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Abstract 

This project report contains the prediction of the mooring line forces and the prediction of 
the dynamic response of the floating space frame structure when subjected to a 1st order 
regular wave and a 2nd order regular wave. Different wave theories and the method of 
selecting of an appropriate wave theory is explained. A co-rotational beam formulation is 
implemented since the floating structures would undergo large deformations when subjected 
to a wave. Cylindrical beam elements are used to model all the structural elements in the 
project.  

Relative Morison’s equation has been implemented in the project to take into account the 
movement of the structure when subjected to the wave forces. For validation of the wave 
structure interaction a simple V-shaped submerged structure is subjected to a linear regular 
wave and the results obtained from MATLAB and Ansys are compared. Drifting of the 
structure can be noticed when subjected to a 2nd order regular wave with the same wave 
parameters.  

An anchored floating space frame structure similar to the WEPTOS Wave Energy Con-
verter is modelled. This structure is subjected to a 1st order and a 2nd order wave to carry 
out a time domain analysis. The predicted mooring line forces and the predicted displace-
ment of the structure is compared.  

Total number of pages: 65 

Aalborg University Esbjerg, 09 June 2016 
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Reading guide 
The report is started with an introduction to the project. In the introduction the different 
types of ways the energy can be extracted from the ocean, followed by different type of 
ways the energy can be extracted from the waves is explained. This is followed by the state 
of art wave energy converters (WEC) that are being tested or used at present and a selection 
of WEC for the project. 

This is followed by the description and the modelling of the waves. This chapter covers the 
regular waves and the irregular waves. The boundary conditions have been explained in the 
regular wave section as well as the method of selection of a proper wave theory based on 
the wave parameters. This is followed by an introduction and a detailed explanation of the 
linear wave theory and the second order wave theory. The irregular wave theory section 
covers the introduction and the explanation of the formation of an irregular wave. It also 
has the detailed explanation of the first order irregular wave and the second order irregular 
wave. 

The co-rotational beam formulation chapter contains the concept of co-rotation followed by 
its validation. This is followed by the non-linear newmark algorithm and its validation. The 
next chapter is the Hydrodynamic Modelling. This chapter contains the Morison’s equation 
and the explanation of the different terms and the coefficients in the equation. The wave 
load modelling chapter contains the projection of the kinematic quantities. This is followed 
by the validation of the wave structure interaction and then the drift forces. The next 
chapter is the floating space frame structure which contains the modelling of the anchoring 
cable and the space frame structure similar to the WEPTOS wave energy converter. The 
last section of this chapter contains the dynamic response of the structure when subjected 
to first order regular wave and the second order regular wave. 

Finally, the last chapter containe the conclusion and the explanation of all the results 
obtained from the project. 

The literature used in thesis is shown in the bibliography, while the references in the report 
are symboled with  e.g. [1]. 
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Nomenclature 
Symbols 

𝜂𝜂 Surface Elevation 
𝜌𝜌 Density 
Δ Roughness 
𝜑𝜑 Velocity Potential 
𝜇𝜇 Shallow Wave Parameter 
𝜓𝜓 Wake Amplification Factor 
𝛾𝛾 Peak Enhancement Factor 
𝜅𝜅 Curvature 
𝜗𝜗 Phase Angle 
𝑎𝑎 Wave Amplitude 
As Submerged Cross-Sectional Area 
c Phase Velocity 
C Damping 
CA Added Mass Coefficient 
CD Drag Coefficient 
CDS Drag coefficient for the steady state flow 
CM Inertia Coefficient 
D Diameter 
E Young’s Modulus 
F Force 
f Frequency 
fp Spectral peak frequency 
Δ𝑓𝑓 Frequency Width 
g Acceleration due to Gravity 
HS Significant wave height 
h Water Depth 
H Wave Height 
I Moment of Inertia 
k Wave Number 
K Stiffness 
KC Keulegan-Carpenter number 
L Wave Length 
M Mass, Moment 
R Radius 
Re Reynolds Number 
S Wave Steepness Parameter 
S(f) Spectral Density 
T Return period; Wave period; Design wave period 
Tp Peak period 
u Horizontal Velocity 
�̇�𝑢 Horizontal Acceleration 



 

 

x 

um Maximum Orbital Particle Velocity 
Ur Ursell Parameter 
𝑤𝑤 Vertical Velocity 
�̇�𝑤 Vertical Acceleration 
Zc Evaluation Coordinate 

 

Abbrevations 

EMEC European Marine Energy Centre 
LIMPET Land Installed Marine Power Energy Transmitter 
MWL Mean Water Level 
OTEC Ocean Thermal Energy Conversion 
OWC Oscillating Water Column 
SOFIA Simulation of Floaters in Action 
USP Underwater Substation Pod 
WEC Wave Energy Converter 
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1. Introduction  
An increase in the issue of global warming and a decrease in the availability of oil and 
other fossil fuels has led to an increasing need to find an alternative source of sustainable 
energy resources which will have less environmental impact. The challenge is to move 
from fossil based power production to a cheap, efficient and sustainable energy produc-
tion. The solar, wind and bio-fuel industries are mainly leading in this aspect but research 
has been going on in ocean energy. Oceans cover over 70% of the Earth’s surface and 
represent an enormous source of renewable energy in the form of waves, tides, marine 
currents and thermal resources [1]. 

1.1 Types of Ocean Energy 

Two forms of energy that are produced from the oceans are the thermal energy which 
uses the sun’s heat and the mechanical energy which uses the currents, tides and waves. 

Ocean Thermal Energy Conversion 
Oceans are the world’s largest solar collectors as they cover more than 70% of the Earth’s 
surface. The heat from the sun causes a temperature difference between the surface of the 
ocean and at the ocean depth more than 1000 meters from the MWL. This temperature 
difference is used by the Ocean Thermal Energy Conversion or OTEC to generate elec-
tricity. With only 20 degree Celsius temperature difference this form of energy can be 
yielded. 

 There are two types of OTEC technologies namely closed cycle and the open cycle. The 
closed cycle utilises a working fluid which has a low boiling point such as ammonia to 
vaporise it using the ocean’s warmth in order to turn the turbines. The vapour is con-
verted back to liquid by passing it through the cold water found in the ocean depth. In 
the open cycle the warm sea water is actually boiled by operating it at the low pressures 
to convert it into steam in order to run the turbines.  

OTEC plant has a very small efficiency, just a few percent. Due to this it has to work 
hard to produce a small amount of electricity. From the electricity produced about a third 
of it is used for operating the system i.e. to pump the water in and out. Since they are 
less efficient, they have to be constructed on a large scale which makes them an expensive 
investments [2] [3]. 

Current Energy 
Marine currents are the ocean water moving in a certain direction. Tides also produce 
currents. The mechanical energy of these currents can be converted into electricity by the 
use of submerged turbines which appear to be similar to a miniature version of wind 
turbines. The constant movement of water in the current moves the rotor blade to pro-
duce electricity. There are very few of these places on Earth where sufficient energy from 
this method can be produced [1]. 
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Tidal Energy 
Tides are produced due to gravitational force of the moon. Potential energy due to the 
difference in the water height between the low tide and the high tide is used to generate 
electricity. 

During high tides the water comes to the shore and is trapped behind the reservoirs and 
during low tides this trapped water is forced through the hydro turbines. In order to 
capture sufficient power from the tides potential energy, the height of high tide must at 
least be five meters greater than the low tide. There are very few ideal locations for the 
construction of tidal power plant. 

Wave Energy 
Winds produced due to differential heating of the Earth’s surface generate waves when 
they interact with the ocean surface, which is used for the production of electricity. When 
the wind energy near the surface of the water exceeds a critical value of 1m/s, one can 
see the water surface ripple of length 5-10cm and height 1-2cm.  

Wave development is a complex process. Wind-wave interaction first transfers wind en-
ergy to shorter waves. Wave-wave interaction later transfers the energy in shorter waves 
to energy in longer waves resulting in the growth of longer waves. Only when the compo-
nent of surface wind in the direction of the wave travel exceeds the speed of wave propa-
gation can the wind energy be transferred to the waves. When the intensity of the wind 
decreases or when the wind changes direction the waves begin to decay [4]. 

Wave energy represents the largest source of ocean energy. The size of the waves is de-
termined by the duration to which the wind blows, its direction and the speed with which 
it blows. The long periodic components of these wind generated waves travel in groups 
called wave trains over long distances with almost no losses. This makes ocean waves a 
sustainable, power dense, relatively predictable and widely available source of energy [5]. 
The energy contained in the waves has the potential to produce up to 80,000TWh of 
electricity per year sufficient to meet our global energy demands five times over [6]. 

Wave energy is generated by the movement of the device either floating on the surface of 
the ocean or moored to the ocean floor. Wave energy being the largest source of ocean 
energy is proving to be the most commercially advanced of the ocean energy technologies 
with a number of companies competing for the lead. Energy production from waves is 
more predictable than wind, since waves come and go slowly and can be forecast 24 hours 
ahead. Many different techniques for converting wave energy to electric power has been 
studied. Some of the commonly used methods for capturing energy from waves is discussed 
in the following section. 

1.2 Types of Wave Energy Converters 

There are different types of wave energy converters. Some converters extract energy from 
the surface of waves. Others extract energy from the pressure fluctuations below the water 
surface or from the full wave. Some system are fixed in position and let waves pass by 
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them, while others follow with the waves and move with them. Figure 1.1 shows the 
different types of wave energy converters. 

 

Figure 1.1: Different types of Wave Energy Converters 1. Point absorber, 2. Atten-
uator, 3. Oscillating wave surge converter, 4. Oscillating water column, 5. Overtop-

ping device, 6. Submerged pressure differential [26]. 

The first figure is known as the point absorber which is a floating structure with its base 
fixed to the sea bed that absorbs energy from the waves through its movement. The point 
absorber converts the motion of the buoyant top relative to the base into electrical power. 
Electromotive force generated by electrical transmission cables and acoustic of these de-
vices maybe a concern for marine organisms.  

The second figure represents the surface attenuator which is also a floating device with 
multiple segments connected to one another and operates parallel to the direction of the 
wave. The attenuators rides the wave to create a flexing motion that drives the hydraulic 
pumps to generate electricity. They affect the environment similar to the point absorber, 
with an additional concern that some organism might get struck in the joints. 

The third figure represents the oscillating wave surge converter. One end of this device is 
fixed to the sea bed while the other end is free to move. The free arm oscillates due to 
the movement of the water in the waves. This movement of the free arm is used to 
produce electricity. These devices have a minor risk of collision and also the possibility of 
artificial reefing near the fixed point.  

The fourth figure represents the oscillating water column (OWC) which is a partially 
submerged structure and can be located both onshore and offshore. The device consists 
of an air column on top of a water column. The submerged part of the device is open to 
the sea. The waves causes water in the water column to rise and fall. The air gets com-
pressed as the water rises and is passed through an air turbine to generate electricity. A 
lot of noise is produced by this process which can affect the birds and other marine 
organisms in the vicinity. There is also a concern of the marine organisms getting struck 
and entangled in the air columns. 

The fifth figure represents overtopping wave energy converter. These are long structures 
that use the waves to increase the water level in the reservoirs with respect to the sur-
rounding sea. The potential energy due to the increased water level is used to produce 
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electricity. These devices can be both onshore and offshore as floating devices. They have 
similar environmental problems like the previously mentioned devices. 

The sixth figure is the submerged pressure differential device which is usually located 
near the shore and attached to the seabed. As the name indicates this device uses the 
pressure difference caused due to the rise and fall of sea level due to wave motion to 
produce electricity. 

Due to a wide variety of ways through which energy can be absorbed from waves, a 
number of concepts and applications exists for each of them. Currently, around 254 wave 
energy developers are listed on the European Marine Energy Centre (EMEC) website [7]. 
Since there are a lot of wave energy developers, studying the WEC devices from each of 
them would be difficult due to time restriction. Hence, only some of the major WEC 
devices have been covered in the following section. 

1.3 State of Art Wave Energy Converters 

Some of the state of art WEC that have already been either implemented or are being 
tested in the lab are studied and described below. 

Pelamis Wave Energy Converter (Wikipedia and EMEC website) 
Pelamis WEC is an offshore surface attenuator that uses the motion of the ocean surface 
waves to generate electricity.  

 

Figure 1.2: Pelamis prototype machine at EMEC [26]. 

It operates in ocean depths of greater than 50 meter. The device is made up of sections 
that are connected. These sections flex and bend as the wave passes, the motion that is 
induced is resisted by hydraulic cylinders which pumps high pressure oil through hydrau-
lic motors to generate electricity. Figure 1.2 shows the full-scale prototype of this device 
that was tested at EMEC in Orkney, Scotland between 2004 and 2007. 



 

 
 

5 

Pelamis device was the world’s first WEC to successfully generate electricity into a na-
tional grid. The tested device in Figure 1.2 was 120 meters long, having a diameter of 3.5 
meters and comprised of four tube sections. 

Due to the machine’s long thin shape and low drag profile, the hydrodynamic forces are 
minimised, namely inertia, drag and slamming, which in large waves give rise to large 
loads. The device responds to the curvature of the wave rather than the wave height. 
Since waves can only reach a certain curvature before breaking, the range of motion 
through which the machine must move is limited but large motion at joints due to small 
waves is maintained. It should be noted that the production and utilization of the Pelamis 
device has been stopped. 

Oyster Wave Energy Converter [6] 
Oyster Wave Energy Converter is an oscillating wave surge converter that captures en-
ergy from near shore waves and converts it into clean sustainable energy. Figure 1.3 
represents the working of this device. 

 

Figure 1.3: Oyster Wave Energy Converter [6]. 

This wave power device has a mechanical buoyant hinged flap that is attached to the sea 
bed at depths of around 10-15 meters. The hinged flap moves forward and backward due 
to the nearshore waves. This movement drives two hydraulic pistons which pumps high 
pressure water through the flow lines to the hydroelectric power conversion plant to gen-
erate electricity. By locating the device nearshore, severe storms can be avoided which 
occur further out to the sea. Since the power generation plant is located onshore it can 
be accessed anytime for inspection. 
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Wave Dragon Wave Energy Converter 
Wave Dragon is an overtopping device in which two wave reflectors focus waves up the 
ramp into an offshore reservoir. The water then returns to the ocean by the force of 
gravity passing through hydroelectric generators to produce electricity.  

 

Figure 1.4: Concept of Wave Dragon [26]. 

The concept of wave dragon is illustrated in Figure 1.4. It uses the principle from a 
traditional hydropower plant in an offshore floating platform. The device is durable and 
heavy. Since it has only one moving i.e. the turbines compared to other WEC which have 
several moving parts, the chances of it getting affected due to severe weather condition is 
greatly reduced. 

Islay LIMPET Wave Power Plant [8] 
Islay LIMPET (Land Installed Marine Power Energy Transmitter) Wave Power Plant 
works on the principle of Oscillating Water Column coupled to a well turbine or induction 
generator combination. This device is located on the shoreline. Figure 1.5 illustrates the 
working of the power plant. 

 

Figure 1.5: Islay Limpet Wave Power Plant [8]. 



 

 
 

7 

The plant has an opening at the bottom from where the waves enter and exit and in turn 
compress and decompress the air inside the chamber. This causes the air to flow forward 
and backward through a pair of contra-rotating turbines to generate electricity. It pro-
vides easy maintenance as it is located onshore.  

PowerBuoy Wave Energy Converter 
PowerBuoy is a floating power generation system that works on the concept of point 
absorber. Figure 1.6 illustrates the principle through which the device captures and con-
verts wave energy to electricity. 

 

Figure 1.6: PowerBuoy Wave Energy Converter [9]. 

A mooring keeps the device at station in the ocean. The float on the ocean surface moves 
along a spar in response to the ocean waves with a reduced response due to the presence 
of the heave plate at its base. The linear movement of the float into the spar is used by 
the power take-off system and is converted into a rotary motion that drives the electric 
generator. A number of such devices are placed together and the electricity produced by 
each of them is fed to USP and sent to the shore by cables. [9] 

 

WEPTOS Wave Energy Converter [7] 
WEPTOS Wave Energy Converter is a floating device that uses an effective method in 
order to extract wave energy. The device is designed in such a way that it can regulate 
the amount of incoming wave energy and reduce the hydrodynamic loads during extreme 
wave conditions. As seen in Figure 1.7 the device is a floating A-shaped structure that 
absorbs the energy from the waves through a line of rotors attached to the two arms. The 
wave power absorbed by each of the rotors is mechanically transferred through a common 
axle that turns in one direction which is attached to the generator due to which an even 
energy is produced. 
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Figure 1.7: WEPTOS Wave Energy Converter [27]. 

The rotor’s shape is based on the Salter’s Duck geometry. This geometry allows the rotor 
to obtain high level of energy conversion efficiency. This geometry was developed by 
Stephen Salter in 1974 and have been proven for high efficiency. The A-shaped structure 
can adjust the angle between the two arms, from 13 degrees up to 120 degrees. This has 
several important advantages like adjusting the amount of incoming waves, meaning the 
structure can widen in small wave condition and close during storm conditions helping in 
prolonging the life of the device. This also enables smoothening of the energy production 
across various occurring wave conditions. The A-shaped structure also provides a natural 
power smoothening effect, as the rotors on the arms interfere with the waves and avoid 
peak loads on the power take off and thereby resulting in a very high load factor. 

Wavestar Wave Energy Converter [10] 
The Wavestar machine works on the principle of multi-point absorber to collect energy 
from the waves with the help of floaters that rise and fall with the up and down motion 
of the waves. The floaters are attached by arms to a platform that is fixed to the seabed. 
The motion of the floaters is used to rotate the generators to produce electricity.  

 

Figure 1.8: Wavestar Wave Energy Converter [10]. 
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This device can also be installed with a wind turbine as shown in Figure 1.8 with the 
three arms having a number of floats to draw energy from the waves. The use of wind 
turbine further increases efficiency and reduces set-up cost. The device can continue pro-
duction in strong winds and waves, and will automatically rise floats out of the sea when 
the conditions become too stormy. 

1.4 Selection of a WEC for the project 

A similar geometry to that of the WEPTOS WEC has been selected in this project for 
making further calculation which is carried out in Chapter 6. The WEPTOS WEC is 
based on a proven salter’s duck design, with high power to weight ratio, high load factor 
and effective storm survival mechanism all together [11]. The ability of the A-shaped 
structure to adjust angle between the two arms has helped it to maintain the amount of 
wave loads acting on the structure. During storm conditions, extreme loads on the struc-
ture are being significantly reduced in size to such an extent that these are in the same 
range as those occurring during average wave conditions. This helps to avoid further 
strengthening the structure in order to handle the loads of extreme wave conditions. The 
ability of SOFIA to be able to handle such a detailed floating space frame structure is of 
interest, especially the importance of the effects of the first order and the second order 
wave theory. 

1.5 Aim of the project 

The aim of the report is to be able to predict the non-linear time domain response of a 
WEPTOS floating space frame structure subjected to a linear wave theory and a nonlinear 
wave theory and to determine the difference and effects of both the theories on the struc-
ture and the mooring line connected to the structure.   

 

Figure 1.9: Floating space frame structure on the water surface 

In order to take into account the large motions namely rotation, translation and defor-
mation which the floating space frame structure is subjected to, the co-rotational beam 
formulation has been implemented. The dynamic response of the structure as well as the 
loads that act on the structure due to the wave are predicted in time domain. The ocean 
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loads are the only environmental loads that have been considered in the project. Other 
environmental loads such as loads due to wind, current, ice loads etc. have not been 
considered. All the structural components are discretized by means of beam elements with 
cylindrical cross section. The prediction of the major loads and the dynamic response of 
the floating space frame structure is carried out in the programming language SOFIA. 
The results of the minor calculations have been validated against Ansys Workbench.  
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2. Description and Modelling of Waves 
The dominating environmental loads which the floating WEC is subjected to, are caused 
by the wind, waves, current and ice out of which the waves contribute to the largest 
amount of environmental loads. The effect of all the other loads apart from waves will 
not be considered in this project. This chapter deals with the regular and irregular waves, 
the theory and the methods used to generate these waves and the particle kinematics 
behind them.  

2.1 Regular Waves  

Waves generated due to wind develop when the wind speed is approximately 1m/s at the 
water surface, where the wind energy is partially transformed to wave energy due to 
surface shear. The below figure illustrates different parameters in a wave. 

 

Figure 2.1: Wave Parameters 

A windblown sea surface is an irregular surface, where waves continuously arise and dis-
appear. Small ripples are superimposed on larger waves and the waves travel partially in 
different directions at different speed. Waves are classified as either long crested waves or 
short crested waves. Long crested waves travel in the same direction and are 3 dimensional 
whereas short crested waves are 2 dimensional and travel in different directions [12]. Long 
crested waves are considered in the rest of the report which is a good approximation in 
many cases. 

2.1.1 Boundary Conditions 

The fluid is assumed to have an irrotational flow and is assumed to be incompressible. 
The character of the flow of the fluid is determined by the boundary conditions. The 
boundary conditions are of kinematic and dynamic nature. The kinematic boundary con-
dition relates to the motions of the water particles while the dynamic boundary condition 
relates to the forces acting on the particles. Free surface flow requires one boundary 
condition at the bottom and two boundary condition at the free surface. The general 
boundary conditions are listed below: 
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Kinematic Boundary Condition at the bottom – Since there cannot be a flow through the 
sea bed the vertical velocity component is zero. As the fluid is assumed to be ideal (no 
friction), boundary condition for the horizontal velocity at the sea bed is not included.  

𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

= 𝑤𝑤 = 0   𝑎𝑎𝑎𝑎   𝜕𝜕 = −ℎ (2.1) 
 

Kinematic Boundary Condition at the free surface – It specifies that the particle at the 
surface remains at the surface. It relates the vertical velocity of a particle at the surface 
to the vertical velocity of the surface.  

𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜂𝜂
𝜕𝜕𝜕𝜕

𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

   𝑎𝑎𝑎𝑎   𝜕𝜕 = 𝜂𝜂 (2.2) 
 

Dynamic Boundary Condition at the free surface – It specifies that the pressure is con-
stant at the surface as the pressure variations induced by the wind are not taken into 
account.  

𝑔𝑔𝜂𝜂 + 1
2
��𝜕𝜕𝜑𝜑

𝜕𝜕𝜕𝜕
�

2
+ �𝜕𝜕𝜑𝜑

𝜕𝜕𝜕𝜕
�

2
� + 𝜕𝜕𝜑𝜑

𝜕𝜕𝜕𝜕
= 0   𝑎𝑎𝑎𝑎   𝜕𝜕 = 𝜂𝜂 

(2.3) 
 

The mathematical derivations for the boundary conditions and the governing equations 
can be found in Water Wave Mechanics [12]. 

2.1.2 Different Wave Theories and Selection of Correct Theory 

A regular wave can be represented by the following theories 

• Linear wave theory (Stokes 1. Order Theory) 
• Stokes wave theories for high waves 
• Stream function theory 
• Boussinesq higher order theory (for shallow water) 

The linear wave theory is the simplest wave theory that can be applied, but it is also 
shown by experiments that this theory leads to unacceptable results in many cases. This 
is because the linear theory describes the waves as a cosine wave [13]. In reality the wave 
crest is shorter and steeper than the cosine wave and the wave trough is longer and less 
steep. To calculate the analytical solution using the linear wave theory the two boundary 
conditions at the surface have to be linearized (the wave amplitude ‘𝑎𝑎’ is small compared 
to the water depth ‘ℎ’ and therefore ‘𝐻𝐻/ℎ’ and ‘𝐻𝐻/𝐿𝐿’ have to be small) [14]. These 
requirements limit the linear wave theory to be represented only in very deep water. To 
give a more realistic description of the wave kinematics one of the other theories listed 
above should be used. It is also be noted that the other theories require a longer compu-
tational time compared to the linear wave theory. The validity of the different theories 
has been covered in detail in DNV OS-J101. 

Selection of Wave Theory 
Three parameters are used for the determination of the wave theories. The parameters 
are the wave height 𝐻𝐻, the wave period 𝑇𝑇  and the water depth ℎ. These parameters are 
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used to define three non-dimensional parameters that determine the validity of different 
theories [15]. 

   - Wave steepness parameter 𝑆𝑆 = 2𝜋𝜋 𝐻𝐻
𝑔𝑔𝑇𝑇 2 = 𝐻𝐻

𝜆𝜆𝑜𝑜
 

   - Shallow water parameter 𝜇𝜇 = 2𝜋𝜋 ℎ
𝑔𝑔𝑇𝑇 2 = ℎ

𝜆𝜆𝑜𝑜
 

   - Ursell parameter 𝑈𝑈𝑟𝑟 = 𝐻𝐻
𝑘𝑘𝑜𝑜

2ℎ3 = 1
4𝜋𝜋2

𝑆𝑆
𝜇𝜇3 

Where 𝜆𝜆𝑜𝑜 and 𝑘𝑘𝑜𝑜 are the linear deep water wavelength and the wave number correspond-
ing to the wave period 𝑇𝑇 . The range of applications of the different wave theories is given 
in the table below. 

Range of application of regular wave theories 
Theory Application 

Depth Approximate range 
Linear (Airy) wave Deep and shallow water 𝑆𝑆 < 0.006;    𝑆𝑆/𝜇𝜇 < 0.03 
2nd order stokes wave Deep water 𝑈𝑈𝑟𝑟 < 0.65;    𝑆𝑆 < 0.04 
5th order stokes wave Deep water 𝑈𝑈𝑟𝑟 < 0.65;    𝑆𝑆 < 0. 14 
Cnoidal theory Shallow water 𝑈𝑈𝑟𝑟 > 0.65;    𝜇𝜇 < 0.125 

 

The Figure 2.2 from DNV OS-J101 can also be used to determine the wave theories to be 
used for different hydrodynamic load cases. 

 

Figure 2.2: Range of validity for wave theories 
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2.1.3 Linear Regular Wave Theory (1st Order Wave Theory) 

Linear wave theory also known as the small amplitude wave theory, sinusoidal wave 
theory or as Airy wave theory is discussed in the present section and the assumptions 
made are discussed. It is the simplest theory and is obtained by taking the wave height 
to be much smaller than both the wavelength and the water depth. For a regular linear 
wave the height of the crest is equal to the height of the trough i.e. the wave amplitude 
is half the wave height. The theory assumes that the fluid has a uniform mean depth, and 
that the fluid flow is inviscid, incompressible and ir-rotational. This theory is only valid 
for non-breaking waves with small amplitude.  

This theory gives the linearized description of the propagation of gravity waves on the 
surface of a homogenous fluid layer. By assuming 𝐻𝐻𝐿𝐿 ≪ 1, i.e. small amplitude, the bound-
ary conditions can be linearized and 𝜂𝜂 is eliminated. This means that the surface condition 
is valid for 𝜕𝜕 = 0 instead of 𝜕𝜕 = 𝜂𝜂. The surface elevation of this theory is denoted by 

𝜂𝜂(1) = 𝐻𝐻
2

cos (𝜔𝜔𝜕𝜕 − 𝑘𝑘𝜕𝜕) (2.4) 
 

The surface elevation obtained by the use of (2.4) with ℎ = 30𝑚𝑚,𝑇𝑇 = 11𝑎𝑎 and 𝐻𝐻 = 13𝑚𝑚 is 
shown in the Figure 2.3. 

 

Figure 2.3: Surface Profile for a 1st order regular wave 

The velocity potential for the 1st order wave theory is 
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𝜑𝜑(1) = −𝑎𝑎𝑔𝑔
𝜔𝜔

cosh (𝑘𝑘(𝜕𝜕 + ℎ))
cosh (𝑘𝑘ℎ)

sin (𝜔𝜔𝜕𝜕 − 𝑘𝑘𝜕𝜕) (2.5) 

Where 𝑘𝑘 and 𝑎𝑎 are the wave number and wave amplitude respectively. Detailed descrip-
tion and derivation of the velocity potential is given in [12]. The velocity field can be 
found out by differentiating the velocity potential from (2.5) and the acceleration fields 
can be found out by differentiating the velocities with respect to time as shown below. 

𝑢𝑢(1) = 𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

 (2.6) 
 

𝑤𝑤(1) = 𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

 (2.7) 

�̇�𝑢(1) = 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

 (2.8) �̇�𝑤(1) = 𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕

 (2.9) 

Theoretically the expressions in (2.6) to (2.9) are only valid for 𝐻𝐻𝐿𝐿 ≪ 1, i.e. in the inter-
val −ℎ < 𝜕𝜕 ≅ 0. However, it is quite common to use the expressions for the negative and 
the positive values of 𝜂𝜂, i.e. also for 𝜕𝜕 = 𝜂𝜂. But this gives a crude approximation as the 
theory is not valid near the surface. Hence wheeler stretching of the velocity profiles and 
the acceleration profiles is done. In wheeler stretching the profiles are stretched and com-
pressed as shown in Figure 2.4. This is done so that the evaluation coordinate 𝜕𝜕𝑐𝑐 is never 
positive. The evaluation coordinate is given by 𝜕𝜕𝑐𝑐 = ℎ(𝑧𝑧−𝜂𝜂)

ℎ+𝜂𝜂  where 𝜂𝜂 is the instantaneous 
water surface elevation.  

 

Figure 2.4: Wheeler Stretching Modification [16] 

The horizontal velocity and the horizontal acceleration as well as the vertical velocity and 
vertical acceleration at a depth of -11m below the mean water level of the regular wave 
shown in Figure 2.3 is calculated and shown in Figure 2.5. As expected the horizontal 
acceleration is zero at the crest and trough of the wave whereas the horizontal velocity is 
the highest at the crest of the wave and lowest at the trough of the wave. Similarly the 
vertical acceleration is lowest at the crest at the crest of the wave and highest at the 
trough of the wave whereas the vertical velocity remains zero at both these places. The 
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first order regular wave profile as well as the velocities and accelerations have been com-
pared to WAVELAB [17] and validated. 

 

Figure 2.5: Velocity and Acceleration at a depth of -11m below MWL 

Validation of the first order regular wave theory 
In this section the first order regular wave theory programmed in MATLAB has been 
validated against the first order theory in WAVELAB [17]. 

 

Figure 2.6: Comparison of 1st order elevation from WAVELAB and MATLAB 
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Figure 2.6 shows the elevation of the 1st order regular wave having a wave height, water 
depth and time period of 13m, 30m and 11sec respectively. The surface elevation obtained 
from WAVELAB lies exactly on the surface elevation obtained from MATLAB. For val-
idating the first order wave kinematics, the horizontal and vertical velocities and acceler-
ations were chosen at random in MATLAB and seen at the same point in WAVELAB 
and the results were exactly the same. Hence, validating the surface elevation and the 
wave kinematics of the first order regular wave theory. 

2.1.4 Second Order Regular Wave Theory 

In practice many waves have a steepness 𝐻𝐻𝐿𝐿 so large that the calculations done by the 
linear wave theory does not describe the real wave properly and are too inaccurate. In 
order to describe the real waves better than the 1st order theory allows, we must discard 
fewer terms in the linearized boundary conditions. Furthermore, we need to introduce an 
extra boundary condition, if we want to fulfil the boundary conditions at 𝜕𝜕 = 𝜂𝜂 instead 
of at 𝜕𝜕 = 0. In the real wave it is seen that both the wave crest (𝜂𝜂 > 0) and the wave 
trough (𝜂𝜂 < 0) are lifted compared to the cosine wave. In order to better describe the 
regular waves Stokes higher order wave theories are used in which the surface elevation 
is given by 

𝜂𝜂 = 𝜂𝜂(1) + 𝜂𝜂(2) + ⋯ + 𝜂𝜂(𝑖𝑖) (2.10) 
Where 𝑖𝑖 represents the order of the theory. Therefore the 2nd order Stokes regular wave 
theory contains an extra component in addition to the 1st order term. 

 

Figure 2.7: 1st order and 2nd order regular wave 
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The expression for the 2nd order surface elevation component is given below 

𝜂𝜂(2) = 𝐻𝐻
2

𝐻𝐻
𝐿𝐿

𝜋𝜋
4

(3 coth3 𝑘𝑘ℎ − coth 𝑘𝑘ℎ) cos 2(𝜔𝜔𝜕𝜕 − 𝑘𝑘𝜕𝜕) (2.11) 

The above expression when added to the 1st order surface profile given in (2.4), gives the 
surface profile for the 2nd order. The figure below shows the 2nd order regular wave and 
the 1st order regular wave. The Figure 2.7 was calculated for a water depth of 30m, wave 
height 13m and a wave period of 11sec. It can be seen in the figure that the 2nd order 
wave has a shorter and steeper wave crest than the 1st order wave, also the trough for the 
2nd order regular wave is longer and less steep which better describes the real wave. It can 
also be seen that the 2nd order component is oscillating twice as fast as the 1st order term.  

 

Figure 2.8: Location of wave parameters 

The selection of the wave based on the parameters used for Figure 2.7 and Figure 2.11 
are shown in Figure 2.8. A different wave parameter is selected in the validation section 
as this lies deeper in the 2nd order wave region.  

Similar to the surface elevation, the velocity potential of the 2nd order wave is the sum-
mation of the velocity potential of the 1st order wave and the velocity potential of the 2nd 
order component. The velocity potential of the 2nd order wave is given below 
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𝜑𝜑 = 𝜑𝜑(1) + 3
32

𝑐𝑐𝑘𝑘𝐻𝐻2cosh (2𝑘𝑘(𝜕𝜕 + ℎ))
sinh4(𝑘𝑘ℎ)

sin�2(𝜔𝜔𝜕𝜕 − 𝑘𝑘𝜕𝜕)� − 1
8
𝑔𝑔𝐻𝐻2𝜕𝜕

𝑐𝑐ℎ
 (2.12) 

To obtain the velocities and accelerations from the velocity potential (2.6) to (2.9) are 
used. 

 

Figure 2.9: Velocity at -11m below MWL 

Figure 2.9 compares the horizontal and vertical velocities obtained from the 1st order 
theory and the 2nd order theory a well as the contribution of the 2nd order component. In 
the figure it is noticed that the 2nd order wave theory as expected gives a higher velocity 
when compared to the 1st order wave theory. 
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Figure 2.10: Acceleration at -11m below MWL 

Figure 2.10 compares the horizontal and vertical accelerations obtained from the 1st order 
theory and the 2nd order theory a well as the contribution of the 2nd order component. 
Kinematics obtained from a 2nd and above order wave theory can be used to validate the 
kinematics of the 2nd order wave theory which has been done in this case and is validated 
with the kinematics of the 5th order wave theory obtained in WAVELAB. 

Validation of the second order regular wave theory 
In this section the second order regular wave theory programmed in MATLAB has been 
validated against the fifth order regular wave theory in WAVELAB [17].  
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Figure 2.11: Comparison of elevation from 5th order WAVELAB and 2nd order 
MATLAB 

Since the second order wave theory hasn’t been programmed in WAVELAB, the fifth 
order wave theory is used for validation. Appendix A1 contains the script for the 2nd order 
regular wave theory. The use of a higher order wave theory for validation shouldn’t be a 
problem as when a lower order wave theory is valid, the higher order wave theory should 
also give the same results but would require more computational time. Figure 2.11 shows 
the surface elevation of the 5th order regular wave obtained from WAVELAB and the 2nd 
order regular wave obtained from MATLAB having a wave height, water depth and time 
period of 7m, 30m and 11sec respectively. The surface elevation obtained from 
WAVELAB lies exactly on the surface elevation obtained from MATLAB. For validating 
the wave kinematics, the horizontal and vertical velocities and accelerations were chosen 
at random in MATLAB and seen at the same point in WAVELAB and the results were 
exactly the same. Hence, validating both the surface elevation and the wave kinematics 
of the second order regular wave theory. The use of a higher order wave theory shows a 
more realistic wave as well as the drift forces are taken into account by use of a higher 
order wave theory compared to the first order theory where the drift is not taken into 
account. 

2.2 Irregular Waves 

Modelling and realistic representation of wind generated waves and swells require the 
introduction of irregular waves. A real sea state is best described by the irregular wave, 
since the waves in the ocean are irregular in shape, length, height and phase. If the surface 
elevation of the irregular wave is available over a time series then the frequency domain 
analysis can be used to study the irregular waves. But for the project since no wave data 
is available, irregular waves are generated arbitrarily. Irregular waves are modelled by 
superposition of 𝑁𝑁 number of regular waves. Two theories which are mainly used for 
generation of irregular waves are 
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• Pierson-Moskowitz spectrum (PM) 
• Joint North Sea Wave Project (JONSWAP) 

The PM spectrum is used when the sea and the wind are in equilibrium i.e. if the wind is 
blowing steadily for a long period of time. In this case the waves are characterised as fully 
developed waves. However, in the case the North Sea the waves never fully develop, but 
continue their development through non-linear wave-wave interaction. Hence, JONSWAP 
spectrum is used which is a modification of PM spectrum with an artificial factor (peak 
enhancement factor) multiplied in order to make a better fit of the waves in the North 
Sea. Since the WEC will be located in the North Sea, the JONSWAP spectrum is used 
for the developing sea state and is valid for non-fully arisen sea.  

2.2.1 JONSWAP Spectrum 

The parameterised JONSWAP spectrum is given in the below equation. [13] 

 
Where,  
𝑆𝑆, is the spectral density  
𝑓𝑓𝑝𝑝, is the peak frequency  
𝑓𝑓 , is the frequency  
𝛾𝛾, is a peak enhancement factor between   
𝛼𝛼 and 𝛽𝛽, are factors given by the following equations (2.14) and (2.15) 
 
 

𝛼𝛼 = 0.0624
0.230 + 0.0336𝛾𝛾 − �0.185

1.9+𝛾𝛾�
 (2.14) 

𝛽𝛽 = 𝑒𝑒
−�𝑓𝑓−𝑓𝑓𝑝𝑝�2

2𝜎𝜎2𝑓𝑓𝑝𝑝2  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜎𝜎 = �𝜎𝜎𝐴𝐴 = 0.07 𝑓𝑓𝑓𝑓𝑒𝑒 𝑓𝑓 ≤ 𝑓𝑓𝑝𝑝
𝜎𝜎𝐵𝐵 = 0.09 𝑓𝑓𝑓𝑓𝑒𝑒 𝑓𝑓 > 𝑓𝑓𝑝𝑝

� 
(2.15) 

 

If  in the JONSWAP spectrum then it becomes a PM spectrum [17], but the average 
experimental  in the North Sea and it is the value which is used in the project. 
The 𝛾𝛾 controls the sharpness of the spectral peak. The peak frequency is calculated by 
taking the inverse of the peak period. In order to obtain the exact value of 𝛾𝛾 the following 
equations can be used 

𝛾𝛾 = 5 𝑓𝑓𝑓𝑓𝑒𝑒
𝑇𝑇𝑝𝑝

�𝐻𝐻𝑠𝑠
≤ 3.6 

𝛾𝛾 = exp�5.75 − 1.15
𝑇𝑇𝑝𝑝

�𝐻𝐻𝑠𝑠
�𝑓𝑓𝑓𝑓𝑒𝑒 3.6 <

𝑇𝑇𝑝𝑝

�𝐻𝐻𝑠𝑠
< 5 

𝑆𝑆(𝑓𝑓) = 𝛼𝛼𝐻𝐻𝑠𝑠
2𝑓𝑓𝑝𝑝

4𝑓𝑓−5𝑒𝑒−5
4�𝑓𝑓𝑝𝑝

𝑓𝑓 �
4

𝛾𝛾𝛽𝛽 (2.13) 
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𝛾𝛾 = 1 𝑓𝑓𝑓𝑓𝑒𝑒 5 ≤
𝑇𝑇𝑝𝑝

�𝐻𝐻𝑠𝑠
 

The below figure shows an example of the JONSWAP spectrum which has been com-
puted for a peak period 𝑇𝑇𝑝𝑝 = 11𝑎𝑎 and the significant wave height 𝐻𝐻𝑠𝑠 = 13𝑚𝑚.  

 

Figure 2.12: JONSWAP Spectrum for 20 bins 

 The JONSWAP spectrum is divided into 20 linear spaced frequency bins. For each of 
these frequencies a regular wave is determined by taking the area beneath the frequency. 
The wave height is determined from equation. 

𝐻𝐻𝑖𝑖 = 2�2𝑆𝑆(𝑓𝑓𝑖𝑖)∆𝑓𝑓 
 

(2.16) 

Where,   
, is the spectral density  

, is the width of frequency bin taken as 0.35 

The 20 regular waves that are generated using the JONSWAP spectrum is plotted in 
the Figure 2.13. The height of the wave is calculated from the equation (2.16). 
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Figure 2.13: 20 Regular waves from JONSWAP Spectrum 

2.2.2 First Order Irregular Waves 

The common approach to simulate a random wave field is to superimpose all the regular 
waves obtained in the JONSWAP spectrum shown in Figure 2.13. This superimposing or 
the summation of the regular waves will produce an irregular wave. According to the 
linear wave theory or the first order theory, the surface elevation can be expressed as 
follows 

𝜂𝜂(1) = �𝑎𝑎𝑛𝑛cos (𝜔𝜔𝑛𝑛𝜕𝜕 − 𝑘𝑘𝜕𝜕 − 𝜗𝜗𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

(2.17) 

Where, 
𝑎𝑎𝑛𝑛, is the wave amplitude 
𝜔𝜔𝑛𝑛, is the wave frequency 
𝜗𝜗𝑛𝑛, is the phase angle 

The wave profile for the first order irregular wave is written as the summation of cosine 
terms which is given in the equation (2.17). The regular waves will have different phase 
angles, which is obtained randomly from uniformly distributing the phase angles 𝜗𝜗𝑛𝑛 be-
tween 0 and 2𝜋𝜋. The velocity potential of the First order irregular wave that corresponds 
to the surface elevation given in equation (2.17) reads 

𝜑𝜑(1) = �𝑏𝑏𝑛𝑛
cosh�𝑘𝑘𝑛𝑛(𝜕𝜕 + ℎ)�

cosh(𝑘𝑘𝑛𝑛ℎ)
sin(𝜔𝜔𝑛𝑛𝜕𝜕 − 𝑘𝑘𝑛𝑛𝜕𝜕 − 𝜗𝜗𝑛𝑛)

𝑁𝑁

𝑛𝑛=1
  

(2.18) 
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Where 𝑏𝑏𝑚𝑚 is the amplitude coefficient given by 𝑏𝑏𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑔𝑔
𝜔𝜔𝑛𝑛

. In the reference system used in 
these expressions, 𝜕𝜕 is positive in the propagation direction of the waves. The vertical 
coordinate 𝜕𝜕 is positive upwards and is zero at mean sea level. From the above velocity 
potential the expressions for the first order horizontal and vertical velocities and acceler-
ations can be obtained by differentiating as shown in equations (2.6) to (2.9). The surface 
elevation obtained for the first order irregular wave is shown in Figure 2.14. 

 

Figure 2.14: Surface Elevation of 1st Order Irregular Wave 

2.2.3 Second Order Irregular Waves 

The first order irregular wave doesn’t show the actual wave as the interactions between 
the wave components are neglected in it. The second order irregular wave model predicts 
more realistic crest height distribution [18], which means higher individual wave crests 
and consequently more realistic and higher viscous contributions above the still water 
level, especially for large sea states. The second order irregular wave is generated by 
adding the second order correction to the first order wave profile. The second order accu-
rate sea surface elevation is a perturbation expansion of the first order formulation and 
is given as 

𝜂𝜂(2)(𝑡𝑡) = 𝜂𝜂(1) + Δ𝜂𝜂(2) = 𝜂𝜂(1) + ∆𝜂𝜂(2+) + ∆𝜂𝜂(2−) (2.19) 
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The ∆𝜂𝜂(2+) and Δ𝜂𝜂(2−) are the difference and sum frequency corrections also known as 
the sub and super harmonics which is given as [19] 

Δ𝜂𝜂(2)(𝑡𝑡) = � �[𝑎𝑎𝑚𝑚𝑎𝑎𝑛𝑛{𝐵𝐵𝑚𝑚𝑛𝑛
+ cos�𝜓𝜓𝑚𝑚 + 𝜓𝜓𝑛𝑛� + 𝐵𝐵𝑚𝑚𝑛𝑛

− cos�𝜓𝜓𝑚𝑚 − 𝜓𝜓𝑛𝑛�}] 
𝑁𝑁

𝑛𝑛=1

𝑁𝑁

𝑚𝑚=1

 
(2.20) 

 

The expressions for the transfer functions of the 2nd order amplitude, 𝐵𝐵𝑚𝑚𝑛𝑛
+  and 𝐵𝐵𝑚𝑚𝑛𝑛

−  are 
lengthy and are therefore given in the appendix section. 

The positive interaction term in the equation (2.20) produce the sharpening of the crests 
and flattening of the troughs which is associated with the second-order stokes wave. The 
negative interaction term given in the equation (2.20), gives the set down of the water 
level under wave groups.  

 

Figure 2.15: Surface Profile of First and Second order Components 

Therefore, the sum of first order irregular wave surface elevation given in equation (2.17) 
and the second order surface correction given in equation (2.20) gives the second order 
accurate sea surface elevation. The Surface profiles of the first order irregular wave and 
the second order surface correction given in equation (2.19) is shown in Figure 2.15.  
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Figure 2.16: 2nd Order and 1st Order Irregular wave 

The summation of the 1st order irregular wave with the 2nd order component give the 
second order irregular wave profile. Figure 2.16 shows surface elevation of the first order 
irregular wave and the second order irregular wave and also the second order surface 
correction. This irregular wave is produced by the 20 regular waves shown in the Figure 
2.13. Due to the difference in the wave profile the kinematics obtained will also be differ-
ent. The second order irregular wave will have a higher velocity and acceleration when 
compared to the first order irregular wave as it takes wave to wave interaction into 
account. As expected the 2nd order irregular wave produces higher crest and lower trough 
when compared to the 1st order irregular wave which is also the same for regular wave 
which is shown in Figure 2.7. 

Similar to the surface elevation of the second order wave, the wave parameters can be 
expressed as a summation of the 1st and 2nd order terms of the velocity potential and its 
derivatives. 

𝜑𝜑(2) = 𝜑𝜑(1) + ∆𝜑𝜑(2) 
 

(2.21) 

The second order difference and sum velocity potential that corresponds to the surface 
elevation perturbations from equation (2.21) is given below 

∆𝜑𝜑(2)(𝜕𝜕, 𝜕𝜕) = 1
4

� ��𝑏𝑏𝑚𝑚𝑏𝑏𝑛𝑛
cosh (𝑘𝑘𝑚𝑚𝑛𝑛

± (𝜕𝜕 + ℎ))
cosh (𝑘𝑘𝑚𝑚𝑛𝑛

± ℎ)
𝐷𝐷𝑚𝑚𝑛𝑛

±

(𝜔𝜔𝑚𝑚 ± 𝜔𝜔𝑛𝑛)
sin(𝜓𝜓𝑚𝑚 ± 𝜓𝜓𝑛𝑛)�

𝑁𝑁

𝑛𝑛=1

𝑁𝑁

𝑚𝑚=1
 

(2.22) 
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In the similar way as for the first order kinematics, second order perturbation contribu-
tions can be obtained by differentiating the above velocity potential. The addition of 
equations (2.18) and (2.22) gives the velocity potential of the second order irregular wave. 
The velocity potential is differentiated with respect to ′𝜕𝜕′and ′𝜕𝜕′ to obtain the horizontal 
velocity ′𝑢𝑢′ and the vertical velocity ′𝑤𝑤′ which is shown in the appendix. The horizontal 
and the vertical velocities obtained at -11m below the Mean Water Level (MWL) is shown 
in Figure 2.17. 

 

Figure 2.17: Horizontal and Vertical Velocities at a depth of -11 meters below 
MWL 

Figure 2.17 compares the velocities obtained for the 1st order irregular wave, 2nd order 
irregular wave contribution and the 2nd order irregular wave which is the sum of the 
velocities of the 1st order irregular wave and the 2nd order contribution at the same depth.  
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Figure 2.18: Horizontal and Vertical Acceleration at a depth of -11 meters below 
MWL 

The accelerations are obtained by differentiating the velocities with respect to time. Fig-
ure 2.18 compares the accelerations obtained for the 1st order irregular wave, 2nd order 
irregular wave contribution and the 2nd order irregular wave which is the sum of the 
accelerations of the 1st order irregular wave and the 2nd order contribution at the same 
depth. It is seen in both Figure 2.17 and Figure 2.18 that there is a variation between the 
results obtained by the 1st order irregular wave theory and the 2nd order irregular wave 
theory. Even though the variation looks minute, there is a drift force occurring in the 2nd 
order irregular wave which is not present in the 1st order irregular wave, which is also the 
case for the regular waves. Refer Appendix A2 for the required files. 
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3. Co-rotational Beam Formulation 
Since the WEC will be subjected to large displacements and rotations due to the action 
of the waves, it cannot be neglected that loads may change their orientation according to 
the displacements and the supports may change during the loading. Therefore, an efficient 
beam element formulation has to be developed. In this chapter an introduction to a simple 
two-dimensional co-rotational beam formulation is done. The main ideas of co-rotational 
approach can be summarised by defining an element reference frame that translates and 
rotates with the element’s overall rigid body motion, but does not deform with the ele-
ment. By calculation of the nodal variables with respect to this reference frame, the ele-
ment’s overall rigid-body motion is thus excluded in the computation of the local internal 
force vector and the element tangent stiffness matrix, resulting in an element-independent 
formulation. By the geometric nonlinearity which are induced by the large element rigid-
body motion which is incorporated in the transformation matrix relating the local and 
global internal force vector and tangent stiffness matrix [20]. 

The structural nonlinearities that can be identified are the geometric nonlinearities, ma-
terial nonlinearities and boundary nonlinearities. The geometric nonlinearities are signif-
icant in the WEC and are included in the project. The material nonlinearities have not 
been included in the project. The structure supports and the insistence of the degrees of 
freedom which are part of the boundary nonlinearities are included as the modelled forces 
and are set as a function of the updated node coordinates and thus as a function of the 
displacements. 

3.1 Concept of Co-rotation 

A floating structure will undergo large displacement and rotation unless it is somehow 
constrained to avoid it. Large rigid body motions are allowed in a co-rotational beam 
theory where as it is not allowed in the regular beam theory which is a problem. The co-
rotational concept in terms of beam elements is valid as long as the element strains are 
small and all beam elements are assumed to remain linear elastic. Unlike a regular beam 
theory where deformations and rotations are defined with reference to the global coordi-
nate system, the co-rotational beam theory uses the element based local coordinate sys-
tem. When a load is applied on a frame structure, the entire frame deforms from its 
original configuration. During this process each individual beam element potentially does 
three things; it rotates, translates and deforms. The global displacements of the end nodes 
of the beam element has the information about how the beam element has rotated, trans-
lated and deformed from its initial position. If the rotation and translation which are rigid 
body motions are removed from the motion of the beam all that will remain are the strain 
that are causing deformations of the beam element. These strain causing local defor-
mations are related to the forces that are induced in the beam element.  

A co-rotational formulation thus tries to separate the rigid body motions from the strain 
producing deformations at the local element level. To accomplish this, a local element 
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reference frame (or coordinate system) is attached to each element. This coordinate sys-
tem rotates and translates with the beam element. With respect to this local co-rotating 
coordinate frame the rigid body rotations and translations are zero and only local strain 
producing deformations remain [21]. As shown in the Figure 3.1 the x-axis is directed 
along the element and the y-axis is perpendicular to it. 

 

Figure 3.1: Initial and current position of co-rotating beam elements 

 

The figure shows a beam element in its initial and current configuration. The beam ele-
ment has translated and rotated from its initial configuration to the current configuration. 
The beam also has local flexural deformations. In the above figure 𝛽𝛽0 is the initial angle 
and 𝛽𝛽 is the current angle of the beam. The initial configuration of the global nodal 
coordinate axis for node 1 is (𝑋𝑋1, 𝑌𝑌1) and for node 2 is (𝑋𝑋2, 𝑌𝑌2). Then the original length 
of the beam is 

𝐿𝐿𝑜𝑜 = �(𝑋𝑋2 − 𝑋𝑋1)2 + (𝑌𝑌2 − 𝑌𝑌1)2 (3.1) 
 

The beam element is moved from the initial configuration to the current configuration 
having the global nodal coordinate as (𝑋𝑋1 + 𝑢𝑢1, 𝑌𝑌1 + 𝑤𝑤1) for node 1 and (𝑋𝑋2 + 𝑢𝑢2, 𝑌𝑌2 +
𝑤𝑤2) for node 2, where 𝑢𝑢1 is the global nodal displacement of node 1 in x-direction 
and 𝑤𝑤1 is the global nodal displacement of node 1 in y-direction. Then the current length 
of the beam is given as 

𝐿𝐿 = ��(𝑋𝑋2 + 𝑢𝑢2) − (𝑋𝑋1 + 𝑢𝑢1)�
2 + �(𝑌𝑌2 + 𝑤𝑤2) − (𝑌𝑌1 + 𝑤𝑤1)�

2 (3.2) 
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The initial and the current angle of rotation are 𝛽𝛽𝑜𝑜 and 𝛽𝛽 respectively which are defined 
by the global variables and are used in the calculation of 𝜃𝜃1𝑙𝑙 and 𝜃𝜃2𝑙𝑙 which are the local 
nodal rotations. These local nodal rotations allow the two-dimensional beam element to 
have arbitrarily large rotations and are used in the calculation of the local end mo-
ments 𝑀𝑀1 and 𝑀𝑀2 of the beam element. 

For a more detailed description of the concept and theory of the co-rotational beam 
formulation reference is made to the paper presented by Louie L. Yaw [21]. The validation 
of the co-rotational beam elements is shown below. 

3.1.1 Validation of large rotation in the corotational beam 
formulation 

This analysis is done to validate that the MATLAB code is able to represent the behav-
iour of the beam elements with large rotation. This is demonstrated with the following 
example concerning the roll up of a cantilever beam. 

 

Figure 3.2: Application of moment for large rotation 

The Figure 3.2 shows the moment applied on the cantilever beam for noticing large rota-
tion. The beam model consists of 10 elements, with each element having a length of 1 
meter in MATLAB. The moment applied on the beam is calculated from (3.12) which 
cause the roll up of the beam shown in Figure 3.3. 

The cantilever beam with a constant moment at the end of the beam will have a curvature 
of 

𝜅𝜅 = 1
𝑅𝑅

= 𝑀𝑀
𝐸𝐸𝐸𝐸

 (3.3) 

The end of the beam would have rotated to touch the start of the beam and would 
resemble a polygon as seen in the Figure 3.3. This occurs when the moment is equal to  

𝑀𝑀 = 2𝜋𝜋𝐸𝐸𝐸𝐸
𝐿𝐿

 (3.4) 
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Figure 3.3: Roll up of the cantilever beam in MATLAB 

 

Only beam theories that can handle large rotations will be able to model this phenomena. 
The same result is achieve every time since the applied moment is dependent on the beam 
dimension and properties. Since the example requires a static solving method, the moment 
is incrementally increased over a sufficient amount of time.  
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Figure 3.4: Moment vs Displacement plot 

The above figure shows the moment vs displacement plot. It is seen in the figure that the 
moment displacement is linear for small moments but as the moment increases and be-
comes large the curve becomes nonlinear. Due to the applied positive bending moment, 
the displacement in the z-direction remains positive and causes the beam to rotate in the 
counter clockwise direction.  

In preparation for the nonlinear dynamic analyses further in the project, it is necessary 
that the MATLAB script is able to handle the nonlinear dynamic problems. Hence, the 
Newmark algorithm is extended to consider the nonlinear dynamic problems and the 
nonlinear Newmark algorithm is introduced in Section 3.2. 

3.1.2 Validation of large deformation in corotational beam 
formulation 

In this example the geometric nonlinear behaviour of a single bar truss subjected to lateral 
loading is illustrated. This is the ability to handle large deformations. 
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Figure 3.5: Application of load for large deformation 

For the example a bar truss element having a radius of 0.01m is subjected to an increasing 
load of up to 1000KN. The load is applied to the bar truss element as shown in Figure 
3.5. the geometric nonlinear behaviour is determined in MATLAB and validated by large 
deflection analysis carried out in ANSYS Workbench. 

 

Figure 3.6: Initial configuration and after deformation 

Figure 3.6 shows the initial configuration and the deformed state of the bar truss element. 
Figure 3.7 shows the load vs displacement plot. From the figure it can be seen that the 
displacement is linear for small loads and the curve becomes nonlinear as the load in-
creases. Further the bar truss becomes stiffer as the load increases due to geometric stiff-
ness of the bar. 
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Figure 3.7: Load vs Displacement plot 

 

 

3.2 Nonlinear Newmark Algorithm 

The Newmark method also known as the Newmark-Beta method is a method of numeri-
cal time integration used to solve differential equations. It is an implicit method, where 
the motion of the beam elements are calculated through the mass, stiffness, damping, the 
degrees of forward weighing and the forces acting on the beam. It is widely used in nu-
merical evaluation of the dynamic response of structures and solids such as in finite ele-
ment analysis to model dynamic systems. The linear Newmark algorithm is extensively 
used for solving the linear structural dynamic problems which is a direct integration 
method but for solving the nonlinear structural dynamic problems, the Newmark’s algo-
rithm has to be extended so that the iterations is performed at each time step in order to 
satisfy the equilibrium. 

Since deformation is related to the nonlinear effects it is preferable to use the equation of 
motion to find the initial deformation and use this initial deformation to make predictions 
of the initial velocity and initial acceleration. Hence, the Newmark solution method is 
rearranged so that the prediction relates to the velocity �̇�𝑢 and the acceleration �̈�𝑢. Whereas 
the displacement 𝑢𝑢 is solved in the iterative solution of the equation of motion. As the 
equation of motion is time related and is satisfied in time increments 𝜕𝜕1, 𝜕𝜕2,… , 𝜕𝜕𝑛𝑛, 𝜕𝜕𝑛𝑛+1 the 
forces on the beam element at 𝜕𝜕𝑛𝑛+1 can be found by 

𝑓𝑓𝑛𝑛+1 = [𝑀𝑀]�̈�𝑢𝑛𝑛+1 + 𝑔𝑔(𝑢𝑢𝑛𝑛+1, �̇�𝑢𝑛𝑛+1) 
 

(3.5) 
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Where [𝑀𝑀]�̈�𝑢𝑛𝑛+1 represents the inertia forces, and 𝑔𝑔(𝑢𝑢𝑛𝑛+1, �̇�𝑢𝑛𝑛+1) is an expression for the 
internal forces. To solve all the forces present in the nonlinear equation of motion, the 
Newton-Raphson iterative linear approximation method is used to obtain the residual 𝑒𝑒. 

𝑒𝑒 = 𝑓𝑓𝑛𝑛+1 − [𝑀𝑀]�̈�𝑢𝑛𝑛+1 − 𝑔𝑔(𝑢𝑢𝑛𝑛+1, �̇�𝑢𝑛𝑛+1) 
 

(3.6) 

Thus the residual 𝑒𝑒 depends on 𝑢𝑢, �̇�𝑢 and �̈�𝑢. The first step of the nonlinear Newmark al-
gorithm is to initialize the vectors 𝑢𝑢, �̇�𝑢 and �̈�𝑢 in which the initial velocity vector and the 
initial displacement vector are assumed to be known and are defined as zero vectors. The 
steps involved in the nonlinear Newmark algorithm are introduced below. The accelera-
tion vector is defined as the following 

1. Initial displacement and velocity vectors are assumed to be zero vectors 

�̈�𝑢0 = 𝑀𝑀−1(𝑓𝑓0 − 𝐶𝐶�̇�𝑢0 − 𝐾𝐾𝑢𝑢0) 
 

(3.7) 

2. A loop over time is performed and the predicted values of 𝑢𝑢 and �̇�𝑢 are defined 

�̈�𝑢𝑛𝑛+1 = �̈�𝑢𝑛𝑛 
�̇�𝑢𝑛𝑛+1 = �̇�𝑢𝑛𝑛 + 𝑑𝑑𝜕𝜕 �̈�𝑢𝑛𝑛 

𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛 + 𝑑𝑑𝜕𝜕 �̇�𝑢𝑛𝑛 + 1
2
𝑑𝑑𝜕𝜕2 �̈�𝑢𝑛𝑛 

 

 
(3.8) 

3. The residual 𝑒𝑒 mentioned before is calculated as 

𝑒𝑒 = 𝐹𝐹𝑛𝑛+1 − 𝑀𝑀�̈�𝑢𝑛𝑛+1 − 𝐶𝐶�̇�𝑢𝑛𝑛+1 − 𝐹𝐹𝑖𝑖𝑛𝑛𝑖𝑖 
 

(3.9) 

Where 𝐹𝐹𝑖𝑖𝑛𝑛𝑖𝑖 is the global internal force vector and 𝐹𝐹𝑛𝑛+1 is a vector containing the 
global nodal forces. 

4. Modification of the global tangent stiffness matrix and increment correction 

𝐾𝐾∗ = 𝐾𝐾 + 𝑀𝑀 1
𝑑𝑑𝜕𝜕2 𝛽𝛽

+ 𝐶𝐶 𝛾𝛾 𝑑𝑑𝜕𝜕
𝛽𝛽 𝑑𝑑𝜕𝜕2

 

𝛿𝛿𝑢𝑢 = (𝐾𝐾∗)−1𝑒𝑒 
 

 
(3.10) 

The corrected values of 𝑢𝑢𝑛𝑛+1, �̇�𝑢𝑛𝑛+1 and �̈�𝑢𝑛𝑛+1 are then defined as 

𝑢𝑢𝑛𝑛+1 = 𝑢𝑢𝑛𝑛 + 𝛿𝛿𝑢𝑢  

�̇�𝑢𝑛𝑛+1 = �̇�𝑢𝑛𝑛 + 𝛾𝛾 𝑑𝑑𝜕𝜕
𝛽𝛽 𝑑𝑑𝜕𝜕2

𝛿𝛿𝑢𝑢  

�̈�𝑢𝑛𝑛+1 = �̈�𝑢𝑛𝑛 + 1
𝑑𝑑𝜕𝜕2 𝛽𝛽

𝛿𝛿𝑢𝑢 

 

 
 

(3.11) 

If the residual > tolerance a new iteration starts, i.e. it returns to step 3. 
5. The algorithm now returns to step 2 for a new time step or stops. 

The nonlinear Newmark algorithm is implemented in MATLAB and is validated below. 
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3.2.1 Validation  

The nonlinear Newmark method is validated by the use of the following example in which 
a cantilever beam is subjected to a harmonic excitation force at the free end as shown in 
the figure below 

 

Figure 3.8: Harmonic load applied on a cantilever beam 

The harmonic excitation force is given as 𝑃𝑃(𝜕𝜕) = 𝑃𝑃0 sin(𝜕𝜕) in which 𝑃𝑃0 = 19𝑁𝑁 . The initial 
configuration and the maximum deformed state of the beam is shown in the figure below. 

 

Figure 3.9: Initial configuration and Maximum deformation of the beam 

This dynamic problem is solved by the nonlinear Newmark algorithm and compared with 
the linear and the nonlinear solution in Ansys Workbench. The plot obtained is shown in 
the figure below 
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Figure 3.10: Comparison between MATLAB and Ansys Workbench results 

It is observed from the above figure that the nonlinear Newmark solution from MATLAB 
agrees with the nonlinear solution obtained from Ansys Workbench from which it can be 
concluded that the nonlinear Newmark algorithm is validated. The linear solution from 
Ansys is included to show the difference between the nonlinear solution and the linear 
solution. The only sort of damping included in the analysis is the mass-proportional 
damping. In the upcoming subsection numerical damping is introduced and explained 
further. The Ansys file used for validation is present in Appendix A4. 

3.3 Newton-Raphson Method 

This section covers the load control algorithm which is used for performing a co-rotational 
beam analysis. It may be explained as a way of extracting a root of a polynomial. The 
load control algorithm is an implicit function which uses the Newton-Raphson iteration 
at a global level to achieve equilibrium at each incremental time step. This method is 
used for finding successively better approximations to the roots of a real-valued function. 
Newton-Raphson method is based on the idea of linear approximations and is very effec-
tive in solving the equations numerically. The Figure 3.11 illustrates the Newton Raphson 
Method. 
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Figure 3.11: Newton-Raphson Method 

The method starts with an initial guess 𝜕𝜕𝑜𝑜 which is reasonably close to the true root. 
Then the function 𝑓𝑓 is approximated by the tangent line 𝑓𝑓′(𝜕𝜕𝑜𝑜) which is the derivative. 
The x-intercept of this tangent line 𝜕𝜕1 will typically be a better approximation to the 
function’s root then the original guess and the method can be iterated as shown in the 
Figure 3.11. The equation (3.12) is used for finding out the first approximation. 

𝜕𝜕1 = 𝜕𝜕0 − 𝑓𝑓(𝜕𝜕0)
𝑓𝑓′(𝜕𝜕0)

 (3.12) 

 

The process is repeated until a sufficiently accurate result is obtained 

𝜕𝜕𝑛𝑛+1 = 𝜕𝜕𝑛𝑛 − 𝑓𝑓(𝜕𝜕𝑛𝑛)
𝑓𝑓′(𝜕𝜕𝑛𝑛)

 (3.13) 

 

There are some disadvantages in the use of the Newton-Raphson method as the method 
is sometimes unreliable, as it fails to converge for some examples. Furthermore, it requires 
high computational time as each step in the iterative process requires a solution of a 
linearized set of equations. Although this method fails to converge for all the problems, 
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continued iteration typically causes the errors to decrease and approach the correct value. 
However, one of the major advantages of the Newton-Raphson method is that it fulfils 
square convergence, which means the method provides a doubling of the number of sig-
nificant values of 𝜕𝜕. 

3.4 Numerical Damping 

Numerical damping also known as the algorithmic damping is introduced is introduced 
to the Newmark integration in order to stabilise the structure by damping out the unde-
sirable high frequency modes, which means the algorithmic damping controls the numer-
ical noise produced by the higher frequencies of the structure. Numerical damping is 
preferred since the higher frequency modes don’t usually have accurate contributions. 

Ansys Workbench already has algorithmic damping as an option and as default been set 
to 0.1 for Transient Structural Analysis. The Numerical damping 𝛼𝛼 for the Newmark 
formulation in the MATLAB script by the two parameters 𝛾𝛾 and 𝛽𝛽. 

𝛾𝛾 = 1
2

+ 𝛼𝛼 

𝛽𝛽 = 1
4

(1 + 𝛼𝛼)2 

 

 
(3.14) 

In which the parameter 𝛼𝛼 ≥ 0. It can be noticed for the figure given below that uncondi-
tional stability is obtained if 12 ≤ 𝛾𝛾 ≤ 2𝛽𝛽. 

 

Figure 3.12: Newmark Integration Algorithm Stability scheme 

The high frequency vibrations related to high modes are of no interest during which the 
unconditionally stable Newmark scheme is preferred. Stable results are obtained in this 
scheme but the results might not necessarily be accurate.  
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4. Hydrodynamic Modelling 
The kinematic quantities which have been determined from the linear irregular wave 
theory and the second order irregular wave theory are used in this chapter for the deter-
mination of the hydrodynamic forces to which the WEC would be subjected to. In this 
chapter the calculation of the hydrodynamic forces has been explained.  

4.1 Morison’s Equation 

Morison’s equation is used for the determination of the hydrodynamic forces. It should be 
noted that the Morison’s load formula is only valid for non-breaking waves and for circular 
cross-section. However, if the structural member is fully covered by water then the for-
mula also becomes valid for breaking water. The Morison equation doesn’t take into 
account the motion of the structure. In shallow water, the water breaks as 𝐻𝐻𝐿𝐿 exceeds 0.78 
and for deep water, the water breaks when 𝐻𝐻𝐿𝐿 > 0.14. The general Morison’s differential 
equation is written as 

𝑑𝑑𝐹𝐹 = 𝑑𝑑𝐹𝐹𝑖𝑖𝑛𝑛𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑎𝑎 + 𝑑𝑑𝐹𝐹𝑑𝑑𝑟𝑟𝑎𝑎𝑔𝑔 (4.1) 
The Morison’s force is equal to the sum of the Inertia forces and the sum of the Drag 
forces. The inertia forces is proportional to the particle acceleration and the drag forces 
are proportional to the square of the particle velocities as shown in equation (4.3). The 
Morison differential equation is only valid if the following ratio between the wave 
length 𝐿𝐿 and the tube diameter 𝐷𝐷 is valid. 

𝐿𝐿 > 5𝐷𝐷 (4.2) 
If the ratio given in equation (4.2) is satisfied then the diffraction theory can be ignored 
when computing the kinematic quantities as diffraction has no significance for slender 
members.  

 

Figure 4.1: Relative Importance of Drag, Inertia and Diffraction Wave Forces [15] 
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The Figure 4.1 refers to the horizontal forces induced by a regular wave acting on a 
vertical cylinder. The figure indicates the influence of different forces to the resulting force 
the cylinder is subjected to. 

The Morison’s formulation is given as 

𝑑𝑑𝐹𝐹 = 𝑑𝑑𝐹𝐹𝑖𝑖𝑛𝑛𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑎𝑎 + 𝑑𝑑𝐹𝐹𝑑𝑑𝑟𝑟𝑎𝑎𝑔𝑔 = (1 + 𝐶𝐶𝐴𝐴)𝜌𝜌 𝜋𝜋𝐷𝐷2

4
𝜕𝜕̈ + 1

2
𝐶𝐶𝐷𝐷𝜌𝜌𝐷𝐷𝜕𝜕|̇𝜕𝜕|̇

̇
 

 

(4.3) 

Where 𝐶𝐶𝐷𝐷 and (1 + 𝐶𝐶𝐴𝐴) = 𝐶𝐶𝑀𝑀 are drag and inertia coefficients respectively. These coef-
ficients are dimensionless. 𝐷𝐷 is the diameter of the structural member and 𝜌𝜌 is the density 
of water. The calculation of the coefficients in the above equation is covered in the later 
section. The fluid acceleration and the fluid velocity are 𝜕𝜕 ̈and 𝜕𝜕 ̇respectively. 

 

Figure 4.2: Forces on a monopile from a wave of H=13m, T=13sec, h=30m 

The above figure shows the Inertia force, Drag force and the total Morison force acting 
on a monopile of 7.8 meter and 0.2 meter diameter respectively. It can be seen that as 
the cross sectional diameter decreases, the inertia force decreases and has lesser influence 
on the Morison force whereas the drag force increases and has a higher influence. 

4.2 Relative Morison’s Equation 

As mentioned before equation (4.3) is valid only for structures that have been restrained 
in the water meaning it does not take the movement of the structure into account. Since 
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in this project the movement of the structure is necessary in order to determine the most 
realistic forces, the Morison’s equation is reformulated to account for the relative velocities 
and accelerations. The hydrodynamic forces are calculated by using the second order 
theory for the regular waves and the first order theory for irregular waves. 

 

 

Figure 4.3: Distributed Wave Loading on a Submerged Cylinder 

Figure 4.3 shows the incoming wave acting on a structure. The distributed wave 
forces 𝑞𝑞𝑤𝑤𝑛𝑛

 is dependent on the orientation of the beam and is perpendicular to the axis of 
the beam. The distributed wave loads are calculated using the relative Morison formula-
tion as shown below 

𝑞𝑞𝑤𝑤𝑛𝑛 = 𝐶𝐶𝑀𝑀𝜌𝜌𝑤𝑤𝐴𝐴�̇�𝑢𝐹𝐹𝑛𝑛 − 𝜌𝜌𝑤𝑤𝐶𝐶𝐴𝐴𝐴𝐴�̇�𝑢𝑆𝑆𝑛𝑛 + 1
2
𝜌𝜌𝑤𝑤𝐶𝐶𝐷𝐷𝑛𝑛

𝐻𝐻𝑒𝑒𝑛𝑛|𝑒𝑒𝑛𝑛| (4.4) 

Where, 
𝐴𝐴 is the cross sectional area 
�̇�𝑢𝐹𝐹𝑛𝑛 is the fluid particle acceleration normal to the beam axis 
�̇�𝑢𝑆𝑆𝑛𝑛 is the structural acceleration normal to the beam axis 
𝐶𝐶𝐴𝐴 is the added mass coefficient 
𝑒𝑒𝑛𝑛 is the relative fluid structure velocity normal to the beam axis 
𝐶𝐶𝐷𝐷𝑛𝑛

 is the normal drag coefficient 

Since the structure is damped in the Relative Morison Formula due to the added mass 
coefficient 𝐶𝐶𝐴𝐴, the use of additional hydrodynamic damping coefficients for the drag forces 
in the equation is not necessary. The relative fluid structure velocity is the difference 
between the fluid particle velocity and the structural velocity and the relative fluid struc-
ture acceleration is the difference between the fluid particle acceleration and the structural 
acceleration shown in the equation below  

𝑒𝑒𝑛𝑛 = 𝑢𝑢𝑖𝑖 − 𝜕𝜕𝑖𝑖 
𝑒𝑒𝑖𝑖 = �̇�𝑢𝑖𝑖 − 𝜕𝜕�̇�𝑖 

(4.5) 
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The structural velocities are interpolated with the nodal velocities 𝒙𝒙 and the structural 
accelerations are interpolated with the nodal accelerations �̇�𝒙 as shown below 

𝜕𝜕𝑖𝑖 = 𝑁𝑁𝑇𝑇 (𝜕𝜕𝑖𝑖)𝒙𝒙 

𝜕𝜕�̇�𝑖 = 𝑁𝑁𝑇𝑇 (𝜕𝜕�̇�𝑖)�̇�𝒙 
(4.6) 

The distributed wave loading 𝑞𝑞𝑤𝑤𝑡𝑡
which is tangential to the beam axis is mainly due to 

skin friction. Even though this tangential drag force is small compared to the normal drag 
force will have an important impact for long slender elements. The contribution from the 
distributed wave loading tangential to the beam axis 𝑞𝑞𝑤𝑤𝑡𝑡

 is given as 

𝑞𝑞𝑤𝑤𝑖𝑖 = 1
2
𝜌𝜌𝑤𝑤𝐶𝐶𝐷𝐷𝑡𝑡

𝐻𝐻𝑒𝑒𝑖𝑖|𝑒𝑒𝑖𝑖| 
(4.7) 

In which 𝐶𝐶𝐷𝐷𝑡𝑡
 and 𝑒𝑒𝑖𝑖 are the tangential drag coefficient and the relative fluid structure 

velocity tangential to the beam axis respectively. The calculation of the hydrodynamic 
coefficients of the structure is covered in the following section. 

4.3 Calculation of Hydrodynamic Coefficients 

The determination of hydrodynamic coefficients should be done before the calculation or 
analysis of the forces can be carried out. In the Morison equation there are two hydrody-
namic coefficients namely the inertia coefficient 𝐶𝐶𝑀𝑀 and the drag coefficient 𝐶𝐶𝐷𝐷, whereas 
in the Relative Morison equation there is a third hydrodynamic coefficient namely the 
added mass coefficient 𝐶𝐶𝐴𝐴. 

4.3.1 Drag and Inertia Coefficients 

Offshore cylindrical structures are dominated by inertia and drag forces. If the cross sec-
tion of the cylindrical structure are large then the forces would be inertia dominated due 
to wave diffraction but if the cross section of the cylindrical structure is small then the 
drag forces would have a higher impact compared to the inertia forces. This is shown in 
Figure 4.2. The Reynolds number 𝑅𝑅𝑖𝑖, the Keulegan-Carpenter Number 𝐾𝐾𝐶𝐶 and the 
roughness ∆ are the important parameters required for the determination of Drag and 
Inertia coefficients. These parameters are given as 

𝑅𝑅𝑖𝑖 = 𝑢𝑢𝐷𝐷
𝑣𝑣

       𝐾𝐾𝐶𝐶 = 𝑢𝑢𝑚𝑚𝑇𝑇
𝐷𝐷

       ∆= 𝑘𝑘
𝐷𝐷

 (4.8) 

Where, 
𝐷𝐷 is the diameter of the cylinder 
𝑇𝑇  is the wave period 
𝑘𝑘 is the surface roughness 
𝑢𝑢 is the flow velocity 
𝑣𝑣 is the fluid kinematic viscosity 
𝑢𝑢𝑚𝑚 is the maximum orbital particle velocity 

The inertia coefficient and the drag coefficient is given as 
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𝐶𝐶𝑀𝑀 = � 2.0 𝑓𝑓𝑓𝑓𝑒𝑒 𝐾𝐾𝐶𝐶 < 3
max[2.0 − 0.044(𝐾𝐾𝐶𝐶 − 3);  1.6 − (𝐶𝐶𝐷𝐷𝑆𝑆 − 0.65)] 𝑓𝑓𝑓𝑓𝑒𝑒 𝐾𝐾𝐶𝐶 > 3 

 

(4.9) 

𝐶𝐶𝐷𝐷 = 𝐶𝐶𝐷𝐷𝑆𝑆 𝜓𝜓(𝐶𝐶𝐷𝐷𝑆𝑆,𝐾𝐾𝐶𝐶) 
 

(4.10) 

Where 𝐶𝐶𝐷𝐷𝑆𝑆 is the drag coefficient for the steady state which is given in equation (4.11) 
and 𝜓𝜓 is the wake amplification factor which is taken from Figure 4.4. 

𝐶𝐶𝐷𝐷𝑆𝑆 =

⎩
��
�
⎨
��
�
⎧ 0.65 𝑓𝑓𝑓𝑓𝑒𝑒 𝑘𝑘

𝐷𝐷
< 10−4(𝑎𝑎𝑚𝑚𝑓𝑓𝑓𝑓𝜕𝜕ℎ)

29 + 4 log (𝑘𝑘
𝐷𝐷)

20
𝑓𝑓𝑓𝑓𝑒𝑒 10−4 < 𝑘𝑘

𝐷𝐷
< 10−2

1.05 𝑓𝑓𝑓𝑓𝑒𝑒 𝑘𝑘
𝐷𝐷

> 10−2(𝑅𝑅𝑓𝑓𝑢𝑢𝑔𝑔ℎ)

 

(4.11) 

The surface roughness 𝑘𝑘 is assumed to be smooth for uncoated and painted steel and if 
the surface is covered with marine growth, then it is chosen to between 0.005𝑚𝑚 − 0.05𝑚𝑚. 

 

Figure 4.4: Wake Amplification Factor [15] 

In the above figure the solid line is used if the surface is smooth and the dotted line is 
used if the surface is rough. For proper calculation the drag and inertia coefficients have 
to be calculated at each node and extraction point throughout every time step which 
would be time consuming. So, for the sake of simplification and to reduce the calculation 
time the drag and inertia coefficients are kept constant. For all the calculations in this 
project the drag coefficient 𝐶𝐶𝐷𝐷 is set to 0.5 and the inertia coefficient 𝐶𝐶𝑀𝑀 is set to 2 as 
per the recommendation of DNV. 

4.3.2 Added Mass Coefficient 
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As mentioned before in the Relative Morison equation there is an extra coefficient called 
the Added Mass coefficient 𝐶𝐶𝐴𝐴. Due to the fluid acting on a body under water an addi-
tional force has to be included in the analysis of the body’s motion in the waves. As the 
body moves in the fluid, an amount of fluid moves with it, i.e. the fluid accelerates as the 
body accelerates. Compared to vacuum more fore is required in fluids to accelerate a 
body. This additional force is given by the added mass and is calculated as 

𝑚𝑚𝑎𝑎 = 𝜌𝜌𝜋𝜋𝑒𝑒2𝐿𝐿 (4.12) 
Where 𝑒𝑒 and 𝐿𝐿 are the radius and length of the cylinder respectively. The non-dimen-
sional added mass coefficient 𝐶𝐶𝐴𝐴 is found by 

𝐶𝐶𝐴𝐴 = 𝑚𝑚𝑎𝑎
𝜌𝜌𝐴𝐴𝑠𝑠

 (4.13) 

 

Therefore as the body moves in the wave the amount of body submerged in water changes 
with time which changes the added mass coefficient. 
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5. Wave Load Modelling 
The wave kinematics obtained from Chapter 3 is applied in the relative Morison formu-
lation in Chapter 4 to obtain the hydrodynamic forces which helps in determining the 
impact of wave loads on the floating space frame structure. As the hydrodynamic forces 
are given in differential form as a force per unit length, a transformation of the differential 
hydrodynamic forces into nodal loads is needed. This transformation is explained in this 
chapter and can be accomplished by the two following approaches. 

• Numerical integration is introduced to transform the nodal forces into the hydro-
dynamic forces, based on the trapezoidal rule and by means of numerical integra-
tion. 

• A higher order polynomial regression is used to represent the differential hydro-
dynamic forces. These hydrodynamic forces are subsequently transformed into 
consistent beam loads by the interpolation function. 

The projection of the kinematic quantities are described and explained in the present 
chapter and an explanation of the implementation of the above two mentioned methods 
for representing the hydrodynamic forces is followed. 

5.1 Projection of the Kinematic Quantities 

A transverse and a tangential force contribution is induced on each member of the floating 
space frame structure by the kinematic quantities. Depending on the angle of the member, 
either the difference or the sum of the projected horizontal and vertical components of 
the kinematic quantities are used to obtain the transverse and tangential force contribu-
tion. The transformation matrix is used to represent the orientation of each of the member 
which is given as follows 

�
𝜕𝜕𝑙𝑙
𝜕𝜕𝑙𝑙

� = � cos 𝜃𝜃 sin 𝜃𝜃
− sin 𝜃𝜃 cos 𝜃𝜃� �𝑋𝑋𝑍𝑍�         �𝑋𝑋𝑍𝑍� = �cos 𝜃𝜃 −sin 𝜃𝜃

sin 𝜃𝜃 cos 𝜃𝜃 � �
𝜕𝜕𝑙𝑙
𝜕𝜕𝑙𝑙

� (5.1) 

The below figure shows the illustration of the projection of the kinematic quantities which 
has been implemented in MATLAB. 

 

Figure 5.1: Projection of Kinematic Quantities [16] 
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In the calculation of the differential hydrodynamic forces by the means of the relative 
Morison’s formula, the transverse and the tangential contributions of the kinematic quan-
tities has been applied and the obtained hydrodynamic forces are subsequently trans-
formed into nodal loads. A satisfactory distribution of the hydrodynamic forces is needed 
in order to obtain an accurate transformation of the hydrodynamic forces into nodal loads. 
This distribution of the hydrodynamic forces is achieved by sufficiently discretising the 
beam. In order to reduce the computational time which is caused due to large discretisa-
tion of the structure, extraction points have been introduced which is explained in the 
following section. 

5.2 Extraction Points 

Extra sub nodes are generated between the main nodes in order to ensure that a given 
structure has sufficient number of nodes. These nodes are also known as the extraction 
points. The below figure shows the illustration of a beam element with three extraction 
points. 

 

Figure 5.2: A beam element with 3 extraction points 

The number of extraction points needed to obtain a sufficient representation of the hy-
drodynamic forces depends on the average length between all the connected main nodes 
in the structure and it also depends on the method which has been used to transform the 
forces into consistent nodal loads.  

5.3 Polynomial Regression of Hydrodynamic Forces 

A higher order polynomial regression is used to represent the differential hydrodynamic 
forces in this section. The type of load the structure is exposed to determines the degree 
of polynomial. A quadratic regression provides a decent fit to the hydrodynamic forces 
for a first order wave. The quadratic regression is written as 
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𝑝𝑝(𝜕𝜕) = 𝑝𝑝1𝜕𝜕2 + 𝑝𝑝2𝜕𝜕 + 𝑝𝑝3 (5.2) 
The coefficients 𝑝𝑝1 to 𝑝𝑝3 are obtained by using the function in MATLAB called Polyfit, 
where the input parameters are the differential hydrodynamic forces in the nodes and in 
the extraction points for each element, the distance between the nodes, the extraction 
points and the degree of the polynomial. 

Transformation of Hydrodynamic forces into Beam Loads 
With the quadratic regression describing the distributed forces over the elements, the 
forces are now transformed into beam loads by means of the consistent load vectors. The 
consistent load vectors are defined via the integration of the product of the product of 
the transposed shape function 𝑁𝑁𝑇𝑇  and the polynomial loads 𝑝𝑝 over the length of the ele-
ment 𝐿𝐿. 

𝑒𝑒 = �𝑁𝑁𝑇𝑇 𝑝𝑝 𝑑𝑑𝐿𝐿 (5.3) 

The consistent load vector contains a transverse load, a tangential load and a bending 
moment at each node of each element and is illustrated in the figure below 

 

Figure 5.3: Transverse and Tangential loads and bending moments acting on two 
beam elements [16] 

The last step of the transformation is the use of the transformation matrix for the pro-
jection of the local loads to global loads. 

5.4 Modelling of Self Weight 

The loading obtained from the mass due to the acceleration of gravity has an impact on 
the floating space frame structure. The self-weight is implemented in the same manner as 
the hydrodynamic forces, namely by projection and transformation of the distributed self-
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weight load to nodal loads. The self-weight load of the structure is separated into a trans-
verse load and a tangential load by projection as shown in the below figure. 

 

Figure 5.4: The loading obtained by the mass due to the gravity acceleration acting 
on the structure [16] 

By application of the consistent load vectors, the distributed loads are transformed into 
beam loads and subsequently projected to global loads. The self-weight is included in all 
the wave analyses performed in the project. 

5.5 Validation of the wave structure interaction 

 

Figure 5.5: Model setup for calculation 

The interaction between the wave and the structure is done by the use of the following 
example. The model is setup as shown in the figure above. The model is prevented from 
moving in the vertical direction i.e. a roller support is applied at the intersection of the 
two arms, point 1 and point 2. The displacement is calculated at point 1 and point 2 
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shown in the above figure and validated against ANSYS. A regular 1st order wave having 
a wave height of 7m and a time period of 11 sec is applied on the model.  

 

Figure 5.6: Displacement comparison in x-direction between MATLAB and ANSYS 

 

Figure 5.7: Displacement comparison in y-direction between MATLAB and ANSYS 

The displacement obtained in the x-direction in ANSYS and MATLAB is shown in the 
Figure 5.6. The displacement obtained in the y-direction in Ansys and MATLAB is shown 
in the Figure 5.7. The displacement obtained in both x and y-direction in both ANSYS 
and MATLAB are the same and hence the code is validated. Appendix A5 contains the 
Ansys file used. 
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5.6 Drift forces 

The average over time of the 1st order waves loads on a structure is always equal to zero, 
if the loads are integrated to the mean load [22]. This is due to the fact that all the load 
components that are determined by the 1st order theory and the integration of all the 
wave loads stops at the mean water level (MWL). Drift forces are of major importance 
for the motions of a floating body. 

Drift velocity is not present in the 1st order wave theory and hence for the model setup 
shown in Figure 5.6 the displacement obtained in Figure 5.8 will always be less than the 
displacement that will be obtained by use of a higher order theory. The figure below 
shows the comparison of the displacement obtained by the use of the 1st order regular 
wave theory and the 2nd order regular wave theory. 

 

Figure 5.8: Displacement comparison in y-direction between the 1st order and the 
2nd order theory 

The displacement obtained in y-direction by the use of 1st order wave from both points 1 
and point 2 lie on each other. The displacement obtained in y-direction by the use of the 
2nd order wave at point 1 and point 2 lie on each other but show a greater displacement 
compared to the 1st order wave due to the presence of drift. The obtained displacement 
values are present in Appendix A6 
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6. Floating Space Frame Structure 
In this present chapter the time-domain dynamic response of the floating space frame 
structure is explained and determined by SOFIA. The WEPTOS Floating Space Frame 
Structure that has been designed and used in this section is shown in Figure 6.1. 

 

Figure 6.1: Floating Space Frame Structure 

The detailed structure shown in Figure 6.1 and the anchoring rope with the cable speci-
fication has not been possible to model in Ansys Workbench due to which no comparison 
of the predicted dynamic response of the floating space frame structure with the anchoring 
cable obtained from SOFIA is conducted. Instead the analyses have been performed with 
varying the stiffness of the node in the cable and the mooring line forces obtained from 
the 1st order regular wave and the 2nd order regular wave as well as the dynamic response 
of the floating space frame structure is compared.  
The modelling of the anchoring cable as well as the modelling of the boundary conditions 
in MATLAB have been described in the following subsections.  

6.1 Modelling of Anchoring Cable 

The anchoring cable supporting the floating space frame structure is modelled based on 
the product information catalogue given by the manufacturer Bridon [23]. The anchoring 
cables are modelled as circular cross-sectional solids and the moment of inertia of these 
anchoring cables are reduced so as to assume that these anchoring cables are flexible in 
bending, in which they possess only axial stiffness. These anchoring cables used in 
MATLAB are an approximation of a realistic anchoring cables. 
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Figure 6.2: Bridon Tiger Dyform 6R 6x36 Class [23] 

The anchoring cable used for the space frame structure is a steel wire rope manufactured 
in a 6X36 wire lay construction as shown in Figure 6.2. The rope is designed for applica-
tions of mooring lines. The diameter of the rope is 33𝑚𝑚𝑚𝑚 and having an approximate 
mass of 4.52𝑘𝑘𝑔𝑔/𝑚𝑚. The anchoring cable has a length of 25𝑚𝑚 and is divided into 25 element 
each having 1𝑚𝑚 length. 

6.2 Modelling of the Space frame structure. 

The WEPTOS space frame structure is modelled by cylinders having an inner diameter 
of 0.2𝑚𝑚 and an outer diameter of 0.23𝑚𝑚. To ensure floating the elements are modelled 
such that the buoyancy is always more than the weight of the elements. The Floating 
Space Frame Structure is shown in Figure 6.1 is a representation of the WEPTOS like 
Structure taken from the website [24]. It should be noted that since it was not possible 
to obtain the actual dimensions of the WEPTOS space frame structure, the dimensions 
used are only a physical representation and are not the actual dimensions. 

The arms of the WEPTOS space frame structure has a length of 64𝑚𝑚. The angle between 
the two arms is of 60°. A simple connection instead of the actual connection is made 
between the two arms in order to simplify the design. The dimension of the connection 
has been increased in order to provide more buoyancy to the structure and increase its 
strength. An inner diameter of 0.33𝑚𝑚 and an outer diameter of 0.37𝑚𝑚 has been used for 
the connection. 

6.3 Dynamic response of the Structure 

The last element of the anchoring cable is fixed to prevent it from having displacement 
and moment in any of the 3 direction. Three different analyses have been performed by 
varying the stiffness of the second last element in the anchoring cable. The third last 
element in the anchoring cable represents the investigation point 1. Changing of the stiff-
ness is an illustration of how the buoyancy of the buoy to which the anchoring cable is 
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supposed to be attached will affect the structure. The Figure 6.3 shows the modelled 
space frame structure and the points that have been investigated. 

 

Figure 6.3: Investigation points in the Space Frame structure 

A time domain analysis with a simulation duration of 30𝑎𝑎𝑒𝑒𝑐𝑐 and having a time step of 
0.005𝑎𝑎𝑒𝑒𝑐𝑐 has been performed. The structure has a total of 463 beam elements due to 
which the computational time is very high. The floating space frame structure has been 
subjected to a regular first order wave and a regular second order wave having a wave 
height 𝐻𝐻 = 7𝑚𝑚, water depth ℎ = 30𝑚𝑚 and a wave period of 11𝑎𝑎𝑒𝑒𝑐𝑐. The location of this 
wave parameter is present in Figure 2.8. This wave parameter has been chosen as the 
second order regular wave theory is valid for this wave specification which can be calcu-
lated from Figure 2.2 and it will be possible to see the variations that are obtained be-
tween the wave theories. Mooring line forces at investigation point 1 are extracted in 
order to determine the forces to which the anchoring cable will be subjected to. The 
horizontal displacements in the y-direction and vertical displacements are extracted at 
both investigation point 1 and 2. The corresponding velocities and accelerations are pre-
sent in the excel file in Appendix A7. The number 1st and 2nd are used to represent the 
1st order regular wave and the 2nd order regular wave respectively in the upcoming figures. 
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Figure 6.4: Mooring line Force vs Time for stiffness reduced by 10% 

Figure 6.4 shows mooring line force vs time plot obtained for reducing the stiffness of the 
mooring line at the point shown in Figure 6.3. The stiffness at the node in the mooring 
line is reduced by 10% i.e. only 90% of the total stiffness is acting at the specified point. 
The reduction of stiffness is an indirect illustration of the buoy being pulled by the space 
frame structure.  

 

Figure 6.5: Mooring line Force vs Time for actual stiffness and stiffness increased by 
10% at the node 
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Figure 6.5 shows mooring line force vs time plot obtained for the actual stiffness and for 
increasing the stiffness of the mooring line at the point shown in Figure 6.3. It can be 
noticed from the figure that the mooring line force obtained when the 2nd order regular 
wave is acting on the model is higher than the mooring line force obtained when the 
model is subjected to a 1st order wave for the same stiffness. The peaks represents when 
the mooring line stretches and is in tension. The other parts of the figure represents when 
there is no tension on the mooring line and the mooring line is free. In theory it should 
be possible to see a constant tension on the mooring line for the 2nd order wave. But for 
this the analysis has to be carried out for a longer period of time. 

 

 

Figure 6.6: Vertical displacement at investigation point 1 & 2 for varying stiffness 

Figure 6.6 shows the vertical displacement vs time at the investigation point 1 and inves-
tigation point 2. In the legend the letter ‘m’ is used to represent the mooring line i.e. the 
investigation point 1 and the letter ‘s’ is used to represent the structure i.e. the investi-
gation point 2. As expected the vertical displacement at investigation point 1 which is 
present on the mooring line is far less compared to investigation point 2 which is on the 
structure. The vertical displacement of the investigation point 2 represents the floating 
of the structure on the acting wave and hence the structure moves along with the wave. 
It can be noticed that there is a peak in displacement once every 11sec which represents 
the wave time period in this case. 
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Figure 6.7: Horizontal displacement at investigation point 1 & 2 for varying stiffness 

Figure 6.7 shows the horizontal displacement vs time at the investigation point 1 and 
investigation point 2. The horizontal displacement is in the y-direction which is along the 
direction of the wave. As expected there is not much displacement at investigation point 
1 which represents the mooring line. In the graph at 15.83 sec and at 26.08 sec the dis-
placement has increased for the 2nd order wave whereas it remains the same for the 1st 
order wave. This displacement from the 2nd order wave will tend to increase constantly if 
the analysis is carried out for longer periods of time which will lead to a constant tension 
on the mooring line. 
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7. Conclusion 
The objective of this project is to investigate the mooring line forces and the dynamic 
response of the WEPTOS WEC when subjected to a linear wave theory and a 2nd order 
wave theory. Out of all the wave theories only the first order wave theory and the second 
order wave theory have been taken into account in this project. All the structural elements 
in the project are modelled by cylindrical beam elements. The calculations in the project 
are based on the co-rotational beam formulation and is done numerically. The implemen-
tation of the co-rotational beam formulation allows the WEPTOS WEC and other float-
ing structure to have large displacement and rotation.  

In order to take into account the movement of the structure when subjected to waves, 
the relative Morison’s equation has been implemented. A submerged V-structure is sub-
jected to a wave for validation of the wave structure interaction. The displacement ob-
tained along the direction of the wave for this structure is more when it is subjected to a 
2nd order wave theory compared to a first order wave theory.  

An anchored floating space frame structure similar to the WEPTOS WEC is modelled 
and subjected to first order regular wave and a second order regular wave. The mooring 
line forces is higher for the 2nd order regular wave theory when compared to the 1st order 
regular wave theory. Similarly the displacement of the structure along the direction of 
the wave appears to be larger for the 2nd order wave theory. If the analysis is carried out 
for a longer period of time a constant tension on the mooring line can be obtained. 
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Appendix 
This Appendix contains the expansion of the formulas mentioned in the above chapters. 

First order regular wave 
Horizontal Velocity 

𝑢𝑢(1) = 𝜕𝜕𝜑𝜑(1)

𝜕𝜕𝜕𝜕
= 𝑎𝑎𝑔𝑔𝑘𝑘

𝜔𝜔
cosh (𝑘𝑘(𝜕𝜕 + ℎ))

cosh (𝑘𝑘ℎ)
cos (𝜔𝜔𝜕𝜕 − 𝑘𝑘𝜕𝜕) 

Vertical Velocity 

𝑤𝑤(1) = 𝜕𝜕𝜑𝜑(1)

𝜕𝜕𝜕𝜕
= − 𝑎𝑎𝑔𝑔𝑘𝑘

𝜔𝜔
sinh (𝑘𝑘(𝜕𝜕 + ℎ))

cosh (𝑘𝑘ℎ)
sin (𝜔𝜔𝜕𝜕 − 𝑘𝑘𝜕𝜕) 

Horizontal Acceleration 

�̇�𝑢(1) = 𝑑𝑑𝑢𝑢(1)

𝑑𝑑𝜕𝜕
≈ 𝜕𝜕𝑢𝑢(1)

𝜕𝜕𝜕𝜕
= −𝑎𝑎𝑔𝑔𝑘𝑘 cosh (𝑘𝑘(𝜕𝜕 + ℎ))

cosh (𝑘𝑘ℎ)
sin (𝜔𝜔𝜕𝜕 − 𝑘𝑘𝜕𝜕) 

Vertical Acceleration 

�̇�𝑤(1) = 𝑑𝑑𝑤𝑤(1)

𝑑𝑑𝜕𝜕
≈ 𝜕𝜕𝑤𝑤(1)

𝜕𝜕𝜕𝜕
= −𝑎𝑎𝑔𝑔𝑘𝑘 sinh (𝑘𝑘(𝜕𝜕 + ℎ))

cosh (𝑘𝑘ℎ)
cos (𝜔𝜔𝜕𝜕 − 𝑘𝑘𝜕𝜕) 

 

Second order regular wave 
Horizontal Velocity 

𝑢𝑢(2) = 𝜕𝜕𝜑𝜑(2)

𝜕𝜕𝜕𝜕
= 𝑢𝑢(1) − 3

32
𝑐𝑐𝑘𝑘2𝐻𝐻2cosh (2𝑘𝑘(𝜕𝜕 + ℎ))

sinh4(𝑘𝑘ℎ)
cos�2(𝜔𝜔𝜕𝜕 − 𝑘𝑘𝜕𝜕)� − 1

8
𝑔𝑔𝐻𝐻2

𝑐𝑐ℎ
 

Vertical Velocity 

𝑤𝑤(2) = 𝜕𝜕𝜑𝜑(2)

𝜕𝜕𝜕𝜕
= 𝑤𝑤(1) + 3

32
𝑐𝑐𝑘𝑘𝐻𝐻2sinh (2𝑘𝑘(𝜕𝜕 + ℎ))

sinh4(𝑘𝑘ℎ)
sin�2(𝜔𝜔𝜕𝜕 − 𝑘𝑘𝜕𝜕)� 

Horizontal Acceleration 

�̇�𝑢(2) = 𝑑𝑑𝑢𝑢(2)

𝑑𝑑𝜕𝜕
≈ 𝜕𝜕𝑢𝑢(2)

𝜕𝜕𝜕𝜕
= �̇�𝑢(1) + 3

32
𝑐𝑐𝑘𝑘2𝜔𝜔𝐻𝐻2cosh (2𝑘𝑘(𝜕𝜕 + ℎ))

sinh4(𝑘𝑘ℎ)
sin�2(𝜔𝜔𝜕𝜕 − 𝑘𝑘𝜕𝜕)� 

Vertical Acceleration 

�̇�𝑤(2) = 𝑑𝑑𝑤𝑤(2)

𝑑𝑑𝜕𝜕
≈ 𝜕𝜕𝑤𝑤(2)

𝜕𝜕𝜕𝜕
= �̇�𝑤(1) + 3

32
𝑐𝑐𝑘𝑘𝜔𝜔𝐻𝐻2sinh (2𝑘𝑘(𝜕𝜕 + ℎ))

sinh4(𝑘𝑘ℎ)
cos�2(𝜔𝜔𝜕𝜕 − 𝑘𝑘𝜕𝜕)� 

 

First order irregular wave 
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Horizontal Velocity 

𝑢𝑢(1) = 𝜕𝜕𝜑𝜑(1)

𝜕𝜕𝜕𝜕
= �−𝑏𝑏𝑛𝑛𝑘𝑘𝑛𝑛

cosh (𝑘𝑘𝑛𝑛(𝜕𝜕 + ℎ))
cosh (𝑘𝑘𝑛𝑛ℎ)

cos (𝜔𝜔𝑛𝑛𝜕𝜕 − 𝑘𝑘𝑛𝑛𝜕𝜕 − 𝜗𝜗𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

Vertical Velocity 

𝑤𝑤(1) = 𝜕𝜕𝜑𝜑(1)

𝜕𝜕𝜕𝜕
= �𝑏𝑏𝑛𝑛𝑘𝑘𝑛𝑛

sinh (𝑘𝑘𝑛𝑛(𝜕𝜕 + ℎ))
cosh (𝑘𝑘𝑛𝑛ℎ)

sin (𝜔𝜔𝑛𝑛𝜕𝜕 − 𝑘𝑘𝑛𝑛𝜕𝜕 − 𝜗𝜗𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

Horizontal Acceleration 

�̇�𝑢(1) = 𝑑𝑑𝑢𝑢(1)

𝑑𝑑𝜕𝜕
≈ 𝜕𝜕𝑢𝑢(1)

𝜕𝜕𝜕𝜕
= �𝑏𝑏𝑛𝑛𝑘𝑘𝑛𝑛𝜔𝜔𝑛𝑛

cosh (𝑘𝑘𝑛𝑛(𝜕𝜕 + ℎ))
cosh (𝑘𝑘𝑛𝑛ℎ)

sin (𝜔𝜔𝑛𝑛𝜕𝜕 − 𝑘𝑘𝑛𝑛𝜕𝜕 − 𝜗𝜗𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

Vertical Acceleration 

�̇�𝑤(1) = 𝑑𝑑𝑤𝑤(1)

𝑑𝑑𝜕𝜕
≈ 𝜕𝜕𝑤𝑤(1)

𝜕𝜕𝜕𝜕
= �𝑏𝑏𝑛𝑛𝑘𝑘𝑛𝑛𝜔𝜔𝑛𝑛

sinh (𝑘𝑘𝑛𝑛(𝜕𝜕 + ℎ))
cosh (𝑘𝑘𝑛𝑛ℎ)

sin (𝜔𝜔𝑛𝑛𝜕𝜕 − 𝑘𝑘𝑛𝑛𝜕𝜕 − 𝜗𝜗𝑛𝑛)
𝑁𝑁

𝑛𝑛=1
 

 

Second order irregular wave 
The transfer function used in the second order amplitude is given as 

𝐵𝐵𝑚𝑚𝑛𝑛
+ = 1

4
�𝐷𝐷𝑚𝑚𝑛𝑛

+ − (𝑘𝑘𝑚𝑚𝑘𝑘𝑛𝑛 − 𝑅𝑅𝑚𝑚𝑅𝑅𝑛𝑛)
�𝑅𝑅𝑚𝑚𝑅𝑅𝑛𝑛

+ (𝑅𝑅𝑚𝑚 + 𝑅𝑅𝑛𝑛)� 

𝐷𝐷𝑚𝑚𝑚𝑚
+ =

��𝑅𝑅𝑚𝑚 + �𝑅𝑅𝑛𝑛���𝑅𝑅𝑛𝑛(𝑘𝑘𝑚𝑚
2 − 𝑅𝑅𝑚𝑚

2 ) + �𝑅𝑅𝑚𝑚(𝑘𝑘𝑛𝑛
2 − 𝑅𝑅𝑛𝑛

2)�
��𝑅𝑅𝑚𝑚 + �𝑅𝑅𝑛𝑛�2 − 𝑘𝑘𝑚𝑚𝑛𝑛

+ tanh(𝑘𝑘𝑚𝑚𝑛𝑛
+ ℎ)

+
2��𝑅𝑅𝑚𝑚 + �𝑅𝑅𝑛𝑛�2(𝑘𝑘𝑚𝑚𝑘𝑘𝑛𝑛 − 𝑅𝑅𝑚𝑚𝑅𝑅𝑛𝑛)
��𝑅𝑅𝑚𝑚 + �𝑅𝑅𝑛𝑛�2 − 𝑘𝑘𝑚𝑚𝑛𝑛

+ tanh(𝑘𝑘𝑚𝑚𝑛𝑛
+ ℎ)

 

 

𝐵𝐵𝑚𝑚𝑛𝑛
− = 1

4
�𝐷𝐷𝑚𝑚𝑛𝑛

− − (𝑘𝑘𝑚𝑚𝑘𝑘𝑛𝑛 + 𝑅𝑅𝑚𝑚𝑅𝑅𝑛𝑛)
�𝑅𝑅𝑚𝑚𝑅𝑅𝑛𝑛

+ (𝑅𝑅𝑚𝑚 + 𝑅𝑅𝑛𝑛)� 

𝐷𝐷𝑚𝑚𝑚𝑚
− =

��𝑅𝑅𝑚𝑚 − �𝑅𝑅𝑛𝑛���𝑅𝑅𝑛𝑛(𝑘𝑘𝑚𝑚
2 − 𝑅𝑅𝑚𝑚

2 ) − �𝑅𝑅𝑚𝑚(𝑘𝑘𝑛𝑛
2 − 𝑅𝑅𝑛𝑛

2)�
��𝑅𝑅𝑚𝑚 − �𝑅𝑅𝑛𝑛�2 − 𝑘𝑘𝑚𝑚𝑛𝑛

− tanh(𝑘𝑘𝑚𝑚𝑛𝑛
− ℎ)

+
2��𝑅𝑅𝑚𝑚 + �𝑅𝑅𝑛𝑛�2(𝑘𝑘𝑚𝑚𝑘𝑘𝑛𝑛 − 𝑅𝑅𝑚𝑚𝑅𝑅𝑛𝑛)
��𝑅𝑅𝑚𝑚 − �𝑅𝑅𝑛𝑛�2 − 𝑘𝑘𝑚𝑚𝑛𝑛

− tanh(𝑘𝑘𝑚𝑚𝑛𝑛
− ℎ)

 

The reduced wave numbers and the difference and sum wave numbers are given as 

𝑘𝑘𝑚𝑚𝑚𝑚
− = |𝑘𝑘𝑚𝑚 − 𝑘𝑘𝑛𝑛| 

𝑘𝑘𝑚𝑚𝑚𝑚
+ = 𝑘𝑘𝑚𝑚 + 𝑘𝑘𝑛𝑛 

𝜓𝜓𝑚𝑚 = 𝜔𝜔𝑚𝑚𝜕𝜕 − 𝑘𝑘𝑚𝑚𝜕𝜕 − 𝜗𝜗𝑚𝑚 
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𝑅𝑅𝑚𝑚 =
𝜔𝜔𝑚𝑚

2

𝑔𝑔  

∆𝜑𝜑(2)(𝜕𝜕, 𝜕𝜕) = 1
4

� ��𝑏𝑏𝑚𝑚𝑏𝑏𝑛𝑛
cosh (𝑘𝑘𝑚𝑚𝑛𝑛

± (𝜕𝜕 + ℎ))
cosh (𝑘𝑘𝑚𝑚𝑛𝑛

± ℎ)
𝐷𝐷𝑚𝑚𝑛𝑛

±

(𝜔𝜔𝑚𝑚 ± 𝜔𝜔𝑛𝑛)
sin(𝜓𝜓𝑚𝑚 ± 𝜓𝜓𝑛𝑛)�

𝑁𝑁

𝑛𝑛=1

𝑁𝑁

𝑚𝑚=1
 

Horizontal Velocity 

𝑢𝑢(2) = 𝜕𝜕𝜑𝜑(2)

𝜕𝜕𝜕𝜕
= 𝑢𝑢(1)

± 1
4

� ��𝑏𝑏𝑚𝑚𝑏𝑏𝑛𝑛(𝑘𝑘𝑚𝑚 ± 𝑘𝑘𝑛𝑛) cosh (𝑘𝑘𝑚𝑚𝑛𝑛
± (𝜕𝜕 + ℎ))

cosh (𝑘𝑘𝑚𝑚𝑛𝑛
± ℎ)

𝐷𝐷𝑚𝑚𝑛𝑛
±

(𝜔𝜔𝑚𝑚 ± 𝜔𝜔𝑛𝑛)
cos(𝜓𝜓𝑚𝑚 ± 𝜓𝜓𝑛𝑛)�

𝑁𝑁

𝑛𝑛=1

𝑁𝑁

𝑚𝑚=1
 

Vertical Velocity 

𝑤𝑤(2) = 𝜕𝜕𝜑𝜑(2)

𝜕𝜕𝜕𝜕
= 𝑤𝑤(1) + 1

4
� ��𝑏𝑏𝑚𝑚𝑏𝑏𝑛𝑛𝑘𝑘𝑚𝑚𝑛𝑛

± sinh (𝑘𝑘𝑚𝑚𝑛𝑛
± (𝜕𝜕 + ℎ))

cosh (𝑘𝑘𝑚𝑚𝑛𝑛
± ℎ)

𝐷𝐷𝑚𝑚𝑛𝑛
±

(𝜔𝜔𝑚𝑚 ± 𝜔𝜔𝑛𝑛)
sin(𝜓𝜓𝑚𝑚 ± 𝜓𝜓𝑛𝑛)�

𝑁𝑁

𝑛𝑛=1

𝑁𝑁

𝑚𝑚=1
 

Horizontal Acceleration 

�̇�𝑢(2) = 𝑑𝑑𝑢𝑢(2)

𝑑𝑑𝜕𝜕
≈ 𝜕𝜕𝑢𝑢(2)

𝜕𝜕𝜕𝜕
= �̇�𝑢(1)

± 1
4

� ��𝑏𝑏𝑚𝑚𝑏𝑏𝑛𝑛(𝑘𝑘𝑚𝑚 ± 𝑘𝑘𝑛𝑛)(𝜔𝜔𝑚𝑚

𝑁𝑁

𝑛𝑛=1

𝑁𝑁

𝑚𝑚=1

± 𝜔𝜔𝑛𝑛) cosh (𝑘𝑘𝑚𝑚𝑛𝑛
± (𝜕𝜕 + ℎ))

cosh (𝑘𝑘𝑚𝑚𝑛𝑛
± ℎ)

𝐷𝐷𝑚𝑚𝑛𝑛
±

(𝜔𝜔𝑚𝑚 ± 𝜔𝜔𝑛𝑛)
sin(𝜓𝜓𝑚𝑚 ± 𝜓𝜓𝑛𝑛)� 

Vertical Acceleration 

�̇�𝑤(2) = 𝑑𝑑𝑤𝑤(2)

𝑑𝑑𝜕𝜕
≈ 𝜕𝜕𝑤𝑤(2)

𝜕𝜕𝜕𝜕
= �̇�𝑤(1)

+ 1
4

� ��𝑏𝑏𝑚𝑚𝑏𝑏𝑛𝑛𝑘𝑘𝑚𝑚𝑛𝑛
± (𝜔𝜔𝑚𝑚

𝑁𝑁

𝑛𝑛=1

𝑁𝑁

𝑚𝑚=1

± 𝜔𝜔𝑛𝑛) sinh (𝑘𝑘𝑚𝑚𝑛𝑛
± (𝜕𝜕 + ℎ))

cosh (𝑘𝑘𝑚𝑚𝑛𝑛
± ℎ)

𝐷𝐷𝑚𝑚𝑛𝑛
±

(𝜔𝜔𝑚𝑚 ± 𝜔𝜔𝑛𝑛)
cos(𝜓𝜓𝑚𝑚 ± 𝜓𝜓𝑛𝑛)� 
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