier using Mults and is set to optimize for speed. The inputs are set to a width of 18
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bits and the output is set to 36 bits and pipeline stages is set to 1. All control signals are
disabled.

A.7 Divider

This FU uses the Xilinx Divider Generator v5.1 LogiCORE IP. The algorithm type is set to
High Radix. The inputs are set to a width of 8 bits and the output fractional width is set to
8 bits and latency is set to 3. All control signals are disabled. With this only 5 instances
of the Divider is used since each instance uses a lot of IO and to ensure the ability to run
implementation without error.





Appendix B

Middlebury data set

This appendix contains a brief description over the data sets from Middlebury. The com-
puter vision department at Middlebury College have a large library of stereo pair with
ground truth[18]. These data sets are used all around the world for evaluating stereo vi-
sion algorithms. This thesis uses a subset of these stereo pairs.
These are: Tsukuba, Cones, Teddy and Motorcycle. The three first data sets are used due
to great knowledge of them from HSA systems. The last set, Motorcycle, is used due to it
having the ground truth as an .pfm file. With a .pfm file then comparing is easier since the
ground truth for other sets have scaling hence direct comparison is not possible. The four
data sets are presented below.

(a) Left image (b) Right image (c) Ground Truth

Figure B.1: Tsukuba - 384× 288 [15]
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78 Appendix B. Middlebury data set

(a) Left image (b) Right image (c) Ground Truth

Figure B.2: Cones - 450× 375 [16]

(a) Left image (b) Right image (c) Ground Truth

Figure B.3: Teddy - 450× 375 [16]

(a) Left image (b) Right image (c) Ground Truth

Figure B.4: Motorcycle - 741× 497 [17]
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