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1. Introduction 
Wavefield synthesis (WFS) is a rather new spatial audio rendering technique, which has a very 

unique characteristic: the localization of a virtual sound source does not chance with the 

listener’s position. In other words, it does not have a so called listening sweet spot. Developed in 

the late 80s, it has witnessed moderate popularity, it`s main drawback being the complex and 

expensive hardware necessary to operate. A typical Wavefield synthesis system can have 

anywhere between 16 and 500 speakers. Fortunately this aspect is overcame by the 

opportunities it provides, allowing a new dimension of audio content to be explored. There have 

been musical concerts developed for WFS, games, as well as a lot of scientific research. Now that 

Virtual Reality is becoming mainstream, WFS could provide the sound necessary for an amazing 

multisensory experience. 

Unfortunately another barrier in working with Wavefield synthesis is the software aspect. Most 

of the system existing in the world were found in University laboratories, where skilled 

researchers were writing custom software for their own usage. Nowadays there are companies 

like IOSONO who are pushing the technology commercially, but their software is not freely 

available. 

This project is proposing to create an external Wavefield Synthesis object for a popular visual 

programing software called Max/MSP. This program is modular and very flexible, allowing its 

users to create anything from artistic installations to scientific applications. By providing 

developers with a easy to use tool, anyone will be able to create content for WFS, even if one 

does not own such a system. Hopefully this will attract interest from many areas of expertise and 

new applications will be found for Wavefield synthesis. 

2. Problem Statement 
How will a Max/MSP external object for Wavefield synthesis perform in accurately reproducing 

the location of virtual sound sources? 
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3. Analysis 
Wavefield Synthesis is a technique that combines aspects of acoustics and psychoacoustics and 

in order to develop a software for it, research in to the aforementioned topics need to be 

conducted. Since the goal is to write an object for Max/MSP a solid knowledge foundation is 

crucial to efficiently create an external. This chapter will describe the fields that have been 

investigated in order to acquire the knowledge required to implement a solution to the problem 

statement mentioned above.  

A. Object based audio production 
Since the invention of stereophony in 1881 (Rumsey, 2001), the assignment of a given number 

of audio channels to a set of loudspeakers is (in most cases) fixed, as well as the positions of the 

loudspeakers themselves. The loudspeaker setup is implicitly coded in the loudspeaker driving 

signals. This is known as channel based reproduction and it requires a separate mix for each new 

reproduction setup. The only way to experience the intended sounds is to have a loudspeaker 

position that are similar to the positions used in the original mix (Geier & Spors, 2012). This is not 

a problem if the dedicated speaker setup is a two channel pair of headphones. The consistency 

of headphones setup allowed for binaural techniques to evolve and reproduce 3D sound 

accurately. Unfortunately, this is the only case when a speaker setup is similar with the one used 

in the mixing stage of any audio material. In the last few decades, there have been developed 

several massive multichannel reproduction systems. Some of those system are made up of 

hundreds of individual driven speakers, making the channel-based approach not feasible 

anymore. Not only is the sheer number of loudspeaker channels impractical to store and 

transmit, but also there are no standardized layouts and each system potentially has a different 

number of loudspeakers and different loudspeaker positions which would require an individual 

mix for each system. To avoid these limitations, an new method has been approached that 

changes the focus from the playback medium (the speakers) to the playback content, and it`s 

called object-based mixing (Geier & Spors, 2012). This means that instead of storing output 

signals, the source signals are stored as audio objects, together with their intended position and 

other parameters. All audio objects together form a spatial audio scene which can be stored. This 

method not only avoids creating and storing a mix for each reproduction setup but also makes 

interaction with the scene during playback possible. This concept is not limited to loudspeaker 

systems, a scene can also be rendered for binaural reproduction with headphones. A channel-

based mix can easily be created from an object-based representation by rendering the scene to 

a given setup and storing the signals of the output channels.  

A big implication of using an object based approach instead of channel based is that it required 

the creator to account for source position in the production step, as opposite to leaving it to the 

mix engineer. Instead of generating the final output signals by, for example, manually panning 

individual tracks between pairs of output channels, the sound engineer uses them as source 

objects and stores their virtual position and other parameters in a scene description. How exactly 

the actual output signals will be generated from this information is not known during the mixing 
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process, as it depends on the reproduction system which will be used. Therefore, the task of the 

sound engineer changes from creating the best possible output signals to create the best possible 

scene description (Geier & Spors, 2012). 

The object based approach is the foundation of many new techniques for reproduction of 3D 

sounds, including Wavefield Synthesis.  

B. Wavefield synthesis (WFS) 
In order to be able to develop a fully function WFS object, understanding the technology is of 

utmost importance. Wave Field Synthesis is a method used to recreate an accurate replica of a 

sound field using the theory of waves and generation of wave fronts (Brandenburg, Brix, & 

Sporer, 2009). It enables the generation of sound fields with natural temporal and spatial 

properties within a volume or area bounded by arrays of loudspeakers (de Vries & M.Boone, 

1999). The basic idea was introduced by in 1988 Guys Berkhout from Delft University of 

Technology, and was first published in the Audio Engineering Society (AES) journal (Berkhout, 

deVries, & Diemer, 1989). Over the next 10 years the technology was mainly developed in the 

Delft campus, and now is regarded as an important technique for reproducing 3D audio without 

the “sweet-spot” limitation of previous methods. 

Wavefield Synthesis is fundamentally based on the wave 

propagation principle described by the Dutch 

mathematician Christiaan Huygens. He stated that any 

spherical wave inputs energy in the neighboring particles 

in the medium which in turn radiates another spherical 

wave. These particles can be viewed as secondary sources 

for the original wave. By summing the waves emitted by 

these secondary sources, a waveform indistinguishable 

from the original wave is created (figure 1). In other words, 

this principle states that any wave front can be regarded as 

a superposition of elementary spherical waves. This means 

that any wave front can then be synthesized from such 

elementary waves (Game of Life Fundation, 2010). In wave field synthesis, every point is 

modelled with an array of loudspeakers, each of them contributing to the desired sound field. 

Each loudspeaker in the array is fed with corresponding driving signal calculated by means of 

algorithms based on the quantitative formulation of the Huygens-Fresnel-Principle, which states 

that a propagating wave front can be synthesized by a superposition of simple sources placed on 

the wave front. The Kirchhoff-Helmholtz integral implies that an infinite number of monopoles 

and dipoles encircling the reproduction space is necessary to achieve perfect results. “Perfect 

results” includes the property that the reproduced sound field outside the listening space (behind 

speakers) is zero. Taking either monopoles or dipoles instead of both the sound field inside is the 

same and only the sound field outside is non-zero. Today most implementations of WFS are 

based on monopoles only. A second step to simplify WFS is to reduce the sound-field from 3D to 

Figure 1 - WFS Huygens principle 
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2D, therefore all loudspeakers are located in one plane. Reducing the number of loudspeakers to 

a finite number limits the frequency up to which WFS provides perfect reproduction. Above the 

alias frequency spatial alias terms occurs. In practice it proved to be sufficient to locate a 

loudspeaker every 17 cm, giving an alias frequency of about 1 kHz (Spoer, 2004). From an acoustic 

point of view this seems to be insufficient, but due to psychoacoustic effects, decreasing the 

distance between loudspeakers has only marginal effects on audio quality. Work conducted on 

the subject of Wave Field Synthesis has allowed for a very simple formulation of the reproduction 

of omni-directional virtual sources using a linear loudspeaker array.  Practically speaking a 

computer controls a large array of individual loudspeakers arranged as arrays around the listener 

and the computer activates each solitary loudspeaker membrane, at the time when the virtual 

wave front would pass through it. The driving signals for the loudspeakers composing the array 

appear as delayed and attenuated versions of a unique filtered signal. The maximum spacing 

between two adjacent loudspeakers is approximately 15 to 20 cm. This allows for optimal 

localization over the entire span of the listening area (Corteel & Caulkins, 2004). The spatial 

resolution can be increased by using a higher number of smaller speakers. An interesting setup 

can be found installed in the Multi-Modal Measurement Lab at the Chair of Communication 

Acoustics, TU Dresden (figure 2). This system consists of 464 loudspeakers and 4 subwoofers. The 

tweeter loudspeakers were installed with a very little spacing of 6 cm to reduce spatial aliasing 

artifacts.  

 

Figure 2 - WFS system, T.U. Dresden 

Using a Wavefield synthesis system one can usually reproduce three separate types of virtual 

sound sources: 

 Point sources: virtual sources situated behind the loudspeaker array. This type of source 

is perceived as having a fixed position from anywhere within the system installation. The 

position remains stable for a single user moving around inside the installation (figure 3, 

b). 

 Plane waves. These sounds are similar to point sources, the only difference being that the 

virtual position is seemingly infinite far away behind the loudspeakers. This category of 

sounds cannot be encountered in the real world. A good analogy is the experience one 

has when travelling inside a car and looking at the sun/moon. One can entertain the 

impression that the celestial is “following” the automobile, while the landscape passes 

along at high speed. The sensation of being “followed” by an object that retains the same 
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angular direction while one moves around inside of the listening area accurately describes 

the effect of a plane wave (Corteel & Caulkins, 2004)(figure 3, a).  

 Focused sources: virtual sources situate in front of the array.  While having similar 

properties as “normal” point sources for most of the listening positions, for positions 

between source and closest loudspeaker the sound field is inverted and there is no precise 

location perceived (Spoer, 2004). These virtual sound sources are created when a wave 

front created by the loudspeaker array converges onto a fixed position inside of the 

listening room (figure 3, c).  

 

Figure 3 Wave field synthesis simulations performed with the Sound Field Synthesis Toolbox (Gari & Kob, 2015) 

 

I. Limitations of WFS 

All WFS systems are restricted to horizontal reproduction, but the Wave Field Synthesis principle 

is not limited to a plane. In principle, the procedure would be able to restore the sound field in 

all three room dimensions. Our detection in azimuth mainly works through time detection, which 

becomes reconstructed perfectly by the horizontal loudspeaker lines, but adding a third 

dimension would practically mean populating the walls in a room with loudspeakers. This would 

mean extremely high costs for the hardware necessary. Other techniques of reproducing 3d 

sounds, like Ambisonics of VBAP have shown real 3D sounds with a much smaller number of 

loudspeakers. 

The Kirchhoff- Helmholtz integral describes an unlimited amount of elementary waves. In 

practice though, the number of loudspeakers is limited. As with any quantization, this causes 

aliasing effects. Inside the playback area, depending on the wavelength, across the room points 
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of higher level alternate with points of a lack in magnitude. At one dedicated point, the notches 

and hills have a very small bandwidth. Fortunately, such effects are less disturbing in perception 

(Oellers, 2013). For aliasing-free reproduction, a loudspeaker distance of less than one inch would 

be needed (Germany Patent No. 102009006762A1, 2009). Seemingly random spacing at defined 

positions would reduce aliasing, in the same manner as a wheel in any 24fps Western film no 

longer appear to spin backwards, if the spikes are aligned in randomized angles (Spoer, 2004). 

When it comes to the loudspeaker arrangement, the fact that it is not being completely closed 

around the listener, the end of the radiating surface causes the truncation effect (Oellers, Wave 

Field Synthesis, 2013). At the end of the arrays, no further elementary waves contribute towards 

sound pressure. That will change the resulting superposition suddenly and a shadow wave arises. 

To a certain extent, this effect is avoided by decreasing the level of the outer speakers. As long 

as the virtual acoustic source aligns behind the loudspeakers, the shadow wave arrives at the 

listener later than the direct wave front. However, if the shadow wave arrives in front of the 

actual wave front, this is audible and disturbing to the listener (Oellers, Wave Field Synthesis, 

2013). 

The Wavefield synthesis principle works because it reproduces a sound field, instead of a 

particular sound. In order to experience the synthetic sound field only, the environment where 

the system is set up should not contribute to the wave front at all. In other words, the 

environment needs to be acoustically insolated, and the walls should not reflect any of the 

sounds produced by the loudspeakers. This means that the WFS system needs to be set up in an 

anechoic chamber, greatly increasing the costs of such a system. This aspect is mostly neglected 

due to practical reasons, thus the sound fields experienced will not be perceived exactly as they 

are synthesized.  

C. Other Sound Field Synthesis Techniques 
Besides Wavefield Synthesis, there are other methods of re-creating sound fields, each promising 

different features and constrains.  

A significant step forward towards high fidelity spatial sound reproduction was made with the 

introduction of “Ambisonic” in the early 1970s (Ambisonics, 2015). The underlying principle for 

this concept was to recreate an exact sound field at a recording position. Special microphone 

arrays have to be used, consisting of coincident pairs of microphones that measure acoustic 

pressure gradients in various dimensions. More complex arrays used result in high spatial fidelity 

extending in larger space. And this is the main limitation of this approach – although the 

reproduced sound field is accurate, provided the playback system matches the recording array 

(or B-format), the sweet spot is rather small. For feasible loudspeaker setups the size of the 

artifact-free reproduction area is typically smaller than a human head at the upper end of the 

audible frequency range. Outside, spatial sampling artifacts arise that may be perceived as 

coloration of the desired sound field (Geier & Spors, 2012). 
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Derived from a technique called “Ambisonics Amplitude Panning” is a simple panning method 

entitled Vector Base Amplitude Panning (VBAP). As the name implies only amplitude panning is 

used, and it is used so that pairs of adjacent loudspeakers create the illusion of virtual source. For 

3D reproduction, the virtual source is created between a loudspeakers triple (Geier & Spors, 

2012). Using VBAP it is possible to create two- or three-dimensional sound fields where any 

number of loudspeakers can be placed arbitrarily. The method produces virtual sound sources 

that are as sharp as is possible with current loudspeaker configuration and amplitude panning 

methods (Pulkki, 2015) 

D. Software for Wavefield Synthesis 

I. SoundScape Renderer (SSR) 

One of the most common tool for 

reproducing 3D audio is 

SoundSCape Renderer, developed 

at the T.U. Berlin and Rostock 

University. SSR is a versatile tool 

for real time spatial audio 

reproduction, implementing a 

variety of headphone- and 

loudspeaker-based methods like: 

WFS, VBAP, Ambisonics 

Amplitude Panning, Near-field-

corrected Higher-Order 

Ambisonics, dynamic Binaural 

Synthesis, dynamic Binaural room 

Synthesis (BRS), as well as generic 

3D audio renderer. The SSR is free 

software licensed under the GNU 

General Public License. It uses the JACK audio framework and is currently available for Linux and 

Mac OS X. Interaction with the program is possible using the built-in graphical user interface and 

via a network interface. An example for such interface is their Android SSR client, as well as a SSR 

remote for Max for Live. The built in GUI shows the current position of all sound sources and can 

be used to move them around, set their volume, their source model and other parameters. 

Depending on the current rendering algorithm, the GUI also shows either a head or the 

loudspeaker setup (figure 4). Both can be rotated and moved around. If not needed, the GUI can 

also be disabled. The same GUI is used for all rendering algorithms.  

A great thing about SSR is that all its libraries are available as C++ libraries which can be used to 

implement plugins for various host programs. This way the SSR could be integrated in any audio 

processing software, with a little coding effort. 

Figure 4 - SSR - WFS GUI 



11 
 

II. WFS Collider  

WFS Collider is a tool used for wave field synthesis. It was 

developed by Arthur Sauer and Wouter Snoei at The Game 

of Life Foundation (Sauer & Snoei, 2015). It is effectively a 

standalone GUI and library for Super Collider, focused on 

WFS. It is inspired by the Digital Audio Workstation look, 

with a timeline, multi-track setup and busses. This also 

means that audio content can be organized into subgroups, 

making the workflow easier. WFS Collider features a 

plethora of effects and allows for great customization of a 

sound. Some examples are: filtering, convolution 

reverberation, loop-backing, Doppler negation, etc. The 

effects and parameters are organized in the popular “signal 

chain” manner, allowing for cascading effects and features 

(figure 5). Since it is based on Super Collider, every effect 

code can be inspected and modified as needed, providing 

great help for understanding the mechanics of a certain 

propriety.  

 A great feature of WFS Collider is that it can work with 

vectorial trajectories for its objects, meaning one can use 

any graphics software to control the behavior of the virtual 

sound sources.  

All the parameters in WFS Collider can be externally 

controlled through Open Sound Control (OSC) protocol. 

This allows the audio engine to work as middleware for 

other applications, like game engines (Paisa, Banas, Vogiatzoglou, Serafin, & Grani, 2016). 

Because of the timeline approach, WFS Collider can feel a little more focused on a linear pre-set 

performance, rather than an interactive one, but with that does not mean that real-time 

interaction is hard to implement. 

III. Other software 

IOSONO GmbH is a leading company in the field of spatial audio, providing both software and 

hardware implementation of various 3D audio techniques, including WFS.  

Wave 1 by Sonic Emotion is another commercial implementation of WFS principles in the form 

of a software and hardware package. Just as IOSONO`s implementation, it is not only focused on 

WFS, but also binaural, Ambisonics and Dolby Atmos. 

Due to the commercial nature of these products, the information regarding the technical details 

is limited. 

Figure 5 WFS Collider signal chain 
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E. Perception of 3d sound 
Human hearing has a very important role in our everyday orientation in space. Sounds usually 

convey information about the source and its location, and we have evolved to “decode” this 

information. The sound wave generated by an external source is diffracted by its interactions 

with the head and external ears. The resulting changes in temporal and intensity characteristics 

of the sound provide cues about the localization of the sound source (Middlebrooks & Green, 

1991). In order to recreate a credible experience the psychoacoustic proprieties of sound need 

to be integrated in the reproduction algorithm. 

A number of different properties of physical stimulation have been thought to be potential cues 

to the perception of auditory distance. These cues may be generally divided between those that 

require only one ear(monaural) for information transmission, and those that require two 

ears(binaural) (Zahorik, 1996). The present description of these cues will therefore be classified 

on the basis of either monaural or binaural requirements.  Following this description, a brief 

discussion of cue utility to the listener will be offered. 

I. Monaural cues 

Monaural distance cues are hints that contain information about the distance of an object to the 

listener and do not analyze the signal difference between the ears. There are three popular 

monaural cues that will be described: sound intensity, spectral shape and the direct-to-

reverberation ratio.  

a) Intensity 

In an acoustic free environment (with no objects to reflect sound) a stationary sound source 

(point-source) intensity is related to the distance from its physical location to the listener. This 

relation is described by an inverse square law (Zahorik, 1996). That is to say that intensity is 

related to distance, R, from source to listener by a factor of 1/R2. Since sound pressure is 

proportional to the square root of intensity, pressure may be said to obey a 1/R law with varying 

distance, R. In any case, the following simple rule is yielded: There is a 6 dB loss in sound pressure 

for each doubling of distance from the sound source. (Zahorik, 1996), and it could decrease to 

4.25 dB loss in reverberant environments (e.g. a normal room) (Zahorik & Winghtman, 2001).  

This law only holds for acoustic free environments. Unfortunately these environments are more 

theoretical than practical, being very hard to realize an environment that has no impact on the 

sound. Thus, the intensity cue becomes a poor approximation, especially in reverberant-rich 

environments. Another issue the intensity cue is it`s relativity to the listener`s position, thus 

reliant on the source’s amplitude. If the amplitude is familiar to the listener, it could serve as an 

absolute distance cue, otherwise it is almost irrelevant, and other cues have a bigger influence in 

understanding distance. 

b) Spectral shape 

The main medium of travel for sound is the air. The physical proprieties of the air manipulate the 

sound in a predictable way, acting as a low pass filter, thus the sound source spectrum at the 
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listener’s position varies as a function of distance. At distances greater than 15 meters, the sound 

absorbing proprieties of air modify the sound source spectrum significantly (Zahorik, 1996). The 

main propriety of air attenuating high frequencies is it`s humidity. At 40% relative humidity, one 

can expect an air absorption of 3-4 dB per 100 meters at 4 kHz (Zahorik, 1996).  

At shorter distances (under 15 meters), when sound is considered to be in the acoustic near-field, 

filtering applied by the head and ear physiology may not be considered independent from the 

sound source, and it varies in a complex fashion as a function of distance. 

The spectral shape cue is a relative one as well, requiring the listener to be familiar with the sound 

beforehand, in order to understand what frequencies are missing. On top of that, in order to be 

a relevant cue, distances of more than 15 meters is required between the listener and the sound 

source.  

An interesting application for this cue can be found in foghorns. Foghorns are audible signals that 

are used to provide audible warning to ship, regarding rock outcrops, shoals, headlands, or other 

danger zones. These devices are turned on when the visual aids like lighthouses are obscured by 

fog. Sailors are trained to understand the sound filtering properties of air, to “decode” the 

distance to the dance zone. 

c) Reverberation 

Reverberation has also been shown to be important, as has been recognized for many years by 

scientists researching perception as well as acousticians. In environments with sound reflecting 

surfaces, the ratio of energy reaching a listener directly (without contact with reflecting surfaces) 

to energy reaching the listener after reflecting surface contact (reverberant energy) varies 

systematically with distance (Zahorik & Winghtman, Loudness constancy with varying sound 

source distance., 2001). In general, as sound sources move away from an observer in a 

reverberant environment, the proportion of sound energy directly reaching the observer's ears 

decreases, while the proportion reaching the observer's ears after reflection (and delay) from 

surrounding surfaces increases (Mershon & King, 1975). This can be called the direct-to-

reverberant ratio.  

In rooms, change in direct-to-reverberant energy ratio is primarily due to the effect of the 1/R 

law on the direct (first arriving) portion of the sound field, since the energy in the later arriving 

reflected portion of the sound field is relatively constant for varying source distance. 

The direct-to-reverb ratio is a particularly interesting cue because it is, in theory, absolute; it does 

not depend on source intensity, or the familiarity of the listener with the source (Bronkhorst, 

1999). It is able to code a wide range of distances in many reverberant environments, and the 

user can “learn” acoustical environments to improve the distance perception. The cue is also of 

interest because it has apparent limitations. It has been shown repeatedly that the perceived 

distance of a sound source in a room is compressed; it increases virtually linearly with source 

distance at short range, but converges to a certain limit when the source distance is increased 
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further. This limit acts as a sort of “auditory horizon”, which is, however, not constant, but 

depends on the acoustic environment (Bronkhorst, 1999). 

II. Binaural Cues 

When sound sources are in the 

near-field, binaural differences in 

both intensity and time are in 

many circumstances no longer 

independent of distance, as they 

are for planar waves. These 

differences are called inter-aural 

time difference (ITD) and inter-

aural level difference (ILD) (figure 

6), and are usually researched 

when discussing sound (radial) 

localization.  

Due to acoustic parallax, they are 

maximal along the inter-aural 

axis that is directly opposite to 

either the left or right ear. In a 

research conducted in 1921, 

Hartley and Fry (Hartley & Fry, 

1921) conclude that the inter-

aural intensity difference for a 

pure tone source(1860 Hz) on the inter-aural axis can differ for distances between 87.5 and 17.5 

cm by as much as 20dB. Their study is pure theoretical, and the values are derived assuming a 

spherical head.  

Another binaural cue referred as motion-induced intensity rate of chance can be observed when 

the listen is changing his/hers position in relation to the sound source. This method of 

understanding distance shows better results when compared directly to a static listener 

III. Summary 

It is well known that our ability to perceive distances of sound sources depends on several 

different cues. Because both the availability and reliability of these cues are dependent on the 

given acoustical situation, the auditory system likely combines information from multiple cues to 

produces stable distance percepts. Cues that have been studied are sound intensity, spectral 

shape, the direct-to-reverberant energy ratio, and inter-aural differences. Not all cues are equally 

effective in all circumstances. Inter-aural differences, for example, only show a clear dependence 

on distance when the source is not further away than about 1 m. The direct-to-reverb ratio is, 

evidently, only relevant when the environment contains reflecting surfaces. Intensity has the 

drawback that it is a relative cue: it can only be interpreted correctly when the listener has priori 

Figure 6 - (a) ITD & ILD, (b) Spectral filtering of the outer ear.  (Moore & King, 
1999) 
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knowledge of the source intensity. In addition, the intensity cue is less useful in the indirect field 

of a sound source that is placed in a reverberant environment – it is then determined by the, 

virtually constant, level of the reflections, and not by the, distant-dependent, level of the direct 

sound.  

 

F. Developing a Max/MSP object 
Max/MSP is a visual programing environment 

designed for real time processing. It is widely 

used in the performance arts scene, music 

production, artistic installations as well as a 

powerful sound design tool. The workflow is 

can be compared with a modular synthesizer, 

since it is based on connecting object that 

execute various tasks (mathematical 

operators, audio processing, networking, etc.). 

A Max/MSP external is a small piece of code loaded into Max and used as a template to create 

objects on demand. In its code, an external consists of a set of C functions that perform signal 

processing and define the external’s behavior in response to its messages. These objects are used 

as building blocks inside the programing software. There are many pre-loaded object, to suit 

various tasks (figure 7). All object in Max/MSP have at least one inlet and/or outlet connection. 

By default, every object shows one inlet. Additional inlets appear to the right of the default inlet, 

with the rightmost inlet being created last (Cycling '74, 2011). Inlets are essentially message 

translators while outlets define connections between objects and are used to send messages 

from one object to the objects to which it is connected. What is not obvious about an outlet 

however, is that when a number is sent out, the outlet-sending function does not return until all 

computation "below" the outlet has completed (Cycling '74, 2011). This stack-based execution 

model is best illustrated by observing a patch with the Max debugger window.  

There are two general categories of inlets/outlets one object can have: non-signals (integer, float, 

message, bang, etc.) and signals. There are a few fundamental differences between these two 

types, which have great impact in the performance of the object. First and foremost, the non-

signal input is executing its task only when it receives any input in a hot inlet. A hot inlet, as 

opposite to a cold inlet is the one triggering the execution of the code in the object. When it 

comes to a signal inlet, the object executes its task continuously, as long as the DSP audio engine 

is turned on.  

There is another subtle difference between non-signal and signal objects. A non-signal object 

responds as soon as it receives a message, sending data to its outlets as fast as possible. A signal 

object stores up a certain number of samples in a floating-point array called a signal vector, and 

then passes all of the samples in that signal vector on to the next signal object. In Max/MSP the 

Figure 7 A suite of Max/MSP objects 
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size of the signal vector—called the signal vector size—may be set globally in the DSP status 

window. The signal vector size determines the minimum latency of the audio system as a whole. 

As such the signal vector size is a system parameter that involves an important trade-off. On the 

one hand, larger signal vector sizes are more CPU-efficient than small ones since more samples 

are processed on each vector, reducing the overhead of calling the DSP loop. Setting the signal 

vector size to an arbitrary low two samples will noticeably increase the CPU demand of most 

patches involving audio objects. On the other hand, large signal vector sizes can make the system 

feel sluggish since messages are sent only once per vector. Even worse, the signal vector size 

determines the lower limit for delay with feedback, because a sample must cycle through an 

entire vector in one object before being fed back to an object higher up in the DSP chain (Lyon, 

2011). 

Any Max/MSP external follows a common internal structure. The anatomy of a Max object has 

several mandatory components and tasks (Cycling '74, 2011): 

 Header files that include the headers required by Max/MSP, “usually ext.h” and 

“ext_obex.h” as well as “z_dsp.h” when writing an MSP external. These header files 

provide definitions for most functions and data types used in the Max/MSP libraries. 

These files and libraries are found in the Max/MSP SDK, freely available on the Cycling ’74 

website.  

 The definition of the object structure. The first component is a of the structure is a “obj” 

“t_object” or “t_pxobject”. This is a proxy that containts “t_object” as well as a few other 

components that describe the state of any particular instance of the object, like which of 

the inlets or outlets are connected. The “t_object” structure itself contains all inlets and 

outlets of an object, along with a list of its messages and methods. The use of proxies 

enables Max/MSP audio objects to receive both signals and floats at the same inlet (Lyon, 

2011). After creating the “obj” any other data types can be created. The structure created 

will be used in the prototypes to whatever functions are to be used in the external, so it’s 

compulsory that the structure declaration is placed above these prototypes. 

 Function prototypes are declarations for the functions used in the code. The prototype 

provides the name, parameters, and return type of the function. The prototype for a 

function may be read by inspection from its first line. It may seem redundant to provide 

these prototypes, but the compiler uses them to check if the use of the function 

corresponds to how it is defined. Thus prototypes are useful for avoiding such bugs as 

providing arguments of the wrong type or number to the functions. Prototypes are 

required for almost all functions used in Max external code. 

 An initialization routine called “main()” is called when Max/MSP loads the object for the 

first time. In the initializations routine are defined one or more class consisting of the 

following: telling Max about the size of the object's structure and how to create and 

destroy an instance, defining methods that implement the object's behavior (e.g. binding 

a function to a specific type of input like int. or bang), in some cases defining attributes 
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that describe the object's data, registering the class in a name space (Cycling '74, 2011). 

This is a good place to print the authorship information. Unlike most of the functions we 

will write for Max externals, “main()” does not require a function prototype. C functions 

are assumed by the compiler to return type int. unless another return type is specified. 

The “main()” function is required to return an int. Since there are no arguments specified 

for “main()”, it is permissible to omit its function prototype (Lyon, 2011). 

 Unlike “main()” function that is called only the first time an external is loaded, any object 

needs to have an new instance routine that is called every time a new instance of the 

object is loaded. This allocates the memory to create the necessary instance, and 

initializes it.  In this step the necessary inlets and outlets are declared. 

 All the previous steps are mostly setting up the necessary platform to execute the code 

in the perform routine. In this routine the behavior of the object is written. In contrast to 

the Max convention in which non-signal inlets and outlets are numbered from right to 

left, in this function the inlets are called from left to right. The order in which these signal 

vectors are passed is determined in the DSP method (Lyon, 2011). 

 Last step required to have a functional Max/MSP external is to connect the external to 

the DSP chain. This method is called whenever the audio processing is turned on, or 

whenever the DSP chain is rebuilt, such as by adding a new audio object to the Max/MSP 

patch. This DSP method consists solely of a call to the Max/MSP function “dsp_add()”. 

The first argument to “dsp_add()” is the name of the external’s perform routine. The 

perform routine calculates one signal vector worth of samples for the external. The 

second argument tells “dsp_add()” how many more arguments to expect. The next 

argument, is a pointer to the object. The next arguments are pointers to the object’s inlets 

and outlets. The function “dsp_add()” does not distinguish between inlets and outlets. 

They are all just arrays that will be passed to the perform routine. The final argument is 

the number of samples to be processed during each call to the perform routine. This 

number is identical to the signal vector size as defined in the Max/MSP DSP status 

window.  

 There is one type of functions that could/should be implemented in any Max/MSP 

external called message handlers. These functions define the actual behavior for an object 

by writing C functions that will be called when our object is sent messages of a particular 

type. A separate message handler needs to be implemented for each type of expected 

input (e.g. int., bang, signal, etc.). As mentioned before, these functions are bounded to 

their expected input type in the initialization routine described above. 

 

4. Design  
In the early stages of the project, the general concept of the external had to be defined, in order 

to facilitate the development. The most important things to be clarified are the desired behavior 

of external object, referred from now as “[wfs~]”. This can be split in two distinct areas, based 
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on the two roles one can have: creator and listener/audience, but first setting the object`s 

functionalities should be covered. 

A. Functionalities 
The [wfs~] object should be able to 

synthesize wave fields, based on 

the coordinates of a given sound, 

as well as the characteristics of the 

speaker system. Considering every 

WFS system is different, and there 

is no standard for setting up one, 

the object should accommodate 

arrays with any number of 

speakers, speaker dimensions and 

distance between speakers. When 

it comes to speaker arrangement, 

the two most popular setups are 

circular and rectangular, and the 

[wfs~] should be able to synthesize 

wave fronts for both types. A 

particular case for the rectangular 

setup is the truncation effect 

mentioned in the Analysis chapter (page). This effects occurs when there is a big difference in 

pressure in the ends of the array, as the red area in figure 8 shows. This effect can be diminished 

by lowering the output amplitude of the first/last few speakers in the array. A logarithmic curve 

is usually implemented. 

Usual Wavefield synthesis software can produce 3 types of virtual sources, point sources, focused 

sources and plane waves, and the [wfs~] should be able to do this as well. A certain problem 

represents the transition between a point source to a focused source, in other words moving a 

virtual sound source in front the speaker array, from a position that was behind. This is because 

the delay times become inverted at the transition point, creating an audible click. A popular 

approach is to interpolate the delay times, keeping them at 0 on the crossing point. Another 

solution is to crossfade between the two signals, solution that should be implemented in [wfs~] 

as well. 

An inspiration for the behavior of [wfs~] is the [ezdac~] object, that works as the audio output of 

the stereo bus. From personal observation, having a big number of [ezdac~] object in one`s patch 

does not have any effect on the performance of said application. This can mean that the object 

does not execute it`s functionalities for each instance, but instead sums them up and executes 

only once Max/MSP instance. This should optimize the performance necessary to run complex 

Figure 8 Truncation effect in the end of the array 
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patches. In the same manner the [wfs~] should not execute all the heavy calculation for each 

instance of the object, but instead sum all the signals send to it and execute once/sample. 

B. Experiencing [wfs~] 
Starting with the listening/audience position, experiencing sounds played through the [wfs~] 

object, should be as engaging and accurate as possible for the given setup. In order to achieve 

this, the object should not introduce unwanted latency, or undesired audible sounds, like moving 

artefacts, in the form clicks, pops, crackles, etc. On top of that, preserving the audio quality of 

the input signal is a priority.  

When it comes to the perception of virtual sound sources and their position, [wfs~] should 

perform as good as other, stand alone, WFS software. In order to achieve this, the external is 

expected to replicate the behavior of sound influencing the localization task, specifically an 

accurate sound attenuation over distance, and an accurate filtering, simulating the effect of air 

absorption of high frequencies.  

C. Working with [wfs~] 
If approaching the external from a Max/MSP 

developing position, the [wfs~] object should stay 

true to the Max philosophy of modular visual 

programing, where each object does has one task. To 

facilitate the usage of multiple instances of the object, 

without having to re-introduce the system settings (nr 

of speakers, dimensions, offsets, etc.) every time, another object could be implemented that 

behaves as a global setup object for the [wfs~] external. A similar approach can be found in the 

[transport] (that output bangs the current beat, bar, unit, BPM, and time signature), and [global 

transport] (figure 9) object which controls the settings for all [transport] objects. This allows the 

user to set up the parameter for a musical piece only once, greatly facilitating the music 

production process. 

As with all other Max/MSP object one can send multiple types of data in its inlets (integers, floats, 

messages, bangs, signals, etc.), and the [wfs~] should have flexible inputs to allow for using same 

inlet with different data types(e.g. interchange between floats and integers).  

Lastly, in order to facilitate a good experience when working with the object, it should be able to 

detect when an illegal action is committed and protect against it, in order to avoid crashing the 

application. A good example for this would be a scenario when the user accidentally inputs a 

negative array size. If no protection is implemented this can easily crash Max/MSP by creating 

negative delays.  

 

 

Figure 9 Global Transport object 
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5. Implementation 
The [wfs~] object, was written in C programing language, using xCode IDE version 8, and it was 

built under OSX Yosemite and El Capitan. The Max 6 API as well as Max/MSP/Jitter SDK were used 

extensively for building this object, since all functions required to create any Max objects are 

available in some of the libraries provided.  

The object was written using functions working with 32 bits resolution, mainly due to the amount 

of literature available for 32 bits libraries as opposite to 64 bits. On top of that, by using the 32 

bits libraries, backward compatibility with older versions of Max/MSP is easily achieved. The 

object was tested on Max 6 and Max 5, and it proved to work without any difference. 

A. Limitation 
Working on this project challenged me to approach new systems that only increased the 

necessary time required to implement a fully functional Max/MSP object as described in the 

Design chapter. Therefore some aspects of the [wfs~] had to be prioritized. The first version of 

the object is hard-written to synthesize wave fronts through the speaker system available in the 

Aalborg University campus in Copenhagen, which features 4 arrays of 16 speakers, arranged in a 

square. This was necessarily because implementing a parametrical generation of MSP outlets is 

a very time consuming task, which only improves the workflow, but has no impact on the 

performance. This means that the [dac~ x] (x = speaker number) object was used to output 

sounds, having an individual [dac~] for each output channel (figure 11). Implementing two 

objects, one for control and one for synthesis was another feature that had a lower priority, and 

it is not implemented at the moment of writing. In order to test the object in time, only point 

sources were fully functional. 

Figure 10 the [WFS~] object 

Figure 11 the [wfs~] object in use 
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B. Object setup 
Every Max/MSP external follows is built on a common skeleton made of four functions and an 

object structure. Three of the functions are not called by messages and are known as routines: 

initialization routine, new instance routine, and perform routine. The last function, called the 

“dsp method” is called by the “dsp” message and thus is not referred as a routine. Next 

paragraphs will try to shed some light of what each of these components does in the case of 

[wfs~]. 

I. The object structure 

The first component for all Max/MSP externals is the object structure. The very first component 

defined must be a “t_pxobject” type one. Next are any components that must hold their value 

for longer than one signal vector worth of samples. These components are often called state 

variables, since they maintain information about the state of the object.  The [wfs~] has 20 state 

variables that account for sample rate, delay length, state of the inlets, etc.  

II. The Initialization routine ( main() ) 

As with other software written in C (or C++ for that matter), the function prototypes need to be 

declared, so they can be called before they are actually written in the top-bottom code layout. 

An exception to this rule is the “main()” function, which does not need to have the prototype 

declared, because it can only return an integer, and C assumes by default that a function returns 

an int. Besides this the “main()” function does not take any arguments, and it is called only the 

first time the object is first loaded. 

The main function, referred as the initialization routine, defines the object class (called 

“wfs_class”), gives it a name, indicate what methods to call when a new instance of the object is 

created or deleted and allocate some memory for the object struct. After the class is defined, 

there are several functions bound to specific types of inputs. This is a very important aspect, one 

can easily implement a plethora of functionalities with a small number of inputs (e.g. same inlet 

accepts signals and messages). This is a common practice in the Max/MSP environment. Binding 

is done by calling the “class_addmethod()”method, passing arguments like, what to bind, what 

method call when a certain input in received, type of input, etc. The [wfs~] binds four methods 

to the class, for the DSP(called when the DAC`s are turned on), for float inputs, integer inputs as 

well as a special class case called “assist” that is called when hovering the mouse cursors over a 

certain inlet(figure 12). 

III. New Instance Routine 

Whenever a new instance of the [wfs~] object created, the new instance routine is performed. 

For [wfs~] the function called “wfs_new() ” is responsible for allocating memory, for creating 

inlets and outlets, reading user inputs and creating the delay line.  

Figure 12 - Binding the assist method 
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To create new inlets it is necessary to call the “dsp_setup() ” method, passing an argument 

pointing to the object struct, and the number of desired inlets. It is worth mentioning that these 

inlets are generic, and will accept connection for any type of input. The functions bound to 

specific input types, declared in the initialization routine, dictate what will happen with the 

different type of inputs. The [wfs~] has 6 inlets: one for the audio signal, two for coordinates(X, 

Y), number of speakers, speaker dimensions (in meters), and type of source (plane wave, point 

source, focused source). 

Creating outlets is easier since it is done by calling the “outlet_new() ” function as many times as 

necessary. For the [wfs~] the function is in a loop calling it 16 times. Each outlet will represent an 

audio channel, and will be connected to a [dac~ x], where x is the channel number. A thing to 

remember that can cause a lot of issues, is that the outlet numbering goes from right to left, right 

being the first outlet.  

After the inlets are created their arguments can be read by calling the “atom_erg_getfloat()”(for 

float inlets), with the indices of float as argument(e.g. first float encountered, second, third, etc.). 

This function alters the receiving variable only if an argument was found. If the user types in 

[wfs~] with no arguments, then no change would be made to the values sent (e.g. X, Y 

coordinates). The correct way to call this object and receive inlets is [wfs~ 1 1 16 0.2 1]. To avoid 

crashing max by pointing to a non-existing address somewhere in the program, default values 

are written in the new instance routine, in case one does not write the arguments in the object 

creation as indicated above. 

Before the object instantiation process is completed, it is a good practice to enforce that inlets 

and outlets do not share the same memory. The object struct component “z_misc” is a bitmask 

that maintains the state of several flags. The flag to prevent memory sharing is set with the C 

bitwise or operator”|=”, which turns on the” Z_NO_INPLACE” bit of the “z_misc” bitmap (figure 

13). With that flag set, audio vectors will not share memory (Lyon, 2011). 

During the initialization stage, memory for the delay line is allocated, but this will be covered 

thoroughly in the chapter explaining the delay mechanism. 

IV. The perform routine 

The perform routine, called “wfs_perform()” is the function that executes the actual operations 

for any Max/MSP object. In the case of [wfs~], it delays the input signal based on the parameters 

send to the object. Before that it assigns variables from the object structure into local variables, 

a procedure called de-referencing. This operation is an efficiency measure, since it is more 

efficient to use local variables than to pull them off of the object structure each time they are 

needed, especially if they will be used repeatedly in a loop. In addition, it makes the code easier 

to read. However, since the operation is now performed with local variables, any changes to 

Figure 13 Independent signal vectors and SR acquisition 
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these variables that need to be saved must be reassigned back into the object structure at the 

end of the perform routine. 

A very important task that has to be performed in this routine is pulling the object structure, 

signal vectors, and signal vector size(figure 14) from the integer array passed as argument for the 

“wfs_perform()” function(in this case it is simply called w). It is important to know that the first 

position in the array is the object pointer, followed by the signal vector pointer, and lastly is the 

position indicating the buffer size (a.k.a. 

block size) for the current Max patch. It 

is crucial to get the order right since it 

will most likely cause a crash if passed to 

the DSP method in the wrong order. 

Lastly Max does not distinguish between 

inlets and outlets and treats them all like 

identical signal vectors. 

Inside the “perform routine” lies the code responsible for the actual signal processing in the 

object, called the DSP loop. This is performed while there is incoming sample available and it 

consists of applying the necessary delay and level attenuation for each individual channel. This is 

performed in a loop for every single sample processed. Inside this loop the linear interpolation is 

calculated for each necessary delay, as explained in the chapter covering the delay. The formulas 

for amplitude and delay length will be described in a separate sub-chapter. 

After every output sample has been delayed and attenuated it is assigned to its respective output. 

When this task is completed the write index and inputs index are incremented to process the 

next sample. 

The very last step in the DSP method is to return a pointer to the next entry address in the DSP 

chain. 

V. The DSP method 

The DSP method is bound to be called whenever the DAC object is turned on or whenever the 

DPS chain is rebuilt. Max/MSP builds the DSP chain whenever the DACs are turned on, or when 

any change is made to the DSP chain, such as adding or removing signal connections, changing 

the sampling rate, or changing the signal vector size.  

One of the tasks executed in this method for the [wfs~] object is to adjust to changes in the 

sampling rate. As figure (figure 13) shows, the sampling rate is determined in the new instance 

routine, but it is a good idea to check again. This assures that if the sampling rate has changed 

since the object was instantiated, it will adapt to the new sampling rate. If the sampling rate has 

in fact changed, it is needed to reallocate memory for the delay line. The key test is to compare 

the object’s stored sampling rate to the sampling rate found on one of the signal vectors (which 

is guaranteed to be the most up-to-date value). If a discrepancy is found, the calculation of 

memory is redone. However, rather than allocating memory from scratch as done in the new 

Figure 14 Copying signal vector pointers 
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instance routine, here the memory is resized by using the function “sysmem_resizeptr() “. In the 

case where the memory is not available an error message is printed and return from the function, 

without adding the object to the DSP chain.  

The main purpose of the DSP method is to add the external to the DSP chain. This is done solely 

by calling the Max/MSP function “dsp_add()”.The first argument is the name of the external’s 

perform routine. In this case it is “wfs_perform()”. The perform routine calculates one signal 

vector worth of samples for the external. The second argument tells how many more arguments 

to expect. This number represent all the inlets and outlets, as well as the block size. The function 

“dsp_add()” does not distinguish between inlets and outlets. They are all just arrays that will be 

passed to the perform routine. The final argument is the number of samples to be processed 

during each call to the perform routine. This number is identical to the signal vector size as 

defined in the Max/MSP DSP status window. 

 

Figure 15 adding the object to the DSP chain 

C. Other management functions 
Besides the mandatory function mentioned above, the [wfs~] has three methods that are 

designed to aid the user in its regular usage of the object. The assist method is creating pop-ups 

with information about each inlet or outlet whenever the user hovers the mouse over an 

inlet/outlet.  

A pair of functions, which are called when there is a received an integer of float message 

respectively, is ensuring that the user will not accidentally crash the program. Figure 16 is 

showing a particular case, when the 4th inlet, responsible for the speaker size, is enforcing a 

positive speaker size. 

 

Figure 16 enforcing a positive speaker size 

D. Delay 
The key element in Wavefield synthesis is a delay determined by the position of the virtual source 

to each speaker that will eventually playback the incoming signal. A delay is simply an array of 

stored samples. The lengths of the array in samples is the duration in seconds multiplied by the 

sampling rate. For example at a sample rate of 44100 a one second delay line will contain 44100 

samples. Unfortunately long delays can use extensive amount of resources so is it is mandatory 

practice to implement dynamic memory allocation, since Max imposes a size limit of 32 kilobytes 
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for its object structure, so a static memory allocation would not fit. Max/MSP provides a pair of 

memory functions called “sysmem_newptr()” and “sysmem_freeptr()” that allocate memory and 

free it respectively. In order to allocate memory, first it is necessary to declare how much memory 

is necessary. Once the required amount of memory has been allocated to a pointer that points 

to a block of memory of the appropriate size, it can be treated like a regular array, of statically 

allocated memory. To insure that [wfs~] will perform decent on slower computer as well, a 

maximum delay time of 500ms was implemented. While 500ms sounds like not much time for a 

maximum value, considering the speed of sounds of aprox. 344 m/s, 500ms will be exactly 172, 

indicating the maximum distance a virtual source can have from the speaker array. The maximum 

delay length was use as a reference for dynamically allocation of memory by converting from 

milliseconds to samples, and using that value to find out the necessary size in bytes for the 

500ms. The function “sizeof (float)” comes in very handy for this operation. The last step is to 

make call the “sysmem_newptr()” with the desired amount in bytes to allocate(figure 17) . Once 

memory has been allocated using the delay line splits into two separate operations: reading and 

writing.  

 

Figure 17 Memory allocation 

To make good use of the limited memory available for the delay line I implemented a circular 

buffer that works by starting from the beginning of the array and write each new input sample 

into the next available location in the delay line. When the last available sample position has been 

written, the process repeats from the beginning and keeps on writing. In order to always know 

where to write the next sample, the current location in the delay line needs to be stored. 

Reading from the delay line is done by converting the 

desired delay in milliseconds to samples at the 

sample rate. Next step is to read the delay line 

“delay” samples before the current position. A 

problem that occurs with this approach is when the position in the delay line is smaller than the 

delay length in samples, thus reading a negative position in the delay line array, and crash Max. 

To protect against this, the dimension of the delay line is added to the read position, continuing 

circularly in the delay line (figure 18). 

Figure 18 Reading the circular buffer 



26 
 

Another problem encountered when reading from the delay line is that in some cases the read 

number is not integer. For example if a desired delay is 75 milliseconds, the conversion looks like 

this: 75 * 44100/1000 = 3307.5, according to the method previously described. There are multiple 

solutions for this problem. One would be averaging to the next sample in the delay line, 

truncating it or interpolate between the two sample values. By ignoring the fraction in the sample 

position, distortion is introduced, especially when the delay length is variable as it would be for 

a moving virtual source. The [wfs~] object is implementing a linear interpolation to obtain a 

reasonably good estimate of a hypothetical sample situated some way between two samples. 

The first step is to truncate the actual delay time and subtract the truncated delay time from the 

actual delay time. This outputs a fraction that determines the relative contribution of the two 

samples, one at the truncated delay time slot and a second sample taken one slot beyond the 

first delay time slot. The result can be seen in (figure 19). 

E. Freeing Dynamically Allocated Memory 
Since the object is having memory allocated dynamically, it is not reliable to rely on the 

“dsp_free()” routine provided by Max/MSP to clear that memory. It is possible though, the 

external will still work, however the memory allocated to the delay line will not be freed when a 

object is destroyed. Allocating memory and not freeing this it when it is no longer needed results 

in what is called a memory leak. Memory leaks are insidious because they do not manifest 

themselves by crashing immediately. Rather they gradually suck up memory resources better 

used elsewhere. In the worst case they could eventually use up all available memory, causing a 

crash or severely degrading the performance of Max (Lyon, 2011). 

A very short (3 lines of code) custom memory 

freeing function (figure 20) is implemented. It frees 

the memory associated with the object as well as 

the memory allocated by the object for itself. It is 

important to follow the order mentioned above, 

since the first task removes the object from the DSP 

Figure 19 Linear interpolation 

Figure 20 Memory Freeing Method 
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chain as well. Until that happens it is not safe to free the dynamically allocated memory since if 

the DACs are on, the removal of the object might crash Max/MSP. 

F. WFS delays & amplitude damping 
As mentioned before the key method for re-creating 

approximate Wavefield is to delay the signal played 

through every speaker based on the position of the 

virtual source. To accurately calculate that it is 

necessary to determine the distance between each 

speaker, and the virtual source. The length is 

determined by applying Pythagoras’s theorem in in 

the triangle formed by the following points: virtual 

source(S), the desired speaker (D) and the point on 

that determines a perpendicular line on the array and 

intersects the virtual source position (A). Figure 21 

shows the triangle for an arbitrary sound source 

positioned in point S. The delay is determined by the 

length of the SD segment, which is 𝑆𝐷 =

√𝐴𝐷2 + 𝐴𝑆2. The coordinates for S point are known, 

since are passed as in the second and third inlet in 

the [wfs~] object. The position of the point D is easily 

determined by multiplying it`s speaker number with 

the dimensions of a speaker, value that is passed in the inlet 4.  

The final distance for each speaker can be described by the formula:  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √((𝑠𝑝𝑒𝑎𝑘𝑒𝑟 𝑠𝑖𝑧𝑒 ∗ 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟) − 𝑋 𝑐𝑜𝑜𝑑𝑖𝑛𝑎𝑡𝑒)2 + 𝑌 𝑐𝑜𝑜𝑟𝑟𝑖𝑛𝑎𝑡𝑒2 

Once the distance is calculated using the simple formula time=speed/distance the actual delay 

length is calculated. The speed used for [wfs~] is C=344m/s. A last step before actually using the 

delay length in the software is to perform a conversion from seconds to samples by multiplying 

with the sample rate. 

When it comes to the amplitude damping of the signal for each speaker it is usually described as 

the inverse square law. This law states that the intensity of the sounds chances in inverse 

proportion to the square of the distance from the source. For Wavefield synthesis Wouter Snoei 

from The Game of Life Foundation suggests that 1/(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗  √𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) will yield better 

results. Since the [wfs~] will be compared to the WFSColider developed by the aforementioned 

foundation it is also implementing this damping function. 

Unfortunately with a loudspeaker setup limited to the horizontal plane, the amplitude of the 

sound field cannot be synthesized correctly for the whole listening area. Therefore, a certain 

point inside the listening area is chosen as a reference point for the calculation of the amplitude. 

Figure 21 Distance Calculation 
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This reference point is typically located in the center of the loudspeaker array (Muller, Geier, 

Dicke, & Spors, 2014). Therefore and offset equal to half the array size was applied to the distance 

calculation. The offset is constant for all speakers. 

G. Max Routing 
An attempt to use all 64 speakers with 4 instances of the [wfs~] was made. Since the signal should 

not play through all speakers at the same time, a routing system was implemented in Max/MSP 

using the JavaScript object. The JS object was a series of conditions to turn on gates that would 

allow signal to be routed to any of the 4 [wfs~] object. There were 8 conditions based on the 

position of the virtual source, one for each side, and one for each corner (pair of arrays). The two 

figures (figure 21 & 22) below show how this was implemented. As seen in the pictures, the arrays 

are turned on or off. This is not the ideal case and a system of crossfading should be implemented 

in order to avoid hearable clicks and pops when the arrays are suddenly turned on/off. On top of 

that, and the reason why the evaluation was performed on a single array is that the routing 

system described introduced lag in how the Max/MSP responds, that in turn introduced artefacts. 

 

H. Summary 
This chapter describes the process of creating a Max/MSP object for Wavefield synthesis. Any 

Max object follows a strict structure of functions called routines. There are four routines, each 

with a specific task: the “initialization routine” that is called when the object is first loaded and it 

indicates what functions need to be called in any specific situation. The “new instance routine” 

called whenever a new instance of the object is created, is mainly responsible for the creation of 

inlets and outlets. A third function called “the perform routine” is written and inside it lies the 

Figure 23 Routing based on position Figure 22 routing sub-patch 
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actual behavior of the object. The “DSP method” is the last of the 4 routines and it is the one that 

adds the external to Max`s DSP chain.  

In order to synthesize a wavefield, the fundamental delay is created. In order to create a 

functional delay it is important to allocate the necessary memory, create a circular buffer to store 

samples for delay and protect it from possible incorrect address pointing. Lastly, an efficient 

Max/MSP external can have a custom function for freeing memory when the object is deleted 

from the patch.  

Once the delay system was functional a simple mathematical algorithm was implemented to 

compute the necessary delay for each individual speaker in the WFS system. Besides the time 

aspect, an amplitude attenuation is implemented in order to accurately simulate the behavior of 

sound in real world. A third element that would seem obviously necessary is filtering. Due to the 

natural low pass characteristic of a WFS array, it is safe to ignore it when working with such a 

system. 
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6. Evaluation 
In order to see if the [wfs~] satisfies the qualities described in the design chapter, an experiment 

was conducted using the Wavefield synthesis system in the AAU Copenhagen Multisensory 

Experience Lab. The hypothesis for this experiment was: The [wfs~] object performs similar with 

WFSColider when it comes to the accuracy of virtual static source location detection when using 

one array of 16 speakers.  

The WFSColider software was used as a reference for comparison because of its availability and 

previous good experiences with the software, including in studies that focus on distance 

perception. It is worth mentioning that this experiment is not considering WFSColider as a 

standard when it comes to localization accuracy. 

The decision to use only one array was made because the routing system implemented in 

Max/MSP produce situation when the sound location was really confusing. This was happening 

especially when the sources were placed in a corner position. When it comes to the static aspect 

of the sources, it came as a decision after the pilot test. The users could perceived the motion of 

the sound, both with [wfs~] and WFSColider, but the direction of this movement was ambiguous. 

For this experiment, the participants were exposed to three sounds, a female voice (8 seconds 

long), and some acoustic guitar chords (8 seconds) and noise bursts (5 seconds). All sounds were 

created for this experiment so there is complete control over the recording and the quality. All 

sounds were uncompressed, mono files, sampled at 44.1 kHz. Each sound was repeated 5 times 

for each of the two conditions. The order of the files was randomized for each participant.   

The participants had the task of reporting the position of each sound they heard, by using a 

Wacom Cintiq 22HD touchscreen, that shown a max patch as figure shows (figure 24) 

Figure 24 Max Patch displayed on the touchscreen 

Thanks for testing for me. This is a 

Wavefield synthesis system. I am using the 

speaker array in front of you. Your task is 

to listen to some sounds and report the 

location of these sounds. Use the big gray 

area to indicate where you think the sound 

was coming from. After you selected a 

position, press the blue/pink button. Do this 

until the "go" sign shows "STOP". 

The black square in the middle represents 

the speakers you see around you (that is a 

square with a side of 5 METERS). Please 

use it as a dimension reference for the 

perceived position. 

P.S. if you are accustomed to Max/MSP 

you are expecting a yellow color feedback 

when pressing the button. It will not happen 

(only work on mouse release, and your 

finger is not a mouse, I hope), so just 

touching the button is enough. 

P.P.S. This touchscreen might feel weird 

and leave the impression that it does not 

work. It works, trust me. Please do not 

touch the button twice, as you will trigger 

two sounds at the same time. 
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The text in the right introduces participants to the experiment, explaining what is expected of 

them.  

There were a total of 19 participants mostly students at AAU, divided into three females and 16 

males. Most of the participants have some sort of experience working with audio systems, while 

a handful of them worked with the exact Wavefield synthesis used for this experiment. All 

participants declared they have normal hearing. 

The system designed for this experiment was autonomous and it was in responsible for the 

random position of each sound source, the random order, as well as the triggering. Sounds played 

through WFSColider were also triggered from Max/MSP, as well as their position. The connection 

was made using the Open Sound Control Protocol.  

For each sound location generated, the system would log this position, for further comparison 

with the reported location. After 30 (3*5*2) sound were played, all the data is written in a log 

file and saved on the drive. The location range was x: 2 to 15 meters, and y -15 to 15 meters. The 

graph below (figure 25) show the randomly generated sound location for the guitar sounds. Since 

all three pairs where using the same random generation system, their distribution is very similar. 
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Figure 25 – Random position for the guitar sound for [wfs~] and WFSColider 
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7. Results 
The data that was gathered during the experiment was used to evaluate the performance of the 

[wfs~] object in relation to WFSColider software. This is done by comparing the distance from the 

generated sound virtual location to the reported perceived position. Since the experiment is a 

“within group” design, with only one variable, an analysis of mean would suit to understand the 

data. For this a method called paired-sample t-test was used. This method was chosen as 

opposite to an independent sample t-test simply because the two conditions are experimented 

by the same group of people, thus it is not possible that the data for each condition is 

independent. The t-Test returns a value, t; with larger I values suggesting higher probability of 

the null hypothesis being false (Lazar, Feng, & Hochheiser, 2004). In other words, the higher the 

t value, the more likely the two means are different. Normally it is used a 95% confidence interval 

in significance test. So any t value that is higher than the corresponding t value at the 95% 

confidence interval suggests that there is a significant difference between participants (Lazar, 

Feng, & Hochheiser, 2004). The null hypothesis in this case is: “There is a statistical difference 

between the two systems”.  

The data obtained in the experiment was analyzed using Microsoft Excel’s paired t-test function. 

It was performed independent for each of the three sounds, as well as a whole, and it is presented 

in the table below (table 1).  

 Mean 
Difference
(meters) 

Standard 
Dev. 
Difference 
(meters) 

Standard 
Error 
Difference 
(meters) 

T Value T alpha 
half 
95% CI 

Lower 
Confidence 
Level 
(meters) 

Higher 
Confidence 
Level 
(meters) 

Guitar -2.23885 7.214302 0.740172 3.17767 1.98580 -3.70868 -0.76902 

Noise -0.16051 8.285663 0.850091 0.38964 1.98580 -1.84863 1.527599 

Voice -2.0016 7.657372 0.78563 2.52880 1.98580 -3.5617 -0.44149 

Overall -1.46699 7.214302 0.740172 3.26305 1.96838 -2.92393 -0.01005 

Table 1 t-Test results for the data obtained 

Means (m) for: Guitar Noise Voice Overall 

Max/MSP  12.12271741 13.08480139 12.33448528 12.51400136 

WFSColider 14.36156687 13.24531507 14.33608462 13.98098885 

Table 2 – Means for the difference in the virtual location vs. the reported location 

The most important data that table 1 provides is the relationship between the T value and the 

necessary T value for having 95% confidence interval in order to reject the null hypothesis. It is 

easy to see that overall, there is no statistical difference between the [wfs~] and WFSColider, 

when it comes to static sources played back through one array of 16 speakers. If it would be to 

compare the three categories of sounds independently, the t test indicates that in the case of the 

noise sound clip there is not enough statistical difference to reject the null hypothesis. 

Another aspect that can be deducted from table 1 is that the mean differences for all cases are 

negative. This indicates that the participants performed better when hearing sounds played 
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through the [wfs~] object. Unfortunately since the “miss” distance average it is so big (over 12 

meters), the small differences of up to 2 meters do not really indicate a great increase in 

performance, fact confirmed by the rejection of the null hypothesis.  

Discussion 
The experiment conducted surfaced some important information, besides the one mentioned 

above. Probably the most important one is the huge perception error, witnessed for both the 

[wfs~] object, as well as the WFSColider. Looking at the table 2, that reports the average “miss” 

distance when it comes to the sound localization, it could be tempting to conclude that the whole 

experiment is a failure, and none of the systems actually works in reproducing 3D sounds. This 

behavior was not experienced before, when using the Wavefield synthesis system with all 64 

speakers. The series of figures below confirm the poor localization on both software, but it also 

shows that it is more likely to perceive a as coming from the left when WFSColider was used.  
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These figures also show that most of the sounds are localized right in front of the user. This is an 

indication that the randomly generated position could have been too far and are more likely to 

be perceived as plane waves than point sources. An improvement in localization could be 

achieved by exposing participants to much closer, moving sources, since the human hearing has 

an easier time understanding positions of non-static sources. A further experiment could provide 

insight into this issue. 

An interesting problem reported by the participants was that it was hard to localize sounds 

because of the visual stimuli. Some of them reported that it was very tempting to look at the 

individual speakers in the array and associate that with the position of the virtual source. Since 

this practice would clearly influence the reported distances, some measures should be taken to 

prevent this. A curtain covering the speakers could be a good solution, if blindfolding the 

participants is not a possibility (due to the necessity to report positions on a screen). 

Since the experiment conducted compare the performance of two pieces of software performing 

the same task, the output of this experiment is reporting a relative performance. It would be very 

interesting and insightful to perform a stand-alone localization experiment with the fully working 

[wfs~]. Such an experiment should feature a vast assortment of sounds and combine both moving 

and static sources, in order to obtain information about the system`s performance. Such a test 

should be conducted when further improvements to the [wfs~] object will be made, according to 

the description provided in the design chapter. 
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8. Conclusion 
This report followed the creation of a Max/MSP external to be used for Wavefield Synthesis. The 

first prototype was written in C, using the Max SDK. In order to obtain the necessary knowledge 

to create the object, topics like perception of distance and other 3D audio techniques have been 

reviewed. Following a thorough analysis of the existing Wavefield synthesis software, a Max 

object was designed that should be easy to work with and accommodate a vast array of potential 

setups, called [wfs~]. The first prototype was designed to work exclusively for the Wavefield 

synthesis system installed in the Aalborg University Copenhagen Campus. In order to test the 

performances of the [wfs~] object, an experiment was designed. The experiment asked 19 

participants to report the location of 3 types of sounds, played through the [wfs~] object as well 

as the WFSColider software, as a control condition. The results show that there is no statistically 

significant difference between the two playback systems, when it comes to localizing static sound 

sources played through a linear array of 16 speakers. The evaluation surfaced a problem when 

testing for static sound sources, which are really hard to localize accurately, average “miss” 

distance being over 12 meters. Considering the above, a further test needs to be conducted, 

when further refinements are done to the [wfs~] object as well as the testing methodology.  

Overall the project proves to be heading on the right direction, in order to provide a complex and 

simple to use Wavefield synthesis method for a popular program: Max/MSP. Hopefully by 

creating a more user accessible software alternative for Wavefield Synthesis, the technology will 

become more popular and attract researchers interested in 3D audio. 

  



36 
 

References 
Ambisonics. (2015). Ambisonics. Retrieved from Ambisonics Introduction: 

http://www.ambisonic.net/ 

Berkhout, deVries, & Diemer. (1989). Acoustic Holography for Sound Control. Audio Engineering 

Society. 

Brandenburg, K., Brix, S., & Sporer, T. (2009). Wave field synthesis. Ilmenau. 

Bronkhorst, A. (1999). Modeling auditory distance perception in rooms. Soesterberg. 

Corteel, E., & Caulkins, T. (2004). Sound Scene Creation and Manipulation using Wave Field. 

Digital Audio Effects. Napoli. 

Cycling '74. (2011). Max 6 API Documentation. Retrieved from 

https://cycling74.com/sdk/MaxSDK-6.0.4/html/chapter_inout.html 

de Vries, D., & M.Boone, M. (1999). WAVE FIELD SYNTHESIS AND ANALYSIS USING ARRAY. IEEE 

Workshop on Applications of Signal Processing to Audio and Acoustics. New York. 

Game of Life Fundation. (2010). The Game of Life. Retrieved from About wave field synthesis: 

http://gameoflife.nl/en/about/about-wave-field-synthesis/ 

Gari, S. V., & Kob, M. (2015). Perceptual evaluation of focused sources in a concert hall. German 

Annual Conference on Acoustics. Nuremberg. 

Geier, M., & Spors, S. (2012). Spatial Audio with the SoundScape Renderer. 

TONMEISTERTAGUNG – VDT INTERNATIONAL CONVENTION.  

Hartley, R., & Fry, T. (1921). The Binaural Location of Pure Tones. Physics Revised, 431. 

Lazar, J., Feng, H. J., & Hochheiser, H. (2004). Research Methods in Human Computer 

Interaction.  

Lyon, E. (2011). Designing Audio Object for Max/MSP and PD. Middleton: A-R Editions Inc. 

Mershon, D., & King, E. (1975). Intensity and reverberation as factors in the auditory perception 

of egocentric distance. 

Middlebrooks, J., & Green, D. (1991). Sound Localization by Human Listeners. In Annual Review 

of Psychology.  

Muller, J., Geier, M., Dicke, C., & Spors, S. (2014). The BoomRoom: Mid-air Direct Interaction. 

Oellers, H. (2009). Germany Patent No. 102009006762A1.  

Oellers, H. (2013). Wave Field Synthesis. Erfurt. 



37 
 

Paisa, R., Banas, J. S., Vogiatzoglou, I., Serafin, S., & Grani, F. (2016). Design and evaluation of a 

gesture driven wavefield synthesis auditory game. New Interfaces For Musical 

Expression. Brisbane. 

Pulkki, V. (2015). Virtual Sound Source Positioning Using Vector Base Amplitude Panning. 

Helsinki. 

Rumsey, F. (2001). Spatial Audio. Focal Press. 

Sauer, A., & Snoei, W. (2015). Retrieved from The Game of Life Foundation: 

http://gameoflife.nl/ 

Spoer, T. (2004). WAVE FIELD SYNTHESIS - GENERATION AND REPRODUCTION OF NATURAL 

SOUND. Digital Audio Effects. 2004. 

Zahorik, P. (1996). Auditory Distance Perception.  

Zahorik, P., & Winghtman, F. (2001). Loudness constancy with varying sound source distance. 

Nature Neurosience, p. 78. 

 

 


