
Framework for automated
comparison of machine learning

based botnet detection approaches
Network security

Master Thesis

Group 1025

Aalborg University
Electronics and IT

Copyright c© Aalborg University 2016

Electronics and IT

Aalborg University

http://www.aau.dk

Title:
Framework for automated comparison
of machine learning based botnet detec-
tion approaches

Theme:
Master thesis

Project Period:
Fall Semester 2016

Project Group:
1025

Participant(s):
Nikolaj Bové Højholt

Supervisor(s):
Jens Myrup Pedersen

Copies: 2

Page Numbers: 78

Date of Completion:
June 2, 2016

Abstract:

Malicious software is a security prob-
lem that has been around for many
years. The topic that is currently, be-
ing extensively investigated is botnet
detection. Botnets are global networks
of compromised computer, that a bot-
master can use to for example run Dis-
tributed Denial of Service attacks cam-
paign. Time and time again, researcher
have to create good data sets for train-
ing and testing the machine learning
algorithms. The goal of this project
is to create a framework of a system
which is publicly available, and that
enables easy comparison between vari-
ous machine learning based botnet de-
tection methods, where each detection
method is tested with the same data
sets for training and testing. This also
requires extensive knowledge about
best practices in capturing, labelling
and merging data sets into training
and evaluation sets.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.aau.dk

Contents

Preface ix

Glossary xi

1 Introduction 1

1.1 Malicious Software . 1

1.2 Botnet . 2

1.3 Botnet Threat . 3

1.4 Botnet Architecture . 4

1.4.1 Centralised . 4

1.4.2 Decentralised . 5

1.4.3 Hybrid . 7

1.5 Related Work . 7

1.5.1 Evaluation Data . 8

1.6 Problem Statement . 9

2 Data Set Challenge 13

2.1 Datasets . 13

v

vi Contents

2.1.1 Real Traffic . 14

2.1.2 Controlled Traffic . 16

2.1.3 Benign Traffic . 18

2.2 Labeling Data . 19

2.2.1 Packet label . 20

2.2.2 Flow label . 22

2.2.3 Host label . 24

2.3 Merging Data sets . 25

2.4 Analysis conclusion . 27

3 System Design 31

3.1 System Description . 31

3.2 System Use Case . 32

3.3 Activity Diagram . 35

3.3.1 Activity Diagram: Upload . 35

3.3.2 Activity Diagram: Results . 36

3.4 System Requirements . 38

3.4.1 Front-End Requirements . 39

3.4.2 Back-End Requirements . 40

4 Implementation 43

4.1 Back-end System . 43

4.1.1 File System . 44

4.1.2 Database . 44

Contents vii

4.1.3 Application Activity Diagram 46

4.2 Front-end . 47

4.2.1 Pyramid Framework . 47

4.2.2 Uploading MLAs . 49

5 Testing and Validation 51

5.1 Test Specification . 51

5.1.1 Test 1: Upload algorithm . 53

5.1.2 Test 2: Automatic execution of algorithms 55

5.1.3 Test 3: Result overview . 56

5.1.4 Test 4: Detailed Result . 57

5.2 Testing with Existing Detection Methods 58

5.2.1 Machine Learning Algorithm: TCP 59

5.2.2 Machine Learning Algorithm: UDP 60

5.2.3 Machine Learning Algorithm: DNS 61

6 Conclusion and Discussion 63

6.1 Conclusion . 63

6.2 Future Work . 65

Bibliography 69

A TotalVirus Used Sites 73

B Production PC 75

viii Contents

C Pyramid setup 77

C.1 Setting up pyramid . 77

Preface

This report has been written by a student on Network and Distributed systems
as a 10th semester project. This project was prosed by Jens Myrup Pedersen. The
purpose of this project is to create a framework for a system that enables automatic
comparison of machine learning based botnet detection approaches, this system
would have to be widely available, and a benchmark platform for easy comparison
between different machine learning based botnet detection approaches. The system
is developed using a Python webframework known as pyramid, a MySQL database
on the back-end part of the system together with an application also written in
Python.

Materials, such as the Python pyramid scripts, SQL queries and the back-end ap-
plication together with an online version of the report for recreate ability is pub-
licly available through the groups project website on http://kom.aau.dk/group/

16gr1025/, this will be referred to a "monline repository" in the report.

The group would like to give a thanks to Jens Myrup Pedersen, Matija Stevanovic
and Egon Kidmose for supervision and feedback on the report and on implemen-
tation suggestions.

Aalborg University, June 2, 2016

Nikolaj Bové Højholt
<nhajho11@student.aau.dk>

ix

http://kom.aau.dk/group/16gr1025/
http://kom.aau.dk/group/16gr1025/

Glossary

Botnet robot network. 2

CnC Command & Control. 2

DDoS Distributed Denial of Service. 3

DGA Dynamically Generated Addresses. 5

DNS Domain Name System. 4

DPI Deep Packet Inspection. 5

FN False Negative. 8, 10

FP False Positive. 10

HTTP Hypertext Transfer Protocol. 5

HTTPS Hypertext Transfer Protocol Secure. 5

IDS Intrution Detection System. 9

IRC Internet Relay Chat. 5

ISP Internet Service Provider. 8

LAN Local Area Network. 8

malware malicious software. 1

MCFP Malware Capture Facility Project. 27

MLA Machine Learning Algorithm. 7

xi

xii Glossary

OS Operating System. 18

P2P Peer-2-Peer. 6

SSH Secure Shell. 22

TP True Positive. 8

Chapter 1

Introduction

This chapter presents the problem with malicious software (malware) in this day
and age. The focus is then be shifted from general malware and focus on botnet in
particularly. A small introduction to how botnets function and why botnets are a
huge problem are presented, before going into some of the work that has already
been done, in the field of botnet but also trying to take some inspiration from the
general work that is being done to fight malware. Finally, this chapter presents a
problem statement, that will be worked with throughout the rest of this project.

1.1 Malicious Software

As computers become more integrated, into the everyday life of people, both at
home and at work. With an ever increasing amount of users coming online every
year [23], the number of potential targets for malware also increased. Malware de-
scribes any kind of software that has been created with malicious purpose. When
looking at the history of malware, the motivation has for creating malware has
clearly changed.

In the beginning malware was mostly composed of viruses as the Internet was not
as accessible as today. In simple terms these viruses would mainly try to corrupt
host files or boot sectors and thereby rendering the host computer unusable for
most users. The primary reason behind the viruses in the early days of malware
history was to establish a reputation for the creator [3].

1

2 Chapter 1. Introduction

As the Internet grew, the number of different malware threats also grew. The
network worm, unlike viruses that used several days to months to spread across
some geographical regions. The network worm could spread across the globe in
a matter of seconds, by exploiting software vulnerabilities, thereby accessing other
computers that had the software vulnerability that the worm could exploit. As
time progressed and malware evolved from only causing havoc, a new threat in
the form on trojans. Trojans unlike viruses and worms would not self-replicate
and only spread by pretending to be a legit and benign application from either a
website or e-mail attachment, but by executing would cause everything from irri-
tation to the user (opening windows, changing screensaver etc.) to damaging the
host (deleting files, keylogger, spreading more malware, opening backdoors etc.)
[2]. From stealing information with keylogging features in trojans, the potential of
acquiring banking information and thereby financial gain can easily be imagined.

The state-of-the art malware is, malware that has the ability of providing remote
access to a compromised machine, giving the attacker, the creator of the malware,
full access to the machine over the Internet. As a result the machines compromised
with this new and sophisticated malware become a part of a robot network (Bot-
net), where each compromised machine effectively becomes a bot (also known as
zombie machine) and if the attacker has control over several bots, it becomes a
network of bots, or botnet. It is important to note that botnet in nature can be used
with both good and bad intention. A "good" botnet [4] could be an organization
that requires more processing power and thus uses a botnet where willing partic-
ipants share some of their computational processing power. However, throughout
this report the term botnet will be used in order to describe malicious botnet. In a
botnet, the infected hosts (compromised machines) serve a botmaster (botherder).
The botmaster controls each bot often through a Command & Control (CnC) server,
which is the interface the botmaster uses in order to control the bots. The different
methods a botmaster uses will be seen in section 1.2

1.2 Botnet

Throughout this section light will be cast on why botnet is a big priority malware
threat and also how botnets work with CnC servers as previously explained.

1.3. Botnet Threat 3

1.3 Botnet Threat

One of the reasons that botnets are a big priority malware threat is partly due to
the many different attack vectors a single bot can do, but more importantly the
amount of financial damage it can cause. On a global level malware in it self is
reported to have caused more than 1 trillion by 2011 [22]. As highlighted below,
botnet attack vectors causes a significant sum of financial damage, as a botmaster
can use the botnet available to initiate different attack vectors [4], also known as
attack campaigns:

Distributed Denial of Service (DDoS) attack All bots in a botnet are instructed to
connect to a specific site/server. Given some of the larger botnets controlling
more than 1 million bots [3], many services are unable to handle this many
simultaneous requests. Depending on the payload the target could use up
all of the bandwidth for a services, thus further insuring that a service is
unavailable. According to [22] the average DDoS attack in 2011 caused over
$180000 in damages, making DDoS attacks the most costly attack that year.

Click fraud Instead of using botnets to takedown a service, the bots is redirected
to a website controlled by the attacker and "click on ads". This generates
revenue for the attacker, as an advertiser pays money per clicked ad. The ad
revenue is often routed through an ad affiliation program, such as Google
adSense or Yahoo!, thus effectively money laundering the ad revenue. Ac-
cording to [3] two different companies: Click Forensics (now part of Google)
stated 18.6% of all clicks on monitored adverts where click fraud for second
quarter of 2010. Anchor Intelligence stated for the same period 28.9% of all
clicks on monitored adverts where click fraud.

Pay-per-install agent Pay-per-install business model is highly related to that of
click fraud. Here the botmaster offers to install specific software on target
machines for a customer. The software can be anything from benign to mali-
cious software. According to a study presented in [24] the German Honeynet
Project estimated that a botmaster can make about $ 430 a day from pay-per-
install.

Spam relay Using a botnet to send spam has the potential of doing several things:
Advertising phony or overprices products, scamming or phishing for finan-
cial gain by tricking users into giving up login credentials or credit card
credentials, or by doing advance-fee schemes that tells users that they have
a huge amount of money placed somewhere and are able to get hold of it,

4 Chapter 1. Introduction

but not before donating money. In 2009 the estimated financial cost of spam
emails was around $ 130 billion [3]. There are many more ways to use spam,
and is only limited by the creativity of the spammers. According to [19] the
3rd quarter of 2015 the proportion of spam emails was 56.17 %.

Large-scale information harvesting When a bot has infected a computer it is easy
for the botmaster to install a keylogger in order to record login and pass-
word information for different sites, search the content of the computer, alter
the Domain Name System (DNS) configuration and thereby redirecting the
victim to look-alike sites e.g. banking sites.

Randomware While not specifically botnet related, one of the newest and most
potent randomware, cryptolocker can be argued to have bot functionalities.
These funcatinalities are that, the cryptolocker often will try and connect to
a server to get a RSA key in order to encrypt the harddrive. This connection
could easilly be used for CnC commands aswell enableling all the other bot
features. According to [6] the standard fee the creators of cryptolocker sets is
$ 500 and increases the fee if not paid within a certain time frame.

1.4 Botnet Architecture

When a botmaster initiate communication with the botnet, it is often based on two
different network architectures, commonly known centralised and decentralised.
Both architectures have advantages and disadvantages, as well as different proto-
cols that also have advantages and disadvantages. Throughout this section both
concepts will be shed light upon together with what is known as a hybrid archi-
tecture where both the centralised and decentralised approach is combined.

1.4.1 Centralised

The centralised architecture is the simplest and most efficient botnet setup. All
bots establish communication with one or more CnC servers as shown on Fig-
ure 1.1, as these CnC servers are under the control of the botmaster. The botmaster
is therefore able to quickly and simultaneously communicate instructions to the
CnC servers which then forwards the intructions to all the bots connected [3]. This
architecture offers certain advantages for the botmaster, as the number of compro-
mised machines, as before mentioned fast and simultaneously communication and
easy to implement.

1.4. Botnet Architecture 5

Bot Master

CnC Server 1 CnC Server 2

Computer 1 Computer 2 Computer n

Figure 1.1: Botnet architecture known as centralised, here with two CnC servers

The first CnC servers where based on Internet Relay Chat (IRC) protocol, which
provides an instantaneous one-to-many communication and can support a large
number of clients being connected to one channel. Over the years Hypertext Trans-
fer Protocol (HTTP) and Hypertext Transfer Protocol Secure (HTTPS) services has
been gaining popularity in terms of usage [24]. As the IRC protocol often can
standout, as the community that uses IRC has been declining steadily ever since
2003 [10] from just under 1 millions active users to about 400000 users in 2012.

Some of the disadvantages of the centralised approach is that it is centralised, as
such, if all of the CnC servers are taken down the whole botnet is rendered useless.
A way to provide redundancy Dynamically Generated Addresses (DGA) and/or
fast-flux DNS is used. Another way is to use HTTPS as previously mentioned, as it
add encryption and thus making Deep Packet Inspection (DPI) next to impossible.

1.4.2 Decentralised

In contrast to the centralised architecture, the decentralised does not have dedi-
cated CnC servers, but purely rely Peer-2-Peer (P2P). The decentralised botnet is
often referred to as P2P botnet. An illustration of P2P botnet can be seen on Fig-

6 Chapter 1. Introduction

ure 1.2. Each bot (peer in P2P terminology) has knowledge about some participat-
ing peers, thus information about the whole botnet is not known, thereby making
it near impossible to obtain the full list of comprimised peers. When a new peer
comes online [24], some studied P2P botnet has been known to try and connect
to a number of predefined peers, thus taken those peers down would render the
botnet unable to acquire new peers, but still rendering the botnet operational. Oth-
ers have been known to start scanning for other peers by randomly searching IP
ranges.

Bot Master

Computer 1

Computer 2

Computer 3

Computer n

Figure 1.2: Botnet architecture known as decentralised

One of the major disadvantages is that the propergation time can be very long,
in contrast to the centralised approach that has almost instantanious propergation
time [3]. Another disadvantage compared to the centralised approach is that P2P
traffic potentially will standout if compared to HTTP/HTTPS traffic as P2P traffic
(in form of BitTorrent) accounted for 8% of the overall traffic in Europe 2015 [15]
not including mobile traffic.

1.5. Related Work 7

1.4.3 Hybrid

By combining the centralised and decentralised architecture creates a new type of
topology for the botnet. Due to the similarities with centralised and decentralised,
this type of architecture is simply known as hybrid. An example of a hybrid topol-
ogy is that the botmaster communicates with some centralised servers. Meanwhile
all the compromised peers are using the decentralised architecture to communicate
with each other. Then only a few compromised peers communicate with the cen-
tralised servers. Thus creating an additional layer of protection to the botmaster,
while having a higher level of control over the botnet then otherwise would be
possible in a pure decentralised approach.

1.5 Related Work

In order to defend against bot malware, the first thing to do is to detect the malware
it self, for this two approaches can be used, namely host based and network based
detection. Host based detection is done by installing software on a machine e.g.
anti-virus applications, where there are several well known and effective anti-virus
companies that can deal with traditional malware, that all now offer free online
scans, and sites such as https://www.virustotal.com/ taking it a step further
with the online scans as it uploads a given file to 56 different anti-virus companies
(Appendix A), but as bot malware is communicating with a CnC server, updating
bot malware, to be unrecognisable to anti-viruses, is fairly easy. Due to this, the
preferred approach for detection bot malware is using network based detection.

As botnet rely on Internet traffic in order to communicate with the botmaster via
the CnC servers to perform different attack campaigns. Network traffic detection is
currently the pinnacle research topic for botnet detection. Additionally to network
traffic analysis, many have utilised Machine Learning Algorithm (MLA) in order
to identify botnet traffic.

A new study [18] has provided a comprehensive overview of existing scientific
work on the use of MLA for botnet detection. However, the paper was only able to
provide a paper comparison of the existing work. This is because of the fact that
different detection methods were evaluated using different traffic data sets, that
are often not publicly available.

Combined over the analysed papers from [18], a total of 15 different MLAs where

https://www.virustotal.com/

8 Chapter 1. Introduction

investigated. From the most common supervised methods (Detection tree clas-
sifiers: C4.5, Random Forests, REPTree) and unsupervised methods (Hierarchical
clustering and X-means). Common for all of the MLAs investigated is that the True
Positive (TP) results, of all the bottom range of reported detection rate, where all
above 90 %, while most of the algorithms had less than 1 % False Negative (FN)
detections.

From [18] it is also clear that the number of different botnet families are often
not disclosed (DNS based approaches) or kept at a very low number (≤ 3) with
commonly 1 − 2 different samples from the different botnet families. Only a few
investigation used far more botnet families and samples from these families than
the others like [21] which used 6 different bot malware families and a total of 188
different samples across the different families. The detection of all the different
samples clearly showed that making an MLA that can detect everything is difficult,
as they where able to detect been 49 − 100 % of the family samples.

To further expand on the data sets that was used by the comprehensive survey
shows that, of the 20 papers. 6 used data captured from a Local Area Network
(LAN) environment, 8 used captured data from a University campus network and
9 where provided with data from Internet Service Provider (ISP) networks, all of
which were used as background traffic. Some of the papers used more than a
single capturing level interface.

This indicates the need for a future approach for reliable evaluation of the existing
work, as there are many deviating factors, specially in the data sets, between the
current approaches.

1.5.1 Evaluation Data

One of the main challenges of creating a good detection algorithm, can not be
achieved without good data sets in order to train the MLA based detection meth-
ods. When creating good data sets, a substantial amount of data has be known
before hand i.e. network traces labelled as malicious and non-malicious. If the
labelling is off it could, especially for supervised MLA, produce a lot of FN com-
pared to if the labelling is correct. Some of the most typical methods of used for
creating a good evaluation set is as follows:

• Using an Intrution Detection System (IDS) (such as snort), signature-based
botnet detection system or by relying on blacklisted IP addresses and domain

1.6. Problem Statement 9

names

• The use of HoneyPot machines that is used for generating botnet traffic, and
merging the traffic with normal and benign data

• Similar fashion as using HoneyPots but by having the source code of the
bots, and thus being able to control every aspect of the bots. Then merge the
generated traffic with benign traffic

• Same as above, but where the source code is not available, but binaries are
available. As real bot malware is being deployed, the bot can become part of
an attack campaign, therefore are limits often placed on the Internet connec-
tion in order to protect third-parties

One thing to note is that capture of the evaluation data set is done at LAN, campus,
ISP or core, everything needs to be captured at the same level. When looking at
LAN, bots would often look to be working by it self, as compared to the ISP level,
where there could be drawn correlation between bots using by one botmaster. The
same can be said about LAN compared to campus network.

Using on a small fraction of the available botnet families/samples has the inher-
ent risk of tailoring a detectiong algorithm to only detect a specific botnet family
or samples. However, it should be noted that targeting specific types/families of
botnet achieves better detection performances when detecting that specific type/-
family of botnet. Using a high number of botnet families/samples will improve
the detection method, so it would be able to generalise or not. If a MLA based
detection approach is able to generalise, means that it can potentially be used to
discover new unknown botnet families/samples, but also has the drawback not
being as precise in discovering new mutations of a botnet family as one that has
been trained for that specific botnet family. As for a general botnet detection [18]
proposes that substantially more botnet families/samples are included into the
network traces.

1.6 Problem Statement

In section 1.1, the current state of malware was briefly explained. With the con-
clusion that botnet is state-of-the-art malware, and has the potential of causing a
number of problems and financial losses, which was further elaborated on in sec-
tion 1.3. The botmaster has the possibility to cause these variety of different attack

10 Chapter 1. Introduction

campaigns, that can target the local user of the infected machine (e.g. identity theft,
cryptolocker), but also external computer (e.g. DDoS). In 2011 [22] estimated that
$ 1 trillion was caused in damage as the direct result of malware in general, and a
closer look at [22] shows that the majority is caused by botnet related attacks.

Looking at the problems and potential future work proposed by [18]. It was easy
to see that detecting botnet is not an easy task. Given the functionality of a bot it
is easy for a botmaster to change part of the source code of the available bots, and
thereby altering some of the behaviours of the bot, potentially making them harder
to detect. That botnet are hard to detect is one of the reasons that botnet is still a
hot topic. section 1.5 highlighted, some of the potential future work for research of
botnet detection methods, with focus on the data sets.

• Data sets

– General

– Capture level

• Number of different botnet malware used

– Families

– Samples

Capturing data sets, both for training and evaluation, is an essential part of in-
vestigating botnet detection algorithms when based on MLA. A good data set for
training a detection algorithm should have little to no False Positive (FP) and FN
when exposing it for several different evaluation data sets. The problem is, that
it is not a trivial thing to create good data sets, as stated previously is section 1.5,
that every research paper, uses different data sets. There are no common way to
verify different detection methods against each other, as the very foundation they
are built upon, that being the data sets, are different. As a side note to the data sets,
the capturing level of the data sets, are not equal. As some researchers might have
access to ISP networks to gather data, others only having access to self produced
data sets that have been created in a controlled environment.

As the capturing interface level can be different, so can the number of botnet mal-
ware precent in the data sets. It was shown in [18], that most approaches only have
a single or a couple of different botnet malware present in the data sets. While
others have upwards of several hundreds. Although, not to discredit any attempts
to tailor a MLA to detect a single version of bot malware, as their results speaks

1.6. Problem Statement 11

for them self. It still poses the question: "How will a tailored MLA work with higher
presence of various bot malware?".

Putting these points together, and a solution to this is having a publicly available
system, that will allow comparison between existing detection methods based on
the use of MLAs. The system will provide data sets for every MLA, that has been
made available to the system. When testing the performance of the MLA, the data
sets will be split up into training and evaluation data sets, here the same training
data sets will be the same for all MLA. This will provide a fair comparison between
the different MLA. This leading up to the problem statement for the project:

"In order get a better comparison between botnet detection using machine
learning algorithms. How to design a system that is publicly available and
provides the same data sets for every algorithm, enabling easy comparison?"

From the problem statement, arises a question pertaining to the data sets, that
also has be explored throughout this project, that requires investigation before
designing the system mentioned in the problem statement:

"As data sets are a fundamental requirement and challenge of any machine
learning algorithm botnet detection method. What is/are the best practice for
generating data sets?"

This question has two parts to it. The first part is to look into the data sets them self,
how to capture the traffic properly, and what implications the different methods of
traffic capture has. The second part is labelling the data correctly, as it was hinted
at in subsection 1.5.1 small errors in the labelling can cause MLA to make FP or
FN.

In chapter 2 the question of best practice for generating data sets is presented, this
includes capturing data sets, how to label the data sets with respect to malicious
and non-malicious traffic. Finally, the chapter discusses how to create training and
evaluation data sets when merging data sets together before presenting the conclu-
sion, that covers how data capturing and labelling will be done throughout the rest
of the project. A high level system design is presented in chapter 3, introducing
the systems use cases as well as flowcharts in the form of activity diagrams, this
leading up to the system requirements, that is based on a variation of the MoSCoW
model [25]. A more thorough system design is showcased in chapter 4, this system

12 Chapter 1. Introduction

design is based on the implementation of the system, and includes a front-end and
back-end system. In chapter 5 the final system is put to the test, from the system
requirement, several tests are designed in order to verify every requirement of the
system has been fulfilled. Lastly in chapter 6 the conclusion and discussion for the
project will be presented.

Chapter 2

Data Set Challenge

One of the main prerequisites for guaranteeing any reliable performance evalua-
tion of detecting botnet traffic, is in the network traces used for both testing and
evaluation the MLAs. When using this data, whether the MLA is supervised or
unsupervised, requires the substantial knowledge of the data i.e. what is non-
malicious traffic and what is malicious traffic. This can be split up into three main
topics, namely how to obtain network traffic in section 2.1, how to label the traffic
correctly in section 2.2 and in section 2.3 how to merge the obtained traffic into a
training and evaluation data set. This leading up to a couple of ways data sets and
the corresponding labels can be used to MLAs, and with a conclusion of which
method will be used for this project in section 2.4.

2.1 Datasets

As mentioned in subsection 1.5.1, when generating data sets, the network inter-
face, at which the capturing takes place, should to stay the same, to keep the traffic
consistent. For capturing traffic in a LAN environment, it would likely result in a
single to a few botnet family/samples due to the small amount of online devices
compared to e.g. an ISP. At a campus environment, upwards of several thou-
sand devices are online doing the day, thus the number of different botnet fami-
lies/samples is also likely to increase. Given the size of a campus environment, a
small insight into the coordination between bots of the same family/sample could
be present. At the ISP/core network even more communication is available, thus
a larger insight into the coordination between botnet families/samples could be

13

14 Chapter 2. Data Set Challenge

present. The amount of traffic does obviously also increase as the network inter-
face shifts to larger networks.

When trying to generate botnet traffic, there are two possible ways of doing this.
Capturing botnet traffic in a live setting or try to generate network traces syn-
thetically via a controlled environment e.g. HoneyJar projects [5]. Each of these
methods has they own inherent advantages and disadvantages.

2.1.1 Real Traffic

Capturing botnet network traffic in a normal LAN, Campus or ISP/Core network,
also known as in the wild, where the data is generated by computers owned by
normal users and where botnet traffic is being used for illicit purposes, might
seem like the obvious choice. It is however never that straight forward, although
this methods has advantages it also brings some disadvantages that one needs to
consider.

• Advantages

– Realistic traffic

• Disadvantages

– Privacy

– Labelling

– Challenging to acquire high level network interface traffic (i.e. cam-
pus/ISP)

– Guaranteed bot samples

– Representative traffic

Given that the network trace is taken on normal operating networks, the trace
can be used to represent both the malicious and the benign data sets. As the bot
malware is connected to the network, CnC servers (centralised structure) have the
possibility to push out updates to all connected bots, it can therefore be argued
that capturing traffic in the wild, will reduce the number of bot variations within
a botnet family. The captured data sets from real traffic, is the best possible data
available for research, as botnet detection software should be able to find botnet
traffic in the mists of real traffic.

2.1. Datasets 15

All of this requires that bot traffic is present on the network, as this can not be
guaranteed. Given that bot traffic is present, traffic captured for research purposes,
has better evaluation performance the newer the data sets are, as newer data sets
have more up to date botnet traffic and non-malicious traffic patterns.

Even though using real traffic provides the best possible data, there are also some
severe drawbacks of using it. One of the main drawbacks, is that the network trace
is not labelled, and has to be done manually or by using an automated process (e.g.
Snort) that can label the data, which can not guarantee 100% correct labels. The
requirements of using an automated process is high, as wrong labels, can make a
MLA make wrong predictions, thus making either FP or FN. The features of these
labels will be expanded upon in section 2.2.

When capturing data sets, considerations should also be put into, what kind of
setting the traffic should be in, asking the question "What traffic is representative?".
Traffic that is captured from a home network of a couple in their 20’s are different
than the traffic captured from a couple in their 60’s. Capturing on a campus or
within a company is also significantly different, both to each other but also com-
pared to a home network. A campus should likely have more research related
traffic while the traffic at a company could be different based on which type of
company it is, as a cleaning company would have different traffic than the employ-
ees at a Internet Service Provider.

Another drawback is that capturing botnet traffic packets "in the wild" is legal/eth-
ical aspect, as capturing packets in the wild can compromise the privacy of users.
Although some of the major websites (e.g. Reddit and Facebook) provide en-
crypted connections, so that the payload can not be inspected, not every site offers
this, and would therefore require the users consent, which is only feasible for
smaller networks. Even if the connection is encrypted, the meta-data is not, and
this can still be used to compromise the privacy of users.

One of the more practical issues with using real data is the availability of the data,
at least on higher level network interfaces, where the most diverse traffic appears
and the best possible way to observe the coordination between bot samples in a
botnet family. Obtaining this data goes back to the privacy aspect of the users.
While there is also the aspect that a network with the size of a campus, ISP or core
might not be willing to simply forward network traces.

16 Chapter 2. Data Set Challenge

2.1.2 Controlled Traffic

In contrast to using real traffic, where everything is caught in the wild, is to create
network traces in a controlled environment. The controlled environment, often
reffered to as a Honeypot setup, is one of the perferred ways of gathering data sets
[14] [26], although both papers do not, them self, make a controlled setup, they
both use data sets which originated from another controlled environment such as
[7].

A Honeypot setup is often small controlled network environment, and can be done
it two different ways. The first setup will require that the network is open for the
outside where the machines will be left vulnerable for exploits, simply waiting
to be infected with malware, although this is a potential "waste of time" if there
has been no attempts to infect the machines, but this method will provide some
insight into how malware infects vulnerable machines. The second setup is where
the machines are purposely infected with for example bot binaries, still method is
sure to generate some bot related traffic.

Traffic generated in a controlled has advantages and disadvantage that will be
listed here. Throughout the rest of this section, synthetic traffic will be used refer-
ring to traffic generated in a controlled environment.

• Advantages

– Privacy

– Labelling

– Controlled environment

• Disadvantages

– Realistic traffic

– Scope

– Network interface level

– Legal/Ethical aspects

• Potential

– Fully control the activity

2.1. Datasets 17

A huge advantage of creating synthetic network traces, is that it is being done in
a controlled environment. This can be done with a HoneyJar setup as previously
mentioned. In the HoneyJar setup are HoneyPots, these are referred to as the
vulnerable computers that are to be intentionally infected with bot malware. The
malware can be with both binaries i.e. the executable, or with the source code the
malware.

With software compiled into binaries, it is not possible to change anything regard-
ing the functionalities of the software. Available malware in binaries are therefore
as intended by the creator of the malware intended it to be. This ensures optimal
realism of the traffic produced by the malware, since the configuration can not be
changed with binaries. Older malware might not function as initially intended, this
could be due to CnC servers that has been taken down, either "shutting" down the
bot as no instructions has been received. Other bots (e.g. a variation of Agobot) has
been shown to start attacking certain sites if the CnC server is non responsive [17],
it was however not found whether or not the bot attacked due to the missing CnC
server, but the CnC server had been taken down. Although bot binaries ensures
best possible realism in terms of the behaviour of the bot, an Internet connection
is required, this makes it possible for the bot to potentially make a DoS attack, be
part of a DDoS attack, SPAM campaigns etc. To ensure that the bot does minimal
damage to any outside systems by for example a DoS attack, the amount of band-
width available is minimised, therefore if the bot is making an attack, the amount
of packets that has been emitted by is relatively low if the upload was not limited.

When access to the source code is given, this effectively enables modification to
the bot malware. By changing the source code, the original CnC server could be
changed to a fully controlled CnC server, thereby ensuring that the victim com-
puter is not sending vulnerable information to a botmaster, but is kept on the local
CnC server. Changing the CnC server in the source code should not have any affect
on the behaviour on the bot it self when executed. One of the drawbacks of using
this method is the availability of bot source code, compared to binaries. Second
is the authenticity of the source code, as for example small parts of the code has
been modified or the source code is build upon reverse-engineering a bot binary
etc. Factors that can play a role in the behaviour of the bot.

The last advantage is privacy concern, that comes with gathering network traces
in a controlled environment. When doing this in the wild, as mentioned before, if
the content being send is encrypted, it is possible to see sensitive data, although
not what a user is communicating to certain service or person. When creating
synthetic botnet traces, there are no real users. As the network is set up, with the

18 Chapter 2. Data Set Challenge

intent to deploy bot malware, a user would not be present unless asked and given
consent of what the purpose of the environment is for.

By using a controlled environment, where the traffic is known (i.e. the traffic
not caused by the bot). This provides an easy setting for labelling the traffic, as
normal background traffic can easily be eliminated in this setting, where the only
traffic contribution is from the bot malware it self. When trying to compare the
synthetic trace to the real traffic trace, the former clearly lack realism in the traffic.
This is how ever unavoidable when creating synthetic traces. Creating a small
environment also has the disadvantage that the network scope, potentially is much
smaller than when caught in the wild, as there is no "easy" way to acquire higher
network level traces.

In the case that the source code for the bot malware is not available, there are
some legal and ethical concerns that comes from deploying bot binaries malware
on machines. When a bot binary is executed there is a possibility that the bot
will immediately start contributing to an attack campaign, and this can have some
legal implications, but also some ethical implications. When trying to obtain ma-
licious network traces from the malware directly, researchers often try and limit
the Internet connection as much as possible, as gaining real insight into how a
bot behaves is important, but researchers are still being held accountable for any
potential damage caused by the malware they deployed.

2.1.3 Benign Traffic

Assumptions have to be made in order to only capture benign traffic. If the com-
puter has been had a clean install of a fresh Operating System (OS), is can be
assumed clean, and only produce benign traffic. Some of the advantages and dis-
advantages of capturing benign traffic:

• Advantages

– Labelling

– Realistic

– Data

• Disadvantages

– Privacy

2.2. Labeling Data 19

– Clean hosts

– Representative data

Given the assumption that the devices used in a network is clean, the labelling is
easily done as all traffic would be benign. But as malware propagate through dif-
ferent vectors such as drive-by-download or vulnerability exploitation, a host can
be infected within within a small time frame or years of connectivity. It all depends
on the kind of applications installed, website visited or bad (lack) of security.

The benign traffic is as realistic as can be, as it is with botnet traffic caught in the
wild (subsection 2.1.1), where the only real difference is the assumption of clean
hosts. As stated upon in real traffic, to define what is representative traffic has to be
decided upon, as traffic patterns changes depending on the location e.g. at home,
at the office etc. And traffic that might be representative for a certain user group
in one country might not be representative for a similar user group in another
country.

As it was with capturing malicious traffic in the wild, privacy/ethical concerns are
also present when capturing benign traffic on public networks. This can however
be solved by creating a small environment, based on a Honeypot project, without
infecting the clients. This approach will create bias, as the users will not be able
make a representative part of the population traffic patterns. This approach also
helps in the labelling, as it will be easier to make sure all computers within the
network are clean.

2.2 Labeling Data

The labelling of data is used to identify whether a packet, flow or host is malicious
or non-malicious. Depending on the labelling resolution (packet, flow or host) of
the data sets, created based on section 2.1.

Given a MLA labels based on malicious and non-malicious packets, and the ground
truth labelling of the data sets are based on flows. The the MLA is not able to get
credit for all correctly/falsly labeled packets, but will only get credit for malicious
flows, if a single packet within that flow is labelled as malicious. This would
require that the MLA would also output which flow id the packet where assosiated
with. Had the data set been labelled according to hosts, the MLA would have to
include the IP of a malicious or non-malicious packet.

20 Chapter 2. Data Set Challenge

The labels for the data sets are seen as the ground truth. A post comparison of
the labels can only produce label resolution based on the bottlenecks label level,
this is outlined in Table 2.1, where it is clearly seen that if an algorithm produces
labels according to malicious and non-malicious hosts, then the outcome of the
comparison can only be treated as host based labels.

Algorithm
Data set

Packet Flow Host

Packet Packet Flow Host
Flow Flow Flow Host
Host Host Host Host

Table 2.1: If the data set label level is host, and the algorithm labels according to flows. The resulting
compared labelling will only be able to tell if the algorithm found the malicious hosts, as the data
set labelling is not able to provide more information.

Each of these methods of labelling, has its own advantages and disadvantages and
will be outlined based on data set labelling. The algorithms will be treated as
unknowns to the system (see section 3.2 for how this is implemented).

2.2.1 Packet label

Labels on packet level, will provide the best insight into which packets are directly
malicious, but labelling specific packets as malicious is not a simple task. In this
section some of the advantages and disadvantages will be presented:

• Advantages

– Accuracy

– Target malicious packets

• Disadvantages

– Labelling

– Definition of malicious packets

– Unnecessary information

When using packet labelling, all malicious and benign packets has to be known
and correct. Given a MLA that produces packet level labelling, the performance

2.2. Labeling Data 21

of the algorithm is tested to the fullest extent, as every packet is labelled, and TP,
TN, FP and FN are given to every packet. Given this, it can easily be seen which
algorithm is better at finding packets are specific bot families/samples, and also
which it treats as non-malicious, this can provide a solid insight into improving
MLAs for detecting some bots more accurately or more diverse bots. If an MLA
is tailored towards a single bot family/sample, this approach can also provide
some insight into the algorithms performance towards other bot families/samples.
Intuitively a tailored MLA will produce more FP and FN compared to generic
botnet detection MLAs, as the tailored approach should not be able to identify as
many bot families/samples as a generic method.

In [18] 13 out of the 20 papers investigated reported that the MLA analysed traffic
based on flows, thus also states if the flow is of malicious or benign origins. If
terms of comparing packet level labelling from the data sets to flow level labelling
from the MLAs, where the "bottleneck" is the MLA, and therefore if a single packet
in a flow is malicious, then the whole flow is to be considered malicious, the same
is valid for packet to host comparison. Given that a host is being attacked from the
outside, and the packets from this attack is labelled as malicious, the as the host
did not initiate the connection, it is not safe to assume that the host is malicious.
The resulting labelling will be less accurate than had the MLA used packet level
labelling, as it was presented in [18], the approach used by the majority is the flow
based method. The data set labels needs to created with respect to this, thereby
adding more information to the truth about the labelling than otherwise. In the
case of pure packet labelling the labels could look like: <packet number>, <B/M>.
Where the packet number is provided from capturing packets using e.g. Wireshark,
and B/M being labels for either Benign or Malicious. Adding compatibility to
a flow based labelling algorithm, an obvious information to add to the data set
labelling is <stream id>.

Comparing data sets with packet level labelling to MLA that produce host based
labelling, overall accuracy is lost, as the only output that can be produced from
this setup is finding malicious and non-malicious hosts. When looking at host
level labelling, the data set labels are required to contain the IPs within each packet
label. As there is otherwise no way to combine a labels from packet level to labels
from host level.

One of the main drawbacks of using packet to packet labelling, is the labelling.
As only the packets contributing to malicious activity can be considered malicious,
while the other packets in the same flow are not considered malicious, which also
brings up the question "how to define malicious packets?". Depending on the defi-

22 Chapter 2. Data Set Challenge

nition a packet in a flow with malicious content can be defined as malicious, as the
connection is to server that hosts malicious content. For this project, the definition
malicious packets are defined by the payload. An example of this is a flow that
sends information to a CnC server using http(s). The three way handshake can not
be considered malicious in a packet level labelling, as a three way handshake by
nature is not malicious. When the flow start transferring a payload containing for
example keyloggings, these packets are to be considered malicious. While the last
RST packet, like the three way handshake, can not be malicious. Due to this the
labelling would have to be precise. As any mislabelled packet could "confuse" the
MLA, creating more FP and FN as a result.

One could argue that used packet level labelling on data sets with MLA that labels
according to packet, might not be the best approach. As the FP and FN might be
artificially high, simply because of the large amount of packets that needs to be
labels individually, which almost per definition can not be labelled with respect
to statistics, as this would imply flow analysis effectively making an MLA that
labels according to flow. Looking at the implementation, of an MLA that identifies
packets being malicious or benign, into a corporate environment, where a detection
algorithm eventually could help the company. The approach might be to costly, in
computational power as well as time, compared to a flow or host based.

2.2.2 Flow label

The flow based labelling is commonly used for research purposes as presented
in [18]. This could stem from, research botnet detection was the state-of-the-art
MLA detection, in [8] flow based labelling where used to try and identify different
applications, [8] also states that traditionally classifications methods used packet
labelling, primarily using port numbers to classify the traffic. They follow this
up with "An application may use ports other than its well-known ports to avoid
operating system access control restrictions". Some services that can use a well-
known port, such as Secure Shell (SSH) often recommend changing the default
port from 22 to a random higher port number. This is an advantage flow based
labelling has over packet based labelling. There are some more advantages to flow
based labelling as well as disadvantages:

• Advantages

– Default research label level

– Potential identification of bot

2.2. Labeling Data 23

– Usable on host label level

• Disadvantages

– Labelling

– Can not benefit packet level labelling algorithms

– Definition of a flow

Looking at flow labels for the data set and MLA labels being packet labels, has the
same limitations to the end result as previously mentioned with data sets being
labels according to packet level and the MLA labels with respect to the individual
flows. The same goes for MLA that labels according to hosts, as it is not possible
to get better "resolution" than host based labels, as this would be the bottleneck in
the labelling process.

Given that the data set labelling and the MLA labelling are both flow level labelling,
is the optimal case for flow based performance detection. In [8] shows that using
flows, and thereby flow level labelling, it is possible to use MLA to identify specify
applications, this could also be applied for botnet detection. This could allow for
quick classification of which bot a machine is infected with, from there finding
counter measures to deal with a specific bot malware.

Flow based detection, and thereby flow level labelling, seems to be the method of
choise for most research investigations, many of these having good results, some
of which was presented in [18]. This clearly indicates that the flow based labelling
has huge interest in the research community. Given that flow based labelling is
the default choise for many research purposes, this also provides some challenges
for provided a system that performs benchmarks of botnet detection MLAs. An
exmaple of this is the very definition of a flow, while the definition of a flow might
seem easy, there are several definition of a flow. As such [12] defines packets in
a flow as "a set of IP packets passing an observation point in a network during a
certain time interval". Effectively stating that every packet within with the same
header information, destination IP:port, is defined as the same flow. In [13] defines
a flow as "a sequence of packets sent from a particular source to a particular uni-
cast, anycast, or multicast destination", later also stating that a flow could consist
of all packets that are sent from a source to a destination using a single connection.
But also emphasises that this can not be mapped 1:1. Another definition of a flow
could be a connection starting with e.g. three-way handshake or the first packet to
a new host:port and all packets flowing in the connection until a RST packet closes
down the connection. This can potentially cause some confusion to the labelling

24 Chapter 2. Data Set Challenge

process, as the data sets are labelled using one definition and an MLA uses another
definition of a flow.

2.2.3 Host label

Throughout the previous two section, packet and flow based labelling has a lot of
assumptions and clear definitions that needs to be defined before they can be used.
While this is also true for host based labelling, it does not care about the definition
of a flow, as long as a flow is malicious, the host is labelled as malicious, this is
also true for packet labelling to host labelling. While there still is the nuance of a
host being attacked from the outside, the host would actively have to be initiating
malicious traffic before it can be labelled as malicious.

• Advantages

– Labelling

– Potential for enterprise usage

– No definition problems

• Disadvantages

– Accuracy

– Can not benefit packet or flow labelling algorithms

A huge advantage of the host based labelling, is the labelling it self. Given a con-
trolled setup subsection 2.1.2 and a non-malicious controlled setup subsection 2.1.3,
each pcaps from the different setups are already defined as malicious and non-
malicious. No further labelling is necessary, as all hosts from the controlled setup
is considered malicious, as bot malware has been running on the hosts in that
network. With the non-malicious controlled setup, every host has been cleaned,
and can initially be assumed clean. This statement only holds true, as long as
the environment in which the data sets where gathered are controlled, as labelling
malicious hosts in data sets captured "in the wild" are still a difficult process.

It goes without saying, that MLAs that labels on packet or flow level, will not be
able to benefit from the data sets being host level labelling. Given for example a
corporation, that might not care which flows are containing botnet traffic, but only
interested in finding any potential malicious traffic within their local network and

2.3. Merging Data sets 25

clean an infected host. With the assumption that corporations only care about find
hosts that are being used in a botnet, the fastest and easiest way is to use the host
level labelling.

With host level labelling, a host can only be malicious or benign. There is no
need to define flow for the data set labels, and there is no need to define which
packets in a malicious flow is malicious. A host is considered bot infected and
thereby malicious if a single packet from a host can be labelled as malicious with
the approach in subsection 2.2.1, this of course scales up to flow based labelling,
as a single flow, with any flow definition applied, that is considered malicious will
treat the host as malicious.

2.3 Merging Data sets

A common way to use the captured data sets is to merge them together into a single
big pcap file [26] [14], both papers proposed the usage of TcpReplay. TcpReplay is
a Unix application that enables replay of traffic data into the network, using this
with several data sets allows the merging of a new single data set. After which
the data set will be split into a training and evaluation data sets as illustrated on
Figure 2.1.

Upon merging network traces together, there are some pre-merging process that
needs to be done before hand.

• IP address will have to be changed, ensuring all hosts (malicious and benign)
are "on the same" subnet.

• MAC address will have to be changed, ensuring all unique IP has unique
MAC addresses.

• All malicious should share IP and MAC with benign hosts.

– Ensuring all malicious hosts also have benign traffic.

• Changing the packets capturing timestamps.

– Merging pcaps together will most likely have different timestamps.

Changing the IP and MAC addresses is a fairly simply process and can be done us-
ing Wiresharks tcprewrite functionality, the code for this is available on the monline

26 Chapter 2. Data Set Challenge

Figure 2.1: Process of obtaining malicious and benign traffic sets, merging them and splitting them
into training and evaluation data sets needed for training and evaluating MLA based detection
methods.

repository. Changing all the IP and MAC addresses ensure that a detection ap-
proach can not "simply" assign malicious traffic to a single range of IPs. Upon
changing the MAC address ensures that no single address is assigned to two dif-
ferent IPs, as it could cause some potential confusion when applying detection
methods.

Making sure that merging malicious IP and MACs into a benign host, will help
with the realism issue. Hosts in a network that has been infected with bot mal-
ware, will produce some malicious activity, but as the user of the host machine is
unaware of the bot malware, a lot of normal benign traffic is also present. The ratio
between benign and malicious traffic is normally far from each other. By merging
malicious data sets with benign traffic sets, while still keeping many host clean,
the ratio between the two can be kept.

Another thing to be wary about is the packets timestamps, as merging for ex-
ample two data sets together, a non-malicious data set might have been captured
around noon, while a malicious data set have been captured at midnight. If the
data sets are merged without taking this into consideration, a MLA based detec-
tion approach could make the distinction, that packets captured around midnight
are all labelled as malicious. An approach could be to align the first packet across
all data sets, and adjust the timestamps in the final data set. However, this could

2.4. Analysis conclusion 27

potentially create some bias in the data set. This would be equivalent of either
using Wiresharks merge function, that can merge several data sets together into a
single one, and then correcting the timestamps, or using TcpRelay to simultane-
ously replay several data sets at the time same, which would eliminate the need
for correcting the timestamps. In [26], [14], [20] and [9] the features the MLA based
detection methods did not use timestamps, suggesting that it is not a common fea-
ture to use. However, it is something to keep in mind, as some detection methods
might look at the actual capturing timestamps.

2.4 Analysis conclusion

This section will conclude the challenge that comes when looking at data sets. The
result of which will be used in the benchmark system in the upcomming chapter 3

In order to keep the most realistic data possible, the best method would be to
capture it in the wild, this was presented in subsection 2.1.1. Due to the drawbacks
that is innate with capturing network traffic from a public network interface (all
non home networks) and the labelling process required, it is deemed infeasible to
pursue this approach any further.

Thus traffic generated from a controlled environment, releasing malware would be
the obvious choise, but due to the setup required for generating malicious traffic,
such as a HoneyJar network will not be pusuded. Projects such as the Malware
Capture Facility Project (MCFP) [11] will be used instead. Every data set from the
MCFP comes with labels of the traffic (see section 2.2) with more than 150 different
traffic captures, each containing malicious traffic.

For benign traffic, the same approach, as the malicious traffic, will be used. The
data sets here will be made from previous projects, that created a controlled envi-
ronment with no bot activity present. Although both the malicious and the non-
malicious traffic capturing approaches are less the optimal, they still provide a
solid foundation for the data sets.

In section 2.3 the idea of merging data sets together into a single data set, for
thereafter splitting it up into training and evaluation data sets with appropriate
labels, will not be pursued any further. When the data sets are split apart, the
system will become more modular, as it will be easier to "play" with the ratio of
training data vs. evaluation data. It also has the advantage that adding more
data to the pool of data sets is relatively easy. A drawback of this method is that

28 Chapter 2. Data Set Challenge

algorithms authors has to make sure that their MLA can take in several pcap files
from a folder location. As the data sets is not being mixed also creates another
problem, as the pcap folder locations will have to be labelled as evaluation data
set malicious or evaluation data set non-malicious and so on, this can potentially
cause authors to try and cheat the system, as they from the very beginning knows
about the evaluation labels.

As stated throughout section 2.2, using packet level labelling or flow level labelling,
has a lot of assumptions that needs to be clearly addressed. Clear definition, on
malicious packets or even how to define a flow. Using both of these could po-
tentially cause confusion between the data sets provided by the system, and the
creates of the MLA based detection methods that are uploaded. Although both
packet level labelling and flow based labelling increases the overall benchmark of
the MLAs, there are also fall groups, such as the labelling it self. As stated through-
out the section, the labelling has to be perfect, as it can otherwise affect the MLAs
labelling process negatively.

Running MLAs that labels according to flows, or packets. Looking at the current
state-of-the-art MLA based detection methods as presented in [18] are flow based
detection. However as it was presented in subsection 2.2.3, in a live environment,
where a botnet detection MLA is running and operational, detection which flows
are malicious in nature, might be considered to complex, as the only informa-
tion needed in an corporate environment is which hosts are potentially malicious.
Therefore, the remainder of the project the labelling will only be on host level
labelling.

To summarise the analysis conclusion, moving forward in the report the following
will be used.

1. Malicious pcaps collected from sites such as MCFP[11]

2. Non-malicious pcaps collected from previous projects [16] [1]

3. The pcaps will not be merged into a single large file or two separate files for
malicious and non-malicious

4. Pcaps will be placed in folder according to:

(a) Malicious training

(b) Non-malicious training

(c) Malicious evaluation

2.4. Analysis conclusion 29

(d) Non-malicious evaluation

5. Host based labelling

Chapter 3

System Design

Throughout this chapter, the design aspects of the system is presented. A high
level overview in the form of use case in section 3.2, this gives a good indication of
how the system functions. This is followed up by activity diagrams in section 3.3.
Finally, leading up to the system requirements in section 3.4

3.1 System Description

In this section, a short introduction to the design of a system, that enables easy
comparison between different botnet detection algorithms, be it MLAs or non-
MLAs will be introduced.

It was stated in section 1.6, that the system should be publicly available system.
For this a webserice will be used for the front-end system, that allows users to
upload botnet detection algorithms. The uploaded algorithms, are all tested with
the same training and evaluation data sets, which will follow the conclusion of
section 2.4. When the evaluation of an algorithm has been performed, the results
will be presented to the user, together with the other tested algorithms. The front-
end system will provide access to the system, upon upload of a detection method,
the back-end system performs a benchmark.

As the front-end system allows users to upload MLAs, small modifications would
be needed in order to allow users to upload new data sets with corresponding
labelling data. This could greatly increase the amount of data sets available to the

31

32 Chapter 3. System Design

system. When uploading new data sets with labelling data, they should not be
put into "play" immediately, as the labelling data would have to be verified. As
stated in section 2.2, bad labelling could course confusion for MLAs. Since this is
not directly stated in the problem statement, as a requirements for the system, the
ability to upload data sets will not be pursued, unless time allows it.

3.2 System Use Case

This section is presenting a high level use case diagram and description of the
system. The use case diagram of the system is presented in Figure 3.1. A user
interacts with the system, from here the user can do one of two things, look at
algorithm results, or upload new algorithms or data sets.

Figure 3.1: A user can interact with the system through a website allowing either viewing results,
which are generalised by result overview and single detailed results, or by uploading detection
algorithms or data sets, which have to be validated before it is uploaded to the back-end system and
inserted into the database..

Should the user want to view the results of the detection algorithms, the "view re-
sults" is an generalisation of a complete overview of the results and a more detailed
view of a single result, as "view results" can be either. The appropriate results are
being fetched from a database connected to the front-end system. Should the user
want to upload, either an algorithm or a data set, the upload will have to be vali-
dated first, before the upload is accepted, whereby the database will be updated,

3.2. System Use Case 33

saving the data set or algorithm. Given that the upload is an algorithm, it will
also be executed, and the results of the detection algorithm will be uploaded to the
database, after being executed.

It is not intuitive from the use case, how the detection algorithm should interact
with the system. There are two ways algorithms can be implemented into the
system. The first is, where the algorithm will have to be checked and verified
manually. This solution can potentially be extremely time consuming, as each soft-
ware developer programs differently, and some are better at in-line documentation
than others. The second is, where each algorithm is treated as a black box. Treat-
ing algorithms as complete unknowns, requires that the input and output of the
algorithms are well defined. The system will only be able to interact with the algo-
rithm with inputs and the algorithm interacts via the output result. In Figure 3.2
is a simplified view of how the inputs and outputs are defined. As previously
stated in section 2.4 four folder with data sets will be made. Two folders con-
taining malicious and non-malicious training data sets and two for malicious and
non-malicious evaluation data sets.

Figure 3.2: Input and output relation of the uploaded algorithms

34 Chapter 3. System Design

The reasoning behind Figure 3.2 is, whether the MLA is supervised or unsuper-
vised, that there are certain steps that needs to be taken. In the case of a supervised
MLA, it takes in training data set and the correct labels of the training data. From
this, the algorithm looks at selected features of the training data which is specified
by the algorithms author.

When detecting botnet traffic, a statistical approach is made. The statistics will be
based on the source/destination IP and port, as well as the protocols. From there
the statistics change depending on the choices made by the author of the MLA.
A few features that can be extracted: the connection period in milliseconds, mean
packet length, number of bytes from source to destination, number of packet from
destination to source, etc. When looking at the supervised MLA, these features are
used to tell if a packet, flow or host is malicious or non-malicious. For unsuper-
vised MLA, the labelling is not provided for the training data, but an unsupervised
will try to put packets, flows or hosts together. These are based on which are most
similar in respect to the features selected for the statistical purpose.

When the MLA has been trained using the training data, and labelling data if the
algorithm is supervised, new data is being given as input. Where as the MLA will
try to associate the new data, given statistical knowledge it has from the training
period, to be either benign or malicious. The end result labelling should tell which
hosts are malicious and benign according to item DataSet.5. in section 2.4

As the data sets are not merged, but located in their respective folder with train-
ing and evaluation both with malicious and non-malicious data sets defined in
item DataSet.4.. The out of the MLA based detection method will have to be:

• <file>-<IP>

• <M/B>

This will also be restated in the system requirements in section 3.4. The comparison
between the true labelling and the MLAs labelling, will produce four different
outcomes depending on the labelling from both the MLA and the data sets. These
are:

• True Positive. System labels states "Malicious", so does the detection method

• True Negative. System labels states "Benign", so does the detection method

3.3. Activity Diagram 35

• False Positive. System labels states "Benign", detection method states "Mali-
cious"

• False Negative. System labels states "Malicious", detection method states
"Benign"

3.3 Activity Diagram

From the use case, there are three components to the system:

• Users

• The website / front-end

• Back-end + database

In the following two subsections, a walkthrough of a high level activity diagram, is
presented for both the "upload" and "view results" use cases. The activity diagrams
is used to showcase a flowchart, depicting the actions each of the three components
will have to do, in order to see "view results" and upload.

3.3.1 Activity Diagram: Upload

In Figure 3.3 the acticity diagram for the upload use case is presented.

In Figure 3.3, a users submits an upload, the upload is verified. If the upload is
not verified the user is send back to the upload screen. Given that the upload was
verified, the website processes the upload, gathering the information needed for
the back-end system. The gathered information is stored in a database, the file
(i.e. algorithm or data set) is saved locally on the server that runs the back-end file
system. If the upload is a data set, the process has ended, as there is no additional
steps to be made. If the upload is an algorithm, the back-end will try to execute
said algorithm, with the available data sets. As explained in section 3.2 the MLA
has to produce an output of <file>-<IP>, <M/B> these labels are compared to the
system ground truth about the data sets labels. Lastly the results are uploaded to
the database.

36 Chapter 3. System Design

Figure 3.3: An activity diagram of the sysetm flow, with respect to the three components in the
system, for uploading an algorithm or data set.

3.3.2 Activity Diagram: Results

In Figure 3.4 the activity diagram for the "view results" use case is presented.

The user requests the overview results, as this will be the natural first step of the
view results part. The data is fetched from the database, the website will before
presenting the results, process the data, from where the user is able to see an
overview of the results. From here the user can stop looking at the results, or
request a specific test result from a specific MLA. The website will request new
data from the database, which has to be processed by the website.

3.3. Activity Diagram 37

Figure 3.4: An activity diagram of the system flow, with respect to the three components in the
system, for viewing the MLA results

The overview results will be presented as follows:

True Positive rate :=
TP

TP + FN
(3.1)

False Positive rate :=
FP

FP + TN
(3.2)

These will give a good indication of how good a MLA is, and according to [18] the
most common performance metrics. With the detailed results, more performance
metrics are presented. While the detailed result page will also show general infor-
mation about the algorithm e.g. author, upload date, classifier type etc. Finally, the
performance metric presented in the detailed result view:

38 Chapter 3. System Design

True Positive rate :=
TP

TP + FN
(3.3)

True Negative rate :=
TN

TN + FP
(3.4)

False Positive rate :=
FP

FP + TN
(3.5)

False Negative rate :=
FN

FN + TP
(3.6)

Accuracy rate :=
TP + TN

TP + TN + FP + FN
(3.7)

Error rate :=
FP + FN

TP + TN + FP + FN
(3.8)

Precision :=
TP

TP + FP
(3.9)

3.4 System Requirements

The requirements for the system, have been specified throughout the report. The
objective of this section is to collect all the requirements and create an overview
of all the requirements. While there might be new requirements presented in the
system requirement, the basis for these requirements have been presented.

The system requirements will be presented according to the MoSCoW model [25],
in which the design principles are: mush have, should have, could have and won’t
have. As the MoSCoW model is used for full scale projects, the definitions of the
MoSCoW model might be different here than from the standard definition.

Must have are the requirements that are essential for the system to operate. If all
of these requirements are not fulfilled, the system will not be able to operate
as intended.

Should have are requirements that will greatly improve the system, but not es-
sential for operation. Should have requirements includes operation enhance-
ment, information gathering etc.

Could have are requirements that are "nice to have" functions for the system.
These requirements includes graphical design, easy to interpret information
display etc.

3.4. System Requirements 39

Won’t have are requirements, that will not be met. These will not be met due to
lack of importance and/or time constraint.

Any of the requirements can be remarked with a statement of why a requirement
is a "won’t have".

3.4.1 Front-End Requirements

As stated in section 3.1, a webservice would be created, thus requiring an inter-
face. Throughout section 3.2 and section 3.3, the need for uploading MLA and
the possibility for uploaded data sets have been established. The same section
also presented some requirements for viewing the detection method results, while
there have been added a few to the system requirement in the presentation of re-
sults. These are part of a natural evolution, when restrictly looking at host based
detection.

1. Presentation (Website)

(a) The website must have a pure html based interface

(b) The website could have a graphical web interface

2. User upload

(a) The website must have the functionality for users to upload MLAs.

(b) The website won’t have the functionality for users to upload malicious
evaluation data sets

(c) The website won’t have the functionality for users to upload non-malicious
evaluation data sets.

(d) The website won’t have the functionality for users to upload malicious
training data sets.

(e) The website won’t have the functionality for users to upload non-malicious
training data sets.

3. Results

(a) The website must be able to give an overview of all tested algorithms.

i. True positive rate.

ii. False positive rate.

40 Chapter 3. System Design

(b) The website must be able to present detailed information about each
algorithm tested.

i. Accuracy rate.

ii. Error rate.

iii. Precision.

iv. True positive rate.

v. True negative rate.

vi. False positive rate.

vii. False negative rate.

(c) The website could be able to present family/sample classification test
results.

(d) The website won’t be able to show results for different evaluation traffic
data sets.

(e) The website won’t be able to show results for different training traffic
data sets.

The requirements of uploading new data sets have been marked as won’t have.
From having a service that allows uploading of MLAs to allowing upload of new
data sets, are not that far from each other. Allowing users to upload new data
sets, has two different concerns to it. A data set can potentially be big, meaning
that it requires a huge amount of storage to keep, one which the system does not
have (Appendix B). Second is a trust issue, as the labelling of the traffic either
has to be trusted completely upon upload. As stated in section 2.2 small mistakes
in the labelling can provide wrong MLA predictions. There is also the possibility
that each uploaded data set can have the labelling checked, verified and potentially
corrected, but this can prove to be a long process if the data set is large. Due to
this, the website won’t be able to show any results using different data sets than
those provided by the system.

3.4.2 Back-End Requirements

In section 3.2 the idea of saving information in a database was presented, and
throughout section 3.2 and section 3.3 it was stated what information should be
saved in the database. Some fields have been added to the database that was not
presented in section 3.2 or section 3.3. These new requirements will help with
operations of the system. In section 2.4, it was presented how the data sets for

3.4. System Requirements 41

the system would be generated, and also hinted at how MLA should input the
data sets into the system. This was further expanded upon in section 3.2, where it
was explained, that every MLA is treated as a black box, and how the inputs are
defined, as well as the output of the system.

1. Database

(a) The database must be able to store/access general information about
each MLA.

i. Unique Identifier.

ii. Algorithm Classifier.

iii. Algorithm programming language.

iv. Creator of the algorithm.

v. Tested by requirement item Back-end.3.a.

(b) The databaes must be able to store/access test results for each MLA.

i. Unique Identifier (identical to item Back-end.1.(a)i).

ii. True Positive.

iii. True Negative.

iv. False Positive.

v. False Negative.

(c) The database could be able to store file/folder locations for data sets.

i. Malicious evaluation data set.

ii. Non-malicious evaluation data set.

iii. Malicious training data set.

iv. Non-malicious training data set.

2. Test execution

(a) For test execution there must be one programming language support.

(b) For test execution the uploaded MLA must fulfil.

i. Inputs

A. String argument (arg[0]) for non-malicious training traffic data
set file/folder path.

B. String argument (arg[1]) for malicious training data set file/-
folder path.

C. String argument (arg[2]) for non-malicious evaluation data set
file/folder path.

42 Chapter 3. System Design

D. String argument (arg[3]) for malicious evaluation data set file/-
folder path.

ii. Output

A. Labelled output of benign and malicious on a 1-to-1 host basis.

B. File location: Current file (the MLA) path.

C. Output file: "results.csv", with the csv defined as <file>-<IP>,
<B/M>.

• <file>: Which file did <IP> come from.

• <IP>: The IP address of the host.

• <B/M>: B for benign host, M for malicious host.

(c) For test execution there should be ≥ 2 different programming languages
supported.

3. Data

(a) There must be a folder with evaluation traffic data sets, divided into
malicious and non-malicious data sets.

(b) There must be a folder with training traffic data set, divided into mali-
cious and non-malicious data sets.

(c) Users won’t be able to upload evaluation data sets

(d) Users won’t be able to upload training data sets

Chapter 4

Implementation

This chapter presents a high level view of the system that has been designed to
fulfil the system requirements (section 3.4). The back-end system is described in
section 4.1. The back-end is comprised of the MySQL server and a script that
interacts with the database, and is able to execute algorithms. In section 4.2, the
front-end system will be presented. The front-end is compriced of a website, which
can communicate with the MySQL server placed in the back-end system.

4.1 Back-end System

The back-end system is in charge of data storage, this includes the file system,
where new MLAs are being kept, and a database storing the MLAs results and in-
formation about each algorithm. The back-end system is also in charge of executing
the uploaded MLAs, and comparing the labelling of the MLA to the ground truth
of the data sets. This section is therefore be split into three different subsection. In
subsection 4.1.1 a short description of the file system is explained. The database
and the different tables required for the system is presented in subsection 4.1.2 and
lastly, in subsection 4.1.3 an activity diagrams provides an understanding of how
the back-end application functions.

43

44 Chapter 4. Implementation

4.1.1 File System

In Figure 4.1, a folder tree structure is presented. The project-root folder, stores the
back-end application files which will be explained in subsection 4.1.3, it also links
to the botnetApp folder. The botnetApp folder stores the uploaded algorithms in
the folder uploads. The unique identifier that is given to each algorithm upon
upload, provides the name of the folder, to which the algorithm is placed in, the
algorithm it self, is also named after the unique identifier. Given that some MLA
authors might name their algorithm the same, the system effectively nullifies this
problem.

Figure 4.1: A simplified view of the file system, where buttom left corner shows a dynamic file
location of MLAs

In the botnetApp folder, there is also a folder called pcaps, this folder is divided
into a training and evaluation folder. Both of these folders are split into benign and
malicious folders, each containing their respective data sets. These folder paths are
fed into the MLAs, and are used for each respectively training and evaluation.

Lastly is the next botnetapp folder, which contains the front-end logic that was
elaborated upon in subsection 4.2.1, html templates, css code in static and finally,
database modules in scripts.

4.1.2 Database

The database has been created specifically with respect to the system requirements.
The tables can be seen on Figure 4.2. There have been created two different tables

4.1. Back-end System 45

that collaboratively fulfils the system requirements in respect to the information
that needs to be stored for each detection approach.

In GeneralInfo a unique identifier is created. As mentioned in subsection 4.1.1, us-
ing an uid the system is able to distinguish the different detection approaches that
are uploaded. The "name" variable keeps the original filename, as it might other-
wise be unlikely for the algorithms authors to find their tested detection method.
As there are many different detection methods based on MLA such as: X-means
clustering, random forest classifier etc. The "Classifier" would help any reader to
quickly get an overview of which methods a MLA would use. In order for the
system to detect which language the MLA is written in: Be it Python, Java, C# or
another programming language.

The author also has the possibility of attaching a website to the detecting method,
this should be used to link to a published paper, where in the detection approach is
presented, meanwhile the author also has the possibility to make the source code
public for anyone to download, linking to the algorithm uploaded to the system.
Lastly, the tested variable is used to check whether a new detection method has
been uploaded to the system, which needs to be tested.

Figure 4.2: View of the tables in the database, Where GeneralInfo stores generic information and
Results stores the comparison results

The Results table uses the same unique identifier in uid, as the GeneralInfo uses.
This allows distinguishing between the results, so the right result is linked to the
correct MLA. The result data is simply stated in true positive, true negative, false
positive and false negative. As any statistical information about the efficiency can
be calculated based on these metrics.

46 Chapter 4. Implementation

4.1.3 Application Activity Diagram

Figure 4.3 illustrates what the back-end system is doing, when executing a MLA
based detection method. The application consists of three modules, a SQL API
which is only used for interacting with the MySQL server, these interactions are,
due to the needs of the system, only select and update statements are used. The
second component, is the "executor". This module executes all MLAs that has been
uploaded to the system, afterwards it runs a script, that compares the labelling of
the MLA to the true labels of the data sets. The last component is the main loop,
which runs the program in a continuous loop.

Figure 4.3: An activity diagram of the back-end application, that is used for executing uploaded
MLAs

The main loop starts by initialising both the SQL API and the executor classes. The

4.2. Front-end 47

SQL API is then called to fetch any new uploaded algorithms and is returned to
the main loop, if there is nothing new in the database, then the execution queue is
considered empty, the main loop shutdown for an arbitrary amount of time, before
calling the SQL API again.

Given that the database has new entries, the API class will fetch all the different
unique identifiers, in accordance to subsection 4.1.2, that has not yet been tested.
Due to the setup of the file system (subsection 4.1.1), the back-end system is able to
execute any applications based on the unique identifier, together with the informa-
tion of which application type (e.g. Python or MATLAB). The executed algorithm
will, per the system requirements, provide a result labelling file, which is compared
to the ground truth labelling of the data sets.

The result of the comparison is then uploaded to the database, after this, the main
loop will forward the next item in the queue. Given that the queue would be
empty, the main loop would start over, and request any new information from the
database through the SQL API.

4.2 Front-end

In order to make the system publicly available, the front-end system will, according
to the system requirements, be a website. The website is created using a Python
framework called Pyramid. To install and run Pyramid a small guide has been
created and can be seen in Appendix C. In subsection 4.2.1 a short introduction to
the framework Pyramid will be given.

The flow of the website is based on the activity diagrams presented in section 3.3,
which provided a high level understanding of how the system should work. The
activity diagram for viewing results, presented in subsection 3.3.2, is as in depth
as it can be. Uploading new detection method will be presented more in depth, as
there is more logic behind this method, than viewing results. This will be presented
in subsection 4.2.2.

4.2.1 Pyramid Framework

Python pyramid is a non-full stack framework. A non-full stack framework means
that, only the server application is provided, and a relatively small library on the

48 Chapter 4. Implementation

Figure 4.4: A basic overview of the file structure the pyramid framework requires

side, compared to one of the biggest python webframeworks Django. To put into
context, Django is also a full-stack framework, and therefore has a much larger
library than pyramid does. One of the main reasons that the Pyramid framework
was chosen, was because it is a non-full stack framework. Though the library is
smaller compared to Django, it also requires less time to get comfortable with, as
there is less behind the scenes.

As pyramid is a Python framework, it is also possible to use all the standard li-
braries that normally come with Python. This makes a Python webframework like
Pyramid, as powerful as a normal Python development process. As mentioned
in subsection 4.1.1 Pyramid requires a certain file structure in order to work. In
Figure 4.4 the botnetapp folder that was presented in subsection 4.1.1 has been
highlighted.

The setup.py installs any packages that needs to be installed, such as a database
API in the form of sqlalchemy, and html templates that Pyramid uses.

The production.ini and development.ini files are used as configuration files. In
the configuration it is possible to set which extensions that are included. In the
development.ini it is favourable to set a debugging tools as the website would be
running the development configurations while under constructions. In the produc-
tion configuration it would not wise to leave the debugging tool for normal users
to use.

Inside the botnetapp folder the __init__.py holds the basic configuration of the
website it self. The configuration consists of valid path locations, dynamic path
locations, initialisation of the connection to the database. In models.py a hardcoded
version of the database tables is created, this means that inside models, both tables
(subsection 4.1.2) needs to be defined in terms of variable types. models.py is
closely related to the files located inside scripts, as they also have to do with the
database and the connection in between. In views.py the logic of the website is

4.2. Front-end 49

placed, it contains the instructions of what should happen given a GET request or
a POST request. From views.py data is sent to the html templates located inside
the folder templates, that takes css arguments from the static folder.

4.2.2 Uploading MLAs

Although the high level presentation of the uploaded flow in the activity use case
diagram, there are some alteration that is worth pointing out. In Figure 4.5 the
new activity diagram is presented.

Figure 4.5: An in depth activity diagram for uploading new detection approaches

50 Chapter 4. Implementation

When a user submits a detection method, the website first checks if the back-end
system is capable of running the detection approach, based on the programming
language, this is the step where the upload is validated. Once the detection ap-
proach has been validated, the upload is given an unique identifier. The website
then requires any information with the new identifier, if the database returns noth-
ing. The identifier is available and the system continues saving the other informa-
tion the user put into the field boxes.

If everything has gone problem free to this point the information provided by the
user is now stored. A table entry in the result database has also been created, and
lastly the MLA file it self is stored in the file system.

Chapter 5

Testing and Validation

The test specification and test validation will be carried out throughout this chap-
ter. In section 5.1 a formal test specification will be presented. From the test
specification, four tests will be defined. Each test will verify or disprove that the
system works. A MLA based detection method in the form of three different clas-
sifiers, will also be tested, further verifying or disproving that the system works
together.

5.1 Test Specification

To verify that the system requirements in section 3.4 have been fulfilled, four tests
will be performed in order to showcase that every must have requirements are
completed. The should have requirements should be completed, but are not essential
for the system to run. The could have requirements are not necessary for the system,
but would be "nice to have".

All four tests will be carried out on a single machine, with specifications listed
in Appendix B. On Figure 5.1 a small depiction of the machine and what it is
running is presented. The source code for both the front-end and back-end is
available online.

The test specification will have four mandatory tests, in order to verify the system.
If all must have requirements are fulfilled all four tests will be successful.

51

52 Chapter 5. Testing and Validation

Figure 5.1: Depiction of the system setup, a single computer running the database, the server appli-
cation for pyramid and the back-end application

• Upload detection method

• Executor detection method

• Present result for detection methods

• Present detailed results for a specific detection method

Along with these four is three additional tests that are outside the system require-
ments, as three MLA based detection methods have been provided by Matija Ste-
vanovic, a Ph.d student at Aalborg University. The detection approaches, that has
been provided are both using random forest MLA to classify the data sets. One
classifies according to the TCP traffic, while the second one classifies according to
UDP traffic and the last one classifies based on DNS traffic.

The four mandatory tests, are presented sequential, so that the first test does not
require any of the other tests to be successful. The second test presented requires,
that the first test is completed, before the test can be initiated and so on. The last
three test that are based on the MLA provided by Matija Stevanovic, are only used
to verify that the system is working, the result of the detection approaches are not
important for this project.

Each test will follow the same approach:

5.1. Test Specification 53

Scenario A small introduction to the test, and how it will most likely be performed
from a users perspective.

System requirements This will specify all the system requirements that can be
tested in for a given test. This will be presented as e.g.Back-end.3.a, this
referring to system requirement for the back-end system, and the data sets.
Further more each item in the system requirements, will be coloured as, green
are completed, orange are almost completed and red are failed.

Requirements remarks This will be short remarks to reasoning behind the com-
pleted, almost completed and failed system requirements.

Verdict The end result of the tests, will be shown as either accepted or failed.

5.1.1 Test 1: Upload algorithm

A user want to upload a MLA based botnet detection method to the website, to
compare the efficiency of detecting botnet traffic compared to other MLA, already
uploaded to the system. Once the algorithm has been uploaded, the programming
language, in which the algorithm is written, will be verified. In this scenario, the
algorithm is verified and information about the algorithm and the MLA it self will
be stored on a local server, and new entries will be made in the database.

The system requirements which can be placed on the uploading of algorithms.

Note: Requirements marked green are completed, orange are almost completed and red are
failed.

Must have

1. Front-end.1.a: The website must have a pure html based interface

2. Front-end.2.a: The website must have the functionality for users to up-
load MLAs

3. Back-end.1.a: The database must be able to store/access general infor-
mation about each MLA

4. Back-end.2.a: For test execution there must be one programming lan-
guage support

5. Back-end.3.a: There must be a folder with evaluation traffic data sets,
divided into malicious and non-malicious data sets

54 Chapter 5. Testing and Validation

6. Back-end.3.b: There must be a folder with training traffic data set, di-
vided into malicious and non-malicious data sets

Should have

7. Back-end.2.c: For test execution there should be ≥ 2 different program-
ming languages supported

Could have

8. Front-end.1.b: The website could have a graphical web interface

Additional requirements are posed on the creator of the MLA based detection
method, as detection approaches are treated as an unknown. Certain requirements
to the algorithm needs to be met, for it to function with the system.

• Back-end.2.a: For test execution there must have one programming language
support

• All Back-end.2.b: For test execution the uploaded MLA must fulfil

All of the must have requirements have been successfully implemented in the project.
The user is able to upload an algorithm from a pure HTML based interface. The
database is uploaded with a new entry while inserting the information collected
based on the system requirements. Support for a single programming has been
implemented, being Python 2.7.11. This was also the language and version the
provided detection approaches were coded in.

Multiple supported languages has not been implemented as stated in Requirement
7, as Python2.7 MLAs where provided. Therefore no effort where put into making
support for more programming languages. It is worth mentioning, that added sup-
port for a programming language is fairly easy, as most programming languages
are executable from the command line, such as Python, MATLAB, Java etc. As long
as the developer of a detection method abides by the input/output requirements
for the script.

In Requirement 8 is labelled as orange, this means the requirements is almost
completed. The graphical design has been made and is available at the monline
repository, however the html and css needed for the graphical design, has not been
made yet. Due to this, the requirements is marked as almost complete, but as

5.1. Test Specification 55

not everything within this requirement has not yet been completed it can not be
marked as completed.

The user requirements has not been marked as completed, almost completed or
failed. These requirements are not some, that can be forced upon the system it self,
as these requirements are placed on the users whom wishes to upload a detection
method to the website.

This test has been approved. As a user is able to upload an algorihtm from the
web interface. It can also be noted again, that uploading detection methods and
uploading data sets are not that different. As stated in the system requirements,
uploading data sets provides a the problem of labelling, trusting and verifying the
labelling provided by the user.

5.1.2 Test 2: Automatic execution of algorithms

Once a user has uploaded a detection method to the website, the back-end fetches
the information now available through the database, in order to execute the newly
uploaded detection algorithm. In the case, that several algorithms have been up-
loaded in a short amount of time, creating a queue, the back-end executes each of
these new algorithms one at a time, before rechecking the database for new entries.

Note: Requirements marked green are completed, orange are almost completed and red are
failed.

Must have

1. Back-end.1.a: The database must be able to store/access general infor-
mation about each MLA

2. Back-end.1.b: The database must be able to store/access test results for
each MLA

3. Back-end.2.a: For test execution there must be one programming lan-
guage support

Should have

4. Back-end.2.c: For test execution there should be ≥ 2 different program-
ming languages supported

Could have

56 Chapter 5. Testing and Validation

5. Back-end.1.c: The database could be able to store file/folder locations
for data sets

As stated by the must have requirements, the system has to supports a single pro-
gramming language. As stated in section 5.1, three different MLA based detec-
tion approaches where provided, each where based on the same programming
language, there where no incentive to make support for several programming lan-
guages. This was also explained in the previous test for uploading MLA. The
back-end application is able to fetch information from the GeneralInfo table (sub-
section 4.1.2), which adds a new entry to an internal queue of execution. After a
detection method has been executed the results of the comparison is uploaded to
the Results table in the database.

Requirement 5 was not made, as it was decided in the system requirements that
users should not be allowed to upload data sets. Although this requirement could
have been made, the paths to the folder locations with training and evaluation data
sets where hardcoded into the executor module.

This test has been approved, as when a user uploads a detection algorithm the
system is able to execute the algorithm and compare the labelling of the detection
method to the ground truth labelling of the data sets. It however, worth mention-
ing that algorithms that had errors accrued during run time, forces not only the
algorithm to stop, but also the whole back-end application.

5.1.3 Test 3: Result overview

After a user has uploaded a detection algorithm, and after said algorithm has been
executed by the back-end. The performance of the detection method is available
through the result section of the website. The user accesses this site, and the web-
site fetches all results from the database and processes the information accordingly.
Thereby presenting the results to the user.

Note: Requirements marked green are completed, orange are almost completed and red are
failed.

Must have

1. Front-end.1.a: The website must have a pure html based interface

5.1. Test Specification 57

2. Front-end.3.a: The website must be able to give an overview of all tested
algorithms

3. Back-end.1.a: The database must be able to store/access general infor-
mation about each MLA

4. Back-end.1.b: The database must be able to store/access test results for
each MLA

Could have

5. Front-end.1.b: The website could have a graphical web interface

The website fetches information from the GeneralInfo and Results table in the
database. The information fetched from the database is used to present the results
in accordance to Requirement 2. The each detection approach is presented by the
original name given by the creator of the algorithm, and links to more specific
result details, followed by the required overview information.

As explained in the test in subsection 5.1.1, Requirement 5 is again, marked as
almost completed as the graphical design of the site was done. The HTML and css
required to make the site operational with the design was not made.

This test has been approved, as when a user uploads a detection algorithm to the
systemk, testing said algorithm, and uploading the results of the labelling of the
detection approach to the Results table in the database. The user is now able to
can access the result information through the website, and gain an overview of the
MLA based botnet detection algorithm performance.

5.1.4 Test 4: Detailed Result

When the users has been presented for the results of every detection methods
available. The users might wish to see more information about a specific detection
approach. The website will at this point, fetch specific test results and process more
statistical features and fetch information about the detection algorithm. This test is
fairly similar to the "Result overview", but will provide a more specific insight to a
single detection method.

Note: Requirements marked green are completed, orange are almost completed and red are
failed.

58 Chapter 5. Testing and Validation

Must have

1. Front-end.1.a: The website must have a pure html based interface

2. Front-end.3.b: The website must be able to present detailed information
about each algorithm tested

3. Back-end.1.a: The database must be able to store/access general infor-
mation about each MLA

4. Back-end.1.b: The database must be able to store/access test results for
each MLA

Could have

5. Front-end.1.b: The website could have a graphical web interface

6. Front-end.3.c The website could be able to present family/sample clas-
sification test results

Directly from subsection 5.1.3, the user clicks on a specific set of results for a detec-
tion method, the user is directed to a more detailed view, where more statistics are
being presented to the user. Requirement 6 where not met, due to the fact that the
end result labelling where based on malicious or benign hosts. if the labelling had
been flow based or packet based, this requirement could have presented some in-
teresting results, as it could showcase, which bot malware specifically where found.
As well as if the detection method where better at finding the newest version of an
bot family malware.

This test has been approved, as the user is, directly after going through the test
in subsection 5.1.3, able to see more information about a detection algorithm, as
defined by Requirement 2.

5.2 Testing with Existing Detection Methods

Three different MLA based botnet detection algorithms has been provided by
Matija Stevanovic. Each of the three algorithms are based on the same program,
which uses an Random Forest MLA to classify the traffic in the data sets. The
algorithms bases their labelling purely on either TCP, UDP or DNS traffic. [15]
states that the majority of the Internet traffic in Europe and Asia from application
that uses TCP or protocols that utilises TCP, with the only application that uses
UDP being Skype. From this it can be expected that not every hosts in the data

5.2. Testing with Existing Detection Methods 59

sets, will have either DNS or UDP, while most, if not all, hosts in the data sets have
produced TCP traffic.

As the botnet detection approaches classifies with respect to TCP, UDP or DNS. It
should be expected that the TCP classifier will find more malicious but also benign
hosts. Compared to both the DNS and UDP classifier, as each of the algorithms
only look at the respective traffic.

Each test have been executed according to the same methodology. Each algorithm
has been uploaded through the websites upload function (subsection 5.1.1), where
the back-end system found the newly uploaded algorithms and added them to an
execution queue. Once an algorithm completed the labelling process, the results
have been compared to the ground truth labelling of the data sets. The result of the
labelling was uploaded to the MySQL database, and from there it can be presented
to the user.

For testing the detection methods, 100% of the data sets where used for both train-
ing and evaluation of the algorithms. Although the detection methods perfor-
mance, provides an unrealistic view of how the detection algorithms would fair
in actual use, as it is expected that all three of the detection methods will predict
100% of the labels correct.

As this system should treat each uploaded detection algorithms as a black box,
the nature of the unrealistic test result are not important. These tests showcases
the system ability to automatically, upon upload of a detection approach, is able
to execute the algorithm, compare the results of the labelling and present these
results. Where each MLA based detection method has been tested using the same
data sets.

5.2.1 Machine Learning Algorithm: TCP

The TCP classifier found almost all of the IPs in the data sets available for the
system, and labelling every IP the detection method did find, correctly as presented
on Figure 5.2, a screenshot of the labelling results of the MLA.

In Figure 5.2 it is seen that the accuracy of the algorithm is perfect, as it was
predicted as the training data were also used for evaluation data. Next to the
accuracy is a "of all hosts", this referrers to the accuracy of all the hosts in all of the
data sets. Since the accuracy of "all hosts" is slightly lower than the other accuracy,
is because some hosts in the data sets where not using TCP traffic at all.

60 Chapter 5. Testing and Validation

Figure 5.2: A screenshot of the detailed result page of the TCP classifier MLA

Figure 5.3: An SQL select statement showcasing the TCP classifier labelling results

As stated previously, the TCP classifier found almost all of the malicious and be-
nign IPs in the data sets, as evident on Figure 5.3, where it found 33361 out of
33412 unique IP addresses.

5.2.2 Machine Learning Algorithm: UDP

As predicted previously the UDP classifier did not find as many malicious and
benign hosts as the TCP classifier. Of the three MLAs tested through the system,
the UDP was the only one to make false predictions, this illustrated in Figure 5.4,
which presents the screenshot of the labelling results.

The results of the found hosts were just above 95% accuracy of the algorithm, this
was expected to be 100%. It shows that it is not always easy to label malicious and
non-malicious traffic, as they can seem very similar in nature. When the accuracy
of all the hosts were calculated it is easy to see that, the UDP classifier did not find

5.2. Testing with Existing Detection Methods 61

Figure 5.4: A screenshot of the detailed result page of the UDP classifier MLA

Figure 5.5: An SQL select statement showcasing the UDP classifier labelling results

that many unique IP addresses. It can be seen that the classifier falsely labelled
some hosts malicious while the hosts were non-malicious.

From the MySQL database screenshot in Figure 5.5, it is seen that the labelling
resulted in 5 false positive, and the algorithm only found 134 out of the total of
33412 unique IP addresses.

5.2.3 Machine Learning Algorithm: DNS

As with the UDP classifier, the DNS classifier did not find many unique IPs in
the data sets which contained DNS traffic. The detection method for DNS did not
make any false predictions, as expected. The results can be seen in Figure 5.6

By comparing the two accuracy calculations, it is easy to see that there a fairly
scarce distribution of DNS traffic in the data sets. The SQL statement on Figure 5.7
also confirms, that there where less DNS traffic compared to UDP traffic. A total

62 Chapter 5. Testing and Validation

Figure 5.6: A screenshot of the detailed result page of the DNS classifier MLA

Figure 5.7: An SQL select statement showcasing the DNS classifier labelling results

of 82 IPs where discovered out of the 33412 different IPs in the data sets.

Chapter 6

Conclusion and Discussion

In this final chapter, the conclusion and possible future work is presented in sec-
tion 6.1 and section 6.2 respectively.

6.1 Conclusion

The current state-of-the-art botnet detection methods are based on machine learn-
ing, in which researchers are investing time to perfecting. Botnet is one of the
biggest computer security risks to this day. Bot malware is able to gather keystrokes
through keyloggers, make Distributed Denial of Service attacks against anyone on
the Internet, and is one of the main contributed to SPAM mails to name a few.

As the state-of-the-art method of detecting botnet traffic is using machine learning
algorithm, the data used to train and test the detection approaches should be a
fairly straight forward process. Time and time again researchers are forced to
create new training and testing data sets, as they are often not publicly available
on the Internet. Many papers state how these data sets are made. This also means
that almost every research paper on botnet detecting using machine learning uses
different data sets, making it hard to compare performance between the different
detection methods, as the used data sets often only contains a small number of bot
malware variations.

This leading up to the problem statement of this project:

63

64 Chapter 6. Conclusion and Discussion

"In order get a better comparison between botnet detection using machine
learning algorithms. How to design a system that is publicly available and
provides the same data sets for every algorithm, enabling easy comparison?"

From the problem statement another question needed to be answered:

"As data sets are a fundamental requirement and challenge of any machine
learning algorithm botnet detection method. What is/are the best practice for
generating data sets?"

Throughout chapter 2, three different methods for traffic capturing were presented.
Capturing "in the wild", creating a controlled setup, where machines would either
be infected purposely with malware or reinstalled before usage. Each of these
three methods has their own advantages and disadvantages. Capturing traffic "in
the wild" will produce the most realistic traffic data sets, as they by nature are
real representations of network traffic. However, it is very hard to label traffic as
malicious and non-malicious when data sets are captured "in the wild", and many
legal and ethical concerns arises. Creating small controlled environment will not
be as realistic as capturing "in the wild", but most of the traffic is known to be
either malicious or non-malicious, depending on the setup, and many of the legal
and ethical aspects are not present in a controlled environment.

The effect of the label levelling were also presented in chapter 2. By labelling
malicious traffic to either malicious packets, flows or hosts. Each of these three
levels of labelling have advantages and disadvantages.

In chapter 3 a high level design of a system that would be able to fulfil the problem
statement was presented. The system was designed according to UML use case,
and enhanced flowchart diagrams known as activity diagrams. The system be
based on a front-end and a back-end syste. The front-end system consisting of
a website, and the back-end system consisting of an application and a database.
From the system design and the traffic capture chapter a set of MoSCoW system
requirements where presented, that should allow for a system to fulfil the problem
statement.

The implementation of the system was presented in chapter 4, were the front-end
system is based on a Python webframework called Pyramid. The back-end system
consisting of a Python application as well as a MySQL database, that would link
the front-end and back-end system together. From the implementation, the system

6.2. Future Work 65

would allow users to upload new detection methods to the service. The website
would update the database and save the detection algorithm in a file system. The
back-end system would pick up on the new entry in the database, and execute
the newly uploaded detection algorithm, were the resulting comparison of the
detection methods labelling and the labelling of the data sets, were uploaded to
the database.

Testing the system in chapter 5, proved the system was able to do as intended,
throughout all stages. Although almost every non-must have requirements were
not met, the system requirements were designed as such, completing every must
have requirement would make the system fully functional. For the project Matija
Stevanovic a Ph.D of Aalborg University provided machine learning based botnet
detection approaches. That could classify according to TCP, UDP or DNS traffic.
This algorithm was split into three, and showed for proof-of-concept that a system
as the one that has been made can be done on a larger scale.

All of the tests were completed and approved, and every must have system require-
ments were met, the problem statement has been completed and proved.

6.2 Future Work

To wrap this project up, the last section will focus on the possible future work that
can be done on this system.

Some of the more complex work, could be put into the creation of a system that
automatically took data sets, as they are in the current version of the system, where
each malicious pcap represents a different botnet samples. The system would
have to take an arbitrary amount of malicious and benign pcap files, merge them
together to a single pcap file for finally splitting the pcap file up into two, one as a
training data set and the other as a evaluation data set. This would eliminate the
trust issue of MLA based botnet detection creators as the input to the algorithm
would be changed to <training pcap + training labels> and <evaluation pcap>. An
automated system could greatly improve this project system, as it would also open
up for dynamically creating pcaps, where the users of the system would specify
which botnet types they wish their detection algorithm would be tested with.

Another improvement, would be automatically download any required library that
an uploaded detection method would need, across all supported languages. For
Python this could be done using the Pip installer. Trying to execute an algorithm

66 Chapter 6. Conclusion and Discussion

Figure 6.1: A possible use case diagram of the system if users where allowed to register to the site

while missing some libraries will force an error upon compilation.

One of the most obvious things that can improve the functionality and profession-
alism for the front-end is to have a proper graphical design deployed, a design has
already been made, but lacks the html and css code to support it.

For further development for the system in general can be seen on Figure 6.1, that
extends on the use case diagram presented in Figure 3.1

On the new use case diagram, a user is allowed to register, this means that a
lot of trivial information about the user does not need to be included on every
upload as it already available. This would also make it possible for users to only
get tests results for their own uploaded algorithms. From [18] a lot of tailored
detection approach where presented, as they are tailored towards specific botnet
families/samples, upon upload the user could be asked to specify if the detection
method should only be tested with the "default" data set, or if the algorithm should
also be tested with a user defined data set. Implementing this could take full
advantage of the automated system for merging several pcaps, defined by the user,
to a single training and single evaluation data set

All of this would require a new database structure, one that would allow for users
to be registered, and secondly allowing user defined data sets. A possible way of

6.2. Future Work 67

Figure 6.2: A possible database structure, where relations to each table is also shown. This database
also takes into account that data sets information is stored in the database

implementing this could be as presented in Figure 6.2

The database representation a more scalable database structure than the one pre-
sented in subsection 4.1.2, as each table contains less fields, and is more organised.
The user_db would provide that basics for user registration and user contact infor-
mation, the user_db would be linked together with mla_db that stores information
such as the original name of the file upload, the classifier type and programming
language. The second table user_db is linked to is the file_db, this table would
store uploaded data set information, whether or not the data set contains mali-
cious hosts or only benign hosts (this could be further expanded upon, to have a
table that stored labelling data for each data set), as well as the type of e.g. botnet
family that is being uploaded, or benign office, home or public wifi traffic. The
dataset_db would link these merged pcap files together, so that the system would
know which data sets are merged together to form a training and evaluation data
set, this would also allow for "fast" reconstruction of data sets if storage space is
limited. Lastly the result_db, which is very identical to the results table defined
in subsection 4.1.2.

As the last point of potential future work, would be to take the labelling of the data
sets to either flow based labelling or packet based labelling. This could have a pos-
itive effect on for example the research community that uses flow based labelling
of data sets, and not host based as presented in this project.

Bibliography

[1] Tomasz Bujlow, Valentín Carela-Español, and Pere Barlet-Ros. Comparison of
Deep Packet Inspection (DPI) Tools for Traffic Classification. UPC-DAC-RR-CBA-
2013-3. Universitat Politècnica de Catalunya, June 2013.

[2] Cisco. What Is the Difference: Viruses, Worms, Trojans, and Bots? http://www.

cisco.com/c/en/us/about/security-center/virus-differences.html.
Feb. 2015.

[3] Felix Leder Daniel Plohmann Elmar Gerhards-Padilla. “Botnets: Detection,
Measurement, Disinfection & Defence”. In: The European Network and Infor-
mation Security Agency (Mar. 2011).

[4] Christopher Elisan. Malware, Rootkits and Botnets: A Beginners Guide Malware.
ISBN: 9780071792066. McGraw Hill, Aug. 2012.

[5] Loras R. Even. Honey Pot Systems Explained. https://www.sans.org/security-
resources/idfaq/what-is-a-honeypot/1/9. July 2000.

[6] Anand Ajjan James Wyke. The Current State of Ransomware. https://www.
sophos.com/en- us/medialibrary/PDFs/technical%20papers/sophos-

current- state- of- ransomware.pdf?la=en. Accessed: 11/03/2016. Dec.
2015.

[7] Lawrence Berkeley National Laboratory. LBNL/ICSI Enterprise Tracing Project.
http://www.icir.org/enterprise- tracing/Overview.html. Accessed:
30/5/2016.

[8] Thuy TT Nguyen and Grenville Armitage. “A survey of techniques for inter-
net traffic classification using machine learning”. In: Communications Surveys
& Tutorials, IEEE 10.4 (2008), pp. 56–76.

[9] Sang-Kyun Noh et al. “Detecting P2P botnets using a multi-phased flow
model”. In: Digital Society, 2009. ICDS’09. Third International Conference on.
IEEE. 2009, pp. 247–253.

69

http://www.cisco.com/c/en/us/about/security-center/virus-differences.html
http://www.cisco.com/c/en/us/about/security-center/virus-differences.html
https://www.sans.org/security-resources/idfaq/what-is-a-honeypot/1/9
https://www.sans.org/security-resources/idfaq/what-is-a-honeypot/1/9
https://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/sophos-current-state-of-ransomware.pdf?la=en
https://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/sophos-current-state-of-ransomware.pdf?la=en
https://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/sophos-current-state-of-ransomware.pdf?la=en
http://www.icir.org/enterprise-tracing/Overview.html

70 Bibliography

[10] pingdom.com. IRC is dead, long live IRC. http://royal.pingdom.com/2012/
04/24/irc-is-dead-long-live-irc/. Accessed: 02/03/2016. Apr. 2012.

[11] Malware Capture Facility Project. Malware Capture Facility Project. http://
mcfp.weebly.com/. Apr. 2016.

[12] J. Quittek et al. IPv6 Flow Label Specification. https://tools.ietf.org/pdf/
rfc3917.pdf. Mar. 2004.

[13] J. Rajahalme et al. Requirements for IP Flow Information Export (IPFIX). https:
//tools.ietf.org/pdf/rfc3697.pdf. Oct. 2004.

[14] S. Saad et al. “Detecting P2P botnets through network behavior analysis and
machine learning”. In: Privacy, Security and Trust (PST), 2011 Ninth Annual In-
ternational Conference on. 2011, pp. 174–180. doi: 10.1109/PST.2011.5971980.

[15] Sandvine. “Global Internet Phenomena Asia-Pacific & Europe”. In: (Sept.
2015).

[16] Ali Shiravi et al. “Toward developing a systematic approach to generate
benchmark datasets for intrusion detection”. In: Computers & Security 31.3
(2012), pp. 357–374. doi: 10.1016/j.cose.2011.12.012.

[17] Aron Stefánsson et al. AAU HoneyJar containment: Real-time classification of
CnC traffic. 2013.

[18] Matija Stevanovic and Jens Myrup Pedersen. “On the Use of Machine Learn-
ing for Identifying Botnet Network Traffic”. In: Journal of Cyber Security, Vol.
4, 1–32. (Aug. 2015).

[19] Nadezhda Demidova Tatyana Shcherbakova Maria Vergelis. Spam and Phish-
ing in the First Quarter of 2015. https://securelist.com/analysis/quarterly-
spam-reports/69932/spam-and-phishing-in-the-first-quarter-of-

2015/. Accessed: 10/03/2016. June 2015.

[20] M. Tavallaee, W. Lu, and A. A. Ghorbani. “Online Classification of Network
Flows”. In: Communication Networks and Services Research Conference, 2009.
CNSR ’09. Seventh Annual. 2009, pp. 78–85. doi: 10.1109/CNSR.2009.22.

[21] Florian Tegeler et al. “BotFinder: Finding Bots in Network Traffic Without
Deep Packet Inspection”. In: Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies. CoNEXT ’12. Nice, France:
ACM, 2012, pp. 349–360. isbn: 978-1-4503-1775-7. doi: 10.1145/2413176.
2413217. url: http://doi.acm.org/10.1145/2413176.2413217.

[22] Dr. Hamadoun I. Touré. Cybersecurity Global Status Update. http://www.un.
org/en/ecosoc/cybersecurity/itu_sg_20111209_nonotes.pdf. Accessed:
02/03/1026. 2011.

http://royal.pingdom.com/2012/04/24/irc-is-dead-long-live-irc/
http://royal.pingdom.com/2012/04/24/irc-is-dead-long-live-irc/
http://mcfp.weebly.com/
http://mcfp.weebly.com/
https://tools.ietf.org/pdf/rfc3917.pdf
https://tools.ietf.org/pdf/rfc3917.pdf
https://tools.ietf.org/pdf/rfc3697.pdf
https://tools.ietf.org/pdf/rfc3697.pdf
http://dx.doi.org/10.1109/PST.2011.5971980
http://dx.doi.org/10.1016/j.cose.2011.12.012
https://securelist.com/analysis/quarterly-spam-reports/69932/spam-and-phishing-in-the-first-quarter-of-2015/
https://securelist.com/analysis/quarterly-spam-reports/69932/spam-and-phishing-in-the-first-quarter-of-2015/
https://securelist.com/analysis/quarterly-spam-reports/69932/spam-and-phishing-in-the-first-quarter-of-2015/
http://dx.doi.org/10.1109/CNSR.2009.22
http://dx.doi.org/10.1145/2413176.2413217
http://dx.doi.org/10.1145/2413176.2413217
http://doi.acm.org/10.1145/2413176.2413217
http://www.un.org/en/ecosoc/cybersecurity/itu_sg_20111209_nonotes.pdf
http://www.un.org/en/ecosoc/cybersecurity/itu_sg_20111209_nonotes.pdf

Bibliography 71

[23] International Telecommunication Union. “ICT Facts and Figures – The world
in 2014”. In: (Aug. 2014).

[24] John R. Vacca. Computer and Information Security Handbook. ISBN: 978-0-12-
374354-1. Morgan Kaufmann, May 2009.

[25] Wikipedia. MoSCoW method. https://en.wikipedia.org/wiki/MoSCoW_
method. Mar. 2016.

[26] David Zhao et al. “Botnet detection based on traffic behavior analysis and
flow intervals”. In: Computers & Security 39 (2013), pp. 2–16.

https://en.wikipedia.org/wiki/MoSCoW_method
https://en.wikipedia.org/wiki/MoSCoW_method

Appendix A

TotalVirus Used Sites

When using https://www.virustotal.com/ the different sites that are used to
check files for malicious code are shown in Table A.1.

ALYac BitDefender GData Rising
AVG Bkav Ikarus SUPERAntiSpyware
AVware ByteHero Jiangmin Sophos
Ad-Aware CAT-QuickHeal K7AntiVirus Symantec
AegisLab CMC K7GW Tencent
Agnitum ClamAV Kaspersky TheHacker
AhnLab-V3 Comodo Malwarebytes TrendMicro
Alibaba Cyren McAfee TrendMicro-HouseCall
Antiy-AVL DrWeb McAfee-GW-Edition VBA32
Arcabit ESET-NOD32 eScan VIPRE
Avast Emsisoft Microsoft ViRobot
Avira (no cloud) F-Prot NANO-Antivirus Zillya
Baidu F-Secure Panda Zoner
Baidu-International Fortinet Qihoo-360 nProtect

Table A.1

73

https://www.virustotal.com/

Appendix B

Production PC

The computer used for hosting the website, database and network traces is running
Arch Linux, with the kernal version of 4.5.0-1-ARCH.

The specifications of the computer is done using lshw, which is not a standard
application. In Listing B all commands for using lshw is shown and in Table B.1

1 # Download lshw , pacman t ak e s c a r e o f dependenc i e s , j u s t accep t i n s t a l l a t i o n

2 sudo pacman −S lshw
3 # sudo l shw p r o v i d e s more i n f o rma t i o n than had sudo not be p r o v i d ed

4 sudo l shw − s h o r t

75

76 Appendix B. Production PC

Device Class Description
system Desktop Computer
bus DH67CF
memory 64KiB BIOS
processor Core i7 (To Be Filled By O.E.M.)
memory 32KiB L1 cache
memory 1MiB L2 cache
memory 8MiB L3 cache
memory 8GiB System Memory
memory 4GiB DIMM DDR3 Synchronous 1333 MHz (0,8ns)
memory 4GiB DIMM DDR3 Synchronous 1333 MHz (0,8ns)
bridge 2nd Generation Core Processor Family DRAM Controller
display 2nd Generation Core Processor Family Integrated Graphics Controller
communication 6 Series/C200 Series Chipset Family MEI Controller #1

eno1 network 82579V Gigabit Network Connection
bus 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #2

usb1 bus EHCI Host Controller
bus Integrated Rate Matching Hub
input USB Optical Mouse
input Dell USB Entry Keyboard
multimedia 6 Series/C200 Series Chipset Family High Definition Audio Controller
bridge 6 Series/C200 Series Chipset Family PCI Express Root Port 1
bridge 6 Series/C200 Series Chipset Family PCI Express Root Port 2
bus uPD720200 USB 3.0 Host Controller

usb3 bus xHCI Host Controller
usb2 bus xHCI Host Controller

bus 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1
usb4 bus EHCI Host Controller

bus Integrated Rate Matching Hub
bridge H67 Express Chipset Family LPC Controller
storage 6 Series/C200 Series Chipset Family SATA AHCI Controller
bus 6 Series/C200 Series Chipset Family SMBus Controller

Table B.1

Appendix C

Pyramid setup

Through this appendix, the approach will be based on a Linux machine running
Arch Linux with the the machine with specifications according to Appendix B.

C.1 Setting up pyramid

Before installing pyramid, python3 needs to be installed, for Arch Linux the default
python is python3, for other Linux distributions such as Ubuntu, python2 is the
default python application.

Installing python3 and python3 setuptools that are needed in order to install pyra-
mid. Listing C.1 shows the command for installing python on Arch Linux.

1 # I n s t a l l python3

2 sudo pacman −S python python− s e t u p t o o l s

Listing C.1: Installing python

Once both python packages have been installed, pyramid can be installed, this can
be done with the following command, the optional command added in Listing C.2
will also install some of the most common packages used by pyramid, although
they are not needed in order for pyramid to function, they provide additional
functionality.

1 # I n s t a l l i n g pyramid

2 sudo e a s y_ i n s t a l l pyramid
3 # Opt i ona l pyramid packages , t ha t a r e used f o r t h i s p r o j e c t

4 sudo e a s y_ i n s t a l l nose webte s t deform sq l a l c h emy pyramid_chameleon pyramid_debugtoo lbar
w a i t r e s s pyramid_tm zope . s q l a l c h emy

77

78 Appendix C. Pyramid setup

Listing C.2: Installing pyramid

Now that pyramid has been installed, pyramid provides templates. Using the
templates, ensure that all files have been created, and the templates also run "out
of the box". Using the command in line 1 in Listing C.3 will create a template
that functions with sqlalchemy. Sqlalchemy is a highly functional API for a sqlite
database, but also works with more advanced databases such as MySQL. Se

1 # Create a pyramid temp la t e l o c a t i o n

2 p c r e a t e alchemy

Listing C.3: Creating a pyramid template to work from

Lastly before being able to run the pyramid application two last commands needs
to be run. These commands can be seen in Listing C.4. Firstly cd into the root
directory of the folders created by the template creation in Listing C.3, then run a
standard setup.py script followed by develop, this will install any packages spec-
ified in setup.py that is required for the application to run. The last function
"pserve" will run a pyramid instance, accessible from localhost on port 6543 by
default.

1 # Se t t i n g up the env i ronment

2 cd <i n t o / pyramid / temp la t e / root> && sudo python s e t yp . py deve l op
3 # Running python pyramid s e r v i c e

4 p s e r v e deve lopment . i n i −− r e l o a d

Listing C.4: Installing the required packages to run the pyramid instance and running an instance
of pyramid

	Front page
	English title page
	Contents
	Preface
	Glossary
	1 Introduction
	1.1 Malicious Software
	1.2 Botnet
	1.3 Botnet Threat
	1.4 Botnet Architecture
	1.4.1 Centralised
	1.4.2 Decentralised
	1.4.3 Hybrid

	1.5 Related Work
	1.5.1 Evaluation Data

	1.6 Problem Statement

	2 Data Set Challenge
	2.1 Datasets
	2.1.1 Real Traffic
	2.1.2 Controlled Traffic
	2.1.3 Benign Traffic

	2.2 Labeling Data
	2.2.1 Packet label
	2.2.2 Flow label
	2.2.3 Host label

	2.3 Merging Data sets
	2.4 Analysis conclusion

	3 System Design
	3.1 System Description
	3.2 System Use Case
	3.3 Activity Diagram
	3.3.1 Activity Diagram: Upload
	3.3.2 Activity Diagram: Results

	3.4 System Requirements
	3.4.1 Front-End Requirements
	3.4.2 Back-End Requirements

	4 Implementation
	4.1 Back-end System
	4.1.1 File System
	4.1.2 Database
	4.1.3 Application Activity Diagram

	4.2 Front-end
	4.2.1 Pyramid Framework
	4.2.2 Uploading MLAs

	5 Testing and Validation
	5.1 Test Specification
	5.1.1 Test 1: Upload algorithm
	5.1.2 Test 2: Automatic execution of algorithms
	5.1.3 Test 3: Result overview
	5.1.4 Test 4: Detailed Result

	5.2 Testing with Existing Detection Methods
	5.2.1 Machine Learning Algorithm: TCP
	5.2.2 Machine Learning Algorithm: UDP
	5.2.3 Machine Learning Algorithm: DNS

	6 Conclusion and Discussion
	6.1 Conclusion
	6.2 Future Work

	Bibliography
	A TotalVirus Used Sites
	B Production PC
	C Pyramid setup
	C.1 Setting up pyramid

