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Synopsis:
This project focuses on analysis of reinforced concrete beams using the fi-
nite element method. A program developed in MatLab is compared with the
commercial software program Abaqus in the study of a reinforced concrete
beam structure. The comparison showed good results for the MatLab pro-
gram, which ability to evaluate reinforced concrete structures was promising
as the deviation between the programs results were minor.
The dynamic study showed the difference between analysing a structure
purely elastic and implementing plasticity in the calculations. This analy-
sis showed a dissipation in energy when the material is becoming plastic,
decreasing the vibrations created from the load.
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Preface
This report presents the master thesis from the master program in Structural and

Civil Engineering at Aalborg University. The report is written by Niels Færch
Overgaard and Martin Bundgaard Andreasen. The subject is "Elasto-plastic con-

crete beam analysis by 1-dimensional Finite Element Method". The project was
done over two semesters during the fall semester 2015 and the spring semester
2016 and delivered on 10.06.2016. The project was supervised by Johan Clausen
and Lars Andersen.

Reading guidelines
The bibliography is a collection of the references used throughout the report and
can be found in the back of the report. Here, all sources are presented with the
needed information. Sources are presented via the Harvard Method. A reference
is given as: [Author, Year].

For each chapter in the main report, tables, figures and equations are given ref-
erence numbers corresponding to the current chapter. For better understanding of
the reader, commentary text is added to each table and figure.

Appendices, for a better understanding of parts of the main report, are found in
the back of the report. Further, a digital appendix is placed on a CD, attached to
the report. The digital appendix consist of MatLab scripts and the report as a PDF
version.
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Notations

A Area

[B] Strain interpolation matrix

[c] Damping matrix

Cy Centroid

[D] Constitutive matrix

{d} displacement vector

E Young’s modulus

F Force

{ f} Force vector

fc Yield stress in comression

ft Yield stress in tension

fu Ultimate stress

fy Yield stress

I Moment of inertia

I1 First invariant of the stress tensor

J2 Second invariant of the deviatoric stress tensor

[k] Stiffness matrix

L Length

M Moment

[m] Mass matrix

N Axial force

npx Integration points in x direction

npy Integration points in y direction

q Transverse force

qz Line load

R Restoring force

r Residual force
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[T] Transformation matrix

t Time

xe local x coordinate

V Shear force

v Transverse displacement

u Displacement

u0 Axial deformation at beam axis

u̇ Velocity

ü Acceleration

y0 y coordinate of neutral axis

ye local y coordinate

σ Stress

σ0 Uniaxial yield stress

σm Mean stress

σe Equivalent stress

σ1 Stress in principal direction 1

σ2 Stress in principal direction 2

ε Strain

εc Strain at yield stress in compression

εu Strain at ultimate stress

εt Strain at yield stress in tension

ε0 Strain at beam axis

θ Rotation

κ Curvature

κel Maximum elastic curvature

α Material parameter

Φ Shape function

ξ Local coordinate system for element

β Parameter for Newmark-β method

γ Parameter for Newmark-β method

ρ Density
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ν Poisson’s ratio
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Chapter 1

Introduction
In practical engineering, time is the one of the most important factors in designing
structures, foundations, etc. The time of an engineer should be spend efficiently,
avoiding waiting for longer periods on results from software calculations. This
problem is easily resolved by granting the engineer more computational power,
but this is often expensive and limited by today’s technology. Instead, the mod-
elling of the structure should be assessed in terms of efficiency, which could be
computational time versus accuracy. Thus, it is advantageous to develop models
with a certain degree of accuracy living up to today’s expectations of good engi-
neering practice, but time efficient so that the waiting for results is minimized.

Concrete is a worldwide used construction material, which the construction indus-
try has good experience with. Concrete has widely different strength character-
istics for compression and tension, which is why it is often reinforced with steel
bars. This combination makes a complex behaviour of reinforced concrete struc-
tures as concrete is a nonlinear behaving material and steel has a relatively large
range of linear elastic material behaviour. As a consequence, reinforced concrete
structures is often designed based on an elastic distribution of forces. This project
will illuminate a method of dealing with elasto-plastic calculations of e.g. con-
crete structures, without performing heavy calculations in complex 3D models.

It was mentioned, that concrete has a nonlinear behaviour, but concrete is also a
plastic material, which means some of the deformation is permanent and cannot
be restored. An example of concrete behaviour is sketched in Figure 1.1.
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2 Chapter 1. Introduction
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Figure 1.1: Stress - strain curves, Concrete.

The real behaviour of concrete is indicated by the red lines, where the blue lines
are simplifications. First, the simplifications are applied to model the behaviour
of concrete. Later on, the real behaviour is modelled via more complex material
models like Drucker-Prager.

Steel has a more tangible behaviour with a pure elastic region and a pure plastic
region. This is not the real behaviour of steel but is though a good estimate of
steel behaviour. This is sketched in Figure 1.2.
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Figure 1.2: Stress - strain curve, Steel.

The real σ -ε curve for steel, indicated by the red line, has an ultimate strength
due to strain hardening. The estimation, indicated by the blue line, is a perfect
elasto-plastic approximation which do not consider any change in stresses once
yielding has occurred.

The design basis of reinforced concrete structures can be carried out analytically
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Chapter 1. Introduction 3

as well as for many other types of materials. Analytical solutions are often faster
executed and easier to handle than complex numerical models. Also, analyti-
cal approaches are widely used and accepted as applicable methods of designing
structures.

The material models shown earlier are not normally applicable in the beam el-
ement method. Thus, an elasto-plastic beam element is implemented to handle
plastic behaviour. This beam element also includes the possibility of applying
asymmetric cross sections.

Project description

This project can roughly be divided into two parts. Firstly, the main part is devel-
oping a program in MatLab capable of calculating reinforced concrete structures
by use of one-dimensional finite element models. one-dimensional models are
often carried out by use of beam elements in terms of Bernoulli-Euler or Timo-
shenko assumptions, and this is also the case in this project.

The MatLab program will then be compared with other methods of analysing re-
inforced concrete structures. These other approaches will be an analytical method
and a numerical three-dimensional method by using Abaqus, which is a commer-
cial software for analysing structures by the finite element method.

The comparison will be carried out for a simply supported beam as illustrated in
Figure 1.3.
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Figure 1.3: Simple supported beam.

This system is chosen for the simplicity. Comparing two models with different
complexity gives more reliable results if the model is as simple as possible. The
considered cross section of the beam is a rectangular reinforced concrete cross
section as illustrated in Figure 1.4.
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4 Chapter 1. Introduction
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Figure 1.4: Beam cross section.

The simple rectangular cross section is chosen for the same reason as the system,
namely to make the model as simple as possible. The benchmark cross section
values chosen for all calculations throughout the report, are given in Table 1.1.

Height, h 300 mm
Width, b 200 mm
Length, L 3000 mm
Reinforcement bars 3 ø12
Distance from bar to bottom, c 50 mm

Table 1.1: Benchmark cross section values.
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Chapter 2

Beam theory
The Bernoulli-Euler beam theory forms the basic foundation of the calculations
made throughout most of this report.

2.1 Bernoulli-Euler beam theory

In this section the Bernoulli-Euler beam theory in incremental formulation with
an arbitrary beam axis is present. First of all the basic assumption is stated that
plane sections remain plane and perpendicular to the neutral axis. Thus, no shear
deformation is considered.

Equilibrium

The equilibrium equations consists of two equations, namely vertical- and mo-
ment equilibrium, see Figure 2.1. Vertical equilibrium:

qz =
dV
dx

. (2.1)

Moment equilibrium:

V =
dM
dx

. (2.2)

dx

qz

M+dM
M V

V+dV
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Figure 2.1: Vertical- and moment equilibrium for small beam element.
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8 2.1. Bernoulli-Euler beam theory

Normal strains

Considering a small section of the beam, as illustrated in Figure 2.2, with a rect-
angular cross section and the x axis placed in the beam axis going through the
neutral point of the cross section.

y

x xz

M

N
xz  dθ

dx du0

dσ(y) dσ0 dσ(y) - dσ0

y y

z

Figure 2.2: Cross section, beam section with internal forces and beam section
with deformation.

The beam axis can be positioned as wished in the beam element, so the coordinate
system can be defined in any way. In this project, the Cartesian coordinate system
is used, where the beam axis is located at the x axis (y = 0 and z = 0). This is
illustrated in Figure 2.3.

As·f yc

Beam axis x, y = 0, z = 0

Beam element

Figure 2.3: Location of beam axis in beam element.

Considering the two different approaches in Figure 2.3, the deformation at the
beam axis will change depending on the position of the coordinate system. In this
project the beam axis will be positioned in the elastic neutral point of the cross
section.

The relation between strains and deformations is described by Poulsen og Olesen
[2015] and is presented in the following. The axial deformation can be written as

Aalborg University



2.1. Bernoulli-Euler beam theory 9

the displacement at the right edge of the beam section:

dux(y) = du0−dθ y. (2.3)

Where du0 is the displacement increment at the beam axis, and dθ is the angle
increment, which the cross section is rotated from the original cross section. The
strain of a beam fibre is found as

εx(y) =
dux

dx
=

du0

dx
− dθ

dx
y. (2.4)

The derivatives of u0 and θ are called beam strains and are indicated by ε0 and κ

respectively. The rotation can generally be described as

θ =
duy

dx
. (2.5)

The curvature is the change in rotation per longitude unit. With the definition from
Eq. (2.5) the curvature can be defined as

κ =
d2uy

dx2 . (2.6)

The normal strain is found as

εx(y) = ε0−κ y. (2.7)

This linear strain increment is only valid for small strains. The strain increments
are distributed as illustrated in Figure 2.4.

= +

εx(y) ε0 -κy

y=0

y

y0

Figure 2.4: Distribution of normal strains for arbitrary beam axis.

As said, the beam axis y = 0 is set to the elastic neutral axis when the calculations

School of Engineering and Science



10 2.1. Bernoulli-Euler beam theory

are initiated. This implies that y0 = 0, when the behaviour is elastic. When the
material starts yielding y0 will differ from zero.

Normal stresses

For a linear elastic material the stress is given by Hooke’s law. The stress in a
beam fibre can then be described as

σx(y) = E(y) εx(y) = E(y)
(

dux

dx
− dθz

dx
y
)
= E(y) ε0−E(y) κy. (2.8)

The stress distribution in the beam section is represented by the internal force
increments N and M, see Figure 2.5.

= +

σ(y) σ0 σ(y) - σ0

M

N = +N
M

y=0,z=0

y0

Figure 2.5: Distribution of normal stresses from normal force and moment.

Cross section integration

To obtain the equivalent state of normal stresses and internal forces, the integral of
the normal stresses over the cross section must be equal to the normal forces and
the integral of the normal stresses moment around the z axis, which is determined
by the choice of the location of the beam axis, see Figure 2.2. The integral is done
over the cross sectional area:

N =
∫

A
σx(y) dA =

∫
y

∫
z
σx(y) dz dy (2.9)

M =
∫

A
σx(y) y dA =

∫
y

∫
z
σx(y) y dz dy (2.10)

Aalborg University



2.1. Bernoulli-Euler beam theory 11

For elastic cases, the relations can be expanded to

N =
∫

y

∫
z
(E ε0−E κy) dz dy

=

(
E A

dux

dx
−
∫

A
E y dA

dθz

dx

)
, (2.11)

M =
∫

y

∫
z
(E ε0−E κy) y dz dy

=

(
−
∫

A
E y dA

dux

dx
−
∫

A
E y2 dA

dθz

dx

)
. (2.12)

For plastic cases, an incremental formulation can be applied:

dN =
∫

y

∫
z
(Et dε0−Et dκ y) dz dy (2.13)

dM =
∫

y

∫
z
(Et dε0−Et dκ y) y dz dy. (2.14)

Only normal force dN and bending moment dM are found. The shear force must
be found be equilibrium and is not related to the beam strains.

The integral of the stresses caused by bending must be equal to zero:∫
A
(σx(y)−σ0) dA =

∫
A

Et (−κ y) dA = 0, (2.15)

where σ0 is the stress at the beam axis y = 0. The integral of the stresses caused
by axial deformation must be equal to the normal force:

dN =
∫

A
Et dε0 dA. (2.16)

Governing equations

Combining the above relations and definitions of equilibrium, cross section inte-
gration, material law and kinematics, the governing equation for the beam can be

School of Engineering and Science



12 2.1. Bernoulli-Euler beam theory

expressed as:

Rotation (Kinematic condition): θ =
duy

dx
, (2.17)

Bending moment (Static equivalence): M =
∫

y
E y2 dy

d2uy

dx2 , (2.18)

Shear force (Static equivalence): V =
∫

y
E y2 dy

d3uy

dx3 , (2.19)

Loading (Differential equation): qz =
∫

y
E y2 dy

d4uy

dx4 . (2.20)

On matrix form this can be presented asN

M

=

 ∫
A E dA −

∫
A Ey dA

−
∫

A Ey dA
∫

A Ey2 dA


dux
dx
dθz
dx

 . (2.21)

With these equations it is possible to analyse a beam by a fully analytical ap-
proach.

Material law and material models

Plasticity is described as non-recoveable deformation of the material and leaves
permanent strains in the beam when it is unloaded. Thus, Hooke’s law is not
sufficient to describe the behaviour. An assumption can be made, as mentioned
in Chapter 1, to describe the material elasto-plasticly. The material now behaves
linear elastic until yielding and then becomes perfect plastic. This is a good way
of describing steel behaviour without drifting to far from the real behaviour. For
concrete, it is still a rough assumption to assume linear elastic - perfectly plastic
behaviour.

Drucker-Prager criterion

Constructing more realistic material models for concrete can be done by use of
material models like Drucker-Prager. Krabbenhøft [2002] describes the Drucker-
Prager criterion as a modified von Mises criterion:

f (I1,J2) =
√

J2 +αI1− k. (2.22)

Aalborg University



2.1. Bernoulli-Euler beam theory 13

Where I1 and J2 are invariants and α , k are material parameters. The Drucker-
Prager may also be written in terms of stresses:

f (σ) = σe +ασm−σ0. (2.23)

Where σe is the equivalent stress, σ0 is uniaxial yield stress and σm is the mean
stress. The mean stress is given by:

σm = I1 =
1
3
(σx +σy +σz). (2.24)

The modification compared to the von Mises criterion allows setting a limit for
positive mean stresses, which is tensile stresses. The material is on the other hand
strengthened by superposition of the negative mean stress.

Yield surface

As said, plasticity is considered when the material is yielding. This can be de-
scribed using Figure 2.6.

σ1

σ2

f = 0

f < 0

f > 0

Plastic

Elastic

Inadmissible

Figure 2.6: Yield surface.

The yield surface is defined as a function f , which has three possible outcomes,
as seen in Figure 2.6. For f < 0, the behaviour is elastic and is located inside the
yield surface. For f > 0, outside the yield surface, is an inadmissible state which
cannot occur. For f = 0, the behaviour is plastic. [Krabbenhøft, 2002]

In this report, the yield surface is simplified even more. For 1-dimensional yield-

School of Engineering and Science



14 2.2. Elasto-plastic bending

ing, the uniaxial yielding limits are sufficient to describe the behaviour. Thus,
only compressive yielding and tensile yielding are needed to defined the yielding
"surface". Thus, the Drucker-Prager criterion is not applied directly, but only the
concept is used to model the material behaviour in this project.

2.2 Elasto-plastic bending

When beams are loaded beyond their yield strength, plastic behaviour will occur
as stated earlier, see Figure 1.2. The simplest case of yielding is obtained by
observing an axially loaded bar. In this case all points in the bar are subjected to
the same stress, which leads to simultaneous yielding throughout the bar.

The case is different for beam members subjected to bending. Now the stresses
vary across the cross section and, depending on the applied load, along the length.
The variation of stresses across the cross section is sketched in Figure 2.7.

σy

-σy

σy

-σy

σy

-σy

(a) (b) (c)

M

Figure 2.7: Stages in yield of a cross section.

As long as the stress has not reached the yield stress fy, the stresses vary linearly
as stage (a) indicates. Here the stresses at the top and bottom has just reached the
yield stress. If further loading is applied, the stress variation will grow into stage
(b). The hatched part indicates constant stress in the outer yielded region, the
inner region still has a linear variation of stresses which has an elastic behaviour.
At some point the entire cross section will yield and is not able to sustain any
further increase in moment. Stage (c) is fully plastic, the corresponding moment
is called the plastic moment Mp.

2.2.1 Plastic moment

When the stress in a single point of the cross section reaches yielding, the use
of the elastic bending stiffness EI to analyse bending stresses is no longer valid

Aalborg University



2.2. Elasto-plastic bending 15

as the assumption of complete linear elastic cross section is violated. Instead,
the moments of the cross section are used to analyse the bending stresses. This
section is based on [Williams og Todd, 1999].

The stress diagram can for partially yielded sections be divided into a triangular
parts and rectangular parts, see Figure 2.8. These parts are as earlier stated the
elastic and plastic part, respectively.

f y

-f y

f y

-f y

a

c

2a
3

a+  .
c
2

h

b

h
4

Figure 2.8: Stresses in partially- and fully yielded symmetric cross section.

Taking moment of the forces around the neutral axis gives

M =
∫

A
σx y dA =

[
fyab

2
2a
3
+ fycb

(
a+

c
2

)]
. (2.25)

For fully yielded rectangular cross sections, the moment simplifies to

Mp = 2
fybh

2
h
4
= fy

bh4

4
. (2.26)

Figure 2.9 shows the behaviour of a beam with the dimensions b = 200 mm, h =
300 mm, fy = 235 MPa and E = 2.1×106 MPa. Here M is the bending moment
and κ is the curvature.

School of Engineering and Science



16 2.3. Bending capacity of reinforced concrete beams

5/5
el

0 2 4 6 8 10 12 14 16 18 20

M
/M

el

0

0.5

1

1.5

Figure 2.9: M - κ curve normalized.

For the given cross section, the behaviour until the curve reaches the dotted green
lines, indicating the yielding moment of the material, is fully linear elastic. After
reaching yielding, the behaviour is a combination of elastic and plastic deforma-
tion. The red dotted lines indicates some final value of yielding, in this case the
cross section is fully plastic.

The maximum moment is used to find the maximum force which a simple sup-
ported beam with a perfect elasto-plastic continuous material can be subjected to.
This force is then used as a benchmark for future numerical FE calculations to
compare the MatLab program to analytical solutions. The plastic moment and the
ultimate force capacity are given in table 2.1.

Table 2.1: Results from analytical calculations on elasto-plastic cross section.

Plastic moment, Mp 10.6×108 Nmm
Maximum force capacity, F 14.1×105 N

2.3 Bending capacity of reinforced concrete beams

The bending capacity of a reinforced beam is found analytically and used as a
benchmark for the numerical calculations. In the calculations, no safety factors
will be applied in any of the models. This section is based on [Jensen, 2012].

For the chosen cross section seen in Figure 1.4 (p. 4), the following specifications
are applied:
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2.3. Bending capacity of reinforced concrete beams 17

Table 2.2: Beam properties.

Yield strength fc/ ft Young’s modulus E
Concrete 30 MPa / 3 MPa 30×103 MPa
Steel 550 MPa 210×103 MPa

First, the elastic neutral axis is found as illustrated in Figure 2.10.

Asf y

Xbf c

(h-X)bf t

y0

X

c

εx(y) σx(y)

y=0

y

xz

Figure 2.10: Horizontal equilibrium of concrete cross section subjected to pure
bending.

Next, the horizontal equilibrium is set up to find the compressive zone x:

Xb fc = (h−X)b ft +As fy, (2.27)

X =
As fy +bh ft
b fc +b ft

. (2.28)

The plastic moment is then found from taking moment around the elastic neutral
axis:

Mp = As fy (y0− c)+(y0b ft)
y0

2
− ((h− y0−X)b ft)

h− y0−X
2

−
(

Xb fc (h− y0−X)+
X
2

)
. (2.29)

The maximum force capacity of the benchmark beam is then found from simple
statics:

F =
2Mp

L
2

. (2.30)
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18 2.3. Bending capacity of reinforced concrete beams

The force F is the benchmark for the future numerical calculations on a concrete
FE beam. Using the beam properties stated in Table 2.2, the compressive zone,
plastic moment and maximum force capacity are calculated. The values are stated
in Table 2.3.

Table 2.3: Results from analytical calculations.

Compressive zone, X 55.5 mm
Plastic moment, Mp 6.3×107 Nmm
Maximum force capacity, F 8.5×104 N

Aalborg University



19

Chapter 3

Finite element modelling
Modelling structures of materials like concrete and consider the plastic behaviour,
the numerical models are often done in three dimensions. Thus, the stresses and
strains are functions of x, y and z. This is illustrated in Figure 3.1.

σx ,εxσy ,εy

σz  ,εz

Figure 3.1: Three-dimensional beam.

The goal is to create a finite element formulation capable of handling plasticity
using one-dimensional elements. Thus, the stress and strain states in the y and z

direction are based on assumptions from basic beam theory as presented in Chap-
ter 2. With elasto-plastic one-dimensional beam elements, the computational time
should decrease drastically compared to three-dimensional solid or shell elements,
but still have a reasonable accuracy.

3.1 Basic 1-D FEM theory

In this project a concrete beam is modeled using beam FE, the element used is
a rod element. The rod element is composed of a bar element to account for
displacement in the axial direction, and a beam element based on Bernoulli-Euler

School of Engineering and Science



20 3.1. Basic 1-D FEM theory

beam theory which account for the transversal displacement and rotation. A bar
and beam element is illustrated in Figure 3.2, with the annotations used.

u1 u2

F1 F2 M2, θ2M1, θ1

q2, v2q1 v1

Bar Beam
, 

Figure 3.2: Bar and beam element.

Where:

Fi Axial force at element node i
ui Axial displacement at element node i
qi Transversal force at element node i
vi Transversal displacement at element node i
Mi Moment at element node i
θi Rotation at element node i

In the concrete beam nonlinear behaviour is taken into account. When doing
nonlinear FE using beam theory, it is necessary to use a finer mesh than what
would be required in the linear case. In linear beam FE only nodes at supports
and where forces are applied is required. When considering plasticity a number
of extra nodes are required, to model the behaviour of the beam during yielding.
One of the effects of plasticity starting to develop, is that the curvature, κ , stops
being continuous between elements in the FE model. Thus, more elements are
necessary to obtain accurate results.

As a rod element has three degrees of freedom (d.o.f) at each node, the element
has six shape functions. The shape functions are illustrated in Figure 3.3.
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3.1. Basic 1-D FEM theory 21
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Figure 3.3: Shape function of the rod element.

Where the numbering of the shape functions correspond to the location in the
displacement vector, which is

{d}=



d1

d2

d3

d4

d5

d6


=



u1

v1

θ1

u2

v2

θ2


. (3.1)

3.1.1 Bar element

The stiffness of the bar element is derived using the Galerkin approach [Andersen,
2014]. First the strong form is established

DBar
d2

∆u(xe)

dx2
e

+∆ f (xe) = 0, (3.2)

where the axial stiffness is DBar =
∫

A E(y)dA and f is the external force.
The Galerkin approach can be divided into three steps:

1. Apply discretization and interpolation of displacement field:
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22 3.1. Basic 1-D FEM theory

∆u(xe) = {Φ(xe)}{∆d}

DBar
d2{Φ(xe)}

dx2
e
{∆d}+∆ f (xe) = 0. (3.3)

Here only the shape functions corresponding to the bar element are used,
{Φ(xe)}= {Φ1(xe) Φ4(xe)}.

2. Premultiply strong form by weight function: {Φ(xe)}T

{Φ(xe)}T
(

DBar
d2{Φ(xe)}

dx2
e
{∆d}+∆ f (xe)

)
= {Φ(xe)}T 0. (3.4)

3. Integrate by parts over the element length

∫ Le

0
{Φ(xe)}T

(
DBar

d2{Φ(xe)}
dx2

e
{∆d}+∆ f (xe)

)
dx =∫ Le

0
{Φ(xe)}T 0dx.⇒[

{Φ(xe)}T DBar
d{Φ(xe)}

dxe

]Le

0
{∆d}− (3.5)∫ Le

0

d{Φ(xe)}T

dxe
DBar

d{Φ(xe)}
dxe

{∆d}dx+∫ Le

0
{Φ(xe)}T

∆ f (xe)dx = {0}

The physical interpretation of the second term in Equation (3.5) is [k]{∆d}, so the
stiffness becomes

[kBar] =
∫ Le

0

d{Φ(xe)}T

dxe
DBar

d{Φ(xe)}
dxe

dx. (3.6)

This can be simplified to

[kBar] =
∫ Le

0
{BBar}T DBar{BBar}dx (3.7)

Where {BBar} is the strain interpolation vector of a bar element and DBar is the
constitutive relation in the bar. The first term in Equation (3.5) is the boundary
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3.1. Basic 1-D FEM theory 23

load.

{ fB}=
[
{Φ(xe)}T DBar

d{Φ(xe)}
dxe

]Le

0
{∆d} (3.8)

The third term is the consistent nodal loads, used to apply line loads.

{ fC}=
∫ Le

0
{Φ(xe)}T

∆ f (xe)dx (3.9)

The total load is the sum of the boundary load and the consistent nodal load,

{ fT}= { fB}+{ fC}. (3.10)

3.1.2 Beam element

The stiffness matrix of the beam element is derived using the Galerkin approach
[Andersen, 2014]. First the strong form is established

DBeam
d4

∆v(xe)

dx4
e

= ∆ f (xe), (3.11)

where the bending stiffness is DBeam =
∫

A E(y) y2 dA.

The Galerkin approach can be divided into three steps:

1. Apply discretization and interpolation of displacement field:
∆v(xe) = {Φ(xe)}{∆d}

DBeam
d4{Φ(xe)}

dx4
e
{∆d}−∆ f (xe) = 0. (3.12)

Here only the shape function corresponding to the beam element is used,
which is rotation and transversal displacement,
{Φ(xe)}= {Φ2(xe) Φ3(xe) Φ5(xe) Φ6(xe)}.

2. Premultiply strong form by weight function: {Φ(xe)}T

{Φ(xe)}T
(

DBeam
d4{Φ(xe)}

dx4
e
{∆d}−∆ f (xe)

)
= {Φ(xe)}T 0. (3.13)
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24 3.1. Basic 1-D FEM theory

3. Integrate by parts over the element length

∫ Le

0
{Φ(xe)}T

(
DBeam

d4{Φ(xe)}
dx4

e
{∆d}−∆ f (xe)

)
dx =∫ Le

0
{Φ(xe)}T 0dx⇒[

{Φ(xe)}T DBeam
d3{Φ(xe)}

dx3
e

]Le

0
{∆d}+[

{Φ(xe)}T DBeam
d2{Φ(xe)}

dx2
e

]Le

0
{∆d}− (3.14)∫ Le

0

d2{Φ(xe)}T

dx2
e

DBeam
d2{Φ(xe)}

dx2
e

dx{∆d}−∫ Le

0
{Φ(xe)}T

∆ f (xe)dx = {0}

The physical interpretation of the third term in Eq. (3.14) is [k]{d}, so the stiffness
becomes

[kBeam] =
∫ Le

0

d2{Φ(xe)}T

dx2
e

DBeam
d2{Φ(xe)}

dx2
e

dx (3.15)

This can be simplified to

[kBeam] =
∫ Le

0
{BBeam}T DBeam{BBeam}dx (3.16)

Where {BBeam} is the strain interpolation vector of a beam element and DBeam is
the constitutive relation in the beam. The first and second term in Eq. (3.14) is the
boundary loads.

{ fB}=
[
{Φ(xe)}T DBeam

d3{Φ(xe)}
dx3

e

]Le

0
{∆d}

+

[
{Φ(xe)}T DBeam

d2{Φ(xe)}
dx2

e

]Le

0
{∆d} (3.17)

The fourth term is the consistent nodal loads, used to apply line loads.

{ fC}=
∫ Le

0
{Φ(xe)}T

∆ f (xe)dx (3.18)
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3.1. Basic 1-D FEM theory 25

The total load is the sum of the boundary load and the consistent nodal load,

{ fT}= { fB}+{ fC}. (3.19)

3.1.3 Rod element

To calculate the stiffness matrix for the rod element, the strain interpolation matrix
and the constitutive matrix is needed. The strain interpolation vector of the bar and
beam element, is combined into a strain interpolation matrix for the rod element.

B =

BBar(1) 0 0 BBar(2) 0 0

0 BBeam(1) BBeam(2) 0 BBeam(3) BBeam(4)

 (3.20)

The constitutive matrix for the rod element consist of the constitutive relation form
the bar and beam element, to account for a arbitrary beam axis a diagonal term is
added.

[D] =

 DBar −
∫

A E(y) y dA

−
∫

A E(y) y dA DBeam

 (3.21)

The stiffness matrix for the rod element is

[k] =
∫ Le

0
[B]T [D][B]dx. (3.22)

3.1.4 Quadrature methods

The choice of numerical integration method is a part of the program which has
influence on the accuracy and computing time. In this project two methods are
used to handle numerical integration tasks. This being the trapezoidal rule and
Gauss integration. The difference is roughly sketched in Figure 3.4.
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x

x

Trapezoidal rule

Gauss

g(x)

g(x)

x1 x2

Figure 3.4: Quadrature methods sketch.

The Gauss integration method has a tendency to push the observed points to the
edges of the element. The trapezoidal rule method is dividing the element and
places the observation points with equal distance between them.

The integral for an element is then:

J =
∫ x2

x1

g(x) dx. (3.23)

To account for asymmetry and plasticity, it is necessary to include cross section
integration as well.

Using Gauss integration, polynomials of degree 2n−1 can be fitted exactly by a
n degree Gauss integral. Gauss integration picks optimal points and weights to
numerically estimate the integral of a function g(x).

Weighting

The weight is described as the area or distance belonging to each integration point.
These weights change for each point in a Gauss integration, but are constant for
the the trapezoidal rule.

It is observed, that the further away from the center the smaller weight is as-
signed the integration point. This tendency could mean more accurate prediction
of strains and stresses at the edges, as the integration is done over smaller areas or
distances.

For plasticity, this is a promising quality, as the first sign of plastic behaviour is lo-
cated at the edges of the cross section, whereas elastic behaviour can be predicted
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3.2. Plasticity in FEM 27

exact and the need for integration points and weights are less.

Element integration

By substituting, the limits (x1,x2) with ξ = −1 and ξ = 1, a local coordinate
system is used for the element, now the function is called φ . The integral becomes:

J =
∫ 1

−1
φ dξ . (3.24)

Plasticity requires integration over the cross sectional area and therefore a number
of points are placed along the y-axis. Further, to get a more accurate integration
of stresses, a number of points are used along the ξ -axis of each element. The
final integration of an element is illustrated in Figure 3.5.
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Figure 3.5: Linear integration of a beam element.

For every integration point in the element ξ -axis, an integration is done over the
cross sectional area. Now, data is available in more points and the stress integra-
tion is more accurate. In the program both Gauss and the trapezoidal rule method
is included.

3.2 Plasticity in FEM

3.2.1 Newton-Raphson iteration scheme

In nonlinear FE an iteration scheme is need to solve the FE model, in this sec-
tion the modified Newton-Raphson scheme for displacement-based iteration is
described.
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28 3.2. Plasticity in FEM

The Newton-Raphson scheme consist of two loops, the inner loop which is the
equilibrium loop, here iterations are done to obtain equilibrium between the outer
and inner forces. In the outer loop, which is the load increment loop, an increment
in force is applied. In the modified Newton-Raphson method the stiffness matrix is
updated in the outer loop, which means that the same stiffness is used throughout
a given equilibrium iteration.

The modified Newton-Raphson method is commonly used to avoid updating the
stiffness matrix for each iteration step, as it is done in the Newton-Raphson method.
Updating the stiffness matrix can take up a lot of computational time, so even
though the modified Newton-Raphson method require more iterations to obtain
equilibrium it can very well be faster [Krabbenhøft, 2002]. The two iteration
methods are compared in a later section. An illustration of the two iterations
schemes is shown in Figure 3.6.

F1

F2

F

u1 u2
u

(a)

F1

F2

F

u1 u2
u

(b)

Figure 3.6: Convergence of load (a) Newton-Raphson iterations and (b) Modified
Newton-Raphson iterations.

A description of the steps in the displacement based iteration scheme can be seen
in table 3.1.
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3.2. Plasticity in FEM 29

Table 3.1: Displacement iteration scheme using modified Newton-Raphson.

[u] = 0, [σ ] = 0, [F] = 0 Initial state.

for i = 1 : imax Load/displacement increment loop.

[k] = function([E],[A]) Updating of stiffness matrix.

while r > tolerance The equilibrium loop runs while the
residual force, r, is above a tolerance.

if itnumber > 1 The residual force, r, is calculated after the
[∆ε] = function([∆u]) first run through of the equilibrium loop.
[σ(i+1)] = function([∆ε],[σ(i)])
[Fint ] = function([σ(i+1)])
r = [F]− [Fint ]

end

if itnumber = 1 In the first run through the displacement
[δu] = function([k],[F] = 0,[BC]) [δu] is calculated based on the boundary

elseif r > tolerance condition with a forced displacement.
[δu] = function([k],r,[BC]) In in the following runs if the residual

else force is above the tolerance, [δu], is
break calculated based on the residual force and

end boundary conditions, [BC], where the forced
displacement is not allowed to change.
When equilibrium is obtained the loop
is exited.

[∆u] = [∆u]+ [δu] The displacement matrix is updated.
end End iterations.

[u] = [u]+ [∆u] The matrices are updated.
[ε] = [ε]+ [∆ε]

end End of load step.

Table 3.1 is defined with matrices as it is done in the MatLab script.

3.2.2 Internal force

As mentioned in section Section 3.2.1 the residual force, r, is needed for the equi-
librium iteration. In linear FE with rod elements the internal force is not calculated
as it is not needed, the following describes how to calculate the internal force.
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30 3.2. Plasticity in FEM

Based on the shape functions and the displacement, the strain can be obtained.
The strains in a bar element and beam element is calculated in two different ways.

First the displacement vector in the global system is rotated to get the displace-
ment vector in the local system.

{d′}= [T] {d} (3.25)

The transformation matrix is

[T] =



c s 0 0 0 0

−s c 0 0 0 0

0 0 1 0 0 0

0 0 0 c s 0

0 0 0 −s c 0

0 0 0 0 0 1


, (3.26)

and

c =
d′4−d′1

Le
, s =

d′5−d′2
Le

. (3.27)

The rotation of an element from global coordinates to local coordinates is illus-
trated in Figure 3.7.

y

x ye

xe

Figure 3.7: Rotation of beam element to local coordinates.

Here, ye is the local y axis in the element. To obtain the strain in the bar element,
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the shape function is differentiated and multiplied with the displacement as

εbar =
{

dΦ1(xe)
dx

dΦ4(xe)
dx

}d′1

d′4

 . (3.28)

For the continuum strain in the beam element, the curvature is first calculated by

κ(xe) =
{

d2
Φ2(xe)
dx2

d2
Φ3(xe)
dx2

d2
Φ5(xe)
dx2

d2
Φ6(xe)
dx2

}


d′2

d′3

d′5
d′6


. (3.29)

The strain in the beam element can then be calculated as

εbeam =−yeκ. (3.30)

To calculate the stress, the two strains are added together, stress in the rod element
becomes

σx = (εbar + εbeam)E(ye). (3.31)

The moment and normal force at each integration point is the calculated as

N(xe) =
∫

A
σx dA (3.32)

M(xe) =
∫

A
yeσx dA. (3.33)

The internal force at each node in the element is then calculated as

{FN}=
∫ xe

0

{
dΦ1(xe)

dx
dΦ4(xe)

dx

}T
N(xe) dx, (3.34)

{FV}=
∫ xe

0

{
d2

Φ2(xe)
dx2

d2
Φ5(xe)
dx2

}T
M(xe) dx, (3.35)

{FM}=
∫ xe

0

{
d2

Φ3(xe)
dx2

d2
Φ6(xe)
dx2

}T
M(xe) dx. (3.36)

The internal force vector of the an element is then assembled, and rotated back to
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global coordinates

{Fe}= T−1



FN,1

FV,1

FM,1

FN,2

FV,2

FM,2


(3.37)

The internal force vector can then be assembled, and the residual force, r = f −
fint , calculated.

3.2.3 Elasto-plastic calculations on continuous cross section

Calculating a force/displacement curve for the beam model shows both the elastic
region and the ultimate force capacity of the beam. In Section 2.2.1, the plastic
moment was calculated. Using the plastic moment, the ultimate force capacity is
found.

In Figure 3.8, the force/displacement curve shows the force going towards the
ultimate analytically force capacity.
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rc

e 
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Figure 3.8: F-u curve.

The applied mesh in the numerical model is so fine, that the model is converged,
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a convergence study is presented later in the report. As a result the deviation
between the analytical solution and the numerical solution is very small. This
proves, that it is possible to obtain the same result as the analytical solution, by
applying the one-dimensional finite element method for an elasto-plastic beam.

3.2.4 Effects of plasticity

Neutral axis

In this section the moving of the neutral axis during bending is described, an
analytical and a numerical solution to the problem are presented alongside with
the theory.

The neutral axis will, during plastic deformation, move up or down when the
beam is subjected to bending if the cross section is not symmetric or the yield
stress is different for compression and tension. At pure bending, if the material
is not yielding, the neutral axis is located at the point of zero stresses, see Figure
3.9.

y0(x)
y=0

σx(y) σx(y)σx(y)

 (b)  (c) (a)

Figure 3.9: Sketch of neutral axis movement along beam.

At distribution (a), the material has not started to yield and the neutral axis is
located at beam axis, y = 0. Moving along the beam axis, the neutral axis will
move as the point of zero stress is moving to satisfy the normal force equilibrium:

∫
A

σx(y) dA = N. (3.38)

In case of pure bending, N = 0, which implies that the neutral axis is located on
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the beam axis. In Figure 3.9 it can be seen, that this is only true for elastic stress
distributions, as the neutral axis moves when yielding is reached (b).

If the coordinate system is kept unchanged during bending, a beam strain at the
original neutral axis may develop during yielding. The continuum strain in a cross
section can be described as stated in Equation (2.7).

During elastic bending the neutral axis is located at the centroid, which is calcu-
lated as

Cy =

∫
ȳ f (ȳ)dȳ∫
f (ȳ)dȳ

⇒ ∑ ȳAi

∑Ai
. (3.39)

The y-axis is then defined as y = 0 = ȳ−Cy, for ȳ = 0 at the bottom of the profile.

For a cross section with a perfect elasto-plastic material that has the same strength
characteristics in compression and tension, the neutral axis in pure bending at full
plastic behaviour is located where the area above the neutral axis is equal to the
area below.

Calculating the location of the neutral axis, in-between elastic and fully plastic is
a bit more difficult. One way of doing it is by iteration, where the out of balance
force is converted to a strain and then added to the beam strain as

ε
(i+1)
0 =

−
∫

A σxdA+N∫
A E(y) dA

+ ε
(i)
0 . (3.40)

1. Initial position of the neutral axis is assumed located in the beam axis i.e.
ε
(1)
0 = 0.

2. Normal stresses are calculated from εx(y) = ε
(i)
0 −κy.

3. Equation (3.40) is used to calculate a new ε
(i+1)
0 .

4. The iteration is converged when the out of balance force,
∫

A σxdA−N, is
negligible small. If this is not the case, step 2-4 are repeated.

Analytical solution for a T-profile

The analytical solution to the location of the neutral axis depends on which part
of the profile is yielding. A T-profile subjected to pure bending, the bottom part
starts yielding first if the material used is isotropic. The solution presented here is
only valid for yielding at the bottom of the profile, and with an isotropic perfect
elasto-plastic material.
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The T-profile is divided into four zones as indicated in Figure 3.10.

h1

h2

t1

t2

fy0
<

0

7yp

7y0

7y

1

2

3

4

a

Figure 3.10: T-profile with arbitrary stress distribution.

The elastic stress can be formulated as a first order polynomial, σ = aȳ+b, where
a =−κE and b =−aȳ0. The intersection where yielding starts

fy = aȳp +b ⇔ ȳp =
fy−b

a
(3.41)

At the center of each zone the average stress is found, the location of each center
is found as

ȳ1 =
ȳp
2 , ȳ2 = ȳp +

ȳ0−ȳp
2 ,

ȳ3 = ȳ0 +
h1−ȳ0

2 , ȳ4 = h1 +
h2
2 .

(3.42)

The area of each zone is then calculated as

A1 = ȳpt1, A2 = (ȳ0− ȳp)t1,

A3 = (h1− ȳ0)t1, A4 = h2t2.
(3.43)

The force in each zone is then

F1 = σyA1, F2 = (aȳ2 +b)A2,

F3 = (aȳ3 +b)A3, F4 = (aȳ4 +b)A4.
(3.44)

The neutral axis can then be found by solving the equation ∑F = 0 for ȳ0 due to
pure bending.
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Functions of curvature

As described in Section 3.2.4, the analytical solution is dependent on which sec-
tion of the profile is yielding. In the following section the location of the neutral
axis is calculated numerically, which gives the same result as long as enough
points are used for the numerical integration.

For the numerical solution the iteration described earlier is used and Eq. (3.40) is
numerical integrated. Given the same profile as in Section 3.2.4, the location of
the neutral axis can be found for any given curvature. Figure 3.11 shows beam
strain, neutral axis and moment as a function of curvature.
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Figure 3.11: Curvature functions.

Here, κel is the curvature just before yielding.

3.2.5 Multi-material cross sections

Considering concretes ability to resist tensile stresses, it is necessary to have the
possibility to insert reinforcement steel bars to increase the tensile strength of the
beam. This is done by adding another set of calculations in the MatLab program
running simultaneously with the primary material of the beam. Thus, the calcula-
tions can be described as illustrated in Figure 3.12.
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Figure 3.12: Concrete cross section divided into two parts.

The choice of material is not limited to concrete and steel, but as the focus of
this project are steel reinforced concrete beams, this report will focus on these
materials. It should be said, that the area of the concrete that disappears because
of the steel bars are neglected. This causes a slightly larger area of concrete to
contribute to the strength, but it is considered a minor increase in strength and is
assumed to be acceptable. Thus the concrete area will be the entire cross section
area A. For the reference beam used in this project, this corresponds to an increase
in cross sectional area of 0.57%. This is assumed acceptable small to be neglected.

The main part of inserting a second material into the cross section is to run a
second set of equations in the iteration loop described in Section 3.2.1. It is still
a basic requirement that equilibrium is contained and therefore, the addition of
contributions from concrete and steel must be done before the equilibrium loop is
initiated.

As said, the same equations are used for the secondary material as for the primary
material when considering stresses, strains and forces. These equations can be
found in Section 3.2.2. The addition of primary and secondary material are done
when calculating internal forces, leading to a second term in the equations for the
internal forces, described in Section 2.1:

N =
∫

A
σx,c dA+

∫
As

σx,s dAs (3.45)

M =
∫

A
σx,c y dA+

∫
As

σx,s ys dAs (3.46)

After adding the internal forces from the secondary material indicated by index
s, the rest of the calculations remains unchanged, but now the strength from the
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38 3.3. Concrete material model

secondary material is included in the equilibrium loop, and the total strength will
increase. The increase in strength can be illustrated by observing a beam displace-
ment progress. For the geometry, the benchmark values are used, see table1.1 (p.
4).

An illustration of a multi-material cross section force/displacement curve can be
seen in Figure 3.13.
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Figure 3.13: F-u curve for multi-material cross section.

It is seen that the multi-material cross section obtains a higher ultimate strength
than the analytical benchmark solution, which the original perfect elasto-plastic
material model for concrete with continuous material hit almost perfectly, see
Figure 3.8.

The curve is seen to have two kinks, indicating beginning of yielding. The first
kink is caused by tensile yielding of the primary material, which should simulate
concrete. Then, a large part is seen to almost being linear, caused by the high
strength of the reinforcement bars. Near the ultimate strength, the reinforcement
bars then start yielding and the stiffness is almost lost completely and the cross
section becomes fully plastic.

3.3 Concrete material model

In this section, the development of the material model used to simulate the be-
haviour of concrete is described. Earlier, it was stated that the Drucker-Prager
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3.3. Concrete material model 39

criterion could be used to describe the behaviour. In this case, the yield criterion
can be simplified significantly, as the model is one-dimensional. The yield sur-
face, described in Chapter 2, is boiled down to a "yield line" where the material
becomes plastic when a yield point on the line is reached.

Earlier, the stress-strain curve for concrete was presented, see Chapter 1. Also,
the use of linear elasto-plastic material model was presented in Chapter 2, which
defined a point of yielding, where the material would go from linear elastic to
perfect plastic.

Even though, the linear elasto-plastic model describes concrete fairly well, a fur-
ther improved definition of the stress-strain curve is applied to describe the non-
linear behaviour of the real stress-strain curve for concrete, see Figure 3.14.

ε

σ

f c

f t

Modified behaviour
Real behaviour

Figure 3.14: Nonlinear elasto-plastic material model.

The material is defined with a cut-off when the yield stress is reached. This ex-
cludes softening from the model and will not be included in the project. The non-
linear behaviour is described by Mohamad et al. [1990] as a third degree polyno-
mial function, fitted to a series of uniaxial compression test results. The function
states:

σ

fc
= 2.1

(
ε

εc

)
−1.33

(
ε

εc

)2

+0.2
(

ε

εc

)3

. (3.47)

Where σ is the current stress state, ε is the current strain state, fc is the yield stress
in compression and εc is the yield strain in compression. By means, this will only
cover the nonlinear behaviour in compression. But the linear elastic definition of
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40 3.3. Concrete material model

the tensile behaviour is valid, so it is not necessary to improve further. The stress
at a current state can now be found, only depending on the strain at this state.

Describing the compression in this way, it is fairly easy to evaluate the elastic
modulus at the current stress-strain state, as the tangent to the stress-strain curve.
This gives the distribution of the elastic modulus as seen in Figure 3.15.
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Figure 3.15: Elastic modulus in nonlinear elasticity.

The change in the elastic modulus in compression decreases as the strain goes
towards the compressive yield strain. At yielding the elastic modulus becomes
zero. In tension, the elastic modulus is constant until yielding as the definition
is still linear elastic. When the tensile strain reaches the yield strain, the elastic
modulus instantly becomes zero.
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Chapter 4

One-dimensional FE analysis
In this chapter, the beam model is analysed and a number of convergence analysis
is performed. Also, the beam model will be compared to a model designed in
Abaqus. The structure is a simply supported beam, subjected to a forced displace-
ment at the center of the beam. The system and cross section data are described
in Chapter 1. Also, a concrete frame structure is analysed by using the MatLab
script to test the MatLab script with a more complex structure.

4.1 Element convergence

In this section a convergence analysis will be performed for the different material
models. The convergence analysis is based on the number of elements required to
converge towards the exact solution. The convergences are shown in logarithmic
plots. In logarithmic plots, the convergence is good if the curve comes out as a
straight line.

Elasto-plastic beam with single material cross section

The beam is subjected to a forced displacement large enough to reach a fully
plastic cross section. In Figure 4.1, the element convergence of the beam with an
elasto-plastic material model with continuous cross section is shown.

Total number of elements
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Figure 4.1: Convergence study of a beam with elasto-plastic material model.
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42 4.1. Element convergence

Here, the number of integration points over the cross section and number of cross
section integrations are kept constant to observe the effect of the total number
of elements only. The y axis shows the numerical value calculated, divided by
the analytical limit value minus one, which gives the error of numerical value
compared to the analytical limit value. The line is almost completely straight,
which means a good convergence.

To see what the gain in accuracy of using 60 elements rather than using 30 ele-
ments, the error for 30 and 60 elements are given in Table 4.1.

Table 4.1: Convergence of elasto-plastic beam with continuous material cross
section.

No. elements Fnum Fnum/Flim-1 [%] Computational time [s]
30 14.383×105 N 2.0 6.33
60 14.255×105 N 1.1 12.92

Using 60 elements for the model will result in an error of 1.1%. Using 30 elements
will increase the error of 0.9%, but in return the computation time is reduced by
half.

Linear elasto-plastic beam with multi-material cross section

Next, the cross section properties is changed to match a reinforced concrete cross
section with a linear elastic-perfect plastic material model. The dimensions are
described in Chapter 1 and the material properties can be found in Table 2.2.

The element convergence is shown in Figure 4.2.
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Figure 4.2: Convergence study of elasto-plastic concrete beam.
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The convergence shows the same tendency as the elasto-plastic beam with a con-
tinuous cross section. Again, use of 30 elements could be defended as the differ-
ence is small. The convergence at 30 and 60 elements, are listed in Table 4.2.

Table 4.2: Convergence of elasto-plastic reinforced concrete beam.

No. elements Fnum Fnum/Flim-1 [%] Computational time [s]
30 8.75×104 N 2.99 7.77
60 8.61×104 N 1.27 14.54

The gain from using 60 elements in this case is greater than for the continuous
cross section beam. The error is reduced with 1.72% by using 60 elements, but
the computational time is doubled up.

Nonlinear elasto-plastic beam with multi-material cross section

The material models is changed so that the elastic loading region becomes nonlin-
ear. This material model is the most advanced material model used in this project.
The convergence is shown in Figure 4.3.

Total number of elements
100 101 102

F
nu

m
/F

lim
-1

10-2

10-1

100

Figure 4.3: Convergence study of nonlinear elasto-plastic concrete beam.

The nonlinear material has a bit more curvature than the linear elasto-plastic ma-
terial model, which implies a slightly weaker convergence. The convergence at
30 and 60 elements, are listed in Table 4.3.

Table 4.3: Convergence of nonlinear elasto-plastic reinforced concrete beam.

No. elements Fnum Fnum/Flim-1 [%] Computational time [s]
30 8.70×104 N 2.36 9.75
60 8.57×104 N 0.78 19.32
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44 4.2. Elements versus integration points

Convergence summary

The models are all converging good, but the continuous cross section model is
converging a bit better than the rest in this analysis. This is seen in the line, which
is more straight. All convergences of the material models are shown in Figure 4.4.
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Continuous
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2.5% error limit

Figure 4.4: Convergence of all models.

The conclusion is, that use of 60 elements of course is better than using 30 el-
ements, but the error of using 30 elements is not significantly bigger than using
60 elements. In the nonlinear material model, the error deviation between 30 and
60 elements is 1.58%, which is acceptable if the computational time on the other
hand is decreased to about half of what is required, when using 60 elements.

4.2 Elements versus integration points

In this section the use of more elements compared the use of more integration
nodes within each element is analysed. For this analysis one model is chosen, in
this case the nonlinear elasto-plastic material model is applied. First the Trape-
zoidal rule is applied, then the Gauss integration method. The difference in inte-
gration method is compared in the end of this section.

The model element convergence, with a constant number of integration points, is
already presented. The convergence when increasing the number of cross section
integrations for an increasing number of elements used can be seen in Figure 4.5.
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Figure 4.5: Integration points over beam length - Trapezoidal rule.

In Figure 4.6 the number of integration points over the cross section height vary
together with the number of elements.
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Figure 4.6: Integration points over cross section height - Trapezoidal rule.

It is seen, that the number of cross section integrations only influence the con-
vergence when using 2 elements. When the number of elements is increased, the
importance of the number of elements is greater than the number of cross section
integrations and there is no further gain from using more cross section integra-
tions.

Observing the number of integration points over the cross section height, the op-
posite tendency is seen. Here, the number of integration points is more important
when the number of elements is increasing.

Now the integration method is changed to Gauss integration. First, the analysis is
carried out for the total number of cross section integrations. The results is shown
in Figure 4.7
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Figure 4.7: Integration points over beam length - Gauss integration.

The convergence study shows even less influence from the number of cross section
integrations, when the Gauss quadrature is applied. This shows, that the Gauss
quadrature might be better fitted to use when considering the integration over
length.

The analysis is now carried out for the integration points over the beam cross
section height. The results is shown in Figure 4.8
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Figure 4.8: Integration points over cross section height - Gauss integration.

Here, the same tendency as for the trapezoidal rule. The more elements used, the
more influence the number of integration points over the cross section height has.
Gauss integration seems to be a worse fit for the integration over the cross section
height as the convergence lines has irregularities when more elements are used.

When observing the influence of the integration method, it could be interesting to
observe the stress distribution over the cross section height. At the point of first
yield, the plastic strains will occur at the top or bottom of the beam first. As the
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difference between the trapezoidal rule and Gauss integration is the location of
the integration points near the edges, a change might be found in the distribution
of stresses.

In Figure 4.9 and Figure 4.10, the stress distribution for the beam at some point
of loading are shown.
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Figure 4.9: Stress distribution with
trapezoidal rule over cross section
height.
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Figure 4.10: Stress distribution with
gauss integration over cross section
height.

It is seen, that the gauss integration points are suited better when observing yield-
ing at the edge. But, the trapezoidal rule is more accurate in the middle of the
cross section. The difference is so small, that the choice of integration method is
unimportant. The choice may therefore be the trapezoidal rule, as the convergence
study showed this to be better suited for cross section integration.

4.3 Iteration scheme methods

The iteration schemes should not cause any difference in the convergence. But,
an improved iteration scheme could decrease the computational time. In this
analysis, the modified Newton-Raphson scheme is compared to the full Newton-
Raphson scheme. The difference is as described earlier, that the modified Newton-
Raphson only updates the stiffness for every load increment, where the full Newton-
Raphson scheme updates the stiffness for every iteration. In this comparison, the
interesting parameters are total number of iterations used and computational time
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48 4.4. Concrete beam analysis

used on calculations. The analysis is done for a fully converged model loaded to
a fully plastic cross section. The results can be found in Table 4.4.

Table 4.4: Iteration scheme comparison.

Total number of iterations Elapsed time
Modified Newton-Raphson 302 20.6 s
Full Newton-Raphson 64 6.2 s

The results shows a significant reduction in both amount of iterations needed and
in computational time. The update of the stiffness is very beneficial, and the
computational time of setting up the stiffness matrix for each iteration is much
faster than iterating to the correct value with an initial stiffness of the given load
increment.

Summary

From previous analysis, regarding the different calculation methods used in the
MatLab program, it can be concluded that the convergence is highly depending
on the number of elements used, not only is this the most contributing factor to
the convergence, but the integration over height and length is also depending on
the number of elements. The choice of scheme method only have influence on
the calculation time. Here, the full Newton-Raphson was the fastest and most
effective.

4.4 Concrete beam analysis

In this section, a beam subjected to a forced displacement is analysed. As said
earlier, the results will be compared to other solutions from different methods and
programs. For the material model, the nonlinear elasto-plastic material model is
applied. This is the most advanced and accurate material model for concrete used
in this project and will give the best results for concrete structures. The beam
dimensions are given in Table 4.5.

Aalborg University



4.4. Concrete beam analysis 49

Table 4.5: Concrete beam properties.

Geometry
Cross section 300 mm×200 mm
Length 3000 mm
Rebars 3×12 mm
Rebar distance from bottom 50 mm
Concrete
Yield stress ( ft/ fc) 3 MPa/30 MPa
Initial Young’s modulus 30×103 MPa
Reinforcement steel
Yield stress ( fy) 550 MPa
Young’s modulus 210×103 MPa

Modelling

For the calculations, the number of elements are chosen so the model is con-
verged. From the elements convergence section, it was concluded that the model
converged with an acceptable accuracy at 30 elements. The model is shown in
Figure 4.11.

xe

ye

x

y

Figure 4.11: Sketch of 1D beam model and integration points in a beam element.

The supports are placed at the elastic neutral axis. Thus, the beam axis will be
located in y = 0,z = 0. As to the analysis regarding number of cross section in-
tegrations, these have no influence on the accuracy when the number of elements
is set higher than 2. Thus, the points in the x direction are set to 5 per element
uniformly distributed and the points in the y-y direction is set to 50 per element as
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50 4.4. Concrete beam analysis

the number of elements used requires that the number of integration points over
the cross section height is set this high. The beam element can be seen in Figure
4.11.

The forced displacement is done at the center of the beam at the beam axis. The
maximum displacement is set to 20 mm. Here the cross section becomes fully
plastic.

Results

The analytical solution was presented in Chapter 2. The numerical one dimen-
sional finite element model in MatLab resulted in the force/displacement curve
shown in Figure 4.12.
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Figure 4.12: Force/displacement curve - Nonlinear concrete material model.

The final maximum force found from numerical calculations and the analytical
fully plastic maximum force is compared in Table 4.6.

Table 4.6: Comparison of analytical and numerical solutions.

Maximum force capacity
Analytical limit value 8.50×104 N
Numerical max value 8.69×104 N
Fnum/Flim-1 [%] 2.32 %

A deviation of 2.32 % is acceptable, considering the big difference in complexity
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and time consummation between the two methods. The stress and strain distri-
bution over the cross section height at the center of the beam, is shown in Figure
4.13.
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Figure 4.13: Stress and strain distribution - with rebar stress cut-off.

The cross section is almost fully plastic. The remaining part which seems to be
elastic, is caused by an insufficient amount of integration points over the cross
section height. Comparing the stress distribution with the analytical stress distri-
bution gives a deviation as shown in Figure 4.14 and Figure 4.15.
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Figure 4.14: Stress distribution with
15 integration points over cross section
height.
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50 integration points over cross section
height.
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The black line indicates the analytical stress distribution. It is observed that the
numerical model deviates from the exact solution, but goes towards the exact so-
lution when more integration points are used to distribute the stresses over the
cross section height.

Also, in Figure 4.14 and Figure 4.15, it can be seen that the increase in integration
points leads to a change in the position of the neutral axis. The position of the
neutral axis is shown in Figure 4.16.
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Figure 4.16: Position of the neutral axis.

The neutral axis has a lot of kinks. This is caused by discontinuity in stress be-
tween the elements. The neutral axis is found from the point of zero stresses on
the y-axis, so if discontinuity exist in the stresses, it will also be the case with the
neutral axis. It is seen, that the difference between using 15 and 50 integration
points over the cross section height is minor, when considering the movement of
the neutral axis. The difference in using 30 and 60 elements is significant, espe-
cially at the center of the beam where the deviation is large.

When the point of zero stresses moves away from the beam axis, see Figure 4.16,
it creates an extra beam strain at the beam axis. This beam strain creates a resid-
ual force, which depend on the boundary conditions, will lead to either internal
normal force or longitudinal displacement. As the boundary conditions are sim-
ple supported, see Figure 4.11, this will lead to longitudinal displacement. The
deformation of the beam is shown in Figure 4.17.
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Figure 4.17: Beam deformation.

In the x deformation it is seen that the deformation increases a lot over a small
distance at the center of the beam, which is caused be large plastic deformation.
Observing the y deformation, the very center of the beam has developed a plastic
hinge where the cross section is fully yielded. This is also visualized in the ro-
tation, where the rotation change quite a lot over a small part of the beam. The
internal forces should only consist of a shear force and a moment as the right
support is equipped with a roller. The internal forces are shown in Figure 4.18.
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Figure 4.18: Beam internal forces.
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The normal force is very close to zero, and is only present due the the tolerance
restriction in the calculations. It is though acceptable small to be considered as
zero.

It is now clear, that the MatLab script is capable of analysing reinforced concrete
beams with random cross sections, also after the material is yielding. The next
interesting part, is to compare the finite element calculations with a model made
in a different software. The results will now be compared to a three dimensional
model made in Abaqus.

Comparison with Abaqus model

A description of the Abaqus model can be found in Appendix A. The comparison
is made to evaluate the MatLab script, when it is put up against a more complex
model from a widely used and acknowledged software as Abaqus. An analysis of
the beam is performed in Abaqus in 3D using a material model called Concrete
damaged plasticity (CDP).

Results

Plotting the force/displacement curve shows the behaviour of the beam and the
maximum force capacity of the beam. The force/displacement curves for the ana-
lytical, 1D MatLab and 3D Abaqus model are shown in Figure 4.19.
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Figure 4.19: Force displacement curve comparison.
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The curves show a clear similarity. The MatLab model seems to be slightly
stronger, which makes sense, as this model does not include any kind of softening
or damage and Abaqus does take softening/damage into account. The conclusion
would be that the MatLab model is evaluating the behaviour of the reinforced con-
crete beam quite well, taken into consideration that the complexity of this model
is limited. Especially the nonlinear material model lies very close to the Abaqus
result.

Another way to compare models is through comparison of stresses. As the Mat-
Lab model is based on Bernoulli-Euler beam theory, it do not take shear into
account. Thus, only normal stresses are usable to compare. In Figure 4.20, the
normal stress distributions over the cross section at the center of the beam, are
shown.
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Figure 4.20: Normal stress distribution comparison.

The stress distributions are very similar and shows good stress estimations from
the 1D MatLab model. Deviation between the models are expected due to the
difference in complexity, but the models gives more comparable results than ex-
pected. The Abaqus model, which perform heavy calculations with a large amount
of elements, is possible to be challenged by a far more simple finite element
model, which do not require the same computation time or modelling time. The
Abaqus model took 288 s to calculate. Compared with the MatLab computational
of maximum 20 s is much more profitable when it comes to computational time.

The final comparison is due to the normal stresses in the entire beam. This is
illustrated for the Matlab model in Figure 4.21.
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Figure 4.21: Normal stress distribution comparison.

The normal stresses calculated in Abaqus are shown in Figure 4.22.

Printed using Abaqus/CAE on: Fri Jun 03 11:12:59 Romance Daylight Time 2016

Figure 4.22: Normal stress distribution comparison. Units in MPa.

The stress distributions are again very similar. The Abaqus model has a smaller
and more concentrated compressive yield zone, where the MatLab model has a
wider span of plastic strains in the compressive yield region.

It can be concluded, that 1D MatLab model is capable of simulating the behaviour
of beams in plasticity quite well.

4.4.1 Concrete frame

To evaluate the MatLab program’s ability to analyse systems more complex than
a simple beam, a frame model is constructed in reinforced concrete. The frame is
illustrated in Figure 4.23. The frame analysis is conducted to check the MatLab
scripts ability to handle more advanced structures.
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Figure 4.23: Frame structure. Units in mm.

The frame is subjected to static loads on each floor and a horizontal static wind
load. The supports are pinned, which implies that all moment must be handled in
the frame corners, calculations with fixed supports will also be shown to compare.
The size of the wind load is arbitrary, but is set large enough to elicit yielding.
Beside the wind loads and live loads, the structure is subjected to the self weight
from the structure. The column and beam cross sections are illustrated in Figure
4.24 and the properties listed in Table 4.7.
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Figure 4.24: Frame cross sections. Units in mm.
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Table 4.7: Frame cross section properties.

Concrete Reinforcement steel
Column 3/30 MPa ø16 mm - fy = 550 MPa
Beam 3/30 MPa ø16 mm - fy = 550 MPa

The analysis will show the total structure deformation and the stress distribution
in each element. Also the internal force is found from the calculations.

Results

First, the deformation from the wind load and self weight is found. The total
structure deformation is shown in Figure 4.25 and Figure 4.26.

Figure 4.25: Scaled frame deformation
with pinned supports.

Figure 4.26: Scaled frame deformation
with fixed supports.

The pinned support structure, is more exposed to lateral displacement than the
structure with fixed supports. But, in the fixed support system, the beam bending
is greater. To see the response of the structures when a region starts yielding the
stresses are plotted, see Figure 4.27 and Figure 4.28.
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Figure 4.27: Frame normal stress dis-
tribution with pinned supports.
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Figure 4.28: Frame normal stress dis-
tribution fixed supports.

From the stress plot, it is seen that the frame with pinned supports starts yielding
first. Specially, the bottom right column starts yielding at the current loads, if
the structure is pinned supported. The elements must contain more moment, as
the supports are transferring less moment to the foundation. This is seen on the
internal force plots in Figure 4.29 and Figure 4.30.

Normal force Shear force Moment

Figure 4.29: Frame internal forces with pinned supports.
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Normal force Shear force Moment

Figure 4.30: Frame internal forces with fixed supports.

The only significant difference in the internal forces in the moment distribution
in the bottom columns. The fixed supported frame has an internal moment at the
support, whereas the pinned supported frame is only transferring normal and shear
force directly from each support to the foundation.

To check if the script calculations are correct. The total wind pressure is compared
to the reaction force, see Table 4.8.

Table 4.8: Lateral force comparison.

Total wind pressure 10650 N
Total reaction force −10639 N
Deviation 0.1 %

A deviation of 0.1 % is acceptable, as it most likely is caused by rounding errors.

To evaluate the behaviour of a structure subjected to a load series, the behaviour
during unloading and reloading are the first steps toward dynamic excitation and
response.

4.5 Unloading and reloading stress/strain curves

In this section the perfect elasto-plastic material model and the nonlinear elasto-
plastic material model is expanded to include elastic unloading/reloading.

Aalborg University



4.5. Unloading and reloading stress/strain curves 61

The perfect elasto-plastic material model with unloading/reloading is showed in
Figure 4.31.

"="c;el

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

<
=
f y

-1

-0.8

-0.6

-0.4

-0.2

0

Figure 4.31: Perfect elasto-plastic material with unloading/reloading.

In Abaqus there is a smeared crack model, which is used as a basis for how the
material behave during unloading/reloading. In the smeared crack model, the
tensile stresses during unloading, goes directly towards zero [SIMULIA, 2014].
This principle is used to model material behaviour during unloading as well in this
project. The nonlinear elasto-plastic material model with unloading/reloading,
inspired by the smeared crack model, is shown in Figure 4.32.
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Figure 4.32: Nonlinear elasto-plastic material with unloading/reloading, strain
normalized with respect to initial elasticity, E0.
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For both material models it is assumed that the materials act perfectly plastic if
the yield stress is reached during unloading.

4.6 Unloading and reloading of reinforced concrete
beam

In this section the permanent deformation resulting from plastic strains is exam-
ined. The reference beam is loaded close to the maximum capacity and then
unloaded. A force based iteration scheme is used, which makes it impossible to
achieve fully plastic behaviour. The force displacement curve is shown in Figure
4.33.
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Figure 4.33: Force displacement curve for load/unloading.

It can be seen, that the nonlinear elasto-plastic material model is recovering more
than the perfect elasto-plastic material model. This is also seen in the following
stress plots.

The stress state at the maximum force/displacement with a perfect elasto-plastic
material is shown in Figure 4.34.
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Figure 4.34: Stress state at maximum displacement with scaled deformation and
perfect elasto-plastic material.

After complete unloading there is a permanent deformation and residual stresses,
as shown in Figure 4.35.
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Figure 4.35: Residual stress state with scaled deformation and perfect elasto-
plastic material.

The stress plots show that residual compressive stresses are created in the bot-
tom of the beam and tensile residual stresses are formed in the middle of the
beam together with a small part of the top edge. The stress state at the maxi-
mum force/displacement with a nonlinear elasto-plastic material is shown in Fig-
ure 4.36.
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Figure 4.36: Stress state at maximum displacement with scaled deformation and
nonlinear elasto-plastic material.

After complete unloading there is a permanent deformation and residual stress’s,
as shown in Figure 4.37.
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Figure 4.37: Residual stress state with scaled deformation and nonlinear elasto-
plastic material.

The residual stress state for the nonlinear elasto-plastic material model shows a
smaller permanent displacement and less residual stresses.

Reloading is examined, where the beam is loaded until yielding, then loaded in
the opposite direction until some yielding is observed and then reloaded. After
reloading the force displacement curve returns to follow the same line as before
the unloading as shown in Figure 4.38.
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Figure 4.38: Force displacement curve for reloading.

It is seen, that both material models reach the same curve again after unloading
and reloading, even though the unloading and reloading curves are widely differ-
ent.

4.7 Static part summary

The static part is now done and sets the foundation for the coming part. The
analysis conducted with static loads on a simple supported beam and a frame
structure showed that it indeed is possible to perform plastic analysis using one
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dimensional finite element modelling. A MatLab script was developed, capable
of performing gradual loading or increasing a forced displacement in increments
so that the plastic behaviour during yielding could be described.

The analysis showed fair comparisons between an analytical solution to a simple
supported beam with a point load on the middle and the one-dimensional finite
element solution performed in the MatLab script. Also, the Abaqus model gave
similar results to the MatLab script.

The frame structure analysis showed that the MatLab script is able to handle more
complex structures as well, also including plastic deformation.

Considering unloading and reloading, the MatLab script is definitely capable of
both monotonic unloading and reloading of structures using both perfect elasto-
plastic material behaviour and nonlinear elasto-plastic material behaviour. Here,
the nonlinear material showed a larger recovered displacement, where the perfect
elasto-plastic material has a steeper unloading/reloading curve. Though, the result
after unloading and reloading was the same for both material models.
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Chapter 5

Introduction to dynamics
In this chapter the dynamic part of the MatLab script is introduced and the nec-
essary preparations are done to enable dynamics in the MatLab script. Dynamic
finite element models are often applied in earthquake engineering and when mod-
elling traffic loads. The goal with this part of the MatLab script, is for it to be
able to simulate the response of a reinforced concrete structure. A frame structure
subjected to ground accelerations recorded from a real earthquake and a railway
bridge subjected to a moving train is analysed.

Earlier, the material models where updated to handle unloading and reloading.
This is necessary when considering plastic material, as the behaviour after plastic
deformation is reached, is crucial to the dynamic response of the system.

Solving dynamic problems require a nonlinear differential equation solver. Solvers
like this could be a Runge-Kutta method, HHT-α or a Newmark-β method. Ap-
plying schemes like these, the script becomes capable of numerical time integrate
the dynamic response of a structure subjected to a load or displacement time se-
ries. The dynamic theory is based the equation of motion as the governing equi-
librium equation. The equation of motion is defined on the form:

[m]{ü(t)}= { f ext(t)}−{ f int(t)}−{ f damp(t)}. (5.1)

Where [m] is the mass stiffness matrix and {ü(t)} is the acceleration vector.
{ f ext(t)} is the external forces acting on the system, { f int(t)} is the internal forces
and { f damp(t)} is the damping forces.

The internal forces and the damping forces can be found from

{ f int(t)}= [k]{u(t)}−{R}, (5.2)

{ f damp(t)}= [c]{u̇(t)}. (5.3)

Here, {R} is a nonlinear restoring force, [c] is the damping matrix, {u̇(t)} is the
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70 5.1. Newmark-β method - Incremental formulation

velocity vector and {u(t)} is the displacement vector.

In this project, the Newmark-β scheme is applied to numerical time integrate
the dynamic response. As the material behaviour is elasto-plastic, the original
Newmark-β scheme is not sufficient. A incremental formulation of the Newmark-
β method is used instead, which suits the plastic behaviour better.

5.1 Newmark-β method - Incremental formulation

The dynamic analysis is conducted using the an nonlinear solver, in this case the
Newmark-β method. The dynamic forces are creating nonlinear behaviour of the
material, which is modelled by the equation of motion combined from Equation
(5.1), Equation (5.2) and Equation (5.3).

[m] {ü(t)}+[c] {u̇(t)}+[k] {u(t)}−{R(u(t),u̇(t))}= { f ext(t)}. (5.4)

Here u is the displacement vector, u̇ is the velocity vector and ü is the acceleration
vector. R(u(t),u̇(t)) denotes the difference between the linear elastic internal force
and the real nonlinear internal force, see Figure 5.1.

F

u

[k]u(t)

Fint

R(u(t),u(t)).

Figure 5.1: Illustration of nonlinear restoring force R.

The stability of the Newmark-β method depends on the parameters γ and β . If
(β ,γ) = (1/4,1/2) the solution is unconditionally stable, and the acceleration is
constant within each time step. If (β ,γ) = (1/6,1/2) the acceleration is linear
interpolated. If (β ,γ) = (0,1/2) the method becomes identical to the central dif-
ference method. (β ,γ) = (1/4,1/2) is frequently used, as it result in a uncondi-
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tional stable solution, however the result is not especial accurate. In Figure 5.2 the
stability conditions for the Newmark-β method is shown, where ξ = β + 1

(ωmax∆t)2 .

[Gavin, 2014]
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Figure 5.2: Stability conditions for the Newmark-β method. [Andersen, 2014]

For the Newmark-β method the inverse of two matrices is needed, this being the
mass matrix and

[k̃] = (
1

β∆t2 [m]+
γ

β∆t
[c]+ [k]). (5.5)

This is done one time in the begin of the calculation, as taking the inverse of a
matrix takes alot of computational time.

The incremental equilibrium is found as

[m]{δ ü}+[c]{δ u̇}+[k]{δu}= { f ext
i+1}−{ f ext

i }= {δ f ext
i }. (5.6)

The Newton-Raphson algorithm is used to solve the nonlinear equations, the al-
gorithm is as followed:

1. First the initial value of the displacement increment δx(0)i is set to zero, and
the initial f̃i is calculated as

{ f̃i(δu(0)i )}= {δ f ext
i }+

(
1

2β
[m]−∆t

(
1− γ

2β

)
[c]
)
{ü}+

(
1

β∆t
[m]+

γ

β
[c]
)
{u̇}.

(5.7)
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2. The displacement increment is updated with

{δu(n+1)
i }= [k̃]−1{ f̃i(δu(n)i )}, (5.8)

where

{ f̃i(δu(n)i )}= { f̃i(δu0
i )}−{R

(n)
i+1}+{Ri}, (5.9)

and the restoring force is updated with

{R(n)
i+1}= [k]({ui}+{δu(n)i })−{ f int}. (5.10)

3. Step two is iterated upon until it converges, i.e. |{δu(n+1)
i }−{δu(n)i }|< ε ,

where ε is the tolerance.

The displacements are updated with

{ui+1}= {ui}+{δui}, (5.11)

the velocities are updated with

{u̇i+1}= (1− γ

β
){u̇i}−∆t(1− γ

2β
){üi}+

γ

β∆t
{δui}, (5.12)

and the accelerations are calculated as

{üi+1}=−[m]−1([c]{u̇i+1}+[k]{ui+1}−{Ri+1}−{ f ext
i+1}). (5.13)

This integration scheme, creates the basis for the dynamic calculations of a struc-
ture with an elasto-plastic material model.
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5.2 Free vibration

In this section the free vibration of a reinforced concrete beam is analysed. Free
vibration can be forced by giving the beam an initial displacement and then re-
leasing it to vibrate freely. The free vibration can be used to find the natural
frequencies of the system, by the acceleration spectrum.

5.2.1 Release from forced displacement

The beam is monotonically loaded until a displacement of 10 mm, which will
cause some yielding, see Figure 4.12. The displacement is subjected at the center
of the beam, see Figure 5.3.

Observed node

Initial displacement

Rebars

Figure 5.3: Beam for free vibration analysis.

The beam cross section is shown in Figure 5.4, where h = 300 mm, b = 200 mm, c

= 50 mm and the rebars have a diameter of 12 mm.

h

b

c

z

y
c

Figure 5.4: Cross section of reinforced concrete beam.

In Figure 5.5, the displacement, velocity and acceleration for both elastic vibration
and elasto-plastic vibration without any form of damping, are shown.
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Figure 5.5: Free vibration from initial displacement release.

The elasto-plastic beam has some energy loss due to the plasticity, causing the
beam not to vibrate as powerful as the elastic beam, which clearly is behaving
purely elastic as the displacement is moving around zero with the same amplitude.

Observing the velocity of the two beams, the elastic beam obtains higher velocities
and has some smaller and more frequent deviations. This indicates that the elastic
beam has more than one eigenmode activated. The elasto-plastic beam on the
other hand, seems to only activate the first eigenmode.

5.2.2 Evaluation of eigenfrequencies by acceleration spectrum

Applying the Fourier transformation of the beam accelerations and obtaining the
Fourier coefficients, the acceleration spectrum is found, see Figure 5.6.
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Figure 5.6: Acceleration spectrum for elastic and elasto-plastic beam.

In the spectrum, a peak indicates a frequency where an eigenmode is activated and
the thereby the natural frequency for the given eigenmode is found.

The natural frequencies of the elastic and elasto-plastic beam are given in table
5.1.

Table 5.1: Beam natural frequencies form acceleration spectrum.

Mode Elastic [Hz] Elasto-plastic [Hz]
1 1.67 1.67

Natural frequency by stiffness and mass matrix

The model properties for evaluating the eigenfrequencies of the beam are given in
table 5.2.

Table 5.2: Beam mass and volume properties.

Volume Mass
Concrete - ρ = 2400 kg/m3 1.79×10−2 m3 430 kg
Rebars - ρ = 7800 kg/m3 1.0×10−3 m3 8 kg
Total 1.8×10−2 m3 438 kg

The eigenfrequencies can be found from the stiffness matrix and mass matrix.
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Earlier, the stiffness matrix was defined as

[k] =
∫ Le

0
[B]T [D][B] dx. (5.14)

When dynamics are considered, the mass of the structure is just as important as
the stiffness. The mass matrix is defined as

[m] =
∫ Le

0
{Φ(xe)}T

ρA{Φ(xe)} dx. (5.15)

For undamped vibrations, the eigenfrequency can be found from an eigenvalue
problem

([k]−ω
2
0 · [m]){Φ}= 0. (5.16)

And a non-trivial solution will yield

det([k]−ω
2
0 · [m]) = 0. (5.17)

Here ω0 is the angular eigenfrequency, where only the positive roots are consid-
ered. The eigenfrequency f can be found from the following relation between
angular eigenfrequency and the eigenfrequency

ω0 = 2 ·π · f . (5.18)

First five eigenfrequencies are listed in table 5.3.

Table 5.3: Beam undamped eigenfrequencies.

Mode Natural frequency fi [Hz]
1 1.779
2 7.115
3 9.697
4 16.009
5 28.462

Comparing the natural frequencies with the ones found from the acceleration spec-
trum it is seen, that beam released from a forced displacement, in the frequency
interval 1-12 Hz, only activates mode one.

Aalborg University



5.3. Damping 77

The first five eigenmodes are illustrated in Figure 5.7.

Eigenmode 1 Eigenmode 2

Eigenmode 3 Eigenmode 4

Eigenmode 5

Figure 5.7: Different eigenmodes for a simple supported beam.

The mode shapes found by use of the MatLab script, are given in Appendix B.
Here, the modes shapes are compared with the mode shapes found in Abaqus.

5.3 Damping

If no damping are defined for the system, the system will keep vibrating forever.
To damp the system, a method called Rayleigh damping is applied. Rayleigh
damping applies the mass and stiffness together with two coefficients a and b.
The Rayleigh damping are found from

[c] = a[k]+b[m]. (5.19)

The Rayleigh coefficients a and b are found bya

b

=

 0.5
ω0(1)

0.5ω0(1)
0.5

ω0(2)
0.5ω0(2)

{η}. (5.20)

Where ω0(i) is the angular frequency corresponding to mode i and {η} is a vector
containing the modal damping ratio for mode one and two. The modal damping
ratios are for uncracked concrete structures around 4-7%. [Lee, 2007]

The free vibration without applying damping leads to infinite vibration, as seen in
Figure 5.8.
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Figure 5.8: Beam displacement from free vibration without damping.

In Figure 5.9, Rayleigh damping is applied with a damping ratio of 0.05. This
corresponds to 5% damping.
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Figure 5.9: Beam displacement from free vibration with Rayleigh damping.

The difference is significant. Not only will the beam stop vibrating when damping
is considered, but the elasto-plastic beam vibration is damped out earlier than the
pure elastic beam vibration. This is due to the plasticity reducing the amplitude
of the fluctuations and the vibrations are therefore damped out earlier.

5.4 Effects of plasticity in cyclic loading

In this section the effect of plasticity with cyclic loading is analysed, a load series
with the same frequency as the first eigenfreuency is applied to the middle of the
beam. The load is slowly increased to avoid exciting other modes, the load series
is shown in Figure 5.10.
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Figure 5.10: First 10 sec of load series used for analysing the effects of plasticity.

The first eigenfrequency is excited which causes resonance to occur, this leads
to an increase in the amplitude of the vibrations. At some point the vibrations
becomes large enough for plasticity to develop, at that point some of the energy is
dissipated. This result in lower amplitude of vibrations in the elasto-plastic system
than the elastic system, as is shown in Figure 5.11.
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Figure 5.11: Elastic and plastic respond of the beam.

After a number of cycles the elasto-plastic beam obtain a constant amplitude of
vibrations, where as the elastic beam vibrations continues to increase in ampli-
tude.

Figure 5.11 clearly shows, that by including plasticity energy is dissipated which
is why the vibrations are smaller for the elasto-plastic system.
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5.5 Frame structure subjected to earthquake exci-
tation

This section contains an analysis of a three story reinforced concrete frame sub-
jected to an excitation series. The frame dimensions and properties are given in
Section 4.4.1, but frame is constructed with fixed supports. The nodes and ele-
ment division are shown in Figure 5.12, only the main nodes are shown. Between
each main node, a number of sub nodes are used.
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Figure 5.12: Frame nodes and element division.

The excitation is a recording from a real earthquake called El Centro. The data
recorded, is the ground acceleration over a period of 30 s. Trailing zeroes are
added to see the aftermath of the excitation on the structure. The El Centro ground
acceleration is shown in Figure 5.13.
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Figure 5.13: El Centro earthquake ground acceleration series.
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As the structure is fixed to the ground, the ground acceleration is directly trans-
ferred to the foundation nodes 1 and 11. To apply the ground acceleration in the
Newmark scheme, the force equivalent to the ground acceleration is calculated by
use of the mass. The external force is calculated as

{ f ext(t)}=−[m]äg(t){1}. (5.21)

Where {1} is a vector containing the value one at all horizontal degree of freedoms
and zero at the rest.

The external force is then applied in the incremental Newmark-β scheme to evalu-
ate the response of the frame structure. To evaluate where in the frame the largest
plastic deformation occur, the relative displacement between the main nodes is
calculated and shown in Figure 5.14.
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Figure 5.14: Relative displacement in the elasto-plastic system.

From Figure 5.14 it can be seen that the most deformation occurs between the
main elements in the bottom of the frame, and the least at the top.

The relative displacement for the elastic system is shown in Figure 5.15.
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Figure 5.15: Relative displacement in the elastic system.

By comparing the elasto-plastic system with the elastic system, as seen in Figure
5.14 and Figure 5.15. It can be seen that the elasto-plastic system has smaller
vibrations than the elastic, which is caused by the energy leaving the elasto-plastic
system as plasticity occurs.

After the vibrations have damped out, the permanent deformation of the elasto-
plastic system is shown in Figure 5.16. It can be seen that the moving of the
neutral axis due to plastic deformation has caused an elongation of the beam ele-
ments.
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Figure 5.16: Permanent deformation of the frame.

Another application of dynamics could be moving traffic loads on a railway bridge.
This scenario is analysed in the following section.
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5.6 Railway bridge

In this section a small bridge carrying a railway is analysed. The bridge is sub-
jected to dynamic loads as a moving train passes the bridge. The bridge is sketched
in Figure 5.17.

Figure 5.17: Railway bridge.

The beam and column cross sections in the bridge structure are given in Figure
5.18.
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Figure 5.18: Bridge column and beam cross sections. Units in mm.

The train will cause a moving vertical load on the structure transferred at the train
wheels. Thus, the load will be subjected as point loads in pairs at each shaft. This
is illustrated in Figure 5.19.
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f(t) f(t+dt)

Figure 5.19: Sketch of time depending load on bridge.

The moving loads from the train will cause the bridge to vibrate. If the train is
sufficiently long the load series could cause the bridge to go into resonance, which
of course is critical. The resonance state and the corresponding load causing res-
onance is therefore interesting to investigate. Observing the node located in the
middle of the bridge span, a train with two wheels per shaft and an arbitrary dis-
tance between both wheels and shafts, the external force in the middle node will
be as shown in Figure 5.20.
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Figure 5.20: Load series for one node.

The external force is zero until the wheel is sufficiently close the node will start
to detect the load. As the train is moving relatively fast the force increase and
decrease quickly. This sudden load and reload will definitely cause activation of
higher modes of vibration.

5.6.1 Resonance analysis

In this section, three kinds of train with different weight, shaft and wheel dis-
tance are driving across the bridge. The speed of the trains are increasing from

Aalborg University



5.6. Railway bridge 85

a fairly slow speed to a high speeding train. As the trains passes the bridge, the
displacement is observed in five points shown in Figure 5.21.
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Figure 5.21: Dimensions and observed nodes on bridge during train pass. Units
in mm.

The three kinds of trains used are shown in the following figures. For train 1, the
dimensions and loads are given in Figure 5.22.
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Figure 5.22: Train 1 dimensions and loads. Dimensions in m.

For train 2 the dimensions and loads are given in Figure 5.23.
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Figure 5.23: Train 2 dimensions and loads. Dimensions in m.

For train 3 the dimensions and loads are given in Figure 5.24.
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Figure 5.24: Train 3 dimensions and loads. Dimensions in m.
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86 5.6. Railway bridge

The load F corresponds to a shaft load of 21 ton, thus F = 210 kN. The load will
be distributed over the number of wheel on the shaft. This is done to see the effect
of distributing the load over an area or length, instead of applying the load in a
point. Figure 5.22, Figure 5.23 and Figure 5.24 shows two carts for each train, in
the analysis 5 carts are used.

The bridge is subjected to load series from all three trains. The train speed is
increasing and the maximum displacement is plotted for each speed level for the
given nodes shown in Figure 5.21. In Figure 5.25 and Figure 5.26 the maximum
displacement is plotted against the train speed, for train 1, to see which speed of
the train that will give the most vibration of the bridge.
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Figure 5.25: Train 1 speed/displacement diagram - linear elasto-plastic material
model.
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Figure 5.26: Train 1 speed/displacement diagram - linear elastic material model.

A clear peak is seen at approximately 38 km/h for both the elastic system and the
elasto-plastic system. At this speed the load from the wheels seems to be in phase
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with the bridge vibration, which causes the displacement to increase further. The
main difference is, that the train passing by only activates one node on the elastic
system, but activates all nodes in the elasto-plastic system.

The second train has two wheels per shaft. This is expected to give a less concen-
trated speed interval where the bridge will go into resonance. The speed/displacement
curves are given in Figure 5.27 and Figure 5.28.
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Figure 5.27: Train 2 speed/displacement diagram - linear elasto-plastic material
model.
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Figure 5.28: Train 2 speed/displacement diagram - linear elastic material model.

For train 2, there are a lot of peaks. Speeds from approx. 25 km/h to 90 km/h
seems to give rise to a lot of vibration in P1, which is the node located at the
middle of the bridge, see Figure 5.21. The speeds which makes the bridge vibrate
is definitely distributed over a larger span of speeds in the elasto-plastic system.
But the same tendency as for train 1 is observed. In the elastic system only one
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node seems to be really activated, where the in the elasto-plastic system, all nodes
along the bridge deck are vibrating.

In Figure 5.29 and Figure 5.30, the speed/displacement curves for train type 3 are
shown.
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Figure 5.29: Train 3 speed/displacement diagram - linear elasto-plastic material
model.
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Figure 5.30: Train 3 speed/displacement diagram - linear elastic material model.

It is seen, that some train speeds are causing the bridge to fluctuate more. It is
also clear, from the results, that the vibration of the bridge is hitting a sort of
stable level when the train speed exceeds about 100 km/h. Hereafter, the train
speed seems to be out of phase with the bridge vibration and will therefore not
cause resonance.

The resonance analysis shows, that the response of the bridge follows the concen-
tration of the force applied. When a concentrated force as train 1 with one wheel
per shaft drives across the bridge with different speeds, the bridge responds to a
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narrow interval of the train speeds. When the load is distributed over two or three
wheels per shaft, as train 2 and train 3 does, the response of the bridge can be
seen over a larger span of speeds and the fluctuations are smaller when the load is
distributed over more wheels.

Summary

From the resonance study, it can be concluded that no matter which load series
applied, the structure will go into resonance when the load is travelling with a
given speed. This result is also found by Liu et al. [2013], who showed that when
a train passes a bridge with a speed parameter corresponding to v

fbd = 1, the bridge
will hit resonance. Here, v is the train speed, d is the length of the train and fb is
the fundamental natural frequency of the bridge.

The span of speeds, where resonance is reached, vary with the concentration of the
load. It is seen, that with a single wheel per shaft, the speeds where the structure
will hit resonance, are limited to a more narrow spectrum than if the load is applied
over two or three wheels per shaft. Here the span of train speeds are more spread,
but still with significant peaks, where the response is substantial.

The difference between the elastic and elasto-plastic system is quite significant.
The plasticity gives rise to some dissipation of energy leading to smaller fluctu-
ations in the middle node, P1, but bigger fluctuations in all other nodes. This is
continuous for train 1, 2 and 3.
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Chapter 6

Conclusion
The goal of this project, was to develop a one-dimensional finite element program
and implement plasticity. Furthermore, the program should be able to handle
dynamic analysis as well.

The one-dimensional finite element program was used in an static analysis of a
reinforced concrete beam and a reinforced concrete frame structure. The results
were good, when compared with commercial software Abaqus. The comparison
showed high resemblance between the one-dimensional finite element code and a
three-dimensional model created in Abaqus.

The concrete material model started out as perfect elasto-plastic, but the behaviour
was improved by adding nonlinear loading characteristics to the stress-strain curve
for the concrete. This gave a slightly weaker concrete material, but ended up
giving even better results, compared to the results from the Abaqus model.

A convergence study showed, that the number of elements is the most impor-
tant parameter when it comes to convergence. The total number of cross section
integrations and number of integration points over the cross section height, are
somehow depending on the number of elements used. The choice of integration
method showed, that the trapezoidal rule converged the best when observing the
number of integration points over the cross section height. For integration over
the beam length, the Gauss integration was independent of the number of points
and the number of elements, and is therefore better suited for the task.

It can be concluded from the results obtained, that the shape functions could be
improved. This would help reduce the discontinuity issues in the stresses and
position of the neutral axis. The shape functions in their current form, are defining
the longitudinal elongation as constant over the cross section, which is not the
case. When the neutral axis position change, the longitudinal elongation will vary
through the beam.

Inspired by the smeared crack model, the stress-strain relation was improved to
handle unloading and reloading. This made it possible to expand the program to
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include elasto-plastic dynamic analysis as well.

The free vibration study showed, that the plasticity will lead to some dissipation in
energy. This energy dissipation will cause the beam to fluctuate less than a beam
which is purely elastic.

The earthquake study of a frame structure showed the same behaviour. The energy
dissipation will cause the frame structure to have smaller vibrations and damp out
earlier.

The train bridge study showed larger vibration in the middle of the bridge for
the elastic case, however the elasto-plastic system showed more vibration further
away form the middle. Also, the bridge study showed, that more concentrated
loads, e.g. Train 1, will cause bigger displacements and a more clear peak when
the train speed cause the bridge to go into resonance. Including plasticity, will
lead to a build up in displacement in the bridge deck. Including plasticity, will
give a more realistic response of the system, as the energy dissipation will lead to
more authentic vibrations.
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Appendix A

Abaqus modelling
In this chapter a model is created in commercial software Abaqus. Abaqus is a
widely used program for analysing complex structures in practise and will give
results to compare the model created in MatLab.

Abaqus offers many choices regarding element types, geometry, boundary con-
ditions and load apply etc. and can be modelled to match the model in MatLab.
Though, Abaqus is not capable of analysing one dimensional reinforced concrete
models, the comparison with the MatLab program will not be entirely fair. Thus,
the boundary conditions, element type and apply of load must be set up equally
for both models.

A.1 Model

For the Abaqus model, a 3D model is chosen. This is done to compare the MatLab
script against a model with a much higher complexity.

A.1.1 Boundary conditions

The boundary conditions is simple supports, implying pinned support at one edge
and roller support at the second edge. The model boundary conditions are illus-
trated in Figure A.1.

y0h

L

u

Rebars

Figure A.1: Abaqus statical system.

At the right edge a support with roller is applied along the z axis to prevent dis-
placement in the transversal directions. The roller is important to make the system
statically determined.
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At the left edge pinned supports are applied at the elastic neutral axis along the z

axis. This is also the case with the roller support. In this case, this should give no
axial deformations as the beam theory implies small displacements.

A.1.2 Loading

As the MatLab model is loaded by forced displacement, the Abaqus model should
be loaded likewise. The forced displacement is modelled as an additional bound-
ary condition. Figure A.2 illustrates the deformed model after applying forced
displacement u at the top of the beam.
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Figure A.2: Forced displacement.

A.1.3 Modelling reinforced concrete beam

The complete model will consist of a concrete block and reinforcement bars. The
concrete block is modelled as a solid with h = 300 mm, b = 200 mm and L =
3000 mm. The reinforcement bars are modelled as trusses and assigned a cross
sectional area As = 339 mm2 responding to 3 bars with a diameter of 12 mm.

To make the to elements interact, an embedded region constraint is applied to con-
strain the translational degrees of freedom of the embedded nodes. The concrete
block will act as the host as this is the main region. The reinforcement bars are
then embedded in the concrete block.

Element type

For the concrete block 8-node linear brick elements are used. Further, these ele-
ments use reduced integration and hourglass control. For the reinforcement bars
2-node linear 3-D truss elements are applied.

Material setup

To model a concrete beam plasticity has to be included in the material model.
Thus, an elastic property is not sufficient to simulate the behaviour of concrete
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to a satisfying degree. To include plasticity after yielding, a mechanical material
property called Concrete Damaged Plasticity (CDP) is applied together with an
elastic material property. The elastic and CDP properties are given in table A.1.

Table A.1: Elastic and CDP parameters used for concrete material model.

Parameter Value
Elastic modulus, E 30×103 MPa
Poissons ratio, ν 0.2
Dilation angle 31 ◦

Eccentricity 0.1
fb0/ fc0 1.16
K 0.6667
Viscosity parameter 0
Compression strength 30 MPa
Tensile strength 3 MPa

The reinforcement bars are modelled as elastic steel with an additional plastic
feature that includes yielding. The steel material are given in table A.2.

Table A.2: Elastic and plastic parameters used for steel material model.

Parameter Value
Elastic modulus, E 210×103 MPa
Poissons ration, ν 0.3
Yield strength, fy 550 MPa
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Appendix B

Mode shapes
The vibration of a beam in its natural frequencies causes resonance. The shape
of the beam during resonance depends on the natural frequency that the beam is
subjected to. The prediction of the first five mode shapes was shown in earlier in
Figure 5.7. The calculated mode shapes from the MatLab script are illustrated in
Figure B.1, Figure B.2, Figure B.3, Figure B.4 and Figure B.5.

Figure B.1: Mode shape 1.

Figure B.2: Mode shape 2.

Figure B.3: Mode shape 3.
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Figure B.4: Mode shape 4.

Figure B.5: Mode shape 5.

The mode shapes are close exactly the same as predicted. The mode shapes found
in Abaqus is illustrated in Figure B.6, Figure B.7, Figure B.8, Figure B.9 and
Figure B.10.Printed using Abaqus/CAE on: Fri May 06 13:18:17 Romance Daylight Time 2016

Figure B.6: Mode shape 1 - Abaqus.
Printed using Abaqus/CAE on: Fri May 06 13:21:01 Romance Daylight Time 2016

Figure B.7: Mode shape 2 - Abaqus.
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Printed using Abaqus/CAE on: Fri May 06 13:21:18 Romance Daylight Time 2016

Figure B.8: Mode shape 3 - Abaqus.
Printed using Abaqus/CAE on: Fri May 06 13:21:30 Romance Daylight Time 2016

Figure B.9: Mode shape 4 - Abaqus.
Printed using Abaqus/CAE on: Fri May 06 13:21:43 Romance Daylight Time 2016

Figure B.10: Mode shape 5 - Abaqus.
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Appendix C

Digital appendix

C.1 MatLab scripts

• Functions

• Graph

• Beam_1D_Dynamic_beam.m

• Beam_1D_Dynamic_bridge.m

• Beam_1D_Dynamic_frame.m

• Beam_1D_Static_Disp.m

• Beam_1D_Static_force.m

• elcentro.dat

• input_beam.m

• input_beam_force.m

• input_bridge.m

• input_frame.m

C.2 Abaqus model

• RC_beam.cae
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