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Abstract

The focus of this project is to compare different reinforcement learning
techniques in regards to how they can be used for autonomous computer vision
based navigation. This is done by reviewing similar projects which solve related
problems that utilise reinforcement learning. The primary techniques that are
considered are Q-Learning and Neuro evolution of augmented topologies. This
is brought into practice by the implementation of a prototype which consists of
a robot that autonomously navigates in a real environment. It is shown how the
parameters for the reinforcement learning can be found with simulated annealing.
Furthermore is the importance of using an exploration function shown.
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1 Introduction

The topic of the presented project is autonomous navigation for mobile driving
robots. This project was executed subsequent to a project in which a form of
optical flow based navigation was used. This optical flow was obtained by the
use of so called Reichardt detectors [Basch et al., 2010].

Reichardt detectors are used to mimic the behavior of the neuron of
honeybees which are used to perceive motion [Cope A.J. and D, 2013]. It
was shown in this project that a small robot with a differential drive and a
single forward facing camera, can centre itself in a corridor. This is illustrated
in Figure 1

Figure 1: An illustration of how the robot in the first project was able to centre itself in a
corridor. For the illustration images of the two runs were merged.

The next natural step is to look at how other navigation tasks can be solved.

1.1 Motivation

The task of navigation is the task to find a suitable path from the current
position of the system, to a desired position. In the prior work, the desired
position was in front of the robot and the suitable meant not driving into the
walls of the corridor.

One can imagine scenarios that would be more complex and would have
sharper success criterias than this. For instance could a specific goal position
be required, that would force the robot to stop as well [Bischoff et al., 2013].
Furthermore different obstacles could block the way to the goal [Cherni et al.,
2015], [Tan and Cai, 2015], the driving conditions could change or the robot
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itself could have changing attributes (e.g. slower acceleration due to battery
exhaustion).

Another direction in which the project could be taken is to choose a robot
with a different kind of locomotion. This could for instance be a crawling robot
[Tesen et al., 2013], [Jatsun et al., 2014], [Nagai et al., 2015], [Dresscher et al.,
2014], a flying robot [Vieira et al., 2016], [Lee and Kim, 2013], [Dotenco et al.,
2015], [Suárez et al., 2014] or a swimming robot [Katzschmann et al., 2016],
[Manfredi et al., 2013], [Yuan et al., 2016].

It seems like there is a wide variety of autonomous robots to choose from,
which could solve a wide variety of problems in a lot of different scenarios.
This clearly shows, even though a specific solution to a specific navigation
problem might be useful, it would be desirable to find a general solution that
is applicable in a variety of scenarios and is not specific to a robot platform.

While autonomous acting robots in the past were restricted to research labs,
they have successively moved onto the private market and into mass prduction
(See Figure 2).

Figure 2: The drone Phantom 4 from DJI 1, Google’s self driving car 2and vacuum cleaner
Dyson 360 Eye3

Especially the private drone market has shown an impressive growth over
the past few years and analysts forecast it to grow massively in the future
[McNabb, 2016].

There are a number of professional application in which autonomous
moving robots could be used. Drones are being used in the film industry
to capture footage from angles that were inaccessible before. They are also
useful for surveillance, rescue missions and other applications where a different
camera angle is an advantage [Bonin-Font et al., 2008].

Autonomous vehicles are especially useful for applications that would
endanger humans otherwise due to a hostile environment (e.g. Planets [Chatila
et al., 1995], volcanic crater [Astuti et al., 2009], etc).

3Source: https://www.google.com/selfdrivingcar/images/paint/artworks/

mountain-view/dufayet.jpg
3Source: http://www.dyson.co.jp/medialibrary/Group/ShopContent/Hero/Products/

Japan/Robot/Hero_Robot_360eye_NickelBlue.ashx?w=378&bc=ffffff
3Source: https://www.google.com/selfdrivingcar/images/paint/artworks/

mountain-view/dufayet.jpg
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Furthermore could one imagine that the autonomy can take faster and more
rational decisions than a human. This is being explored by car manufacturers
that are developing autonomous driving (e.g. Audi, Tesla etc.).

One can choose among a wide variety of sensors, when designing a way of
letting the autonomous driving system perceive the world. A lot of the products
for which autonomous navigating could be useful are already equipped with a
camera or could easily be equipped with one due to its weight and low cost.
This is especially true, when comparing a camera to a LIDAR sensor, which is
used for navigation in Google’s self driving car (See Figure 2). The light weight
of a camera even makes the application on Unmanned Aerial Vehicles (UAV)
possible [Bonin-Font et al., 2008].

Computer vision has among other things successfully been used applied
to the tasks of self-localisation, automatic map construction, autonomous
navigation, path following, inspection, monitoring or risky situation detection
[Bonin-Font et al., 2008] - which are all problems in navigation.

Quite recently small embedded system like the Myriad 2 (See Figure 3)
have become powerful enough to perform even complex parallel computation
needed for computer vision while consuming little power [Barry et al., 2015].
Such an embedded platform can therefore be used to perform the computation
needed for navigation on the vehicle itself, rather on a remote server.

The light weight of the camera combined with the low power consumption
of the embedded system makes it possible to perform autonomous navigation
even on an UAV, while running the entire system on a small battery that can
be carried by the UAV.
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Figure 3: The Myriad 2 reference board from Movidius 4

Alongside with the growth in the private drone market, it has come to
several drone related accidents [Democrat and Chronicle, 2016]. This clearly
shows the need for smarter autonomous navigation which among other things
justifies the research in this area.

Also quite recently the first fatal crash was caused by an autopilot system
from Tesla, which did not detect a perpendicular crossing tractor against the
bright sky [Tesla, 2016]. This indicates that even though autonomous driving
has come a long way, that there is still research to be done.

1.2 Initial Problem Statement

In this project it is seeked to improve autonomous navigation for mobile
systems.

The sought solution should be applicable in a variety of scenarios and not
specific to a robot platform. Furthermore would it be desirable if the solution

4Source: http://www.movidius.com/solutions/vision-processing-unit
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could run on an embedded platform and would use a camera to obtain a
representation of the environment.

The main question that will be answered in this work is:

How to design a computer vision based autonomous navigation system
that can be used for a variety of problems and is not specific to the platform
it is being used on?

1.3 Structure

The rest of this project is structured in the following way: The different related
project are described in section 2. This is followed by an analysis in section 3.
After the analysis, the needed techniques are explained in section 4. To access
the different qualities of techniques several prototypes were implemented and
described in section 5 alongside with the practical challenges when using
computer vision in reinforcement learning. This is followed by section 6,
were the prototypes optimal settings are determined and their performance is
evaluated. The project is concluded upon in section 7.

2 Related Work

In order to answer the initial problem statement one first needs to understand
what navigation is in the context of mobile robot navigation. Cherni et al.
[2015] summarise navigation into answering the following three questions:

• Where are we?

• Where are we going?

• How to get there?

They describe that mobile robots face two main problems in navigation.
These are localisation, which refers finding ones location and orientation in
relation to the surroundings and path planning, which refers to finding a
collision free path between two points.

In visual navigation, self localisation is usually done by matching features
from the image from the system’s camera to features in a map [Bonin-Font
et al., 2008].

The way the path planning is execute relies on what kind of navigation
technique is used and what the objective of the navigation is.

Tan and Cai [2015] propose dividing path planning algorithms into two
categories. The first category is based on environment information directly,
while the second uses a structuralised model of the environment. They argue
that algorithms that are based on environment information directly most likely
will not find the ideal path in a complex environment.
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Cherni et al. [2015] describe navigation as either being global or local.
In global navigation the environment is known to the robot and the task

is planning the path that leads to the goal while avoiding obstacles in the
environment.

Local navigation refers to navigation where the environment is unknown
to the robot and it needs to detect obstacles using sensors and to avoid the
collision.

Bonin-Font et al. [2008] describe these distinctions as being two ends of a
scale ranging from a system acting deliberative or considered. Their distinction
is though finer and they establish different groups of navigation techniques.

2.1 Categories of Navigation Techniques

Bonin-Font et al. [2008] categorise visual navigation techniques into two major
groups, map-based and mapless navigation. Map-based navigation is further
divided into metric map-based navigation, topological map-based navigation,
local map-building navigation, and visual sonar techniques. The mapless
navigation on the other hand is divided into optical flow-based navigation,
appearance-based navigation, image qualitative characteristics extraction for
visual navigation and navigation techniques based on feature tracking. This is
illustrated in Figure 4.

Navigation

Map-based
navigation

Metric
map-based
navigation

Topological
mapbased
navigation

Local map-
building

navigation

Visual sonar
techniques

Mapless
navigation

Optical
flow-based
navigation

Appearance-
based

navigation

Image
qualitative-

based
navigationFeature

tracking-
based

navigation

Figure 4: The categorization of navigation techniques inspired by Bonin-Font et al. [2008]
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In this categorisation map-based navigation relies on building or/and using
some kind of map. This means that the map needs to be provided to the system
or obtained. The map is either a metric or a topological map. A topological
map is a graph-based representation of the environment. In the graph-based
representation every node represents a zone in the environment, and can be
associated with an action. A metric map includes information such as distances
or map cell sizes, while a topological map does not.

Local map-building navigation is distinguished from the two first map-
based navigation in the way that it does not use a global representation of the
environment. The local map is build instantaneous from the current image of
the system’s camera. The map has the form of a local occupancy grid, which is
used to tell where obstacles are in the field of view of the system’s camera.

The last category of map-based navigation techniques are visual sonar
techniques, which are used for obstacle avoidance as well. Here the system
tries to estimate the distance to the closest potential obstacle and turns away
from them. The sonar estimation often works under the premises that the robot
is driving on an unicoloured surface.

In mapless navigation no representation of the environment is needed. The
system directly takes decisions based on what it perceives.

The first kind of mapless navigation techniques that is described are Optical
Flow-Based Navigation Systems. Optical flow is the apparent motion of
features in a sequence of images due to the movement of the system itself.
Hereby the direction and magnitude of the translational is calculated for the
features. The overall logic that is used for Optical Flow-Based Navigation
Systems is that the system should turn away from zones of high optical flow.
The assumption that this is based on is that objects closer to the system produce
optical flow with at greater magnitude than objects far away. This is inspired
by the navigation that honeybees use.

Appearance-Based Navigation, which also is a mapless navigation
navigation technique, works in two phases. The first phase is called Pre-
training, in which images or prominent features of the environment are
recorded along with localisation information and/or with an associated control
steering command. In the second stage, the correct searing control is found by
matching the current obtained image of the system to the images of that were
recorded during the pre-training phase. Appearance-Based Navigation can be
further divided into two approaches. The first relies on image matching while
the second relies on feature matching in order to localise itself and to choose
the appropriate steering command.

Image Qualitative Characteristics Extraction is a mapless navigation
technique in which pixels are either classified as obstacles or free space. For
this two approaches exist. One is the model-based approach in which one
or more pre-defined models of known objects exist. The other is the sensor-
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based approach in which the sensor information is used directly to do the
classification.

The last mapless navigation category are navigation techniques based on
feature tracking. Unlike the other techniques, feature tracking-based navigation
does not incorporate obstacle avoidance. Instead the obstacle avoidance needs
to be implemented with a different method. The robot could for instance track
ground space and navigate towards the free space.

2.2 Model for Navigation

From the categorisation of navigation techniques from [Bonin-Font et al., 2008]
it can be seen that navigation techniques can have very different objectives and
that they make different assumptions about what the system knows and what
it does not know. While some researches are mainly concerned about how to
obtain a representation of the environment Zhao and Chen [2016] other just
assume that a representation is provided to the system Tan and Cai [2015] or
have a way of navigating without it.

In order to make this concept more clear the model shown in Figure 5 was
developed in this work. It shows all the tasks that a research in the area of
mobile visual navigation could be concerned about. The tasks are shown with
small boxes. The big surrounding boxes group these into the main choices that
are taken in a research. There are two main objectives which are goal finding
and obstacles avoidance. Most researcher are concerned about one of these or
both. The other groups are local navigation techniques and global navigation
techniques. The arrows between the tasks show the order between them. The
idea with this diagram is to classify other navigation techniques in terms of
which tasks they solve.

There are basically three ways to handle a task for navigation. The task
is accomplished by the system, it is assumed to be accomplished by another
system or the navigation task is constructed in such a way that it is obsolete.
Examples for this are the following related researches.

2.3 Path Planning

The focus of the work of Cherni et al. [2015] is path planning. They assume the
system can detect the angle to the borders of the obstacles and that the angle
to the goal position can be obtained. They also assume that the system knows
how to steer left and right.

In Figure 5 this research is both concerned with goal finding and obstacle
avoidance. This is addressed with local navigation. Which means that their
developed algorithm can be used for autonomous mobile robot navigation
which works in a dynamic and unknown environment. Since the detection tasks
both are solved and the research is not concerned about how the locomotion of
their robot works it is only concerned about the path planning.
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Detect obstacles directly

Detect goal directly

Obtain obstacles in map

Obtain goal in map

Self locate in map

Plan path

Execute motion

Local Navigation Global Navigation
Obstacle avoidance

Goal finding

Figure 5: The tasks that need to be solved in a typical navigation scenario.
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They describe that the main difficulty in navigation is to find the path from
the starting point to the target and at the same time avoid collisions.

They show in their experiments, that their algorithm is capable of solving
the problem of path planning. This means that it finds a collision-free path
between the starting point and the goal in cluttered environment containing
obstacles. This is achieved, by constantly calculating the needed angular
velocity in order to steer past the obstacles while moving closer to the goal.
This is shown in Figure 6.

0 1 2 3 4 5 6 7 8 9 10
0
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GOAL

obs
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obs obs

obs

obs

obs
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obs

X

Figure 6: The path that the robot takes in Cherni et al. [2015].

Tan and Cai [2015] also focus on path planning. Their algorithm needs to be
provided with a global map that contains the obstacles and the goal position.
Furthermore some kind of self localisation is assumed to be employed in order
to locate the robot on the map. It is also assumed that the system knows which
motor controls to use in order to steer the robot to a new position. This means
that their algorithm solves the same task in Figure 5 as Cherni et al. [2015], just
that they are using Global navigation.

The system is built with an improved Approximate Voronoi Boundary
Network (AVBN) and an improved D* algorithm. The map that is used in the
system is a 400x400 grids environment, where cells are either occupied or free.
The AVBN is then created by eroding the free areas until there is no free area

12



Autonomous Navigation through Reinforcement Learning in a Non-simulated
Environment • November 2016

left. The places where the occupied areas intersect is the path on which the
system should be able to navigate safely. These are the red lines in Figure 7.
The navigation works by finding the shortest path from the starting position
to the intersection area and the shortest path from the intersection area to the
goal position. Every place where more than two occupied areas intersect is
labeled as a node. These are the blue dots in Figure 7. Additionally the point
where the robot has to enter the path and the point where it has to exit the
path are labeled as nodes.

The system then has to search for the shortest path from the node where it
has to enter the path to the node where it has to exit the path. This is the path
from 0 to 9 in Figure 7. This search is then solved with an improved version of
the D* algorithm which is called reverse D*.

0

1 2

3

4

5

6

7 8

9

S

Q

Figure 7: The AVBN in Tan and Cai [2015].

2.4 Learning

Yusof et al. [2015] point out that transforming human expert knowledge into
computer program only allows a system to solve foreseen and tested outcomes
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compared to a system having self-learning capabilities. Therefore unanticipated
situations will lead autonomous systems to fail when lacking self-learning
capabilities. Therefore they describe that a self-learning system is a more
viable solution compared to a system relying on translating pre-defined expert
knowledge into computer program.

The pre-defined expert knowledge could be in the form of a map if the
”Obtain obstacles in map” and ”Obtain goal in map” in Figure 5 are solved
beforehand. Another form of pre-defined expert knowledge could be a model
over the locomotion of the system, which would mean the ”Execute motion”
task in Figure 5 is solved beforehand.

A Self-Learning System (SLeS) extract knowledge and learns from past
experience. It can thereby discover, classify and memorise new knowledge,
which is used to draw inferences.

This kind of behavior is often implemented with reinforcement learning.
One of the main differences to other machine learning algorithms is that
reinforcement learning does not require any prior training and instead learns
from experiences while trying to solve a problem. One of the examples that
often is used to show and compare different reinforcement learning techniques
is the light finding task [Velez, 2009], [Dini and Serrano, 2012]. This task itself
is a simple navigation task in which a robot autonomously tries to reach a light
emitting goal.

Velez [2009] develops an artificial neural network (ANN) that is evolved
with NEAT and used to control the locomotion of a robot. It teaches an one
armed robot to move both forwards and backwards in order to follow a light
(See Figure 8). For this the robot has to learn a pull and a push motion, which it
has to use dependent on if the light is behind or in front of it. The used fitness
is the displacement of the robot when moving toward the light. The light is
stationary until the robot reaches the light, after which the light disappears and
reappears on the other side of the robot. At this point the robot has to execute
the opposite movement. The input to the network are the angular positions of
the servos in the robot’s arm, a force sensor at the end of the arm, a contact
sensors on the bottom of the robot’s chassis, wheels mounted at the back of
the chassis (odometer), and a light sensor. The light sensor is a binary sensor,
which only shows if the light is in front or behind the robot. The evolution of
the neural network is deemed unrealistic to run on a real robot and is therefore
carried out in a simulator. It was found that some of the neural networks that
worked well in the simulator did not work well when ported to the real robot.

In terms of Figure 5 Velez [2009] use Local Navigation and are only
concerned about Goal finding. The goal detection is not relevant since the
system runs in a simulator. The path planning is solved implicitly by directly
mapping sensor reading to motion controls. The core of the research is therefore
motion execution.

14



Autonomous Navigation through Reinforcement Learning in a Non-simulated
Environment • November 2016

Figure 8: The simulated robot used in Velez [2009].

Dini and Serrano [2012] approach the light seeking task with Q-learning
(See Figure 9). They propose approximating the action-value function with a
feed forward artificial neural network. This network’s input neurons take the
variables that describe the state that the robot is in as well as the variables that
describe the actions that the robot could take. The output of the neural network
is a single neuron that gives the approximate output of the action-value, which
is the expected utility of performing the given action in the given state. They
claim that approximating the action-value would especially be an advantage
in larger problems. This addresses the size of the normally required Q-table
which holds expected utility and grows exponentially with the complexity of
the problem. Both leads to an exponential growing memory demand and an
exponential growing convergence time as either the state or the action space
grows. Experiments are both conducted in a complex and a simple setting and
with standard Q-learning and approximate Q-learning. All experiments are
conducted in a robot simulator called pyrobot.

The system is very similar to the system from Velez [2009] in terms
of Figure 5. The only thing that is added are sensors to detect obstacles
which means that the research is also concerned about the task of ”Obstacle
avoidance”.
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Figure 9: The simulated light seeking robot in Dini and Serrano [2012].

Yusof et al. [2015] develop a system that learns to avoid obstacles
in an unknown simulated environment. In the environment the system
controls a two-wheeled robot with a thirteen sonar sensors which provide
an approximation of the distance into different directions. The robot can be
seen in Figure 10.
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Figure 10: The simulated robot with the thirteen sonar sensors from Yusof et al. [2015].

The readings from the sensors are used as input to an unsupervised
weightless neural network learning algorithm called AutoWiSARD. This neural
network is used to identify, differentiate and classify the obstacles in the
environment. The idea is that it is supposed to handle the problem of
generalisation. In order to react to the detected obstacles with an action
the reinforcement learning technique Q-learning is used. Q-learning reacts to a
so called state which in this case is the obstacle detection from AutoWiSARD
with a specific action. It is then rewarded or punished by a reward mechanism.
In the work of Yusof et al. [2015] the system was rewarded with a value of 1
for driving forward and not hitting an obstacle, punished with a value of -0.7
when an obstacle was hit and slight penalties of -0.1 and -0.3 were given for
turning into the same direction and the opposite direction respectively.

The system is therefore only concerned about obstacle avoidance and
not goal finding when described with Figure 5. The path planning is also
included in the motion execution, since detected obstacles are mapped directly
to movement primitives.

Drchal et al. [2009] use a recurrent neural which is evolved with HyperNEAT
to control mobile driving robots in a robot simulation (See Figure 11). All
robots are equipped with the same neural network. The task of the robots is to
drive and stay on the road. The chosen fitness is the maximum average speed
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of the robots. The robots’ speed is reduced when not driving on the road. The
maximum speed therefore leads to the development of a network that lets the
robots stay on the road while driving fast. The input to the robots’ networks
are sensors organised in polar coordinates in two quadrants in front of the
robot. These are binary sensor which represents the surface friction (road or
no road). The network has two output neurons, which activations are used to
set the wheels acceleration. One of the future plan for the project is to use real
robots with omni-directional cameras as input devices.

It is claimed that the extension to omni-directional camera should be
straightforward, even if the surface detection is not explained in their work.

Since the robots described by Drchal et al. [2009] are only concerned about
driving fast and not towards a goal the system’s objective is obstacle avoidance.
Their system is a special case since the obstacles are in the form of surface with
a higher friction. Like the other described learning system is the path planning
done implicitly by executing motion directly.

Figure 11: The simulated mobile robots used by Drchal et al. [2009].

Gaskett et al. [1999] describe a method to use Q-learning for control tasks
which require continuous actions, in response to continuous states. This is
done by using only the state of a system as the input to a neural network.
The output of the neural network are samples from the action-value space,
which are used to interpolate the entire space. The developed system is used to
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control a simulated submersible vehicle to a target position by firing thrusters
located on either side of the vehicle (See Figure 12). The system is given
200 time steps to reach the target position after which a new target is set. It
is shown that the system successive get better at reaching the targets. The
performance is even increased by Advantage Learning, which is a variation of
Q-learning.

There are no obstacles in the test setup from Gaskett et al. [1999] the
objective of the research is therefore goal finding. Since no sensors are described
and the system is only running in a simulation with a known relative goal
positions it could either be used in global or local navigation.

Figure 12: The route the simulated submersible vehicle has taken in the test in Gaskett et al.
[1999].

Bischoff et al. [2013] suggest to use hierarchical reinforcement learning to
solve a navigation task (See Figure 13). In hierarchical reinforcement learning
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the original task is split into elementary subtasks in order to limit the search
space. The first subtask is to take the robot’s grid-cell position as the state
of the system and predefined movement primitives as action space. The goal
of the first subtask is to learn a policy that brings the robot to the goal cell.
The second subtask is to learn the execution of the movement primitives. In
this work the translation of the robots, x, y-position, and yaw Î¸ is the state
space and the the rotational speed of each three wheels is the action space.
While the first subtask can be solved in a discrete state and action space the
second is solved with continuous reinforcement learning. It is shown that the
chosen hierarchical architecture is suitable for learning robot navigation. The
learned policy can be updated online and therefore takes dynamic obstacles
into account. The position of the robot is determined by a tracking system
rather then a camera on the robot as in the other projects.

Bischoff et al. [2013] both incorporate obstacle avoidance as well as goal
finding in their first subtask. The second subtask solves the movement
execution in Figure 5.

Figure 13: The testsetup used in Bischoff et al. [2013].

3 Analysis

As it is established in the initial problem statement, is a system in this project
sought that is not specific to a robot platform. By looking at the work that is
related to navigation, it is clear that a lot of very specific solutions exist, which
accomplish very specific tasks in navigation.

In order to develop a system, that can be used in a variety of navigation
situations, as little assumptions as possible are made about what knowledge
is available to the system. Assuming that the system gets environment
representation provided is therefore not a viable solution. It is chosen to
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develop a system that can operate in an unknown environment. The same
counts for the locomotion of the system. It is therefore not assumed that the
system knows how motor commands relate to self movement.

The seeked system needs to use a local navigation method and it needs to
learn how the perceived relates to the motion that needs to be executed. By
learning this relationship on the fly, the system won’t need any prior knowledge
and unanticipated situations can also be handled by the system. Looking at
the related work, reinforcement learning seems to be a good solution for this
kind of problem.

3.1 Simulations

The described related projects that use NEAT are both used in a simulator. As
opposed to most neural networks which are trained with the backpropagation
algorithm, NEAT is trained with an evolutionary algorithm. For this kind of
training the performance of different neural network setups is evaluated over
a period of time. The best networks are then combined into new networks
and the evolution is started over again. The advantage of this approach is that
the weights as well as the topology (the layers and number of neurons in each
layer) is evolved. The disadvantage of this approach is that it requires running
multiple systems for a period before any adjustment is made. Stanley and
Miikkulainen [2002], who are the inventors of NEAT use the system to learn
an XOR gate for verification. For this task, the system starts with two input
neurons, one bias neuron and one output neuron and should learn to use a
hidden neuron. In his experiment the system is run 100 times, in which it finds
a structure for XOR in on average 32 generations, with 4755 networks networks
evaluated, (std 2553). A navigation task is most likely more complex than an
XOR gate and would therefore on average require more than 4755 evaluations
over a period of time and therefore probably was deemed unrealistic by Velez
[2009].

Furthermore it is not possible to reset the real world to give all network the
same starting condition as it is in the simulations, which would probably
increase the training time. Drchal et al. [2009] claim the extension of
their project to a real environment, should be straightforward with a omni-
directional camera. Velez [2009] tried to transfer to their trained system to a
real robot, which didn’t work. This might be interpreted the real world being
more complex than a simulator. This is why reinforcement learning techniques
that are meant to be used in the physical world should be tested in the physical
world in order to remove the ambiguity to the simulated and ensure actual the
applicability on real task. Furthermore the idea behind reinforcement learning
is that system learns from experience and is not pre-trained in a simulator.
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3.2 Continuous Spaces

One of the most common reinforcement learning techniques is Q-learning
[Stone, 2014]. Q-learning works by estimating the value for a given number of
discrete action executed from a number of discrete states allowing a system
to choose the action that yields the highest value. Reinforcement learning
with NEAT is able to map continuous states to continuous action, which is
useful in a lot of different navigation tasks. In order to use Q-learning with
continuous state, Gaskett et al. [1999] and Bischoff et al. [2013] use Neural
Networks. This has the advantage that their system can generalise over similar
states. It is important for Q-learning that the maximum value in a state can
be found. Bischoff et al. [2013] achieve this by feeding the state together with
every possible action through the network. However, its disadvantage is that
the actions have to be finite, which is not the case for a continuous action
space. Gaskett et al. [1999] feed the state into the network, but use a novice
interpolation technique which can predict any value for any action in the given
state from a few sample the action values space. The used interpolator is
designed in a way that the highest interpolated value always coincides with
highest sample value. This allows Q-learning with continuous actions.

3.3 Generalisation

While generalisation in some parts of navigation is essential for fast learning,
it is in other parts fatal. Bischoff et al. [2013] solve this, by splitting the
learning into how to execute movement primitives (generalised) and where
to execute which movement primitives to avoid obstacles (no generalisation).
Compared to the other described projects, the robot’s position is determined
with a tracking system. While this would work for specific applications
of autonomous navigation is there a wide variety where this would not be
possible (e.g. flying a drone outdoor, driving autonomous car etc.). This input
is essential as a feedback for learning the movement primitives.

In the test performed by Gaskett et al. [1999], the submissive vehicle learns
how to set its thrusters to get to a specific goal position. This could be seen
as movement primitive, which could be combined with hierarchy learning
presented by Bischoff et al. [2013].

3.4 Final Problem Statement

The goal of this project is to find a reinforcement learning algorithm, that can
be used for autonomous navigation based on the input from a camera. This
should be implemented as a self-learning system in order to be applicable in a
variety of navigation problems and work on different robot platforms. This
has the advantage that the system does not have to be pre-trained i.e. learns
from experience and make less mistakes over time.
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From the analysis of the related work can be seen that directly using NEAT
for reinforcement learning does not yield good results in a real environment.

Furthermore it is established that directly using Q-learning brings some
undesirable limitations to the system.

It was therefore chosen to focus on approximate Q-learning. Since Gaskett
et al. successfully implement approximate Q-learning for a continuous action
and state space, their approach is used as a starting point for this project.

Gaskett et al. [1999] show that their system is capable of learning to
navigate using approximate Q-learning. Even though this is established to be
successful would it be of interest to now how good the Q-function actually is
approximated, which is why one of the research question is:

• How well is the Q-function approximated by Gaskett et al.’s method?

Since Gaskett et al. [1999] only test their system in a simulated environment
one of the research questions of the here presented work is:

• Is the adapted system working in a non-simulated environment?

Furthermore it is of interest if the system would work in a scenario where
it perceives the world via a camera, which is why the next research question is:

• How can Gaskett et al.’s method be adapted in order to work with
computer vision on an embedded platform?

4 Theory

In this section the theories and concepts that are used in this project are
explained. All symbols in the following equations are adjusted to match the
work described by Watkins and Dayan [1992] in order to keep the notation
consistent.

4.1 Reinforcement Learning

In Reinforcement Learning a training dataset is generated by an agent’s
interactions with the environment. This is different from most machine learning
algorithms in the way that the training-set normally is given beforehand.
In response to an action taken by the agent, the environment generates an
observation and an instantaneous cost or reward according to some (usually
unknown) dynamic. This is illustrated in Figure 14.
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Figure 14: Reinforcement learning.

The agents task is to select actions that minimises some measure of a
long-term cost [D’Addona, 2014].

The environment in Figure 14 is often formulated as a Markov decision
process.

A Markov decision process can mathematically be described by:

• a set of states X.

• a set of a actions that can be taken from the states A.

• the probabilities Pxn ,y[an] of landing in state y after having taken action a
from state x at any time step n.

• the rewards Rx(a) for taking action a from state x.

• the discount factor γ ∈ [0, 1] which describes how much the rewards
importance is decaying over time.

[Watkins and Dayan, 1992]
In the Markov decision process, the probabilities Pxn ,y[an] of landing in a

state y are only conditioned on the previous state x and the taken action a.
They can therefore be rewritten as shown in eq. (1). This is called the Markov
property [Emigh et al., 2015].

Pxn ,y[an] = P(yn = y | xn, an) (1)

The long term cost in the Markov decision process is minimised by
maximising the discounted sum of future reward given by eq. (2). This function
is not explicitly mentioned by Watkins and Dayan [1992], but can be derived
from their description and gains the understanding of the following.

∞

∑
n=0

γnRxn(an) (2)

The agent’s task is to determine an optimal policy π∗(x), which maximises
the sum in eq. (2). The asterisk specifies that the policy is optimal and not just
any policy π(x)

The policy describes which action a should be executed in which state x.
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It is important to note that eq. (2) contains all rewards that the system will
get in the future and not only the immediate reward. This is essential when
the optimal policy requires the agent to take actions for which it receives a low
immediate reward, but enters states from which high rewards can be received.

Since rewards that are received sooner than later are more valuable, the
future rewards are discounted with respect to how far they are expected to be
received in the future. This is controlled by the discount factor γ, which is used
to weight each reward by its delay. γ is usually chosen to be between 0 and 1.
A γ of 1 would mean that future rewards are as important as the immediate
rewards and 0 would mean that they have no impact on the agents decision.

An Markov decision process is considered to be solved when the optimal
policy π∗(x) is found, which means that it maximises eq. (2) from any state.
[Emigh et al., 2015].

The two main approaches for this are model based and model free
reinforcement learning. In model based reinforcement learning, the
probabilities Pxn ,y[an] and the rewards Rx(a) from the Markov decision process
are learned. When these are considered to be known, the policy can be
formulated offline using methods such as value iteration and policy iteration
[Emigh et al., 2015].

These rely on evaluating the policy and the value for all states with eq. (3)
and eq. (4). In this process an array of actions and an array of values is kept,
which is updated with eq. (3) and eq. (4) until the policy values stop changing.

π(x) = arg max
a

{
∑
y

Pxn ,y[π(x)] (Rx(π(x)) + γVπ(y))

}
(3)

Vπ(x) = ∑
y

Pxn ,y[π(x)] (Rx(π(x)) + γVπ(y)) (4)

In policy iteration [Howard, 1960] eq. (3) is evaluated once for all states
after which eq. (4) is evaluated until the values stop chaining. These two steps
are repeated until also the policy stops changing.

In value iteration [Bellman, 1957] eq. (3) and eq. (4) are updated together,
by repeatedly evaluating eq. (5).

Vπ(x) = max
a

{
∑
y

Pxn ,y[π(x)] (Rx(π(x)) + γVπ(y))

}
(5)

In model free reinforcement learning the policy is learned directly without
learning the probabilities Pxn ,y[an] and the rewards Rx(a).

4.2 Q-learning

Q-learning is one of the most commonly used reinforcement learning
techniques [Stone, 2014]. It is model free since Pxn ,y[an] and Rx(a) are not
computed.
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Instead the action-value function is learned, which is also called Q-function.
This function returns a value for every action from every state of the Markov
decision process. The function, from Watkins and Dayan [1992] can be seen in
eq. (6).

Qπ(x, a) = Rx(a) + γ ∑
y

Pxy[π(x)]Vπ(y) (6)

When the Q-function is known for every action from every state, the optimal
policy corresponds to executing the action in every state that yield the highest
value.

In standard Q-learning a look-up table representation of the Q-function is
used. This table has one field for every possible combination of an action that
can be taken from a state. This is illustrated in Figure 15. This table is usually
initialised with small random numbers. The agent therefore chooses random
actions when presented with a state for the first time.

x y z
a Q(x, a) Q(y, a) Q(z, a)
b Q(x, b) Q(y, b) Q(z, b)
c Q(x, c) Q(y, c) Q(z, c)
d Q(x, d) Q(y, d) Q(z, d)

Figure 15: Look-up table representation of the Q-function.

The procedure that an agent in Q-learning has to execute consists of
determining in which state the system is, choosing an action, determining in
which state the system landed and learning from the received reward. The
update of the Q-function is described by Watkins and Dayan [1992] and shown
in eq. (7). The time of each variable is given by their subscript, n denotes any
point in time of the learning process and α the learning rate.

Qn(x, a) =


(1− αn)Qn−1(x, a)+

αn[rn + γVπ
n−1(yn)] if x = xn and a = an

Qn−1(x, a) otherwise

(7)

where

Vπ
n−1(y) = max

b
{Qn−1(y, b)} (8)

The learning process in eq. (7) is mimics value iteration.
In the procedure a prediction is update with a target value. The prediction

value is the until that point believed true value, in this case Qn−1(x, a), and
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the target value is the new believed true value, in this case rn + γVn−1(yn).
The Q-value is updated by a combination of the new and the old value. The
learning rate α is used to regulate how much of the old and how much of the
new value is used.

A desirable property of Q-learning is that it works without any prior
training of the system, since the relationship between states actions and rewards
is learned on the fly. Additionally the system will be able to adapt to a changing
environment and adjust the model of its surrounding if the current model is
contradicted.

4.3 Exploration

While it might be that it seems like a good idea only to choose the action
that yields the highest Q-value, is likely that the agent will fall into a local
maximum of the total discounted expected reward, while the Q-function is
being learned.

The question here is if the agent should take the action that looks the most
appealing according to the model or if it should try out something new.

Choosing only the actions that yield the highest Q-value of the current
model is called exploitation while choosing an actions that according to the
current model is suboptimal is called exploration. The problem with only
exploiting is that the agent will not learn about actions that are assumed to be
suboptimal, when they are really unexplored.

This could be due to the fact that the environment has changed or that the
agent has not tried the action often enough to have a good representation of
the Q-value.

In order to balance exploration and exploitation an exploration function
is used. The exploration function decides which action to take based on the
Q-value of the available actions and other parameters.

ε-greedy is one of the simplest exploration functions, which chooses the
optimal action and with a probability of ε a random action.

A more sophisticated method is the soft-max action selection. In this
method the probability of taking an action is the fitness of that action divided
by the sum of all action’s fitnesses. The fitness in this case would be the
Q-value. The probability of taking an action a is given by eq. (9), where T is
used to control the amount of exploration [Sutton and Barto, 2005].

p(a) =
eQ(a)/T

∑n
b=1 eQ(b)/T

(9)

4.4 Approximate Q-Learning

One problem that exists with standard Q-learning is that it does not generalise
across similar states or actions. That means that if the action space is extended
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by only one action, the action state space grows by the number of states and
vice versa.

The convergence time therefore grows exponentially with the size of the
reinforcement learning problem that is to be solved.

Q-learning is therefore limited to problems of a certain size. To avoid this
problem, one can approximate the Q-function. Rather than learning a lookup
table for every possible scenario (consisting of a state and an action) one can
learn how to weight features that describe the scenario in order to get the
Q-value. The weights of the features can be updated in the same way as the
Q-value for a single scenario.

The simplest form of learning how to weight the features is called linear
regression. In order to learn more complex non-linear relations a neural
network can be used.

It is worth noting that Watkins and Dayan [1992] assume a look-up table
representation of the Q-function in order for it to converge. Furthermore, its
convergence is only guaranteed if the learning includes an infinite number of
training samples, while the episodes need not to be consecutive.

4.5 Neural Networks

In the problem domain of supervised learning, artificial neural network
(referred to as neural network in the context of machine learning) are used to
learn a function that maps X → Y given pairs of (x, y), where x ∈ X and y ∈ Y.
The main advantage of neural networks is that they can approximate non-linear
relations. This is especially useful when the complexity of data or task makes
the by hand design impractical. Neural networks consist of interconnecting
artificial neurons which are programming constructs that mimic the properties
of biological neurons[D’Addona, 2014]. An example of this can be seen in
Figure 16, where each grey circle symbolises an artificial neurons and each
arrow an interconnection.

28



Autonomous Navigation through Reinforcement Learning in a Non-simulated
Environment • November 2016

x1

x2

x3

x4

y1

y2

y3

Hidden
layer

Input
layer

Output
layer

Figure 16: An example of a neural network structure.

A widely used type of composition for neural networks is the non-linear
weighted sum [D’Addona, 2014]. For Figure 16 this is shown in eq. (10), where
yj(x) would be the output of any neuron j, x would be the input vector to the
network, f j the neuron’s activation function, I the subset of neuron connected
to j and Wji is the weight connecting neuron j to i.

yj(x) = f j(∑
i∈I

Wijyi(x)) (10)

From eq. (10) the similarity to biological neurons can be seen. Biological
neurons communicate with each other by sending electronic pulses to each
other. The input to the function can be seen as frequencies of these pulses.
After a biological neuron has received enough input pulses, it will output a
pulse to other neurons. This is modelled by a non linear activation function
[Vreeken, 2003].

Back propagation

The back propagation algorithm can be used to adapt the weight of a neural
network in order to perform a mapping from X → Y given a training set of
pairs of (x, y) where x ∈ X and y ∈ Y. Back propagation is a gradient-descent
algorithm, which means that it uses the gradient of the error derivatives with
respect to the weights to reduce the error the system makes.

For this the error is described as the function of the system’s weight vector
of the system E(w). By moving the weight vector in to the opposite direction
of the gradient vector the steepest error decrease can be achieved Nikolaev and
Iba [2006].

The back propagation can be described in two passes a forward pass and
a backward pass. In the forward pass the outputs of neurons in the network
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are computed. In the subsequent backward pass the error made by the system
is back propagated and the weight are updated with in the direction of the
greatest error descent.

A commonly used cost function to determine the error is the mean-squared
error function [D’Addona, 2014], which is shown in eq. (11). The 1

2 is added, so
the derivative becomes (y(x)− t). Here t is the target value from the training
dataset and y(x) is the output of the system when given the x as input.

E =
1
2
(y(x)− t)2 (11)

The partial derivative with respect to any weight from neuron i to j is shown
in eq. (12).

δE
δWij

= fi(xi) · delta(j) (12)

where

delta(z) =


f ′z(xz) · (yz(x)− tz) if z ∈ output-

neurons
f ′z(xz) ·∑m∈M delta(m) ·Wmz otherwise

(13)

The error derivatives shown in eq. (12) were derived from the functions in
Nikolaev and Iba [2006] to better show the recurrency of the part of the called
delta(z) shown in eq. (13). In the functions, x is the input to any neuron, f is
the activation function, f ′ is the derivative of the activation function, and M is
the subset of neurons sending to neuron z.

The algorithm can be implemented in batch mode or in incremental mode
Nikolaev and Iba [2006] as follows:

In the batch mode the error derivatives with respect to the weights are
accumulated for the entire training set. These accumulated error derivatives
are used to perform one training epoch with gradient descent. The error that
is minimised is the error made on the entire set. This makes the update little
sensible to outliers and noisy samples in the training set.

In incremental back propagation, the weights are updated iteratively by
finding the error derivatives for one sample at a time and subsequently
performing an update. The error that is minimised is the error made on
the single sample. This mode converges slower than batch, but is better at
escaping poor local minima on the error surface for the entire sample.

Momentum

The momentum method is a method that improves the convergence time, by
lowering oscillates of the weight updates. This is done by updating the weights
with the current derivatives and the attenuated last update. In eq. (14), the wn
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is the weight at time n, ∆wn it the update that would have been performed
without momentum and α∆wn−1 is the attenuated update from previous time
step Nikolaev and Iba [2006].

wn+1 = wn + ∆wn + α∆wn−1 (14)

This method cancels a potentially oscillating part of ∆wn out, while building
up momentum in the non oscillating direction.

4.6 Continuous States and Actions

A lot of problems in the real world require a system to respond to continuous
states with continuous actions. Since continuous features can be used in the
function that is used to approximate the Q-Value, this problem gets partially
solved.

As it can be seen in eq. (8) it is necessary for update of the Q-function to
find the maximum Q-Value in a given state y. This is not a trivial task, when
both the state and the action are used as input to a function that approximates
the Q-value and is able to model non-linear relations. Gaskett et al. solve this
problem by approximating the entire action value space based on a given state.

The used interpolation scheme is called wire-fitting, which is used to
interpolate the value for any action in a given state based on samples for
specific actions in the action-value space. The samples are called wires and
consist of the value q and the action vector u, given a state x. The interpolation
function is shown in eq. (15).

Q(x, u) = lim
ε→0+

wsum(x, u)
norm(x, u)

(15)

where

wsum(x, u) =
n

∑
i=0

qi(x)
dist(x, u)

(16)

and

norm(x, u) =
n

∑
i=0

1
dist(x, u)

(17)

where

dist(x, u) = ||u− ûi||2 + c(qmax(x)− qi(x)) + ε (18)

In eq. (16), eq. (17), and eq. (18) i is used to describe the index of the wire.
Additionally qmax is used to describe the value the highest value among the
wires, c is a smoothing constant, and ε should avoid the division by 0.
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The wires can be updated with gradient descent, similar to the neural
network, in order to better match a value after having taken an action. For this,
the partial derivatives of the error with respect to the components of the wires
need to be found. The mean-squared error function for is shown in eq. (19)
and its derivative is shown in eq. (20), where w could be any component of
the wires, Qp(x, u) it the predicted output, and Qt(x, u) is the received output
after having taken action u from state x.

E =
1
2
(Qp(x, u)−Qt(x, u))2 (19)

δE
δw

= (Qp(x, u)−Qt(x, u)) ·
δQp(x, u)

δw
(20)

The partial derivatives of Qp(x, u) are given in eq. (21) in terms of qk and
in eq. (22) in terms of uk,j.

∂Q
∂qk

= lim
ε→0+

norm(x, u) · (dist(x, u) + qk · c)− wsum(x, u) · c
[norm(x, u) · dist(x, u)]2

(21)

∂Q
∂uk,j

= lim
ε→0+

[wsum(x, u)− norm(x, u) · qk] · 2 · (uk,j − uj)

[norm(x, u) · dist(x, u)]2
(22)

Gaskett et al. [1999] state that eq. (21) is inexact when qk = qmax. It is though
not mentioned what to do about this fact. The magnitude of this problem
becomes evident when taking the action that yield the highest reward. In that
case the conditions in eq. (23), eq. (24) and eq. (25) would be true.

distmax → 0+ if u == ûi and qi(x) == qmax (23)

wsummax → ∞+ if distmax → 0+ (24)

normmax → ∞+ if distmax → 0+ (25)

Under these condition, eq. (21) would become eq. (26).

∂Q
∂qk

= lim
ε→0+

∞+ · (0 + qk · c)−∞+ · c
[ 0

0 ]
2

(26)

Gaskett et al. [1999] state that ε should avoid the division by 0. One might
therefore think that setting ε to a small number resolves the problem. This
is not the case as can be seen by substituting a large number for ∞+ and its
reciprocal for 0 in eq. (26) which would become a eq. (27) and always be a large
negative number.

∂Q
∂qk

= 1− 1
1

∞+ + qk ∗ ε
−∞+ ∗ c (27)

This problem can be resolved by either setting c = ε, which would lead
to a derivative of approximate 0 or by just ignoring the the derivative in the
gradient descent update.
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4.7 Exploration

An aspect that is not really covered by Gaskett et al.’s work is how the system
should choose between exploration and exploitation.

It was therefore chosen to try ε-greedy and an adapted version of the
soft-max action selection. Standard soft-max action selection only works with
discrete actions as seen in eq. (9).

In order to use this kind of mechanism in this project, it was chosen to
observe the distance that the wires had to each other. When the system is
started all wires are roughly in to the same area around 0. The more detailed
the model gets the more widespread the wires have to be. It is therefore chosen
to take a random action with the chance given by eq. (28). Otherwise the
system would act greedy. The dist() function that is used is the is the euclidean
distance and T would again control the amount of random behaviour.

p(arnd) = e
∑i dist(wiremax ,wirei)

T (28)

4.8 Parameter Tuning

For the reinforcement learning algorithms, investigated in this project, a variety
of different parameters can be set. It is therefore important to access the right
parameters for the reinforcement learning algorithms.

The parameters were set with the stochastic search method simulated
annealing which can be used for both discrete and continuous optimisation
problems [Pardalos and Mavridou, 2009]. This was mainly done to test for the
correlated effect of changing parameters together.

The idea with the simulated annealing is that parameter combinations are
seen as states with energy. The energy is a measurement of how good the state
is. The system can move from a state to a neighbour state, by perturbing the
current state.

Simulated annealing will always move to states that have a higher energy
level than the current state. It will also move to states with a lower energy
level with a probability that depends on the energy difference between the
two states. The probabilities for this is seen in eq. (29), where qt is the current
state, rt+1 is the subsequent state and E() is the energy function [Pardalos and
Mavridou, 2009]. kb is a physical constant known as the Boltzmann constant.
T is used to control the the amount the probability to moving to a state with a
lower energy and should be decreased over time.

p = exp
(
−E(rt+1)− E(qt)

kBT

)
. (29)
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5 Proposed system

This section describes the implementation of the proposed approach that is
used to conduct the experiments in section 6.

Furthermore is the first research question ”How can Gaskett et al.’s method
be adapted in order to work with computer vision on an embedded platform?”
answered by describing the changes that were found to be necessary. The
success of this is evaluated in section 6.

5.1 Hardware

The Raspberry Pi 2 Model B [RaspberryPiFoundation] was used to run the
program on. The Raspberry Pi 2 Model B is a small ARM based computer
that is developed by the Raspberry Pi foundation, which features a 900 MHz
quad-core processor and 1 GB of ram. It was used with the Raspberry Pi
camera module V1, in order to provide visual input to the system. It was
powered with a 5000mhA USB battery back and connected over Wi-Fi with
a USB WiFi dongle. The execution of actions was done with the educational
robot Thymio II with a differential drive. The Thymio II [Prof Moti Ben-Ari]
features different kinds of actuators and sensors which can be accessed over
the USB interface. The hardware setup can be seen in Figure 17.

Figure 17: The hardware setup.

The choice of the embedded system and the robot platform is not that
crucial since one of the goals of this project is that the developed system
should be applicable on a variety of platforms. It is though worth noting that
the Raspberry Pi 2 Model B is definitely not the fastest embedded platform
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especially when it comes to performing parallel computations (essential for
image computer vision). One of the reasons why the Raspberry Pi 2 Model
B was chosen in this project, was that the computational limitations of the
Raspberry Pi would ensure that the developed system also could run on less
powerful embedded.

The other reason was that it runs a full Linux system, which offers a lot
of flexibility in the development. One can freely decide what programming
language to use and has more or less the same options as on a desktop
computer.

The Raspberry Pi can be interacted with over a ssh connection together
with a SFTP connection in order to have access to the files on the Raspberry Pi.

The Raspberry Pi can access the Thymio’s actuators and sensors over
the command-line utility asebamedulla. This can be done with third party
languages such as Python, Perl or any language that supports the D-Bus
protocol [Prof Moti Ben-Ari].

As this system should be vision based are only the actuators of the Thymio’s
used. The input of the system is taken from the Raspberry Pi camera module
V1, which is accessed over the picamera library.

Reinforcement Learning System

In this section the reinforcement learning process that is implemented in this
project is described. It is here focused on explaining the overall idea of the
implementation, on the problems that were faced, and the way they were
solved. All parts of the system were implemented in python in order to have
full control over the system behavior and to be able to determine the state of
all the variables at runtime.

The Framework

Since the implemented reinforcement learning techniques in this project are
based on Q-learning, it is possible to describe them in a general framework.

A simplified version of this framework, can be seen in the flowchart in
Figure 18. This flowchart shows the main loop of the system. The essential
variables that have to be understood are the previous state of the system s, the
current state s′, the last taken action a and the reward r that was received due
to action a.

When the system is started, there is no previous action or state, which is
why they are both set to None. In the main loop, the state of the system is
acquired base on the image from the camera. It is then checked if there is a
previous state and action i.e. there is an experience to learn from. In this case
the reward is calculated based on the new state and the model is adjusted in
the learn function. The next step would be determining the next action that
should be carried out based on the state s′. Before carrying out the action and
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returning to the beginning of the loop again the state s′ would be saved as the
previous state s for the next iteration.

Start

s = None
a = None

image =
getImage()

s′ = imageToState(image)

if s != None
and a != None

a = getAction(s′)

s = s′

executeAction(a)

r = getReward(s′)

learn(s,a,s′,r)

F

T

Figure 18: The program flow of the reinforcement learning.
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Delayed State

The state of the system determined based on an acquired image from the
camera. The execution of an action is done by setting the wheels of the robot
to a specific speed with the dbus library 5.

The reinforcement learning therefore tries to learn the optimal policy for,
which speed to set the motors of the differential drive to, dependent on the
input from the camera in order to maximise its reward. An important thing
to note is that acquiring the state of the system involves computationally
expensive image processing. This means that the state of the system might not
be the current state of the system any more when it is received by reinforcement
learning. In fact, if the program shown in Figure 18, simply sets the wheel
speed of the robot and immediately receives a new image from the camera, the
action will have no effect on the following state, but on the state after that.

Furthermore, the effect of setting the wheels to a specific speed would
depend on the time it takes to complete one program loop, which was measured
not to be constant.

In order to avoid this problem, the system was setup to drive with a certain
speed for a specific time, while pausing the program. The wheels were stopped
before returning to the main loop. This leads to a less desirable start stop
policy, but is necessary for a accurate state representation.

Learning Duration

Another time related problem is that the learn part seen in Figure 18 can take
up very different amounts of time. This is because the learning time depends
highly on the complexity of the model. Even with the same learning model,
the time varies from run to run dependent on how much the model needs to be
adjusted e.g. a neural network which is adjusted with back propagation until
a certain error is reached. This either leads to a system that stalls or carries
out the same action for a undefined long time, dependent on how the delayed
state problem is handled.

In order to minimise this problem the learning is carried out in a separate
thread. Every time a new experience is available, the system checks if the
thread is idling in which case it will be assigned a new experience to learn
from. This means that there might be experiences that are dropped, similar to
frames that can’t be processed fast enough. This is illustrated in Figure 19.

In order to avoid race conditions, two versions of the model used by the
reinforcement learning exist. One is used for learning and the other to get
actions for execution. After each learning step, the adjusted model is copied to
replace the the executing model. This is done while stalling the other thread.

With this method the leaning process is reduced to the time it takes to copy
the model.

5https://www.freedesktop.org/wiki/Software/dbus/
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Frames

getState()

execute()

learn()

Figure 19: The timing of the program.

The Wire Fitter

The wire fitting interpolation was implemented as explained by Gaskett et al.
[1999]. In order to make sure that it was being adapted correctly by the
implemented gradient descent, was the value space plotted after making the
system adapt to the same wires. One of these plots can be seen in Figure 20.
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Figure 20: A two dimensional action space

5.2 Computer Vision State

With convolution neural networks being a very popular choice one could
imagine to train a CNN to recognise landmarks in the environment that guide
the navigation. Throwing problems like misclassified landmarks into the
learning process seemed though a bit ambitious before having tested that the
learning of the navigation actually worked. It was therefore chosen to use
landmarks that are easy to recognise and to postpone the extension to CNNs.
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Quick Response Code and unicoloured patches of cardboard were
considered as easy to recognise landmarks.

As the classification of the unicoloured patches of cardboard was less
susceptible to misclassification due to lens distortion and partially occlusion
was it chosen over QR codes.

For the colour classification images of the colour patches were taken under
different viewing conditions (angles and lighting). As the Pi camera module
measures YUV420 values were these mapped to the HSV colour space. In the
HSV colour space the mean and the variance of the colour were determined
across the different samples.

As the hue is a circular value one needs to take extra care when determining
its distribution. A reasonable measure of circular distance between two points
A and B with angles θ1 and θ2 is given by eq. (30) from [Roy et al., 2012].

d(A, B) = 1− cos(θ1 − θ2) (30)

With the available mean and variance of the colour samples the Malahanobis
distance between a new colour sample and the colour distribution can be
determined. This can be used to measure if a new pixel belongs to the colour
or not.

In order to make the classification as computational inexpensive as possible,
a lookup table was computed. This lookup table directly maps the output from
the camera to several class images. Each of the class images contains binary
pixels describing if the colour is part of the class or not.

The final classification of 5 colours could be executed in 2̃.74ms for an
image with a QVGA resolution on the Raspberry Pi 2.

I order to determine the position of the colour patch in the image the centre
of gravity in each class image was used.

6 Experiments

In this section the experiments that were conducted to answer the research
questions are explained.

The question ”How well is the Q-function approximated by Gaskett et al.’s
method?” is addressed in the Parameter test. As a comparison to Gaskett
et al.’s method standard Q-learning is used on a rasterised state and action
space. This test also serves the purpose of tuning the parameters of the learning
method.

In the subsequent Non-simulated test the parameters are used. This test
serves the purpose of showing that the proposed system for computer vision
on an embedded platforms is working. It therefore confirms that the adaptation
of Gaskett et al.’s system are working and helps to answer ”How can Gaskett
et al.’s method be adapted in order to work with computer vision on an
embedded platform?”
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Furthermore the test is carried out in a non-simulated environment and can
there be used to answer ”Is the adapted system working in a non-simulated
environment?”.

6.1 The Adapted Task

In this section the task that is solved in the parameter test and the non-
simulated test is explained. This task is held as close as possible to the task
designed by Gaskett et al. while incorporating computer vision.

Gaskets Task

In the test conducted by Gaskett et al. the task was for a simulated submersible
robot to reach 40 targets. The robot was given 200 time steps in order to reach
each of the target. In other words, the target was changed every 200 time steps.
The targets were placed randomly, but with a distance of one unit to each other.
As a metric for how well the learning was performing, the average distance
over each time period was recorded. This test was repeated 140 times. They
showed that it is possible to reduce the average distance to the targets over
time, i.e. the submersible robot reached the targets faster over time.

Computer Vision Task

The chosen task in this work is getting a robot with a differential drive to centre
itself under a pattern on the ceiling. For this, the robot was equipped with
a camera that was pointed orthogonal to the ceiling. The robot is therefore
considered centred under the pattern when the pattern is located in the centre
of the image acquired by the camera. The recognition of the pattern is not
part of the learning algorithm and performed as described in section 5.2. The
position of the centre of the pattern in the acquired image is therefore given
directly to the robot. The relationship that has to be learned is how to use the
differential drive to move the centre pixel of the pattern further to the centre of
the image. An image of the test setup is shown in Figure 21, where the red dot
on the ceiling is the pattern that the robot has to centre itself underneath.
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Figure 21: The test setup.

The state of the system is described by a 2D vector that consists of the pixel
position of the pattern in the acquired image. The state vector s can be seen
in eq. (31), where xp and yp are the x any y of the centre of the pattern in the
image. For the experiments that are done with Gaskett et al.’s method, the
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state space variables are normalised to values between 0 and 1.

s = [xp, yp] (31)

The actions that the system can take are also described in a 2D vector, which
consists of the right r and of the left l wheel speed, as can be seen in eq. (32).
These parameters are normalised to the maximum and forward and backward
wheel speed and are ranging from full backward -1 to full forward +1.

a = [l, r] (32)

The reward that is given to the systems is the negative distance between
the centre of the image and the centre of the pattern in the image. This can be
seen in eq. (33), where (xp, yp) is the centre of the pattern and (xc, yc) is the
centre of the image.

r =
√
(xp − xc)2 + (yp − yc)2 (33)

6.2 The Parameteter Test Method

A common method to test reinforcement learning algorithms is to observe how
they increase the reward that they get over time. This requires the system to
follow the policy that is being learned.

Part of the experiment is to access the right parameters for the reinforcement
learning algorithm. There are a lot of parameters that can be used in different
setting combinations. That is why observing the reward while following the
policy by moving the robot physically is rather impractical. It was instead
chosen to compare how well the system could approximate the value function
with different parameter settings. One of the advantages in Q-learning is that
the system does not have to follow the policy that it learns. Experiences in the
form of state-action-state can therefore be recorded while following a random
policy.

These can later be send to different systems as if they were being
experienced. The physical movement has only to be executed once during the
recording.

During this test, the different systems are presented sequentially with all
training samples. After each training sample presentation, the system is used
to predict the value for each action in a separate test dataset. Since the state
after each of the actions is known, the correct value can be calculated. The
average error that the system does on the training dataset is seen as the error
of the system.

The error produced depends on how difficult it is to describe the test dataset
with a model. To get an idea about the difficulty, the single value that describes
each test dataset best is calculated. This value is the best guess of the value that
one could take when not knowing the state of the system. When the estimated
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value of a system produces a lower error than this value, one can conclude that
the system is not just guessing.

In order to find a good parameter combination most of the parameters were
set to standard values. To find a better parameter combination the parameters
were altered with simulated annealing.

The quality metric that was used for the simulated annealing was the error
made during the presentation of the last 10 percent of the test samples.

In this experiment, 2000 samples of state-action-state triplets were recorded.
These were recorded while the robot was following a fully random policy. The
samples were split up into a test and a training dataset, contain 10 and 90
percent of samples, respectively.

The experiment was repeated 30 times in which the training and test dataset
were re-sampled randomly from the collected samples. The mean and variance
of the error across these experiments were captured to access the quality of the
parameter setting.

The parameters that where optimised with simulated annealing for the
system that uses standard Q-learning with a rasterised the state and the action
space are:

• Raster size for the state space of states.

• Raster size for the action space of states.

• Learning rate for the Q-learning.

The parameters that were optimised for Gaskett et al.’s system were:

• The number of neurons in each layer of the neural network.

• The training rate for the neural network.

• The momentum for the neural network.

• The number of back propagation iterations that the neural network runs
for every sample.

• The number of wires that the neural network has to output.

• The training rate for the wire fitting.

• The number of gradient descent iterations that the wire fitting process is
runs for every sample.

• The training rate for the Q-learning update.

• The number of persistence excitation.
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The variables that were held constant during this process were:

• The discount factor of the Q-learning

• The amount of advantage in the Q-learning

This was done since it would have a direct influence on the prediction of
the Q-function. A system that uses Q-learning with a low discount factor will
be better at predicting the Q-function, but worse at reaching long term goals.

6.3 The Non-simulated Test Method

In this test the parameters found in the parameter test are used. The experiment
that was conducted, involved following the policy by moving the robot
physically and recording how it improved the reward it gets. This was done
with different parameter settings, that could not be tested in the parameter test.
These are parameters that alter how the action state space is to be explored.

For the test, the robot was placed on a marked position with a known
distance to the pattern that it had to centre itself under. Subsequently it was
given 100 time steps to centre itself under the pattern. It was then moved back
to the starting position facing a random direction. This was done, by prompting
the tester to reset the system to one out of eight predefined orientations. The
system would then get another 100 time steps to centre itself. This procedure
was repeated in order to see if the system would get better at reaching the
target position.

In the work from Gaskett et al. [1999], no exploration is mentioned. It was
therefore tried to run the system with no exploration at all. This was both done
with Q-learning and advantage learning. Further, two different exploration
functions were tested as well as the effect of doing persistence excitation with
randomised samples from the past and the most reason samples from the past.

6.4 Results

In this section the results of the tests are presented.

Parameter Tuning Results

The graph in Figure 22 shows the error made on the test dataset after
every training sample. The blue curve is error curve for the best parameter
combination from Gaskett et al.’s system and the green curve shows the best
with a rasterised state and action space system. The area around the curves
show the variance across the 30 conducted test while the lines show the mean
value. The red line is the line that needs to be crossed in order to conclude that
the system is not guessing.
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Figure 22: The error curve for the best parameter combination for Gaskett et al.’s system and
the system that uses standard Q-learning with a rasterised state and action space

From Figure 22 it can be seen that both systems are getting better at
predicting the outcome of actions over time. Gaskett et al.’s system crosses
the line of guessing after 200 time steps, while it takes 800 time steps for the
rasterised standard Q-learning. It can be seen that Gaskett et al.’s system is
better than the the rasterised standard Q-learning at all time instances.

Non-simulated Results

The performance of the final of the system was measured by the distance to
the target at every 100th time step in the non-simulated test. The distance
from the system’s target can be seen in Figure 23, where every line shows
one system. The distance to the target at every starting position is 0.25. This
distance is normalised to the size of the image. A distance shorter than this
would therefore mean that the system got closer to the target over the 100
frames that it got.
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Figure 23: The distance to the target after every 100 frames for different systems

From Figure 23 can be seen that most of the test runs moved the robot
closer to its target. By observing the systems it could be seen that the systems
without exploration signal often got stuck in their policy. This included turning
on the spot when the system was started and moving in circles towards the
target. This problem is also reflected in the graph. Both the systems that used
some form of exploration got closer to the target in the last runs, while the
other systems got stuck with suboptimal policies.

It can be seen that the system that utilised advantage learning also got
better at solving the task around the 800th sample, but then unlearned the
policy again.

The problem with greedy algorithms that only choose the action that yields
the highest result is that they are likely to get stuck in a local minima. In the
case of the systems that got stuck this means that every action that moves the
system away from the starting point yields a worse value than staying there.

Even though the system with the probability of 0.2 for a random action
seem to work well in Figure 23 will it keep doing action no mater how sure it
is of the situation. The adaptive exploration is therefore more elegant for some
cases where the probability for exploration should be bound to the certainty of
the model.

The probability for random actions during the test was recorded and is
shown in Figure 24.
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Figure 24: The probability for random action in the adaptive exploration

7 Conclusion

In this project it is shown that it is possible to design a system, that utilises
reinforcement learning for navigation in a non-simulated environment. Several
systems were run in in a non-simulated environment and were able to improve
their performance over time.

In the first experiment that was conducted was it possible to show that the
system designed by Gaskett et al. [1999] was able to predict the Q-value for a
test dataset. Furthermore it was possible to show that this method was better
than using standard Q-learning on rasterised states and actions.

The final solution is working in a non-simulated environment and is using
computer vision on an embedded platform. Which answers the research
question raised in this work.

During the development of the prototype has it become clear that the setting
of the parameters for a reinforcement learning system is not trivial. By first
finding a parameter combination that worked for predicting the Q-value, and
later improving this setting with simulated annealing it was possible to find a
combination of parameters that worked for the task solved in this project.

8 Future Development

Since it was possible to design a system that could centre itself under a patter
would it be interesting to test how the system would behave for more complex
scenarios. This could include, using the system in a hierarchy learning task as
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it was suggested by Bischoff et al. or by using it in a task that requires a higher
dimensional state and actions space.

Another way the project could be extended is by conducting a test that
compares the performance of Gaskett et al.’s reinforcement method against
Stanley and Miikkulainen’s NEAT.

Furthermore would it be of interest to see if the performance of the system
in the described task could be improved. This could be done by further
improving the systems parameter setting.

One of the observations that was made in the physical test was that even
though the robot reached its destination it would still turn on the spot. It
would therefore be a natural next step to include a penalty for movement. This
could lead to that the robot would move more directly to its target position
and learn to stand still, when the target position is reached.
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