
Skyline Query Framework for the Analysis of Electric
Vehicle Trajectories

Ion-Anastasiu Sanporean
Aalborg University
Aalborg, Denmark

isanpo14@student.aau.dk

Paulius Galinauskas
Aalborg University
Aalborg, Denmark

pgalin14@student.aau.dk

ABSTRACT
Electrical vehicle’s travel is affected by battery capacity,

distance and charging stations along the road network. Thus
charging routs are necessary to be optimized or to identify
possible locations for charging stations. This paper proposes
first a framework to identify trajectories in a dataset that
are both inconvenient and important using Skyline Queries
Algorithm (SQA) and second, a method to generate data un-
der different conditions. Skyline queries are performed using
a bicriteria approach: detour time of fastest route/path from
source to target (deviation) and its frequency of occurrence
in the historical dataset (support). Experiments were per-
formed considering two different sizes maps: central Aalborg
as a small map and North East Canada as a big map. The
tests were performed to prove the efficiency of SQA by com-
paring it with 2 other algorithms: brute force skyline and
sort filter skyline (SFS). The results showed that SQA run-
ning time outperforms the other two on the big map, while
on the small map is comparable with Brute Force running
time. The SQA algorithm identifies the skyline set in less
than 3/4 of the time Brute Force algorithm does, using effi-
cient pruning techniques. The Skyline obtained for different
number of routes shows that the larger the support values,
the smaller deviation values on both types of maps. The
results have revealed that the framework is efficient in cases
of analyzing large datasets, however a negative impact on
performance was observed when analyzing small datasets.

1. INTRODUCTION
Electric vehicles (EVs) are becoming more and more pop-

ular due to the advantages they offer, such as low level
of environment pollution, high level efficiency, low level of
noise and that they can be charged from any energy source
that produces electricity. Automotive manufacturers like
TESLA, Nissan, BMW have started to promote intensively
the sale of EVs and hybrid vehicles. Since EVs have started
to be used, slowly but surely, in both public (buses) and pri-
vate sectors (cars), it is expected that they will be common
in the near future.

The restriction enforced by EV’s battery capacity/charging
level affects travel distance. Battery charging may be needed
to reach desired destinations. This is also influenced by the
placement of charging stations along the road network (see
Figure 1). Travel distances that are beyond EV’s battery ca-
pacity limitation require the EV to follow a charging route.
There are cases when, because of the placements of charg-
ing stations, an EV travels longer in time/distance than the
fastest/shortest route between desired starting and ending

points. By optimizing or identifying possible locations for
charging stations, an EV travel might be reduced in terms
of time/distance and the ”inconvenience”of battery capacity
limitation might diminish.

Figure 1: Illustration of charging stations placement

This paper proposes first, a framework that analyzes a
dataset containing information about EVs’ routes in order
to help with future placement of charging stations along the
road network. The purpose of this framework is to find
EVs routes that are both: inconvenient (large detour from
the fastest route) and important (high frequency of occur-
rence in a dataset as a route or a subroute) using Skyline
queries. The second proposition is a method for generating
the previously mentioned dataset under different conditions
(charging stations along the road network, road type, EV’s
battery capacity/state of charge), in particular, EVs’ routes.

The paper is organized as follows: first of all, the problem
chosen to be solved is briefly presented. The next section is
dedicated to related work. In chapter 4, the main algorithms
used are presented. The next section offers a debriefing on
how a synthetic dataset (EVs routes) is generated and ends
with results obtained using different parameters values. The
paper ends with conclusions.

1

2. PROBLEM DEFINITION
The following problem setting is considered: the road net-

work is represented as a directed graph G = (V,E), where
V denotes the set of vertices and E denotes the set of edges
in G. The charging stations that are placed along the road
network are represented as a set Cs and ∀c ∈ Cs ⊂ V has a
charging rate as a definitory attribute.

Definition 1. Charging rate, denoted as C − rate(c),
represents the rate of which a battery is charged in charging
station c ∈ Cs.

Furthermore, ∀e ∈ E has a set of attributes: road type,
maximum speed, length between end points, power con-
sumed by an EV to traverse it.

Definition 2. Road type is an attribute of an e ∈ E
and depicts the characteristic of a road based on physically
layout and use of it (i.e. highway, street, private road etc.).

Definition 3. Maximum speed, denoted as maxSpeed,
represents the highest speed at which an EV traverses a road
segment of a certain type (i.e. for highways maxSpeed = 130
km/h).

Definition 4. Length between end points represents
the distance between the starting point and ending point of
an edge e ∈ E.

Definition 5. Power consumed to traverse an edge e ∈
E, denoted as pow, represents the energy consumed over
time by an EV to travel between the endpoints of a road
segment.

Definition 6. Travel time on an edge, denoted as te,
is a positive weight representing the time to travel between
edge’s endpoints at maximum speed.

The dataset analyzed by the framework proposed in this
paper is called historical dataset, denoted as H. This dataset
is associated with a road network and contains information
about different EVs and their routes.

Definition 7. Charging route, denoted as Rc(s, dest),
is a route in the historical dataset and is represented as a
sequence of vertices describing the path from source s to
target dest , containing at least one charging station, where
the EV stops for recharging battery.

Definition 8. Charging time, denoted as tc, represents
the time spent by an EV in a charging station c ∈ Cs for
recharging its battery and is depending on C−rate(c) (Def-
inition 1) and EV’s battery capacity/state of charge.

As mentioned in Definition 7, Rc(s, dest) is a sequence of
vertices describing the path between endpoints:

Rc(s, dest) = (s, v1, v2, . . . , dest)

As an observation, a charging route may contain a set of
charging stations, but only a subset of them may actually
be used for charging EV’s battery.

The travel time for a charging route has two components.
First, the total time to traverse every edge on the path
from source s to target dest and second, the time spent
to recharge the battery:

tr(Rc) =
∑

vi∈Rc

te(vi, vi+1) +
∑

vi∈Cs

tc(vi)

Definition 9. Fastest route, denoted as Rf (s, dest), rep-
resents the path describing the shortest distance from source
s to destination dest , traversed at maximum speed.

Definition 10. Optimal charging time, denoted as topt,
represents the minimum time spent for charging in a charg-
ing station c with C−rate(c) = max

{
C−rate(ci) | ci ∈ Cs

}
.

The travel time for fastest route has two components as
well. First, the total time to traverse every edge on the
path from source s to target dest and second, an optimal
charging time.

tr(Rf) =
∑

vi∈Rf

te(vi, vi+1) +
∑

vi∈Cs

topt(vi)

Having the time to travel along the fastest route, a new
attribute for charging route, deviation, is computed.

Definition 11. Deviation, denoted as dev(Rc) represents
a positive weight associated with extra time needed by EV
to travel along the charging route Rc compared with the
time needed for the fastest route Rf , from same source s to
same target dest .

dev(Rc) = tr(Rc)− tr(Rf)

A second attribute of a charging route, support , is also
computed.

Definition 12. Support, denoted as sup(Rc), represents
the frequency of Rc occurrence in the historical dataset as
a route or a subroute of longer routes (w.r.t. number of
vertices traversed).

An example of support calculation is given below.

Example
Let’s assume that Figure 3 is a road network. In order to
show how support is calculated we consider the following
dataset of routes:

1. c1 → c4 = c1, c2, v4, c3, v5, c4

2. c2 → c4 = c2, v4, c3, v5, c4

3. v4 → c4 = v4, c3, v5, c4

4. c3 → c4 = c3, v5, c4

The support calculated for the above mentioned routes is
presented in the next table:

Route Support
c1 → c4 1
c2 → c4 2
v4 → c4 3
c3 → c4 4

This table gives an illustration of how routes’ support in-
fluences their subroutes’ support values. It can be observed
that route c3 → c4 is a subroute of all the other routes in the
dataset. Therefore it has the highest support, 4. The longest
route c1 → c4 has support 1, since it is not a subroute of
another route and it appears only once in the dataset.

For a deeper analysis of historical data, a set of ”hidden”
charging paths is extracted from existing charging routes.
The purpose for data mining after these particular paths
is to identify the subroutes that are intensively trafficked
(high support). They might reflect bottlenecks cases, when,
in absence of multiple route choices for traveling from source
to destination, EVs follow only these paths.

Definition 13. Critical charging path, denoted as Pc(s, dest)
represents an individual subroute of existing charging routes,
with the particularity of exceeding certain threshold values
for support and for its length w.r.t. number of traversed
vertices:

2

sup(Pc) > sup threshold value

length(Pc) > length threshold value

Using deviation and support of all charging routes, the
framework proposes to identify two sets of skyline points
S(s, dest): one for charging routes and one for critical charg-
ing paths. Skyline queries are performed using a bicriteria
approach: detour time of fastest route/path from source s
to target dest (deviation) and its frequency of occurrence
in the historical dataset (support). The results obtained
represent charging routes/critical charging paths that have
maximum support and deviation.

3. RELATED WORK
An early version of the framework proposed by this paper

was introduced in [1]. Aspects from future work presented
in [1] are implemented in the new framework (like charging
level of EV’s battery at the initiation of a journey, time
needed to charge different levels of battery, travel speed,
road types). The main analysis’ focus on EVs trajectories
in the new implementation is switched from distance to time.

In the field of trajectories data mining has been done ex-
tensive and intensive research. Trajectory pattern mining
is one in a variety of mining tasks performed on different
datasets. In [2] and [3] sequential pattern mining algorithms,
such as longest common subsequence(LCSS) are presented.
Suffix Trees, which are designed for strings, can be adapted
and used for finding sequential trajectory patterns. In our
work we focused on finding the longest common subroutes
which are not members of a given dataset. Therefore, we
propose the use of an algorithm for finding the longest com-
mon subtring (LCS) instead of using LCSS algorithms.

In middle 80s’ H. T. Kung introduced in [7] the prob-
lem of choosing a subset of a given set by several criteria.
”Maxima vector problem” as mathematical approach, laid a
foundation for Skyline calculation problem in database con-
text. In early 2000 the german scientist S. Borzsonyi has
done pioneering work in this field [8]. Beside introducing
the concept of Skyline operator, he also provided a study on
possible SQL extensions for efficient Skyline calculation.

Scientists’ efforts to optimize this problem have increased
significantly, as observed in articles [9], [10]. The work done
by H. P. Kriegel [11] surpass the other as inspiration for this
paper.

4. ALGORITHMS
In this chapter, the main algorithms used by the frame-

work that analyzes EVs’ historical data are presented in a
detailed manner. The purpose of this framework is to find
EVs’ routes that are both important (high frequency of oc-
currence in dataset as routes or subroutes) and inconvenient
(large detour from the fastest route). Finding these skyline
points has to be done using efficient methods and algorithms.

Terms and Variables
As mentioned previously, the analysis of historical dataset

H focuses on two attributes: support and deviation for each
route, which are used to obtain the skyline points. Since
these attributes are not provided, they need to be calculated.

There are two possibilities to obtain the values for sup-
port and deviation: before and during computing the set of

skyline points. The first case is not attractive, since it de-
mands high computation, proportional with the number of
routes in the historical dataset and their length (w.r.t. num-
ber of vertices). Instead, it is preferable to calculate support
and deviation for a minimum set of routes (candidate set),
values that can be used as reference for computing the sky-
line points set. Having calculated support values for some
routes, estimations on support values for longer routes that
contain them may be done. The same goes for deviation
values.

Let there be a set, association list of a route, denoted as
AssocList :

AssocList(Rc(s, dest)) =
{
Rc(si, desti)|

Rc(s, dest) ⊂ Rc(si, desti) ∈ H
}

An association list has the following property:
Property 1. A route has support value lower than its

subroute:

sup(Rc(si, desti)) < sup(Rc(s, dest))

Proof. Support represents the frequency of Rc occur-
rence in the historical dataset as a route or a subroute of
longer routes (w.r.t. number of vertices traversed). If a
route Rc(s, dest) is identified as subroute of a larger route
Rc(si, desti), then sup(Rc(s, dest) will be bigger with at
least +1, since its occurence is more frequent. (See Ex-
ample in Chapter 2).

It can be observed that the values for support and devi-
ation that each member of an association list has, can be
estimated. Later on this chapter, it will be explained how
these estimations are done and how they help during the
process of computing the skyline points set.

We will continue now with presenting main algorithms. In
Table 1 the main variables used are introduced.

4.1 Support
Support of a route has been introduced in Chapter 2. This

parameter is related with the number of cars following a
particular charging route, once or several times - the more
frequent the route, the larger the support value for it.

Support calculation algorithm has as input the charging
route from historical dataset. The output is the support
value (a positive integer representing frequency of occur-
rence) for every unique route in this dataset.

A particularity considered is that a long route (w.r.t. num-
ber of vertices traversed) may have a lot of different sub-
routes within. In other words, this route will be a member
of an association list for every of its subroutes.

The idea behind support calculation is to work in ascend-
ing manner, starting from the shortest routes (w.r.t. number
of vertices traversed) and check whether these are subroutes
of longer routes. If there is a longer route that checks the
subroute requirement, the longer route becomes a member of
its subroute association list. Furthermore, an estimate sup-
port value is attributed to the longer route. The maximum
value for this estimate cannot exceed its subroute support
value, and more, is at the most support(subroute)− 1 (Ex-
ample in Chapter 2). In case, a longer route is member in
association list for multiple subroutes, its estimate support
value is adjusted to the minimum value of these.

Pseudocode of Algorithm 1 presents how the support val-
ues are calculated.

3

Candidate’s property Description

vector of pointers AssocList Association list. A list which contains pointers to routes in which the candidate was
found

bool isInAssocList Is in association list. Reveals if candidate is in someone’s association list.

bool calculated A bool variable, which indicates if candidate’s support and deviation has been calcu-
lated.

vector of vertices chargingRoute Sequence of vertices from s to dest. Definition 7

vector of vertices fastestRoute Fastest route from s to dest. Definition 9

double estDeviation Estimates deviation. Deviation, which has been assigned through association list. Serves
as an upper bound.

double deviation Definition 11

double maxDev Maximal deviation. Is a maximal value (based on power consumption) from candidate’s
association list

int estSupport Estimated support. Support value, which has been assigned through candidate’s asso-
ciation list. Serves as an upper bound.

int support Definition 12

double powerConsumption Power consumed to travel along a charging route.

Table 1: Variables explanation used in pseudocodes

Algorithm 1 Support calculation algorithm (supportCalc)

supportCalc(candidate)
Input: candidate - a single route
Output: Support for candidate and estimated support for
candidate’s association list

1: i =candidate’s position in CanSet vector
2: for (i=0; i < canSet.size - i - 1; i++) do
3: j=i+1
4: if (candidate is part of CanSet[j]) then
5: candidate.support++
6: candidate.AssocList.push back(CanSet[j])
7: end if
8: end for
9: for (k=0; k < candidate.AssocList.size; k++) do

10: if (candidate.AssocList[k].estSupport >
candidate.support− 1) then

11: candidate.AssocList[k].estSupport =
candidate.support− 1

. every route in association list of candidate is assigned
with support estimate from candidate

12: candidate.AssocList[k].isInAssocList = true
13: end if
14: end for

The first phase, Lines 2-8 is to calculate support for a
route and construct its association list.

The second phase, Lines 9-14 is attributing the estimate
support values to every existing member in the association
list. In Lines 10-11 the estimated support value is adjusted
to a more appropriate value. In Line 12, the fact that a
longer route appears in an association list is marked, using
a boolean flag. This helps later on during skyline computa-
tion, presented in Section 4.3.

4.2 Deviation
Deviation is the second dimension of the skyline set and is

found by subtracting the travel time of fastest route Rf (s, dest)
found by an A* algorithm, from the travel time of charging
route Rc(s, dest), which is an object in the historical dataset.

The cost function of A* is the following :

f(n) = g(n) + h(n)

where g(n) represents the time to travel from initial point
to n and h(n) represents the heuristic function from node n
to destination point dest.

As heuristic, the time to travel on Euclidian distance be-
tween two points is chosen. Finding this distance is trivial
and effective, and traveling on shortest path ensures shortest
traveling time as well.

Deviation algorithm has as input the charging route from
historical dataset. The output is the deviation value for this
route.

During the phase of calculating deviation for one route/
candidate, the corresponding association list is also updated
with estimate values.

Deviation estimation
Definition 13. Maximum possible deviation of a charg-

ing route, denoted as maxDev, is the difference between the
time to travel along the charging route and the time to travel
on the Haversine distance between the same source and des-
tination.

The time to travel on Haversine distance between source
s and destination dest is similar to the time to travel along
the fastest route. The only difference is that the travel speed
on Haversine route, denoted as RH , is considered to be the
maximum possible speed available for the road network w.r.t
existing road types (i.e. highway).

4

h

a) Line 8 b) Line 11 c) Line 17 d) Line 21 e) Line 27

f) Line 32 g) Line 39 h) Line 37 i) Line 37

Figure 2: Pseudocode illustrations

tr(RH) =
∑

s,dest∈RH

te(s, dest) +
∑

vi∈Cs

topt(vi)

Identifying the route(s) in the AssocList that have a large
difference between tr(Rc) and tr(RH) gives us the chance to
obtain an upper bound value for deviation estimate.

Having an estimate for deviation as a maximum possible
deviation for one route, helps with the fact that tr(Rf) is
not computed unless truly needed. This might reduce the
complexity of operations, by not calculating a fastest route
for every charging route existing in the analyzed dataset.

Maximum possible deviation of a route is expressed as
follows:

maxDev(Rc) = tr(Rc)− tr(RH)

The upper bound value for estimated deviation is com-
puted by founding the member/route with highest maxDev
in candidate’s association list.

Pseudocode of Algorithm 2 presents how deviation values
are calculated.

First, in Lines 1-2, the fastest route for candidate and as-
sociated deviation are calculated. After, in candidate’s as-
sociation list, the member/route with largest/higher power
consumption is found and an estimate value for associated
deviation is computed (Lines 3-4).

The last phase, Lines 5-7, is updating the deviation val-
ues of every member in candidate’s association list with the
value computed in Line 4.

4.3 Skyline
As introduced in Problem Definition (Chapter 2), a sky-

line point is a point that is not dominated by any other point
in a dataset.

The Skyline algorithm focuses on finding skyline points
that have large support and large deviation (max-max prob-
lem). The efficiency of this algorithm relies on execution
time (number of operations executed). Therefore, having a
good set of data for analysis and usage of proper pruning
techniques are essential.

Algorithm 2 Deviation calculation algorithm
(deviationCalc)

deviationCalc(candidate)
Input: candidate - a single route
Output: Deviation for candidate and estimated deviations
for candidate’s association list

1: candidate.fastestPath = A star(candidate)
2: candidate.deviation = tr(candidate.chargingPath) −

tr(candidate.fastestPath)
3: for (k=0; k < candidate.AssocList.size; k++) do
4: candidate.AssocList[k].estDeviation =

tr(candidate.chargingPath)−
haversineDist(s, dest)/maxSpeed

5: end for
6: maxPath =

argmax {a.estDeviation |a ∈ candidate.AssocList}
. find route with highest estimated deviation in

candidate’s association list
7: candidate.maxDev = maxPath

Previously in this chapter, the notion of association list
along with the methods of computing estimated support/
deviation values for its members were introduced.

The main idea behind Skyline algorithm is pruning the
Candidate Set using estimate values combined with real
calculated values for support and deviation. The pruning
method proposed identifies possible cases when a candidate
can be discarded along with its association list.

In Algorithm 3 the checking procedure of a candidate from
Candidate Set with Skyline set is presented. The algorithm
has as input a candidate for Skyline set. The output result
is that the candidate is discarded (in some cases along with
his association list) or added to Skyline set.

An illustration of how Algorithm 3 works is presented in
Figure 2. The variables/parameters that are checked rep-
resent candidate points for skyline set and their association
lists, points that are already in skyline set along with their

5

Algorithm 3 Candidate’s check with Skyline vector (checkSkyline)

checkSkyline(candidate)
Input: candidate - a single route
Output: Candidate is discarded or pushed in to the Skyline vector

1: if (Skyline.size == ∅) then
2: Skyline.push back(candidate)
3: else
4: for (i=0; i < Skyline.size; i++) do
5: if (candidate.support > Skyline[i]) then
6: if (candidate.deviation ≥ Skyline[i].deviation) then
7: Skyline.push back(candidate)
8: if (candidate.deviation > Skyline[i].maxDev) then
9: delete(Skyline[i].AssocList) from canSet

10: delete(Skyline[i]) from Skyline
11: else
12: for (j=0; j < Skyline[i].AssocList.size; j++) do
13: Skyline[i].AssocList[j].isInAssocList = false
14: end for
15: delete(Skyline[i]) from Skyline
16: end if
17: else
18: Skyline.push back(candidate)
19: end if
20: end if
21: if (candidate.support < Skyline[i]) then
22: if (candidate.deviation ≤ Skyline[i].deviation) then
23: if (candidate.maxDev < Skyline[i].deviation) then
24: delete(candidate.AssocList) from canSet
25: delete(candidate) from canSet
26: else
27: for (j=0; j < candidate.AssocList.size; j++) do
28: candidate.AssocList[j].isInAssocList = false
29: end for
30: delete(candidate) from canSet
31: end if
32: else
33: Skyline.push back(candidate)
34: end if
35: end if
36: if (candidate.support == Skyline[i]) then
37: if (candidate.deviation > Skyline[i].deviation) then
38: Repeat Line 7-15
39: else if (candidate.deviation < Skyline[i].deviation) then
40: Repeat Line 23-34
41: end if
42: end if
43: end for
44: end if

6

association lists and maximum deviation maxDev. Candi-
date and skyline points are represented ”above” their asso-
ciation lists as a consequence of Property 1 (Chapter 4).
Several cases are identified during checking procedure and
each of them is detailed bellow.

As seen in Figure 2(a) , if candidate’s values for support
and deviation exceed the values for support, respectively the
upper bound value for deviation (maxDev) of the point in
Skyline set/its association list, the latter is pruned along
with its association list (from Candidate Set).

In Figure 2(b) only the point in Skyline Set is pruned,
since its association list’s members may have a larger devia-
tion than the candidate. As a consequence, the association
list of the point that was pruned is returned to the Candi-
date Set.

Figure 2(c) illustrates the case when the point in Skyline
set and the candidate are not comparable and so are their
association lists. As a result, the candidate becomes a point
in Skyline set.

Figure 2(d) presents the opposite case of Figure 2(a),
when the candidate is pruned along with its association list
from Candidate Set.

Another mirror case is also illustrated in Figure 2(e) in
relation to Figure 2(b). In this situation, the candidate point
is pruned and its association list is expanded in Candidate
Set.

Figure 2(g) and Figure 2(i) present the situation in which
the support values are equal, but candidate’s/point’s in Sky-
line deviation value exceeds the upper bound value (maxDev)
for point’s in Skyline/candidate’s association list. As a re-
sult the candidate/skyline point is pruned along with its
association list.

In the case illustrated in Figure 2(g), when the candidate
and skyline points have the same support, but the latter
has a deviation value that exceeds the upper bound value
for candidate’s association list, the result is the same as the
one presented for Figure 2(e).

In the beginning of this chapter it was mentioned that
our intention is to spend as less time as possible in calculat-
ing real values for support and deviation, which are needed
for Skyline set computing. This can be achieved by using
efficient pruning method.

As presented in Algorithm 3, pruning can be done not only
on real/calculated values, but also on estimates.

The following algorithm, Algorithm 4, presents how the
Skyline set is obtained and more, when support and devi-
ation are actually calculated. This algorithm has as input
the historical dataset and as output the Skyline set.

Three specific situations are identified during Skyline set
computation.

In case of candidate not being a member of an association
list but has estimated values for support and deviation, the
check is done on estimates (Lines 5-8). This situation occurs
after the cases presented in Figures 2(b),2(e),2(h).

When a candidate that is not a member of an association
list and has no values for support and deviation is met, they
are calculated (Lines 9-13) and afterwards it is checked with
the Skyline set (Line 14).

The last of three situations is when a candidate is a mem-
ber of an association list and doesn’t have calculated values
for support and deviation. This occurs when during the
checking procedure presented in Algorithm 3, this candidate
can not be pruned from Candidate set (Example Figures

Algorithm 4 Skyline Query Algorithm (SQA)

Input: CanSet - all routes
Output: Skyline - routes in Skyline

1: Skyline = ∅
2: Sort charging routes in CanSet ascendingly w.r.t se-

quence length
3: while CanSet 6= ∅ do
4: bool 1stPhaseFound == false
5: for (i=0; i < CanSet.size; i++) do
6: if (CanSet[i].isInAssocList == false and

CanSet[i].estimated == true) then
7: checkSkyline(CanSet[i])

. checkSkyline algorithm is performed on estimated
values

8: end if
9: if (CanSet[i].isInAssocList == false and

CanSet[i].calculated == false) then
10: 1stPhaseFound = true
11: CanSet[i].calculated = true
12: supportCalc(CanSet[i])

. Algorithm No x
13: deviationCalc(CanSet[i])

. Algorithm No x
14: checkSkyline(CanSet[i]))
15: end if
16: if (1stPhaseFound == false) then
17: if (CanSet[i].calculated == false) then

Repeat Line 11-14
18: end if
19: end if
20: end for
21: end while

2(b),2(e),2(h)). In other words, it is needed to calculate
the real values for both dimensions: support and deviation
(Lines 16-17). A high occurrence of this situation has a
negative impact on algorithm’s performance.

4.4 LCS
The algorithm presented in this section proposes to find

the critical paths. The problem can be solved using a longest
common substring algorithm (LCS algorithm).

Adapted to our situation, the problem of finding the LCS
can be described as follows:

Having the historical dataset H =
{
R1, R2, ..., Rn

}
, where

Ri, 0 < i < n + 1, represent the routes, we need to find
the longest common critical paths. These paths have to be
long enough (w.r.t. number of vertices) and need to have
a minimum frequency of occurrence in the dataset analyzed
(sup(Pc) > sup threshold value).

The scientific literature presents different approaches to
solve the LCS problem: brute force, dynamic programming,
suffix trees. The latter of these seems to be the most efficient
since it has the best time complexity O(n).

The longest common substrings of trajectories Ri ∈ H can
be found by building a generalized suffix tree (GST) for the
routes, and then finding the deepest internal nodes, which
have leaf nodes from all the routes in the subtree below it.
In order to build the generalized suffix tree, each route has
a unique terminator string (i.e.$1).

GST is built using Ukkonen’s algorithm [4].

7

Figure 3: Road network

Extracted meta-graph (a) Adding s and d (b)

Figure 4: Meta-graph construction

Extracted meta-graph (a) Adding s and d (b)

Figure 5: Meta-graph construction

After finding the longest common critical paths, they will
represent the Candidate Set for Skyline computation (Sec-
tion 4.3).

5. EXPERIMENTS
The experimental part of this paper has two subsections.

The first one introduces the method used for generating a
synthetic dataset. The tests performed on synthetic dataset

using the algorithms presented in Chapter 4 and results are
presented in the second subsection.

5.1 Charging route
Even if the number of EVs is increasing more and more, it

is still difficult to get good, reliable/precise data from them.
In order to perform experiments, a synthetic dataset needs
to be generated.

The equivalent of an actual EV historical route, is a syn-

8

thetically created path in the above mentioned dataset. This
path represents a charging route, meaning that at least one
of the vertices traversed from source s to target dest , is a
charging station c ∈ Cs and more, the EV stops here for
charging its battery. It is to be observed that EV’s battery
capacity influences directly the size of the subset of vertices
representing charging stations.

For the simplicity of generating synthetic data, traffic con-
ditions are not taken into consideration and as a conse-
quence, EV’s speed to traverse an edge is maximum speed,
based on road type. Another aspect that needs to be men-
tioned is that EV’s battery is charging only when it stops at
a charging station.

Another aspect that was considered when generating syn-
thetic data, was the initial state of charge (SOC) of EV’s
battery. SOC is defined as the remaining capacity of a bat-
tery.

SOC =
bat lvl

bat cap
(1)

where bat lvl represents the charging level of battery and
bat cap represents the battery capacity.

Generating charging routes is a complex operation that
requires high amount of resources (CPU, memory). The
resources’ consumption is proportional with the size of the
road network (w.r.t. number of existing vertices) and the
various paths along it. Reducing the number of computa-
tions will directly affect the execution time and the con-
sumed resources. How can the number of calculated paths
be optimized/reduced?

Since we are generating charging routes, this process relies
on the position of charging stations on the roadmap. If we
can reduce the set of vertices V to a set comparable in size
with the set of charging stations Cs, the number of possible
calculated paths decreases as well.

The idea of constructing feasible paths may give us a so-
lution to the matter presented above.

A feasible path, denoted as p is defined as the fastest
path from source s to target dest, and the power consumed
pow(p) traversing it, does not exceed EV’s battery remaining
capacity:

pow(p) ≤ bat lvl, where bat lvl = SOC ∗ bat cap

All feasible paths have the following property:

Property 2.: A path constructed out of feasible paths is
also feasible.

The goal of reducing the number of possible paths to be
calculated in order to generate the charging routes, can be
achieved with the use of feasible paths.

A new, directed graph G′(Cs, E
′) is precomputed, where

Cs ⊂ V denotes the set of charging stations and E′ denotes
the set of edges in G’. This will be referred as meta-graph
and its edges as meta-edges.

A meta-edge between two charging stations ci and cj is de-
fined: em(ci, cj) ∈ E′ and has three attributes em(ci, cj) =
(t, pow, path), where t - time to traverse the meta-edge, pow
- power consumed traversing it, and path is a feasible path
from ci to cj , described by the sequence of vertices between
them. The time calculated for traversing a meta-edge in-
cludes also the time spent by an EV charging its battery.

As mentioned before, the number of operations performed,
in terms of path calculated for generating charging routes,

can be reduced using the meta-graph. Constructing it in
precomputation phase ensures apriori knowledge by holding
information on the fastest route network between all charg-
ing stations. We have therefor only these unknown variables:
the starting and ending points of a charging route and how
are they connected to the ”charging stations mesh”.

5.1.1 Meta-graph
In this subsection we will describe the operations per-

formed during meta-graph construction. It is reminded that
the goal of these operations is finding how the vertices c ∈ Cs

are inter-connected through meta-edges.
During first step, repeated A* algorithm discovers all fea-

sible paths between ∀c ∈ Cs in G(V,E) w.r.t. @c ∈ Cs as in-
termediary points. The sequence of vertices describing these
paths are memorized. The time to traverse these paths and
the power consumed along are also computed. The result of
the first step is a set of meta-edges.

pow(p(ci, cj)) ≤ bat lvl, ∀ci, cj ∈ Cs

The second and last step is finishing to build the meta-
graph G′(Cs, E

′). Continuing from step one, where we ob-
tained the first meta-edges, Floyd-Warshall algorithm [6] is
performed to discover all feasible paths between all charg-
ing stations that are not already connected. During this
operation the attributes required for constructing new dis-
covered meta-edges (time, power consumed, path) are also
computed. As an observation at this step, a feasible path
may contain c ∈ Cs as intermediary vertex.

For a better understanding of how the meta-graph is con-
structed, we use the example shown in Figures 3, 4, 5.

Let’s assume that Figure 3 is the road network having 4
charging stations and the battery capacity of EV bat cap=30.
The first step is to find all fastest paths connecting all 4
charging stations, with regards to the fact that the power
consumed to traverse them does not exceed the battery ca-
pacity restriction. The results obtained are the following:

(c1, c2) with pow = 12
(c2, v3, c1) with pow = 13
(c2, v4, c3) with pow = 27
(c3, v5, c4) with pow = 16
(c4, v6, c3) with pow = 21

At this step is not possible to have other paths, since
the power consumed to traverse them exceed the battery
capacity restriction (for example pow(Rf (c1, c3)) = 39 > 30)

The graph presented in Figure 4(a) illustrates how the
first discovered meta-edges are constructed. The result for
first step of constructing the meta-graph is than:

- vertices : c1, c2, c3, c4
- meta-edges:

e1(c1, c2) = (x1, 12, (c1, c2))
e2(c2, c1) = (x2, 13, (c2, v3, c1))
e3(c2, c3) = (x3, 27, (c2, v4, c3))
e4(c2, c4) = (x4, 34, (c2, v4, v5, c4))
e5(c3, c2) = (x5, 32, (c3, v5, v4, c2))
e6(c3, c4) = (x6, 16, (c3, v5, c4))
e7(c4, c2) = (x7, 35, (c4, v5, v4, c2))
e8(c4, c3) = (x8, 21, (c4, v6, c4))

The rest of meta-edges are added to meta-graph in the
last step. By running Floyd-Warshall algorithm, they are
computed and the meta-graph is completed (Figure 4(b)):

9

e9(c1, c3) = (x9, 39, (c1, c2, v4, c3))
e10(c1, c4) = (x10, 46, (c1, c2, v4, v5, c4))
e11(c3, c1) = (x11, 45, (c3, v5, v4, c2, c1))
e12(c4, c1) = (x12, 48, (c4, v5, v4, c2, c1))

As seen in Figure 4 and Figure 5, a different battery ca-
pacity value leads to a different meta-graph.

5.1.2 Charging route construction
Having the precomputed metagraph, finding desired charg-

ing routes becomes trivial. Both, source s and target dest
are added as artificial vertices to the meta-graph with a bat-
tery capacity restriction/boundary - instead of calculating
paths to all charging stations, we search only within points’
range regions.

A more precise requirement for source and destination
points of a charging route is that they are within a reachable
range (w.r.t. to power consumed) to at least a charging sta-
tion. In other words, there exists at least one feasible path
from both of them to a/multiple charging station(s).

Another factor, deviation, also influences a charging route.
In general, it is preferable to obtain a route with a minimum
deviation. The ”perfect” choice has to be made in the case of
more than one charging station existing within a reachable
distance to source or/and destination. When this situation
occurs, all feasible path combinations from source to desti-
nation are computed and the route that has the minimum
deviation is chosen.

During construction of meta-graph/meta-edges, the fastest
routes between all charging stations are also calculated. This
precomputation reduces the execution time of obtaining the
preferred route, as the number of variables is reduced signif-
icantly:

tr(Rc(s, dest)) = min
{

(tr(Rf (s, ci)) + tr(Rf (ci, cj))+

tr(Rf (cj , dest)) | ci, cj ∈ Cs and ci 6= cj
}

A particular situation occurs when both, starting and end-
ing point of the route are within a reachable range to the
same charging station(s). Then, the previous relation be-
comes:

tr(Rc(s, dest)) = min
{

(tr(Rf (s, ci)) + tr(Rf (ci, dest))+

+tc(ci) | ci ∈ Cs

}
As presented in previous chapter, a component in calculat-

ing the time to travel from source to target, is the time spent
in charging stations when charging the battery. This com-
ponent is in direct relationship with EV’s battery SOC: the
lower the level, the longer it takes to recharge. Also, knowing
the power consumed to travel along edges to reach certain
vertices (for example target or a charging station closer to
target), the time spent for battery charging can be opti-
mized/minimized. For a better understanding let’s take a
look at the situation where both source and target are within
a reachable range to the same charging station. Knowing the
power consumption to arrive at destination, the remaining
battery capacity after charging should be comparable with
it:

pow(p(c, dest)) = bat lvl, c ∈ Cs

An example on how a charging route is constructed is
illustrated in Figure 4(b) and Figure 5(b). We are given the

Figure 6: Big map with starting and ending regions

starting point s and destination point dest. In Figure 4(b) s
has one charging station c1 within reachable range (23) and
dest has c3 and c4 as nearest accessible charging stations
(within 30, respectively 25).

5.2 Test and Results

5.2.1 Experiments settings
Experiments were performed on a computer with 6GB of

RAM and Intel(R) Core(TM) i7-2670QM CPU @2.20GHz.
Code was written in C++ using C++11 standard and core
functionality was acquired with help of open source library
BOOST [15].

We have chosen two different sizes maps (road networks)
to generate synthetic historical data and perform tests on it.

First, a small map (central Aalborg, see Figure 1), which
has GPS coordinates 57.04o S, 57.055o N, 9.938o E and
9.9o W. During dataset generation process no boundaries
were set - starting and ending points were chosen completely
random.

The second map, bigger than the first one (North East
Canada, see Figure 6), corresponds to rectangle of GPS co-
ordinates 55.507o S, 56.68o N, -118.98o E and -121.94o W.
In this case, two bounding rectangles were defined (see Fig-
ure 6) and 70% of routes were forced to start and end within
them, while the rest 30% routes were completely random.
The boundaries were chosen to imitate real world travel pat-
terns between 2 major areas on a map.

Table 2 presents the characteristics of these 2 maps.

Map Location No. of
vertices

No. of
edges

Autonomy,
(kW)

Small Central Aalborg 394 75 250

Big North East
Canada

35769 5259 16000

Table 2: Map Information

Another parameter, which has significant impact on routes
generation is Power Consumption Rate. The rates were
taken for average size vehicle from work of [13]. It is worth
to observe, that after complex study, the authors propose

10

rates which contradict with common intuition - the faster
vehicle moves, the less power it consumes. The values used
in our data generation are presented in Table 3.

Speed, (km) Power Consumption, (kW)
30 172
40 168.5
50 165
60 161.5
90 151
130 137

Table 3: Consumption rates

In order to prove the efficiency of SQA proposed in this
paper, the tests were performed in comparison with 2 other
algorithms: brute force skyline and sort filter skyline (SFS).
An overview of these algorithms is presented bellow.

Algorithms

Brute force
Brute force solution works in simple manner: first computes
support and deviation for all routes, then performs primitive
comparison algorithm, where calculated values are compared
and Skyline routes are found.

Sort Filter Skyline (SFS)
This algorithm [14] is based on a similar principle as Brute
force - it computes support and deviation values for all
routes. Then for every route sums the values for support
and deviation and the Candidate Set is sort descending on
previously summed values. An updated Candidate Set is
obtained, where the first route/member has biggest sup-
port and deviation and is definitely a part of the Skyline
Set. An advantage of using SFS is that the sorting process
helps to discard most of non-eligible candidates without go-
ing through entire Skyline Set later.

A pseudocode version of the SFS used in our experiments
is presented bellow in Algorithm 5.

Algorithm 5 Sort Filter Skyline Algorithm (SFS)

Input: CanSet - all routes
Output: Skyline - routes in Skyline

Skyline = ∅
for (i=0; i < CanSet.size; i++) do

supportCalc(CanSet[i])
. Algorithm 1

deviationCalc(CanSet[i])
. Algorithm 2

canSet[i].SumV ariable = canSet[i].deviation +
canSet[i].support
end for
sort CanSet on sumV ariable descendingly
SimpleSkyline

. Comparison algorithm on 2 dimensions

5.2.2 Data mining - Critical Paths
As mentioned in Chapter 2 a deeper analysis of trajecto-

ries in dataset is performed in order to find critical paths.

A solution for mining for these critical paths is described in
Section 4.4. However, this is a very complex and non trivial
task to implement. Since the paper’s purpose is not propos-
ing an efficient solution mining for LCS using Suffix tree,
existing solution was chosen [16].

The existing implementation works for finding LCS of 2
strings. However, the dataset analyzed in our tests, con-
sists out of thousands routes. Therefore some adjustments
were made. First, LCS search is performed for each route,
concatenating it with all the rest of the data set. After
this, the found LCS is checked with defined threshold values
(length of a route LCS length = 0.3 and number of vertices
LCS vertices = 40). If the conditions are met, the found
LCS is added to a new dataset. Finally, SQA is performed.

As an observation, the mining for critical paths was per-
formed only on the small size map.

The pseudocode version of the algorithm used for finding
LCS is presented in Algorithm 6.

Algorithm 6 Critical Paths(LCS) discovery

Input: CanSet - all routes
Output: LCS dataSet - new data set

Skyline = ∅
for (i=0; i < CanSet.size; i++) do

string s1 = CanSet[i].pathString
for (j=i+1; j < CanSet.size; j++) do

string s2 = CanSet[j].pathString
path = LCS(s1, s2)

. Suffix tree construction and LCS search
if (path.distance ≥ LCS length) and

(path.pathSize ≥ LCS vertices) then
LCS dataSet.push back(path)

end if
end for

end for

5.2.3 Results
The following section is dedicated to presenting the re-

sults obtained performing tests with the settings mentioned
previously. The results are grouped by the type of tests
performed: SQA running time, skyline set size and running
time for generating synthetic dataset.

SQA Running Time
Figure 7 and Figure 8 present the results obtained for

SQA running time, in comparison with 2 other algorithms
Brute force and SFS. SQA running time outperforms the
other two on the big map, while on the small map is compa-
rable with Brute force running time. It is observed in Figure
8 that the larger the set of routes used to identify the skyline
points, the better the performance of SQA . The algorithm
proposed in this paper, SQA, identifies the skyline set in less
than 3/4 of the time Brute force algorithm does.

Data generation
A similar trend, as seen in Figure 7 is observed in the

results obtained for performing SQA on the critical paths
set Figure 9. It seems that for a small dataset, Brute force
algorithm might be a good option.

11

Figure 7 Running time of SQA on a
Small map

Figure 8 Running time of SQA on
critical path set

Figure 9 Running time on
big map

a) 100 routes b) 200 routes c) 300 routes

Figure 10 Skyline points on Small map

a) 100 routes b) 200 routes c) 300 routes

Figure 11 Critical paths Skyline on Small map

12

a) 1000 routes b) 3000 routes
c) 5000 routes

Figure 12 Skyline points on Big map

1,000 3,000 5,000 7,000 10,000

0.2

0.4

0.6

0.8

1
·104

Number of Routes

R
u
n
n
in

g
ti

m
e,

[s
]

Figure 13 Running time of Charging route creation on a
big map

Skyline Set
Figure 10 shows the skyline obtained for different num-

ber of routes, which were generated on the small map. It
is observed that the larger the support values, the smaller
deviation values. The same trend is seen in Figure 12, where
the results presented are obtained from the dataset gener-
ated on the big map. This tendency might be a consequence
of the dataset structure, in other words, the map chosen and
the parameters used for generating synthetic data.

In comparison with Figure 10, Figure 11 shows the Sky-
line set obtained from critical paths discovered from the
same routes. For critical paths skyline points the values for
support are larger than regular skyline points: more than
3 times larger for 100 routes, 15 times larger for 200 routes
and almost 9 times larger for 300 routes. These values prove
that within the analyzed dataset, there are patterns (criti-
cal paths) that might have a huge influence on deviation, if
traffic conditions are to be considered.

Data generation
As observed in Figure 13 data generation method pro-

posed in this paper performs in linear time and increasing
number of routes does not affect running time in exponen-
tial manner. This proofs that precomputed meta-graph idea
works efficiently.

6. CONCLUSIONS
In this paper we proposed a framework for the analysis of

EV trajectories along with a method to generate synthetic
datasets.

The results have revealed that the framework is efficient in
cases of analyzing large datasets. This is possible due to ef-
ficient pruning techniques used in Skyline Query Algorithm
(SQA), which rely on pruning candidates on estimated val-
ues, rather than real calculated values for each dimension.

The complex design of SQA and data structure used have
a negative impact on performance when analyzing small
datasets.

A future development direction for the framework pro-
posed might be analysis of timestamp related trajectories
for EV. Improvements might also be made for trajectories
pattern mining (finding Critical paths) by applying different
strategies for solving LCS problem.

7. REFERENCES
[1] I.Sanporean; P.Galinauskas; D.Shkodrov (2016)

Slyline Queries Framework for Electric Vehicles. AAU,
Data Engineering Semester Project

[2] M. Vlachos; G. Kollios ; D. Gunopulos(2002).
Discovering similar multidimensional trajectories.
IEEE, Proceedings 18th International Conference on
Data Engineering. p. 673 - 684.

[3] Yu Zheng (20015).
Trajectory data mining: An overview.. ACM Trans.
Intell. Syst. Technol. 6, 3, Article 29 (May 2015).

[4] Ukkonen, E. (1995).
On-line construction of suffix trees.. Algorithmica 14
(3): p. 249-260.

[5] Zeng, W.; Church, R. L. (2009).
Finding shortest paths on real road networks: the case
for A*. International Journal of Geographical
Information Science 23. p. 531-543.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest and Clifford Stein Introduction to Algorithms.
Third Edition

[7] H. T. Kung et. al, (1975)
Finding the Maxima of a Set of Vectors

[8] Stephan Borzsonyi, Donald Kossmann, Konrad Stocker.
(2001)

13

The Skyline Operator. 17th International Conference
on Data Engineering p. 421-430.

[9] Mullesgaard, Kasper; Pedersen, Jens Laurits; Lu, Hua;
Zhou, Yongluan (2014).
”Efficient Skyline Computation in MapReduce”. 17th
International Conference on Extending Database
Technology (EDBT). p. 37-48.

[10] F. Afrati, P. Koutris, D. Suciu, and J.D. Ullman.
(2012)
Parallel Skyline Queries. International Conference on
Database Theory (ICDT), p. 274-284.

[11] Hans-Peter Kriegel, Matthias Renz, Matthias
Schubert. (2010)
Route Skyline Queries: A Multi-Preference Path
Planning Approach. ICDE 2010

[12] http://www.igismap.com/haversine-formula-calculate-
geographic-distance-earth/

[13] Kwo Young, Caisheng Wang, Le Yi Wang, Kai Strunz.
(2012)
Electric Vehicle Battery Technologies. Electric Vehicle
Integration into Modern Power Networks,2013, p. 15-56.

[14] Jan Chomicki, Parke Godfrey, Jarek Gryz, Dongming
Liang (2003) Skyline with Presorting. 19th ICDE,
Bangalore, India, p. 717-719.

[15] http://www.boost.org/

[16] http://www.geeksforgeeks.org/generalized-suffix-tree-1/

14

